
Helsinki University of Technology  Transportation Engineering  Publication 106

Teknillinen korkeakoulu  Liikennetekniikka  Julkaisu 106

Espoo 2003

THE TRANSFERABILITY OF TRAVEL DEMAND MODELS

An analysis of transfer methods, data quality and model estimation

Nina Karasmaa

Dissertation for the degree of Doctor of Science in Technology to be presented

with due permission of the Department of Civil and Environmental Engineering

for public examination and debate in Auditorium R1 at Helsinki University of 

Technology (Espoo, Finland) on the 17th of December 2003, at 12 noon.

Helsinki University of Technology

Department of Civil and Environmental Engineering

Laboratory of Transportation Engineering

Teknillinen korkeakoulu

Rakennus- ja ympäristötekniikan osasto

Liikennelaboratorio



Inquiries and orders:

Helsinki University of Technology

Laboratory of Transportation Engineering

P.O.Box 2100

FIN-02015  HUT

Tel. +358-9-451 3791

Fax. +358-9-451 5019

E-mail: anneli.fogel@hut.fi

ISBN 951-22-6856-6

ISSN 0781-5816

Picaset Oy

Helsinki 2003



HELSINKI UNIVERSITY OF TECHNOLOGY        ABSTRACT OF
DEPARTMENT OF CIVIL AND ENVIRONMENTAL                DOCTORAL THESIS
ENGINEERING

Author: Nina Karasmaa
Title: The transferability of travel demand models, An analysis of transfer

methods, data quality and model estimation
Date: 17.12.2003           Pages: 214 Code: Yhd-71
Supervisor: Professori Matti Pursula Professuuri: Liikennetekniikka

The main goal of this study was to compare alternative methods of spatial transfer as a function of
sample size, and identify the factors affecting the models’ quality and the impreciseness of the
model parameters. In addition, different test measures for studying model transferability were
compared and the applicability of the traditional statistical tests, with respect to those based on the
prediction accuracy of sample enumeration tests and forecasts, were assessed. The research
primarily concerned the transferability of mode and destination models; however, the preciseness
of the trip generation level was considered as well.

The study was mainly based on the mobility surveys conducted in the Helsinki Metropolitan Area
(HMA) in 1995 and in the Turku region in 1997.  The transferring procedures examined were
Bayesian updating, combined transfer estimation, transfer scaling, and joint context estimation
procedures. The trip groups studied were home-based work trips and other home-based trips.  The
studied modes were walk and bicycle, car and public transport. To explore the impact of sample
size on transferring performance, model transferability was tested using three to four different
sample sizes. Thus, all the transferability tests were made by using 100 bootstrap samples
(resampled from the Turku 1997 dataset) for each trip group, transfer method and sample size
category.

The results indicated that joint context estimation gives the best prediction performance in almost
all cases. In particular, the method is useful if the transfer bias is large or only some of the
coefficients are precise.  The applicability of joint context estimation can be improved by viewing
the coefficients as variable-oriented and emphasizing precise and imprecise coefficients differently.
The models transferred by using combined transfer estimation or transfer scaling were most
sensitive to the sample size and their use, therefore, requires much larger samples than the Bayesian
approach or joint context estimation. In addition, note that due to repeated measurements the results
based on the Bayesian method and combined transfer estimation may be strongly biased.  When
defining the sample size required the fact that defining mode shares precisely may require more
observations than the transferring mode and the destination choice models must be taken into
account.

The results also showed that statistical tests are not able to evaluate the goodness of transferred
models with a high enough degree of versatility. For example two models that have totally different
values for coefficients may have the same TTS. As a result, their ability to predict the effect of
changes in a transportation system may differ greatly.  On the whole, the differences between the
best transfer methods are, in some cases, rather small, and the errors caused by the factors
connected to the modelling and sample size seem to be larger than the errors caused by the model
transfer itself.  
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Avsikten med detta arbete var att utreda olika överföringsmetoders tillämplighet för olika
situationer. Överföring av modeller har traditionellt uppskattats genom att jämföra parametrar för
modeller gjorda för två olika orter eller vid två olika tidpunkter med varandra. Eftersom en
målsättning för överföring av modeller är att göra det möjligt att uppgöra modeller utgående från
rätt små observationsmaterial,  koncentrerar sig detta arbete speciellt på sampelstorlekens inverkan
på modellers överföring.

I detta forskningsarbete jämfördes olika överföringsmetoder med hjälp av material insamlat i
Helsingforsregionen år 1995 och Åboregionen år 1997. Dessutom uppskattades sampelstorlekens
inverkan på modellernas överförbarhet. Överföringen av modellerna undersöktes för bostads-
baserade arbetsresor och övriga bostadsbaserade resor. De undersökta färdmedlen var gång- och
cykeltrafik, bil och kollektivtrafik. Modellernas överföring undersöktes skilt utgående från
trafikalstring, färdmedelsvalsmodeller och destinationsvalsmodeller samt utgående från hela trafik-
prognossystemet.  De undersökta överföringsmetoderna var skalfaktormetoden, Bayes metod, den
generaliserade Bayes metoden samt estimering från det kombinerade materialet från
Helsingforsregionen år 1995 och Åboregionen år 1997. Dessutom användes 1997 års material från
Åboregionen för att för varje sampelstorlek estimera nya modeller genom att använda modell-
definitioner som tillämpats på Helsingforsregionens 1995 års material. För varje resärendegrupp
testades 100 slumpmässigt valda bootstrap-sampel. De undersökta sampelstorlekarna varierade från
400 till 13900 reseobservationer. Trafikalstringen överfördes egentligen inte, utan frekvenstalen
beräknades som enkla trafikalstringstabeller för varje sampel.

Resultaten visar, att estimering av det kombinerade materialet är den bästa överföringsmetoden i
nästan alla situationer, i synnerhet om de tillförlitligaste variablerna estimeras skilt för varje
material. Modeller estimerade med den generaliserade Bayes metoden och skalfaktormetoden är
mest känsliga för variationer i sampelstorlek, vilket innebär att dessa metoder förutsätter större
observationsmaterial än Bayes metod och estimering från det kombinerade materialet. Beträffande
Bayes metod och i viss mån också den generaliserade Bayes metoden bör man ta i betraktande, att
modellernas estimater kan vara sneda, om observationsmaterialet innefattar flera resor gjorda av
samma person, vilket ofta är fallet i material insamlat i Finland. Man bör också lägga märke till att
bestämmandet av färmedelsfördelningen kan kräva större sampelstorlek än överförandet av
färdmedelsvals- och destinationsvalsmodellerna.

Resultaten visar, att enbart statistisk prövning inte räcker till för att uppskatta modellernas
överförbarhet tillräckligt mångsidigt. Enligt de testningar som baserades på log-likelihoodmått kan
modeller som uppskattats vara nästan lika bra skilja sig märkbart från varandra vad beträffar
enskilda variabler, varvid också ifrågavarande modellers tidsvärden och elasticitetsverkningar
avviker från varandra. Allt som allt kan man konstatera, att skillnaderna mellan olika
överföringsmetoder ofta är mindre än skillnaderna förorsakade av olika sampelstorlek. 
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Tämän työn tavoitteena oli selvittää eri siirtotapojen soveltuvuutta eri tilanteisiin.  Mallien siirtoa
on perinteisesti arvioitu vertaamalla kahdessa eri paikassa tai kahtena eri ajankohtana tehtyjen
mallien parametreja toisiinsa.  Koska mallien siirron yhtenä tavoitteena on mahdollistaa mallien
teko kohtalaisen pienillä havaintoaineistoilla, on tässä työssä tarkasteltu erityisesti otoskoon
vaikutusta mallien siirtoon.

Tutkimuksessa vertailtiin pääkaupunkiseudulla vuona 1995 ja Turun seudulla vuonna 1997
kerättyjen aineistojen avulla eri siirtotapoja sekä arvioitiin otoskoon vaikutusta mallien
siirrettävyyteen.  Mallien siirtoa tutkittiin kotiperäisillä työmatkoilla ja muilla kotiperäisillä
matkoilla. Tarkasteltavat kulkutavat olivat kevytliikenne, auto ja joukkoliikenne. Mallien siirtoa
tutkittiin erikseen matkatuotosten, kulkutapa- ja suuntautumismallien sekä koko ennusteen kannalta.
Tarkasteltavat siirtotavat olivat tasokorjausmenetelmä, Bayesin menetelmä, yleistetty Bayesin
menetelmä sekä yhdistetystä pääkaupunkiseudun 1995 ja Turun seudun 1997 aineistoista
estimointi.  Lisäksi Turun seudun 1997 aineistosta estimoitiin kullakin otoskoolla uudet mallit
käyttäen pääkaupunkiseudun 1995 aineistoon sovellettuja mallimäärittelyjä.  Kullakin matkaryh-
mällä ja otoskoolla testattiin 100 satunnaisesti valittua bootstrap-otosta.  Tutkitut otoskoot vaihte-
livat 400:sta 13900:aan matkahavaintoon.  Matkatuotoksia ei varsinaisesti siirretty, vaan tuotosluvut
laskettiin yksinkertaisina tuotostaulukkoina kullekin 100:lle otokselle.

Tulokset osoittivat, että yhdistetyn aineiston estimointi on lähes kaikissa tilanteissa paras siirtotapa
varsinkin, jos luotettavimmat muuttujat estimoidaan aineistokohtaisina. Yleistetyllä Bayesin
menetelmällä ja tasokorjausmenetelmällä estimoidut mallit ovat herkimpiä otoskoon vaihtelulle,
joten näiden menetelmien käyttö edellyttää huomattavasti suurempia havaintomääriä kuin Bayesin
menetelmä ja yhdistetystä aineistosta estimointi.  Bayesin ja pienemmässä määrin myös yleistetyn
Bayesin menetelmien osalta on huomattava, että mallien estimaatit voivat olla harhaisia, jos
malliaineistossa on samalta henkilöltä useita matkoja, kuten Suomessa kerätyissä aineistoissa
yleensä on tilanne. On myös huomattava, että kulkutapaosuuksien määrittäminen saattaa vaatia
suurempaa otoskokoa kuin kulkutapa- ja suuntautumismallien siirtäminen. 

Tulokset osoittivat, että pelkillä tilastollisilla testeillä ei pystytä arvioimaan mallien siirrettävyyttä
riittävän monipuolisesti.  Suurimman uskottavuuden arvoihin perustuvien testien perusteella lähes
yhtä hyviksi arvioidut mallit saattavat yksittäisten muuttujien osalta poiketa toisistaan hyvinkin
paljon, jolloin myös kyseisten mallien ajanarvot ja joustovaikutukset poikkeavat toisistaan.
Kaikenkaikkiaan voitiin todeta, että  erot eri siirtotapojen välillä ovat usein pienempiä kuin
otoskoosta aiheutuvat erot. 
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ALKUSANAT

Tämän väitöskirjan tavoitteena on ollut selvittää pääkaupunkiseudulla vuonna 1995 tehdyn
sisäisen liikenteen mallijärjestelmän alueellista siirrettävyyttä.  Idean aiheeseen sain DI
Hannu Kankaalta, joka itse aikanaan tutki samaa aihepiiriä. Työ lähti liikkeelle  erilaisten
siirtomenetelmien vertailusta.   Koska mallien siirron tavoitteena on nimenomaan vähentää
aineiston keräämisestä aiheutuvia kuluja, työn toiseksi pääteemaksi muodostui otoskoon
vaikutusten tutkiminen mallien siirrossa.
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että Turun mallien laadinnassa sekä hänen julkaisuihini esittämistään kommenteista.  

Kiitokset myös Pääkaupunkiseudun yhteistyövaltuuskunnalle, Turun kaupungille ja
liikenne- ja viestintäministeriölle,  joiden toimeksiannot mahdollistivat työn tekemisen.
Työtä ovat tukeneet myös Teknillisen korkeakoulun tukisäätiö, Henry Fordin säätiö,
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1 INTRODUCTION

1.1 Background

Travel forecasting is usually based on the presumption that travel demand is based on firm
and predictable behaviour patterns. Analogously, the expectation that travel demand
models are transferable is based on the idea that an individual’s travel behaviour can be
described by the individual’s personal characteristics, their socio-economic backround, the
transportation system, and that the behavioural process is relatively constant over time and
space. 

Transferability has usually been described in terms of temporal or spatial transferability.
Temporal transfer is the application of a model estimated at one point in time for the
prediction of behaviour in the same spatial environment at another point in time.  Tempo-
ral transfer is employed and temporal transferability is implicitly invoked whenever
models estimated on historic data are used to predict the future.  Spatial transfer is the
application of a model estimated in one location (estimation context) for prediction of
behaviour in a different spatial environment (application context).  Spatial transferability
is explicitly invoked when models developed in one geographic region are used to make
predictions in another (Koppelman and Rose 1983).

Transferability has been a matter of considerable practical and theoretical interest because
the transfer of a previously estimated model to a new application context can reduce or
eliminate the need for large data collection and model development effort in the applicati-
on context. Thus, several studies have been conducted to assess the effectiveness of model
transfer from one context to another.  Some of these studies have examined spatial transfer
(Atherton and Ben-Akiva 1976, Galbraith and Hensher 1982, Koppelman et al. 1985,
McCoomb 1986, Gunn and Pol 1986, Tretvik 1989, Abdelwahab 1991, Algers et al. 1994,
Sermons 2000), while others have examined the temporal transfer of these models (Talvitie
and Kirshner 1978, Train 1978, McCarthy 1982, Hague Consulting Group 1990, Badoe
1994, Badoe and Miller 1995a, Badoe and Miller 1995b,  Badoe and Miller 1998, Walker
et al. 1998, Elmi et al. 1999).
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The transferability of travel demand models is commonly perceived as an issue of the
equality of the model coefficients in two contexts. However, assessing model transferabili-
ty only on the basis of the set of model parameters being equal in the two contexts is a very
stringent test and it is one that is unlikely to be met since no model is perfectly specified.
Consequently, all models are in principle context dependent.  A more pragmatic evaluation
of transferability is achieved by assessing the extent of useful information provided in an
application context by transferred models  (Badoe 1994). 

In Finland, model transferability was not studied much before the 1990's, when the first
transferability project started at Helsinki University of Technology (Karasmaa 1995,
Karasmaa and Pursula 1995).   However, travel demand models have been produced since
1967, when the first models were  estimated  for the Helsinki Metropolitan Area, and two
years later also for the Lahti and Tampere regions.  Since then travel demand models have
been estimated in approximately 15 municipalities.  Although,  these models may be
precise and well made, the existence of a uniform modelling system (for local purposes)
has been lacking, thereby making it difficult to compare and evaluate results.

The goal of our model transfer project, started in 1994, has been to examine how the
model system developed in the Helsinki Metropolitan area is to be applied in other areas
in Finland.  During the project, different transfer methods have been studied, and the key
issues causing differences in modelling and data collection have been investigated.  In
connection with the study the regional models have been re-estimated to the Helsinki
Metropolitan area, and totally new models have been  estimated to the Turku and Vaasa
regions.  HUT has also been involved with projects concerning data quality and har-
monizing both in Finland (Kurri and Karasmaa 1999, Kivari et al. 2000) and at the
European level (Dateline 2003). All this research has contributed to the implementation of
this study even though the results are mainly based on the experiences gained from the
Helsinki Metropolitan Area (HMA) and from the Turku region.

1.2 History and problems 

There are two main issues, which affect the results of tests of model transferability.  The
first one is the difference between the coefficients estimated from the estimation and
application context data.  This difference is traditionally known as transfer bias. The other
is the statistical preciseness of model parameters, which refers to the repeatability of the
estimation results (Richardson et al. 1995). Thus the final results depend on both the
quality of the models in the estimation and application context and the differences in the
traffic system, and on the travel behaviour pattern.
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In literature, four different transfer methods are presented.  These are:

� transfer scaling,
� Bayesian method,
� combined transfer estimation and,
� the joint context estimation. 

The transfer methods differ from each other in emphasizing the estimation and the
application context data. Errors expressed in model transfer can be caused by sampling
errors or errors that are caused by differences between the coefficients in the initial and the
final stages. The problem in model transfer is that we do not know how much the differ-
ence between the coefficients estimated in estimation and application contexts is caused by
the random variation of the model parameters, and how much is caused by the difference
in travel behaviour. 

Model transferability has been extensively studied, particularly in the Nordic countries, the
USA, and Canada.  The starting point has typically been the testing of the model parame-
ter’s equality in two contexts.  What this means, is that the conclusions have been based on
the comparison of the model coefficients in two contexts and no actual transfer has been
made in these studies.   The most popular transfer methods have been transfer scaling and
the Bayesian method.  In 1987, Ben-Akiva and Bolduc presented a new method, known as
the combined transfer estimation method.  This method can be viewed as an extension of
the Bayesian method. When transferring using any of these three methods, only application
context data is required (and the coefficients based on the estimation context).  The first
time both estimation and application context datasets were used together in the transfer
process, was in 1994, when Badoe and Miller presented their work (Badoe 1994, Badoe
and Miller 1995a, Badoe and Miller 1995b).  In their research, the authors  compared the
joint context estimation method with the other three transfer methods. 

On the whole, the results relating to model transfer have been controversial. Many studies
have shown that model transfer is possible when the estimation context models are well
defined and the data quality is good.   On the other hand, especially when studying spatial
transferability, the opposite results have often been reached.  One reason for this may be
that the conclusions, in most cases, have been drawn based on the testing of the model
parameter’s equality in two contexts. Thus the results cannot be fully generalized, but
rather are dependent on the similarities of the datasets in two contexts. The basic assumpti-
on, in many cases, has been that model transfer is only possible if the coefficients in the
estimation and application contexts are quite similar.  The possibilities of  transfer bias
control (the difference in the true parameters between the two contexts) have rarely been
explored. In addition, the importance of the impreciseness of the coefficients has not been
analyzed.  Thus, conclusions have, in most cases, been based on statistical tests only rather
than any reference to the performance of models in practice.
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The first studies, in which researchers consciously committed themselves to how the
difference between estimation and application contexts should be considered, were not
published until the end of the 1980’s (Ben-Akiva and Bolduc 1987, Badoe 1994, Badoe
and Miller 1995a, Badoe and Miller 1995b, Badoe and Miller 1998).  Prior to this
methods (e.g. transfer scaling) which took into account the transfer bias were used;
however,  the main thrust of the research had been to study the model parameters similari-
ty in two contexts. As a result of this,  almost all the previous research has been conducted
using the whole set of mobility survey data without studying the effects of the sample size.
This has been done despite  the knowledge that the greatest advance in model transfer
could have been reached by reducing the size of the data to be collected in the new
situation.

1.3 Model transfer experiments in Finland

The main reason for the lack of Finnish experiments with model transfer has been a lack
of appropriate models and suitable data. The study of temporal or spatial transferability
requires an appropriate model structure based on reliable data for the base situation.  In
addition, reliable data is required for the transfer of this model structure in time or space.
The appropriate data for model transfer in Finland now exists for the Helsinki Metropoli-
tan Area. In 1988, a comprehensive travel survey was conducted in the area (YTV 1990b).
Based on this survey travel demand models (Pursula and Kanner 1992), that were used in
traffic forecasting and evaluating the effects of land use, traffic system and policy making
were estimated.   In addition, a new travel survey was conducted in 1995 (Kaartokallio
1997) and new travel demand models for the Helsinki Metropolitan Area were estimated
based on this survey (Karasmaa et al. 1997).  Similar travel surveys were conducted in the
Turku, Tampere, Jyväskylä, Vaasa, Oulu and Rovaniemi regions in the 1990's. 

The current model system used in the HMA and in most cities in Finland is the traditional
four step model, in which the travel modelling has been divided into four different sub
models, namely: trip generation, destination choice, mode choice and route choice.  The
process includes feedback between the last three steps (YTV and Liikenneministeriö 1990a,
Pursula and Kanner 1992, Karasmaa et al. 1997). Steps two and three have been model-
led using discrete choice models.  This means that every individual chosen in the sample
has a limited number of alternatives and from these alternatives he or she will choose the
one that will maximize his or her utility.  Travel forecasting is based on the presumption
that the distribution of travel demand is based on firm and predictable behaviour. The most
common model type for individual choices is a logit formulation, which has also been used
in this thesis to model the mode and destination choices.

Research into the transferability of the travel demand models began in Helsinki University
of Technology in 1994. The study was started with a literature review (Karasmaa and 
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Pursula 1995).  In addition, the spatial transferability of the Helsinki Metropolitan Area
models was studied. The empirical study was based on the data collected in the Oulu
region in 1989 and examined the transferability of mode choice models by using the
transfer scaling method (Karasmaa 1995). Later on, spatial transferability was also studied
in the Turku region (Karasmaa 2001). Research into the temporal transferability of the
Helsinki Metropolitan Area models was started for the first time in 1995. The research was
based on the data collected in the Helsinki Metropolitan Area in 1981 and 1988 (Karas-
maa 1996a, Karasmaa and Pursula 1997).  Temporal transferability was next studied in
1996 based on the data collected in the Helsinki Metropolitan Area in 1988 and 1995
(Karasmaa 1998, Kurri and Karasmaa 1999). In both cases the transferability of the
whole four-step model system was studied and different transfer methods were compared
to one another. A licentiate thesis on model transferability was submitted to HUT in 1996
(Karasmaa 1996b).

1.4 Goals of the thesis

The purpose of this thesis is to compare alternative methods of spatial transfer as a
function of  sample size and develope a new approach to joint context estimation.  The
purpose is also to identify the factors affecting the models’ quality and the impreciseness
of the model’s parameters. The research primarily concerns the transferability of mode and
destination models; however, the preciseness of the trip generation level is considered as
well.  

Specifically, the main issues are: 

� the transferability of the mode and destination choice models and the corrections that
are needed for the transfer,

� the amount of data required in the application context,
� the application areas of different transfer methods, 
� the improvement of the efficiency of transfer methods, and 
� ways in which model transferability should be tested.

The results presented here are mainly based on information obtained from the Helsinki
Metropolitan Area (HMA) and the Turku region in Finland. The HMA travel database is
used for the estimation of the models which are to be transferred.  The database for the
Turku region represents the application context to which the HMA models are transferred.
The model transfer is studied using two different trip groups, namely home-based work
trips (HBW) and other home-based trips (OHB). This makes it possible to study different
kinds of combinations related to the model parameters’ preciseness and the transfer bias.
Some special issues are also considered through the use of simulated data.
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1.5 Summary of contents

The dissertation is divided into seven main chapters.  Chapter 2 reviews the history and
problems surrounding model transferability. The issues associated with data quality are
also considered in this chapter. Chapter 3 introduces the theory of transferability and the
logit models. Four different transfer methods are presented in this chapter as well as the
goodness of fit measures. Chapter 4 presents the methodology, and the data and models
used in this study.  The factors affecting the models’ quality and the impreciseness of
model parameters are discussed in Chapter 5.

Chapter 6 presents the case study of the spatial transferability of the Helsinki Metropolitan
Area models. Different transfer methods are compared to each other, and the effect of the
sample size is examined. In addition, one special issue, which may affect the generalizati-
on of the results, is studied.  This is the problem caused by the correlation between the
answers provided by the same individual (the problem of repeated measurements). General
conclusions are drawn in Chapter 7.
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2 LITERATURE REVIEW OF THE TRANSFERABILITY OF
TRAVEL DEMAND MODELS

  

2.1 Temporal and spatial transferability 

Disaggregate traffic forecast models are based on the idea that an individual’s travel
behaviour can be described by the individual’s preferences, and this behavioural process
is relatively constant over time and space.  In model transfer the issue is the general
validity of that description of individual’s behaviour.  Model structure and accuracy is
determined by the purpose of the models and by the availability of data.  To be transferable
from the point of view of estimation, model parameters should be well specified and as
precise as possible. In addition, the model theory and the model structure must be
consistent with this premise.

There are two different approaches when looking at model transfer.  In the first one, model
transferability is studied statistically by comparing models made in different contexts to
each other (e.g., the Helsinki Metropolitan Area and the Turku region). The hypothesis is
that the behavioural parameters of all models are identical.  The basic idea is to study
whether this hypothesis holds true.
 
The second  approach is to actively accept that there are some differences in treating longer
periods, or models estimated in different areas.  These differences can be caused by the
differences in the traffic system or differences in travel behaviour, i.e., how individuals
evaluate different things. This viewpoint of assessing model transferability is adopted in
this thesis.  The basic idea of the research  is to study how the transfer bias caused by these
differences can be controlled, without estimating an entirely new model system, or
collecting large amounts of new data (which are needed to estimate ”perfect” new models).

According to the Hansen (1981) and Brand and Cheslow (1981) the model transferability
can be classified as follows:
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� the transferability of broad behavioural postulates such as utility maximization,
� the transferability of a mathematical model class,
� the transferability of model specifications,
� the transferability of model coefficients.

By studying the transferability of logit models, it is assumed that the first two conditions
are fulfilled and only the last two conditions have to be tested.

Regardless of whether existing models are to be transferred, or new models are to be
estimated, the study of model transferability requires similar travel behaviour surveys to be
made in both the application context area and the estimation context area  (excluding naive
transfer).  This similarity means that the same variables are to be measured for model
purposes.  In addition, similar survey methods are also recommended.  This issue is
discussed in Chapter 5.  The difference in the process in estimating new models, or
transferred models, is the requirement imposed by the quality and quantity of data. Pursula
and Widlert (1990) have  assessed that the estimation of new models requires two to four
times more observations than the transfer of models, as long as the transfer is done with
great care (Pursula and Widlert 1990).

2.2 The importance of source data to model transfer 

Mobility surveys are usually performed for two reasons: monitoring of the travel behaviour
of the population and estimating models that are used to understand the past and present,
and to predict the future.  Travel behaviour is commonly studied via mobility surveys in
which a trip diary and personal background are observed.

When testing model transferability, it is important to be able to control how well the survey
methods correspond to each other in the estimation and application context.  The data
should be collected in a standardized way, and consistent model structures should be used
in all phases. In addition, the questionnaires should be designed in such a way that the
questions can be interpreted unambiguously.

Three popular forms of survey relating to the collection of information are travel diaries
where we only record trips, activity diaries where we mostly record out-of-home activities,
and time-use diaries where we record almost everything we do in a day inside and outside
the home, with the exception of certain highly private activities. In this thesis we are
looking at model transferability based on the data collected through the use of simple one
and two-day travel diaries. We have collected repeated cross-sectional data rather than
panel-data, which is very popular at the moment.
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There are two basic methods of collecting data relating to the  individual preferences which
form the basis of behaviour.  The method used in this study is known as the Revealed
Preference method (RP).  In this method information about travel behaviour is collected
in real situations.  The other method that can be used is to collect Stated preference (SP)
data, a method which is based on responses to hypothetical travel situations in a survey
context.  SP-data is normally used in cases where observed choice behaviour is not in itself
adequate enough to model the context of interest. SP data may be used, for example, when
one is interested in types of travel alternatives or characteristics which do  not yet exist, or
in qualitative attributes which are very difficult to measure in real situations. The statistical
efficiency can also be improved by using SP data. Combined RP and SP data have been
used in order to exploit the relative advantages of the different data sources and obtain
more reliable parameter estimates than those estimated from a single data source (Ben-
Akiva and Morikawa 1990).

Both RP and SP studies can be carried out as a household or as a individual interview. In
a household interview the sample is taken from the households in the area and all the
members of the households are interviewed.  By using personal interviews all the people
living in the area generate the population set of data.  The interview can be carried out by
using different methods, with the most common of these being postal questionnaires and
telephone interviews, although the seldom used personal interview is the most accurate
way of gathering information.

Postal and telephone interviews have been analysed in several studies.  For example, Brög
and Meyburg (1981) indicate, that the use of postal questionnaires increased the response
rate of mobile individuals, beyond that of telephone interviews. In contrast, participation
in both personal interview and a telephone interview is largely determined by accessibility.
More mobile people are more difficult to reach in personal and telephone surveys and as
a consequence they show a higher non-response rate.  On the other hand, less mobile
people may be reluctant to answer, if they have not made any trips.

In a study made in the Oslo, Norway in 1990, there was a 40 percent increase in the
reported number of trip generations due to the use of telephone interviews as opposed to
postal questionnaires. It was thought to be due to the fact, that walk and bicycle trips are
usually better reported by telephone interviews (Algers et al. 1994).

In principle, surveys are never capable of providing an exact replication of reality. Thus,
at least four different kinds of errors can be identified: sampling error, coverage error,
measurement error and, non-response error (Kalfs et al. 2000).
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Sampling error is not a property of the data itself, but rather a consequence of the lack of
data. Any sampling error does not affect the expected values of the means of the estimated
parameters; it only affects the variability around them, thus determining the degree of
confidence that may be associated with the means. It is basically a function of sample size
and of the inherent variability of the parameter under investigation. This uncertainty can be
reduced by taking larger samples or by using sample designs, such as stratified samples
that yield less variance in the statistics of interest.

Another important source of error is the one resulting from coverage, for instance, the
failure to locate or visit some units in the sample.  Well-known examples of problems with
coverage are found in telephone surveys.  Telephone coverage is partly a problem because
the coverage is not uniformly distributed among the population. Access to telephones is
related to specific socio-economic background variables, such as age and income.

Measurement errors occur when the observed or reported value is different from the true
value. Measurement error is generally described by the term “observational errors”,
whether they arise from the interviewer, the respondent, the questionnaire or the data
collection mode.  Three types of consequences of measurement error can be identified:
non-reporting of trips, incomplete information and incorrect information.  Certain data
items, such as income levels or trip departure and arrival times that require estimates on
the respondent’s part can be a source of error.  Such errors can produce non-random biases
when respondents consciously or unconsciously distort their answers.

Non-response is a phenomenon in which units that belong to the selected sample provide
no information at all. Partial non-response is present when only part of the data is
collected. Non-response has two effects on the results of sample surveys.  First, it reduces
the sample size and hence increases sampling error.  A more negative consequence is that
non- response may bias results and lead to under- or overestimation of variances.  This
occurs when non-respondents systematically differ from respondents.  A lot of research has
focused on the characteristics of non-respondents.  It seems to be common knowledge that
non- and less mobile households in particular, and people with relatively simple activity
patterns and those with complex activity patterns as well, tend to respond less.

The most problematic sources of errors are those, whose influence cannot be corrected by
socio-demographic or other kinds of weighting. Although mode shares, among other
factors, could at least be partially corrected by applying socio-demographic weighting (see
Section 5.3.2.1), it must be noted that the mode choice models are usually estimated using
unweighted data.   In model transfer, it is also very important to take seasonal variations
into account. If different pieces of research are compared to each other, the minimum
requirement is that the mobility surveys have been carried out in the same season.
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It should also be noted, that  all the trips made during the report period are used as the basis
of the Finnish travel demand models.  Consequently,  there will be correlation between the
answers provided by the same individual, and therefore in the error terms in the utility
function. This violates the assumption that the error terms are independent of each other 

and means that we can no longer rely on the estimated variance estimates (Cirillo et.al.
2000).  The problem is known as the repeated measurement issue and it is considered
more specifically in Section 5.3.3.3.  

2.3 Literature review

2.3.1 The transferability of model structure and model parameters

There is no concensus on the model transferability in the literature.  However, results have
mainly shown that model transfer is possible when the estimation context models are well
defined and the data quality is good (Karasmaa and Pursula 1995).  According to Algers,
Colliander and Widlert (1987) the biggest problems are caused by the low quality of the
original data.  If the models estimated in the estimation context situation are not good, then
the transferred models cannot be good.  

According to Ben-Akiva (1981) specification errors of the explanatory variables are major
contributors to failures of transferability. Similarly, Louviere (1981) argued that
transferability is frequently linked to validation of travel-choice models.  Because each
study area has a different covariance structure, each represents only one of the possible
parameter estimates for regions; and the nature of random observations results in
inefficient parameter estimates. 

Koppelman and Pas (1986) have compared the transferability of joint choice and
sequential  (or nested) choice models. The hypothesis that joint models would be more
transferable than sequential models was based on the work of Ben-Akiva (1974) in which
he argues for the adaptation of joint choice models in preference to sequential models.  The
contradictory hypothesis that sequential models would be more transferable was based on
the increased flexibility of sequential models, which allow them to take account of
similarity among some of the joint choice alternatives (McFadden 1978).  In their study,
Koppelman and Pas (1986) found only a small difference between the transferability of
joint and sequential models. However, the authors suggested that the conclusion appeared
to be dependent on the similarity of the estimation results for the joint and sequential
models in this specific case.
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Chester (1983) looked at the potential of market segmentation in improving the
transferability of discrete choice models. If the population can be segmented into
subpopulations in which travel tastes are reasonably homogeneous and transfer is made
between groups of similar taste, then there will be no transfer error resulting from the
difference in the distribution of tastes between the populations.  The transferability of
models between segmented and unsegmented data was tested empirically with data from
Minneapolis-St.Paul, Baltimore and Washington D.C.  The analysis involved transfers
within each area and between the areas.  The segmentation according to the gender, income
level, workers per household and cars per household were tested. The main finding was,
that transferability was consistently improved by using segment models instead of a single
pooled model.  However, the degree of improvement observed was small in absolute terms.
According to the author, one reason for this could be that there was relatively little
difference in the distribution of the travel tastes between transfer contexts in this study. 

Model complexity can be assumed to have different effects on model quality and
transferability. Sermons (2000) found, in his study of residential location choice models,
that improvements in the specification aimed at better representing household-level
systematic taste variation did not necessarily result in improvements in model
transferability because the more complex models are more difficult to transfer.

Dehghani and Talvitie (1983) tested the effect of model specification (simple versus
complex) on the transferability of mode choice models.  They also found that the potential
of transferability of a model did not increase at the same rate as did the complexity of the
model specification.  

According to Talvitie and Kirchner (1978) model specifications strongly affect the
coefficients and the models' degree of fit.  For this reason, the walking and waiting times,
among others, should always be treated separately.  On the other hand, the Finnish
experiences have shown that travel time components cannot be produced reliably by the
use of the Emme/2 assignment program, which has been the basic network related analysis
tool in most Finnish research (Karasmaa 1995). 

Some research, such as those by Parody (1977) and Train (1978), indicate that the
prediction efficiency can be improved by adding socio-economic and demographic
variables to the models.

Tardiff (1979) has shown that the omitted variables can strongly affect the values of
alternative-specific constants and increase their variability. When comparing two similarly
specified models to each other, the difference between the average values of random
components is usually quite large, the difference between the estimated variances of coeffi-
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cients is smaller, and the difference between the parameter values is the smallest. This sug-
gests the importance of the re-estimation of alternative-specific constants in model transfer.

Next, a short summary of the previous studies relating to temporal and spatial
transferability is presented. The results of these studies have been more widely discussed
in a study by Karasmaa and Pursula (1995). The transfer methods presented in this section
are described in more detail in Section 3.7.

2.3.2 Spatial transferability

The earliest of the transferability studies was carried out by Watson and Westin (1975),
who studied the transferability of mode-choice models among different subareas within a
single urban area.  Their data were for the Edinburgh-Glasgow area of Scotland. The data
were grouped into six categories according to whether the trip origins and destinations
were in the city centre, the suburbs, or the area peripheral to the urban area. Each of the six
models was then used to predict the mode choices of the other five samples.  Watson and
Westin concluded that the predictive ability of the model for the  city centre was fairly
favourable to transferability, but that the results for the other groups indicated a need to
refine the models for locational differences.

Atherton and Ben-Akiva (1976) investigated the transferability of a work trip mode choice
model estimated on 1968 Washington D.C. data. The transferred model was applied to data
sets representative of New Bedford, Massachusetts from 1963 and Los Angeles, California
from 1967. In addition, the authors developed a hierarchy of model transfer methods for
empirical testing.   Despite the Washington D.C. data set representing significantly
different socio-economic and demographic distributions from what existed in Los Angeles
and New Bedford, the authors, on the basis of transfer evaluation measures, came to the
conclusion that the model was transferable.  Of the several approaches for transferring that
were developed, the Bayesian approach based on combining the existing model
coefficients with the estimation results from a new sample gave the best overall
performance. 

Koppelman et al. (1985) investigated the intraurban and interurban transferability of work
trip mode choice models. The intraurban transferability was studied across three
geographic areas in Washington D.C. The interregional transferability analysis was
undertaken in Minneapolis St. Paul, Baltimore, and Washington, D.C.  According to the
results, transfer effectiveness improved with the updating of alternative-specific constants
and improved further with the updating of the parameter scale for both intraurban and
interurban transfers. 
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The research done in Norway, in 1989, further supports the view that alternative-specific
constants should be re-estimated (Tretvik 1989).  However, the research shows that in
predicting the effects of changes in the travel system, the correction of alternative-specific
constants already gave better performance than might have been the case had the transfer
scaling for some variables also been used. Algers, Colliander and Widlert (1987)  obtained
similar results in their studies relating to the transferability of mode and destination choice
models in Sweden.

Galbraith and Hensher (1982) investigated work trip mode choice model transferability
between two suburban areas of Sydney, Australia.  Both transfer scaling and the Bayesian
approach were examined. Transferability was rejected using model parameter equality tests
as well as the comparison of "proper fit" measures.

The Bayesian approach was also studied by Abdelwahab (1991).  In this study the
comparison of mode choice models estimated on the data sets from two regions in Canada
yielded inconclusive results in relation to model transferability.  In general, transferred
models were found to be 18-23 percent less accurate than local models in predicting modal
shares.

McCoomb (1986) studied the transferability of mode choice models for the journey to work
in Canada’s ten largest cities. Data for all cities were collected on a specific day, common
to all, by Statistics Canada.  Model specifications for the ten cities were identical.
McCoomb’s analysis did not result in a single transferable model to all the cities. However,
some models were found to be “reasonably” comparable in terms of model coefficients,
which led the author to conclude that a model from one city can be transferred and used to
forecast modal split in another city when cities are reasonably similar in size, structure,
transportation system, and so forth.

Sermons (2000) also studied the transferability of residential location models estimated for
the San Francisco metropolitan area and the Portland metropolitan area and assessed the
effectiveness of variance scaling, weighting, and systematic taste variation on model
transferability. The results showed that scaling to account for variance and using the
weighted likelihood function vastly improved the transferability of the model.  However,
the more complex models including separate time parameters for male and female workers,
did not yield good results in comparison with the more simple models.

Most studies have focused on the transferability of the mode choice models; however,
transferring the entire model system was examined in the Netherlands where the model
system made for the Rotterdam and The Hague region was transferred to Utrecht (Gunn
and Pol 1986). The model system differed from the “standard four-stage transportation 



2.3   Literature review 29

planning models”, being more similar to the activity-based models than the traditional trip-
based models. The model transferability was evaluated in terms of relevance, adequacy and
validity.  This research showed that the model transfer is also possible for the entire model
system, when the alternative-specific constants are re-estimated and transfer-scaling factors
are used.  On the other hand, transfer scaling separately for travel standards and socio-
economic variables did not give remarkably better transfer effectiveness.

In Sweden, the model combination estimated in Göteborg, Jönköping and the Netherlands
(known as the Zuidvleugel-study 1977-81) was transferred to Helsingborg in 1989.  The 
studied trip groups were work, business, shopping, social and recreational trips. Transfer
effectiveness was measured in terms of transfer scaling factors, which deviated
significantly from zero and one. The transfer effectiveness of the level of service variables
seemed to be good. However, the naive transfer, without any transfer scale factors, or
socio-economic variables, was not adequate.  Some attraction variables for destination
choice levels were required. However, there were quite large-scale factors, due to the
population density differences between these countries and also different opinions,
regarding which kind of society is better.  (Widlert 1990, Algers et al. 1994.)

In Norway, the transferring of work and shopping trip models was tried in the Oslo-
Akerhus region in 1990.  The re-estimation of alternative-specific constants of work trip
models indicated the largest improvements with respect to the naive model. In the transfer
of the shopping trips, the best results were obtained by using an inverse model structure for
mode- and destination choice models, and by using scale-factors for the level of service
variables. According to the study, transfer scaling can lower the models' ability to predict
changes in the travel system if the relationships of the coefficients do not stay the same
between the estimation and application context (Algers et al. 1994).

In 1992, in Stockholm, the work trip model system was partially transferred to Trondheim.
Although the travel behaviour between these two regions was quite different, the model
transfer, which was carried out using the transfer scaling method succeeded quite well
(Algers et al. 1994).

2.3.3 Temporal transferability

Most transferability studies focus on spatial dimension; the transfer scaling approach is  the
most common approach when corrections are made. In principle, the problem is the same
when considering temporal transferability.  However, in some cases, the viewpoint can
differ from that used in the context of spatial transfer  ( e.g. the use of combined RP and SP
data).
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One of the first studies of temporal transferability was carried out by Talvitie and Kirshner
(1978), who investigated the transferability of model coefficients in a temporal context for
San Francisco, using pre-BART (Bay Area Rapid Transit) data (1973) and post-BART data
(1975) and in a spatial context on Washington D.C. data 1968 and Minneapolis St. Paul 
data sets 1970.  Transferability was evaluated by a statistical test of equality of the entire
set of estimated model parameters including the modal alternative-specific constants for
the local and application context.  The authors found that the model coefficients were
highly sensitive to model specification, thus having a significant impact on explanatory 
(and hence transferability) power. Moreover, based on statistical criteria, they found “little
ground to claim that the coefficients of the work mode-choice models are transferable.”

Talvitie’s and Kirshner’s findings were supported by Train (1978) who investigated model
specification and its relationship to temporal transfer effectiveness using the San Francisco
pre-BART and post-BART data sets, which Talvitie and Kirshner also used in their study.
Transferability was evaluated by tests of parameter equality in the two contexts and by
forecasting accuracy.

Train found the coefficients of the level-of service attributes to be comparable in the two
contexts but different for those of the socio-economic attributes.  Large forecast errors
were also obtained with the transferred model.  In predicting in the application context,
Train attempted to address the problem of defining the coefficient’s estimates for the
attributes of the introduced new BART alternatives.  The poor performance of his model
is partly a reflection of the conjecture that was part of this process.

Finally, McCarthy (1982) investigated short term temporal stability using the previously
mentioned BART data sets in addition to a third data set defined as early-BART.
McCarthy could not reject temporal stability of the entire set of estimated model
coefficients in the short run.

The studies by Badoe (1994), Badoe and Miller (1995a), Badoe abd Miller (1995b)
compare different transfer methods.  In their study, Badoe and Miller examined the long-
term temporal transfer of work trip logit mode choice models, estimated using 1964 data
for the Greater Toronto Area (GTA), to represent 1986 work trip mode choice in the GTA.
Three updating procedures, which were previously presented in the literature (Bayesian
updating, combined transfer estimation and transfer scaling) were examined plus a fourth
new procedure, joint context estimation. The results indicated that the combined transfer
estimation yielded, in almost all cases, the best predictive performance in the 1986
application context, based on the disaggregate full-sample log-likelihood measure used.
However, as the authors stated, this was largely the result of the dominance of the transfer-
scaling component of the procedure. This effectively resulted in the procedure being       
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equivalent to a simple re-estimation of the model using the application context data set.
Due to the impreciseness of the coefficients, the use of the smaller sample sizes reduces the
predictive performance.

The joint context estimation yielded results which were generally comparable to the
combined transfer procedure, but with a significantly more parsimonious parameter
structure. Thus, the authors recommended that the estimation context data set should be
available to support joint context estimation. On the whole, the differences between the
methods were found to be rather small, possibly due to the use of statistical tests instead of
sensitivity analysis, such as the calculation of elasticity.

One remarkable finding was that improving the model specification yielded far greater
improvements in model performance than either “optimising” the transfer procedure or
increasing the application context sample size. Thus, the authors concluded that model
specification is extremely important in the transfer process.

Furthermore, Badoe and Miller (1998) investigated the additional complexity brought
about by introducing scale parameters for the random utilities of the various modes in the
application context in addition to the period-specific alternative-specific constants. This
appeared to be justified by the statistically significant improvement in fit to the data at a
disaggregate level compared to similarly specified models, but without the alternative-
specific scales. 

Elmi et al. (1999) reported from a study in which the temporal transferability of entropy-
type trip distribution models was examined.  Data for the study was drawn from three
travel surveys conducted in 1964, 1986 and 1996 within the Toronto area. The study
results showed that the travel-time parameter was not temporally stable.  However, the
transferred models were found to provide forecasts that were very comparable to those
generated by locally estimated models.  Stratification of the data by occupation-category
of worker resulted in models with the best fit to estimation data as well as to forecasts. 

Different ways of using RP and SP data to update the RP models were examined in the
Netherlands, in 1989 (Hague Consulting Group 1990). The results showed that in the case
of RP models updated by RP data the updated mode-choice models for the commuter and
business trips gave a good level of transfer effectiveness. The transferability of the models
estimated for other trips was weaker, due to the different trip specifications in 1982 and
1989. In the case of RP models, which were updated using both the RP and SP data, the
use of SP data did not improve the transferability of commuter and business trips models
but it did improve the transferability of the models estimated for other trips. The use of the
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adjusted network RP-data, that is the network impedances supplemented by the additional
information (public transport ticket type, parking type) from the SP study improved
models.  On the other hand, defining the travel time and cost coefficients by using the SP
model and using these results to estimate RP models, did not improve results.  

Finnish reseach relating to the model updating of the Helsinki metropolitan area mode
choice models (Kurri et al. 2001) also showed that the combined use of revealed and stated
preference information turned out to be quite difficult.  This was because it is nearly
impossible to define the variables of a stated preference exercise in the same way as can be
done with the variables used in mode choice models based on actual choices.

Walker et al. (1998) examined the parameter scaling method to update the Delaware Valley
Planning Commission’s existing travel simulation models. The parameter scaling method
was applied to update the mode choice models. For updating purposes two different
surveys were conducted: A regional cordon line traffic survey to collect information on
traffic volumes and patterns generated by vehicles entering or exiting the region and a
small-sample home interview survey stratified by automobile availability and county was
performed in 1988.    The estimation of the parameter scaling factors (from current survey
and secondary source data) took the form of an iterative parameter adjustment procedure.
Trial adjustments were made, the travel simulation model or models were rerun, and the
errors were calculated on the basis of survey or secondary source data, or both.  Revised 
parameter estimates were then prepared using a proportional scaling technique, and the
process was run through another iteration.  The process ended when the current parameter
set achieved an acceptable level of accuracy.  The results showed, that when the required
changes are small, the use of parameter scaling method yields good results.

2.4 Conclusions from the previous transferability studies

On the whole, the results relating to model transfer have been controversial. Many studies
have shown that model transfer is possible when the estimation context models are well
defined and the data quality is good. On the other hand, especially when studying spatial
transferability, the opposite results have often been achieved.  

Generally, by comparing the models estimated for urban and sub-urban areas it has been
found that urban models apply well to other urban areas, but transferring models between
urban and suburban areas has not succeeded as well.  Additionally, most research has
shown that under similar circumstances people in different cities and countries react in
quite similar ways to changes in travel time and costs.  However, variation in the
distribution of  the socio-demographic attributes varies greatly,  and these have been taken
into account when transferring models.



2.4   Conclusions from the previous transferability studies 33

The literature shows that the segmentation, or added variables, may improve the model
quality up to a certain point. Nevertheless, improvements in the specifications do not
necessarily result in improvements in model transferability because more complex models
are more difficult to transfer.  Neither is there any broad evidence as to how the model
structure, or estimation method affects model transferability.

The earliest studies have been mainly concerned with model comparison in two contexts.
Also in many later studies, the basic assumption has been that model transfer is only
possible if the true coefficients in the estimation and application contexts are quite similar.
The possibilities for control transfer bias (the difference in the true parameters between the
two contexts) have rarely been explored. When they have been looked at, the importance
of the impreciseness of the coefficients has been ignored.

In literature, four different transfer methods are presented.  From these, the Bayesian
approach and transfer scaling are used in most studies in the 70's, and 80's. The Bayesian
approach emphasizes the coefficients with respect to the inverse of the variances of each
coefficient.  The transfer scaling approach uses the new data purely to correct the transfer
bias (the difference between the coefficients in the estimation and application context). In
1987, Ben-Akiva and Bolduc presented a  method in which both the transfer bias and the
model parameter variance were taken into account. In the 1990s, Badoe and Miller
compared the three transfer methods presented earlier and applied an additional new
approach, namely the joint context estimation as well.  In their study, the combined transfer
estimation yielded, in nearly all cases, the best predictive performance.  However, the joint
context estimation yielded results which were generally comparable to the combined
transfer procedure. 

Model transferability has traditionally been evaluated on the basis of how well transferred
models replicate existing behaviour rather than on their ability to forecast adequately
changes in travel demand. Such analyses where different sets of data are used in the model
calibration and validation are severely limited.  If the primary function of a mode-choice
model is to predict the impact of changes in the transportation system on travel behaviour,
then an essential characteristic of such a model has to be its ability to predict accurately.

Examining only one element  (mainly the transfer of trip generation, or mode choice level)
instead of the whole four-step model system can also be regarded as a weakness of the
many previous studies. 
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2.5 Implications for this study

Earlier transferability studies have mainly focused on the study of model transferability by
using only one method and one sample size.  The assumption has been that model transfer
is only possible if the coefficients in the estimation and application contexts are quite
similar. As a large part of the difference in coefficients and predictions is due to the
discrepancies in the formulation of the initial data, or random variation, and only partly due
to the real differences in the estimation and application context, the main emphasis in this
study is to investigate the relationship between the transfer bias and the impreciseness
caused by the sample size. Different transfer methods are compared to each other, as well
as the amounts of data needed to estimate mode and destination choice models. 

Thus, the intention of this thesis is to compare different transfer methods as a function of
sample size, and identify the factors affecting the models’ quality and the impreciseness of
model parameters.

More specifically, the aims of the research are:

� to investigate the importance of transfer bias and the preciseness of model
coefficients to the applicability of different transfer methods, and to further
develope the joint context estimation method to control the effects of transfer
bias and coefficient impreciseness,

� to investigate the application context sample size requirements when transferring
models or estimating new models as well, and to analyse how different quality
criteria affect this sample size requirement,

� to compare different test measures used for studying model transferability and in
particular to evaluate the applicability and goodness of the traditional statistical
tests, with respect to those based on the prediction accuracy of forecasts. 

The study is divided into two main parts. The first part of the thesis deals with the factors
which decrease model quality and cause the apparent differences between the estimation
and application context.  For example, the importance of data gathering methods
(telephone interview versus postal questionnaire), and sample size are studied.  The second
part analyses the spatial transferability of the HMA models.
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3 OVERVIEW OF THE THEORY OF TRAVEL DEMAND
MODELS AND MODEL TRANSFER

 

3.1 Random utility theory

The concept of random utility was first introduced by Thurstone (1927), who was a
researcher in the field of mathematical psychology. Experiments showed that individual
choices were, in many respects “irrational” and unpredictable. At the same time there was
also considerable practical interest in being able to predict behaviour, and there was also
empirical evidence that certain aspects of behaviour were in fact “predictable” on a more
aggregate level (Brundell-Freij 1995). 

Generally, discrete choice models, like the logit model, postulate that the probability of
individuals choosing a given option is a function of their socio-economic characteristics
and the relative attractiveness of the option. The basic assumption of choice models is that
each individual is attempting to maximize his or her utility. In other words, when a
traveller has to make a decision in selecting an alternative from the available choice set
he/she chooses the one which is the most attractive (or provides the maximum utility) for
him/her (Ben-Akiva and Lerman 1985).

The attraction of available alternatives i for each individual n can be measured with utility
function. In a real situation there are attributes that can be observed by the modeller and
attributes that remain unobserved. In Equation 1 the first term of the total utility Uin stands
for the observed utility which is derived from the observed attributes.  This portion of the
utility is usually marked with the letters V  and it is called deterministic utility.in
Additionally, the random portion for person n and alternative i is presented in term g .in

 
                                                                                                                                     (1)  
               
The deterministic component of utility function is usually expressed as a linear function of
the attributes x ,...,x . 1 k
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where $ ,...,$  are the coefficients to be estimated.  Variables can be included as either1 k

generic or alternative specific (Stopher and Meyburg 1979, Ben-Akiva and Lerman 1985).
Introducing a variable in a generic form means that when considering the different choices
travellers have equal perception toward this variable across all alternatives.  Whereas, an
alternative specific variable suggests that the perception of users toward the same variable
varies from one alternative to another. 

In logit models it is assumed that the unobserved part of the utility (labelled g ) isin 

distributed  independently and identically following Gumbel distribution with a zero mean
(Ben-Akiva and Lerman 1985). The value of random terms can, by definition, vary across
different decision-makers and groups of persons as well as alternatives.  There are a
number of reasons why there has to be a random component in a utility function (Lerman
1984):

(a) Measurement errors.  There are often errors in measuring the attributes of
the alternatives.

(b) Proxy variables.  The modeller is often forced to use proxy variables if real
variables are difficult to measure.  The differences between the proxies and
the actual attributes are source of randomness.

(c) Omitted attributes.  The decision-maker (traveller/individual) often uses
attributes that the modeller does not know, cannot measure or chooses to
omit for some reason.

(d) Unobserved taste variations.  There are undoubtedly taste variations
between individuals.  Although the modeller can use socio-economic
attributes to take this into account, there is probably always some residual
variation that remains unexplained.

3.2 Multinomial Logit Model (MNL)

The multinomial logit model is the most widely used discrete choice model. It is easy to
use and an estimation of its parameters is inexpensive.  The logit model gives a probability
of a specific alternative to be chosen by an individual.  The selected mode has to be
available in the choice set and the selection is done using the differencies in the utilities of
alternatives. Under the assumptions made in Section 3.1, the choice probability for
alternative i and individual n is given by (Ben-Akiva and Lerman 1985):  
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(3)

                                         (4)

In Equations 3 and 4 the value of the scale parameter µ depends on the variance of the
random term in such a way, that the smaller the variance F, the greater the value of µ, and
the more sensitive the model to the changes of variable values. The scale parameter µ is
not identifiable (if V  is linear in response to its parameters, the scale parameter µ can notin
be separately estimated). Thus in model estimation the scale parameter µ has to be fixed.
Usually the scale parameter is assumed to be 1. It implies that the variance of the
disturbances is fixed and homoscedasticity (i.e the error term has a constant variance) is
assumed among choices (Ben-Akiva and Lerman 1985).

Equation (3) shows that the choice probabilities depend only on the absolute difference in
utilities between alternatives, not the absolute values of utilities.

The principal form of the relationship between P  and V , given by the multinomial logiti i
model, is S-shaped, in the same way as binomial model which is illustrated by Figure 1. 

Figure 1: The principal form of the binomial logit model relationship with different values
of  µ. 

The change in the probability is largest and the curve is steepest when the choice
probability is near 0.5, and becomes smaller as it approaches zero or one.  If the same 
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                                          (5)

                                          (6)

alternative is chosen by almost all persons in the same situation, the variance of random
factors approaches zero and the value of scale parameter  µ approaches infinity.

When modelling several dimensions of choice, e.g. destination and mode choice,
simultaneously, the multinomial logit model is expressed as (Ben-Akiva and Lerman
1985): 

 

where subscriptions m and d denote mode and destination choice, respectively.The
formulation is called to joint logit model and it is illustrated in Figure 2.

Figure 2: A joint logit model for mode (m) and destination choice (d).

The multinomial logit model  has the property that the relative choice probability of any
two of the alternatives is independent of the presence of a third alternative.  This feature is
commonly denoted as IIA or indepence from irrelevant alternatives and it can be easily
shown to hold in the case of MNL as follows  (Luce and Suppes 1965). If a ratio of the
probabilities for two alternatives, i and k for the individual n, is considered, it can be seen
that:

This ratio is indeed only dependent on the difference between the utilities for alternatives
i and k. This allows a new alternative to be easily added into the model.  The IIA property
was originally regarded as a great advantage of the logit model but  there has also been a
lot of concern about the problems caused by this property.
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However, one of the IIA’s advantages is that if there are too many alternatives, such as in
the case of destination choice,  it can be shown (McFadden 1978) that the model
parameters can be estimated consistently on a subset of available alternatives to the
decision-maker.  Thus, if there are 100 alternatives, the modeller can estimate the logit
model for each sampled person on a subset of 10 alternatives which include the actual
choice and 9 other randomly selected alternatives.  Due to the IIA property, the relations
within the subset are unaffected by the exclusion of the alternatives that are not in the
subset (Ben-Akiva and Lerman 1985, Ortúzar and Willumsen 1994).

3.3 Nested Logit Model 

The nested logit model, first derived by Ben-Akiva (1973, 1974), is an extension of the
multinomial logit model designed to capture correlations among alternatives.  In
applications where utilities of some alternatives are correlated, or have different variances
attached, the logit model may substantially overpredict or underpredict the shifts in the
share of each alternative. Some of these problems can be avoided by using nested logit
model. The nested logit model can be used when the choice set can be partitioned into
subsets according to their properties.  Alternatives that are correlated and share the same
source of variance of error are placed into the same nest, which partly removes the IIA
property. In the tree structure the IIA property holds within a subset but not across subsets.
Hence, the ratio of probabilities of any two alternatives within a subset is independent of
the existence of other alternatives.  However, the ratio of two alternatives in different
subsets is dependent of existence of the other alternatives (Train 1986).

The nested logit model is illustrated in Figure 3. The introduction of lower nests in their
immediate superiors is done by means of the utilities of the composite alternatives which,
in general, have two components: one which consists of the expected maximum utility
(EMU) of the lower nest options, and another which considers the vector of attributes
which are common to all members of the nest (Ortúzar and Willumsen 1994).

Figure 3: The nested logit model for mode (m) and destination (d) choice.
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Let us assume that the mode choice probability, when the destination d has been chosen,
is P  and the destination choice probability is P . Thus, the nested logit model can bem|d d
stated as

where M  is the set of all possible modes to destination d and D the set of all possibled
destinations.

In Equation 7 the log of the denominator of P  has been used.  This term, labelledm|d
logsum or expected maximum utility, EMU (Ortúzar and Willumsen 1994), is the
connection between the mode and destination choice (Equation 8). The parameter W
estimated for logsum variable describes the similarity of the alternatives and it is estimated
as an additional parameter of the model.

 (8)     
     

The value of W depends on scale parameters µ  and  µ  and variance of the random termsd m

(assuming g • 0):m

 
If W=1, the choice probabilities become multinomial logit.  If 0#W#1, the IIA property
holds within a subset but not across subsets. The situation, in which W>1, is not consistent
with theory of utility maximization.  This means that an increase in the utility of an
alternative in the nest would tend to increase not only its selection probability but also that
of the rest of options in the nest.

The variance of the random utilities is thus the smallest at the lowest level of the tree, and
it can not decrease as we move to a higher level. It also means that choices whose variance
is greater are usually placed to the upper level of structure.  The model structure also
describes how well the choices can be explained.  The choices of model structure used do
not determine in which order the decisions are made in real word, only consider 
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similarities between alternatives. In some cases, if W>1, the models for mode and
destination choices are to be estimated in inverse order, so that the destination choice is
placed in the upper level of structure to have W# 1. 

The nested logit model may be estimated sequentially or simultaneously. The benefit of
simultaneous estimation is that the model can use all information at the same time. Some
information can be lost in sequential estimation, when the lower level variables are studied
only in relation to the chosen alternatives without the simultaneous connection to the
unchosen altenatives  on the upper level (Ortúzar and Willumsen 1994). Moreover
Amemiya (1978) has shown that by using standard multinomial logit estimation programs
and sequential estimation procedure, the variance-covariance matrices of the estimates
obtained for the marginal probabilities of higher level models are incorrect and too small.
On the other hand, simultaneous estimation may have problems if W will be over 1 (see
Section 4.5).  

3.4 Elasticities of logit model

One useful property of econometric demand models is the concept of an elasticity. An
elasticity is the relative change in one variable that is associated with a relative change in
another variable. The simplest case is the elasticity of the probability of an individual n
choosing alternative i with respect to a change in some attribute k that is an independent
variable in the model, namely one of the x ’s. In this case the direct elasticity of logit isink
given by (Ben-Akiva and Lerman 1985):

Similarly the disaggregate cross elasticity of the probability that alternative i is selected
with respect to an attribute of alternative j is

The change in the probability of choosing alternative i given a change in an observed
factor, x , entering the representative utility of alternative i is stated as (Train 1986): ink
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Usually V (i) is linear in the observed variables, with parameters as coefficients.  If then

coefficient of x  is the scalar $ , then                               Note that, since $k is constant,          ink x

the derivate is largest when P (i)=1-P (i), which occurs when P (i)=1/2, and becomesn n n

smaller as P (i) approaches zero or one (Figure 4). Stated intuitively, the effect of a changen
in an observed variable is highest when the choice probabilities indicate a high degree of
uncertainty regarding the choice; as the choice becomes more certain (i.e., the probabilities
approach zero or one), the effect of a given change in an observed variable decreases
(Train 1986).

Figure 4: The effect of original choice probability to the direct elasticity of travel
time and to the change of choice probability (YTV 1989).

A logically necessary aspect of derivates of choice probabilities is also that, when an
observed variable changes, the changes in the choice probabilities sum to zero. Hence, to
increase the probability of one alternative necessitates decreasing the probability of other
alternatives.

Usually a researcher is interested in the average probability or average response within a
population, rather than the response of any one individual. For example, suppose the      
                                                                                                                                        



Pi'j
n

wnPn(i),

Ni'MPi,

3.4   Elasticities of  logit model 43

                  (13)

                (14)

researcher has a random or stratified random sample of individuals drawn from a
population.  Aggregate, or population, choice probabilities are calculated by taking the
weighted average of the choice probabilities calculated for each individual.  The average
probability for alternative i is estimated as (Train 1986):

where w  is sampling weight associated with individual n, and the summation is over alln
sampled individuals.  If the sample is purely random, then w  is the same for all sampledn
individuals and equals 1/N, where N is the sample size.  For stratified random samples, wn
varies over strata.

The number of individuals in the population predicted to choose alternative i is estimated
as the average probability for alternative i times the population size (M):

where M is the number of decision makers in the population and N  is the estimatedi
number that will choose alternative i.  Average derivates and elasticities are calculated
similarly as the weighted average of individual derivates and elasticities.

An alternative method of estimating average probabilities and responses is common but
not consistent.  Instead of calculating the probabilities and responses for a sample of
decisionmakers and then taking averages, one possibility is to calculate probabilities and
responses for an average decision maker and consider these to be in some way
representative of average population behaviour.  The inconsistency of this approach results
from the fact that the choice probabilities, derivates, and elasticities are nonlinear
functions of the observed data and, the average value of a nonlinear function over a range
of data is not equal to the value of the function evaluated at the average of the data. This
error is called aggregation error and it concerns all the situations in which the zonal values
are used to estimate models or by making aggregate forecasts.

Let us consider Figure 5, which gives the probabilities of choosing a particular alternative
for two individuals with representative utility for this alternative of a and b   assuming the
representative utility of other alternatives is the same for the two individuals.  The average
probability is the average of the probabilities for the two individuals, namely, (P +P )/2.a b
The probability evaluated at the average representative utility is given by the point on the
logit curve above (a+b)/2.  As shown for this case, the average probability is above the
probability at the average representative utility.  In general, the probability evaluated at the
average utility underestimates the average probability when the individuals’ choice
probabilities are low and overestimates it when they are high.
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Figure 5: Error due to average individual aggregation (Train 1986).

3.5 Maximum likelihood estimation  

The logit model is normally estimated using maximum likelihood method. Maximum
likelihood estimation is based on an idea to estimate parameters, which will reproduce as
high probability of observed choices as possible with the observed data.  This is done by
calculating the predicted probabilities of the observed choices (Pn(i)) and maximising the
product of those probabilities.  Equation (15) shows the formula to be maximised
(McFadden 1974). 

where y  = 1, if alternative i from choice set Cn is chosen by individual nin

  = 0, otherwise
C = the set of alternatives for the individual n (universal choice set)n 

N  = number of observations.

Normally L* itself is not maximised, because the natural logarithm of L*, labelled L, is
more manageable. The modified formula is shown in Equation (16).
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where $ x  = 3 $ x   is the deterministic component of the utility for the k’thT
in inkk

independent variable for alternative i and individual n.

Setting the first derivates of L with respect to the coefficients equal to zero, the necessary
first-order conditions can be obtained. The estimation of the parameters can be done
iteratively using Newton-Raphson’s method. The likelihood values are positive and the
values of the log-likelihood are negative.  The closer to zero the log-likelihood value is,
the better is the model.

The maximum likelihood estimator        is not inevitable unbiased or efficient; however,
under certain assumptions (Vasama and Vartia 1979, Rao 1973) the estimator is
consistent, asymptotically normal  and asymptotically efficient (no other consistent and
asymptotically normally distributed estimator has a smaller asymptotic covariance matrix).
The lack of bias and efficiency do not only depend on the sample size but on the
distribution of the estimator.  This distribution is often unknown.  Nevertheless, it is often
possible to calculate whether the estimator approaches the true value, when the sample
size is infinite.
 
Due to the asymptotic efficiency, the variance-covariance matrix of the estimator will
asymptotically approach the Cramér-Rao bound. The Cramér-Rao theorem can be written
as (Ben-Akiva and Lerman 1985, Rao 1973):

It can be difficult; even impossible, to calculate the expected values of the matrix elements
analytically. Matrix B can also include unknown parameters $. In many cases, the $ must
be replaced by the estimator 
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3.6 The mixed logit or error components model 

In a significant generalization of multinomial logit McFadden (1978) has derived the
generalized extreme value (GEV) model.  This is actually a large class of models which
includes MNL and NL. All these models typically maintains homogeneity in
responsiveness to attributes of alternatives across individuals.  Recently, also some more
advanced techniques have been developed, such as the mixed logit formulation. The mixed
logit model allows for the variation in preferences between individuals.  Let us assume the
utility function of option A  for an individual n in a choice situation t is given by (Ortúzari

and Willumsen 2001):

where X  is a vector of observable variables, as usual, but now is a vector ofint
unknown coefficients that vary randomly according to the individual tastes.  Finally g  isint

a random error term which distributes IID Gumbel, independently of both 2222  and X .n int
Note that this specification is not completely general because the parameters 2222  do notn
depend on t (as in general one would expect that individual tastes do not change from
situation to situation), but it may be generalised if desired (Ortúzar and Willumsen 2001).

This specification is identical to the MNL except for the fact that the coefficients 2222  aren
not fixed but vary in the population. Now, the vector for coefficients 2222  for each individualn
may be expressed as the sum of its population mean 2222  and individual deviations 0000*

n

represent  individual tastes in relation to the average tastes of the population:

The unobserved part of the utility (0000 X  + g ) is correlated over options and situationsT
n int int

due to the influence of 0000 , and it is possible to achieve very general patterns of correlation,n
taste variations and heteroscedasticity with an appropriate specification of parameters and
variables (Ortúzar and Willumsen 2001).

However, maximum likelihood estimation in a mixed logit model formulation is not
trivial. Instead, and as in the case of the multinomial probit, the probability must be
approximated by a simulation and where the simulated log-likelihood is maximised.

In most of the literature, Normal-distributed error components are used. This, however
poses problems eg. with value of time (VOT) calculations because with so few  observa-
tions the ratio between two independently distributed standard normal variables is  Cauchy
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distributed, not normal distributed, as will be stated in Section 3.8. One could assume that
the cost-coefficient does not follow a distribution (only the time-coefficient) in which this
problem is avoided. However, Danish experiences have shown that it is not possible to
reject on statistical grounds the notion that no heterogeneity would exist in the cost
coefficient (Nielsen and Jovicic 2003). 

A far better solution then is to assume that the coefficients are lognormal (Ben-Akiva et al.
1993). In the thesis by Sørensen (2003a) this is actually shown to be the best fit for most
empirical distributions of the coefficients. The positive aspect of a lognormal distribution
is that it is nonnegative and multiplicative. This means that the ratio between two
lognormal distributions is also lognormal, and that the VOT therefore also follows a
lognormal distribution, i.e. if 2  is lognormal and 2  is lognormal, then 2 /2  iscost time tim coste

also lognormal. The parameters of the joint lognormal VOT distribution can easily been
calculated, and the mean and variance follows directly.  However, it should be noted that
in model transfer the advantage gained when using lognormal distribution might be open
to question, if it is used to correct the effect in a small sample size.  That is, if the
coefficients of time and cost are made negative (minus-lognormal assumption), it may
cause bias in the other coefficients.  The other important point to remember is that to avoid
identification problems only the cost or time variable can usually be estimated using
lognormal distribution.  In fact Sørensen (2003b) has shown that the specification and
estimation of a mixed logit is not a simple task.  The number of alternative specifications
for the  shape of distributed terms grows rapidly with the number of coefficients that are
expected to be distributed and with the number of considered shapes of distribution.

In this thesis an error component model is not used because it is a relatively new method
(to date there are no software applications available). If error component models had been
used, the user interface would have needed to have been reformulated as well.  It is
obvious that some results, in particular those relating to VOT, would have been different
if a mixed logit model had been used.  Nevertheless, some Monte Carlo simulations were
performed to examine the effect where coefficients are assumed to be stochastic variables.
It was found that the distribution of the VOT did not differ greatly from that based on the
empirical data.

3.7 Transfer methods

3.7.1 General aspects

The model transfer approach is based on the idea that estimated model parameters from a
previous study in a different context may provide useful information for estimating the 
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parameters for the same model in a new context, even when the true values of the
parameters are not expected to be equal.  Depending on the quality and type of the travel
survey (which has been carried out) the model transfer can be done in at least  four
different ways. These are:

! transfer scaling,
! Bayesian method,
! combined transfer estimation and,
! the joint context estimation. 

Naive transfer is considered here as a special case of transfer scaling.  The transfer
methods differ from each other in emphasising the estimation and the application context
data. Errors expressed in model transfer can be caused by sampling errors or errors that are
caused by differences between the coefficients in the initial and the final stages.

In principle, the model transfer usually decrease the variance of model parameters
resulting that the transferred models are more precise than the corresponding application
context models that are estimated solely from small data samples.  On the other hand, if
the sample size of the application context data is small, the variance of the model
parameters increases and this is reflected in transferred models, too. The problem in model
transfer is that we do not know how much the difference between the coefficients
estimated in estimation and application contexts is caused by the impreciseness of
parameter estimates, and how much is caused by the difference in travel behaviour. 

The transfer scaling approach uses the new data only to correct the transfer bias (the
difference between the coefficients in estimation and the application context) and therefore
does not explicitly consider the differences in sampling errors between the two data sets.
 In the Bayesian method the initial point is that the transfer bias is assumed to be zero; that
is, the estimation and application contexts share the same underlying set of parameters.
The combined Bayesian estimator extends the Bayesian procedure to take into account the
presence of a transfer bias (Ben-Akiva and Bolduc 1987).  When transferring with any of
these three methods, only the application context data are required.  When we are using
joint context estimation, the new models are estimated using both the estimation and the
application context data (Badoe 1994, Badoe and Miller 1995b). The basic assumption has
normally been, that the two data sets are drawn from the same underlying probabilistic
choice process. Based on this assumption the ratios of coefficients are expected to be the
same and common coefficients are used and only the alternative-specific constants are
estimated separately for these two contexts. However, in this study, we assume that
particularly in spatial transfer there may be differences (transfer bias) between the
estimation and application context parameters, and the best way to apply the joint context
estimation is using both  data-specific and common coefficients.



Vi(x) � (i�ci�$1�xl1�$2�xl2�....�$3�xlk�$4�x(l�1)k�...�$k�xmk , where

ci � the alternative specific constant in estimation context
$1�$k � the coefficients in estimation context
xl1...xlk � travel system variables in application context
x(l�1)k...xmk � other variables in application context
(i � the scale factor to the alternative specific constant.
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3.7.2 Transfer scaling 

There are at least four different ways applying the transfer scaling approach:

Naive approach: The naive approach uses the existing model with its original coefficients
in the new situation. This approach assumes that all the factors relevant to the choice
process are embodied in the model, an assumption that can never be fully justified.

Adjustment of constant terms: If the validity of the model coefficients other than the
constant terms is accepted, then aggregate data can be used to adjust the constant terms so
that the model replicates existing aggregate data.

In this case the utility function of the application context model is: 

Re-estimating new constants and scale: In this case all or some of the parameters in the
application context utility function are scaled and alternative-specific constants are
estimated from an application context sample, assuming that the remaining utility function
parameters are transferable from the estimation context. As is shown in Ben-Akiva and
Bolduc (1987) and  Atherton and Ben-Akiva (1976), much of the transfer bias  can be
eliminated by adjusting the model constants and scales. The transfer problem then
becomes one of determining the application context alternative-specific constants and
shifts in the transfer scaling factor relative to the estimation context. For example, given a
set of estimation context parameters $ , one can assume that the application context1
systematic utilities, V  take the form:in,2

where (  is a vector of scale factors for each group of variables to be scaled, T isi,2
transpose, X  is a vector of explanatory variables for alternative i for individual n and "in,2 i,2

is the  alternative-specific constant for alternative i (Ben-Akiva and Bolduc 1987). 
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The transfer scale factor can also be determined by using SP data.  In this case e.g, the
coefficients for travel time and travel costs are first estimated by using SP data.  The
estimates for the coefficients are substituted to the estimation context model, which is to
be re-estimated by using the estimation context data and the fixed coefficients for travel
time and costs.  Then this new estimation context model is transferred using the
application context RP data.

Re-estimating the estimation context model: This procedure uses a small sample of
observations of individual choices and assumes that the sample is representative of
behaviour in the study area.  The small disaggregate sample can be used to re-estimate the
coefficients from the original model specification.  This is identical to transfer scaling in
the case where all the coefficients are re-scaled.  In this study models based on this
approach are referred as “new sample models”.

The first three methods test the transferability of model parameters. The fourth method
also takes into consideration the validity of the model specification. In fact, the first and
the last methods represent the extremes in model transfer and can also be regarded as
independent methods as well.  The naive approach is the simplest approach to model
transfer.  The estimation of new models is not exactly the same as in the transfer method
but rather the estimation corresponds to the situation in which all the coefficients are
separately re-scaled.

3.7.3 Bayesian method

In the Bayesian method parameter estimates      from a small application context sample
are combined with the estimation context parameter values     using a classical Bayesian
analysis to yield an updated set of parameters. The basic assumption is that the behaviour
of an individual is not different in estimation and application contexts.  Thus, the new and
the old data share the same underlying set of parameters.

Based on the normality assumption the variance F ²  of the coefficient can be definedtransferred

by using  the variances of the original coefficients (F ² and F ²) estimated in estimation1 2

and application context  (Atherton and Ben-Akiva 1976):

Thus in a one dimensional case the Bayesian estimator is stated as a weighted average of
the direct estimators       and
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$$$$ � [K�1] vector of model parameters where
K�M�N�1, where
M is number of explanatory variables and
N is number of alternatives

$̂$$$1,$̂$$$2 � estimated parameter vectors in the estimation context 1 and
application context 2, respectively

jt � covariance matrix of estimated parameters for context t (t�1,2).
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     (23)
    

          (24)

In the multivariate case the coefficients are to be estimated according to Equation 24 -
(Badoe and Miller 1995 b):

3.7.4 Combined transfer estimation 

We can assume that during a short time period an individual’s travel behaviour will be
rather stable. Thus the true values of the parameters can be expected to be equal $ =$ =$1 2

(which is the situation the Bayesian method assumes).  For longer period or in spatial
transfer this assumption is not justified. Then in model transfer there is an error, which is
caused by the differences between the coefficients in the estimation and application
context.  This difference, ª = $ -$  is called the transfer bias and it describes the change in2 1,

individuals behaviour.

Ben-Akiva and Bolduc (1987) present a generalization of the Bayesian approach which
accounts for a non-zero ), and which yields the minimum mean squared error estimate of
                    achievable from a linear combination of the estimation and application
context parameter estimates.  This minimum square error estimate is provided by:
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            (25)

Comparison of equation [25] with equation [24] indicates that the omitted transfer
estimator reduces to the Bayesian estimator in the case of )=0.  In practice, the unknown
transfer bias ) is approximated by the estimated bias d=             Ben-Akiva and Bolduc
also demonstrate theoretically that the combined transfer estimator is superior to simply
using the application  context parameter estimates        providing the transfer bias, ), is
small.

3.7.5 Joint context estimation  

Joint context estimation is used to estimate a new joint application context model, using
both the estimation context and the application context data sets. In econometrics the
estimation of models with different data sources is called “mixed estimation”.  Often these
data are divided into two sets: primary and secondary data. The primary data provide direct
information about the main modelling parameters.  The secondary data provide additional
(indirect) information about the parameters.  For example, in discrete choice modelling the
primary data could be information coming from a survey at the disaggregate level, and the
secondary data could be data coming from an aggregate survey.  In our case RP data
collected in an estimation context constitute the primary set, since these data capture the
actual behaviour of the individuals, and application context data constitute the secondary
set.

The principle of joint context estimation used here is quite similar to the combined
estimation of RP and SP data sets, and is discussed for example in Bradley and Daly
(1991) and in Ben-Akiva and Morikawa (1990).  Badoe and Miller (1995b) have applied
this method also in model transfer. 
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                     (27)

                         (28)

The following notation is used in developing the joint context estimation procedure:

t = superscript denoting context (=1 for first data set; =2 for second data set)
U  = utility of alternative i in context t for person nin

t

V = deterministic utility for alternative i in context t for person nin
t

g = random component of utility for alternative i in context t for person nin
t

(((( = vector of utility function parameters assumed to be constant across
contexts

s = vector of explanatory variables for alternative i common to contexts 1 andin
t

2 (i.e., associated with the constant parameter vector (), but with values
given for person n in context t

"""" = vector of utility function parameters assumed to be specific to context t (att

a minimum, this includes the alternative-specific constants for context t)
r = vector of context-specific explanatory variables for alternative i forin

t

individual n within context t
µ = utility function scale for alternative i in context 2 (the context superscript

has been suppressed to simplify the notation; context 1 scales are assumed
to be “embedded” within "  and (; given this, µ is actually the ratio of the
context 2 scale to the constant scale 1 for alternative i, with the absolute
values of neither of these scales being identifiable)

$$$$ = combined vector of all parameters to be estimated within the joint context
model, excluding the utility function scales

x = combined vector of all explanatory variables in the joint context model,in
t

for alternative i for person n in context t (T is transpose)

Given the definitions above, the systematic utility components for the two contexts are:



µ2
�

Var(g1
in)

Var(g2
in)

.

µU 2
in � µ(""""2Tr 2

in����((((
Ts 2

in)�µg2
in � µ$$$$Tx 2

in�µg2
in.

CHAPTER 3.   OVERVIEW OF THE THEORY OF TRAVEL DEMAND
MODELS AND MODEL TRANSFER

54

                                                    
                                           (29)

                                      (30)

The vector of coefficients, (, is common to both estimation and application context
models while "  and "  are specific to each model. Normally, it is supposed that sharing1 2

(, in both models, implies that trade-offs among attributes s are the same in both contexts.
However, due to the possible transfer bias in model transfer, the situation is essentially
different from the norm. Thus, it may be valuable to combine the common and data-
specific variables in a different way than previously, and in such a way to optimally
emphasize the estimation and application contexts by being certain to take into
consideration the impreciseness of some coefficients. This issue is discussed in Chapter 6.

The multinomial logit form requires that the unobserved effects are independently and
identically distributed (IID) across the alternatives in the choice set, according to the
Gumbel distribution (Hensher and Johnson 1991, Ben-Akiva and Lerman 1985).  The
combined estimation method assumes that random terms have IID property within each
type of data. However, since the effect of unobserved factors may well be different
between the two data sets, there is no reason for assuming that  g  and g have anin in

1 2  

identical distribution, or more specifically, have the same variance. In order to make the
variances of g  and g  equal, the utilities in context 2 are multiplied by an unknownin in

1 2

utility function scale  µ defined by:

If the random components in each of the data sets follow Gumbel distribution and are
identically and independently distributed (IID) then the combined data set also has an IID
Gumbel distributed random noise if the utility function in context 2 is multiplied by µ.
The final utility function in context 2 is then

The multiplication of the utility function in context 2 with the unknown variance factor µ
makes the utility function non-linear in parameters.  So, ordinary logit estimation methods
cannot be used directly.  Bradley and Daly (1991) have given a method where the
Maximum Likelihood estimation of the model coefficients is done with an artificial tree
structure.  The tree structure used in the present study is shown in Figure 6. In the
estimation  alternatives of context 1 are given as such, but the alternatives in context 2 are
given structured below a dummy alternative.  The only variable in the dummy alternative
is the logsum of the lower level alternative in context 2.  If the coefficients of the logsum
variables of the dummy alternatives are forced to be equal then the 2 values presented in
Equation 31 correspond to the µ factors given in Equation 30.  
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                 (31)

                                        (32)

Figure 6: The artificial tree structure used in the combination of different data sets.

For the observations in context 2, the expected maximum utility of each of the dummy
composite alternatives is computed as usual in a tree logit model:

where the sum is taken over all of the alternatives in the nest corresponding to the
composite alternative (each nest contains only one alternative in this specification) and

3.8 Goodness of fit measures

3.8.1 Introduction

When a logit model has been specified and the parameters are estimated so that the model
fits the observed sample “as well as possible”, we are naturally interested in how good that
best possible fit is. In general, the validity of the model depends on how well the
alternatives can be described (does the model include all the important variables or not).
The model variables should be simple, easy to understand and predictable. In addition, 
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studying the effects of changes in a transportation system also has to be possible. The same
requirements also apply to model transferability.  In addition, it is desirable that the
coefficients in the initial and final stages are similar to each other and that the same
transport system-related variables are included in both stages.

Several measures used to assess the model accuracy and the effectiveness of model
transfer have been formulated in a number of papers (i.e. Atherton and Ben-Akiva 1976,
Koppelman and Wilmot 1982,   Koppelman and Rose 1983,  Abdelwahab 1991). The
following definitions are based largely on the paper by Koppelman and Wilmot (1982).
First, some general tests used to measure the goodness of model parameters are presented.
Then the most important traditional transferability tests that are used in this research are
discussed.

3.8.2 General goodness-of-fit tests

The likelihood ratio test is a very general test that is used in nearly all contexts to
measure how well the model fits the data. Stated more precisely, the statistic measures of
how well the model, with its estimated parameters, performs compared to a model in
which all the parameters are zero. This comparison is made on the basis of the log
likelihood function being evaluated at both the estimated parameters and at zero for all
parameters. The likelihood ratio index is defined as (Ben-Akiva and Lerman 1985):
  

where L         is a value of log likelihood function at its maximum (when all parameters
have been estimated)
L(0) is a value of log likelihood function when all parameters are zero.

The likelihood ratio index ranges from zero, when the estimated parameters are no better
than zero parameters, to one, when the estimated parameters allow for perfect prediction
of the choices of the sampled decision makers.

There are no general guidelines explaining when a D²(0) is sufficiently high.  However,
conventionally the D²(0) should be at least 0.15.  The value 0.25 is quite good and the
value of 0.40  excellent (Talvitie 1983).  The value should be interpreted carefully, because
both the number of alternatives and observations affect to D²(0) value. The value of D²(0)
also depends on the shares of alternatives.  The greater the proportion of the more
preferred alternative is, the greater the values of D²(0) tend to be. It might be better to use
L(c) in which the log likelihood function is compared to the model explained only with 
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alternative specific constants (it means the so-called market share model in which all the
choice probabilities correspond to the observed distribution), because this value is more
comparable across different samples (Ortúzar and Willumsen 1994).

Another useful goodness-of-fit measure is derived in Equation (34) remembering the fact
that  D²(0) will allways increase or at least stay the same  when new variables are added to
the utility functions.  To cope with this problem, an adjusted likelihood ratio index is
defined as follows (Lerman 1984):

where K is the number of variables (including alternative-specific constants).  

The evaluation of model parameter preciseness

In model transfer, the differences in coefficients and predictions are caused by differences
in initial data creation, by random variation, and by real differences in behaviour between
the estimation and application context. Hence, it is important to study the effect of the
sample size. However, because the variance of model parameters can not be determined
analytically according to the sample size (Ben-Akiva and Lerman 1985, Rao 1973) the
effect of sample size is studied here by taking random samples from the entire set of data.

If the estimators of model parameters are asymptotically normally distributed, the
asymptotic t-test can be used and the confidence interval with significance level 95 % can
be stated as (Ortúzar and Willumsen 1994):

However, in this study, the confidence intervals are used minimally, because the test
measures for different methods are not generally normally distributed. As a result, we have
primarily based our analysis on the Bootstrap variation of estimates rather than confidence
intervals.

Different transfer methods are generally compared using statistical tests.  However, before
comparing the effective model, the different combinations used in common and data-
specific coefficients in joint context estimation are roughly investigated by calculating the
Mean Deviation-values (MD) for each model coefficient.  The test measure is defined as
the percentage Mean Deviation from the coefficients estimated using the full data set.
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Based on our own theories, the smaller the MD-value, the more precise is the model
coefficient and the more appropriate for it to be used as a data-specific coefficient when
using joint context estimation.

The model parameters preciseness is also evaluated through the examination of coefficient
ratios.  A special case of the relative assessment of different attributes is the ratio R
between the assessment of time and cost attributes:

This ratio can also be interpreted as a being value of time (VOT). In this thesis, the value
of time is chosen as an indicator because:

- it is a generally understood policy measure and
- it is also reasonable to study the ratio of some coefficients so as to remove the effect

of scale parameter µ.

However, it should be noted that with few observations the ratio between two
independently distributed standard normal variables can be seen to follow  a Cauchy
probability density function, which then, with a number of (perhaps even finite)
observations, approach Normal distribution. That is, VOT is undefined or unstable in the
cases where there are few observations.  As a consequence of this the mean of the time-
coefficients                     over respondents divided by the mean of the cost-coefficients    
        over respondents is not the same as the mean of their VOT, but the latter is an
underestimation of the true VOT (Armstrong 2001).
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 Instead of pure cost variable, the variable cost/income is used.  The denominator incomes are used to
manage different time points in which data has been collected (that is: the HMA data is collected in 1995
and the Turku data in 1997).  The cost and time are OD-pair dependent and income zone dependent.
However, when calculating VOT, the average income over the whole area is used. 

                                      
    (38)

              (39)

Thus, the ratio of time and cost coefficients  is only used to study the model parameters’1

preciseness. That is, the results should not be interpreted as results related to VOT because
many of the advanced theories and estimation problems have not necessary been taken into
account  for the purpose of this work.

The test measure for this ratio, known as the percentual VOT error is calculated by
comparing the VOT based on a transferred model with the VOT based on a model
estimated from the full application data set. The maximum error we define as being
“acceptable” is 25 percent. 

3.8.3 Methods to evaluate model transferability

Disaggregate transferability measures

To evaluate if  the application and estimation contexts can be represented by a single
model Nested Likelihood Ratio Test (LR) can be used.  The statistic is defined as
(Horowitz 1982):

where

L   = log-likelihood value in context i using model developed from context i 
L  = log-likelihood value in context j using model developed from context jj

L = log-likelihood value in context i using model developed from the pooled dataij

from contexts i and j.

The statistic is chi-squared distributed with degrees of freedom equal to the number of
model parameters in each model.  In the event the null hypothesis is rejected, an
asymptotic t-test can be performed to identify which parameter(s) were responsible for the
rejection. The null hypothesis is in this case $i =$j.  If the test statistic is greater than a 
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critical value, the null hypothesis is rejected and it is reasonable to let the parameters have
different values in the model. This statistic is given by (Ben-Akiva and Lerman 1985):

where  is the estimate of parameter in context i and  is the variance of the
estimate. Galbraith and Hensher (1982) recommend the application of this test only to
parameters with low standard error (which often imply high t-ratio); otherwise, the t-
statistic may reject the alternative hypothesis (i.e the parameters are different) even if they
exhibit substantial differences.

A natural measure of transferability of a model estimated in context i for application in
context j is the difference in the log-likelihood between this model and the corresponding
one estimated in context j.  The Transferability Test Statistic (TTS) is defined as the
absolute value of twice this difference (Koppelman and Wilmot 1982, Abdelwahab 1991).
It tests the hypothesis that the underlying parameter values in context i are equal to the
estimated values in context j.

where is the log-likelihood of the transferred model and is the log-
likelihood of the application context model based on the full data set. It is assumed that
when applying the test the parameter vector of the transferred model is fixed, and the
distribution of this test statistic is chi-squared with degrees of freedom equal to the number
of model parameters. Because the chi-squared distribution is asymmetric, the results will
depend on the direction in which the models are transferred.

Transfer Index statistic (TI) describes the degree to which the log likelihood of the
transferred model exceeds the log-likelihood of a reference model (we use the market
shares model) relative to the improvement provided by a model developed in the
application context.  TI has an upper bound of one which is attained when the transferred
model performs as well as an estimated model on the application data.  It has no lower
bound.  Negative values imply that the transferred model is worse than the local base
(market shares) model. TI is expressed as (Koppelman and Wilmot 1982, Koppelman and
Rose 1983, Abdelwahab 1991):
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where L (c ) is the log-likelihood of the local model evaluated at the market share valuesj j
and all other variables are as defined before.

Transfer Goodness-of-Fit Measure describes the degree to which the log likelihood of
the transferred model exceeds a reference model (such as the market shares model),
relative to the improvement in log-likelihood achieved with a perfect estimation context
model, over this reference model. This measure is similar to the goodness-of-fit measure
D (c) which is used for discriminating between different specifications on the same data2

set.  This is expressed mathematically as (Koppelman and Wilmot 1982, Koppelman and
Rose 1983, Abdelwahab 1991):

where Lj* denotes the log-likelihood value obtained when the choices are predicted
perfectly, and this has a value of zero. This measure has an upper bound value equivalent
to the local rho-square for the application context.  Negative values indicate a transfer
model performance worse than that of a market share model estimated on the application
context data.

The last three measures defined above are interrelated by their dependence on the
difference in log-likelihood between transferred and application context models.
However, they offer different perspectives on model transferability: TI provides a relative
measure to new estimation context model, TTS a statistical test measure and finally the
transfer rho-square, an absolute measure based on ideal situation (L*).

Aggregate transferability measures

One of the most popular approaches to treat model performance is sample enumeration,
by which the choice probabilities of each individual in a sample are summed, or averaged,
over individuals (Ben-Akiva and Lerman 1985, Hallipelto 1993).  
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              (44)
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In its simplest form, sample enumeration uses a random sample of the population as
”representative” of the entire population.  The predicted share of the sample choosing
alternative i is used as an estimate for W(i), which is the fraction of population T choosing
alternative i:

To forecast the changes in aggregate shares under some policy, one simply changes the
values of the appropriate variables for each affected individual in the sample.

In this thesis we use a sample enumeration test and other aggregated elasticity tests to
decribe how the variation of model parameters affects the model’s ability to predict
changes in travel behaviour when the transferred coefficients are applied to the full
application context data set. The test measure, known as the percentual Relative Sample
Enumeration Error (RSEE) is calculated by comparing the predicted change based on a
transferred model with the predicted change based on a model estimated from the full
application data set. The maximum error we define as “acceptable” is rather high, 25
percent.  The motivation for using rather high error limit is to show that the sample size
required to estimate precise models is larger than was previously thought to be the case.
In addition, we have tried to find a limit that would react to the sample size in a reasonable
way (that is, when using small sample sizes the error limit is quite often exceeded but
when using larger sample sizes, the limit is rarely exceeded).  The sensitivity analysis of
different error limits is presented in Chapter 5.

Other elasticity test is undertaken by running the whole four step model system. The test
measure is known as RSEEF.  Note, in this thesis, RSEEF is referred to as an elasticity test
and not as a sample enumeration test because it is not applied to individuals, but to the
zonal values determined when running the full forecast process.
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where
N̂od�predicted trips made from zone o to zone d with mode
Nod �observed trips made from zone o to zone d with mode.
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Koppelman and Wilmot (1982) have presented various aggregate prediction test statistics,
all of which compare in various ways the aggregate number of predicted trips by mode m
for a given aggregate group g, with the observed number of trips by this mode for this
group. In this context, only one application of these test statistics is discussed, the Mean
Absolute Error for Forecast (MAEF) defined as:

In this thesis this test is used when running the model system, in its aggregate
implementation, to derive base year matrices in division of four aggregated zones. The
predicted and observed trips are compared to each other, and the total error over the
aggregated groups is calculated.
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4 DATABASE, MODEL SYSTEM AND STUDY PROCESS

4.1 Overview of the study structure

The purpose of the research is to compare alternative methods of spatial transfer as a
function of  sample size and  identify the factors affecting the models’ quality and the
impreciseness of the model’s parameters.

The study is mainly based on the travel surveys carried out in the Helsinki Metropolitan
area (HMA) in 1995 and in the Turku region in 1997. The HMA travel database is used for
the estimation of the models which are to be transferred.  The Turku region database
represents the application context to which the HMA models are transferred to, for
evaluation of transfer effectiveness. The model transfer is studied using two different trip
groups, namely home-based work trips (HBW) and other home-based trips (OHB). This
makes it possible to study different kinds of combinations related to the model parameters’
preciseness and the transfer bias. The studied modes are walking and bicycle, car (driver
and passenger), and public transport (bus, train and tram). 

The model transfer is studied using all four methods described in Section 3.7. These
methods are:

! transfer scaling,
! Bayesian method,
! combined transfer estimation, and
! joint context estimation.

In addition, models are estimated using different sizes of samples from the 1997 Turku
data. The models estimated from these samples are referred to as new sample models
(Figure 7). The new sample models are  used to compare the impact which the additional
information used in the model transfer has on the predictive performance of the models in
the application context.  The performance of the four transfer methods and the new sample
models are evaluated for each sample size-model specification combination in terms of
how well they replicate the full sample of the 1997 Turku study set of observed trips.
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Joint context estimationTransfer scaling, Bayesian method, 
Combined transfer estimation

Figure 7: The principle of model transferability analysis.

Model transferability is considered from the viewpoint of the equality of model parameters
in estimation and the application context, as well considering the factors, that may cause
differences between the estimation and application context. As a large part of the
differences in coefficients and predictions is due to random variation, and only part due to
real differences in the estimation and application context, the main emphasis of this study
is in investigating the relationship between the transfer bias and the impreciseness caused
by the sample size of the application context. Different transfer methods are compared to
each other, as well as the amounts of data needed to estimate mode and destination choice
models.

The study is divided into two main parts.  The first part of the thesis (Chapter 5) considers
the factors, which decrease model quality and affect the differences between the estimation
and application context models.  For example the importance of data gathering methods
and the sample size are studied.  The second part gives (Chapter 6) a general overview of
the spatial transferability of the HMA models. 
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4.2 Study areas

Table 1 presents some statistical background information about the HMA (estimation
context), in 1995, and the Turku region (application context) in 1997.

Table 1: The characteristics in the areas studied (Tilastokeskus 1996, Tilastokeskus
1998).

HMA in 1995 Turku region in 1997

population 891,056 240,481

number of jobs 445,800 100,495

land area 742 km 698 km2 2

The HMA consists of four cities: Helsinki (525,031 inhabitants), Espoo (191,247
inhabitants), Vantaa (166,480 inhabitants), and Kauniainen (8,298 inhabitants).  The city
centre of Helsinki is located on a peninsula in the Gulf of Finland, and the metropolitan
area forms a half circle around it with a radius of 25 to 30 km.  In 1995 there were about
91,000 jobs and 63,000 inhabitants in Helsinki’s central area.  The number of jobs in the
whole metropolitan area is about 445,800.

In 1995, the car density in the area was about 320 cars per 1,000 inhabitants.  The public
transport system in the area consists of bus and tram, commuter and ordinary trains, and
one subway line east of the city centre. 

The Turku region is one of the five biggest cities in Finland and it is located 150 km west
of the HMA. The whole study area consists of the four cities: Turku (168,772 inhabitants),
Kaarina (19,309 inhabitants), Raisio (22,854 inhabitants), Naantali (12,769 inhabitants)
and the two communities: Lieto (13.138 inhabitants), and Piikkiö (6,367 inhabitants)
surrounding it.

In 1997, car density in the area was about 360 cars per 1,000 inhabitants, and 60 percent of
all households had at least one car.  The public transport system in the area consists of bus,
commuter and ordinary trains.  Of the 0.8 million internal daily trips made by the
inhabitants of the area, 51 percent are made by car, 11 percent by public transport, and 38
percent by bicycle or on foot.
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4.3 The database

4.3.1 Travel surveys in the HMA in 1995

The basic travel surveys for the HMA were made during 1987 and 1988. The main field
studies were an origin-destination (OD) survey of automobile traffic (YTV 1990a), an OD
survey of public transport (YTV 1990b), and a mobility survey (YTV and liikenneministeriö
1990b, YTV and liikenneministeriö 1991).  The mobility survey was repeated in 1995
(Kaartokallio 1997).  The mobility survey carried out in 1995 was done simply for
updating purposes. Hence origin-destination (OD) surveys were not conducted in 1995.

The mobility survey was an individual based study.  The objective of the survey was to
gather data on daily travel behaviour pattern plus sosio-economic and other background
information. The sample size was 8,065 people (0.9 percent of the corresponding
population) in 1995. Only people of 7 years of age or older were included in the original
random sample.

The data were gathered using an informed telephone interview.  This means that the
questionnaire plus travel diary for a survey date were sent in advance to people who owned
telephone. After the survey date these people were contacted by telephone and the data
were directly recorded into a computer system.  The number of acceptable telephone
interviews was 2,758. In addition, 324 acceptable answers were collected by mail
(Kaartokallio 1997). 

The sample data were corrected for age and sex to represent the total population.  The
weighted data were used for forecasting and the unweighted data were used in modelling. 

In all, the data for modelling consisted of 3,082 respondents. The average trip generation
rate calculated from the unweighted model data for internal trips was 2.76
trips/person/day. The total trip generation rate, including external trips, was 2.89
trips/person/day.

Table 2 presents the share of trip groups. The HMA data was divided into four different
trip groups, from which, the home-based work trips and other home-based trips are
considered in this research.  The trips for respondents with an incomplete trip diary
(lacking the mode, origin or destination, trip purpose or travel time) are not included in the
data. However, respondents with no trips are included in the data. 
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Table 2: The share of trip groups pertinent to modelling in the HMA in 1995.

Trip group Internal trips in the 
HMA in 1995

no. of trip observations %

Home-based work trips 1,993 23.5

Home-based school trips 873 10.3

Other home-based trips 4,149 48.8

Non home-based trips 1,479 17.4

Total 8,494 100.0

Table 3 presents the mode shares, by trip groups, for the model data. Approximately 39.2
percent of the trips were made by car, 30.5 percent by public transport, and 30.3 percent of
the trips were walk and bicycle trips in 1995. 

Table 3: The mode shares by trip groups in the HMA in 1995 (The shaded trip groups
are considered in this research).

Mode HMA 1995

Home-based Other home- Home-based Non home-
work trips based trips school trips based trips

Walk and bicycle 17.7 31.2 65.5 23.5

Public transport 40.8 28.1 26.3 26.0

Car 41.5 40.7 8.2 50.5

Total 100.0 100.0 100.0 100.0

Figure 8 presents the trip length distribution of all trips, home-based work trips and other
home-based trips.  The average trip length of all trips (including all four trip groups) was
6.5 km. The average trip length of  home-based work trips was 9.9 km, and for other
home-based trips the figure was 5.7 km.
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Figure 8: Trip length distribution of the HMA trips in 1995.
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4.3.2 Transportation network description in the HMA

The travel times, trip lengths, waiting times and number of transfers used in the modelling
are zonal values based on the traffic assignment.  We used zonal values because the HMA
data was not geocoded and thus had no individual information on travel times and
distances.  

The car and walk networks were divided into 117 zones (Appendix A).  The public
transport network was originally based on  596 zones. The models and forecasts were
made in a division with 117 zones.  That is, when the model and forecasts have been
made, the impedances based on the 596-division were converted to a 117-division by
combining some zones and calculating the weighted average values of impedances, to
represent the corresponding larger area. The number of network links is approximately
2,500 (depending on the scenario) and the number of regular nodes 1,414. A more precise
network description is given in Karasmaa et al. (1997).

The traffic assignments were made in the Helsinki Metropolitan Area Council using a
standard multipath equilibrium model (Emme/2).  The trip lengths and travel times were
based on a traffic assignment using the 1995 car network and trip matrices, which were
based on the forecasts made for the year 1995, using the models based on the 1988
mobility survey. The impedance matrices were produced separately for morning and
evening peak periods.  A transpose of the morning peak matrix was taken to produce the
evening peak hour matrix.  The peak periods were defined to be between 6.30-8.30 and
15.30-17.30.

The public transport impedances are based on the Emme/2 multi-path transit assignment.
The 1995 public transport network and lines were used. The available modes in the public
transport assignment were bus, train and tram. 

The intra-zonal travel times were formulated using a regression model based on the travel
times of the observed OD-trips under five kilometres. The regression line is determined
separately for car and public transport intra-zonal travel times. 

The intra-zonal distances were calculated by using a regression model made for the Turku
region (see Section 4.3.4).  The regression model is based on  the distances calculated
from the geocoded data in the Turku region.  We have used the Turku data because
geocoded  data was not available in the HMA.  Travel times were formulated
simultaneously for all modes because consideration of only one mode does not produce
enough data to be accurate for modelling purposes.
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4.3.3 Travel surveys in the Turku region in 1997

The survey in the Turku region was the first study in Finland in which the origin-
destination surveys for internal trips were conducted by  postal questionnaires and
telephone interviews. Roadside interviews were carried out only in order to collect data on
external trips. The aim of the study was to collect an adequate amount of data for travel
system planning and to study model transferring (Turun kaupunki et al. 1999a). In
addition, an important objective was to systematically compare different data gathering
methods (Kurri and Karasmaa 1999, Turun kaupunki et al. 1999b, Turun kaupunki et al.
1999c). 

The data were gathered between late October and early December 1997 (October 20-23 the
postal questionnaires,  October 20-23 telephone interview, and the reminders November
3-6 and 17-20, and December 1-4).  The travel diaries were collected between Monday and
Thursday. The sample size was exceptionally large, 21,000 persons, which means that
every 10th person living in the area (excluding children under seven years) was included
in the study.  In order to compare different data gathering methods the sample was divided
randomly into four sub-samples, one of which acted as a reference.  The people in the
reference group were sent a postal questionnaire with a two-day trip diary.  One reminder-
to-respond postcard and one reminder with a new questionnaire with new survey dates
were sent to each person.  The people in the second group were sent a postal questionnaire
with a two-day diary and three reminders.  In the third group a one-day trip diary and three
reminders were used.  The people in the fourth sub-sample were interviewed by telephone
(Table 4). 

Table 4: The structure of the mobility survey carried out in the Turku region in 1997.

Sample size Response Method Number of Number of days
rate (%) reminders

with a new
questionnaire

12,000 (refe- 49 postal questionnaire 1 reminder two-day trip diary
rence sample)

  3,000 55 postal questionnaire 3 reminders two-day trip diary

  3,000 60 postal questionnaire 3 reminders one-day trip diary

  3,000 55 telephone interview - two-day trip diary

Different data collection methods are compared in Section 5.2 and in Kurri and Karasmaa
(1999). The data described in the following section is based only on the reference group,
which is also used in studying model transferability.
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On the whole, the basis of the data for modelling in Turku consisted of 4,675 respondents
who had reported 28,315 internal trips (all these respondents were asked to fill in two-day
diaries). 

The average trip generation rate calculated from the unweighted reference data for internal
trips was 3.49 trips/person/day.  The total trip generation rate, including external trips, was
3.70 trips/person/day.

Table 5 presents the share of trip groups for the entire set of reference data. The trips for
the respondents with an incomplete trip diary (lacking the mode, origin or destination
information, trip group or travel time) are not included in the data. However, people with
no trip on either of the two days (661 persons) are included in the data. 

Table 5: The share of trip groups pertinent to modelling in the Turku region in 1997.

Trip group Internal trips of the reference sample

no. of trip observations %

Home-based work trips 4,442 15.7

Home-based school trips 2,689 9.5

Other home-based trips 13,989 49.4

Non home-based trips 7,195 25.4

Total 28,315 100.0

Table 6 presents the mode shares, by trip groups, for the data used in model estimation.
Approximately 51 percent of the trips were made by car and 11 percent by public
transport.

Table 6: The mode shares by trip groups in the Turku region in 1997 (The shaded trip
groups are considered in this research).

Mode Turku region

Home-based Other home- Home-based Non-home-
work trips based trips school trips based trips

Walk and bicycle 31.7 42.4 63.4 41.7

Public transport 13.9 11.8 24.1 8.6

Car 54.4 45.8 12.5 49.7

Total 100.0 100.0 100.0 100.0
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Figure 9 presents the trip length distribution of all trips, home-based trips and other home-
based trips in the Turku region. The average trip length of all trips (including all four trip
groups) was 4.8 km. The average trip length of home-based work trips was 6.1 km and,
other home-based trips 4.9 km.

Figure 9: Trip length distribution of all the trips in the Turku region in 1997.
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4.3.4 Transportation network description in the Turku region

The travel times, trip lengths, waiting times and number of transfers used in the modelling
are zonal values based on the traffic assignment.  The car, walk, and public transport
networks were made in division of 118 zones (Appendix B).   The number of network
links is 5,908 and the number of regular nodes is 2,362. The trip lengths and travel times
are based on the travel assignment made by the Emme/2 program, using the 1997 travel
demand matrices, which are based on the OD-surveys (external traffic) and the mobility
survey (internal traffic) carried out in the Turku region in 1997.  The network assignment
was made by the outside research institution in co-operation of HUT.  The role of HUT
was to ensure that the network assignment principles are as similar as possible to those
used in the HMA. The detailed description of assignment principles can be found in the
technical report (Turun kaupunki et al. 1999d).  In addition, different assignment
parameters were studied to observe how sensitive the models are to different definitions.
It was found that assignment parameters do not greatly affect  the model coefficients of
home-based work trips, but taking into account other home-based trips, the coefficient for
travel time varied greatly when the “number of transfers” was included in the mode choice
model.

The intra-zonal travel times were calculated using a regression model based on the travel
times of the observed OD-trips under five kilometres. That is, the travel distances based on
the traffic assignment for OD-trips under five kilometers are used as an explanatory
variable and the corresponding travel times have been used as a dependent variable. The
regression line is determined separately for car and public transport intra-zonal travel
times. When estimating the regression model for public transport travel times, the average
value of initial waiting times is indicated as the intersection point of the y-axis. Hence, it
is assumed that for the minimum length of a trip, at least one waiting time is included.

The intra-zonal distances were calculated by using regression model, which is based on the
distances calculated from the geocoded data in the Turku region.  The squared land area is
used as an explanatory variable. 

4.4 Model system

4.4.1 Models

The present travel demand model system in the HMA and in the Turku region is basically
a traditional four-step model (trip generation, distribution, modal split and assignment)
with feedback between the last three stages (Karasmaa et al. 1997). The trip generation
”model” is currently based on simple cross-tabulation of the data.  The most important
categorization is the division according to the person’s accessibility to a car. Mode and 
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destination choice are mostly modelled using nested logit models and sequential
estimation (Ben-Akiva and Lerman 1985).  Table 7 represents the model types used. For
network assignment a standard multipath equilibrium model (Emme/2) is used. Trips are
divided into four categories according to their purpose: home-based work trips, home-
based school trips, other home-based trips, and non-home-based trips.  This study
concentrates on home-based work trips and other home-based trips. In mode choice
modelling there are three alternative modes: walk and bicycle, car, and public transport.
The access trips to rail are made on foot or by bus.  Less than 2 percent of rail passengers
use park-and-ride.  These trips are coded based on the main mode choice (usually rail)
respondents indicated they used. 

Table 7: The model types used to forecast internal trips in the HMA and in the Turku
region (only the shaded trip groups are considered in this thesis).

Trip group Trip generation Mode choice Trip distribution
rate

Home-based work trips/working logit model nested logit model
trips person/day

Home-based school trips/school-aged distance matrix logit model
trips person/day

Other home-based trips/person, age > 6 logit model nested logit model
trips

Non home-based trips/person, age > 6 logit model nested logit model
trips

The trip generation rates are calculated from the sample data by dividing the number of
trips in each trip group and population group by the relevant population. There are two
population groups in home-based work trips: working persons age 18-64 years and other
population, and three in other home-based trips: age 7-17, EHAP-persons age 18- and
HAP-persons (HAP-person is a person that practically always has access to a car for
personal trips.  Others are EHAP-persons).

The mode and destination choice models are mainly logit models.  The same mode and
destination choice models are used for different time periods of the day.  However,
different impedances were applied to different time periods.  The time periods used were:

! morning (6.30  - 8.30 )
! evening (15.30  - 17.30)
! day (any other time).
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The models and forecasts for the HMA are based on 117 zones.  In addition, variable cars
per household was constructed by using 19 zones. In the Turku region a division with 118
zones is mainly used. A division of 23 zones is used for constructing the variables cars per
household and income.  

The model structure used for mode- and destination choice modelling is presented in
Figure 10.  The estimation of the destination choice models is based on a (simple) random
sample of 25 sub areas, including the chosen destination. The mode and destination choice
models are basically estimated sequentially. The differences between the sequential and
simultaneous estimation are considered in Appendix C.  Due to the logsum coefficients
over one when estimating destination choice models for other home-based trips, the
inverse model structure was also tested. However, the prediction performance of these
models was not as good. The “artificial” tree structure used in joint context estimation has
already been presented in Section 3.7.

Figure 10. Structure of combined mode and destination choice models.

4.4.2 Forecasting process

The whole four-step forecast process is presented in Figure 11.  The regional travel
forecast interface was originally developed for the modelling purposes required for the
Turku region and it applied the same principles as were used in the HMA in 1988 (YTV
1990a) and 1995 (Karasmaa et al. 1997).  In this  research, the current forecasts (forecast
based on the data of the time of the survey)  are made to evaluate the transferred model’s
prediction accuracy and its ability to predict changes in a transportation system.  The
model system is applied separately for each trip group.  Appendixes D and E present the
forecasting process according to the trip group.
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The dark grey boxes in Figure 11 mark the repeated elements of the process when testing
different transfer methods and sample sizes.   The light grey boxes mark the constant
elements such as trip generation rates and the HAP/EHAP model.  That is, the trip
generation rates are calculated only once using the entire set of data and the same trip
generation rates are used for every transfer method and sample size.  So, the error caused
by the impreciseness of trip generation rates is  not taken into account when testing the
current forecast. However, this is considered separately in Section 5.3.2.  The HAP/EHAP
model is also only produced once for the entire set of data.  Hence, these two error sources
are ignored in this review and only the errors caused by mode-and destination choice level
are considered. 

The main steps of the forecast are

1. Estimation of the car-availability model for other home-based trips by using the
model presented in Appendix E. The definition HAP has been used for a person who
has a driving license and whose family has a car and who has, during an interview,
stated that, he/she always or nearly always has a car available. Other people belong
to the EHAP-group. (The car ownership model has not been used for home-based
work trips).

2. Cross-tabulation of trip production rates. The data are extended to respond to the
whole population, that is those over 7 years of age, and then the mode shares and trip
generation rates are cross-tabulated from this weighted data.  The weighting is done
according to sex, age and the location of the residence.

3. Multiplying the trip production rates by the corresponding population groups to get
the absolute trip production for each zone.

4. Estimation of  mode and destination choice models.
5. Splitting the travel demand of each trip groups for different zones and modes

(according to the mode- and destination choice models).
6. Multiplying the destination probabability matrix (formulated in the previous step) by

the absolute trip production vector calculated in step 4 => the total travel demand
matrix for each trip group.

7. Splitting the total travel demand matrices for different time periods. 
8. Multiplying the total travel demand matrixes represented for each time group by

mode choice probabilities. 

Normally, the forecast process is made iteratively, to include the network assignment for
the modelled travel demand matrix and then the whole process is repeated until the
predefined accuracy of the travel demand matrix is achieved. However, these steps, which
are indicated by the white boxes,  are not included in this study.  The forecast run does,
however, include the iterative process (Equation 47) so as to correct the alternative-
specific constants, so that the modelled modal shares represent the modal shares based on
the weighted mobility survey (Talvitie 1981).
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     (47)

where D  is the new dummy-coefficient, D   the original dummy, Pj is the proportion ofnew old

mode j based on the estimated model and sj the proportion based on the weighted mobility
survey data.

Figure 11: The calculation of the forecasts (user interface of the forecasting system)
(YTV 1990a, Karasmaa et al. 1997).



4.5   The principles of the study 79

4.5 The principles of the study

The model transferability and preciseness are studied by using the mode and destination
choice models presented in Chapter 6.  The HMA data and the “reference” data collected
in the Turku region are used to study model transferability.  The HMA travel database is
used for estimation of models which are to be transferred.  The database of Turku region
represents the travel context to which the HMA models are transferred to, for evaluation
of transfer effectiveness.  Different factors affecting impreciseness of model coefficients
are studied by using the data collected in the Turku region.  The data quality issues are
considered in Chapter 5.  Next,  a short description of the model transfer study is given.

The model transferability is examined in particular from the perspective of mode and
destination choice models.  The transferability of trip generation rates has not been
studied. That is because in Finland, trip generation rates have traditionally based on the
cross-tabulation instead of logit formulation (see Section 5.3.2.1).  However, we have
studied the sample size required to calculate trip generation rates based on the small
samples.  The trip generation rates are considered in Chapter 5 and the results of model
transfer in Chapter 6.

The transferability of mode and destination choice models is studied by all four methods
described in Section 3.7.  The studied methods are:

! transfer scaling,
! Bayesian method,
! combined transfer estimation, and
! joint context estimation.

Scale factor is used for distance variables and for variables “travel time” and “number of
transfers” in transfer scaling.  In addition, the joint context estimation is studied by using
different kind of combinations of common and data-specific coefficients.

The model specifications investigated in this work are presented in Table 8 and the
definitions of the variables in Table 9.   The distance variables for walking trips are given
in kilometres for a one-way trip between the origin and destination.   Many different
distance functions were examined based on the log-likelihood values before the choice of
a piecewise linear function with a point of inflexion of 5 km was made. The travel times,
travel costs, and numbers of transfers are for a round trip. Travel times are in minutes, and
costs are in euros (1 euro=5.946 FIM).  Parking costs (for one-way trips) have been cross-
tabulated from the mobility survey based on the costs car drivers had paid, and are
included in the car costs. Travel costs for public transport are zonal values, which have
been cross-tabulated from the mobility survey data based on the passenger ticket type.
Travel costs for cars are based on 0.10 euro/km  in the HMA in 1995 and 0.12 euro/km in
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the Turku region in 1997.  The formulation of cost variables is considered more precisely
in Appendix F and in Karasmaa et al. (1997) and Turun kaupunki et al. (1999d).  In
estimation, generic coefficients for time and cost variables are used, because the mode-
specific coefficients did not differ statistically from each other.  The only exception was
when estimating mode choice models for home-based work trips.  In this case, the cost
coefficient for the car differed slightly from that estimated for public transport.  However,
if the cost coefficient was assumed to be generic (as is usually the case), the travel time
coefficient for the car was equal to the coefficient estimated for public transport.  The use
of generic coefficients is further justified by the multicollinearity problems, which are
discussed in more detailed in Appendix C.

Table 8: Model specifications for 1995 HMA and 1997 Turku area databases.

Variable Home-based work trips Other home-based trips

Distance 0-5 km (Walk) X X

Distance > 5 km (Walk) X X

Total travel time (Car, Ptr) X X

Number of transfers (Ptr) X

Trip cost/income (Car, Ptr) X X

Cars/household (Car) X X

Walk dummy (Walk) X X

Car dummy  (Car) X X

Log sum (Dest.) X X

Ln(jobs) (Dest.) X

Size variable

- Population X

- Service employment X

- Retail employment X
Walk=Walk and bicycle
Ptr   =Public transport
Car  =Car

The size variable is the weighted sum of the inhabitants and jobs in the area.  Rather
simple models, particularly for home-based trips, are used so as to be able to forecast the



4.5   The principles of the study 81

values of chosen variables in the future.  That is, simple models are assumed to be more
convenient when doing forecasts and complex models, if the behaviour is studied. The
coefficient of size variable is fixed to one (based on the theoretical consideration of the
collective choice of destination points). The attraction variables included in the size
variable are normally logarithmic, so that the model is independent of the zoning system.
Thus, the logarithm expression is usually referred to as a size variable and the coefficients
of its components are known as weight-factors. The coefficients for the components of
size variable are, in principle, estimated in the same way as the other model coefficients.
Nevertheless, in this case, note that t-values from the estimation results do not test the
deviation from zero as the coefficient has been estimated inside the exponent function.

Table 9: Definition of variables specified in mode and destination choice models.

Variable Definition

Distance 0-5 km (Walk) One-way distance for walk and bicycle trips between 0 and 5 km.
If the distance is > 5 km, the value of variable is 5.

Distance > 5 km (Walk) = 0 for walk and bicycle trips between 0 to 5 km. 
= distance-5 for walk and bicycle trips over 5 km.

Total travel time (Car) Round trip total travel time (including walk access times, min)

Total travel time (Ptr) Round trip total travel time (including walk access times, in-
vehicle time, waiting times, min)

Number of transfers (Ptr) Round trip number of transfers

Trip cost/income (Car) Round trip out of pocket travel cost (including parking cost)
divided by monthly household income/1000 (zonal average)

Trip cost/income (Ptr) Round trip out of pocket travel cost divided by monthly
household income/1000)

Cars/household (Car) Number of cars per household (zonal average)

Walk dummy (Walk) = 1 for walk and bicycle mode; =0 otherwise

Car dummy  (Car) = 1 for auto mode; =0 otherwise

Log sum (Dest.) Natural log of the denominator of the mode choice model

Ln(jobs) (Dest.) Natural log of number of jobs in the destination area (zone)

Size variable Natural log of weighted numbers of population and jobs.  (For
OHB different groups of jobs are used)

- Population The amount of inhabitants in the area

- Service                           The number of jobs in service industries
  employment

- Retail employment The number of jobs in retail industries
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Studying the effect of sample size

To explore the impact of sample size on transferring perfomance, model transferability is
tested using three to four different sample sizes.   Consequently, all transferability tests
have been carried out by using 100 samples (resampled from the entire set of 1997 Turku
data) for each trip group, transfer method and sample size category.   The sample sizes
used by trip groups are presented in Table 10.  The respondents who did not make any
trips are not included in the data used in mode and destination choice modelling.  The
number of respondents is fixed in each sample category, and the number of trips variates
around the average value presented in the table. 

The resampling is performed by using bootstrap (see appendix G for more specific
information).  That is, bootstrap samples are created by randomly resampling observations
from our original sample of n observations with replacement (Efron and Tibshirani 1993).
In each drawing, each observation has the same probability of being drawn, 1/n.  This
resampling procedure implies that some observations will be drawn several times and
some not at all. The advantage of using bootstrap is that the variance in the coefficients
can also be studied for the entire set of data.  However, the main reason for using
bootstrap, other than sampling without replacements, is that this procedure represents the
situation in which samples would have been drawn from the whole population. 

Table 10: The sample sizes and average numbers of trips in the study.

Turku region in 1997  
(entire set of data: 4,675 respondents and 28,315 trips)*

Home-based work trips (4,442 trips) Other home-based trips (13,989 trips)

respondents average no. of trips respondents average no. of trips 

425 400 140 400

850 800 275 800

1,700 1,600 550 1,600

3,400 3,200 1,100 3,200

4,675 4,450 2,300 6,400

- - 4,675 14,000
*    two-day diaries used
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Test of transferability

The testing process is divided into two phases. First the best possible way to transfer
models by using joint context estimation is defined by comparing the model coefficients,
based on small samples, to the coefficients estimated from the entire set of application
context data.  Nine different combinations for using common and data-specific variables
are tested. The combinations (models A-I) studied in mode choice level are presented in
Table 11. The model definitions used in model transfer are presented in Table 8.

Table 11: The combinations of data-specific variables for mode choice models tested in
the joint context estimation. The data-specific variables are marked by ”X”
and letters A to I refer to different models.  

Data-specific coefficient

Variable A B C D E F G H I

Distance 0-5 km (Walk) - X X X X X X X -

Distance > 5 km (Walk) - - X X X X X X X

Total travel time (Car, Ptr) - - - - - X - X -

Number of transfers (Ptr) - - - - - - - - -

Trip cost (Car, Ptr) - - - X X - - X X

Cars/household (Car) - - - - X - X - X

The initial premise was, that almost all possible combinations would be tested.  However,
during the pre-testing some very unsatisfactory combinations were dropped. For example
the number of transfers is always estimated as being common because the coefficient of
this variable is so imprecise. This means that the estimation context data have to be
emphasized (the use of common variables emphasize the estimation context more than the
use of data-specific variables). 

In addition,  two different combinations of common and data-specific variables are used
for the destination choice level, for other home-based trips.  First,  all variables are kept as
common. Then the components (service employment, retail employment) of the size
variable (see Table 8) are estimated as data-specific. The destination choice model, for
home-based work trips, only includes one unconstrained coefficient (ln(jobs)),  thus there
are no different combinations to be tested for this trip group.

The best possible way to transfer models by using joint context estimation is evaluated by
comparing the model coefficients, based on small samples, to the coefficients estimated
from the entire set of application context data.   The test measure is the percentual Mean
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Deviation (MD) from the coefficients estimated using the entire set of data. The model,
which produces the minimum error calculated as a percentual Mean Deviation from the
coefficients estimated from the entire set of data, is chosen to represent the joint context
estimation.

Figure 12: The choice of the best way to use common and data-specific parameters in a
joint context estimation.

Secondly, after choosing the best possible way to use joint context estimation, the different
methods are compared to each other.  Two approaches are undertaken to determine model
transferability: One compares model parameters between demand models, and the other
compares the forecasting results with the observed values.  The steps in the testing process
are presented in Figure 13.

Figure 13: The comparison process of different transfer methods.
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Model validation is carried out at three levels.  Firstly, validation tests of the disaggregate
models are conducted through examination of the coefficient ratios, e.g. values of time,
and production of elasticities with respect to a cost and time variables.  Two elasticity
tests are conducted. Firstly, in order to test the cost elasticity of the mode choice models,
a test is carried out to examine the effect of increasing car costs by 10 %. Secondly, the
effect of a 30 percent increase in public transport travel times is studied. Transfer
effectiveness is measured by calculating the proportion of models in which the error of
VOT, or sample enumeration error (RSEE), is less than 25 percent.  Note that the error
limits defined may, in some cases, affect the conclusions.  This is especially so if models
based on one given method slightly exceed the limit  and the same method is slightly under
the limit when a different test measure is used.  This is, why the average relative sample
enumeration errors are also calculated and presented in the appendixes.

Secondly, the disaggregate measures such as TTS and TI are used to test the model
parameters’ equality in two contexts. The Transferability Test Statistic (TTS) is used to
test the difference between the transferred model and the model estimated from the full
application context data set. The Transfer index (TI) is used to describe the disaggregate
transfer prediction accuracy or goodness-of-fit relative to the corresponding goodness-of-
fit of a similarly specified model estimated in the application context. The test statistic is
described more specifically in Section 3.8.

Finally, validation tests are undertaken by running the model system in its aggregate
implementation to derive base year matrixes and to extract the elasticities with respect to
cost and time variables at this level. The predicted and observed trips are compared to each
other, and the total error, known as MAEF, is calculated over four aggregated groups. The
effects of a 30 percent increase in the public transport travel time on the public transport
share, as well as the effects on car share of a 10 percent increase in travel costs by car, are
studied also in this aggregate level. The relative error for these tests  is labelled RSEEF.
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Table 12: Summary table of transfer evaluation measures used in the case study.

Quantity The description of the field of application

Mean Deviation (MD) This measure describes the mean deviation
(Equation 36) of the transferred coeffients from the set of

coefficients based on the full application
context data set.  

The percentage of observations with This measure describes the accuracy and
the error of VOT under 25 percent preciseness of VOT.
(Equation 38)

Relative Sample Enumeration Error This measure describes the transferred
(RSEE, RSEEF) models’ ability to predict the effects of
(Equation 45) changes in travel system. RSEE means that

the test has been applied by using the full
application context data set.  RSEEF means
that elasticities are based on the running of
the whole model system.

Transfer Test Statistic (TTS) This tests the hypothesis, if the parameter
(Equation 41) values in context i are equal to the

parameter values in context j.

Transfer Index (TI) This compares the predictive performance
(Equation 42) of the transferred model to the performance

of a similarly specified model, estimated on
the application context sample only.

MAEF This is the mean of the absolute values of
(Equation 46) the forecast error based on the entire traffic

forecast data.
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5 DATA-COLLECTION METHOD AND SAMPLE SIZE AS
SOURCES OF VARIATION IN MODEL COEFFICIENTS

5.1 Introduction 

This chapter presents some special issues related to the modelling work. According to Horowitz
(1981), the errors concerning disaggregate, random-utility demand models can be divided into
two categories: A distinction is made between errors that cause correct models to yield incorrect
forecasts (such as errors in aggregating disaggregate models or in forecasting explanatory
variables), and those that cause models to yield incorrect forecasts, even if the models are used
correctly (for example, sampling, specification, and data errors).  In model transfer, the above
mentioned errors may cause apparent differences between the estimation and application context
parameters making it difficult to conclude whether the observed transfer bias is real or not.
Therefore, in this chapter the uncertainty caused by the latter class of errors is examined due to
its importance in model transfer.  First, the issues related to data gathering methods are
considered.  After that, the sample size requirements in modelling are investigated.

5.2 The influence of data gathering methods 

5.2.1 Data and methods

The aim of this section is to analyse how the data gathering methods affect the quality of the data,
indicated by the number of trips reported by the respondents, and other key variables. A
comparison of data gathering methods is presented here, to see if different methods used in the
HMA and in the Turku region affect the results in relation to model transferability. The HMA
data used in the model transfer, was collected by using telephone interviews and one-day diaries.
In the Turku region, the data used in the model transfer, was based on postal questionnaire and
two-day diaries.

The effect of data gathering methods is studied using the special data collected in the Turku
region for this purpose.  That is, before the data collection, the random sample was divided into
four different sub-samples according to the data gathering method employed.  One of these
samples, namely the sample collected by postal questionnaires with one reminder is used  
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in the model transfer.  Other sub-samples are used in studying the effect of data gathering
methods. All these samples have already presented in Table 4 in Section 4.3.3. The data
gathering method is studied both at the trip generation level and at the mode choice level. The
main issues to be compared are:
 
           postal questionnaire vs. telephone interview,
           two-day vs. one-day diary,
           the effect of three reminders vs. the effect of one reminder only.

The data quality is studied by comparing the basic statistical parameters as response rates and
the number of trips and mode shares as well as by using statistical tests. A t-test has been used
in mode choice level to test if the coefficients estimated in two contexts differ significantly from
each other.  A likelihood ratio test (Equation 39) has been used to see if the two contexts can be
represented by a single model. The model’s ability to predict the effects of change in traffic is
examined by sample enumeration tests. The effects of a 30 percent increase in travel time on the
public transport share, as well as the effects of a 10 percent increase in car costs are studied.
We employed an “unrealistically” high percentage to study the increase in travel time in public
transport in order to examine the differences between transfer methods, and not to study the
effects of travel time in practice.

5.2.2 Results

Comparison of trip-related data

The distributions of trip groups and modal split according to the data gathering method in the
Turku region are presented in Figures 14 and 15. It is obvious that more bicycle and walk trips
were reported in the telephone interview than in the postal questionnaires. However, the
differences were smaller than in many similar studies.  The distribution of trip purpose groups
was quite similar in different data gathering methods.  The most significant difference was in the
telephone interviews, which included more other home-based trips (53 %) and less non home-
based trips (21 %) than the postal questionnaires.  It can probably be explained by the fact that
a greater share of bicycle and walk trips were reported in telephone interviews.   Most short
trips are other home-based trips.  It must also be noted that in practice the data will be weighted
for age and sex to represent the total population. In such cases the mode and trip distributions
may change. The results presented here are based on unweighted data, which are also used in
estimating mode- and destination choice models. The questions concerning data weighting are
discussed in Section 5.3.2.

� 
� 
� 
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Figure 14: The shares of trip purpose groups according to the data gathering methods in
the Turku region.

Figure 15: The mode shares according to the data gathering methods in the Turku
region.
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The trip generation rates

Table 13 presents the weighted average trip generation rates defined by the trip groups used in
the Turku region. (There were two population groups for home-based work trips: working
persons age 18-64 years and others, and three for other home-based trips: age 7-17, EHAP-
persons age 18- and HAP-persons).  In the first part of the table the trip generation rates
calculated from the first day observations are presented and in the middle part, those
representing the second day. In the third part of the table the trip generation rates are calculated
based on the assumption that the personal trip generation rate is the average of these two days,
and the first and second day observations are not independent of each other. This method is also
used in the model transfer study. The average trip generation rate for these two days is not the
average of the first and second day because the number of respondents on the first day differ
from the number of respondents on the second day; that is, the respondent burden stops some
people from informing us about the trips made on the second day.

On the whole, the trip generation rates based on  first day observations were somewhat higher
than those based on second day observations. This is mainly due to the respondent burden on
the second day. The use of postal questionnaires created greater differences for other home-
based trips than the use of telephone interviews. That was probably due to the ability of the
interviewer in the phone interview to motivate and help the respondent disclose all the trips
made. The trip generation rates calculated as an average of the two days were quite similar to
the rates calculated from the first day observations being, however, slightly smaller than the first-
day trip generation rates, but this difference was not of great importance.

According to the results the total trip generation rate did not vary very much, but the share of
people with “no trip” (Table 14) was higher (13.5 percent) in the telephone interviews than in the
postal questionnaires (8.5 percent). This is because, in the mail survey, especially in the early
stage of the response, it is likely that those with “no trip” probably thought that it was not
worthwhile returning the questionnaire.  On the other hand, walk and bicycle trips were better
reported during telephone interviews (Figure 15).  Thus, the non-response error and,  the better
representativeness of the walk and bicycle trips by using telephone interviews maybe
“compensated” each other and the total trip generation rate did not vary excessively between the
methods. 
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Table 13: The trip generation rates (trips/person/day) by the data gathering method
(Kurri and Karasmaa 1999).

The first day 2 days,  1 day,          2 days,       Telephone
1 reminder 3 reminders 3 reminders

Total trip generation rate 3.58 3.43 3.51 3.56

Home-based work trips age 18- 1.25 1.13 1.29 1.26
64 (working population)

Home-based work trips others 0.07 0.07 0.07 0.05
aged >6 

Other home-based trips age 1.38 1.50 1.27 1.79
7-17 

Other home-based trips, HAP* 1.87 1.82 1.76 1.92

Other home-based trips, EHAP* 1.80 1.57 1.79 2.06

The second day

Total trip generation rate 3.02 - 2.95 3.32

Home-based work trips age 18- 1.11 - 1.09 1.13
64 (working population)

Home-based work trips others 0.06 - 0.07 0.06
aged >6 

Other home-based trips age 1.13 - 1.09 1.67
7-17 

Other home-based trips, HAP* 1.62 - 1.52 1.70

Other home-based trips, EHAP* 1.42 - 1.41 1.64

The two day average 2 days,       1 day,          2 days,        Telephone
1 reminder 3 reminders 3 reminders

Total trip generation rate 3.50 - 3.46 3.54

Home-based work trips age 18- 1.25 - 1.29 1.23
64 (working population)

Home-based work trips others 0.07 - 0.07 0.05
aged >6 

Other home-based trips age 1.34 - 1.27 1.77
7-17 

Other home-based trips, HAP* 1.86 - 1.72 1.87

Other home-based trips, EHAP* 1.73 - 1.73 1.91

* HAP is a person who mainly use car for travelling
* EHAP is a person who usually cannot use a car to travel
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Table 14: The amount of persons with ”no trip” and of the people who made more than
four trips  in the different data gathering methods studied (Kurri and
Karasmaa 1999).

Trips Initial question- 1st reminder 2nd reminder 3rd reminder
naire (1st call) (2nd call) (3rd call) (4-9 call)

2 day, 0  630   8.4 %    202 14.8 % - - - -
1 reminder >4 2 383 31.7 %    316 23.1 %

total 7 512 1 368

1 day, 0  139   7.7 %      45 11.0 %     18 13.2 %      5   6.0 %
3 reminders >4  565 31.3 %      92 22.5 %     28 20.6 %    16 19.0 %

total 1 803    409    136    84

2 day, 0  100   9.3 %      27 12.7 %     12 12.5 %      7 12.5 %
3 reminders >4  373 34.5 %      47 22.1 %     20 20.8 %      8 14.3 %

total 1 080    213     96    56

2 day, 0  145 15.0 %      58 12.7 %     23 12.0 %    10  7.9 %
1 reminder, >4  234 24.2 %    106 23.1 %     45 23.4 %    45 35.7 %
telephone total  966    458    192  126

Table 14 shows that the share of people with “no trip” does not appear to decrease noticeably
after the first reminder in postal questionnaires. The share of people who have made more than
four trips decreases in postal questionnaires when more reminders are sent out; however, in
telephone interviews the number of calls does not appear to play so important a role. This is the
opposite of the preconception that reaching people who make many trips requires more attempts
than reaching less mobile people. 

Results based on the mode choice models

Tables 15 and 16 contain the mode choice models for home-based work trips and other home-
based trips defined by the data gathering methods. The model specifications have already been
explained in Section 4.5.

The models cannot be compared, as such, because a great deal of the variation between the
coefficients is due to random variation   (due, for example, to the small sample) and only a part
is caused by the differences between the data gathering methods. However,  all the models are
presented in order to provide a better overview of the situation, and to enable us to evaluate the
differences between the methods as well as can be done. In addition, the first and second-day
models for the data based on the two-day diaries with one reminder are presented, so we can
better evaluate the effect of two-day diaries versus one-day diaries.  In addition to the number
of observations, the mode shares are also presented because the modal share of the least 
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represented mode definitely affects  model accuracy. The mode shares may  also give some
additional information about the possible reasons why model parameters differ from each other.

Table 15: Estimation results of home-based work trips using different data gathering
methods;  estimated from data collected in the Turku region in 1997.

Postal Survey 2 day, 
Telephone
Interview

2 day, 1 reminder
 2 day, 3 1 day, 3

reminders reminders  total 1st day 2nd day

A B C D E F

Distance  0-5  -0.878 -0.848 -0.914 -1.034 -0.896 -0.778
(Walk) (-24.2) (-17.0) (-17.0) (-13.5) (-9.2) (-8.4)

Distance  > 5 -0.339 -0.371 -0.298 -0.375 -0.441 -0.540
(Walk) (-11.0) (-8.6) (-6.7) (-6.3) (-4.4) (-6.7)

Total travel time -0.022 -0.022 -0.022 -0.029 -0.023 -0.041
(Ptr, Car) (-8.2) (-5.8) (-5.7) (-5.1) (-3.3) (-5.0)

Walk-dummy 2.137 2.067 2.242 2.014 1.949 0.166
(Walk) (11.4) (7.8) (8.3) (5.0) (4.0) (0.3)

Car-dummy -0.506 -0.481 -0.576 -1.515 -0.720 -1.760
(Car) (-2.6) (1.8) (-2.0) (-3.8) (-1.4) (-3.3)

Cars/household 0.658 0.633 0.707 1.189 0.798 1.094
(Car) (3.8) (2.7) (2.8) (3.6) (1.8) (2.8)

Trip cost/income -0.884 -0.994 -0.723 -1.157 -0.875 -1.698
(Ptr, Car) (-7.2) (-5.8) (-4.1) (-4.8) (-2.9) (-5.3)

Number of trip obs. 4 442 2 347 2 095 1 223 665 758

mode share distribution

* walk and bicycle 1 407 760 647 369 175 209

* car 2 417 1 272 1 145 651 388 443

* public transport 621 315 303 203 102 106

    (c) 0.2011 0.1985 0.2044 0.2208 0.2190 0.1598 2

VOT (Car, Ptr) 21.4 19.0 26.1 21.5 22.6 20.7

Sample enumeration (RSEE)

Ptr travel time + 30 % -4.8 -4.7 -4.9 -7.0 -5.6 -7.5

Car cost + 10 % -0.8 -1.2 -0.9 -1.5 -1.1 -2.1

Walk=walk and bicycle
Ptr=public transport (bus)
Car =driver or passenger

D



CHAPTER 5.   DATA-COLLECTION METHOD AND SAMPLE SIZE AS 94
SOURCES OF VARIATION IN MODEL COEFFICIENTS

Table 16: Estimation results of other home-based trips using different data gathering
methods;  estimated from data collected in the Turku region in 1997.

Postal Survey 2 day, 
Telephone
Interview2 day, 1 reminder

2 day,  3 1 day, 3
reminders reminderstotal 1'st day 2'nd day

A B C D E F

Distance  0-5  -1.038 -1.050 -1.023 -0.884 -0.937 -0.948
(Walk) (-49.0) (-36.4) (-32.7) (-22.0) (-17.6) (-20.7)

Distance  > 5 -0.247 -0.260 -0.232 -0.343 -0.425 -0.312
(Walk) (-13.5) (-10.4) (-8.6) (-7.5) (-6.6) (-7.4)

Total travel time -0.014 -0.014 -0.013 -0.017 -0.021 -0.018
(Car, Ptr) (-7.3) (-5.6) (-4.7) (-4.2) (-3.8) (-3.9)

Number of transfers -0.437 -0.495 -0.378 -0.301 -0.543 -0.435
(Ptr) (-10.5) (-8.4) (-6.4) (-3.7) (-4.4) (-4.6)

Walk-dummy 2.157 2.148 2.173 2.033 1.516 2.116
(Walk) (20.4) (14.8) (13.9) (9.2) (5.1) (8.2)

Car-dummy -0.893 -0.864 -0.922 -0.798 -0.857 -0.901
(Car) (-7.7) (-5.5) (-5.4) (-3.5) (-2.8) (-3.5)

Cars/household 1.173 1.106 1.251 1.110 0.949 0.969
(Car) (13.3) (9.3) (9.6) (6.0) (4.2) (4.9)

Trip cost/income -1.739 -1.809 -1.655 -1.147 -1.716 -1.734
(Car, Ptr) (-20.4) (-15.6) (-13.1) (-7.1) (-7.7) (-8.5)

Number of trip- obs. 13 989 7 609 6 380 3 587 2 164 3 042

mode share distribution

* walk and bicycle 5 928 3 279 2 652 1 494 835 1 493

* car 6 407 3 459 2 942 1 659 1 086 1 226

* public transport 1 651 871 780 434 243 323

    (c) 0.2265 0.2323 0.2198 0.2126 0.2199 0.2216 2

VOT (Car, Ptr) 6.9 6.6 6.7 12.7 10.5 8.9

Sample enumeration (RSEE)

Ptr travel time  +30 % -2.3 -2.3 -2.3 -2.8 -3.1 -2.6

Car cost + 10 % -1.5 -1.5 -1.4 -1.0 -1.4 -1.5

Walk=walk and bicycle
Ptr=public transport (bus)
Car =driver or passenger

D
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The differences between the coefficients were compared with t-tests. In addition, the differences
between the model parameters were tested by comparing the two models estimated in context
i and j to see if they are equal to the model estimate with the pooled data from context i and j
with the likelihood ratio tests (Equation 39). The results of the statistical tests are presented in
Table 17.  However, note that due to repeated measurements (see Section 5.3.3.3 and
Appendix H), t-values are higher than they would be for independent observations and the null
hypothesis of the equality of the coefficients to be rejected too easily. When comparing the one-
day and two-day interviews there are also different number of repeated observations between
these two data sets.

Table 17: The test statistic of the difference between the mode choice model coefficients
by different data gathering methods.

The Data Gathering Method t-test  2 -value*

Home-Based Work Trips

The first day versus the second day - 6.7

Telephone interview versus postal questionnaire distance 0-5 km
(2 day, 3 reminders) (t-value 2.1) 

22.3

One day (E) versus two day (D) postal questionnaire - 8.4

One reminder (A) versus three reminders (D) 10.4

Other Home-Based Trips

The first day versus the second day - 2.2

Telephone interview versus postal questionnaire trip cost/income
(2 day, 3 reminders) (t-value 2.3)

51.8

One day (E) versus two day (D) postal questionnaire trip cost/income
(t-value 2.1)

16.7

One reminder (A) versus three reminders (D) trip cost/income
(t-value 3.1) 

distance 0-5 km
(t-value 2.6)

30.5

* The critical risk level value of 0.05; 14.1 in home-based work trips and 15.5 in other home-based trips.

According to the results, based only on the home-based work trips, the models estimated via the
telephone interview and the postal questionnaire differed from each other due to the differences
in the distance variable. It also seems to be the case that the level of coefficients for time and
costs is higher when using telephone interviews than when using postal questionnaires, inspite of
the fact that the differences are not statistically significant.                                                        
                                                                       

χ 



CHAPTER 5.   DATA-COLLECTION METHOD AND SAMPLE SIZE AS 96
SOURCES OF VARIATION IN MODEL COEFFICIENTS

When we consider the other home-based trips, the results based on the one-day diary also
differed from those based on the two-day diary and  the number of reminders significantly
affected  the model parameters as well.  The table shows that the “cost per income” coefficient
had, in all cases, the biggest deviations between the models. The difference between the
coefficients of cost per income was highly problematic.  When the two-day, three times
reminded data were used, without the data collected by the second and third reminder, the
difference still existed (this examination was made to ascertain the effect of reminders particularly
for this “two-day, 3 reminders” sample data). Thus, it can be concluded that the reminders, at
least,  did not cause all the differences. When the model was estimated using the individually
observed values instead of the zonal values or using only the cost variable, without the
denominator income, these differences did not exist. That is, the differences between the
coefficients are probably derived from the use of zonal mean values for income variable.

5.2.3 Conclusions

The research suggested the general opinion that the telephone interview is usually a more reliable
method of collecting information than the postal questionnaire.  The walk and bicycle trips, in
particular, were better reported in telephone interviews, and also  “no trip” responses were
better captured in the telephone survey. 

The differences between the data collection methods were greater when crosstabulating mode
shares and trip generation rates than when considering the mode and destination choice models.
The differences between the trip generation rates or mode shares are not very important in our
case, because the main focus is studying the transferability of mode and destination choice
models.  Thus, the forecasts, which are used when testing the whole model system, are made by
using constant trip generation rates which are calculated using the entire set of application context
data. In addition, the forecast process includes the iteration of the alternative-specific constants,
so that the mode shares represent the weighted mode shares in the area.  However, generally
when estimating totally new models or transferring models the correct trip generation rates and
mode share distribution have a necessarily greater importance.  Therefore, in this case, the
telephone interview should be preferred.

The differences in quality between one- and two-day-questionnaires seem to be quite small.
Nevertheless, the lower response rate and the respondent burden appear to play a greater role
when two-day-questionnaires are used. The advantage of a two-day diary is the large trip
sample size with reasonable costs. This is especially useful in the kind of surveys done in the
Turku region, where additional origin-destination field surveys were not carried out for internal
trips, but the travel demand matrix was formulated using mobility surveys. It must also be noted
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that the two-day diary does not increase the number of respondents. Consequently, the larger
number of trips based on two-day diaries does not increase the statistical accuracy to the same
extent as the number of respondents increases does, because the trips made during the first and
the second day are not totally independent of each other.  About 43 percent of the home-based
trips and 11  percent of the other home-based trips made in the first day were also made in the
second day. (The trip was regarded as being the same if the type of origin or destination was the
same on both the first and second day and if the main mode-choice was the same on both days.
In addition, the departure time was required to vary by no more than two hours on both days).

With regard to model transfer, it can be said that the survey method appears to affect the results
at many different levels. However, the differences e.g. between the postal and telephone
interviews are not so important when studying model transferability, but they do have more
importance in real transfer situations.  There was also evidence, that the data gathering method
can affect the mode choice level, thereby suggesting that some of the differences between the
coefficients in the estimation and the application context discussed in Chapter 6 may be caused
by the data gathering method and not just by  real differences in local conditions in the HMA and
in the Turku region.
    
The results were quite similar to other international studies, although the differences between the
methods were smaller than in most previous studies.  Maybe, due to the time resources of the
outside survey organization the telephone interview was not planned as carefully as it should have
been  (the telephone interview and the postal questionnaire had the same questionnaire form). In
spite of that, the results relating to the response rate, the share of people with no trip and trip
generation rates can be considered quite reliable; however, more detailed analyses concerning
the mode choice models can not be made because the sample size achieved by the telephone
interview is too small.

5.3 The importance of sample size

5.3.1 Introduction 

Choosing the sample size is another important aspect of the planning and design of the survey.
Samples may be chosen on the basis of the maximum acceptable levels of error in certain
information to be collected, or on the basis of the sample size required for model building in
travel demand modelling.
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Smith  (1979) and Stopher (1982) have proposed methods for estimating the required sample
size for given levels of accuracy required from a cross-classification model of trip generation.  It
is relatively simple to specify the sample-size requirements for a given accuracy of trip rate.
However, sample sizes tend to be more difficult to determine for calibration of trip distribution
models, and there have been some significant differences of opinion on the sample-size
requirements for calibrating logit models of mode choice (Stopher 1991). No method has been
adopted by the profession for determining the required sample size for a household travel survey.
Instead, sample sizes are determined sometimes on the basis of statistical assessment (such as
minimum sample sizes for certain jurisdictions within the survey region), and sometimes by simply
determining how many observations can be obtained for the available budget.

In this chapter we consider the sample size required for mode and destination choice modelling,
as well as for the trip generation level.  The aim is to consider the sample size in the first three
steps of the traditional four-step model (excluding trip assignment) and to evaluate which part of
the model system is in a critical path in the model transfer.  However, our purpose has not been
to give any precise sample size recommendations. The purpose has rather been to examine
different criteria and evaluate the accuracy which can be reached using these criteria. 

The study is based on the reference data collected in the Turku region in 1997. The importance
of sample size is studied with respects to:

                        how much data is required to cross-classify trip generation rates (Section
5.3.2),

                         how much data is required to determine accurately mode shares (Section
5.3.2),

                           what is the sample size required in mode and destination choice modelling and
how (the absolute) sample size affects the variation of mode and destination
choice model parameters  (Section 5.3.3), and

                          how the use of a two-day diary instead of a one-day diary affects the sample
size that is necessary  for estimating mode and destination choice models. 

All these factors affect the final outcome of model estimation and transfer. The first three items
are directly connected to the issues concerning the data requirements in model transfer.  By
comparing the two-day diaries to the one-day diaries we also try to evaluate the possible effects
of different kinds of data in an estimation and application context. In our case, a one-day diary
was used in the HMA and a two-day diary in the Turku region.

� 

� 

� 

� 
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5.3.2 The sample size required in a trip generation level

5.3.2.1 Problem description and methodology

Next, the sample size required to accurately define the trip generation rates, as well as for finding
the correct trip shares, is considered. The trip generation models have been calculated using
simple cross-tabulations, which were made separately for each sample examined.  Under the
circumstances, the trip generation rates have not been actually transferred, but have been
calculated in every trip group and sample size studied.

The trip generation rates are calculated from the sample data by dividing the number of trips in
each trip group and population group by the relevant population. There are two population groups
in home-based work trips: working persons age 18-64 years and other population, and three in
other home-based trips: age 7-17, EHAP-persons age 18- and HAP-persons (HAP-person is a
person that practically always has access to a car for personal trips.  Others are EHAP-persons).
The preciseness of trip generation rates undergoes two phases of testing.  First, the trip- and mode
shares of unweighted data are calculated.  Second, the data are extended to respond  to the whole
population and then the mode shares and trip generation rates are calculated again from this
weighted data.  The weighting was done according to five age groups. To test the required sample
size the trip generation rates calculated from the samples are compared with the trip generation
rates calculated based on  the full data set.  We allow a  maximum deviation of 5 percent from the
real trip generation rate (a trip generation rate based on the average of 100 bootstrap samples
using the whole dataset).  A one percent maximum deviation is allowed for mode shares (thus, if
the correct mode share is 25 percent, the values between 24 to 26 are allowed). The sample size
is always given as a number of respondents unless otherwise stated. 

5.3.2.2 Results

Figure 16 presents the trip generation rates and 95 percent confidence intervals (based on the
normal distribution assumption) for home-based work trips by trip group and class for weighted
data.   Figures 17 to 18 present the proportion of the 100 samples with the error  below 5
percent. The sample size requirement is defined with respect to the result which can be reached
with the entire set of data.  Thus; first, the number of “full” samples, based on the bootstrap
samples, not exceeding a 5 percent deviation, is defined for the whole set of data.  Then, a
number, 5 percent less, is defined for the samples, e.g. if the number of “full” samples which do
not exceed a 5 percent deviation is 99 percent, the number required for the samples not
exceeding the 5 percent deviation is 94. The “relative” criteria with respect to the full sample is
used because  it is difficult to give any exact values which should be gained, and in many cases
even by using the entire set of data results can be regarded as being too imprecise. Hence, we
try to find an acceptable sample size after which results show only a small level of improvement.
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Figure 16: The variation of trip generation rates and 95 % confidence intervals for
home-based work trips as a function of sample size based on 100 bootstrap
samples and weighted data.

Figure 17: The percentage of trip generation rates with the error below 5 percent as
a function of sample size; home-based work trips, 18-64 aged persons.
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Figure 18: The percentage of trip generation rates with the error below 5 percent as
a function of sample size; home-based work trips, other persons.

The figures show that the sample size required to accurately cross-tabulate trip generation rates
for home-based work trips is 3,300 respondents with this cross-classification strategy.
However, because the trip generation rate of “other” is so small, the absolute effect of this class
is marginal (e.g.  the weighted amount of trips for 18-64 aged employed is 124,594, whereas it
is 7,425 for others).  Decreasing the sample size does not result in a significantly worse total
generation, even when the sample size of 1,900 respondents is used.

The weighted and unweighted values do not differ from each other remarkably.  The weight
factor does not actually always improve the model.  That is, sometimes the trip generation rate
based on the unweighted data is closer to the “right” trip generation rate (based on the weighted
data) than the small sample trip generation rate based on the weighted data. This is because
errors in the estimations of the two additional parameters are not always comparable with the
problem caused by the differences.

Figures 19 to 22 illustrate the variation of trip generation rates for other home-based trips.
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Figure 19: The variation of trip generation rates and 95 % confidence intervals  for
other home based trips as a function of sample size  based on 100
bootstrap samples and weighted data.

Figure 20: The percentage of trip generation rates with the error below 5 percent as
a function of sample size; other home-based trips, 7-17 aged persons (the
unweighted curve is behind the weighted curve).
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Figure 21: The percentage of trip generation rates with error below 5 percent as a
function of sample size; other home-based trips, EHAP-persons over 17
years of age.

Figure 22: The percentage of trip generation rates with error below 5 percent as a
function of sample size; other home-based trips, HAP-persons.
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As for home-based work trips, the trip generation rates are quite precise even though the
variation for the smallest sample sizes is quite large.  Also, in this case the weighted and
unweighted values do not differ from each other remarkably.  The most restrictive group is
“persons 7-17" requiring the sample size of 3,800 respondents to achieve an error below the
given criteria; however smaller sample sizes still produce reasonable results.

Mode shares

Next the sample size, which is required to accurately get the mode shares by cross-tabulating
from the data, is examined.  Figures 23 to 26 present the variations in mode shares according to
the sample size, and the sample size required for each (walk and bicycle, ptr, car)  mode share.
The sample size requirement is defined by the criteria that the maximum allowable deviation from
the correct mode share is 1 percent; thus, e.g. if the  correct mode share is 25 percent, the
values between 24 and 26 are allowed.   In other words; first, the number of “full” samples,
based on the bootstrap samples, not exceeding a 1 percent deviation, is defined for the whole
set of data.  Then, a number, 5 percent less, is defined for the samples, e.g. if the number of
“full” samples which does not exceed a 1 percent deviation is 80 percent, the number required
for the samples not exceeding the 1 percent deviation is 76 (0,95*80).

Figures 23 to 26 show that when considering the smallest sample size, the mode shares are very
imprecise, and even for the largest sample size (representing the whole data set), only 58 to 76
percent of observations for home-based work trips and 78 to 95 percent for other home-based
trips go below the 1 percent error limit.  This 1 percent absolute error limit, is actually, stricter
than the 5 percent relative limit used in relation to trip generation rates.  However, in real life the
1 percent deviation is regarded to be as the maximum error to be allowed in a major study.

In Turku, the results for public transport shares appear to be more precise than those for car and
walk and bicycle.  This is because the absolute deviation favours the less represented mode
share by allowing a larger relative error for this mode. The relative errors are quire similar for all
modes.

When allowing for 5 percent poorer result than obtained by using the maximum sample size, the
sample size required for home-based work trips is 4,400 respondents and for other home-based
trips 3,900 respondents. This means that 4,400 respondents, i.e. all the respondents, are
required to get the preciseness required in the Turku region. The result also means that more
observations are required to define the mode shares than is the case for the trip generation rates.
The best possible result is also worse on a relative basis when defining mode shares than when
defining trip generation rates.
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Figure 23: The variation of mode shares and 95 % confidence intervals for  home-
based work trips as a function of sample size  based on 100 bootstrap
samples and weighted data.

Figure 24: The percentage of samples with mode share difference below 1 percent as
a function of sample size; home-based work-trips.
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Figure 25: The variation of mode shares and 95 % confidence intervals for other
home-based trips as a function of sample size based on 100 bootstrap
samples and weighted data.

Figure 26: The percentage of models with mode share difference below 1 percent as
a function of sample size; other home-based trips.
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                 (48)

5.3.3 The sample size required in mode- and destination choice model
estimation

5.3.3.1 Introduction

In this section the sample size required to estimate mode- and destination choice models
is considered. It is well known that in principle sampling errors are roughly inversely
proportional to the square root of the size of the estimation data set.  Thus, for example,
the data-set size must be quadrupled in order to halve the sampling errors (Horowitz 1981).
Based on this premise, Koppelman and Chu (1983) have formulated analytic relationships
for sample size and the precision of parameter estimates.  Their methodology estimates the
sample size Ns required to obtain parameter estimates with a prescribed percent confidence
(1-�) within a given percent z of true values, by the mathematical relationship:

where S is the standard error of the parameter estimate, and  z is expressed as the accepted
mean deviation of the true parameter value.  This equation performs well in ideal
situations in which only one observation per person is used.  However, in the Finnish
travel surveys, questions are asked for all the trips made for one or two days.  This means
that there will be correlation between the answers provided by the same person.   This is
known as the repeated measurement problem. Repeated measurements violate the
assumption that the error terms are independent and means that we can no longer rely on
the variance estimates obtained in this way (Cirillo et al. 2000). Thus, the sample size
requirements have to be studied in another way.

This chapter considers the sample size requirements for  mode- and destination choice
modelling. In addition the repeated measurement problem (described above) is  discussed.
The samples are drawn by using bootstrap and the sample size is always presented in
persons if it is not indicated otherwise.  The need for observations is considered from two
different aspects which are also used in the model transfer experiment in Chapter 6. The
test measures of these two aspects are VOT (value of time), RSEEF (relative sample
enumeration error for forecast).

The investigation is divided into the three parts: 

- In the first part of the subsection the model parameters’ preciseness is
considered at quite a general level.  That is, the  model  coefficients based on
small samples are compared to the coefficients from the entire set of data. The
test measure is the percentual Mean Deviation (Equation 36) from the
coefficients estimated using the entire set of data.
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- Next the variation of coefficients is studied using both estimated and observed standard
deviations (Equations 49 to 50 presented in Section 5.3.3.3).  The repeated
measurement issue, in particular, is discussed in this subsection.

- In the third part of the study, different criteria for defining the sample size requirements
are considered. Two different test measures  (VOT, RSEEF) used in evaluating  the
model transfer effectiveness are discussed in this chapter (Equations 38 and 45). TTS
is not considered due to its tendency allways reject the hypothesis of the model
parameters equality.

5.3.3.2 Results based on the percentual MD and confidence intervals

Table 18 contains mode choice models for home-based work trips and other home-based trips
estimated from the entire set of data in the Turku region. The value of time estimated for the
home-based work trips is 3.60 euro/h (21.4 FIM/h) and for the other home-based trips 1.15
euro/h (6.7 FIM/h).

Table 18: Mode and destination choice models for home-based work trips (HBW)
and other home-based trips (OHB)  using the “reference data” (two-day
diaries, 1 reminder) collected  in the Turku region in 1997.

Variable

HBW OHB

Coefficient Std. t-value Coefficient Std. t-value

Distance 0-5 km (Walk) -0.8775 0.0363 -24.2 -1.0380 0.0212 -49.0

Distance > 5 km (Kv) -0.3388 0.0308 -11.0 -0.2470 0.0183 -13.5

Total travel time (Car, Ptr) -0.0222 0.0027 -8.2 -0.0135 0.0019 -7.3

Number of transfers (Ptr) - - - -0.4372 0.0415 -10.5
Trip cost/income (Car, Ptr) -0.8839 0.1220 -7.2 -1.7390 0.0853 -20.4

Cars/household (Car)  0.6578 0.1720 3.8 1.1730 0.0881 13.3
Walk dummy (Walk)  2.1370 0.1880 11.4 2.1570 0.1060 20.4

Car dummy  (Car) -0.5061 0.1950 -2.6 -0.8932 0.1150 -7.7

Log sum (Dest.) 0.7335 0.0170 43.2 1.2020 0.0089 134.8

Scale factor (Dest.) 1.0000 0.0000 - 1.0000 0.0000 -

Number of trip observations                            4,442                            13,989

   ²(c)                                       0.2011 (mode), 0.1431 (dest)           0.2265 (mode),  0.2806 (dest)

Walk  = Walk and bicycle Scale factor: Scale factor:

Ptr     = Public transport - ln (jobs)                                    1.00 - inhabitants                    1.00

Car    = Car - retail employment       14.89
- service employment     2.52

Figures 27 and 28 present the variation of travel time coefficients by sample size for the  two-
day data.   The variation of 100 model coefficients per each sample size is compared with the 95
percent confidence interval based on the average value of observed standard deviations 

ρ 
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of coefficients through bootstrap.  The 95 percent confidence interval is marked by lines in the
figures. From the figures we can see that the coefficients estimated by using small samples are
distributed around the coefficient, which have been estimated by using the entire set of data.
However,  the variation of model parameters increases greatly when the sample size decreases
and in some cases the signs of coefficients are actually wrong. The results also show that
although the sample size is an important factor in model preciseness, there is a limit beyond
which the results show only a small level of improvement.

Figure 27: The variation of travel time coefficients and 95 % confidence intervals of
home-based work trips estimated from the two-day data in the Turku
region.

Figure 28: The variation of travel time coefficients and 95 % confidence intervals of
other home-based trips estimated from the two-day data in the Turku
region.
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Table 19 presents the percentual mean deviation values for all coefficients.  However,  note that
the results relating to the home-based work trips and other home-based trips are not to be
compared directly according to the sample size due to the different number of trips per person
in these trip groups.  That is,  the same sample size of persons represents a different number of
trips depending on the trip purpose.  In addition, because two-day diaries were used, about 43
percent of the home-based trips but only 11  percent of the other home-based trips made in the
first day were also made in the second day. The more observations in common (in the two
days), the less precise the coefficients are. 

Table 19: The percentual mean deviations of the mode and destination choice model
coeffients based on small samples versus the coefficients based on the
entire set of original two-day data.

The percentual mean deviation of the coefficient (MD)

Turku region

trip  sample sample travel cars/hh dist >5 cost/inc dist 0-5 no. of logsum
group size size time transfers

(persons) (trips)

HBW 425 400 45.1 129.4 44.3 59.7 19.5 - 23.2

850 800 32.3 101.5 30.7 36.5 12.6 - 18.2

1,700 1,600 23.5 54.3 19.0 26.9 9.3 - 11.7

3,400 3,200 14.6 38.5 13.1 17.5 5.5 - 9.0

4,675 4,675 13.0 38.1 9.7 14.8 5.1 - 8.0

OHB 140 400 100.5 76.8 127.5 32.9 15.5 80.3 17.7

275 800 73.0 42.0 53.2 24.7 11.1 54.6 15.9

550 1,600 48.9 34.3 28.7 18.5 7.5 35.0 11.6

1,100 3,200 32.9 25.2 27.4 13.2 6.0 24.5 8.4

2,300 6,400 27.4 16.0 16.2 9.3 4.1 15.3 3.8

4,675 13,900 17.3 11.8 10.4 8.8 2.2 12.0 3.7
HBW = home-based work trips    
OHB  = other home-based trips

The most precise mode choice coefficient is “distance 0-5" and the most imprecise coefficients
are coefficients “cars per household”, “travel time” and “number of transfers”. On the whole, the
use of “number of transfers” variable decreases the accuracy of the models.  In particular, the
variance of travel time coefficient increases.  This is mainly related to the assignment package
and also to the network coding. The variable “cars per household” is problematic because it is
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not based on the individual values but the zonal values by using a division of 23 zones. The same
problem was detected using the ”cost per income” variable due to the fact that the incomes were
calculated by using zonal values based on 23 zones. The coefficient “distance >5"  of other
home-based trips was also quite imprecise because of the small number of trips which in this
category.

Amemiya (1978) has shown that when the sequential estimation is applied using standard
multinomial logit estimation programs, the variance-covariance matrices of the estimates printed
for the marginal probabilities of higher-level models (in that case the destination choice level) are
incorrect and too small. That was also the case in this study.  The coefficients for destination
choice models (not presented here) are very precise.  However, the sequential estimation, which
was used and the lack of alternative specific constants in destination choice models may cause
the absolute values of upper level coefficients to be overestimated.

5.3.3.3 Repeated measurement issue

Next the model parameters’ variation and repeated measurement issue are considered with
respect to two different kinds of  standard deviations.  The stdt is the mean value of  estimated
standard errors based on the results derived from the Alogit estimation program (Hague
Consulting Group 1992) and stdp is the observed standard deviation calculated from the
distribution of 100 model coefficients through the bootstrap procedure.   

          

Theoretically the stdt should be close to stdp,  if any bias does not exist.    However, in cases
repeated observations are taken from an individual, this is not the situation.

stdt�

�
N

i�1
stdi

N
, where

stdi� the estimated std�value of the coefficient based on the Alogit

stdp�

�
N

i�1
(�̂i��)

2

N�1
, where

N � the number of sample models
� � mean value of coefficients estimated from sample models

                     (50)         
               

          
     (49)
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Table 20 shows that in our case there is a large difference between the estimated and observed
standard deviation. The ratio of the std  and std  is approximately 1.5 regardless of the samplep t

size. It is likely that large part of the difference is due to the repeated measurements. The
repeated measurement error is greater in other home-based trips than in home-based work trips.
This is due to the larger number of trips per person in the other-home-based trips, although there
are fewer observations in common between the first and second day when considering  the other
home-based trips.  

Table 20: The comparison of estimated (stdt) and observed (stdp) standard deviations
based on the two-day data collected in the Turku region.

stdt versus stdp

Turku region

trip sample travel time cars/hh dist >5 cost/inc dist 0-5  no. of trans- 
group size  fers

stdt stdp stdt stdp stdt stdp stdt stdp stdt stdp stdt stdp

HBW 425 0.010 0.013 0.61 1.08 0.13 0.18 0.43 0.65 0.13 0.21 - -

850 0.007 0.010 0.42 0.86 0.07 0.14 0.30 0.42 0.09 0.11 - -

1,700 0.005 0.006 0.29 0.47 0.05 0.08 0.21 0.29 0.06 0.10 - -

3,400 0.003 0.004 0.20 0.31 0.04 0.06 0.15 0.18 0.04 0.06 - -

4,675 0.003 0.004 0.17 0.33 0.03 0.05 0.12 0.17 0.04 0.06 - -

OHB 140 0.012 0.017 0.54 1.16 0.18 0.35 0.55 0.78 0.13 0.20 0.27 0.54

275 0.008 0.013 0.37 0.64 0.09 0.17 0.37 0.51 0.09 0.14 0.18 0.32

550 0.006 0.009 0.26 0.49 0.06 0.10 0.26 0.40 0.06 0.10 0.12 0.19

1,100 0.004 0.006 0.18 0.36 0.04 0.09 0.18 0.28 0.04 0.08 0.09 0.11

2,300 0.003 0.003 0.13 0.17 0.03 0.04 0.12 0.13 0.03 0.04 0.06 0.06

4,675 0.002 0.003 0.09 0.17 0.02 0.03 0.09 0.13 0.02 0.04 0.04 0.06
HBW = home-based work trips    
OHB  = other home-based trips

The common observations on the first and the second day as well as the other repeated answers
provided by the same individual, do not affect the observed variation but decrease the estimated
stdt-values. This means, that:

- estimated standard deviations are underestimated and t-values based on these standard
deviations are incorrect because they are too high.
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- in model transfer, the coefficients based on the Bayesian approach, or combined transfer
estimation, which use the stdt in emphasizing the estimation and application context
parameter values, may be biased.  This issue is discussed further in Appendix H.

Although the estimated standard deviations are underestimated, the coefficients for new sample
models are consistent and asymptotically efficient.  However, Brundell-Freij (1995) has stated
in her study,  that for small sample sizes the absolute values of the coefficients are systematically
overestimated, and the estimated standard deviations are systematically underestimated.

It must also be noted that the standard deviations of coefficients can never be exactly derived
from sample size (Rao 1973) because they depend on the samples from which they have been
estimated. That was also the reason why the importance of sample size was studied by drawing
random bootstrap samples.

5.3.3.4 The sample size requirement based on the ratio of time and cost coefficients
(VOT)

This chapter considers the sample size required for  mode- and destination choice modelling
based on the VOT-tests.  Figures 29 and 30 present the value of time according to the sample
size. The distribution of VOT is presented in the upper part of the illustration and three different
sample size criteria, namely 10, 25 and 50 percent error limits,  are described in the lower part
of the illustration. From those, the middlemost, 25 percent error limits for the VOT estimates are
marked by lines in the upper part of the illustration. 

The sample size is considered to be large enough if the result is no more than  5 percent poorer
than the result obtained by using the entire set of data.  For example, 84 percent of the models
yield an error below 25 percent when the entire set of data is used.  Thus, the required  share of
observations, which go below the 25 percent error, is 80 percent (0,95*84);  5 percent less than
if the largest sample size is used.  

We have chosen this relative error criterion because it is difficult to define any acceptable
absolute error limits, which would be relevant in all situations.  The acceptable error is greatly
dependent on the purpose of the model.  In addition, in many cases, the absolute results which
can be reached are rather poor even by using the entire set of data.  The three error criteria
presented are not definitive recommendations, but rather illustrate  how the sample size
requirements can be evaluated.
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Figure 29: The sample size required for home-based work trips based on the ratio of
the time and cost/income coefficients (VOT criteria, 95 % of the best
possible result).



Other home-based trips, VOT

-4

-3

-2

-1

0

1

2

3

4

5

sample size (respondents)                                                                

V
O

T
 (

eu
ro

/h
)

140 275 550 1100 2300 4675

Percentage of models with the VOT-error 
below 10 %, 25 % or 50 %

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

sample size (respondents)

%

below 10 % below 25% below 50 %

84

4,5002,900

88

38

36

4,450

94

99

5.3   The importance of sample size 115

Figure 30: The sample size required for other home-based trips based on the ratio of
the time and cost/income coefficients (VOT criteria ,95 % of the best
possible result).
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Figures 29 and 30 show, that when using 10 percent error criteria, the sample size required for
modelling home-based work trips is 4,400 respondents and for modelling other home-based
trips 4,500 respondents.  The corresponding sample size requirements  according to the 25 and
50 percent error-limits are, 3,800 and 2,100 for home-based trips and 4,450 and 2,900 for
other home-based trips.   Note that these recommendations provide results which are only 5
percent worse than “perfect” model yields.  In many cases smaller preciseness may be
considered as acceptable. On the other hand, the results, where only 45 percent (HBW) or 38
percent (OHB) of models  yield error below 10 percent (although the entire set of data has been
used) cannot be considered as acceptable.

5.3.3.5 The sample size requirement based on the elasticity tests

Figures 31 to 34 present how the variation of model parameters affects the model’s ability to
predict changes in public transport shares or car shares, if the public transport travel time
increases 30 percent or car costs increase 10 percent.    These tests are carried out by running
the whole current forecast process (the whole forecast process based on the current land use
and impedances) and  including the iteration process of  the alternative-specific constants, so that
the mode shares represent the weighted mode shares in the area. The sample size requirement
has been examined for three different error- criteria, that is the percentage of models with the
RSEEF error under 10, 25 or 50 percent has been defined. The sample size is considered to be
large enough if the result is no more than  5 percent poorer than the result obtained by using the
largest sample size. From those, the middlemost, 25 percent error limits  are marked by black
dash lines in the upper part of the figure. 

Figures 31 to 34 show that the sample size required according to the elasticity tests varied from
1,300 to 4,300 respondents in home-based work trips and from 300 to 4,200 respondents in
other home-based trips.  The 10 percent criteria was mostly in a dominating position.  However,
in some cases, the strict error-criteria may lead to a smaller sample size recommendation than
when using broad criteria. This is because the comparison is not based on the absolute values,
but is produced with respect to the best possible result for each criterion. Thus, if the curve is flat
the sample size requirement may be higher for 50 percent criteria than for 25 percent criteria.
However, normally the strict error-limit is in the critical path because it is more sensitive to the
decrease in the sample size.  

The results were mainly rather good.  However, the elasticity test for home-based work trips
shows that the models ability to predict changes in car shares affected by a 10 percent increase
in car costs was quite poor even when using the entire set of data. On the other hand, note that
the absolute errors are smaller than the relative errors, which  are quite high due to the small real
effect in this case.  The models for other home-based trips are more precise than the models for
home-based work trips.
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Figure 31: The variation of change in public transport (ptr) shares, when public
transport travel time is increased by 30 percent in home-based work trips.
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Figure 32: The variation of change in car shares based on the new sample models,
when car costs are increased by 10 percent in home-based work trips.
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Figure 33: The variation of change in public transport (ptr) shares based on the new
sample models, when public transport travel time is increased by 30
percent in other home-based trips.
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Figure 34: The variation of change in car shares, when car costs are increased by 10
percent in other home-based trips.



5.3   The importance of sample size 121

5.3.3.6 Summary of sample size requirements

The sample size requirements, based on the criteria studied, are presented in Table 21. The most
restrictive (critical) values are indicated in the table in bold type.  Table 19 and Figures 31 to 34
show that the travel time coefficient is more precise than the cost coefficient, when based on the
treatment of the home-based work trips. Further, the cost coefficient is more precise than the
travel time coefficient, when based on the treatment of the other home-based trips (even when
the sample size requirement is, in both cases, larger for the elasticities based on the travel time
effect).

Table 21: The sample size required to estimate new models based on the four different
criteria.

The sample size required

criteria trip below 10 % below 25 % below 50 %
group respon- corresp. respon- corresp. respon- corresp.

dents test value dents test value dents test value

VOT HBW 4,400 45 3,800 84 2,100 100

OHB 4,500 36 4,450 84 2,900 94

RSEEF HBW 3,100 53 3,000 90 1,300 95
ptr time OHB 4,200 52 4,000 90 1,900 95

RSEEF HBW 2,300 32 3,400 48 4,300 85
car costs OHB 2,200 90 1,200 94   300 94

HBW= home-based work trips
OHB= other home-based trips

The minimum adequate sample size obtained from the VOT criteria (which is the most restrictive
criterium) for home-based work trips is 4,400 respondents. The sample size is 4,500
respondents for other home-based trips.  The corresponding values, based on the RSEEF
criteria, are 4,200 and 4,300, respectively. The adequate sample sizes, based on a 25 percent
error limit, which are later used in the transferability study (Chapter 6) are 3,800 for home-based
work trips, and 4,450 respondents for other home-based trips.

The sample size requirements,  based on the first day of the two-day travel diary, were also
examined.   The sample size required for modelling, would be 4,600 respondents when only the
first day diaries, or correspondingly the one-day diary were used. It means that the one-day data
responds in reducing the sample size equally with the two-day data.  However, if the               
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absolute level of errors is to be considered, the two-day data yielded clearly better results than
the first day diaries alone.
                      
For those coefficients where the elasticity tests were not carried out (e.g. cars/hh), the sensitivity
to elasticity error can be roughly calculated from Table 19, based on the known relationship
between the RSEEF and the MD for the travel time and costs.  For example, when comparing
the average RSEEF (presented in appendixes I and J) to the MD-values presented in Table 19,
it can be noted that the 25 percent mean deviation error of time or cost per income coefficient
affects the average RSEEF  by less than 20 percent.  

5.3.3.7 The CV-values

Finally, we have tried to find a unit of measurement by which the different model parameters’
preciseness can be evaluated and compared. This unit of the measurement is the CV-value
which is defined as a ratio of observed standard deviation of coefficient (stdp) divided by the
coefficient estimated from the entire set of data (CV(B)), and it is used to systematically evaluate
the preciseness of model parameters. Actually, the CV-value is inverse of t-value and it
describes the stability of the model parameters only implicitely, as it is a measure of the risk of
having an incorrect coefficient. The advantage of using CV-values is that they can be easily used
in model transfer in order to evaluate in a variable-oriented way how the coefficients of
estimation and application context should be emphasized. However, in model transfer, estimated
standard deviations for application context parameters (stdt) must be used as  the numerator and
the coefficients estimated from the entire set of original estimation context data as the
denominator (CV(A)) (see Chapter 6). 

The CV-values calculated for coefficients estimated from the data collected in the Turku region
are presented in Figure 35. The aim of the analysis is to compare the preciseness of different
coefficients and evaluate the behaviour of the CV(B)-values in order to find out, if the CV(B)
criteria can be used to define the minimum sample size for estimation of new sample 
models.

Figure 35 presents the mean CV(B)-values for all coefficients calculated as an average value of
100 random samples in each sample size category.  The maximum CV(B)-value which is
allowed for estimating new models is marked by an arrow. This maximum value is defined
according to the sample size requirement based on the 25 percent error-limit. Hence, in
principle, the CV(B)-value of the coefficient, which was most restrictive when using the VOT,
or elasticity tests, was chosen as the acceptable CV(B)-value. 
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Figure 35: The mean CV(B)-values of sample model coefficients, for home-based
work trips and other home-based trips.

Figure 35 shows, that it is not easy to determine the CV-value unambiguously because many
different criteria can be used. If the CV-value is defined by the sample size determined from both
the VOT-test and the RSEEF- (elasticity) tests, the VOT-test will generally be the more
restrictive condition. The difficulty with this measure is that the VOT is more sensitive to  
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the sample size than the CV value defined for the separate coefficients.  Accordingly, the CV-
value is nearly equal for samples over 2,500 respondents.  However, the precise estimation of
VOT requires a sample size of over 4,400 or 4,500 respondents. The next question is, which
coefficients are used to predict changes in traffic.  In this case only the effects of the 30 percent
increase in public transport travel time and a 10 percent increase in car costs were evaluated.
Had the sample size been based on the behaviour of some other coefficients, e.g. car ownership
(cars per household), it  would have been larger.

Based on the chosen 25 percent criteria, the maximum CV-value allowed in home-based trips
is 0.20.  In other home-based trips the maximum value is 0.21.  One would expect, that the new
sample models can be estimated precisely if the CV-values for all model coefficients are below
this critical CV-value. This is the adequate condition required to calculate elasticities precisely;
however, the estimation of VOT may require even larger sample sizes.  In addition, note that
CV-values are dependent on the model structure and model definitions, so they must always be
defined separately for every model type used.  

5.3.3.8 Discussion

The size of the required sample depends on the purpose of the model.  If the main purpose is to
forecast the total demand, the sample size required can be smaller than the sample size needed
to precisely estimate one particular coefficient.  

The investigation shows that in our case trip generation rates can be accurately cross-tabulated
by using a sample size of 3,800 respondents.  The sample size required is  a bit larger for other
home-based trips (3,800) than for home-based work trips (3,300) due to the  different
segmentation of these trip groups. This is because for other home-based trips three different
segments were used instead of the two segments that were used for home-based work 
trips.

The weighted and unweighted values do not differ from each other remarkably; however, in this
case, all the sample sizes are weighted, based on the five age groups.  In real situations, for
larger samples, it is possible to use more precise weighting procedures and obtain slightly better
results.

As defining mode shares precisely proved to be much more difficult than the cross-tabulation of
trip generation rates.  If mode shares, based on the samples, differed significantly from those
based on the whole mobility survey, the weighting of data could not correct the errors. 
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Because defining the mode shares correctly is one of the main purposes of mobility surveys, it
will be important, in the future, to find a method by which mode shares can be determined more
precisely.  In principle, the process of defining mode shares is independent of mode and
destination choice modelling.  The mode shares are based on the cross-tabulation of mobility
survey data, and are only used in the forecast process to correct alternative-specific constants to
accurately present the  real weighted mode shares in the area.

The sample size required for mode- and destination choice modelling has been evaluated, based
on the VOT and RSEEF measures.  The results are evaluated with respect to these measures,
which can be obtained by using the entire set of data.  

The consequences of exceeding the limits of 10, 20 and 50 percent error have been considered.
According to the tests, the adequate sample size by which the models are nearly as good as the
models estimated by using the entire set of data, was 4,400 respondents for home-based work
trips and 4,500 respondents for other home-based trips. This is more than is used in many
studies in Finland. By using only the first day diaries in the Turku region, it was concluded that a
sufficient sample size would be 4,600 respondents. This requirement was based on the relative
goodness with respect of the results based on the entire set of data.  However, the absolute level
of preciseness was much better when using two-day diaries than when using first day diaries
only. So, it can be seen, that although the two-day diary does not increase the statistical
accuracy of the responses (the number of respondents does not increase), it may improve the
quality of the mode and destination choice models, assuming that the sample size is not greatly
reduced by the use of two-day diary.

The most imprecise coefficients, in our case  are “number of transfers” and “cars per household”.
The variable “cars per household” and also “cost per income” are problematic because they are
zonal values rather than individual values. All the variables produced by Emme/2 program are
also problematic, especially the number of transfers.  This is due to the program’s tendency to
produce too many transfers. Therefore, there are many different factors affecting the
impreciseness of the model parameters and almost all the variables have their own weaknesses.
The results also show that although the sample size is an important factor in model preciseness,
there is a limit beyond which the results show only a small level of improvement.

Finally, we have tried to find a unit of measurement by which the preciseness of the different
model parameters can be evaluated and compared. We would also expect this measure to be
used in model transfer, as a means of evaluating variable-oriented models, and to determine how
the estimation and application context details have to be emphasized. This unit of measurement
is the CV-value which is defined as the ratio of standard error of a coefficient divided by
coefficient estimated from the whole estimation context data set. The initial premise is, 
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that the greater the CV-values, the more imprecise the model parameters are. The maximum
CV-value allowed for the models to be estimated reliably was defined as 0.2 for home-based
work trips and 0.21 for other home-based trips.
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6 COMPARISON OF TRANSFER METHODS   

6.1 The aim and contents

This chapter presents the transfer of mode and destination choice models of internal trips in the
HMA to the Turku region.  The HMA database is used to estimate the models that are to be
transferred.  The data collected in the Turku region in 1997 represents the transfer context to
which the estimated HMA models are transferred.  All four methods described in Section 3.7
are examined. The methods used in the study have been described in Section 4.5.  

In principle the results of spatial transferability can methodologically be generalized to temporal
transferability, or vice versa.  However, spatial transfer is more challenging than temporal
transfer, due to the big differences between the two sets of data. Thus, if we can show that
spatial transfer is possible in some contexts, we can be certain that a similar approach can be
used as part of temporal transfer. The temporal aspect for HMA model transfer is discussed,
e.g., in (Karasmaa 1996a, Karasmaa 1996b, Karasmaa 1997, Karasmaa 1998, Karasmaa
2000) and the experiments for applying SP-data in model transfer have been reported in
(Karasmaa 1995, Kurri et al. 2001). 

The results are presented in two parts.  Section 6.2.1 presents the results based on the home-
based work trips.  Section 6.2.2 considers the results of other-home-based trips. Some of the
main findings are summarized in Section 6.3.

6.2 Results

6.2.1 Home-based work trips

Table 22 contains mode and destination choice models for home-based work trips estimated
from the entire set of data. These models are considered to be base (HMA) and target (Turku)
models in an estimation and application context. The model specifications are presented in
Section 4.5. The value of time estimated from the HMA data was 2.25euro/h  (13.4 FIM/h).
The value of time estimated from the Turku data was 3.60euro/h  (21.4 FIM/h). The value of
time is based on the assumption of an average income of 2,144 euro/month/household (12,750
FIM/month/household) in the HMA and 2,405euro/month/household (14,300 FIM/month/
household) in the Turku region.
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Table 22: Estimation results of home-based work trips using the entire set of data
collected in the Helsinki metropolitan area in 1995 and in the Turku region
in 1997.

Variable
Helsinki Metropolitan Area Turku Region

Coefficient Std t-value Coefficient Std t-valuet t

Distance 0-5 km (Walk) -0.9256 0.0615 -15.1 -0.8775 0.0363 -24.2
Distance > 5 km (Walk) -0.4452 0.0390 -11.4 -0.3388 0.0308 -11.0
Total travel time (Car, Ptr) -0.0277 0.0031 -9.0 -0.0222 0.0027 -8.2
Trip cost/income (Car, Ptr) -1.5860 0.1400 -11.3 -0.8839 0.1220 -7.2
Cars/household (Car)  1.1470 0.2760 4.2  0.6578 0.1720 3.8
Walk dummy (Walk)  1.2900 0.2330 5.5  2.1370 0.1880 11.4
Car dummy  (Car) -1.8970 0.2590 -7.3 -0.5061 0.1950 -2.6
Log sum (Dest.)  0.5399 0.0178 30.4 0.7335 0.0170 43.2
Ln(jobs) (Dest.)  1.0000 0.0000 - 1.0000 0.0000 -

Number of trip observations                            1,993                            4,442

   ²(c)                                 0.2336 (mode) and 0.1407 (dest)    0.2011(mode) and 0.1431 (dest)

Walk  = Walk and bicycle
Ptr     = Public transport
Car    = Car

Table 22 shows that the coefficient for the costs/income differs significantly in the estimation and
application contexts.   The difference in parameters can be influenced by the differences in
incomes between the two areas.  The differences of parameters can also be related to the zoning
system, and of course, to many other factors related to both the transportation system and the
land use structure.

As an example of the comparison of the different transfer methods, Figure 36 presents the
variation of travel time and cost coefficients according to the transfer method. The grey arrow
marks the coefficient estimated from the entire set of estimation context data, and the black one
the coefficient estimated from the entire set of application context data.

Figure 36 shows that the variation is great in new sample models, transfer scaling, joint context
estimation and combined transfer estimation approaches.  The differences between these
methods are, on the whole, quite small. By being highly precise, the Bayesian approach differs
greatly from the other methods.  In spite of its stability, the Bayesian approach was never able to
fully substitute the model estimated from the entire set of application data. This can be explained
by the tendency of the method to emphasize the coefficients derived from the original estimation
context data. The Bayesian approach emphasizes the coefficients with respect to the inverse of
the variances of each coefficient.  Since the number of observations is larger leading to smaller
variance of coefficient, the coefficients of the estimation context data may be emphasized too
strongly in model  transfer. If the transfer bias is small, the Bayesian approach yields good results
because it efficiently restricts the variation of coefficients.  However, if transfer bias is large, as

ρ 
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in this case, the Bayesian approach does not perform well.  The combined transfer estimation
method generalizes the Bayesian method in relation to transfer bias.  Hence, we can see the
effects of transfer bias by comparing the results from Bayes and the combined transfer
estimation.

Figure 36: The variation of coefficients of travel time and cost per income by transfer
method in the Turku region in 1997; home-based work trips.
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Results based on the ratio of time and cost coefficients (VOT)

Figure 37 presents the variation of value of time (VOT). The VOT based on the whole
estimation context data (2.25 euro/h) is marked by a grey arrow and the VOT estimated from
the entire set of application context data (3.60 euro/h) is marked by a black arrow. Note, the
VOT based on the estimation context data represents the naive transfer, that is the situation in
which the estimation context models are applied in the application context.  The maximum error
we define as “acceptable” is rather high, 25 percent.  The lower part of the figure presents the
proportion of the models with an error of less than 25 percent.

The variation around “the VOT based on the entire set of data” becomes quite large in new
sample models, transfer scaling or combined transfer estimation, but becomes smaller, when the
sample size increases. Thus, transfer scaling, combined transfer estimation and the new sample
models give quite similar results.  By being highly precise, the Bayesian approach and joint
context estimation differ from the other methods.  However, note, in the smallest sample sizes,
the joint context estimation looks worse than it actually is, because in spite of its preciseness, it
slightly exceeds the allowed 25 percent error.  

Due to the use of different combinations of common and data-specific variables (for samples
425 to 1,700 respondent only distance variables were estimated as data-specific, but distance
variables and also time variable are data-specific for samples of 3,400 and 4,675 respondent)
the variance of VOT is larger when using the sample sizes of 3,400 and 4,675 respondents than
when using smaller samples. In spite of this,  the observations concentrate better around the
correct value when using the largest sample sizes. The next question is, how much is the
improvement due to the use of more data specific variables and how much is simply a result of
the larger sample size.  When considering Figure 45 presented later, one can conclude, that the
combination of common and data-specific variables has only a small effect in this case, and the
improvement is mainly caused by the larger sample size.
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Figure 37: The variation based on the ratio of time and cost coefficients (VOT), and
the  proportion of models with the error below 25 percent by transfer
method in the Turku region; home-based work trips.
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Results based on the elasticity tests 

Figures 38 and 39 show the effect of the variation of the transferred model parameters on the
model’s ability to predict the effect of changes in the transportation system. Two elasticity tests
(RSEEF) are carried out on the aggregate model system. Firstly, in order to test the cost
elasticity of the mode choice models, a test is carried out to examine the effect of increasing car
costs by 10 %.  Secondly, the effect of a 30 percent increase in public transport travel times is
studied. Both tests are carried out by running the whole forecast process (based on the current
land use and impedances) and  including the iteration process of the alternative-specific constants
(the process is described in Section 4.4.2).  For the sake of comparison, the corresponding tests
(RSEE) performed by applying the unweighted mobility survey data used in estimation are
presented in Appendix K. The biggest difference between these two methods is the calibration
of the alternative-specific constants.  By calculating the elasticity with the mobility survey data,
alternative-specific constants are not corrected in any way.  The run of the forecast includes the
iterative process in order to correct the alternative specific constants, so that the mode shares
represent the weighted mode shares in the area. In addition, by calculating RSEE, only mode
shares can vary and destination choices are constant, but in calculating RSEEF, destination
choices can also vary.

In Figures 38 and 39, the black arrows mark the "real" decrease in car (-1.1%) or public
transport share (-5.1 %) represented in the application context situation. The grey arrows mark
the naive transfer.  The 30 percent increase in the public transport travel time represents the
situation in which the transfer bias is small but the variation of coefficients based on the small
samples is large. On the other hand, the effect of a 10 percent increase in the cost of travel by
car represents a situation in which the transfer bias is large (even the variation of coefficients is
still quite large). The “acceptable” relative error (25 percent) in Figures 38 and 39 is marked by
black dash lines.

The variation around “the correct value” becomes quite large due to the use of the minimal
samples, but is smaller, when the sample size increases. The effect of a 30 percent increase in
public transport travel time produces a -0.8 to -10.0 percent change in the public transport share
when the minimal samples are used. The variation of the effect of a 10 percent increase in car
costs, on the car mode share is +2.0 to -3.9 percent.  The average RSEEF, as a function of
sample size, is presented for all transfer methods in Appendix I. The RSEEF varies from 101 to
-81 percent, for a 30 percent increase in public transport travel time and from 107 to -221
percent for a 10 percent increase in car costs. Thus, by considering the cost elasticities, the error
is larger than the error for travel time elasticities. One reason for this might be the large transfer
bias in the cost per income coefficient.
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The results show, that the methods are quite similar. Only the Bayesian approach differs from the
other methods.  Consequently, in our data the effect of the sample size is larger than the
difference between the best four methods.  By comparing the RSEEF-results based on the
sample enumeration tests (RSEE) presented in Appendix I, it is observed, that the iteration of
alternative-specific constants is helpful.

Figure 38: The variation of change in public transport (ptr) shares by transfer method,
when public transport travel time is increased by 30 percent in the Turku
region; home-based work trips.
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Figure 39: The variation of change in car shares by transfer method, when car costs
is increased by 10 percent in the Turku region; home-based work trips.
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Results based on the disaggregate measures of transferability

The results based on the TTS- and TI -values are summarized in Figures 40 to 43. The closer to
zero the TTS-value is, the more likely the transferred model is to be similar to the application
context model estimated from the entire set of data. TI has an upper  bound of one which is
attained when the transferred model performs as well as the model estimated using the entire set
of the application context data. As sequential estimation is used, the results of the mode and
destination choice level are presented separately.

Figure 40: The variation of TTS-values and the average TTS-values for transferred
mode-choice models in the Turku region; home-based work trips.
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Figure 41: The variation of TI-values and the average TI values for transferred mode-
choice models in the Turku region; home-based work trips.
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Figure 42: The variation of TTS-values and the average TTS-values for transferred
destination-choice models in the Turku region; home-based work trips.
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Figure 43: The variation of TI-values and the average TI -values for transferred
destination-choice models in the Turku region; home-based work trips.
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The illustrations show that the TTS-values are very high showing that the null hypothesis of the
equality of models was rejected in most cases.  On the other hand, the transfer index value TI,
which is the ratio of the proportion of explained variation in estimation context data by
transferred model to proportion of explained variation by the best possible estimation context
model, is uniformly high, ranging in value from 0.86 to 0.99 for mode choice models and from
0.94 to 0.99 for destination choice models.

The differences between the best transfer methods are quite small.  The Bayesian approach is
also stable in this case, but does not yield excellent predicting performance in the mode choice
level. It is to be noted that joint context estimation yields excellent results for the mode choice
level, but is not so competitive at the destination choice level. This is because destination choice
depends on local conditions and now, the coefficient of ln(jobs) has been estimated as a
common variable.  The joint context method brings such noisy information into the application
context in the form of surveyed data, in contrast to other methods only bringing parameters and
variances. In this case, the models based on the Bayesian method, combined transfer estimation
or new sample models would be preferable for destination choice level although the joint context
estimation has been used in the mode choice level.

The results based on the aggregated trip distribution

Figure 44 presents the transferred models ability to replicate observed aggregate shares. To
assess predictive performance, the Turku region is subdivided into 4 regions (Central city area
of Turku, suburb, Kaarina+Raisio+Naantali and Lieto+Piikkiö)  Aggregate origin-destination-
predictions of the travel demand (whole model system) are obtained for each of these regions.
Mean absolute error (MAEF) values are computed using the aggregate predictions to assess
forecast accuracy (see Appendix L). Thus, the test is carried out by running the whole forecast
process and  includes the iteration process of  the alternative-specific constants, so that the mode
shares represent the weighted mode shares in the area.  The prediction efficiency is better the
smaller the MAEF-index is.

Figure 44 shows that different methods give quite similar results.  By being quite precise, the
Bayesian method differs slightly from the other methods.  The MAEF-value for naive transfer is
0.22, and the corresponding value for the model based on the entire set of data is 0.20. Thus,
maybe due to the iteration of alternative-specific constants, the difference between the naive
transfer and the model based on the entire set of application context data is not notable.  
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Figure 44: The variation of MAEF-index by transfer method for home-based work trip models.

The results relating to alternative specifications for using joint context estimation

The results relating to different ways of combining common and data-specific variables by using
the joint context estimation are presented in Figures 45 and 46 and in Appendix M. The
combinations used when comparing different transfer methods are presented in Table 23 (the
model symbol referred to in the brackets is the model type presented in Chapter 4.5 in Table 11).
The best combination was chosen based on the sum of MD-values for the three most important
transport policy coefficients (travel time, costs and cars per household). Additionally, the total MD-
value for all coefficients was calculated.  The conclusions based on these two sum-measures are
quite similar. The main principle is that the more accurate the models are (the larger the sample
size is) the more efficient it is to use data-specific variables.  The combinations in which the
precise variables (e.g. distance) are estimated as data-specific and imprecise variables (e.g. cars
per household) as common give the best results.  For the destination choice level, the coefficient
for ln(jobs) is fixed to one and the log sum variable is always estimated as common.

Table 23: The best combinations of data-specific variables based on the MD in joint
context estimation; home-based work trips.

Sample size The best combination of data-specific variables based on         
the MD

   mode choice
425   distance 0-5,  (model B)
850   distance 0-5,  (model B)
1,700   distance 0-5,  (model B)
3,400   distance 0-5, distance 5, travel time, (model F)
4,675   distance 0-5, distance 5, travel time, (model F)
* Destination choice level-no data-specific coefficients
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Next, the chosen combinations (that is the combinations used in Section 6.1 and presented in
Table 23) are compared to the unchosen combinations to see, how well the chosen combination
performs with respect to the other combinations.  Figure 45 presents the variation of the VOT
based on each combination of data-specific and common variables.  Correspondingly, Figure 46
presents the results of the sample enumeration tests (RSEE).  The RSEE is used instead of the
RSEEF because it is easier and less time-consuming to calculate than the RSEEF and the
relationship between the RSEE and the RSEEF is known (Appendix I)

Figure 45: The comparison of the error in the ratio of time and cost coefficients (VOT
error) when using different combinations of  joint context estimation (the
symbols A to I refer to data-specific variables in the models); home-based
work trips.

The examination of VOT  shows that, due to the impreciseness of the coefficients when using the
smallest sample sizes, the combinations A, B, C and G are preferable when using samples of the
size  425 to 1,700 respondents.  This is especially, because the time and cost/income variables
are estimated as common when using these combinations. Upwards of the sample size of 1,700
respondents the differences between the combinations are rather small. In two cases out of the
five, the best combination based on the VOT-criteria differed from that based on the MD-
criteria. This is mainly because the MD-criteria is based on the goodness of the whole model and
the VOT is only concerned with the ratio of two predetermined coefficients, namely travel time
and cost/income.  However, the difference between the chosen and the best combination was in
these cases very small. Hence, the results presented in Section 6.1 can be regarded as
representing quite well the best combination of joint context estimation.
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When considering the RSEE-values presented in Figure 46, the advantage of using data-specific
variables can be seen.  When considering the elasticities based on the 10 percent increase of
travel costs, the transfer bias is large and the use of data-specific variables proved to be usefull
regardless of which variables were estimated as data-specific.  Due to the small transfer bias, the
RSEE-error is smaller for time-elasticities and the importance of the chosen combination is
smaller as well.  The best combination based on the RSEE-values is in three cases from five the
same when based on the MD-values.  However, when it is different, the difference with respect
to the best model was rather small.

Figure 46: The comparison of the RSEE when using different combinations of common
and data-specific variables for  joint context estimation (the symbols A to
I refer to data-specific variables in the models); home-based work trips.



 425 respondents   
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 10 7 16 12 19 0 15 1 0 29
transfer scaling 19 17 27 16 16 7 25 9 4 24
Bayes 55 9 5 3 5 12 8 25 11 7
combined est. 8 20 17 22 10 25 29 19 24 20
joint context est 8 47 35 47 50 56 23 46 61 20

   850 respondents    
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 13 6 25 11 24 1 39 18 2 41
transfer scaling 19 19 28 28 25 31 29 38 35 21
Bayes 54 4 1 0 2 4 1 4 3 2
combined est. 11 11 18 12 8 11 19 25 10 30
joint context est 3 60 28 49 41 53 12 15 50 6

 1,700 respondents
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 12 20 15 11 29 6 38 32 9 39
transfer scaling 16 18 34 26 23 12 14 13 23 20
Bayes 61 1 0 0 0 0 2 1 0 2
combined est. 10 10 28 16 8 34 39 28 20 25
joint  context est 1 51 23 47 40 48 7 26 48 14

   3,400 respondents     
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 20 16 16 10 24 10 39 41 11 41
transfer scaling 18 21 24 26 26 16 17 8 17 17
Bayes 43 0 2 0 0 0 0 0 1 0
combined est. 14 17 17 15 8 14 43 23 12 42
joint  context est 5 46 41 49 42 60 1 28 59 0
   4,675 respondents     
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 10 30 25 18 35 5 40 49 8 43
transfer scaling 20 8 17 24 18 10 5 0 11 4
Bayes 58 0 1 0 0 0 16 2 0 13
combined est. 7 20 24 6 8 6 34 20 5 32
joint  context est 5 42 33 52 39 79 5 28 76 8
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Comparison of the test results

Next, the test results of the different tests are compared to each other. The main purpose of the
comparison is to summarize the results based on the different test measures and to evaluate how
often different test measures give similar results.

Table 24 presents the success rate for different test measures.  The success rate is defined as the
percentage of models where the method was the best according to each test measure. Note, the
success rate does not describe the size of differences between the test measures but only how
many times each transfer method was assessed to be the best one.  On many occasions, in
particular when considering the largest sample sizes, the differences between the methods were
rather small. 

Table 24: The success rate (%) of the transfer methods by the test measure in 
home-based work trips (subscript t and c refer to time and cost).
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The main findings relating to the characteristics of the different tests are:

- The joint context estimation was in most cases the best method. However when considering
the VOT, the Bayesian method gave the best results.

- Although the joint context estimation was usually the best method at mode choice level, new
sample models and combined transfer estimation gave better results at the destination choice
level.

- TTS was the most sensitive to the sample size.  That is, the larger the sample size the better the
joint context estimation proved to be at mode choice level.  At destination choice level, new
sample models and combined transfer estimation gave the best results.

Next the percentage of cases in which two different tests give similar recommendations for the
best method are considered.  Not all the possible comparisons are made, but we have presented
some basic findings made from the comparison. 

Table 25: The number of cases in which each test-pair recommend the same transfer
method when considering home-based work trips.

sample size (respondents)

425 850 1700 3400 4675

VOT*/TTS 21 16 15 18 16total

TTS /TI 96 96 95 96 97mode mode

VOT/RSEEFt 13 14 7 13 12

VOT RSEEFc 25 20 10 19 19

VOT/RSEEt 14 15 7 13 12

VOT/RSEEc 21 16 13 24 14

RSEEFc/RSEEc 60 49 27 42 60

RSEEFt/RSEEt 66 54 57 47 69

Table 25 shows that the results based on the TTS and TI are nearly identical.  The RSEE and
RSEEF also give quite similar results.  However, the comparison of other tests indicated more
contradictory results.  This is mainly due to the fact that the Bayesian method gave the best
results when considering the VOT whereas the joint context estimation proved to be the best
method when using the other tests. 
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6.2.2 Other home-based trips 

Table 26 contains mode and destination choice models for other home-based trips estimated
from the entire set of data. The model specifications are presented in Section 4.5.  The value of
time estimated from the Turku data is 1.1euro/h (6.7 FIM/h).  The value of time estimated from
the HMA data is 1.5 euro/h (8.9 FIM/h). The value of time is based on the assumption of an
average income of 2,144 euro/month/household (12,750 FIM/month/household) in the HMA
and 2,405 euro/month/household (14,300 FIM/month/household) in the Turku region.

Table 26: Estimation results of other home-based trips using the entire set of data
collected in the Helsinki metropolitan area in 1995 and in the Turku region
in 1997.

Variable
Helsinki Metropolitan Area Turku Region

Coefficient Std. t-value Coefficient Std. t-value

Distance 0-5 km (Walk) -0.7812 0.0325 -24.0 -1.0380 0.0212 -49.0
Distance > 5 km (Kv) -0.3539 0.0290 -12.2 -0.2470 0.0183 -13.5

Total travel time (Car, Ptr) -0.0197 0.0032 -6.2 -0.0135 0.0019 -7.3
Number of transfers (Ptr) -0.1189 0.0615 -1.9 -0.4372 0.0415 -10.5

Trip cost/income (Car, Ptr) -1.8910 0.1170 -16.1 -1.7390 0.0853 -20.4
Cars/household (Car)  1.3700 0.2010 6.8  1.1730 0.0881 13.3

Walk dummy (Walk)  0.7118 0.1310 5.4  2.1570 0.1060 20.4
Car dummy  (Car) -1.7690 0.1850 -9.5 -0.8932 0.1150 -7.7

Log sum (Dest.)  1.5670 0.0187 83.8  1.2020 0.0089 134.8
Scale-factor  1.0000 0.0000 -  1.0000 0.0000 -

Number of trip observations                            4,149                            13,989

   ²(c)            0.2008 (mode), 0.3667 (dest)             0.2265 (mode), 0.2806 (dest)

Walk  = Walk and bicycle Scale factor: Scale factor:

Ptr     = Public transport - inhabitants                      1.00 - inhabitants                    1.00

Car    = Car - retail employment         28.73 - retail employment       14.89

- service employment       2.29 - service employment     2.52

Table 24 shows that the coefficients for the “number of transfers” and distance variables differ
significantly  in estimation and application context.  The difference for number of transfers
between can at least be partially explained by the uncertainty of the “number of transfers”
variable due to the difficulties in controlling this variable using the Emme/2 assignment program.

Figure 47 presents the variation of travel time and cost coefficients by transfer method.  The
coefficients based on the entire set of estimation and application context data are marked by the
arrows.

ρ 
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The figure shows that the variation is great when using models based on small samples, transfer
scaling or combined transfer estimation approaches.  However, the differences between these
methods are, on the whole, quite small. By being highly precise, the Bayesian approach differs
greatly from the other methods.  Due to the small transfer bias between the original coefficients
in the estimation and application context, the Bayesian approach performs especially well when
considering cost per income variable. The joint context estimation also gives quite precise results
for the time variable.  

Figure 47: The variation of coefficients of travel time and cost per income by transfer
method in the Turku region in 1997; other home-based trips.
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Results based on the ratio of time and cost coefficients (VOT)

Figure 48 presents the variation of value of time (VOT) for other home-based trips. The grey
arrow marks the VOT, calculated from the entire set of estimation context data (naive transfer)
and the black arrow from the entire set of application context data.  The bottom of the Figure
presents the proportion of the models with the error below 25 percent.

Figure 48: The variation based on the ratio of time and cost coefficients (VOT), and
the  proportion of models with the error below 25 percent by transfer
method in the Turku region;other home-based trips.
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The variation around “the VOT based on the entire set of data” becomes quite large due to the
use of  the minimal samples, but this is smaller, when the sample size increases.  The joint context
estimation yields the best results excluding the full sample models for which the combined
transfer estimation and new sample models yield best results giving the 88 percent proportion of
models with an error below 25 percent. By using the smallest sample size, the differences
between the methods are initially rather small, but  become larger as the sample size increases.
The joint context estimation performs poorly for the smallest sample size, because many
coefficients are so imprecise that they have to be estimated as common coefficients (Tables 11
and 27). This means that the estimation context data is emphasized too strongly. On the other
hand, also when the largest sample size is used, the models based on  the joint context estimation
are not as good as one could expect. This is because three data-specific coefficients (distance
variables and cost/income) were utilized.  The use of data-specific coefficients improves the
quality of the number of transfers in public transport  (due to the large transfer bias for this
coefficient) (Appendix N). However, generally, it increases the variation of the coefficients and
gives poorer estimates for VOT than the combination used for the smaller sample sizes.  If
distance variables had only been estimated as data-specific, the best result for VOT would have
been much better (88 percent).  Due to the common scale-factor used for “travel time” and
“cost per income” variables, transfer scaling does not yield good results.

Results based on the elasticity tests

The top of Figures 49 to 50 show the effect of the variation of the transferred model parameters
on the model’s ability to predict the effect of changes in transportation system. Arrows mark the
"real" decrease in the car or public transport share, calculated from the forecasts based on the
entire sets of estimation and application context coefficients. This real value was -3.0 for the
decrease in the public transport share (in Figure 49) and -2.2 for the decrease in the car share
(in Figure 50).

The 30 percent increase in the public transport travel time represents a situation in which the
transfer bias is rather large, and also  the variation of coefficients based on the small samples is
large. On the other hand, the effect of a 10 percent increase in the cost of travel by car
represents a situation in which the transfer bias is small, and the variation of coefficients is also
quite reasonable.  The “acceptable” relative error (25 percent), in Figure 49 and 50, is marked
by black dash lines. The lower part of  Figure 49 and 50 presents the probability that the
RSEEF error will be less than 25 percent. The corresponding test results achieved by applying
the unweighted mobility survey data are presented in Appendixes J and O.
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The effect of a 30 percent increase of public transport travel time produced a +8.9 to –7.4
percent change in the public transport share when the minimum samples were used. The variation
of the effect of a 10 percent increase in car costs, on the car mode share was +0.7  to –4.5
percent. The RSEEF varied from -397 to +147 percent, for a 30 percent increase in public
transport travel time and from –132 to +105 percent for a 10 percent increase in car costs.
Thus, the coefficients of cost per income variable are more precise than  the coefficients for
travel time, and the transfer bias is also smaller for cost per income variable.

The new sample models and the models based on the combined transfer estimation approaches
are highly sensitive to the sample size. In addition,  transfer scaling gives systematically biased
estimates especially for the travel time coefficient, which is scaled with the “number of transfers”.
Joint context estimation yields quite safe results, being the best method for the smallest samples.
In spite of its stability, the Bayesian method is never able to predict the effects of a 30 percent
increase in public transport travel time.  However, by  predicting the effect of a 10 percent
increase in car costs on the car mode share, the Bayesian approach proved superior  for all
sample sizes due to the small transfer bias between the estimation and application context.
However, this is only in the case of the alternative-specific constants for mode choice models are
re-estimated iteratively.  If the alternative-specific constants are not calibrated to represent the
mode shares in the observed weighted mobility survey data, the Bayesian approach is unable to
predict changes in the transportation system at all (Appendixes J and O).



Other home-based trips, 
30 % increase in ptr travel times 

-10
-8
-6
-4
-2
0
2
4
6
8

10

                                                          

th
e 

d
ec

re
as

e 
in

 p
tr

 s
h

ar
e

140   resp

275   resp

550   resp

1100 resp

2300 resp

4675 resp

joint 
context est.

combined 
transfer est.

transfer 
scaling

Bayesnew sample
model

estimation context

application context

Percentage of models with the 
RSEEF below 25 %

0

20

40

60

80

100

0 1000 2000 3000 4000 5000

sample size (respondents)

%

new sample model

transfer scale

Bayes

combined transf est.

joint context est.

CHAPTER 6.   COMPARISON OF TRANSFER METHODS150

Figure 49: The variation of change in public transport (ptr) shares by transfer method,
when public transport travel time is increased by 30 percent in the Turku
region; other home-based trips.
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Figure 50: The variation of change in car shares by transfer method, when car costs
are increased by 10 percent in the Turku region; other home-based trips.
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Results based on the disaggregate measures of transferability 

Figures 51 to 54 present the results based on the  TTS- and TI-values. In this case, the magnitude
of the TTS-values of transferred models or new sample models indicates that transferred models
are never able to fully substitute the best application context model.  On the other hand, Transfer
Indexes (TI) for transferred models are in almost all cases in excess of 80 percent, suggesting that
the transferred models provide a significant component of the information obtained from the
application context model. The methods differ only slightly from each other; however, joint context
estimation, new sample models and combined transfer estimation can be regarded as being slightly
better than the other methods.

Figure 51: The variation of TTS-values and the average TTS-values for transferred
mode choice models in the Turku region; other home-based trips.
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Figure 52: The variation of TI -values and the average TI-values for transferred mode
choice models in the Turku region; other home-based trips.
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Figure 53: The variation of TTS-values and the average TTS-values for transferred
destination choice models in the Turku region; other home-based trips.
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Figure 54: The variation of TI-values and the average TI-values for transferred
destination choice models in the Turku region; other home-based trips.
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The results based on the aggregated trip distribution

Figure 55 presents the MAEF-index calculated for the other home-based trips.  As in Section
6.2.1 the Turku region is subdivided into 4 regions, and aggregate OD-predictions are obtained
for each of these regions. The MAEF-index is calculated as a sum of the  absolute differences of
the observed and the predicted values. As for home-based work trips, the results based on the
entire set of data give a reference point when assessing the predictive performance of the
transferred models. Based on this, the acceptable MAEF-value can be regarded as being
approximately 0.25. 

Figure 55: The variation of MAEF-index for other home-based trips.

Figure 55 shows that, as was the case with home-based work trips, most methods give quite
similar results.  By being highly precise, the Bayesian method differs from the other methods in
giving a smaller MAEF-error.  It can also be seen that the increase in the sample size does not
necessarily improve the forecast prediction accuracy.  Thus, sometimes the forecast based on a
small sample is better than the forecast based on the entire set of data. The possible reasons for
this might be the following:

- The models are applied to the weighted mobility survey data for all possible origin-destination
pairs, not to the data for which they are estimated.  Thus the model coefficients are
concentrated around the values based on the entire set of data, not around the external
observed values.  Thus, the MAEF describes the effect of sampling error, if the MAEF for
entire set of data would be perfect, but not the sample size effect with respect to the observed
data.
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- The iteration of alternative-specific coefficients correct the original mode shares to represent
the mode shares based on the weighted mobility survey.

- The lack of alternative-specific coefficients in destination choice level.  When comparing the
rho-squared      (0) and     (c) the difference is very small indicating  that  the alternative-specific 2      2

constants are in fact,  the best determining variables and the level-of service and socio-
economic attributes only explain a small part of the travel behaviour.  In destination choice level
when there are 118 different alternatives the problem is worse than in the mode choice level.

The results relating to alternative specifications for using joint context estimation

The results relating to different ways of combining common and data-specific variables by using
the joint context estimation are presented in Appendix N. The best combinations are presented
in Table 27. As with home-based trips, the best combination is chosen based on the sum of
Mean Deviations (Equation 36) for the three most important transport policy coefficients (travel
time, cost and cars per household). The coefficient for “number of transfers” was always
estimated as common in this study.

The choice between common and data-specific variables in the destination choice level is not
made by considering the absolute values of size coeffients but by making certain that the
relationship between the coefficients of size variables are as accurate as possible.  This is
because, in this case, the relationship is more important than the absolute values.

Table 27: The best combinations of data-specific variables based on the MD in joint
context estimation; other home-based trips.

SAMPLE SIZE THE BEST COMBINATION OF DATA-SPECIFIC VARIABLES 

mode choice
140 Distance 0-5,  (model B)
275 Distance 0-5,  (model B)
550 Distance 0-5, distance 5, (model C)
1,100 Distance 0-5, distance 5, (model C)
2,300 Distance 0-5, distance 5, (model C)
4,675 Distance 0-5, distance 5, cost/income (model D)

destination choice
140 Retail employment, service employment (model B)
275 Retail employment, service employment (model B)
550 Retail employment, service employment (model B)
1,100 Retail employment, service employment (model B)
2,300 Retail employment, service employment (model B)
4,675 Retail employment, service employment (model B)

DD
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Figures 56 and 57 present the sensitivity analysis for different combinations of data-specific and
common variable.

Figure 56: The comparison of the error in the ratio of the time and cost coefficients
(VOT-error) when using different combinations of  joint context estimation;
other home-based trips (the symbols A to I refer to data-specific variables in
the models).

The examination of VOTs shows that the differences between the combinations becomes quite
large when using the smallest sample sizes, but they will be smaller, when the sample size
increases.  When using the smallest sample sizes, the combinations A, B, C and G were clearly
better than the other combinations, in which the data-specific variables were used for time or
cost/income variables. When using the largest sample size  the choice of combination is only of
minor importance. 

In 4 cases out of 6 (6 sample sizes), the best combination based on the VOT-criteria differed
from that based on the MD-criteria. However, the difference between the chosen and the best
combination was in these cases very small.

When considering the RSEE, the differences of combinations are slightly smaller than with the
VOT.  In this case only in 4 cases out of the 12, the best combination is achieved when using the
RSEE-test.  On the other hand, the difference between the best and the chosen combination was
always negligible. Although the transfer bias is small in both cases (when considering the increase
of ptr time or car costs), the examination of the RSEE gives clear evidence that the use of data-
specific variables is useful when predicting changes in the transportation system. 
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Figure 57: The comparison of the RSEE-error when using different combinations of
joint context estimation; other home-based trips (the symbols A to I refer to
data-specific variables in the models).

sample size (respondents) 

sample size (respondents) 



 140 respondents   
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 12 11 17 17 4 3 24 6 1 21
transfer scaling 12 21 10 12 25 2 17 9 1 18
Bayes 4 24 43 6 40 16 7 13 17 8
combined tr. est. 5 1 3 8 11 10 21 18 10 24
joint context est 67 43 27 57 20 69 31 54 71 29

 275 respondents
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 17 12 14 27 7 8 10 5 7 13
transfer scaling 5 20 16 6 21 3 28 13 0 29
Bayes 0 12 42 2 29 3 5 5 3 7
combined tr. est. 13 16 5 9 5 23 12 20 24 6
joint context est 65 40 23 56 38 63 45 57 66 45

 550 respondents
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 20 19 12 28 14 7 17 5 9 16
transfer scaling 8 15 10 12 20 1 25 8 1 26
Bayes 0 5 50 0 23 0 8 2 0 7
combined tr. est. 12 18 9 19 5 41 17 28 40 17
joint  context est 60 43 19 41 38 51 33 57 50 34

   1100 respondents
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 29 20 6 30 16 4 15 1 6 16
transfer scaling 5 7 16 10 20 0 16 1 0 15
Bayes 0 2 50 0 20 0 8 0 0 9
combined tr. est. 11 22 9 18 11 67 12 44 62 12
joint  context est 55 49 19 42 33 29 49 54 32 48

 2300 respondents
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 22 19 16 38 14 0 18 15 0 19
transfer scaling 2 5 5 0 27 0 6 4 1 5
Bayes 1 0 46 0 20 0 15 2 0 14
combined tr. est. 17 23 20 13 14 86 15 30 86 14
joint  context est 58 53 13 49 25 14 46 49 13 48
   4675 respondents
 VOT RSEEFt RSEEFc RSEEt RSEEc TTS mode TTS dest TTS total TI mode TI dest
new model 24 26 20 25 18 0 45 19 0 46
transfer scaling 0 0 6 10 19 0 0 0 0 0
Bayes 0 0 40 7 20 0 16 0 0 15
combined tr. est. 24 22 20 18 16 95 11 37 94 11
joint  context est 52 52 14 40 27 5 28 44 6 28
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Comparison of the test results

Table 28 presents the success rate for different test measures.  The success rate is defined as the
percentage of cases when the method was the best according to each test measure.

Table 28: The success rate (%) of the transfer methods by the test measure (subscript
t and c refer to time and cost)

The main findings relating to the characteristics of the different tests are: 

- Regardless of the sample size, the joint context estimation was the best method in 40 to 70
percent of cases when testing VOT, RSEE or RSEEF. 
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- TTS was the most sensitive to the sample size (especially at the mode choice level).  That is,
for small sample sizes joint context estimation was the best method, but when the sample size
was increased this test preferred combined transfer estimation.

- Joint context estimation was usually the best method for mode choice, whereas the distribution
of the best method was more uniform for the destination choice.

Table 29 presents the percentage of cases in which two different tests give similar
recommendations for the best method. 

Table 29: The number of cases in which each test-pair recommend the same transfer
method when considering other home-based trips.

sample size (respondents)

140 275 550 1100 2300 4675

VOT*/TTS 58 45 43 18 25 15total

TTS /TI 95 91 95 95 95 96mode mode

VOT/RSEEFt 42 50 58 65 78 85

VOT/RSEEFc 26 28 30 29 33 32

VOT/RSEEt 64 55 47 61 64 63

VOT/RSEEc 19 20 22 18 21 20

RSEEFc/RSEEc 43 44 45 52 41 43

RSEEFt/RSEEt 51 57 61 81 87 93

Table 29 shows that the results based on the TTS and TI are nearly identical.  The relationship
between the RSEEF and the RSEE depends on the transfer bias.  In principle, the RSEEF and
the RSEE measure the same thing. However, the RSEEF differs from the RSEE by including the
effect of destination choice models and the iteration of alternative-specific constants. In the case
of cost-elasticities, the transfer bias was small giving a good prediction performance for the
Bayesian method.  The goodness of the Bayesian method was better still, when the alternative-
specific constants were corrected via the iteration process.  This effect is larger in the case of the
Bayesian method than for the other transfer methods, which explains the differences between the
RSEE and the RSEEF.  The effect of transfer bias can also be seen when comparing the VOT

to the RSEE or the RSEEF.   When comparing the VOT and the TTS, it was noteworthy that
the increase in sample size decreased the similarity of the test results of these two tests. 
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6.3 Conclusions 

The main purpose of this chapter was to investigate the applicability of different transfer methods
as a function of transfer bias and the preciseness of model coefficients, and to further examine,
if  the joint context estimation method could be developed to control the effect of transfer bias
more efficiently than previously.

Generally, the smaller the transfer bias and the more precise the coefficients are, the better the
transferred models performed.  On the other hand, the research indicated that although the
coefficients in the HMA and in the Turku region differed quite a lot, the model transfer
performed usually better than the new application context models estimated by using the same
sample size.  

The joint context estimation proved to be the best method.   This is greatly due to the utility
scaling components which make it possible to take areal differences into account.   The results
were still improved  given that the imprecise variables (such as “number of transfers”, “travel
time” and “cars per household”) were estimated as common and the precise variables as data-
specific.  That is, the estimation context was emphasized for the imprecise variables and the new
application context for precise variables.

The combined transfer estimation and the models based on the small samples were highly
sensitive to the sample size. The coefficients based on these two methods were rather equal with
each other. This is largely the result of the dominance of the transfer scaling component of the
combined transfer procedure which effectively results in a procedure corresponding to a simple
re-estimation of the model using the small application context dataset.

Transfer scaling also did not yield good results.  The problem is that for example, in our case, a
common scale factor was used for travel time and the number of transfers when considering other
home-based trips.  If the ratio of the coefficients of these variables does not remain the same in
the estimation and application context, the models ability to predict the effects of changes in the
transportation system may become rather weak. Both of these coefficients are normally quite
imprecise, thus the risk of having biased coefficients is high.

As a conclusion, Table 30 presents the results listed in order of quality.  The joint context
estimation performed well especially if the transfer bias was large and only some of the
coefficients were precise.   However, in situations of small transfer bias, the Bayesian method
yielded good results as well.  However,  due to its inability to explicitly take account of the
transfer bias, it was often biased.  The Bayesian approach emphasizes the 
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coefficients with respect to the inverse of the variances of each coefficient.  This means that the
coefficients based on the estimation context data will be emphasized too strongly in the model
transfer, since the number of observations is larger in this context. The Bayesian method also
suffers from a repeated measurement problem when the normal Finnish data is used.  Repeated
measurements imply that there will be correlation between the answers provided by the same
individual, and therefore in the error terms in the utility function. This means, that when estimating
the new sample models, the variation of model coefficients represents the real variation, but due
to the incorrect standard deviations calculated by estimation program, the estimated coefficients
based on the Bayesian method or combined transfer estimation are no longer correct.  This bias
is investigated more precisely in Appendix H.  Appendix H shows that the Bayesian estimates
especially may  be biased due to the correlations between the answers.

In the case of large transfer bias and imprecise coefficients, there is actually not very much to do.
However, in this scenario joint context estimation is seen as the best (safest) method.  

Table 30: The summary of the order of quality of transfer methods according to the
transfer bias and precision of model parameters

IMPRECISE COEFFICIENTS PRECISE COEFFICIENTS
Small transfer bias Bayes Joint context estimation

Joint context estimation Transfer scaling
Transfer scaling Combined transfer estimation

Large transfer bias (Joint context estimation) Joint context estimation
Combined transfer estimation
Transfer scaling

The differences between the methods were larger for other home-based trips than for home-
based work trips.  This was especially so with regard to VOT and elasticity tests for travel time.
One reason for this might be that the transfer scaling method performed less well for other home
based trips than for home-based trips due to the common scale factor used for the travel time
and the number of transfers in modelling other home based trips. Another noteworthy point is,
that the repeated measurement problem was larger for home-based work trips than for other
home-based trips (see Section 5.3.3.3).  As a consequence of that the real variation of
coefficients in home-based work trips was larger than in other home-based trips.  

The research also indicated that the effects that are produced by sample size and many other
factors connected to the modelling is often greater than that produced by the differences
between the best methods. 
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Table 31 presents the sensitivity analysis of the sample size required in model transfer.  The
sample size requirements were evaluated in terms of two differerent hypothetical error limits
using the tests already applied in Chapter 5.  TTS is not considered due to its tendency always
reject the hypothesis of the equality of the model parameters in two contexts.

The results indicate that the mode and destination choice models made in the  HMA were  well
transferable if the decrease of 15 percent of the best possible test measure was accepted.
However, if only the 5 percent error was allowed, the advance of model transfer was smaller.
The sample size requirement was 2,500 respondents for home-based work trips when 5 percent
error limit was used and 1,400 respondents when 15 percent error limit was used.  The
corresponding values for other home-based trips were 4,450 and 2,400 respondents,
respectively.  In almost all cases the best transferred model yielded better results than the
corresponding new sample model

Table 31: The sensitivity analysis of the sample size requirements in model transfer.

the results compared to the value, which is the results compared to the
5 percent below the maximum value, which is 15 percent

below the maximum

trip required the required required the required required
group sample percent sample sample percent sample sample

size for of size for size for of size for size for
new models the best joint models the best joint
sample for transfer context for transfer context
model which method* estima- which method* estima-
based on the error tion** the error tion**
25 % of test of test
error value is value is
limit below below 

25 % 25 %

      

VOT HBW 3,800 80 900 3,100 71 800 2,000

OHB 4,450 84 - - 75 2,300 2,300

RSEEF HBW 2,800 90 2,400 2,400 80 400 1,700

ptr time OHB 4,000 90 - - 81 2,400 2,400

RSEEF HBW 3,200 48 2,500 2,500 43 1,400 1,400

car
costs OHB 1,200 94 (400) 1,200 84 0 250x

* based on the test-value presented in previous column 

** the sample size which is needed to get the same test value as required sample size produces for new
sample models

- can not be achieved when using model transfer

x the HMA model explains this test measure good enough
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When comparing the different test measures it can be said, that joint context estimation was the
best approach in 40 to 70 percent of cases when testing RSEE or RSEEF and also when testing
VOT for other home-based trips. The Bayesian method was the best method when testing VOT
for home-based work trips. TTS gave partially contradictory results with respect the other
methods.  It was also the most sensitive for the sample size. The problem when using TTS is,
that  two models having totally different coefficients may have the same TTS.  Although these
two models can be similar in some ways, their ability to predict the effect of changes in a
transportation system is nevertheless different.  It was also shown, that TTS test has strong
tendency to reject transferebility. On the other hand Transfer Indexes (TI) for transferred models
were in almost all cases in excess of 80 percent, suggesting that the transferred models provide
a significant component of the information obtained from application context model.

The greatest problem in model transfer is the large range of fluctuation caused by imprecise
coefficients.  The more new application context parameters are emphasized (e.g. by using data-
specific coefficients), the greater the confidence interval of the coefficients and the larger the risk
of arriving at biased coefficients is.  So, when choosing the model definitions, we are trying to
find a model, which does not exceed the predefined error limit, but which produces better results
more often than the new sample model. Next, a short interpretation of a real model transfer
situation and the different choices which are to be made are presented:

- The first step in model transfer is data collection.  The data collection methods should be
similar in estimation and application contexts.  In addition, it is important to ensure, that
the sample size is large enough to define mode shares accurately (if there is not any other
statistical source).

- The network description should be made similarly as well.  This means, for example, that
similar demand functions in traffic assignment are used in both contexts.

- In principle, the same variables used in the estimation context should be used in the
application context as well. However, if both datasets are available, the estimation
context models can be re-estimated and different variable combinations can be tested.
When using joint context estimation, it is also possible to add additional attributes which
are not represented in the estimation context model.  
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- The model specifications should be made similarly.  That is, the variables, which are
differently defined, are totally different variables and thus are not to be transferred. The
sole exception is, if data-specific coefficients are used in a joint context estimation. 

- The use of alternative-specific dummy-variables in the destination choice level is not
normally  recommended due to the difficulty of forecasting the importance of these kind
of attributes.  However, if they are needed, they can be applied by estimating new
sample models at the destination choice level and by using some other transfer method
at the mode choice level.

- The choice of transfer method depends on the kind of data available.  If both the
estimation and application context data are available, the best transfer method is joint
context estimation.  When using the Bayesian method or the combined transfer
estimation, the parameter vectors and covariance-matrices are needed in both contexts.
Note, if the Bayesian approach is used, the repeated measurements should be ignored
(e.g. drawing randomly only one observation per respondent from the data). Transfer
scaling is the easiest way; only the coefficients of estimation context model and the
application context data are needed.

- When using joint context estimation, the best choice between common and data-specific
variables depends on the transfer bias and the preciseness of the coefficients. It can be
stated that the more common variables the model includes the smaller the variance of all
the coefficients is. On the other hand, the model which only includes common variables,
strongly emphasizes the estimation context model parameters.  This is problematic when
the transfer bias is large.  Thus, the common variables are most suitable for situations in
which  the observed variance of the application context coefficients is rather high and the
transfer bias is known to be small.

In Chapter 5 we defined the CV measure as being able to compare the preciseness of different
coefficients analytically, and in such a way as to be able to evaluate which variables should be
estimated as common and which as data-specific, when using joint context estimation.   The
CV(A) value is defined as the ratio of the standard error of a new sample model coefficient
divided by the coefficient estimated from the whole estimation context data set. The estimation
context parameters must be used as the denominator, because in a real transfer situation the
application context parameters, based on the entire set of data, are unknown. The initial premise
is that the greater the CV(A)-values, the more imprecise the model parameters are. 
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The CV(A)-values for empirical cases are presented in Figure 58. The variation of CV(A) is
considered in appendices P and Q. We have not defined any absolute value for the acceptable
CV(A), because the sample size requirements depend on the purpose for which the  models are
to be estimated.  However, CV(A)-values can be used as a tool for selecting the variables which
are to be estimated as data-specific. One can formulate a hypothetical confidence limit to
describe the minimum preciseness of the coefficients by which the data-specific coefficients can
be used. That is, the data-specific coefficients should be used for coefficients which are under
the confidence limit and common coefficients should be used for other variables in the model.  In
this case, the coefficients that exceed the limit will be fixed to the well-known estimation context
situation and the data-specific coefficients will only be used for precise coefficients. If  all the
coefficients exceed the confidence limit, the model should be estimated using only common
coefficients. This is the way this process is generally done.

Figure 58: The mean CV(A)-values estimated for models based on the small samples.
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7. DISCUSSION

The main purpose of the study was to compare alternative methods of spatial transfer as a
function of sample size, and identify the factors affecting the model quality and the
preciseness of model parameters.  As a large part of the difference in coefficients and
predictions is due to the discrepancies in the formulation of the initial data, or random
variation, and only partly due to the real differences in the estimation and application
context, the main objective of this study was to investigate the relationship between the
transfer bias (difference between the estimation and application context parameter
estimates) and the impreciseness caused by the sample size.  In addition, different test
measures for studying model transferability were compared and the applicability of the
traditional statistical tests, with respect to those based on the prediction accuracy of sample
enumeration tests and forecasts, were assessed.

The approach of primarily studying model transfer as a function of sample size rather than
transfer bias proved to be successful. This is because in a real transfer situation the
preciseness of the model coefficients can be roughly evaluated, but it is not known whether
the transfer bias is caused by the random variation in the estimated model parameters, or
whether it actually presents real differences in travel behaviour. 

The use of bootstrap (Efron and Tibshirani 1993) when resampling observations made it
possible to effectively illustrate the variability in the test measures that arise as a function
of decreasing sample size.  It was shown that the results based on individual samples may
greatly differ from each other, giving a totally different model transfer performance.  It was
also indicated that the effect that is produced by sample size and many other factors
connected to the modelling are often greater than that produced by the differences between
the best transfer methods.  
  
Data quality 

The first step in modelling is data collection.  The research highlighted the fact that
telephone interview is usually a more reliable method of collecting information than the 
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postal questionnaire.  The walk and bicycle trips, in particular, were better reported in
telephone interviews, and also people without trips were better captured in the telephone
survey.  It seemed to be that the representativeness of mode shares is more dependent on
the data collection method than sample size even if the sample size is a very important
factor as well.  We also obtained evidence that the data gathering method can have an effect
in the mode- and destination choice level, thereby suggesting that some of the differences
between the coefficients in the estimation and the application context may be caused by the
data gathering method and not just by real differences in local conditions in the HMA and
in the Turku region. Although these effects are very important in real transfer situation, they
do not affect the conclusions drawn from the model transferability, because studying the
real differences was not the focus of this thesis but rather the main purpose was to study
model transferability by using models which include different levels of impreciseness and
transfer bias.

Model Transferability

On the whole, the comparison of different transfer methods by using many different kinds
of tests highlighted effectively the differences between the methods.  The goodness of the
models is not an unambiguous issue but is dependent on the purpose for which model is
estimated.  In most cases, the joint context estimation proved to be  the best transfer
method.  As Badoe (1994) has concluded this is largely due to the utility scaling
components. This raises the potential for a "universal choice model", in which utility
attribute parameters are common to all the contexts, and the scales and constants are
expressed as functions of an urban structure.  In this study it was shown that the results
could still be improved further when the imprecise variables (such as "number of transfers",
"travel time" and "cars per household") are estimated as common and the precise variables
as data-specific.
 
The combined transfer estimation and the new sample models were highly sensitive to the
sample size. The coefficients based on these two methods were very similar with each
other. This is largely the result of the dominance of the transfer scaling component of the
combined transfer procedure which effectively results in a procedure corresponding to a
simple re-estimation of the model using the small application context dataset.

Transfer scaling did not yield good results either.  The problem is that for example, in our
case, a common scale factor was used for travel time and the number of transfers when
considering other home-based trips.  If the ratio of the coefficients of these variables does not
remain the same in the estimation and application context, the models ability to predict the
effects of changes in the transportation system may become rather weak. Both of these
coefficients are normally quite imprecise, thus the risk of having biased coefficients is high.
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The sample size needed in model transfer is highly dependent on the accuracy required for
each step in the forecast system. No definite advice can be given as to the required precision
of the system, but the need for the accuracy depends on the purpose for which models are
used. In this research we did not consider, when the models are precise enough, but the
results were mainly compared to the results based on the entire set of data, which was
assumed to represent the best achievable situation.  At the mode and destination choice
level two different accuracy criteria were tested: 5 and 15 percent decreases from the best
possible result.  When considering the 5 percent error limit in model transfer, we were not
essentially able to decrease the sample size requirement. However, when considering the
15 percent error limit, the sample size requirement was only half the number of
observations needed to estimate the best possible model.
 
We also obtained evidence that although the mode and destination choice models could be
transferred using a quite small data set, an appropriate definition of mode shares and also
defining trip generation rates correctly requires much more data.   In principle, the process
of defining mode shares and trip generation rates is independent of mode and destination
choice modelling.  The mode shares and trip generation rates are based on the cross-
tabulation of mobility survey data, and mode shares are only used in the forecast process
to correct alternative-specific constants to accurately present the  real weighted mode shares
in the area.  The 1 percent absolute error limit that we defined to be the maximum
allowable deviation from the correct mode share was quite strict. However, in real
modelling the 1 percent deviation is regarded to be definitely the maximum error to be
allowed.   Due to the large sample size needed to define mode shares accurately, the use of
separate OD-surveys, instead of a mobility survey, would be preferable for this purpose.

The use of empirical data highlighted problems which are not connected to the transfer
method itself, but greatly affect the model transfer.  Of these, the most important was the
repeated measurement issue.  Repeated measurements imply that there will be a correlation
between the answers provided by the same individual, and therefore in the error terms in
the utility function. Consequently, the estimated standard deviations are underestimated and
t-values based on these standard deviations are incorrect because they are too high.
However, repeated measurements do not affect the parameter estimates of new sample
models, the transfer scaling or joint context estimation, but they do affect the results based
on the Bayesian method and combined transfer estimation.  The correlation between the
observations means  that when using the Bayesian method in particular,  the results may be
strongly biased.
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The comparison of different tests

Model transferability has traditionally been evaluated on the basis of how well transferred
models reproduce existing behaviour rather than on their ability to adequately forecast
changes in travel demand. The comparison of VOT and elasticities to the corresponding
TTS-values indicated, however, that statistical tests are not able to evaluate the goodness
of transferred models with a high enough degree of versatility.  For example, two models
that have totally different values for their coefficients may have the same likelihood-value
and hence the same TTS. Consequently, their ability to predict the effect of changes in a
transportation system may differ greatly. Hence, because the main purpose of the policy
models is to predict the changes in the transportation system, as was the case for example
in the HMA and in the Turku region,  the conclusions based on the RSEEF and VOT
should be emphasized. 

Another related problem both in calculating the TTS as well as in calculating elasticities
is that  in modelling the scale parameter µ in the choice probability function (Equation 3)
is fixed to one.  This means that the absolute level of the coefficients is actually dependent
on the real value of µ. Consequently, the ratio of the model parameters to each other can
be estimated reliably but the absolute level of the parameters is unknown. Consequently the
comparison of model parameters on an equal basis, as has been the case in many
transferability studies, is not justified. Another problem is that in spite of the fact that the
absolute level of the model parameters is unknown, the elasticities are highly dependent on
the absolute level of the coefficients, which can be regarded as a weakness of the logit
model formulation.

Conclusions

The research confirmed the general view that model transfer is useful in situations in which
a large data set can not be collected.  Generally, the smaller the transfer bias and the more
precise the coefficients are, the better the transferred models perform. On the other hand,
it was shown that due to the difficulty in defining mode shares accurately based on small
samples,  spatial transfer cannot be recommended as a primary method, in spite of the fact
that mode and destination choice models can be transferred quite reliably.   Consequently,
the largest utility for model transfer can be achieved when it is applied to model updating
rather than to spatial transfer. Model updating using only a small set of new application
context data makes it possible to update models more frequently and economically than
used be the case.
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Generally, spatial transfer tends to succeed better when there is a significant number of
equal transport conditions in the estimation and application context areas.  This means that
depending on the mode shares, two or three different areal models should be used as the
basis of modelling in Finland.

In future, it will be important to improve the quality of the data and the travel demand
models.  For example, research into the use of individual variables, different modelling
techniques and developing totally new modelling approaches  at the destination and route
choice level would be of benefit.  This is because many factors connected to the modelling
itself are greater than those produced by the differences between the best transfer methods.

Improving the quality of the model also helps to develope the ultimate goal whereby the
data-specific coefficients can be used as much as is possible, to improve model
transferability. This is especially important in cases where the transfer bias is large.
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APPENDIX C  
  

The comparison of sequential and simultaneous estimation

1. Problem description

In this chapter the effect of estimation method in estimating  nested logit models is
examined. In principle the simultaneous estimation is more efficient than sequential
estimation, due to the full information used in simultaneous estimation. It is also well
known, that even the  the sequential estimation method is simple, and produce estimates
which are consistent;  it has potentially strong problems.  For example, if there are not
sufficient data to estimate lower nest models, the estimates may be inefficient both in the
sense that information is omitted at the lower levels and that the errors thus obtained are
passed on to the superior level (Ortúzar and Willumsen 1994). 

In our case,  the results based on the estimations in the HMA and in the Turku region
indicated that the coefficients of mode- and destination choice models differ greatly
depending on the estimation method. As an example of that, Table C.1 presents the
simultaneously and sequentially estimated models for home-based work trips and other
home- based trips when using the entire set of empirical Turku data. For other home-based
trips we have presented two different cases depending on if mode or destination choice is
on the upper level.  This has been made because when using the same order than used in
sequential estimation, the coefficient of logsum is over 1.

Table C.1 shows that the models of home-based work trips did not differ very much from
each other.  The value of time is 3.6 euro/h (21.4 FIM/h) using sequential estimation for
home-based work trips and 2.3 euro/h (13.6 FIM/h) by simultaneously estimated model.
However, the differencies for other home-based trips are larger.  The value of travel time
coefficient, in particular, seems to be biased when using simultaneous estimation. The
value of time for other home-based trips is 0.02 euro/h (0.1 FIM/h) by simultaneously
estimated models and 1.2 euro/h (6.9 FIM/h) for sequentially estimated models.

Next the possible reasons causing differences between the sequential and simultaneous
estimation are studied.  Because in preliminary studies the variable “number of transfers”
affected strongly the coefficient of travel time, the examination is made both for the
models with the variable “number of transfer” as well as for the models without this
variable.  The effect of the logsum variable is studied because when empirical data was
used the parameter for the logsum was over one when estimating the models for other
home-based trips. Therefore simultaneous estimation also was problematic, in particular,
for other home-based trips.
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Table C1: Estimation results of mode choice models using simultaneous or
sequential estimation of home based work trips and other home based
trips  Estimated from data collected in the Turku region in 1997. The
shaded models are used in model transfer in Chapter 6.

Home Based Work Trips Other Home Based trips

Sequential Simultaneous Sequential Simultaneous Simultaneous
estimation estimation estimation estimation A estimation B

Distance  0-5  -0.878 -0.812 -1.038 -1.153 -0.914
(Walk) (-24.2) (-23.0) (-49.0) (-82.8) (-46.5)

Distance  > 5 -0.339 -0.344 -0.247 -0.282 -0.215
(Walk) (-11.0) (-13.3) (-13.5) (-17.6) (-14.3)

Total travel time -0.022 -0.017 -0.014 -0.006 -0.0002
(Ptr, Car) (-8.2) (-7.7) (-7.3) (-5.9) (-0.2)

Number of transfers - - -0.437 -0.600 -0.591
(Ptr) (-10.5) (-16.1) (-17.7)

Walk-dummy 2.137 2.041 2.157 2.903 2.461
(Walk) (11.4) (15.7) (20.4) (28.4) (42.1)

Car-dummy -0.506 -0.903 -0.893 -0.872 -0.624
(Car) (-2.6) (-5.5) (-7.7) (-8.9) (-7.3)

Cars/household 0.658 1.288 1.173 1.768 1.399
Car) (3.8) (10.3) (13.3) (24.2) (24.4)

Trip cost/income -0.884 -1.073 -1.739 -2.311 -1.709
(Ptr, Car) (-7.2) (-12.7) (-20.4) (-52.6) (-31.0)

Ln(nr of jobs) 1.000 1.000 - - -
(Dest) - -

Log sum 0.734 0.826 1.202 0.738 1.354
(Dest) (43.2) (16.8) (134.8) (35.1) (36.4)

Scale factor - - 1.000 1.000 1.000

- service  employment - - 14.89 14.70 14.53

- retail employment - - 2.52 2.43 2.31

Number of trip 4,442 4,442 13,989 13,989 13, 989
observations

� (c) 0.2011 and 0.1486 0.2265 and 0.2689 0.26902

(mode and dest) 0.1431 0.2802

VOT (FIM/h) 21.4 13.6 6.9 2.2 0.1
Walk=walk and bicycle A   mode choice on the upper level
Ptr=bus and train B   destination choice on the upper level
Car =driver or passanger
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2. Methodology

The importance of estimation method is studied by using simulated data, because there is
no real certainty as to which of these two methods better corresponds to the real situation.
In the simulated data the true model coefficients are known, and can be compared with the
results of the two estimation methods.

The main steps of the study are:

1. The artificial data are created using Monte Carlo simulation, assuming the true
coefficients in Table C.2 and C.3. Choice probabilities are approximated by
repeating Monte Carlo simulation process 100 times with the parameters held
constant.   The generation of attribute values is mainly based on the attribute
values taken from the data set (HBW) used in the case study.  However, two
different logsum parameters are used to study the effect of logsum variable.  That
is, totally 200 samples are taken, 100 with the logsum of 0.8 and 100 with the
logsum of 2.0. 

The empirical values of the origin and the starting time has been used as the basis
of the simulation. In the empirical data, trips are directed from home to
destination, or from destination to home.  However, when simulating data, all the
trips are directed from home to destination.  Therefore, when the trip in empirical
data is directed from destination to home, the home is used to represent an origin,
and the starting time of the trip is also changed to correspond to the reversed
situation in the empirical data.

2. A set of alternatives is defined (354 alternatives, 3 modes and 118 destinations),
and the respective utilities are conducted from the attributes of that alternative.
After the computation of utilities, choices are simulated by drawing a uniform
random number from 0 to 1 for each individual and choice set, and comparing it to
the logit probabilities to determine which alternative was chosen.  All the
coefficients and the individual-specific error term are assumed to have zero
variation across the sample.  These assumptions correspond to those of the basic
linear logit model.

3. The models are estimated for each simulated sample by using both the
simultaneous and sequential estimation.  The results are presented in Tables C.2
and C.3.  We have calculated the average coefficients for 100 mode and
destination choice models to compare, how well  different estimation methods can
repeat the coefficients used in data simulation.
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Table C.2: The average coefficients for 100 mode choice models using simultaneous
or sequential estimation and simulated data. 

Simulated data                    Simulated data
(logsum=0.8) (logsum=2.0)

Coefficients Sequential Simultaneous Sequential Simultaneous
used in data estimation estimation estimation estimation
generation

Distance  0-5 -0.878 -0.882 -0.872 -0.854 -0.814
(Walk) (-) (-2.3) (-2.4) (-2.3) (-2.5)

Distance  > 5 -0.334 -0.340 -0.338 -0.311 -0.344
(Walk) (-) (-10.8) (-12.8) (-8.7) (-8.7)

Total travel time -0.022 -0.022 -0.021 -0.018 -0.014
(Ptr, Car) (-) (-7.7) (-8.8) (-6.5) (-6.7)

Walk-dummy 2.137 2.167 2.216 2.392 2.401
(Walk) (-) (11.7) (16.4) (12.0) (10.5)

Car-dummy -0.506 -0.302 -0.480 -0.256 -0.211
(Car) (-) (-1.8) (-2.5) (-1.9) (-1.7)

Cars/household 0.658 0.681 0.703 0.722 0.683
(Car) (-) (3.7) (4.0) (3.8) (4.7)

Trip cost/income -0.884 -0.885 -0.897 -0.755 -0.940
(Ptr, Car) (-) (-6.6) (-9.4) (-5.5) (-10.6)

Logsum (Dest) 0.8/2.0 0.812 0.820 2.166 2.1990
(-) (45.0) (16.5) (90.8) (21.4)

Scale factor 1.000 1.000 1.000 1.000 1.000

Number of trip 4,442 4,442 4,442 4,442 4,442
observations

VOT (FIM/h) 21.4 21.1 18.1 22.0 17.9

Walk=walk and bicycle
Ptr=bus and train
Car =driver or passanger
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Table C.3: The average coefficients for 100 mode and destination choice models using
simultaneous or sequential estimation and simulated data for the model
including the “number of transfers”.

 Simulated data Simulated data
(logsum=0.8) (logsum=2.0)

Coefficients Sequentially Simultaneous Sequential Simultaneous
used in data estimation estimation estimation estimation
generation

Distance  0-5 -0.878 -0.872 -0.869 -0.854 -0.811
(Walk) (-) (-2.3) (-2.4) (-2.3) (-2.5)

Distance  > 5 -0.334 -0.343 -0.337 -0.309 -0.342
(Walk) (-) (-10.8) (-12.8) (-8.7) (-8.7)

Total travel time -0.022 -0.024 -0.021 -0.017 -0.012
(Ptr, Car) (-) (-7.7) (-8.8) (-6.5) (-6.7)

Nr of transfers -0.437 -0.25 -0.27 -0.32 -0.38
(Ptr) (-) (-4.0) (-6.0) (-3.4) (-5.1)

Walk-dummy 2.137 2.118 2.206 2.417 2.445
(Walk) (-) (11.7) (16.4) (12.0) (10.5)

Car-dummy -0.506 -0.280 -0.478 -0.173 -0.256
(Car) (-) (-1.8) (-2.5) (-1.9) (-1.7)

Cars/household 0.658 0.658 0.687 0.716 0.659
(Car) (-) (3.7) (4.0) (3.8) (4.7)

Trip cost/income -0.884 -0.869 -0.872 -0.742 -0.973
(Ptr, Car) (-) (-6.6) (-9.4) (-5.5) (-10.6)

Logsum (Dest) 0.8/2.0 0.848 0.826 2.135 2.321
(-) (44.1) (16.5) (88.5) (21.4)

Scale factor 1.000 1.000 1.000 1.000 1.000

Number of trip 4,442 4,442 4,442 4,442 4,442
observations

VOT (FIM/h) 21.4 21.1 18.1 22.0 17.9

Walk=walk and bicycle
Ptr=bus and train
Car =driver or passanger
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Tables C.2 and C.3 show that the variance in the coefficients is larger for sequentially
estimated models than for those estimated simultaneously. Although simultaneous
estimation is more efficient than corresponding sequential estimation, sequential
estimation was, unlike the simultaneous estimation, always able to repeat the coefficients
used in the data creation.  That is, the models based on the sequential estimation seem to
be identifiable. However, when using simultaneous estimation, the coefficient of travel
time, in particular, is biased in the situation where the logsum is 2.0.  The problem is less
significant when using models without the variable “number of transfers” than when using
models with them.

Generally, simultaneous estimation has been thought of as being better than sequential
estimation, because simultaneous estimation optimize the entirety of mode-and destination
choice. However, this strength of the method can also be regarded as  weakness.  The
probability that a certain destination (from all of the 118 destinations) is really chosen, is
small.  The lack of alternative-specific constants at the destination choice level makes it
even more difficult to find an optimal solution. 

The abovementioned simulation tests indicated that both the logsum and the variable
number of transfers affect those results that are based on the simultaneous estimation.
However, in essence, the problem is mainly caused by the multicollinearity, as is described
in Rich (2002) and Horowitz (1981).

Horowitz (1981) has shown, that the use of zonally averaged variables in maximum-
likelihood estimation will normally  yield inconsistent estimates of disaggregate choice
probabilities.  It will also produce inconsistent estimates of zonal-average choice
probabilities, unless the following conditions are fulfilled:

- The zonally averaged explanatory variables are not correlated with any disaggregate
explanatory variables that are included in the model’s specification

- The zonally averaged variables have the same joint distribution function in each zone,
both in the estimation data set and in the data sets used for forecasting.

These conditions are not fulfilled in this study.  The principal component analysis (not
presented here) also suggested the use of generic coefficients for time and cost.  That is,
due to the identification problem that arises when using simultaneous estimation,
sequential estimation was used in this research.  The inverse order of mode and destination
choice was also tested when using simultaneous estimation.  However, the prediction
performance for these models was not good.
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APPENDIX F

The formulation of cost and parking cost variables

Travel costs for car

Travel costs for cars are based on 0.10 euro/km  in the HMA in 1995 and 0.12 euro/km in
the Turku region in 1997. These costs include both the fuel costs and other variable costs
and the parking costs. Fixed charges are not taken into account.

Parking costs (for one-way trips) have been cross-tabulated from the mobility survey based
on the monthly costs car drivers had paid, and are included in the car costs.

The average cost for home-based work trips was assumed to be the price of a monthly cost
divided by 25, which was the average number of work trips made in a month.  When
calculating the average cost for other home-based trips, only those people who were paid
their parking as a single payment, were included to the examination.

Below is presented the average values of parking costs according to the destination zone
in the case of the trip is directed from home to destination. In other case, when home is
destination, the corresponding parking cost is defined according to the origin area.
Parking costs are presented only those areas, in which the cost is different from zero.

         

Parking cost (eur) Parking cost (eur)Area AreaHBW   OHB                                 HBW, OHB
1 Kluuvi 1.00 1.36 4 Turku city centre  0.31
2 Kamppi 0.68 0.68 5 Turku city centre 0.15
3 Punavuori 0.91 0.91 6 Turku city centre 0.13
4 Kaartinkaupunki 0.97 0.97 7 Turku city centre 0.15
5 Kruununhaka 1.23 1.23 8 Turku city centre 0.23
6 Katajanokka 0.45 0.45 56 Kärsämäki-Runosmäki 1.38
7 Ullanlinna, Eira, Kaivopuisto 0.34 0.34 72 Pansio-Perno 0.13
8 Munkkisaari 0,00 0.00 98 Piikkiö city centre 0.09
9 Ruoholahti, Jätkäsaari 0,00 0.00

10 Etu-Töölö 0.35 0.35
11 Taka-Töölö 0.12 0.01
12 Meilahti 0.12 0.12
13 Ruskeasuo, Pikku Huopalahti 0,00 0.00
14 Länsi-Pasila 0.02 0.25
15 Pohjois-Pasila 0.00 0.00
16 Itä-Pasila 0.02 0.03
17 Hakaniemi 0.19 0.19
18 Kallio 0.09 0.19
19 Sörnäinen 0.01 0.17
20 Alppiharju 0.00 0.14
21 Vallila 0.00 0.06
22 Hermanni 0.00 0.00
23 Kumpula, Toukola 0.00 0.00
24 Käpylä, Koskela 0.00 0.00
63 Tapiola 0.00 0.28

101 Lentoasema 0.00 0.32
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Travel costs for public transport 

Travel costs for public transport are zonal values, which have been cross-tabulated from
the mobility survey data. The travel cost in public transport were calculated as an  average
cost based on the ticket types respondents indicated they owned. The average costs were
calculated in divisions of four zones.

HMA

The average cost for home-based work trips was assumed to be the daily price of a
monthly ticket divided by 70, which was the average number of trips made in a month.
The average cost for other home-based trips  was calculated as an average of travel costs
approximated to the ticket type respondents indicated they owned.  The monthly daily
price of a monthly ticket was divided by 45.  For people under 17 years old the price of a
children’s ticket was used. In addition, some discount tickets were also taken into account.
The average costs of public transport are as followed:

           Hki city centre Hki suburb Espoo+Kauniainen Vantaa
Hki city centre 0.84 0.84   1.77   1.77
Hki suburb 0.84   1.77   1.77

Espoo+Kauniainen      1.09   1.93

Vantaa    1.09

Turku region

The average cost of the internal trips made in the Turku city area was defined to be 0.79
euros/trip. The price between the Kaarina and Turku was approximated to be 0.84
euros/trip and between the Raisio and Turku 1.68 euros/trip. Other prices are based on the
distance rates. The factor 0.75 when using distance rates is based on the assumption that
approximately 60 percent of all passangers have season ticket and approximately 45
percent of all passangers are children. The final ticket price was defined as follows: 

  if (((origin=Turku) and (destination=Turku))) then price:=0.79
  else if((origin=Kaarina) and (destination=Turku)) then price:=0.84
  else if((destination=Turku) and (destination=Kaarina)) then price:=0.84
  else if((origin=Raisio) and (destination=Turku)) then price:=1.68
  else if((destination=Turku) and (destination=Raisio)) then price:=1.68
  (*according to distance rate*)
  else if ((0<=dist) and (dist<6)) then price:=0.75*1.68
  else if ((6<=dist) and (dist<9)) then price:=0.75*1.85
  else if ((9<=dist) and (dist<12)) then price:=0.75*2.19
  else if ((12<=dist) and (dist<16)) then price:=0.75*2.52
  else if ((16<=dist) and (dist<20)) then price:=0.75*2.86
  else if ((20<=dist) and (dist<25)) then price:=0.75*3.36
  else if ((25<=dist) and (dist<30)) then price:=0.75*3.70
  else if ((30<=dist) and (dist<35)) then price:=0.75*4.20
  else if ((35<=dist) and (dist<40)) then price:=0.75*4.70
  else if ((40<=dist) and (dist<45)) then price:=0.75*5.05
  else if ((45<=dist) and (dist<50)) then price:=0.75*5.55 
  hav[j]:=2*(price);
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                         (2)

          
                         (3)

The ideal bootstrap estimate se  has the smallest possible standard deviation among nearly
�

unbiased estimates of se (�), at least in an asymptotic (n��) sense.  It is not hard to showF

that se  always has greater standard deviation than se .  The practical question is “howB �

much greater?”

The increased variability due to the stopping after B bootstrap replications, rather than
going on to infinity, is reflected in an increased coefficient of variation,

Here � is a parameter that measures how long-tailed the distribution of �* is; � is zero for
the normal distribution, it ranges from -2 for the shortest-tailed distributions to arbitrarily
large values when F is long-tailed.   Table G1 compares cv(se ) with cv(se ) for variousB �

choices of B, assuming �=0.

Table G1. The coefficient of variation of se  as a function of the coefficient ofB

variation of the ideal bootstrap estimate se  and the number of
�

bootstrap samples B (Efron and Tibshirani 1993).

                                          B�

25 50 100 200 �

cv(se ) 0.25 0.29 0.27 0.26 0.25 0.25
�

0.20 0.24 0.22 0.21 0.21 0.20

0.15 0.21 0.18 0.17 0.16 0.15

0.10 0.17 0.14 0.12 0.11 0.10

0.05 0.15 0.11 0.09 0.07 0.05

0.00 0.14 0.10 0.07 0.05 0.00
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APPENDIX H                                

The effect of repeated measurements in model transfer

1. Introduction

This appendix concerns the repeated-measurement issue.  As stated in Chapter 5.3.3.3,
repeated answers provided by the same individual do not affect the real variation (std ), butp

decrease the estimated standard error (std -values). The repeated measurement issue ist

considered because, although some of the methods react directly with observed variation,
others (Bayesian approach and combined transfer estimation) only react to the estimated
standard deviations (that is, the coefficients will be emphasized with respect to the inverse
of their estimated variances) in model transfer.  Thus the differences between these two
standard deviations and correlations may cause differences in the comparison of the model
transfer methods.

2. Repeated measurement 

2.1 Problem describtion and methodology

The aim of this appendix is to investigate the degree to which the repeated measurement
error might affect the results found in Chapter 6. 

First, we look at what happens, if the repeated measurement problem, which occurs in
estimation and application context, is removed.  That is,  the Turku data, including only
one randomly chosen observation per respondent, is used in model transfer.  In this case,
the whole set of one observation per respondent HMA data (1,133 trip observations) is
used as the estimation context data.  The samples of 650 respondents in the Turku data are
used in the application context (the sample size is the same as for the whole one
observation per respondent data in the Turku region).  

Using normal two-day data creates the reference situation. The sample size is chosen so
that the observed standard deviation stdp for the estimation and application context is the
same as the stdp-value gathered by using the one observation per respondent set of data.
In addition, the estimation context samples are taken so that the coefficients are as similar
as possible to those using the one observation per respondent HMA data. In estimation
context, the coefficients should be similar to those estimated by using the one observation
per respondent set of data.  However, there are some small differences between these
models (Table H.1).

The studied combinations are presented in Figure H.1.  The model coefficients for
estimation context data sets and for seed samples of application context samples are
presented in Table H.1.



Estimation context data (HMA)
 - “normal” one-day data
     (1587 trip-observations)

Application context data (Turku)
  - “normal” two-day data
    (1600 trip-observations)

Estimation context data (HMA)
 - 1 obs/respondent data
   (1133 trip-observations)

Application context data (Turku)
  - 1 obs/respondent data
    (650 trip-observations)

Transferred model
 - 5 methods
 - 100 samples
 - 1 sample size

VOT and sample numeration
test for mode choice
 - two test cases
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Figure H.1: The  process when studying the effect of the repeated measurement
issue.

The model transfer is investigated by all five methods studied in Chapter 6.  All
transferability tests have been made by using 100 samples (resampled from the Turku 1997
dataset) for each transfer method and studied combination.  The combination B (only
coefficient for distance 0-5 is estimated as data-specific) of data-specific coefficients is
used for the joint context estimation.  This is the combination, which proved to best for the
corresponding stdp variation in empirical data.

The “normal” two day data represents the empirical data used in Chapter 6. The one
observation per respondent data has been thought to represent the data, in which the
repeated measurement problem is undoubtedly absent. In principle, the unbiased data
could be formulated by merely eliminating the common observations.

Note, due to the two-day diaries used in the Turku area,  the repeated measurement issue
is more serious for application context (Turku) data than for the HMA data.
Consequently, the repeated measurement correction is of a different size for the estimation
and application context data sets.  That is, when using the one day per respondent data, the
effect of using two day diaries is also removed.
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Table H.1: The coefficients for estimation context models and for  seed samples used
in the estimation context when studying repeated measurement issue.

HMA* HMA** Turku ***   Turku **** 
1587 resp 1 obs/resp entire data 1obs/resp 

Distance 0-5 km -0.952 -0.911 -0.878 -0.873
(-13.1) (-11.0) (-24.2) (-14.1)

Distance >5 km -0.474 -0.449 -0.339 -0.321
(-9.5) (-8.3) (-11.0) (-6.6)

Total travel time -0.027 -0.028 -0.022 -0.023
(Car, Ptr) (-7.9) (-6.9) (-8.2) (-5.1)

Trip cost/income -1.364 -1.397 -0.884 -0.984
(Car, Ptr) (-9.1) (-7.8) (-7.2) (-4.8)

Cars/household 1.022 1.229 0.658 0.633
(Car) (3.3) (3.4) (3.8) (2.2)

Walk dummy 1.499 1.283 2.137 1.925
(Walk) (5.5) (4.1) (11.4) (6.2)

Car dummy -1.858 -1.973 -0.506 -0.584
(Car) (-6.5) (-5.7) (-2.6) (-1.8)

� (c) 0.2336 0.2235 0.2011 0.1845 2

No of 1,587 1,133 4,442 1,530
observations

* estimation context data and model for reference data
** estimation context data and model for one observation / respondent data
*** data from which the reference samples of 1,600 trip-observations have been taken 
**** data from which the “one observation per respondent” samples including 650 trip-observations

have been taken 

2.2 Results

Figures H.2 and H.3 present the main findings.  Figure H.2 shows that the VOT error of
the new sample models is the same for both data sets. This is plausible, because the sample
size for the one observation per respondent data  was chosen so that stdp would be the
same as that from using the reference data.  However there are differences between the
results concerning the Bayesian method and the combined transfer estimation.  One could
expect that the Bayesian method would be better for the empirical data than for the one
observation per respondent data, because the stdt is more highly overestimated in the
application context (due to the 2-day data) than in the estimation context, causing the 
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application context coefficients to be a bit more highly emphasized as well.  Nonetheless,
due to the violated correlations of empirical data, the results are quite the opposite.  The
Bayesian method, in particular give better results when using one observation per
respondent data.

Figure H.2: The VOT for samples taken one observation/respondent data and
empirical reference data.

Table H.2: The average-VOT-error based on the 100 models estimated using
empirical reference data and one observation per respondent data.

Home-based work trips, average VOT-error

 empirical 1 obs/resp

new model 25.5 25.5

transfer scaling 21.2 21.3

Bayes 22.7 7.8

combined transfer est 28.5 28.9

joint context est. 14.1 13.2

When considering the RSEE error (Figure H.3), the results concerning the Bayesian
method and the combined transfer estimation look quite similar.  However, the more
precise examination indicates that there are differences by considering the average RSEE
values presented in Table H.3.  Also, in this case, the combined transfer estimation and the
Bayesian procedure, in particular, give better results when using the one observation per
respondent data.  Due to the larger transfer bias, the differences are greater for cost-
elasticities than for time-elasticities.  The differences between these two cases are smaller
for the combined transfer estimation, because this method emphasize, in any ways, the
application context data.
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Figure H.3: The RSEE for samples taken from the one observation per respondent
data and from empirical reference data.

Table H.3: The average RSEE based on the 100 models estimated using  empirical
reference data and  one observation per respondent  data.

             Home-based work trips  (average RSEE)

empirical reference data one observation/respondent data

ptr time + 30 % car costs  +10 % ptr time + 30 % car costs  +10 %

new model 19.6 27.6 16.1 25.1

transfer scaling 18.3 29.1 17.1 26.9

Bayes 63.1 88.5 55.2 54.9

combined transfer est 18.1 33.0 16.2 25.1

joint context est. 17.1 22.9 15.6 14.6
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APPENDIX I
                                   

The average RSEE and RSEEF-values for 100 transferred models, home-
based work trips in the Turku region. (The best method and results are shaded)

Home-based work trips

 RSEE (%) RSEEF (%)

sample size 425 ptr time + 30 % car costs + 10 % ptr time + 30 % car costs + 10 %

new model 34.1 63.5 30.0 74.2

transfer scaling 34.7 65.1 30.6 65.7

Bayes 65.3 102.4 31.8 98.5

combined transfer est. 33.7 61.6 29.3 73.8

joint context est. 32.4 53.0 17.0 64.6

sample size 850

new model 26.8 41.3 24.1 49.4

transfer scaling 26.4 41.8 23.7 44.5

Bayes 66.1 98.8 35.9 96.3

combined transfer est. 26.5 40.7 23.5 52.2

joint context est. 19.6 35.5 13.5 52.9

sample size 1,700

new model 17.2 28.1 15.3 34.5

transfer scaling 17.6 32.2 18.0 39.6

Bayes 65.6 90.1 38.6 95.2

combined transfer est 17.5 28.7 15.7 36.5

joint context est. 14.0 31.6 10.9 45.0

sample size 3,400

new model 13.0 19.0 10.7 29.5

transfer scaling 12.6 20.9 13.0 30.7

Bayes 58.7 82.4 38.2 90.4

combined transfer est 13.2 19.1 10.9 29.8

joint context est. 11.2 18.0 9.2 27.3

Sample size 4,675

new model 11.7 15.1 10.5 25.7

transfer scaling 12.1 19.1 13.6 34.8

Bayes 55.6 65.2 34.0 87.5

combined transfer est 11.9 17.0 10.4 26.0

joint context est. 10.3 15.5 9.4 25.0
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APPENDIX J
                              

The average RSEE and RSEEF-values for 100 transferred models, other
home-based  trips in the Turku region. (The best method and results are shaded) 

Other home-based trips

RSEE (%) RSEEF(%)

Sample size 140 ptr time + 30 % car costs  +10 % ptr time + 30 % car costs  +10 %

new model 75.7 32.7 67.6 27.1

transfer scaling 81.9 33.4 51.8 24.7

Bayes 96.9 23.7 32.5 6.6

comb. transf. est. 75.2 32.1 65.9 25.9

joint context est. 45.5 30.7 35.2 19.4

sample size 275

new model 60.5 25.8 51.3 19.7

transfer scaling 77.3 29.4 50.7 18.1

Bayes 101.7 23.7 34.3 6.9

comb. transf. est. 59.5 25.5 49.2 17.1

joint context est. 36.6 23.2 27.3 12.9

sample size 550

new model 41.0 20.3 35.2 14.8

transfer scaling 63.6 23.1 42.0 16.1

Bayes 105.8 23.1 42.2 5.0

comb. transf. est 40.3 20.7 34.6 14.6

joint context est. 27.1 17.9 25.3 10.4

sample size 1,100

new model 29.9 14.2 23.6 9.7

transfer scaling 64.1 18.9 41.2 11.1

Bayes 106.7 22.6 46.5 4.8

comb. transf. est 29.5 14.3 23.3 9.7

joint context est. 22.6 13.6 16.9 7.5

sample size 2,300

new model 23.9 10.9 19.0 5.8

transfer scaling 66.4 16.7 42.9 8.8

Bayes 96.9 20.1 48.0 3.9

comb. transf. est 23.6 10.9 19.0 5.8

joint context est. 19.4 11.5 16.0 9.0

sample size 4,675

new model 15.0 7.1 11.9 3.8

transfer scaling 64.1 14.4 39.0 7.6

Bayes 79.0 17.8 49.2 3.2

comb. transf. est 14.8 7.1 11.9 3.7

joint context est. 15.3 7.2 10.0 5.4
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APPENDIX K

The variation of RSEE for home-based work trips in the Turku region 

Figure K.1: The variation of changes in public transport shares (ptr) by transfer
method, when public transport travel time is increased by 30 percent in
the Turku region; home-based work trips. 
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Figure K.2: The variation of change in car shares by transfer method, when car costs
are increased by 10 percent in the Turku region; home-based work trips.
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APPENDIX L
       

An example of MAEF-index (comparison of observed and predicted trips
when using entire set of Turku data)

The Turku region is devided into the following four zones:

� Central city area of Turku (wide area 17)
� Suburb (wide areas 11, 12, 14, 16, 18 ja 20)
� Kaarina + Raisio + Naantali (wide areas 7, 9, 10, 15, 22-24)
� Lieto + Piikkiö (wide areas 2, 4-6 ja 13)
     
Table L.1 and L.2 present the weighted generation-attraction matrices of observed and predicted
trips based on the models estimated from the entire set of 1997 Turku data.

Table L1: The comparison of observed and predicted trips for home-based work trips
(predicted/observed)

Attraction

Generation (1) (2) (3). (4)

Central city area 18114/21096 6692/8293 1854/2531 282/654

Suburb 30554/31564 29265/25186 8236/5010 1441/1277

Kaarina+Raisio+Naant. 10611/10526 10365/7975 9542/13234 723/995

Lieto + Piikkiö 3702/3058 3616/2091 1475/1102 1459/3974

Total 62981/66244 49938/43545 21107/21877 3905/6900

     
Table L.2: The comparison of observed and predicted trips for other home-based  trips

(predicted/observed)                                                      
Attraction

Generation (1) (2) (3) (4)

Central city area 66958/76445 7957/16374 556/2689 20/712

Suburb 60847/68201 114878/76419 8722/9180 455/1702

Kaarina+Raisio+Naant. 10409/13720 15053/9264 56685/46039 371/546

Lieto+Piikkiö 3465/4735 6089/3113 1597/1579 17265/14561

Total 141679/163101 143977/105170 67560/59487 18111/17521



The models estimated by using the joint context estimation:

A)    all coefficients are common
B)    distance 0-5 km is data-specific
C) distance coefficients are data-specific
D) trip cost and distance coefficients are data-specific
E) trip cost, cars/household and distance coefficients are data-specific
F) travel time and distance coefficients are data-specific
G) cars/household and distance coefficients are data-specific
H) travel time, cost and distance coefficients are data-specific
I)       coefficients of cars/household, cost and distance (0-5) variables are data-

specific

T u rk u  re g io n , h o m e -b a s e d  w o rk  t r ip s s a m p le  s iz e  4 2 5  re s p o n d e n ts
c o s t t ra v e l t im e c a rs /h o u s . d is t .  > 5 d is t .  0 -5 m o s t  im p o r ta n to ta l

A 6 3 .4 2 2 .5 5 9 .3 2 3 .6 1 3 .7 1 4 5 .2 1 8 2 .5
B 4 1 .9 2 7 .1 4 5 .6 2 9 .5 1 6 .0 1 1 4 .5 1 6 0 .0
C 4 8 .6 3 6 .1 5 1 .7 4 1 .3 1 8 .2 1 3 6 .4 1 9 6 .0
D 5 8 .8 3 6 .1 5 6 .2 4 4 .3 1 8 .2 1 5 1 .1 2 1 3 .7
E 5 8 .8 4 5 .1 1 3 5 .3 4 7 .2 2 1 .7 2 3 9 .2 3 0 8 .1
F 5 4 .3 3 6 .1 5 9 .3 4 4 .3 1 9 .4 1 4 9 .7 2 1 3 .3
G 5 3 .2 4 0 .6 1 2 7 .7 4 4 .3 1 9 .4 2 2 1 .4 2 8 5 .1
H 6 0 .0 4 5 .1 1 0 3 .4 5 0 .2 1 9 .4 2 0 8 .4 2 7 8 .0
I 5 7 .7 3 1 .6 1 3 2 .3 3 2 .5 1 6 .0 2 2 1 .5 2 6 9 .9

s a m p le  s iz e  8 5 0  re s p o n d e n ts

A 5 5 .4 1 8 .0 5 1 .1 1 8 .9 8 .3 1 2 4 .5 1 5 1 .8
B 3 0 .6 2 2 .5 3 5 .0 2 0 .7 1 0 .3 8 8 .1 1 1 9 .0
C 3 3 .9 2 7 .1 3 8 .0 2 8 .0 1 1 .7 9 9 .0 1 3 8 .8
D 3 6 .2 2 7 .1 4 4 .1 2 8 .6 1 1 .9 1 0 7 .3 1 4 7 .8
E 3 9 .6 3 1 .6 9 4 .3 2 7 .4 1 0 .0 1 6 5 .4 2 0 2 .9
F 3 5 .1 2 7 .1 3 9 .5 2 8 .0 1 2 .3 1 0 1 .6 1 4 2 .0
G 3 7 .3 3 1 .6 9 5 .8 2 8 .9 1 2 .4 1 6 4 .7 2 0 6 .0
H 4 9 .8 4 0 .6 7 7 .5 4 1 .6 2 1 .7 1 6 7 .9 2 3 1 .2
I 3 7 .3 2 7 .1 9 7 .3 2 6 .3 1 0 .3 1 6 1 .7 1 9 8 .2

s a m p le  s iz e  1 7 0 0  re s p o n d e n ts

A 4 6 .4 1 8 .0 4 0 .4 1 7 .1 7 .1 1 0 4 .9 1 2 9 .0
B 2 7 .2 1 8 .0 3 0 .1 1 5 .9 7 .3 7 5 .3 9 8 .5
C 2 7 .2 2 2 .5 3 1 .5 1 8 .9 9 .0 8 1 .2 1 0 9 .1
D 2 7 .2 1 8 .0 3 6 .6 1 8 .9 8 .8 8 1 .8 1 0 9 .5
E 2 4 .9 1 8 .0 5 0 .2 1 8 .3 7 .5 9 3 .1 1 1 8 .9
F 2 7 .2 2 2 .5 3 1 .9 1 8 .9 9 .1 8 1 .6 1 0 9 .6
G 2 7 .2 2 2 .5 5 3 .5 1 8 .9 9 .3 1 0 3 .2 1 3 1 .4
H 2 8 .3 2 2 .5 5 4 .0 1 9 .8 1 0 .5 1 0 4 .8 1 3 5 .1
I 2 6 .0 1 8 .0 5 4 .7 1 8 .3 7 .5 9 8 .8 1 2 4 .6

s a m p le  s iz e  3 4 0 0  re s p o n d e n ts

A 3 5 .1 9 .0 3 0 .3 1 2 .4 4 .7 7 4 .3 9 1 .4
B 1 7 .0 1 3 .5 2 2 .8 1 0 .9 4 .6 5 3 .3 6 8 .8
C 1 7 .0 1 8 .0 2 2 .0 1 2 .1 5 .2 5 7 .0 7 4 .4
D 1 7 .0 1 3 .5 2 4 .6 1 2 .4 5 .2 5 5 .1 7 2 .8
E 1 7 .0 1 3 .5 3 9 .2 1 3 .0 5 .5 6 9 .7 8 8 .2
F 1 5 .8 1 3 .5 2 1 .0 1 2 .4 5 .5 5 0 .3 6 8 .2
G 1 8 .1 1 8 .0 3 8 .6 1 3 .0 5 .4 7 4 .7 9 3 .1
H 1 8 .1 1 3 .5 4 1 .7 1 3 .0 5 .6 7 3 .3 9 1 .9
I 1 7 .0 1 3 .5 3 8 .8 1 2 .4 4 .6 6 9 .3 8 6 .2

s a m p le  s iz e  4 6 7 5  re s p o n d e n ts

A 3 0 .5 5 1 3 .5 3 2 .5 3 1 0 .9 2 5 .7 0 7 6 .6 0 9 3 .2 2
B 1 8 .1 0 9 .0 2 2 5 .8 4 8 .5 6 5 .7 0 5 2 .9 6 6 7 .2 2
C 1 5 .8 4 1 3 .5 2 3 .7 2 9 .4 5 5 .7 0 5 3 .0 8 6 8 .2 2
D 1 3 .5 8 1 3 .5 2 7 .0 6 9 .7 4 5 .8 1 5 4 .1 6 6 9 .7 1
E 1 4 .7 1 1 3 .5 3 8 .7 7 9 .4 5 6 .6 1 6 7 .0 0 8 3 .0 5
F 1 3 .5 8 1 3 .5 2 3 .1 1 9 .4 5 6 .0 4 5 0 .2 1 6 5 .6 9
G 1 6 .9 7 1 3 .5 3 8 .1 6 9 .7 4 6 .1 5 6 8 .6 5 8 4 .5 5
H 1 9 .2 3 1 3 .5 4 3 .0 2 1 5 .3 5 7 .2 9 7 5 .7 8 9 8 .4 2
I 1 3 .5 8 9 .0 3 8 .4 6 9 .1 5 5 .4 7 6 1 .0 5 7 5 .6 7
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APPENDIX M

MD-values for different combinations of joint context estimation; home-
based work trips.



The models estimated by using the joint context estimation:

A)    all coefficients are common
B)    distance 0-5 km is data-specific
C) distance coefficients are data-specific
D) trip cost and distance coefficients are data-specific
E) trip cost, cars/household and distance coefficients are data-specific
F) travel time and distance coefficients are data-specific
G) cars/household and distance coefficients are data-specific
H) travel time, cost and distance coefficients are data-specific
I)       coefficients of cars/household, cost and distance (0-5) variables are data-specific

T u r k u  r e g io n ,  o t h e r  h o m e - b a s e d  t r ip s s a m p le  s iz e  1 4 0  r e s p o n d e n t s
c o s t t r a v e l  t im e c a r s /h o u s . d is t .  > 5 d is t .  0 - 5 n r .o f  t r a n s f e r s m o s t  im p o r t a n t o t a l

A 4 2 .6 8 8 .9 5 0 .5 8 5 .8 1 3 .6 5 7 .9 1 8 2 .0 3 3 9 .3
B 3 2 .2 5 1 .9 4 1 .7 5 2 .2 1 3 .8 6 9 .1 1 2 5 .8 2 6 0 .9
C 3 2 .8 5 9 .3 5 5 .4 1 2 1 .5 1 4 .9 6 8 .6 1 4 7 .5 3 5 2 .5
D 3 0 .5 7 4 .1 7 6 .2 1 2 2 .7 1 5 .3 6 4 .0 1 8 0 .8 3 8 2 .8
E 3 1 .6 1 1 1 .1 7 4 .7 1 2 4 .7 1 5 .6 5 4 .9 2 1 7 .4 4 1 2 .6
F 3 3 .4 1 1 1 .1 3 9 .9 1 2 3 .9 1 6 .8 6 7 .5 1 8 4 .4 3 9 2 .5
G 3 7 .4 5 9 .3 7 4 .1 1 1 8 .2 1 5 .8 7 0 .0 1 7 0 .8 3 7 4 .8
H 3 1 .6 1 1 1 .1 7 4 .2 1 2 0 .6 1 6 .6 6 3 .4 2 1 6 .9 4 1 7 .5
I 3 2 .8 7 4 .1 7 3 .9 7 8 .9 1 3 .7 6 5 .0 1 8 0 .8 3 3 8 .4

s a m p le  s iz e  2 7 5  r e s p o n d e n t s
A 3 8 .0 7 4 .1 4 0 .9 7 6 .1 9 .2 5 1 .5 1 5 3 .0 2 8 9 .8
B 2 2 .4 4 4 .4 2 9 .0 4 2 .5 8 .7 6 4 .7 9 5 .8 2 1 1 .7
C 2 3 .3 4 4 .4 2 8 .1 4 8 .2 1 0 .1 6 3 .8 9 5 .8 2 1 7 .9
D 2 1 .9 5 9 .3 3 9 .2 4 7 .0 1 0 .4 5 9 .5 1 2 0 .4 2 3 7 .3
E 2 6 .5 8 8 .9 4 1 .8 5 5 .1 1 1 .8 4 8 .9 1 5 7 .2 2 7 3 .0
F 2 2 .4 8 1 .5 2 8 .1 5 0 .2 1 1 .3 6 2 .9 1 3 2 .0 2 5 6 .4
G 2 5 .9 5 1 .9 4 1 .8 5 1 .8 1 0 .8 6 2 .0 1 1 9 .6 2 4 4 .2
H 2 4 .2 8 1 .5 4 7 .7 5 3 .4 1 1 .7 5 8 .6 1 5 3 .4 2 7 7 .1
I 2 5 .3 5 1 .9 4 1 .8 6 1 .1 9 .2 6 1 .1 1 1 9 .0 2 5 0 .4

s a m p le  s iz e  5 5 0  r e s p o n d e n t s
A 3 0 .5 5 9 .3 3 2 .1 6 4 .8 6 .0 4 5 .7 1 2 1 .9 2 3 8 .4
B 1 6 .7 4 2 .4 2 8 .4 2 1 .2 6 .1 5 2 .6 8 7 .5 1 6 7 .4
C 1 6 .7 2 9 .6 2 1 .2 2 7 .9 6 .8 5 9 .7 6 7 .5 1 6 2 .0
D 1 6 .7 4 4 .4 2 8 .0 2 7 .5 6 .9 5 3 .8 8 9 .1 1 7 7 .3
E 1 9 .6 5 9 .3 3 4 .4 3 2 .8 7 .4 4 2 .8 1 1 3 .3 1 9 6 .3
F 1 6 .1 5 9 .3 2 1 .2 2 9 .1 7 .6 5 8 .8 9 6 .6 1 9 2 .1
G 1 9 .6 3 7 .0 3 4 .1 3 0 .4 6 .8 5 7 .4 9 0 .7 1 8 5 .3
H 1 7 .8 5 1 .9 3 7 .0 2 9 .1 7 .4 5 3 .3 1 0 6 .7 1 9 6 .5
I 1 7 .8 3 7 .0 3 4 .2 4 1 .3 5 .8 5 6 .5 8 9 .0 1 9 2 .6

s a m p le  s iz e  1 ,1 0 0  r e s p o n d e n t s
A 2 3 .6 4 4 .4 2 0 .9 4 7 .8 4 .8 3 6 .6 8 8 .9 1 7 8 .1
B 9 .8 2 2 .2 2 2 .2 2 4 .3 4 .8 5 2 .6 5 4 .2 1 3 5 .9
C 1 2 .7 2 2 .2 1 5 .9 2 3 .5 5 .6 5 2 .6 5 0 .8 1 3 2 .5
D 1 2 .7 2 9 .6 1 8 .8 2 3 .5 5 .8 4 5 .1 6 1 .1 1 3 5 .5
E 1 2 .7 4 4 .4 2 3 .1 2 5 .1 5 .9 3 1 .3 8 0 .2 1 4 2 .5
F 1 2 .7 4 4 .4 1 5 .9 2 3 .9 6 .5 5 1 .5 7 3 .0 1 5 4 .9
G 1 3 .8 2 9 .6 2 5 .6 2 4 .7 5 .9 4 9 .9 6 9 .0 1 4 9 .5
H 1 3 .2 3 7 .0 2 4 .0 2 4 .3 6 .6 4 4 .1 7 4 .2 1 4 9 .2
I 1 3 .8 2 9 .6 2 6 .3 3 1 .6 4 .7 5 1 .9 6 9 .7 1 5 7 .9
    s a m p le  s iz e  2 ,3 0 0  r e s p o n d e n t s   
A 1 7 .3 3 7 .0 1 6 .2 3 2 .4 3 .9 2 7 .4 7 0 .5 1 3 4 .2
B 8 .6 1 9 .3 1 7 .9 1 6 .2 3 .9 4 1 .2 4 5 .8 1 0 7 .1
C 9 .2 2 2 .2 1 1 .9 1 6 .2 3 .9 3 8 .9 4 3 .4 1 0 2 .3
D 9 .8 3 0 .4 1 3 .6 1 6 .2 4 .8 2 9 .7 5 3 .8 1 0 4 .5
E 9 .8 3 3 .3 1 5 .5 1 7 .4 4 .6 2 2 .9 5 8 .6 1 0 3 .5
F 9 .2 3 5 .6 1 1 .9 1 6 .2 4 .8 3 6 .6 5 6 .7 1 1 4 .3
G 1 0 .9 2 4 .4 1 5 .3 1 6 .2 4 .8 3 6 .6 5 0 .6 1 0 8 .2
H 1 0 .4 3 3 .3 1 7 .9 2 0 .2 4 .8 2 2 .9 6 1 .6 1 0 9 .5
I 9 .8 2 4 .4 1 5 .3 2 4 .3 3 .9 3 6 .6 4 9 .5 1 1 4 .3

   s a m p le  s iz e  4 ,6 7 5  r e s p o n d e n t s   
A 1 1 .5 2 2 .2 1 2 .4 2 0 .6 2 .9 1 9 .2 4 6 .1 8 8 .8
B 7 .5 1 4 .8 1 6 .5 1 3 .4 3 .9 2 9 .0 3 8 .8 8 5 .1
C 7 .5 1 4 .8 1 1 .3 1 2 .1 3 .9 2 7 .7 3 3 .6 7 7 .3
D 7 .5 1 4 .8 1 1 .0 1 1 .3 3 .9 2 0 .4 3 3 .3 6 8 .9
E 7 .5 2 2 .2 1 3 .3 1 3 .0 3 .9 1 6 .5 4 3 .0 7 6 .4
F 6 .9 2 2 .2 1 0 .5 1 1 .3 3 .9 2 7 .2 3 9 .6 8 2 .0
G 8 .6 1 4 .8 1 3 .1 1 2 .6 3 .9 2 7 .0 3 6 .5 8 0 .0
H 7 .5 2 2 .2 1 3 .5 1 6 .6 3 .9 1 7 .8 4 3 .2 8 1 .5
I 7 .5 1 4 .8 1 3 .4 1 6 .6 3 .9 2 6 .8 3 5 .7 8 3 .0
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APPENDIX N
                                  

MD-values for different combinations of joint context estimation; other
home-based trips
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 APPENDIX O                                  
                                     

The variation of RSEE for other home-based trips

Figure O.1: The variation of change in public transport (ptr) shares by transfer
method; when public transport travel time is increased by 30 percent in
the Turku region; other home-based trips.
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Figure O.2: The variation of change in car shares by transfer method, when car costs
are increased by 10 percent in the Turku region; other home-based trips












