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The main goal of this study was to compare alternative methods of spatial transfer as a function of
sample size, and identify the factors affecting the models’ quality and the impreciseness of the
model parameters. In addition, different test measures for studying model transferability were
compared and the applicability of the traditional statistical tests, with respect to those based on the
prediction accuracy of sample enumeration tests and forecasts, were assessed. The research
primarily concerned the transferability of mode and destination models; however, the preciseness
of the trip generation level was considered as well.

The study was mainly based on the mobility surveys conducted in the Helsinki Metropolitan Area
(HMA) in 1995 and in the Turku region in 1997. The transferring procedures examined were
Bayesian updating, combined transfer estimation, transfer scaling, and joint context estimation
procedures. The trip groups studied were home-based work trips and other home-based trips. The
studied modes were walk and bicycle, car and public transport. To explore the impact of sample
size on transferring performance, model transferability was tested using three to four different
sample sizes. Thus, all the transferability tests were made by using 100 bootstrap samples
(resampled from the Turku 1997 dataset) for each trip group, transfer method and sample size
category.

The results indicated that joint context estimation gives the best prediction performance in almost
all cases. In particular, the method is useful if the transfer bias is large or only some of the
coefficients are precise. The applicability of joint context estimation can be improved by viewing
the coefficients as variable-oriented and emphasizing precise and imprecise coefficients differently.
The models transferred by using combined transfer estimation or transfer scaling were most
sensitive to the sample size and their use, therefore, requires much larger samples than the Bayesian
approach or joint context estimation. In addition, note that due to repeated measurements the results
based on the Bayesian method and combined transfer estimation may be strongly biased. When
defining the sample size required the fact that defining mode shares precisely may require more
observations than the transferring mode and the destination choice models must be taken into
account.

The results also showed that statistical tests are not able to evaluate the goodness of transferred
models with a high enough degree of versatility. For example two models that have totally different
values for coefficients may have the same TTS. As a result, their ability to predict the effect of
changes in a transportation system may differ greatly. On the whole, the differences between the
best transfer methods are, in some cases, rather small, and the errors caused by the factors
connected to the modelling and sample size seem to be larger than the errors caused by the model
transfer itself.
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Avsikten med detta arbete var att utreda olika Gverforingsmetoders tillimplighet for olika
situationer. Overforing av modeller har traditionellt uppskattats genom att jimfora parametrar for
modeller gjorda for tvé olika orter eller vid tva olika tidpunkter med varandra. Eftersom en
malséttning for 6verforing av modeller ar att gora det mojligt att uppgora modeller utgdende fran
ritt sma observationsmaterial, koncentrerar sig detta arbete speciellt pa sampelstorlekens inverkan
pa modellers dverforing.

I detta forskningsarbete jimfordes olika dverforingsmetoder med hjélp av material insamlat i
Helsingforsregionen ar 1995 och Aboregionen &r 1997. Dessutom uppskattades sampelstorlekens
inverkan pa modellernas dverforbarhet. Overforingen av modellerna undersdktes for bostads-
baserade arbetsresor och dvriga bostadsbaserade resor. De undersokta firdmedlen var gang- och
cykeltrafik, bil och kollektivtrafik. Modellernas 6verforing undersoktes skilt utgdende fran
trafikalstring, fairdmedelsvalsmodeller och destinationsvalsmodeller samt utgaende fran hela trafik-
prognossystemet. De undersokta dverforingsmetoderna var skalfaktormetoden, Bayes metod, den
generaliserade Bayes metoden samt estimering fran det kombinerade materialet fran
Helsingforsregionen ar 1995 och Aboregionen ar 1997. Dessutom anviindes 1997 ars material frin
Aboregionen for att for varje sampelstorlek estimera nya modeller genom att anvinda modell-
definitioner som tilldimpats pa Helsingforsregionens 1995 é&rs material. For varje resérendegrupp
testades 100 slumpmaéssigt valda bootstrap-sampel. De undersokta sampelstorlekarna varierade fran
400 till 13900 reseobservationer. Trafikalstringen 6verfordes egentligen inte, utan frekvenstalen
berdknades som enkla trafikalstringstabeller for varje sampel.

Resultaten visar, att estimering av det kombinerade materialet &r den bista dverforingsmetoden i
ndstan alla situationer, i synnerhet om de tillforlitligaste variablerna estimeras skilt for varje
material. Modeller estimerade med den generaliserade Bayes metoden och skalfaktormetoden dr
mest kédnsliga for variationer i sampelstorlek, vilket innebér att dessa metoder forutsétter storre
observationsmaterial 4n Bayes metod och estimering fran det kombinerade materialet. Betrdffande
Bayes metod och i viss man ocksé den generaliserade Bayes metoden bor man ta i betraktande, att
modellernas estimater kan vara sneda, om observationsmaterialet innefattar flera resor gjorda av
samma person, vilket ofta &r fallet i material insamlat i Finland. Man bor ocksé ldgga mérke till att
bestimmandet av farmedelsfordelningen kan kridva storre sampelstorlek dn Overforandet av
fardmedelsvals- och destinationsvalsmodellerna.

Resultaten visar, att enbart statistisk provning inte ricker till for att uppskatta modellernas
overforbarhet tillrickligt méngsidigt. Enligt de testningar som baserades pé log-likelihoodmaétt kan
modeller som uppskattats vara néstan lika bra skilja sig mérkbart fran varandra vad betriffar
enskilda variabler, varvid ocksa ifragavarande modellers tidsviarden och elasticitetsverkningar
avviker fran varandra. Allt som allt kan man konstatera, att skillnaderna mellan olika
overforingsmetoder ofta dr mindre én skillnaderna fororsakade av olika sampelstorlek.
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Tamin tyon tavoitteena oli selvittia eri siirtotapojen soveltuvuutta eri tilanteisiin. Mallien siirtoa
on perinteisesti arvioitu vertaamalla kahdessa eri paikassa tai kahtena eri ajankohtana tehtyjen
mallien parametreja toisiinsa. Koska mallien siirron yhtené tavoitteena on mahdollistaa mallien
teko kohtalaisen pienilld havaintoaineistoilla, on tdssd tyOssd tarkasteltu erityisesti otoskoon
vaikutusta mallien siirtoon.

Tutkimuksessa vertailtiin péékaupunkiseudulla vuona 1995 ja Turun seudulla vuonna 1997
keréttyjen aineistojen avulla eri siirtotapoja sekd arvioitiin otoskoon vaikutusta mallien
siirrettdvyyteen. Mallien siirtoa tutkittiin kotiperéisilld tyomatkoilla ja muilla kotiperdisilld
matkoilla. Tarkasteltavat kulkutavat olivat kevytliikenne, auto ja joukkoliikenne. Mallien siirtoa
tutkittiin erikseen matkatuotosten, kulkutapa- ja suuntautumismallien seké koko ennusteen kannalta.
Tarkasteltavat siirtotavat olivat tasokorjausmenetelmé, Bayesin menetelmd, yleistetty Bayesin
menetelmd sekd yhdistetystd péddkaupunkiseudun 1995 ja Turun seudun 1997 aineistoista
estimointi. Lisdksi Turun seudun 1997 aineistosta estimoitiin kullakin otoskoolla uudet mallit
kéyttden padkaupunkiseudun 1995 aineistoon sovellettuja malliméérittelyjd. Kullakin matkaryh-
malld ja otoskoolla testattiin 100 satunnaisesti valittua bootstrap-otosta. Tutkitut otoskoot vaihte-
livat 400:sta 13900:aan matkahavaintoon. Matkatuotoksia ei varsinaisesti siirretty, vaan tuotosluvut
laskettiin yksinkertaisina tuotostaulukkoina kullekin 100:1le otokselle.

Tulokset osoittivat, ettd yhdistetyn aineiston estimointi on ldhes kaikissa tilanteissa paras siirtotapa
varsinkin, jos luotettavimmat muuttujat estimoidaan aineistokohtaisina. Yleistetylldi Bayesin
menetelmélld ja tasokorjausmenetelmélld estimoidut mallit ovat herkimpid otoskoon vaihtelulle,
joten ndiden menetelmien kayttd edellyttdd huomattavasti suurempia havaintoméérid kuin Bayesin
menetelma ja yhdistetystd aineistosta estimointi. Bayesin ja pienemméssd méérin myos yleistetyn
Bayesin menetelmien osalta on huomattava, ettd mallien estimaatit voivat olla harhaisia, jos
malliaineistossa on samalta henkildltd useita matkoja, kuten Suomessa kerétyiSsi aineistoissa
yleensd on tilanne. On my6s huomattava, ettd kulkutapaosuuksien médrittiminen saattaa vaatia
suurempaa otoskokoa kuin kulkutapa- ja suuntautumismallien siirtdminen.

Tulokset osoittivat, ettd pelkilla tilastollisilla testeilld ei pystytd arvioimaan mallien siirrettavyyttéd
riittdvan monipuolisesti. Suurimman uskottavuuden arvoihin perustuvien testien perusteella ldhes
yhtd hyviksi arvioidut mallit saattavat yksittdisten muuttujien osalta poiketa toisistaan hyvinkin
paljon, jolloin my0s kyseisten mallien ajanarvot ja joustovaikutukset poikkeavat toisistaan.
Kaikenkaikkiaan voitiin todeta, ettd erot eri siirtotapojen vélilld ovat usein pienempid kuin
otoskoosta aiheutuvat erot.
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ALKUSANAT

Tamén vaitoskirjan tavoitteena on ollut selvittdd padkaupunkiseudulla vuonna 1995 tehdyn
sisdisen litkenteen mallijdrjestelmén alueellista siirrettavyyttd. Idean aiheeseen sain DI
Hannu Kankaalta, joka itse aikanaan tutki samaa aihepiirid. Ty l&hti liikkeelle erilaisten
siirtomenetelmien vertailusta. Koska mallien siirron tavoitteena on nimenomaan vihentidi
aineiston kerddmisestd aiheutuvia kuluja, tyon toiseksi pddteemaksi muodostui otoskoon
vaikutusten tutkiminen mallien siirrossa.

Ty6 on tehty Teknillisen korkeakoulun liikennelaboratoriossa vuosina 1996-2003, ja sitd
on valvonut ja ohjannut professori Matti Pursula. Kiitdn ldmpimasti professori Pursulaa
saamistani neuvoista ja opastuksesta tyoni eri vaiheissa. Ilman héntéd ty6 tuskin olisi
valmistunut koskaan. Suomen Akatemian ja NorFa:n tuen ansiosta minulla oli tyoni
aikana mahdollisuus vierailla myds Tukholman teknillisessd korkeakoulussa (KTH) seka
Leedsin yliopistossa. KTH:Ita haluaisin erityisesti kiittdd TkT Farideh Ramjerdid hdnen
antamastaan arvokkaasta valikritiikistd sekd professori Lars-Goran Mattsonia hidnen
antamastaan tuesta ja kannustuksesta vierailuni aikana. Vierailu Leedsin yliopistossa toi
tirkedd lisdtietoa aineiston luotettavuuden analysointiin liittyvissd kysymyksissa.
Erityisesti haluan kiittdd PhD David Watlingia ja professori Andrew Dalyd heidin
avustaan vierailuni aikana. Lisdksi haluan kiittdd professori Takashi Uchidaa hdnen
Suomen vierailunsa aikana antamastaan avusta.

Professori Pertti Lainista kiitdn hidnen Bootstrap-otantaa ja tilastollista testausta koskevista
kommenteistaan. Haluan my®os kiittdd DI Jari Kurria yhteistyostd sekd padkaupunkiseudun
ettd Turun mallien laadinnassa seké hianen julkaisuihini esittdmistddn kommenteista.

Kiitokset myos Pddkaupunkiseudun yhteistyovaltuuskunnalle, Turun kaupungille ja
litkkenne- ja viestintdministeridlle, joiden toimeksiannot mahdollistivat tyon tekemisen.
Tyotd ovat tukeneet myds Teknillisen korkeakoulun tukisddtio, Henry Fordin s#étio,
Tekniikan Edistdmissddtio, sekd Suomen Akatemia ja NorFa (Nordisk Forsker-
utdanningakademi).

Kiitokset tyon esitarkastuksesta kuuluvat professori Otto A. Nielsenille Tanskan teknilli-
sestd korkeakoulusta sekd TkT Karin Brundell-Freij’lle Lundin teknillisestd korkeakou-
lusta. Tyon englanninkielisen kieliasun ovat tarkastaneet maisteri Anna Reiter seka
maisteri Ruth Vilmi. Kiitokset heille siita.

Haluan myo0s tdssd yhteydessé kiittdd perhettini, sukulaisiani ja kaikkia niitd ystivid ja

tyOtovereita, jotka ovat edesauttaneet tyon valmistumista.

Espoossa
26.11.2003 Nina Karasmaa
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1 INTRODUCTION

1.1 Background

Travel forecasting is usually based on the presumption that travel demand is based on firm
and predictable behaviour patterns. Analogously, the expectation that travel demand
models are transferable is based on the idea that an individual’s travel behaviour can be
described by the individual’s personal characteristics, their socio-economic backround, the
transportation system, and that the behavioural process is relatively constant over time and
space.

Transferability has usually been described in terms of temporal or spatial transferability.
Temporal transfer is the application of a model estimated at one point in time for the
prediction of behaviour in the same spatial environment at another point in time. Tempo-
ral transfer is employed and temporal transferability is implicitly invoked whenever
models estimated on historic data are used to predict the future. Spatial transfer is the
application of a model estimated in one location (estimation context) for prediction of
behaviour in a different spatial environment (application context). Spatial transferability
is explicitly invoked when models developed in one geographic region are used to make
predictions in another (Koppelman and Rose 1983).

Transferability has been a matter of considerable practical and theoretical interest because
the transfer of a previously estimated model to a new application context can reduce or
eliminate the need for large data collection and model development effort in the applicati-
on context. Thus, several studies have been conducted to assess the effectiveness of model
transfer from one context to another. Some of these studies have examined spatial transfer
(Atherton and Ben-Akiva 1976, Galbraith and Hensher 1982, Koppelman et al. 1985,
McCoomb 1986, Gunn and Pol 1986, Tretvik 1989, Abdelwahab 1991, Algers et al. 1994,
Sermons 2000), while others have examined the temporal transfer of these models (Talvitie
and Kirshner 1978, Train 1978, McCarthy 1982, Hague Consulting Group 1990, Badoe
1994, Badoe and Miller 1995a, Badoe and Miller 1995b, Badoe and Miller 1998, Walker
etal. 1998, Elmi et al. 1999).
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16 CHAPTER 1. INTRODUCTION

The transferability of travel demand models is commonly perceived as an issue of the
equality of the model coefficients in two contexts. However, assessing model transferabili-
ty only on the basis of the set of model parameters being equal in the two contexts is a very
stringent test and it is one that is unlikely to be met since no model is perfectly specified.
Consequently, all models are in principle context dependent. A more pragmatic evaluation
of transferability is achieved by assessing the extent of useful information provided in an
application context by transferred models (Badoe 1994).

In Finland, model transferability was not studied much before the 1990's, when the first
transferability project started at Helsinki University of Technology (Karasmaa 1995,
Karasmaa and Pursula 1995). However, travel demand models have been produced since
1967, when the first models were estimated for the Helsinki Metropolitan Area, and two
years later also for the Lahti and Tampere regions. Since then travel demand models have
been estimated in approximately 15 municipalities. Although, these models may be
precise and well made, the existence of a uniform modelling system (for local purposes)
has been lacking, thereby making it difficult to compare and evaluate results.

The goal of our model transfer project, started in 1994, has been to examine how the
model system developed in the Helsinki Metropolitan area is to be applied in other areas
in Finland. During the project, different transfer methods have been studied, and the key
issues causing differences in modelling and data collection have been investigated. In
connection with the study the regional models have been re-estimated to the Helsinki
Metropolitan area, and totally new models have been estimated to the Turku and Vaasa
regions. HUT has also been involved with projects concerning data quality and har-
monizing both in Finland (Kurri and Karasmaa 1999, Kivari et al. 2000) and at the
European level (Dateline 2003). All this research has contributed to the implementation of
this study even though the results are mainly based on the experiences gained from the
Helsinki Metropolitan Area (HMA) and from the Turku region.

1.2 History and problems

There are two main issues, which affect the results of tests of model transferability. The
first one is the difference between the coefficients estimated from the estimation and
application context data. This difference is traditionally known as transfer bias. The other
is the statistical preciseness of model parameters, which refers to the repeatability of the
estimation results (Richardson et al. 1995). Thus the final results depend on both the
quality of the models in the estimation and application context and the differences in the
traffic system, and on the travel behaviour pattern.
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In literature, four different transfer methods are presented. These are:

transfer scaling,

Bayesian method,

combined transfer estimation and,
the joint context estimation.

The transfer methods differ from each other in emphasizing the estimation and the
application context data. Errors expressed in model transfer can be caused by sampling
errors or errors that are caused by differences between the coefficients in the initial and the
final stages. The problem in model transfer is that we do not know how much the differ-
ence between the coefficients estimated in estimation and application contexts is caused by
the random variation of the model parameters, and how much is caused by the difference
in travel behaviour.

Model transferability has been extensively studied, particularly in the Nordic countries, the
USA, and Canada. The starting point has typically been the testing of the model parame-
ter’s equality in two contexts. What this means, is that the conclusions have been based on
the comparison of the model coefficients in two contexts and no actual transfer has been
made in these studies. The most popular transfer methods have been transfer scaling and
the Bayesian method. In 1987, Ben-Akiva and Bolduc presented a new method, known as
the combined transfer estimation method. This method can be viewed as an extension of
the Bayesian method. When transferring using any of these three methods, only application
context data is required (and the coefficients based on the estimation context). The first
time both estimation and application context datasets were used together in the transfer
process, was in 1994, when Badoe and Miller presented their work (Badoe 1994, Badoe
and Miller 1995a, Badoe and Miller 1995b). In their research, the authors compared the
joint context estimation method with the other three transfer methods.

On the whole, the results relating to model transfer have been controversial. Many studies
have shown that model transfer is possible when the estimation context models are well
defined and the data quality is good. On the other hand, especially when studying spatial
transferability, the opposite results have often been reached. One reason for this may be
that the conclusions, in most cases, have been drawn based on the testing of the model
parameter’s equality in two contexts. Thus the results cannot be fully generalized, but
rather are dependent on the similarities of the datasets in two contexts. The basic assumpti-
on, in many cases, has been that model transfer is only possible if the coefficients in the
estimation and application contexts are quite similar. The possibilities of transfer bias
control (the difference in the true parameters between the two contexts) have rarely been
explored. In addition, the importance of the impreciseness of the coefficients has not been
analyzed. Thus, conclusions have, in most cases, been based on statistical tests only rather
than any reference to the performance of models in practice.
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The first studies, in which researchers consciously committed themselves to how the
difference between estimation and application contexts should be considered, were not
published until the end of the 1980°s (Ben-Akiva and Bolduc 1987, Badoe 1994, Badoe
and Miller 1995a, Badoe and Miller 1995b, Badoe and Miller 1998). Prior to this
methods (e.g. transfer scaling) which took into account the transfer bias were used,
however, the main thrust of the research had been to study the model parameters similari-
ty in two contexts. As a result of this, almost all the previous research has been conducted
using the whole set of mobility survey data without studying the effects of the sample size.
This has been done despite the knowledge that the greatest advance in model transfer
could have been reached by reducing the size of the data to be collected in the new
situation.

1.3 Model transfer experiments in Finland

The main reason for the lack of Finnish experiments with model transfer has been a lack
of appropriate models and suitable data. The study of temporal or spatial transferability
requires an appropriate model structure based on reliable data for the base situation. In
addition, reliable data is required for the transfer of this model structure in time or space.
The appropriate data for model transfer in Finland now exists for the Helsinki Metropoli-
tan Area. In 1988, a comprehensive travel survey was conducted in the area (Y7V 1990b).
Based on this survey travel demand models (Pursula and Kanner 1992), that were used in
traffic forecasting and evaluating the effects of land use, traffic system and policy making
were estimated. In addition, a new travel survey was conducted in 1995 (Kaartokallio
1997) and new travel demand models for the Helsinki Metropolitan Area were estimated
based on this survey (Karasmaa et al. 1997). Similar travel surveys were conducted in the
Turku, Tampere, Jyviskyld, Vaasa, Oulu and Rovaniemi regions in the 1990's.

The current model system used in the HMA and in most cities in Finland is the traditional
four step model, in which the travel modelling has been divided into four different sub
models, namely: trip generation, destination choice, mode choice and route choice. The
process includes feedback between the last three steps (YTV and Liikenneministerio 1990a,
Pursula and Kanner 1992, Karasmaa et al. 1997). Steps two and three have been model-
led using discrete choice models. This means that every individual chosen in the sample
has a limited number of alternatives and from these alternatives he or she will choose the
one that will maximize his or her utility. Travel forecasting is based on the presumption
that the distribution of travel demand is based on firm and predictable behaviour. The most
common model type for individual choices is a logit formulation, which has also been used
in this thesis to model the mode and destination choices.

Research into the transferability of the travel demand models began in Helsinki University
of Technology in 1994. The study was started with a literature review (Karasmaa and
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Pursula 1995). In addition, the spatial transferability of the Helsinki Metropolitan Area
models was studied. The empirical study was based on the data collected in the Oulu
region in 1989 and examined the transferability of mode choice models by using the
transfer scaling method (Karasmaa 1995). Later on, spatial transferability was also studied
in the Turku region (Karasmaa 2001). Research into the temporal transferability of the
Helsinki Metropolitan Area models was started for the first time in 1995. The research was
based on the data collected in the Helsinki Metropolitan Area in 1981 and 1988 (Karas-
maa 1996a, Karasmaa and Pursula 1997). Temporal transferability was next studied in
1996 based on the data collected in the Helsinki Metropolitan Area in 1988 and 1995
(Karasmaa 1998, Kurri and Karasmaa 1999). In both cases the transferability of the
whole four-step model system was studied and different transfer methods were compared
to one another. A licentiate thesis on model transferability was submitted to HUT in 1996
(Karasmaa 1996b).

1.4 Goals of the thesis

The purpose of this thesis is to compare alternative methods of spatial transfer as a
function of sample size and develope a new approach to joint context estimation. The
purpose is also to identify the factors affecting the models’ quality and the impreciseness
of the model’s parameters. The research primarily concerns the transferability of mode and
destination models; however, the preciseness of the trip generation level is considered as
well.

Specifically, the main issues are:

® the transferability of the mode and destination choice models and the corrections that
are needed for the transfer,

the amount of data required in the application context,

the application areas of different transfer methods,

the improvement of the efficiency of transfer methods, and

ways in which model transferability should be tested.

The results presented here are mainly based on information obtained from the Helsinki
Metropolitan Area (HMA) and the Turku region in Finland. The HMA travel database is
used for the estimation of the models which are to be transferred. The database for the
Turku region represents the application context to which the HMA models are transferred.
The model transfer is studied using two different trip groups, namely home-based work
trips (HBW) and other home-based trips (OHB). This makes it possible to study different
kinds of combinations related to the model parameters’ preciseness and the transfer bias.
Some special issues are also considered through the use of simulated data.
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1.5 Summary of contents

The dissertation is divided into seven main chapters. Chapter 2 reviews the history and
problems surrounding model transferability. The issues associated with data quality are
also considered in this chapter. Chapter 3 introduces the theory of transferability and the
logit models. Four different transfer methods are presented in this chapter as well as the
goodness of fit measures. Chapter 4 presents the methodology, and the data and models
used in this study. The factors affecting the models’ quality and the impreciseness of
model parameters are discussed in Chapter 5.

Chapter 6 presents the case study of the spatial transferability of the Helsinki Metropolitan
Area models. Different transfer methods are compared to each other, and the effect of the
sample size is examined. In addition, one special issue, which may affect the generalizati-
on of the results, is studied. This is the problem caused by the correlation between the
answers provided by the same individual (the problem of repeated measurements). General
conclusions are drawn in Chapter 7.
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21 Temporal and spatial transferability

Disaggregate traffic forecast models are based on the idea that an individual’s travel
behaviour can be described by the individual’s preferences, and this behavioural process
is relatively constant over time and space. In model transfer the issue is the general
validity of that description of individual’s behaviour. Model structure and accuracy is
determined by the purpose of the models and by the availability of data. To be transferable
from the point of view of estimation, model parameters should be well specified and as
precise as possible. In addition, the model theory and the model structure must be
consistent with this premise.

There are two different approaches when looking at model transfer. In the first one, model
transferability is studied statistically by comparing models made in different contexts to
each other (e.g., the Helsinki Metropolitan Area and the Turku region). The hypothesis is
that the behavioural parameters of all models are identical. The basic idea is to study
whether this hypothesis holds true.

The second approach is to actively accept that there are some differences in treating longer
periods, or models estimated in different areas. These differences can be caused by the
differences in the traffic system or differences in travel behaviour, i.e., how individuals
evaluate different things. This viewpoint of assessing model transferability is adopted in
this thesis. The basic idea of the research is to study how the transfer bias caused by these
differences can be controlled, without estimating an entirely new model system, or
collecting large amounts of new data (which are needed to estimate “’perfect” new models).

According to the Hansen (1981) and Brand and Cheslow (1981) the model transferability
can be classified as follows:

21
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the transferability of broad behavioural postulates such as utility maximization,
the transferability of a mathematical model class,

the transferability of model specifications,

the transferability of model coefficients.

By studying the transferability of logit models, it is assumed that the first two conditions
are fulfilled and only the last two conditions have to be tested.

Regardless of whether existing models are to be transferred, or new models are to be
estimated, the study of model transferability requires similar travel behaviour surveys to be
made in both the application context area and the estimation context area (excluding naive
transfer). This similarity means that the same variables are to be measured for model
purposes. In addition, similar survey methods are also recommended. This issue is
discussed in Chapter 5. The difference in the process in estimating new models, or
transferred models, is the requirement imposed by the quality and quantity of data. Pursula
and Widlert (1990) have assessed that the estimation of new models requires two to four
times more observations than the transfer of models, as long as the transfer is done with
great care (Pursula and Widlert 1990).

2.2 The importance of source data to model transfer

Mobility surveys are usually performed for two reasons: monitoring of the travel behaviour
of the population and estimating models that are used to understand the past and present,
and to predict the future. Travel behaviour is commonly studied via mobility surveys in
which a trip diary and personal background are observed.

When testing model transferability, it is important to be able to control how well the survey
methods correspond to each other in the estimation and application context. The data
should be collected in a standardized way, and consistent model structures should be used
in all phases. In addition, the questionnaires should be designed in such a way that the
questions can be interpreted unambiguously.

Three popular forms of survey relating to the collection of information are travel diaries
where we only record trips, activity diaries where we mostly record out-of-home activities,
and time-use diaries where we record almost everything we do in a day inside and outside
the home, with the exception of certain highly private activities. In this thesis we are
looking at model transferability based on the data collected through the use of simple one
and two-day travel diaries. We have collected repeated cross-sectional data rather than
panel-data, which is very popular at the moment.
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There are two basic methods of collecting data relating to the individual preferences which
form the basis of behaviour. The method used in this study is known as the Revealed
Preference method (RP). In this method information about travel behaviour is collected
in real situations. The other method that can be used is to collect Stated preference (SP)
data, a method which is based on responses to hypothetical travel situations in a survey
context. SP-data is normally used in cases where observed choice behaviour is not in itself
adequate enough to model the context of interest. SP data may be used, for example, when
one is interested in types of travel alternatives or characteristics which do not yet exist, or
in qualitative attributes which are very difficult to measure in real situations. The statistical
efficiency can also be improved by using SP data. Combined RP and SP data have been
used in order to exploit the relative advantages of the different data sources and obtain
more reliable parameter estimates than those estimated from a single data source (Ben-
Akiva and Morikawa 1990).

Both RP and SP studies can be carried out as a household or as a individual interview. In
a household interview the sample is taken from the households in the area and all the
members of the households are interviewed. By using personal interviews all the people
living in the area generate the population set of data. The interview can be carried out by
using different methods, with the most common of these being postal questionnaires and
telephone interviews, although the seldom used personal interview is the most accurate
way of gathering information.

Postal and telephone interviews have been analysed in several studies. For example, Brog
and Meyburg (1981) indicate, that the use of postal questionnaires increased the response
rate of mobile individuals, beyond that of telephone interviews. In contrast, participation
in both personal interview and a telephone interview is largely determined by accessibility.
More mobile people are more difficult to reach in personal and telephone surveys and as
a consequence they show a higher non-response rate. On the other hand, less mobile
people may be reluctant to answer, if they have not made any trips.

In a study made in the Oslo, Norway in 1990, there was a 40 percent increase in the
reported number of trip generations due to the use of telephone interviews as opposed to
postal questionnaires. It was thought to be due to the fact, that walk and bicycle trips are
usually better reported by telephone interviews (4dlgers et al. 1994).

In principle, surveys are never capable of providing an exact replication of reality. Thus,
at least four different kinds of errors can be identified: sampling error, coverage error,
measurement error and, non-response error (Kalfs et al. 2000).
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Sampling error is not a property of the data itself, but rather a consequence of the lack of
data. Any sampling error does not affect the expected values of the means of the estimated
parameters; it only affects the variability around them, thus determining the degree of
confidence that may be associated with the means. It is basically a function of sample size
and of the inherent variability of the parameter under investigation. This uncertainty can be
reduced by taking larger samples or by using sample designs, such as stratified samples
that yield less variance in the statistics of interest.

Another important source of error is the one resulting from coverage, for instance, the
failure to locate or visit some units in the sample. Well-known examples of problems with
coverage are found in telephone surveys. Telephone coverage is partly a problem because
the coverage is not uniformly distributed among the population. Access to telephones is
related to specific socio-economic background variables, such as age and income.

Measurement errors occur when the observed or reported value is different from the true
value. Measurement error is generally described by the term “observational errors”,
whether they arise from the interviewer, the respondent, the questionnaire or the data
collection mode. Three types of consequences of measurement error can be identified:
non-reporting of trips, incomplete information and incorrect information. Certain data
items, such as income levels or trip departure and arrival times that require estimates on
the respondent’s part can be a source of error. Such errors can produce non-random biases
when respondents consciously or unconsciously distort their answers.

Non-response is a phenomenon in which units that belong to the selected sample provide
no information at all. Partial non-response is present when only part of the data is
collected. Non-response has two effects on the results of sample surveys. First, it reduces
the sample size and hence increases sampling error. A more negative consequence is that
non- response may bias results and lead to under- or overestimation of variances. This
occurs when non-respondents systematically differ from respondents. A lot of research has
focused on the characteristics of non-respondents. It seems to be common knowledge that
non- and less mobile households in particular, and people with relatively simple activity
patterns and those with complex activity patterns as well, tend to respond less.

The most problematic sources of errors are those, whose influence cannot be corrected by
socio-demographic or other kinds of weighting. Although mode shares, among other
factors, could at least be partially corrected by applying socio-demographic weighting (see
Section 5.3.2.1), it must be noted that the mode choice models are usually estimated using
unweighted data. In model transfer, it is also very important to take seasonal variations
into account. If different pieces of research are compared to each other, the minimum
requirement is that the mobility surveys have been carried out in the same season.



2.3 Literature review 25

It should also be noted, that all the trips made during the report period are used as the basis
of the Finnish travel demand models. Consequently, there will be correlation between the
answers provided by the same individual, and therefore in the error terms in the utility
function. This violates the assumption that the error terms are independent of each other

and means that we can no longer rely on the estimated variance estimates (Cirillo et.al.
2000). The problem is known as the repeated measurement issue and it is considered
more specifically in Section 5.3.3.3.

2.3 Literature review
2.3.1 The transferability of model structure and model parameters

There is no concensus on the model transferability in the literature. However, results have
mainly shown that model transfer is possible when the estimation context models are well
defined and the data quality is good (Karasmaa and Pursula 1995). According to Algers,
Colliander and Widlert (1987) the biggest problems are caused by the low quality of the
original data. If the models estimated in the estimation context situation are not good, then
the transferred models cannot be good.

According to Ben-Akiva (1981) specification errors of the explanatory variables are major
contributors to failures of transferability. Similarly, Louviere (1981) argued that
transferability is frequently linked to validation of travel-choice models. Because each
study area has a different covariance structure, each represents only one of the possible
parameter estimates for regions; and the nature of random observations results in
inefficient parameter estimates.

Koppelman and Pas (1986) have compared the transferability of joint choice and
sequential (or nested) choice models. The hypothesis that joint models would be more
transferable than sequential models was based on the work of Ben-Akiva (1974) in which
he argues for the adaptation of joint choice models in preference to sequential models. The
contradictory hypothesis that sequential models would be more transferable was based on
the increased flexibility of sequential models, which allow them to take account of
similarity among some of the joint choice alternatives (McFadden 1978). In their study,
Koppelman and Pas (1986) found only a small difference between the transferability of
joint and sequential models. However, the authors suggested that the conclusion appeared
to be dependent on the similarity of the estimation results for the joint and sequential
models in this specific case.
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Chester (1983) looked at the potential of market segmentation in improving the
transferability of discrete choice models. If the population can be segmented into
subpopulations in which travel tastes are reasonably homogeneous and transfer is made
between groups of similar taste, then there will be no transfer error resulting from the
difference in the distribution of tastes between the populations. The transferability of
models between segmented and unsegmented data was tested empirically with data from
Minneapolis-St.Paul, Baltimore and Washington D.C. The analysis involved transfers
within each area and between the areas. The segmentation according to the gender, income
level, workers per household and cars per household were tested. The main finding was,
that transferability was consistently improved by using segment models instead of a single
pooled model. However, the degree of improvement observed was small in absolute terms.
According to the author, one reason for this could be that there was relatively little
difference in the distribution of the travel tastes between transfer contexts in this study.

Model complexity can be assumed to have different effects on model quality and
transferability. Sermons (2000) found, in his study of residential location choice models,
that improvements in the specification aimed at better representing household-level
systematic taste variation did not necessarily result in improvements in model
transferability because the more complex models are more difficult to transfer.

Dehghani and Talvitie (1983) tested the effect of model specification (simple versus
complex) on the transferability of mode choice models. They also found that the potential
of transferability of a model did not increase at the same rate as did the complexity of the
model specification.

According to Talvitie and Kirchner (1978) model specifications strongly affect the
coefficients and the models' degree of fit. For this reason, the walking and waiting times,
among others, should always be treated separately. On the other hand, the Finnish
experiences have shown that travel time components cannot be produced reliably by the
use of the Emme/2 assignment program, which has been the basic network related analysis
tool in most Finnish research (Karasmaa 1995).

Some research, such as those by Parody (1977) and Train (1978), indicate that the
prediction efficiency can be improved by adding socio-economic and demographic
variables to the models.

Tardiff (1979) has shown that the omitted variables can strongly affect the values of
alternative-specific constants and increase their variability. When comparing two similarly
specified models to each other, the difference between the average values of random
components is usually quite large, the difference between the estimated variances of coeftfi-
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cients is smaller, and the difference between the parameter values is the smallest. This sug-
gests the importance of the re-estimation of alternative-specific constants in model transfer.

Next, a short summary of the previous studies relating to temporal and spatial
transferability is presented. The results of these studies have been more widely discussed
in a study by Karasmaa and Pursula (1995). The transfer methods presented in this section
are described in more detail in Section 3.7.

2.3.2 Spatial transferability

The earliest of the transferability studies was carried out by Watson and Westin (1975),
who studied the transferability of mode-choice models among different subareas within a
single urban area. Their data were for the Edinburgh-Glasgow area of Scotland. The data
were grouped into six categories according to whether the trip origins and destinations
were in the city centre, the suburbs, or the area peripheral to the urban area. Each of the six
models was then used to predict the mode choices of the other five samples. Watson and
Westin concluded that the predictive ability of the model for the city centre was fairly
favourable to transferability, but that the results for the other groups indicated a need to
refine the models for locational differences.

Atherton and Ben-Akiva (1976) investigated the transferability of a work trip mode choice
model estimated on 1968 Washington D.C. data. The transferred model was applied to data
sets representative of New Bedford, Massachusetts from 1963 and Los Angeles, California
from 1967. In addition, the authors developed a hierarchy of model transfer methods for
empirical testing. Despite the Washington D.C. data set representing significantly
different socio-economic and demographic distributions from what existed in Los Angeles
and New Bedford, the authors, on the basis of transfer evaluation measures, came to the
conclusion that the model was transferable. Of the several approaches for transferring that
were developed, the Bayesian approach based on combining the existing model
coefficients with the estimation results from a new sample gave the best overall
performance.

Koppelman et al. (1985) investigated the intraurban and interurban transferability of work
trip mode choice models. The intraurban transferability was studied across three
geographic areas in Washington D.C. The interregional transferability analysis was
undertaken in Minneapolis St. Paul, Baltimore, and Washington, D.C. According to the
results, transfer effectiveness improved with the updating of alternative-specific constants
and improved further with the updating of the parameter scale for both intraurban and
interurban transfers.
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The research done in Norway, in 1989, further supports the view that alternative-specific
constants should be re-estimated (Tretvik 1989). However, the research shows that in
predicting the effects of changes in the travel system, the correction of alternative-specific
constants already gave better performance than might have been the case had the transfer
scaling for some variables also been used. Algers, Colliander and Widlert (1987) obtained
similar results in their studies relating to the transferability of mode and destination choice
models in Sweden.

Galbraith and Hensher (1982) investigated work trip mode choice model transferability
between two suburban areas of Sydney, Australia. Both transfer scaling and the Bayesian
approach were examined. Transferability was rejected using model parameter equality tests
as well as the comparison of "proper fit" measures.

The Bayesian approach was also studied by Abdelwahab (1991). In this study the
comparison of mode choice models estimated on the data sets from two regions in Canada
yielded inconclusive results in relation to model transferability. In general, transferred
models were found to be 18-23 percent less accurate than local models in predicting modal
shares.

McCoomb (1986) studied the transferability of mode choice models for the journey to work
in Canada’s ten largest cities. Data for all cities were collected on a specific day, common
to all, by Statistics Canada. Model specifications for the ten cities were identical.
McCoomb’s analysis did not result in a single transferable model to all the cities. However,
some models were found to be “reasonably” comparable in terms of model coefficients,
which led the author to conclude that a model from one city can be transferred and used to
forecast modal split in another city when cities are reasonably similar in size, structure,
transportation system, and so forth.

Sermons (2000) also studied the transferability of residential location models estimated for
the San Francisco metropolitan area and the Portland metropolitan area and assessed the
effectiveness of variance scaling, weighting, and systematic taste variation on model
transferability. The results showed that scaling to account for variance and using the
weighted likelihood function vastly improved the transferability of the model. However,
the more complex models including separate time parameters for male and female workers,
did not yield good results in comparison with the more simple models.

Most studies have focused on the transferability of the mode choice models; however,
transferring the entire model system was examined in the Netherlands where the model
system made for the Rotterdam and The Hague region was transferred to Utrecht (Gunn
and Pol 1986). The model system differed from the “standard four-stage transportation
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planning models”, being more similar to the activity-based models than the traditional trip-
based models. The model transferability was evaluated in terms of relevance, adequacy and
validity. This research showed that the model transfer is also possible for the entire model
system, when the alternative-specific constants are re-estimated and transfer-scaling factors
are used. On the other hand, transfer scaling separately for travel standards and socio-
economic variables did not give remarkably better transfer effectiveness.

In Sweden, the model combination estimated in Goteborg, Jonkoping and the Netherlands
(known as the Zuidvleugel-study 1977-81) was transferred to Helsingborg in 1989. The
studied trip groups were work, business, shopping, social and recreational trips. Transfer
effectiveness was measured in terms of transfer scaling factors, which deviated
significantly from zero and one. The transfer effectiveness of the level of service variables
seemed to be good. However, the naive transfer, without any transfer scale factors, or
socio-economic variables, was not adequate. Some attraction variables for destination
choice levels were required. However, there were quite large-scale factors, due to the
population density differences between these countries and also different opinions,
regarding which kind of society is better. (Widlert 1990, Algers et al. 1994.)

In Norway, the transferring of work and shopping trip models was tried in the Oslo-
Akerhus region in 1990. The re-estimation of alternative-specific constants of work trip
models indicated the largest improvements with respect to the naive model. In the transfer
of the shopping trips, the best results were obtained by using an inverse model structure for
mode- and destination choice models, and by using scale-factors for the level of service
variables. According to the study, transfer scaling can lower the models' ability to predict
changes in the travel system if the relationships of the coefficients do not stay the same
between the estimation and application context (4lgers et al. 1994).

In 1992, in Stockholm, the work trip model system was partially transferred to Trondheim.
Although the travel behaviour between these two regions was quite different, the model
transfer, which was carried out using the transfer scaling method succeeded quite well
(Algers et al. 1994).

2.3.3 Temporal transferability

Most transferability studies focus on spatial dimension; the transfer scaling approach is the
most common approach when corrections are made. In principle, the problem is the same
when considering temporal transferability. However, in some cases, the viewpoint can
differ from that used in the context of spatial transfer ( e.g. the use of combined RP and SP
data).
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One of the first studies of temporal transferability was carried out by Talvitie and Kirshner
(1978), who investigated the transferability of model coefficients in a temporal context for
San Francisco, using pre-BART (Bay Area Rapid Transit) data (1973) and post-BART data
(1975) and in a spatial context on Washington D.C. data 1968 and Minneapolis St. Paul

data sets 1970. Transferability was evaluated by a statistical test of equality of the entire
set of estimated model parameters including the modal alternative-specific constants for
the local and application context. The authors found that the model coefficients were
highly sensitive to model specification, thus having a significant impact on explanatory

(and hence transferability) power. Moreover, based on statistical criteria, they found “little
ground to claim that the coefficients of the work mode-choice models are transferable.”

Talvitie’s and Kirshner’s findings were supported by Train (1978) who investigated model
specification and its relationship to temporal transfer effectiveness using the San Francisco
pre-BART and post-BART data sets, which Talvitie and Kirshner also used in their study.
Transferability was evaluated by tests of parameter equality in the two contexts and by
forecasting accuracy.

Train found the coefficients of the level-of service attributes to be comparable in the two
contexts but different for those of the socio-economic attributes. Large forecast errors
were also obtained with the transferred model. In predicting in the application context,
Train attempted to address the problem of defining the coefficient’s estimates for the
attributes of the introduced new BART alternatives. The poor performance of his model
is partly a reflection of the conjecture that was part of this process.

Finally, McCarthy (1982) investigated short term temporal stability using the previously
mentioned BART data sets in addition to a third data set defined as early-BART.
McCarthy could not reject temporal stability of the entire set of estimated model
coefficients in the short run.

The studies by Badoe (1994), Badoe and Miller (1995a), Badoe abd Miller (1995b)
compare different transfer methods. In their study, Badoe and Miller examined the long-
term temporal transfer of work trip logit mode choice models, estimated using 1964 data
for the Greater Toronto Area (GTA), to represent 1986 work trip mode choice in the GTA.
Three updating procedures, which were previously presented in the literature (Bayesian
updating, combined transfer estimation and transfer scaling) were examined plus a fourth
new procedure, joint context estimation. The results indicated that the combined transfer
estimation yielded, in almost all cases, the best predictive performance in the 1986
application context, based on the disaggregate full-sample log-likelihood measure used.
However, as the authors stated, this was largely the result of the dominance of the transfer-
scaling component of the procedure. This effectively resulted in the procedure being
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equivalent to a simple re-estimation of the model using the application context data set.
Due to the impreciseness of the coefficients, the use of the smaller sample sizes reduces the
predictive performance.

The joint context estimation yielded results which were generally comparable to the
combined transfer procedure, but with a significantly more parsimonious parameter
structure. Thus, the authors recommended that the estimation context data set should be
available to support joint context estimation. On the whole, the differences between the
methods were found to be rather small, possibly due to the use of statistical tests instead of
sensitivity analysis, such as the calculation of elasticity.

One remarkable finding was that improving the model specification yielded far greater
improvements in model performance than either “optimising” the transfer procedure or
increasing the application context sample size. Thus, the authors concluded that model
specification is extremely important in the transfer process.

Furthermore, Badoe and Miller (1998) investigated the additional complexity brought
about by introducing scale parameters for the random utilities of the various modes in the
application context in addition to the period-specific alternative-specific constants. This
appeared to be justified by the statistically significant improvement in fit to the data at a
disaggregate level compared to similarly specified models, but without the alternative-
specific scales.

Elmi et al. (1999) reported from a study in which the temporal transferability of entropy-
type trip distribution models was examined. Data for the study was drawn from three
travel surveys conducted in 1964, 1986 and 1996 within the Toronto area. The study
results showed that the travel-time parameter was not temporally stable. However, the
transferred models were found to provide forecasts that were very comparable to those
generated by locally estimated models. Stratification of the data by occupation-category
of worker resulted in models with the best fit to estimation data as well as to forecasts.

Different ways of using RP and SP data to update the RP models were examined in the
Netherlands, in 1989 (Hague Consulting Group 1990). The results showed that in the case
of RP models updated by RP data the updated mode-choice models for the commuter and
business trips gave a good level of transfer effectiveness. The transferability of the models
estimated for other trips was weaker, due to the different trip specifications in 1982 and
1989. In the case of RP models, which were updated using both the RP and SP data, the
use of SP data did not improve the transferability of commuter and business trips models
but it did improve the transferability of the models estimated for other trips. The use of the
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adjusted network RP-data, that is the network impedances supplemented by the additional
information (public transport ticket type, parking type) from the SP study improved
models. On the other hand, defining the travel time and cost coefficients by using the SP
model and using these results to estimate RP models, did not improve results.

Finnish reseach relating to the model updating of the Helsinki metropolitan area mode
choice models (Kurri et al. 2001) also showed that the combined use of revealed and stated
preference information turned out to be quite difficult. This was because it is nearly
impossible to define the variables of a stated preference exercise in the same way as can be
done with the variables used in mode choice models based on actual choices.

Walker et al. (1998) examined the parameter scaling method to update the Delaware Valley
Planning Commission’s existing travel simulation models. The parameter scaling method
was applied to update the mode choice models. For updating purposes two different
surveys were conducted: A regional cordon line traffic survey to collect information on
traffic volumes and patterns generated by vehicles entering or exiting the region and a
small-sample home interview survey stratified by automobile availability and county was
performed in 1988. The estimation of the parameter scaling factors (from current survey
and secondary source data) took the form of an iterative parameter adjustment procedure.
Trial adjustments were made, the travel simulation model or models were rerun, and the
errors were calculated on the basis of survey or secondary source data, or both. Revised

parameter estimates were then prepared using a proportional scaling technique, and the
process was run through another iteration. The process ended when the current parameter
set achieved an acceptable level of accuracy. The results showed, that when the required
changes are small, the use of parameter scaling method yields good results.

24 Conclusions from the previous transferability studies

On the whole, the results relating to model transfer have been controversial. Many studies
have shown that model transfer is possible when the estimation context models are well
defined and the data quality is good. On the other hand, especially when studying spatial
transferability, the opposite results have often been achieved.

Generally, by comparing the models estimated for urban and sub-urban areas it has been
found that urban models apply well to other urban areas, but transferring models between
urban and suburban areas has not succeeded as well. Additionally, most research has
shown that under similar circumstances people in different cities and countries react in
quite similar ways to changes in travel time and costs. However, variation in the
distribution of the socio-demographic attributes varies greatly, and these have been taken
into account when transferring models.
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The literature shows that the segmentation, or added variables, may improve the model
quality up to a certain point. Nevertheless, improvements in the specifications do not
necessarily result in improvements in model transferability because more complex models
are more difficult to transfer. Neither is there any broad evidence as to how the model
structure, or estimation method affects model transferability.

The earliest studies have been mainly concerned with model comparison in two contexts.
Also in many later studies, the basic assumption has been that model transfer is only
possible if the true coefficients in the estimation and application contexts are quite similar.
The possibilities for control transfer bias (the difference in the true parameters between the
two contexts) have rarely been explored. When they have been looked at, the importance
of the impreciseness of the coefficients has been ignored.

In literature, four different transfer methods are presented. From these, the Bayesian
approach and transfer scaling are used in most studies in the 70's, and 80's. The Bayesian
approach emphasizes the coefficients with respect to the inverse of the variances of each
coefficient. The transfer scaling approach uses the new data purely to correct the transfer
bias (the difference between the coefficients in the estimation and application context). In
1987, Ben-Akiva and Bolduc presented a method in which both the transfer bias and the
model parameter variance were taken into account. In the 1990s, Badoe and Miller
compared the three transfer methods presented earlier and applied an additional new
approach, namely the joint context estimation as well. In their study, the combined transfer
estimation yielded, in nearly all cases, the best predictive performance. However, the joint
context estimation yielded results which were generally comparable to the combined
transfer procedure.

Model transferability has traditionally been evaluated on the basis of how well transferred
models replicate existing behaviour rather than on their ability to forecast adequately
changes in travel demand. Such analyses where different sets of data are used in the model
calibration and validation are severely limited. If the primary function of a mode-choice
model is to predict the impact of changes in the transportation system on travel behaviour,
then an essential characteristic of such a model has to be its ability to predict accurately.

Examining only one element (mainly the transfer of trip generation, or mode choice level)
instead of the whole four-step model system can also be regarded as a weakness of the
many previous studies.
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2.5 Implications for this study

Earlier transferability studies have mainly focused on the study of model transferability by
using only one method and one sample size. The assumption has been that model transfer
is only possible if the coefficients in the estimation and application contexts are quite
similar. As a large part of the difference in coefficients and predictions is due to the
discrepancies in the formulation of the initial data, or random variation, and only partly due
to the real differences in the estimation and application context, the main emphasis in this
study is to investigate the relationship between the transfer bias and the impreciseness
caused by the sample size. Different transfer methods are compared to each other, as well
as the amounts of data needed to estimate mode and destination choice models.

Thus, the intention of this thesis is to compare different transfer methods as a function of
sample size, and identify the factors affecting the models’ quality and the impreciseness of
model parameters.

More specifically, the aims of the research are:

o to investigate the importance of transfer bias and the preciseness of model
coefficients to the applicability of different transfer methods, and to further
develope the joint context estimation method to control the effects of transfer
bias and coefficient impreciseness,

° to investigate the application context sample size requirements when transferring
models or estimating new models as well, and to analyse how different quality
criteria affect this sample size requirement,

° to compare different test measures used for studying model transferability and in
particular to evaluate the applicability and goodness of the traditional statistical
tests, with respect to those based on the prediction accuracy of forecasts.

The study is divided into two main parts. The first part of the thesis deals with the factors
which decrease model quality and cause the apparent differences between the estimation
and application context. For example, the importance of data gathering methods
(telephone interview versus postal questionnaire), and sample size are studied. The second
part analyses the spatial transferability of the HMA models.
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3.1 Random utility theory

The concept of random utility was first introduced by Thurstone (1927), who was a
researcher in the field of mathematical psychology. Experiments showed that individual
choices were, in many respects “irrational” and unpredictable. At the same time there was
also considerable practical interest in being able to predict behaviour, and there was also
empirical evidence that certain aspects of behaviour were in fact “predictable” on a more
aggregate level (Brundell-Freij 1995).

Generally, discrete choice models, like the logit model, postulate that the probability of
individuals choosing a given option is a function of their socio-economic characteristics
and the relative attractiveness of the option. The basic assumption of choice models is that
each individual is attempting to maximize his or her utility. In other words, when a
traveller has to make a decision in selecting an alternative from the available choice set
he/she chooses the one which is the most attractive (or provides the maximum utility) for
him/her (Ben-Akiva and Lerman 1985).

The attraction of available alternatives i for each individual n can be measured with utility
function. In a real situation there are attributes that can be observed by the modeller and
attributes that remain unobserved. In Equation 1 the first term of the total utility Uin stands
for the observed utility which is derived from the observed attributes. This portion of the
utility is usually marked with the letters V,, and it is called deterministic utility.
Additionally, the random portion for person n and alternative i is presented in term &,

Uin :Vin+8in' (1)

The deterministic component of utility function is usually expressed as a linear function of
the attributes x,...,X,.

V=B ,X, +B,X, ... +B X, )

35
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where f,,..., B, are the coefficients to be estimated. Variables can be included as either
generic or alternative specific (Stopher and Meyburg 1979, Ben-Akiva and Lerman 1985).
Introducing a variable in a generic form means that when considering the different choices
travellers have equal perception toward this variable across all alternatives. Whereas, an
alternative specific variable suggests that the perception of users toward the same variable
varies from one alternative to another.

In logit models it is assumed that the unobserved part of the utility (labelled g, ) is
distributed independently and identically following Gumbel distribution with a zero mean
(Ben-Akiva and Lerman 1985). The value of random terms can, by definition, vary across
different decision-makers and groups of persons as well as alternatives. There are a
number of reasons why there has to be a random component in a utility function (Lerman
1984):

@) Measurement errors. There are often errors in measuring the attributes of
the alternatives.

(b) Proxy variables. The modeller is often forced to use proxy variables if real
variables are difficult to measure. The differences between the proxies and
the actual attributes are source of randomness.

(©) Omitted attributes. The decision-maker (traveller/individual) often uses
attributes that the modeller does not know, cannot measure or chooses to
omit for some reason.

(d) Unobserved taste variations. There are undoubtedly taste variations
between individuals. Although the modeller can use socio-economic
attributes to take this into account, there is probably always some residual
variation that remains unexplained.

3.2 Multinomial Logit Model (MNL)

The multinomial logit model is the most widely used discrete choice model. It is easy to
use and an estimation of its parameters is inexpensive. The logit model gives a probability
of a specific alternative to be chosen by an individual. The selected mode has to be
available in the choice set and the selection is done using the differencies in the utilities of
alternatives. Under the assumptions made in Section 3.1, the choice probability for
alternative i and individual n is given by (Ben-Akiva and Lerman 1985):
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In Equations 3 and 4 the value of the scale parameter i depends on the variance of the
random term in such a way, that the smaller the variance g, the greater the value of y, and
the more sensitive the model to the changes of variable values. The scale parameter u is
not identifiable (if V;, is linear in response to its parameters, the scale parameter p can not
be separately estimated). Thus in model estimation the scale parameter 1 has to be fixed.
Usually the scale parameter is assumed to be 1. It implies that the variance of the
disturbances is fixed and homoscedasticity (i.e the error term has a constant variance) is
assumed among choices (Ben-Akiva and Lerman 1985).
2 °

m :m. (4)

Equation (3) shows that the choice probabilities depend only on the absolute difference in
utilities between alternatives, not the absolute values of utilities.

The principal form of the relationship between P; and V;, given by the multinomial logit
model, is S-shaped, in the same way as binomial model which is illustrated by Figure 1.

Pl

fi==

=0

0<p<m
F[:

0 Vi-v2
Figure 1:  The principal form of the binomial logit model relationship with different values
of p.

The change in the probability is largest and the curve is steepest when the choice
probability is near 0.5, and becomes smaller as it approaches zero or one. If the same



38 CHAPTER 3. OVERVIEW OF THE THEORY OF TRAVEL DEMAND
MODELS AND MODEL TRANSFER

alternative is chosen by almost all persons in the same situation, the variance of random
factors approaches zero and the value of scale parameter p approaches infinity.

When modelling several dimensions of choice, e.g. destination and mode choice,
simultaneously, the multinomial logit model is expressed as (Ben-Akiva and Lerman
1985):
v
e md
Pra=———— (5)
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where subscriptions m and d denote mode and destination choice, respectively.The
formulation is called to joint logit model and it is illustrated in Figure 2.

ma, | [m | md | [ |[md, | [md,| [md|md | md ]

Figure 2: A joint logit model for mode (m) and destination choice (d).

The multinomial logit model has the property that the relative choice probability of any
two of the alternatives is independent of the presence of a third alternative. This feature is
commonly denoted as 1IA or indepence from irrelevant alternatives and it can be easily
shown to hold in the case of MNL as follows (Luce and Suppes 1965). If a ratio of the
probabilities for two alternatives, i and k for the individual n, is considered, it can be seen
that:

e Viny Y e Vin

Pn(l) — jGCn — eVin :evin_vkn (6)
P.k) Yy g¥in gV |
jeC,

This ratio is indeed only dependent on the difference between the utilities for alternatives
i and k. This allows a new alternative to be easily added into the model. The IIA property
was originally regarded as a great advantage of the logit model but there has also been a
lot of concern about the problems caused by this property.



3.3 Nested Logit Model 39

However, one of the I1A’s advantages is that if there are too many alternatives, such as in
the case of destination choice, it can be shown (McFadden 1978) that the model
parameters can be estimated consistently on a subset of available alternatives to the
decision-maker. Thus, if there are 100 alternatives, the modeller can estimate the logit
model for each sampled person on a subset of 10 alternatives which include the actual
choice and 9 other randomly selected alternatives. Due to the I1A property, the relations
within the subset are unaffected by the exclusion of the alternatives that are not in the
subset (Ben-Akiva and Lerman 1985, Ortuzar and Willumsen 1994).

3.3 Nested Logit Model

The nested logit model, first derived by Ben-Akiva (1973, 1974), is an extension of the
multinomial logit model designed to capture correlations among alternatives. In
applications where utilities of some alternatives are correlated, or have different variances
attached, the logit model may substantially overpredict or underpredict the shifts in the
share of each alternative. Some of these problems can be avoided by using nested logit
model. The nested logit model can be used when the choice set can be partitioned into
subsets according to their properties. Alternatives that are correlated and share the same
source of variance of error are placed into the same nest, which partly removes the I1A
property. In the tree structure the 1A property holds within a subset but not across subsets.
Hence, the ratio of probabilities of any two alternatives within a subset is independent of
the existence of other alternatives. However, the ratio of two alternatives in different
subsets is dependent of existence of the other alternatives (Train 1986).

The nested logit model is illustrated in Figure 3. The introduction of lower nests in their
immediate superiors is done by means of the utilities of the composite alternatives which,
in general, have two components: one which consists of the expected maximum utility
(EMU) of the lower nest options, and another which considers the vector of attributes
which are common to all members of the nest (Ortdzar and Willumsen 1994).

destination

Figure 3: The nested logit model for mode (m) and destination (d) choice.
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Let us assume that the mode choice probability, when the destination d has been chosen,
is Prq and the destination choice probability is R . Thus, the nested logit model can be
stated as

Pna=Pmia*Pa »
VgrWin ) eVmid
eVm‘d e m'EMd
Poo—=—— Pd" ) 7
E eV"‘"d Vg+Win Y e Vm|d?) (7)
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where M, is the set of all possible modes to destination d and D the set of all possible
destinations.

In Equation 7 the log of the denominator of P4 has been used. This term, labelled
logsum or expected maximum utility, EMU (Ortlzar and Willumsen 1994), is the
connection between the mode and destination choice (Equation 8). The parameter W
estimated for logsum variable describes the similarity of the alternatives and it is estimated
as an additional parameter of the model.

logsum = In 3 e o),

m’eMy

(8)

The value of W depends on scale parameters py and ., and variance of the random terms
(assuming g~ 0):

\%
W= ar(€qm) - ﬁ, (9)
Var(e)+Var(e,) H,

If W=1, the choice probabilities become multinomial logit. If 0<W<1, the IIA property
holds within a subset but not across subsets. The situation, in which W>1, is not consistent
with theory of utility maximization. This means that an increase in the utility of an
alternative in the nest would tend to increase not only its selection probability but also that
of the rest of options in the nest.

The variance of the random utilities is thus the smallest at the lowest level of the tree, and
it can not decrease as we move to a higher level. It also means that choices whose variance
is greater are usually placed to the upper level of structure. The model structure also
describes how well the choices can be explained. The choices of model structure used do
not determine in which order the decisions are made in real word, only consider
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similarities between alternatives. In some cases, if W>1, the models for mode and
destination choices are to be estimated in inverse order, so that the destination choice is
placed in the upper level of structure to have W< 1.

The nested logit model may be estimated sequentially or simultaneously. The benefit of
simultaneous estimation is that the model can use all information at the same time. Some
information can be lost in sequential estimation, when the lower level variables are studied
only in relation to the chosen alternatives without the simultaneous connection to the
unchosen altenatives on the upper level (Ortazar and Willumsen 1994). Moreover
Amemiya (1978) has shown that by using standard multinomial logit estimation programs
and sequential estimation procedure, the variance-covariance matrices of the estimates
obtained for the marginal probabilities of higher level models are incorrect and too small.
On the other hand, simultaneous estimation may have problems if W will be over 1 (see
Section 4.5).

3.4 Elasticities of logit model

One useful property of econometric demand models is the concept of an elasticity. An
elasticity is the relative change in one variable that is associated with a relative change in
another variable. The simplest case is the elasticity of the probability of an individual n
choosing alternative i with respect to a change in some attribute k that is an independent
variable in the model, namely one of the x;,,’s. In this case the direct elasticity of logit is
given by (Ben-Akiva and Lerman 1985):

EP"(”:aP“(i)* Xk :8|nPn(i)
ok ox P.()) alnx.,

=[1-P ()]X; By (10)

Similarly the disaggregate cross elasticity of the probability that alternative i is selected
with respect to an attribute of alternative j is

. Pai) olnP (i)

X:

= =-P _(x.B,, for j=i.
ink alnxjnk n(-l) JnkBk J (11)

The change in the probability of choosing alternative i given a change in an observed
factor, x;,, entering the representative utility of alternative i is stated as (Train 1986):
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P () oV,(i)
ik MXink

P,(D[1-P,(D)]. (12)

Usually V(i) is linear in the observed variables, with parameters as coefficients. If the
coefficient of x,, is the scalar 4, then 9V (i)/ox;, =B,. Note that, since B is constant,
the derivate is largest when P, (i)=1-P, (i), which occurs when P, (i)=1/2, and becomes
smaller as P,(i) approaches zero or one (Figure 4). Stated intuitively, the effect of a change
in an observed variable is highest when the choice probabilities indicate a high degree of
uncertainty regarding the choice; as the choice becomes more certain (i.e., the probabilities
approach zero or one), the effect of a given change in an observed variable decreases
(Train 1986).
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Figure 4: The effect of original choice probability to the direct elasticity of travel

time and to the change of choice probability (YTV 1989).

A logically necessary aspect of derivates of choice probabilities is also that, when an
observed variable changes, the changes in the choice probabilities sum to zero. Hence, to
increase the probability of one alternative necessitates decreasing the probability of other
alternatives.

Usually a researcher is interested in the average probability or average response within a
population, rather than the response of any one individual. For example, suppose the
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researcher has a random or stratified random sample of individuals drawn from a
population. Aggregate, or population, choice probabilities are calculated by taking the
weighted average of the choice probabilities calculated for each individual. The average
probability for alternative i is estimated as (Train 1986):

Pi=>_ w,P,(0), (13)

where w,, is sampling weight associated with individual n, and the summation is over all
sampled individuals. If the sample is purely random, then w,, is the same for all sampled
individuals and equals 1/N, where N is the sample size. For stratified random samples, w,
varies over strata.

The number of individuals in the population predicted to choose alternative i is estimated
as the average probability for alternative i times the population size (M):

N,=MP,, (14)

where M is the number of decision makers in the population and N; is the estimated
number that will choose alternative i. Average derivates and elasticities are calculated
similarly as the weighted average of individual derivates and elasticities.

An alternative method of estimating average probabilities and responses is common but
not consistent. Instead of calculating the probabilities and responses for a sample of
decisionmakers and then taking averages, one possibility is to calculate probabilities and
responses for an average decision maker and consider these to be in some way
representative of average population behaviour. The inconsistency of this approach results
from the fact that the choice probabilities, derivates, and elasticities are nonlinear
functions of the observed data and, the average value of a nonlinear function over a range
of data is not equal to the value of the function evaluated at the average of the data. This
error is called aggregation error and it concerns all the situations in which the zonal values
are used to estimate models or by making aggregate forecasts.

Let us consider Figure 5, which gives the probabilities of choosing a particular alternative
for two individuals with representative utility for this alternative of a and b assuming the
representative utility of other alternatives is the same for the two individuals. The average
probability is the average of the probabilities for the two individuals, namely, (P,+P,)/2.
The probability evaluated at the average representative utility is given by the point on the
logit curve above (a+b)/2. As shown for this case, the average probability is above the
probability at the average representative utility. In general, the probability evaluated at the
average utility underestimates the average probability when the individuals’ choice
probabilities are low and overestimates it when they are high.
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Error due to average individual aggregation (Train 1986).

35 Maximum likelihood estimation

The logit model is normally estimated using maximum likelihood method. Maximum
likelihood estimation is based on an idea to estimate parameters, which will reproduce as
high probability of observed choices as possible with the observed data. This is done by
calculating the predicted probabilities of the observed choices (Pn(i)) and maximising the
product of those probabilities. Equation (15) shows the formula to be maximised
(McFadden 1974).

N
L =[T IIP.()™ (15)

n=1icC,

where vy, =1, ifalternative i from choice set Cn is chosen by individual n

=0, otherwise

C, =the set of alternatives for the individual n (universal choice set)

N

= number of observations.

Normally L* itself is not maximised, because the natural logarithm of L*, labelled L, is
more manageable. The modified formula is shown in Equation (16).
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where B, = J' BX i IS the deterministic component of the utility for the k’th
independent variable for alternative i and individual n.

Setting the first derivates of L with respect to the coefficients equal to zero, the necessary
first-order conditions can be obtained. The estimation of the parameters can be done
iteratively using Newton-Raphson’s method. The likelihood values are positive and the
values of the log-likelihood are negative. The closer to zero the log-likelihood value is,
the better is the model.

The maximum likelihood estimator Gn is not inevitable unbiased or efficient; however,
under certain assumptions (Vasama and Vartia 1979, Rao 1973) the estimator is
consistent, asymptotically normal and asymptotically efficient (no other consistent and
asymptotically normally distributed estimator has a smaller asymptotic covariance matrix).
The lack of bias and efficiency do not only depend on the sample size but on the
distribution of the estimator. This distribution is often unknown. Nevertheless, it is often
possible to calculate whether the estimator approaches the true value, when the sample
size is infinite.

Due to the asymptotic efficiency, the variance-covariance matrix of the estimator will
asymptotically approach the Cramér-Rao bound. The Cramér-Rao theorem can be written
as (Ben-Akiva and Lerman 1985, Rao 1973):

Var(B,)=B %, where
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It can be difficult; even impossible, to calculate the expected values of the matrix elements
analytically. Matrix B can also include unknown parameters £. In many cases, the £ must
be replaced by the estimator 3.
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3.6 The mixed logit or error components model

In a significant generalization of multinomial logit McFadden (1978) has derived the
generalized extreme value (GEV) model. This is actually a large class of models which
includes MNL and NL. All these models typically maintains homogeneity in
responsiveness to attributes of alternatives across individuals. Recently, also some more
advanced techniques have been developed, such as the mixed logit formulation. The mixed
logit model allows for the variation in preferences between individuals. Let us assume the
utility function of option A, for an individual n in a choice situation t is given by (Ortuzar
and Willumsen 2001):

uU.

|nt:0T nXint+8int’ (18)

where X;., is a vector of observable variables, as usual, but now @, is a vector of
unknown coefficients that vary randomly according to the individual tastes. Finally &, is
a random error term which distributes 11D Gumbel, independently of both &, and X, .
Note that this specification is not completely general because the parameters €, do not
depend on t (as in general one would expect that individual tastes do not change from
situation to situation), but it may be generalised if desired (OrtGzar and Willumsen 2001).

This specification is identical to the MNL except for the fact that the coefficients g, are
not fixed but vary in the population. Now, the vector for coefficients €, for each individual
may be expressed as the sum of its population mean & and individual deviations 7,
represent individual tastes in relation to the average tastes of the population:

U =6"X.

int int

+nT nXint+8int' (19)

The unobserved part of the utility (7', X, + &) is correlated over options and situations
due to the influence of 7, and it is possible to achieve very general patterns of correlation,
taste variations and heteroscedasticity with an appropriate specification of parameters and
variables (Ortdzar and Willumsen 2001).

However, maximum likelihood estimation in a mixed logit model formulation is not
trivial. Instead, and as in the case of the multinomial probit, the probability must be
approximated by a simulation and where the simulated log-likelihood is maximised.

In most of the literature, Normal-distributed error components are used. This, however
poses problems eg. with value of time (VOT) calculations because with so few observa-
tions the ratio between two independently distributed standard normal variables is Cauchy
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distributed, not normal distributed, as will be stated in Section 3.8. One could assume that
the cost-coefficient does not follow a distribution (only the time-coefficient) in which this
problem is avoided. However, Danish experiences have shown that it is not possible to
reject on statistical grounds the notion that no heterogeneity would exist in the cost
coefficient (Nielsen and Jovicic 2003).

A far better solution then is to assume that the coefficients are lognormal (Ben-Akiva et al.
1993). In the thesis by Sgrensen (2003a) this is actually shown to be the best fit for most
empirical distributions of the coefficients. The positive aspect of a lognormal distribution
is that it is nonnegative and multiplicative. This means that the ratio between two
lognormal distributions is also lognormal, and that the VOT therefore also follows a
lognormal distribution, i.e. if 6. is lognormal and 6, is lognormal, then & ../ 6 .o 1S
also lognormal. The parameters of the joint lognormal VOT distribution can easily been
calculated, and the mean and variance follows directly. However, it should be noted that
in model transfer the advantage gained when using lognormal distribution might be open
to question, if it is used to correct the effect in a small sample size. That is, if the
coefficients of time and cost are made negative (minus-lognormal assumption), it may
cause bias in the other coefficients. The other important point to remember is that to avoid
identification problems only the cost or time variable can usually be estimated using
lognormal distribution. In fact Sgrensen (2003b) has shown that the specification and
estimation of a mixed logit is not a simple task. The number of alternative specifications
for the shape of distributed terms grows rapidly with the number of coefficients that are
expected to be distributed and with the number of considered shapes of distribution.

In this thesis an error component model is not used because it is a relatively new method
(to date there are no software applications available). If error component models had been
used, the user interface would have needed to have been reformulated as well. 1t is
obvious that some results, in particular those relating to VOT, would have been different
if a mixed logit model had been used. Nevertheless, some Monte Carlo simulations were
performed to examine the effect where coefficients are assumed to be stochastic variables.
It was found that the distribution of the VOT did not differ greatly from that based on the
empirical data.

3.7 Transfer methods

3.7.1 General aspects

The model transfer approach is based on the idea that estimated model parameters from a
previous study in a different context may provide useful information for estimating the
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parameters for the same model in a new context, even when the true values of the
parameters are not expected to be equal. Depending on the quality and type of the travel
survey (which has been carried out) the model transfer can be done in at least four
different ways. These are:

transfer scaling,

Bayesian method,

combined transfer estimation and,
the joint context estimation.

Naive transfer is considered here as a special case of transfer scaling. The transfer
methods differ from each other in emphasising the estimation and the application context
data. Errors expressed in model transfer can be caused by sampling errors or errors that are
caused by differences between the coefficients in the initial and the final stages.

In principle, the model transfer usually decrease the variance of model parameters
resulting that the transferred models are more precise than the corresponding application
context models that are estimated solely from small data samples. On the other hand, if
the sample size of the application context data is small, the variance of the model
parameters increases and this is reflected in transferred models, too. The problem in model
transfer is that we do not know how much the difference between the coefficients
estimated in estimation and application contexts is caused by the impreciseness of
parameter estimates, and how much is caused by the difference in travel behaviour.

The transfer scaling approach uses the new data only to correct the transfer bias (the
difference between the coefficients in estimation and the application context) and therefore
does not explicitly consider the differences in sampling errors between the two data sets.
In the Bayesian method the initial point is that the transfer bias is assumed to be zero; that
is, the estimation and application contexts share the same underlying set of parameters.
The combined Bayesian estimator extends the Bayesian procedure to take into account the
presence of a transfer bias (Ben-Akiva and Bolduc 1987). When transferring with any of
these three methods, only the application context data are required. When we are using
joint context estimation, the new models are estimated using both the estimation and the
application context data (Badoe 1994, Badoe and Miller 1995b). The basic assumption has
normally been, that the two data sets are drawn from the same underlying probabilistic
choice process. Based on this assumption the ratios of coefficients are expected to be the
same and common coefficients are used and only the alternative-specific constants are
estimated separately for these two contexts. However, in this study, we assume that
particularly in spatial transfer there may be differences (transfer bias) between the
estimation and application context parameters, and the best way to apply the joint context
estimation is using both data-specific and common coefficients.
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3.7.2 Transfer scaling

There are at least four different ways applying the transfer scaling approach:

Naive approach: The naive approach uses the existing model with its original coefficients
in the new situation. This approach assumes that all the factors relevant to the choice
process are embodied in the model, an assumption that can never be fully justified.

Adjustment of constant terms: If the validity of the model coefficients other than the
constant terms is accepted, then aggregate data can be used to adjust the constant terms so

that the model replicates existing aggregate data.

In this case the utility function of the application context model is:

Vi(¥) = v;xCi# By +By Xy +o # By Xy By #X g gy o+ By Xy Where

C = the alternative specific constant in estimation context

B,-B, = the coefficients in estimation context

Xjpe- X = travel system variables in application context

Xgook Xk = other variables in application context (20)
Y, = the scale factor to the alternative specific constant.

Re-estimating new constants and scale: In this case all or some of the parameters in the
application context utility function are scaled and alternative-specific constants are
estimated from an application context sample, assuming that the remaining utility function
parameters are transferable from the estimation context. As is shown in Ben-Akiva and
Bolduc (1987) and Atherton and Ben-Akiva (1976), much of the transfer bias can be
eliminated by adjusting the model constants and scales. The transfer problem then
becomes one of determining the application context alternative-specific constants and
shifts in the transfer scaling factor relative to the estimation context. For example, given a
set of estimation context parameters £, one can assume that the application context
systematic utilities, V;, , take the form:

Vin,zzYi,zﬁlTXin,fo‘i,z’ (21)

where ¥, is a vector of scale factors for each group of variables to be scaled, T is
transpose, X;, , is a vector of explanatory variables for alternative i for individual n and «,
is the alternative-specific constant for alternative i (Ben-Akiva and Bolduc 1987).



50 CHAPTER 3. OVERVIEW OF THE THEORY OF TRAVEL DEMAND
MODELS AND MODEL TRANSFER

The transfer scale factor can also be determined by using SP data. In this case e.g, the
coefficients for travel time and travel costs are first estimated by using SP data. The
estimates for the coefficients are substituted to the estimation context model, which is to
be re-estimated by using the estimation context data and the fixed coefficients for travel
time and costs. Then this new estimation context model is transferred using the
application context RP data.

Re-estimating the estimation context model: This procedure uses a small sample of
observations of individual choices and assumes that the sample is representative of
behaviour in the study area. The small disaggregate sample can be used to re-estimate the
coefficients from the original model specification. This is identical to transfer scaling in
the case where all the coefficients are re-scaled. In this study models based on this
approach are referred as “new sample models”.

The first three methods test the transferability of model parameters. The fourth method
also takes into consideration the validity of the model specification. In fact, the first and
the last methods represent the extremes in model transfer and can also be regarded as
independent methods as well. The naive approach is the simplest approach to model
transfer. The estimation of new models is not exactly the same as in the transfer method
but rather the estimation corresponds to the situation in which all the coefficients are
separately re-scaled.

3.7.3 Bayesian method

In the Bayesian method parameter estimates szrom a small application context sample
are combined with the estimation context parameter values Bl using a classical Bayesian
analysis to yield an updated set of parameters. The basic assumption is that the behaviour
of an individual is not different in estimation and application contexts. Thus, the new and
the old data share the same underlying set of parameters.

Based on the normality assumption the variance g2,,.q.rrq Of the coefficient can be defined

by using the variances of the original coefficients (0,2 and o,2?) estimated in estimation
and application context (Atherton and Ben-Akiva 1976):

otzransferred = [(1/05 +(1/0§)] _1- (22)

Thus in a one dimensional case the Bayesian estimator is stated as a weighted average of
the direct estimators  f3,and f,.



3.7 Transfer methods

. (/o) +(B,fo3) 0o, +oib, (23)
Btransferred - 5 N 2 2
(Y/oy)+(1/a)) G,+0;

In the multivariate case the coefficients are to be estimated according to Equation 24 -
(Badoe and Miller 1995 b):

Btransferred :(Eil +E£1 )71(2? B1+E£1 B2)

and covariance matrix

Z:transferred :(Eil +Z£l )_l,Where

B = [Kx1] vector of model parameters where
K=M+N-1, where
M is number of explanatory variables and
N is number of alternatives

f}l,ﬁz = estimated parameter vectors in the estimation context 1 and
application context 2, respectively (24)
Et = covariance matrix of estimated parameters for context t (t=1,2).

3.7.4 Combined transfer estimation

We can assume that during a short time period an individual’s travel behaviour will be
rather stable. Thus the true values of the parameters can be expected to be equal 8=8,=f
(which is the situation the Bayesian method assumes). For longer period or in spatial
transfer this assumption is not justified. Then in model transfer there is an error, which is
caused by the differences between the coefficients in the estimation and application
context. This difference, a = B,-f, is called the transfer bias and it describes the change in
individuals behaviour.

Ben-Akiva and Bolduc (1987) present a generalization of the Bayesian approach which

accounts for a non-zero A, and which yields the minimum mean squared error estimate of
Biranstorred achievable from a linear combination of the estimation and application

context parameter estimates. This minimum square error estimate is provided by:

51
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Btransferred :((El + AAT)_lJrE; )71((21 + AAT)_1B1+E£1 Bz)

and covariance matrix

2
Etransferred - El 0
VDY

B = [Kx1] vector of model parameters where

,where

~

Bl,BZ = estimated parameter vectors in the estimation context and
application context,respectively

Et = estimated parameter covariance matrix for context t (t=1,2) (25)
A = BZ_B]_
AT = transpose of A.

Comparison of equation [25] with equation [24] indicates that the omitted transfer
estimator reduces to the Bayesian estimator in the case of A=0. In practice, the unknown
transfer bias A is approximated by the estimated bias d= 62—61. Ben-Akiva and Bolduc
also demonstrate theoretically that the combined transfer estimator is superior to simply
using the application context parameter estimates Bz, providing the transfer bias, A, is
small.

3.7.5 Joint context estimation

Joint context estimation is used to estimate a new joint application context model, using
both the estimation context and the application context data sets. In econometrics the
estimation of models with different data sources is called “mixed estimation”. Often these
data are divided into two sets: primary and secondary data. The primary data provide direct
information about the main modelling parameters. The secondary data provide additional
(indirect) information about the parameters. For example, in discrete choice modelling the
primary data could be information coming from a survey at the disaggregate level, and the
secondary data could be data coming from an aggregate survey. In our case RP data
collected in an estimation context constitute the primary set, since these data capture the
actual behaviour of the individuals, and application context data constitute the secondary
set.

The principle of joint context estimation used here is quite similar to the combined
estimation of RP and SP data sets, and is discussed for example in Bradley and Daly
(1991) and in Ben-Akiva and Morikawa (1990). Badoe and Miller (1995b) have applied
this method also in model transfer.
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The following notation is used in developing the joint context estimation procedure:

superscript denoting context (=1 for first data set; =2 for second data set)
utility of alternative i in context t for person n

deterministic utility for alternative i in context t for person n

random component of utility for alternative i in context t for person n
vector of utility function parameters assumed to be constant across
contexts

vector of explanatory variables for alternative i common to contexts 1 and
2 (i.e., associated with the constant parameter vector vy), but with values
given for person n in context t

vector of utility function parameters assumed to be specific to context t (at
a minimum, this includes the alternative-specific constants for context t)
vector of context-specific explanatory variables for alternative i for
individual n within context t

utility function scale for alternative i in context 2 (the context superscript
has been suppressed to simplify the notation; context 1 scales are assumed
to be “embedded” within & and y; given this, p is actually the ratio of the
context 2 scale to the constant scale 1 for alternative i, with the absolute
values of neither of these scales being identifiable)

B=[a' a® y]" (26)

combined vector of all parameters to be estimated within the joint context
model, excluding the utility function scales

combined vector of all explanatory variables in the joint context model,
for alternative i for person n in context t (T is transpose)

x '=[rn 0 si1', for t=1
. (27)
[O rm Sln] y f0r t=2

Given the definitions above, the systematic utility components for the two contexts are:

1
in

U-2

n

1T, 1 T-1 1 AT, 1 1
4 rin""y S’in—irein - B Xin+€in

(28)

2T..2 T.2 2 AT,2 2
4 rin""Y Sin-"ein - B Xin-"ein'
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The vector of coefficients, vy, is common to both estimation and application context
models while & * and « ? are specific to each model. Normally, it is supposed that sharing
¥, in both models, implies that trade-offs among attributes s are the same in both contexts.
However, due to the possible transfer bias in model transfer, the situation is essentially
different from the norm. Thus, it may be valuable to combine the common and data-
specific variables in a different way than previously, and in such a way to optimally
emphasize the estimation and application contexts by being certain to take into
consideration the impreciseness of some coefficients. This issue is discussed in Chapter 6.

The multinomial logit form requires that the unobserved effects are independently and
identically distributed (IID) across the alternatives in the choice set, according to the
Gumbel distribution (Hensher and Johnson 1991, Ben-Akiva and Lerman 1985). The
combined estimation method assumes that random terms have IID property within each
type of data. However, since the effect of unobserved factors may well be different
between the two data sets, there is no reason for assuming that &," and &,” have an
identical distribution, or more specifically, have the same variance. In order to make the
variances of ¢! and &2 equal, the utilities in context 2 are multiplied by an unknown
utility function scale p defined by:

Var(ep)
Var(e)) ' (29)

2

If the random components in each of the data sets follow Gumbel distribution and are
identically and independently distributed (11D) then the combined data set also has an 11D
Gumbel distributed random noise if the utility function in context 2 is multiplied by p.
The final utility function in context 2 is then

HU2 = p(a2Tr2+yTs?) +pes = UBTXA+Uel. (30)

The multiplication of the utility function in context 2 with the unknown variance factor p
makes the utility function non-linear in parameters. So, ordinary logit estimation methods
cannot be used directly. Bradley and Daly (1991) have given a method where the
Maximum Likelihood estimation of the model coefficients is done with an artificial tree
structure. The tree structure used in the present study is shown in Figure 6. In the
estimation alternatives of context 1 are given as such, but the alternatives in context 2 are
given structured below a dummy alternative. The only variable in the dummy alternative
is the logsum of the lower level alternative in context 2. If the coefficients of the logsum
variables of the dummy alternatives are forced to be equal then the &values presented in
Equation 31 correspond to the p factors given in Equation 30.
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Alternatives for estimation context Dummy alternatives (0)

Alternatives for application
context

Figure 6: The artificial tree structure used in the combination of different data sets.

For the observations in context 2, the expected maximum utility of each of the dummy
composite alternatives is computed as usual in a tree logit model:

2
VEOMPoeInY e =0V 2, (31)

h =

where the sum is taken over all of the alternatives in the nest corresponding to the
composite alternative (each nest contains only one alternative in this specification) and

V2=UZ-¢’ (32)

in~ “Yin" %in*

3.8 Goodness of fit measures

3.8.1 Introduction

When a logit model has been specified and the parameters are estimated so that the model
fits the observed sample “as well as possible”, we are naturally interested in how good that
best possible fit is. In general, the validity of the model depends on how well the
alternatives can be described (does the model include all the important variables or not).
The model variables should be simple, easy to understand and predictable. In addition,
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studying the effects of changes in a transportation system also has to be possible. The same
requirements also apply to model transferability. In addition, it is desirable that the
coefficients in the initial and final stages are similar to each other and that the same
transport system-related variables are included in both stages.

Several measures used to assess the model accuracy and the effectiveness of model
transfer have been formulated in a number of papers (i.e. Atherton and Ben-Akiva 1976,
Koppelman and Wilmot 1982, Koppelman and Rose 1983, Abdelwahab 1991). The
following definitions are based largely on the paper by Koppelman and Wilmot (1982).
First, some general tests used to measure the goodness of model parameters are presented.
Then the most important traditional transferability tests that are used in this research are
discussed.

3.8.2  General goodness-of-fit tests

The likelihood ratio test is a very general test that is used in nearly all contexts to
measure how well the model fits the data. Stated more precisely, the statistic measures of
how well the model, with its estimated parameters, performs compared to a model in
which all the parameters are zero. This comparison is made on the basis of the log
likelihood function being evaluated at both the estimated parameters and at zero for all
parameters. The likelihood ratio index is defined as (Ben-Akiva and Lerman 1985):

L(B)
2
0) =1-—2%, 33
p(0) L0) (33)
where L (ﬁ) is a value of log likelihood function at its maximum (when all parameters
have been estimated)
L(0) is a value of log likelihood function when all parameters are zero.

The likelihood ratio index ranges from zero, when the estimated parameters are no better
than zero parameters, to one, when the estimated parameters allow for perfect prediction
of the choices of the sampled decision makers.

There are no general guidelines explaining when a ©%(0) is sufficiently high. However,
conventionally the ©?(0) should be at least 0.15. The value 0.25 is quite good and the
value of 0.40 excellent (Talvitie 1983). The value should be interpreted carefully, because
both the number of alternatives and observations affect to ©?(0) value. The value of ©?(0)
also depends on the shares of alternatives. The greater the proportion of the more
preferred alternative is, the greater the values of £?(0) tend to be. It might be better to use
L(c) in which the log likelihood function is compared to the model explained only with
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alternative specific constants (it means the so-called market share model in which all the
choice probabilities correspond to the observed distribution), because this value is more
comparable across different samples (Ortdzar and Willumsen 1994).

Another useful goodness-of-fit measure is derived in Equation (34) remembering the fact
that ©?(0) will allways increase or at least stay the same when new variables are added to
the utility functions. To cope with this problem, an adjusted likelihood ratio index is
defined as follows (Lerman 1984):

Pa~1 ‘%’ (34)

where K is the number of variables (including alternative-specific constants).
The evaluation of model parameter preciseness

In model transfer, the differences in coefficients and predictions are caused by differences
in initial data creation, by random variation, and by real differences in behaviour between
the estimation and application context. Hence, it is important to study the effect of the
sample size. However, because the variance of model parameters can not be determined
analytically according to the sample size (Ben-Akiva and Lerman 1985, Rao 1973) the
effect of sample size is studied here by taking random samples from the entire set of data.

If the estimators of model parameters are asymptotically normally distributed, the
asymptotic t-test can be used and the confidence interval with significance level 95 % can
be stated as (Ortzar and Willumsen 1994):

B = 1,96/ Var(f,). (35)

However, in this study, the confidence intervals are used minimally, because the test
measures for different methods are not generally normally distributed. As a result, we have
primarily based our analysis on the Bootstrap variation of estimates rather than confidence
intervals.

Different transfer methods are generally compared using statistical tests. However, before
comparing the effective model, the different combinations used in common and data-
specific coefficients in joint context estimation are roughly investigated by calculating the
Mean Deviation-values (MD) for each model coefficient. The test measure is defined as
the percentage Mean Deviation from the coefficients estimated using the full data set.
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N
: ‘ i:silransferred_ﬁfuu data‘/N
MD = 100x% _ Where
F)full data
B, =the coefficient estimated for transferred model i (36)

transferred

B qata =the coefficient estimated for the full data set
N

=the number of models.

Based on our own theories, the smaller the MD-value, the more precise is the model
coefficient and the more appropriate for it to be used as a data-specific coefficient when
using joint context estimation.

The model parameters preciseness is also evaluated through the examination of coefficient
ratios. A special case of the relative assessment of different attributes is the ratio R
between the assessment of time and cost attributes:

R :Btravel time/ Bcost : (37)

This ratio can also be interpreted as a being value of time (VOT). In this thesis, the value
of time is chosen as an indicator because:

- itis agenerally understood policy measure and
- itis also reasonable to study the ratio of some coefficients so as to remove the effect
of scale parameter L.

However, it should be noted that with few observations the ratio between two
independently distributed standard normal variables can be seen to follow a Cauchy
probability density function, which then, with a number of (perhaps even finite)
observations, approach Normal distribution. That is, VOT is undefined or unstable in the
cases where there are few observations. As a consequence of this the mean of the time-
coefficients B, e OVEr respondents divided by the mean of the cost-coefficients

B OVer respondents is not the same as the mean of their VOT, but the latter is an
underestimation of the true VOT (Armstrong 2001).
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Thus, the ratio of time and cost coefficients® is only used to study the model parameters’
preciseness. That is, the results should not be interpreted as results related to VOT because
many of the advanced theories and estimation problems have not necessary been taken into
account for the purpose of this work.

The test measure for this ratio, known as the percentual VOT error is calculated by
comparing the VOT based on a transferred model with the VOT based on a model
estimated from the full application data set. The maximum error we define as being
“acceptable” is 25 percent.

R =100+ Rtransferred _Rfull data _VOT

error error’
RfuII data (38)

3.8.3 Methods to evaluate model transferability
Disaggregate transferability measures
To evaluate if the application and estimation contexts can be represented by a single

model Nested Likelihood Ratio Test (LR) can be used. The statistic is defined as
(Horowitz 1982):

LR=-2[L(B,)~(Li(B) LB, (39)
where
L (BAi) = log-likelihood value in context i using model developed from context i
L; (BJ) = log-likelihood value in context j using model developed from context |
Ly (Bij) = log-likelihood value in context i using model developed from the pooled data

from contexts i and j.

The statistic is chi-squared distributed with degrees of freedom equal to the number of
model parameters in each model. In the event the null hypothesis is rejected, an
asymptotic t-test can be performed to identify which parameter(s) were responsible for the
rejection. The null hypothesis is in this case £ =/4. If the test statistic is greater than a

Instead of pure cost variable, the variable cost/income is used. The denominator incomes are used to
manage different time points in which data has been collected (that is: the HMA data is collected in 1995
and the Turku data in 1997). The cost and time are OD-pair dependent and income zone dependent.
However, when calculating VOT, the average income over the whole area is used.
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critical value, the null hypothesis is rejected and it is reasonable to let the parameters have
different values in the model. This statistic is given by (Ben-Akiva and Lerman 1985):

A~ A

Bi_Bj

t= ,
\/Var(ﬁi) +Var(p,) (40)

where Gi is the estimate of parameter in context i and Var(ﬁi) is the variance of the
estimate. Galbraith and Hensher (1982) recommend the application of this test only to
parameters with low standard error (which often imply high t-ratio); otherwise, the t-
statistic may reject the alternative hypothesis (i.e the parameters are different) even if they
exhibit substantial differences.

A natural measure of transferability of a model estimated in context i for application in
context j is the difference in the log-likelihood between this model and the corresponding
one estimated in context j. The Transferability Test Statistic (TTS) is defined as the
absolute value of twice this difference (Koppelman and Wilmot 1982, Abdelwahab 1991).
It tests the hypothesis that the underlying parameter values in context i are equal to the
estimated values in context j.

TTS=-2[Li(B)-Li(B)]. (42)

where Lj(Bi) is the log-likelihood of the transferred model and LJ.(B].) is the log-
likelihood of the application context model based on the full data set. It is assumed that
when applying the test the parameter vector of the transferred model is fixed, and the
distribution of this test statistic is chi-squared with degrees of freedom equal to the number
of model parameters. Because the chi-squared distribution is asymmetric, the results will
depend on the direction in which the models are transferred.

Transfer Index statistic (T1) describes the degree to which the log likelihood of the
transferred model exceeds the log-likelihood of a reference model (we use the market
shares model) relative to the improvement provided by a model developed in the
application context. TI has an upper bound of one which is attained when the transferred
model performs as well as an estimated model on the application data. It has no lower
bound. Negative values imply that the transferred model is worse than the local base
(market shares) model. Tl is expressed as (Koppelman and Wilmot 1982, Koppelman and
Rose 1983, Abdelwahab 1991):
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_ Lj(Bi) _Lj(Cj)

TI R :
Lj(Bj)_Lj(CJ‘)

(42)

where L;(c;) is the log-likelihood of the local model evaluated at the market share values
and all other variables are as defined before.

Transfer Goodness-of-Fit Measure describes the degree to which the log likelihood of
the transferred model exceeds a reference model (such as the market shares model),
relative to the improvement in log-likelihood achieved with a perfect estimation context
model, over this reference model. This measure is similar to the goodness-of-fit measure
©/(c) which is used for discriminating between different specifications on the same data
set. This is expressed mathematically as (Koppelman and Wilmot 1982, Koppelman and
Rose 1983, Abdelwahab 1991):

~ (L(B)-L.(c.
pf(Bj)=( ,(Lj.) i(€)
(Lj —Lj(Cj))
1_@) (43)
L,(c)

where Lj* denotes the log-likelihood value obtained when the choices are predicted
perfectly, and this has a value of zero. This measure has an upper bound value equivalent
to the local rho-square for the application context. Negative values indicate a transfer
model performance worse than that of a market share model estimated on the application
context data.

The last three measures defined above are interrelated by their dependence on the
difference in log-likelihood between transferred and application context models.
However, they offer different perspectives on model transferability: T1 provides a relative
measure to new estimation context model, TTS a statistical test measure and finally the
transfer rho-square, an absolute measure based on ideal situation (L*).

Aggregate transferability measures
One of the most popular approaches to treat model performance is sample enumeration,

by which the choice probabilities of each individual in a sample are summed, or averaged,
over individuals (Ben-Akiva and Lerman 1985, Hallipelto 1993).
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In its simplest form, sample enumeration uses a random sample of the population as
“representative” of the entire population. The predicted share of the sample choosing
alternative i is used as an estimate for W(i), which is the fraction of population T choosing
alternative i:

NS
vV/(i):NiZ P(i|x ),where

sh=1
N, is the number of individuals in the sample. (44)
x,, is defined as all the attributes affecting the choice that appear
in the model, regardless of which utility function they appear in.

To forecast the changes in aggregate shares under some policy, one simply changes the
values of the appropriate variables for each affected individual in the sample.

In this thesis we use a sample enumeration test and other aggregated elasticity tests to
decribe how the variation of model parameters affects the model’s ability to predict
changes in travel behaviour when the transferred coefficients are applied to the full
application context data set. The test measure, known as the percentual Relative Sample
Enumeration Error (RSEE) is calculated by comparing the predicted change based on a
transferred model with the predicted change based on a model estimated from the full
application data set. The maximum error we define as “acceptable” is rather high, 25
percent. The motivation for using rather high error limit is to show that the sample size
required to estimate precise models is larger than was previously thought to be the case.
In addition, we have tried to find a limit that would react to the sample size in a reasonable
way (that is, when using small sample sizes the error limit is quite often exceeded but
when using larger sample sizes, the limit is rarely exceeded). The sensitivity analysis of
different error limits is presented in Chapter 5.

RSEE ~100 % predicted changetransferred—predicted changefuII date

|predicted change, ;| yue! (45)

Other elasticity test is undertaken by running the whole four step model system. The test
measure is known as RSEEF. Note, in this thesis, RSEEF is referred to as an elasticity test
and not as a sample enumeration test because it is not applied to individuals, but to the
zonal values determined when running the full forecast process.
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Koppelman and Wilmot (1982) have presented various aggregate prediction test statistics,
all of which compare in various ways the aggregate number of predicted trips by mode m
for a given aggregate group g, with the observed number of trips by this mode for this
group. In this context, only one application of these test statistics is discussed, the Mean
Absolute Error for Forecast (MAEF) defined as:

IN_,~-N_,|

YNy

>

MAEF=

Y
d

2
where (46)

N_,=predicted trips made from zone o to zone d with mode
N ,=observed trips made from zone o to zone d with mode.

In this thesis this test is used when running the model system, in its aggregate
implementation, to derive base year matrices in division of four aggregated zones. The
predicted and observed trips are compared to each other, and the total error over the
aggregated groups is calculated.
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4.1 Overview of the study structure

The purpose of the research is to compare alternative methods of spatial transfer as a
function of sample size and identify the factors affecting the models’ quality and the
impreciseness of the model’s parameters.

The study is mainly based on the travel surveys carried out in the Helsinki Metropolitan
area (HMA) in 1995 and in the Turku region in 1997. The HMA travel database is used for
the estimation of the models which are to be transferred. The Turku region database
represents the application context to which the HMA models are transferred to, for
evaluation of transfer effectiveness. The model transfer is studied using two different trip
groups, namely home-based work trips (HBW) and other home-based trips (OHB). This
makes it possible to study different kinds of combinations related to the model parameters’
preciseness and the transfer bias. The studied modes are walking and bicycle, car (driver
and passenger), and public transport (bus, train and tram).

The model transfer is studied using all four methods described in Section 3.7. These
methods are:

transfer scaling,

Bayesian method,

combined transfer estimation, and
joint context estimation.

In addition, models are estimated using different sizes of samples from the 1997 Turku
data. The models estimated from these samples are referred to as new sample models
(Figure 7). The new sample models are used to compare the impact which the additional
information used in the model transfer has on the predictive performance of the models in
the application context. The performance of the four transfer methods and the new sample
models are evaluated for each sample size-model specification combination in terms of
how well they replicate the full sample of the 1997 Turku study set of observed trips.

64
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Figure 7:  The principle of model transferability analysis.

Model transferability is considered from the viewpoint of the equality of model parameters
in estimation and the application context, as well considering the factors, that may cause
differences between the estimation and application context. As a large part of the
differences in coefficients and predictions is due to random variation, and only part due to
real differences in the estimation and application context, the main emphasis of this study
is in investigating the relationship between the transfer bias and the impreciseness caused
by the sample size of the application context. Different transfer methods are compared to
each other, as well as the amounts of data needed to estimate mode and destination choice
models.

The study is divided into two main parts. The first part of the thesis (Chapter 5) considers
the factors, which decrease model quality and affect the differences between the estimation
and application context models. For example the importance of data gathering methods
and the sample size are studied. The second part gives (Chapter 6) a general overview of
the spatial transferability of the HMA models.
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4.2 Study areas

Table 1 presents some statistical background information about the HMA (estimation

context), in 1995, and the Turku region (application context) in 1997.

Table 1: The characteristics in the areas studied (Tilastokeskus 1996, Tilastokeskus

1998).
HMA in 1995 Turku region in 1997
population 891,056 240,481
number of jobs 445,800 100,495
land area 742 km? 698 km?

The HMA consists of four cities: Helsinki (525,031 inhabitants), Espoo (191,247
inhabitants), Vantaa (166,480 inhabitants), and Kauniainen (8,298 inhabitants). The city
centre of Helsinki is located on a peninsula in the Gulf of Finland, and the metropolitan
area forms a half circle around it with a radius of 25 to 30 km. In 1995 there were about
91,000 jobs and 63,000 inhabitants in Helsinki’s central area. The number of jobs in the
whole metropolitan area is about 445,800.

In 1995, the car density in the area was about 320 cars per 1,000 inhabitants. The public
transport system in the area consists of bus and tram, commuter and ordinary trains, and
one subway line east of the city centre.

The Turku region is one of the five biggest cities in Finland and it is located 150 km west
of the HMA.. The whole study area consists of the four cities: Turku (168,772 inhabitants),
Kaarina (19,309 inhabitants), Raisio (22,854 inhabitants), Naantali (12,769 inhabitants)
and the two communities: Lieto (13.138 inhabitants), and Piikkit (6,367 inhabitants)
surrounding it.

In 1997, car density in the area was about 360 cars per 1,000 inhabitants, and 60 percent of
all households had at least one car. The public transport system in the area consists of bus,
commuter and ordinary trains. Of the 0.8 million internal daily trips made by the
inhabitants of the area, 51 percent are made by car, 11 percent by public transport, and 38
percent by bicycle or on foot.
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4.3 The database
43.1 Travel surveys in the HMA in 1995

The basic travel surveys for the HMA were made during 1987 and 1988. The main field
studies were an origin-destination (OD) survey of automobile traffic (YTV 1990a), an OD
survey of public transport (YTV 1990b), and a mobility survey (YTV and litkenneministerio
1990b, YTV and liikenneministerié 1991). The mobility survey was repeated in 1995
(Kaartokallio 1997). The mobility survey carried out in 1995 was done simply for
updating purposes. Hence origin-destination (OD) surveys were not conducted in 1995.

The mobility survey was an individual based study. The objective of the survey was to
gather data on daily travel behaviour pattern plus sosio-economic and other background
information. The sample size was 8,065 people (0.9 percent of the corresponding
population) in 1995. Only people of 7 years of age or older were included in the original
random sample.

The data were gathered using an informed telephone interview. This means that the
questionnaire plus travel diary for a survey date were sent in advance to people who owned
telephone. After the survey date these people were contacted by telephone and the data
were directly recorded into a computer system. The number of acceptable telephone
interviews was 2,758. In addition, 324 acceptable answers were collected by mail
(Kaartokallio 1997).

The sample data were corrected for age and sex to represent the total population. The
weighted data were used for forecasting and the unweighted data were used in modelling.

In all, the data for modelling consisted of 3,082 respondents. The average trip generation
rate calculated from the unweighted model data for internal trips was 2.76
trips/person/day. The total trip generation rate, including external trips, was 2.89
trips/person/day.

Table 2 presents the share of trip groups. The HMA data was divided into four different
trip groups, from which, the home-based work trips and other home-based trips are
considered in this research. The trips for respondents with an incomplete trip diary
(lacking the mode, origin or destination, trip purpose or travel time) are not included in the
data. However, respondents with no trips are included in the data.
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Table 2:  The share of trip groups pertinent to modelling in the HMA in 1995.

Trip group Internal trips in the
HMA in 1995
no. of trip observations %

Home-based work trips 1,993 23.5
Home-based school trips 873 10.3
Other home-based trips 4,149 48.8
Non home-based trips 1,479 17.4
Total 8,494 100.0

Table 3 presents the mode shares, by trip groups, for the model data. Approximately 39.2
percent of the trips were made by car, 30.5 percent by public transport, and 30.3 percent of

the trips were walk and bicycle trips in 1995.

Table 3:  The mode shares by trip groups in the HMA in 1995 (The shaded trip groups

are considered in this research).

Mode HMA 1995
Home-based Other home- Home-based Non home-
work trips based trips school trips based trips
Walk and bicycle 17.7 31.2 65.5 23.5
Public transport 40.8 28.1 26.3 26.0
Car 415 40.7 8.2 50.5
Total 100.0 100.0 100.0 100.0

Figure 8 presents the trip length distribution of all trips, home-based work trips and other
home-based trips. The average trip length of all trips (including all four trip groups) was
6.5 km. The average trip length of home-based work trips was 9.9 km, and for other

home-based trips the figure was 5.7 km.
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Figure 8:  Trip length distribution of the HMA trips in 1995.
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4.3.2 Transportation network description in the HMA

The travel times, trip lengths, waiting times and number of transfers used in the modelling
are zonal values based on the traffic assignment. We used zonal values because the HMA
data was not geocoded and thus had no individual information on travel times and
distances.

The car and walk networks were divided into 117 zones (Appendix A). The public
transport network was originally based on 596 zones. The models and forecasts were
made in a division with 117 zones. That is, when the model and forecasts have been
made, the impedances based on the 596-division were converted to a 117-division by
combining some zones and calculating the weighted average values of impedances, to
represent the corresponding larger area. The number of network links is approximately
2,500 (depending on the scenario) and the number of regular nodes 1,414. A more precise
network description is given in Karasmaa et al. (1997).

The traffic assignments were made in the Helsinki Metropolitan Area Council using a
standard multipath equilibrium model (Emme/2). The trip lengths and travel times were
based on a traffic assignment using the 1995 car network and trip matrices, which were
based on the forecasts made for the year 1995, using the models based on the 1988
mobility survey. The impedance matrices were produced separately for morning and
evening peak periods. A transpose of the morning peak matrix was taken to produce the
evening peak hour matrix. The peak periods were defined to be between 6.30-8.30 and
15.30-17.30.

The public transport impedances are based on the Emme/2 multi-path transit assignment.
The 1995 public transport network and lines were used. The available modes in the public
transport assignment were bus, train and tram.

The intra-zonal travel times were formulated using a regression model based on the travel
times of the observed OD-trips under five kilometres. The regression line is determined
separately for car and public transport intra-zonal travel times.

The intra-zonal distances were calculated by using a regression model made for the Turku
region (see Section 4.3.4). The regression model is based on the distances calculated
from the geocoded data in the Turku region. We have used the Turku data because
geocoded data was not available in the HMA. Travel times were formulated
simultaneously for all modes because consideration of only one mode does not produce
enough data to be accurate for modelling purposes.



4.3 The database 71

4.3.3 Travel surveys in the Turku region in 1997

The survey in the Turku region was the first study in Finland in which the origin-
destination surveys for internal trips were conducted by postal questionnaires and
telephone interviews. Roadside interviews were carried out only in order to collect data on
external trips. The aim of the study was to collect an adequate amount of data for travel
system planning and to study model transferring (Turun kaupunki et al. 1999a). In
addition, an important objective was to systematically compare different data gathering
methods (Kurri and Karasmaa 1999, Turun kaupunki et al. 1999b, Turun kaupunki et al.
1999¢).

The data were gathered between late October and early December 1997 (October 20-23 the
postal questionnaires, October 20-23 telephone interview, and the reminders November
3-6 and 17-20, and December 1-4). The travel diaries were collected between Monday and
Thursday. The sample size was exceptionally large, 21,000 persons, which means that
every 10th person living in the area (excluding children under seven years) was included
in the study. In order to compare different data gathering methods the sample was divided
randomly into four sub-samples, one of which acted as a reference. The people in the
reference group were sent a postal questionnaire with a two-day trip diary. One reminder-
to-respond postcard and one reminder with a new questionnaire with new survey dates
were sent to each person. The people in the second group were sent a postal questionnaire
with a two-day diary and three reminders. In the third group a one-day trip diary and three
reminders were used. The people in the fourth sub-sample were interviewed by telephone
(Table 4).

Table 4: The structure of the mobility survey carried out in the Turku region in 1997.

Sample size | Response | Method Number of Number of days
rate (%) reminders
with a new

guestionnaire

12,000 (refe- 49 postal questionnaire | 1 reminder two-day trip diary
rence sample)
3,000 55 postal questionnaire | 3 reminders two-day trip diary
3,000 60 postal questionnaire | 3 reminders one-day trip diary
3,000 55 telephone interview - two-day trip diary

Different data collection methods are compared in Section 5.2 and in Kurri and Karasmaa
(1999). The data described in the following section is based only on the reference group,
which is also used in studying model transferability.
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On the whole, the basis of the data for modelling in Turku consisted of 4,675 respondents
who had reported 28,315 internal trips (all these respondents were asked to fill in two-day
diaries).

The average trip generation rate calculated from the unweighted reference data for internal
trips was 3.49 trips/person/day. The total trip generation rate, including external trips, was
3.70 trips/person/day.

Table 5 presents the share of trip groups for the entire set of reference data. The trips for
the respondents with an incomplete trip diary (lacking the mode, origin or destination
information, trip group or travel time) are not included in the data. However, people with
no trip on either of the two days (661 persons) are included in the data.

Table 5:  The share of trip groups pertinent to modelling in the Turku region in 1997,

Trip group Internal trips of the reference sample
no. of trip observations %
Home-based work trips 4,442 15.7
Home-based school trips 2,689 9.5
Other home-based trips 13,989 49.4
Non home-based trips 7,195 25.4
Total 28,315 100.0

Table 6 presents the mode shares, by trip groups, for the data used in model estimation.
Approximately 51 percent of the trips were made by car and 11 percent by public
transport.

Table 6:  The mode shares by trip groups in the Turku region in 1997 (The shaded trip
groups are considered in this research).

Mode Turku region
Home-based Other home- Home-based Non-home-
work trips based trips school trips based trips
Walk and bicycle 31.7 42.4 63.4 41.7
Public transport 13.9 11.8 24.1 8.6
Car 54.4 45.8 12.5 49.7
Total 100.0 100.0 100.0 100.0
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Figure 9 presents the trip length distribution of all trips, home-based trips and other home-
based trips in the Turku region. The average trip length of all trips (including all four trip

groups) was 4.8 km. The average trip length of home-based work trips was 6.1 km and,
other home-based trips 4.9 km.
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Figure 9:  Trip length distribution of all the trips in the Turku region in 1997.
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4.3.4 Transportation network description in the Turku region

The travel times, trip lengths, waiting times and number of transfers used in the modelling
are zonal values based on the traffic assignment. The car, walk, and public transport
networks were made in division of 118 zones (Appendix B). The number of network
links is 5,908 and the number of regular nodes is 2,362. The trip lengths and travel times
are based on the travel assignment made by the Emme/2 program, using the 1997 travel
demand matrices, which are based on the OD-surveys (external traffic) and the mobility
survey (internal traffic) carried out in the Turku region in 1997. The network assignment
was made by the outside research institution in co-operation of HUT. The role of HUT
was to ensure that the network assignment principles are as similar as possible to those
used in the HMA. The detailed description of assignment principles can be found in the
technical report (Turun kaupunki et al. 1999d). In addition, different assignment
parameters were studied to observe how sensitive the models are to different definitions.
It was found that assignment parameters do not greatly affect the model coefficients of
home-based work trips, but taking into account other home-based trips, the coefficient for
travel time varied greatly when the “number of transfers” was included in the mode choice
model.

The intra-zonal travel times were calculated using a regression model based on the travel
times of the observed OD-trips under five kilometres. That is, the travel distances based on
the traffic assignment for OD-trips under five kilometers are used as an explanatory
variable and the corresponding travel times have been used as a dependent variable. The
regression line is determined separately for car and public transport intra-zonal travel
times. When estimating the regression model for public transport travel times, the average
value of initial waiting times is indicated as the intersection point of the y-axis. Hence, it
is assumed that for the minimum length of a trip, at least one waiting time is included.

The intra-zonal distances were calculated by using regression model, which is based on the
distances calculated from the geocoded data in the Turku region. The squared land area is
used as an explanatory variable.

4.4 Model system
44.1 Models

The present travel demand model system in the HMA and in the Turku region is basically
a traditional four-step model (trip generation, distribution, modal split and assignment)
with feedback between the last three stages (Karasmaa et al. 1997). The trip generation
”model” is currently based on simple cross-tabulation of the data. The most important
categorization is the division according to the person’s accessibility to a car. Mode and
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destination choice are mostly modelled using nested logit models and sequential
estimation (Ben-Akiva and Lerman 1985). Table 7 represents the model types used. For
network assignment a standard multipath equilibrium model (Emme/2) is used. Trips are
divided into four categories according to their purpose: home-based work trips, home-
based school trips, other home-based trips, and non-home-based trips. This study
concentrates on home-based work trips and other home-based trips. In mode choice
modelling there are three alternative modes: walk and bicycle, car, and public transport.
The access trips to rail are made on foot or by bus. Less than 2 percent of rail passengers
use park-and-ride. These trips are coded based on the main mode choice (usually rail)
respondents indicated they used.

Table 7: The model types used to forecast internal trips in the HMA and in the Turku
region (only the shaded trip groups are considered in this thesis).

Trip group Trip generation Mode choice Trip distribution
rate

Home-based work | trips/working logit model nested logit model

trips person/day

Home-based school | trips/school-aged distance matrix logit model

trips person/day

Other home-based trips/person, age > 6 | logit model nested logit model

trips

Non home-based trips/person, age > 6 | logit model nested logit model

trips

The trip generation rates are calculated from the sample data by dividing the number of
trips in each trip group and population group by the relevant population. There are two
population groups in home-based work trips: working persons age 18-64 years and other
population, and three in other home-based trips: age 7-17, EHAP-persons age 18- and
HAP-persons (HAP-person is a person that practically always has access to a car for
personal trips. Others are EHAP-persons).

The mode and destination choice models are mainly logit models. The same mode and
destination choice models are used for different time periods of the day. However,
different impedances were applied to different time periods. The time periods used were:

® morning (6.30 -8.30)
® evening (15.30 -17.30)
e day (any other time).
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The models and forecasts for the HMA are based on 117 zones. In addition, variable cars
per household was constructed by using 19 zones. In the Turku region a division with 118
zones is mainly used. A division of 23 zones is used for constructing the variables cars per
household and income.

The model structure used for mode- and destination choice modelling is presented in
Figure 10. The estimation of the destination choice models is based on a (simple) random
sample of 25 sub areas, including the chosen destination. The mode and destination choice
models are basically estimated sequentially. The differences between the sequential and
simultaneous estimation are considered in Appendix C. Due to the logsum coefficients
over one when estimating destination choice models for other home-based trips, the
inverse model structure was also tested. However, the prediction performance of these
models was not as good. The “artificial” tree structure used in joint context estimation has
already been presented in Section 3.7.

destinaton
/AN /N /N
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Figure 10. Structure of combined mode and destination choice models.

4.4.2 Forecasting process

The whole four-step forecast process is presented in Figure 11. The regional travel
forecast interface was originally developed for the modelling purposes required for the
Turku region and it applied the same principles as were used in the HMA in 1988 (YTV
1990a) and 1995 (Karasmaa et al. 1997). In this research, the current forecasts (forecast
based on the data of the time of the survey) are made to evaluate the transferred model’s
prediction accuracy and its ability to predict changes in a transportation system. The
model system is applied separately for each trip group. Appendixes D and E present the
forecasting process according to the trip group.
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The dark grey boxes in Figure 11 mark the repeated elements of the process when testing
different transfer methods and sample sizes. The light grey boxes mark the constant
elements such as trip generation rates and the HAP/EHAP model. That is, the trip
generation rates are calculated only once using the entire set of data and the same trip
generation rates are used for every transfer method and sample size. So, the error caused
by the impreciseness of trip generation rates is not taken into account when testing the
current forecast. However, this is considered separately in Section 5.3.2. The HAP/EHAP
model is also only produced once for the entire set of data. Hence, these two error sources
are ignored in this review and only the errors caused by mode-and destination choice level
are considered.

The main steps of the forecast are

1. Estimation of the car-availability model for other home-based trips by using the
model presented in Appendix E. The definition HAP has been used for a person who
has a driving license and whose family has a car and who has, during an interview,
stated that, he/she always or nearly always has a car available. Other people belong
to the EHAP-group. (The car ownership model has not been used for home-based
work trips).

2.  Cross-tabulation of trip production rates. The data are extended to respond to the
whole population, that is those over 7 years of age, and then the mode shares and trip
generation rates are cross-tabulated from this weighted data. The weighting is done
according to sex, age and the location of the residence.

3. Multiplying the trip production rates by the corresponding population groups to get
the absolute trip production for each zone.

4.  Estimation of mode and destination choice models.

5. Splitting the travel demand of each trip groups for different zones and modes
(according to the mode- and destination choice models).

6.  Multiplying the destination probabability matrix (formulated in the previous step) by
the absolute trip production vector calculated in step 4 => the total travel demand
matrix for each trip group.

7. Splitting the total travel demand matrices for different time periods.

8.  Multiplying the total travel demand matrixes represented for each time group by
mode choice probabilities.

Normally, the forecast process is made iteratively, to include the network assignment for
the modelled travel demand matrix and then the whole process is repeated until the
predefined accuracy of the travel demand matrix is achieved. However, these steps, which
are indicated by the white boxes, are not included in this study. The forecast run does,
however, include the iterative process (Equation 47) so as to correct the alternative-
specific constants, so that the modelled modal shares represent the modal shares based on
the weighted mobility survey (Talvitie 1981).
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P.-s.
=D __ 11 , (47)
new — old Sj(l _Sj)

where D,,,, is the new dummy-coefficient, D, the original dummy, P;j is the proportion of
mode j based on the estimated model and sj the proportion based on the weighted mobility
survey data.

*impedancies based on the sosioeconomic data census zonal socio-economic
the network assignment based on the mobility surveys data and land-use statistic

population: different age goups
trip cost
matrix

active population/others
work places: industry, service
l A ; A4
mode choice models H—> * the calculation of the calculation of <—|trip generation rates |
mode shares amount of trips

]

HAP/EHAP-model
for other home-based
trips

*mode shares by logsums trip generations by

trip groups trip groups

[calculation of destination probability matrix |¢———{destination choice
models

[Fdestination shares by trips groups I

A

[travel demand matrixes by trip groups [l
A Y
* travel demand matrixes by mode choice [vehicle occupance model |
and trip group

v

[the shares of time periods

\ 4
‘vehicle matrixes by time period

Y Y

v

4|*network assiénment * are made for three different time groups

[___] nhotused in test process

[ 1 constant element in the test process

= repeated element in the test process

Figure 11: The calculation of the forecasts (user interface of the forecasting system)
(YTV 1990a, Karasmaa et al. 1997).
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4.5 The principles of the study

The model transferability and preciseness are studied by using the mode and destination
choice models presented in Chapter 6. The HMA data and the “reference” data collected
in the Turku region are used to study model transferability. The HMA travel database is
used for estimation of models which are to be transferred. The database of Turku region
represents the travel context to which the HMA models are transferred to, for evaluation
of transfer effectiveness. Different factors affecting impreciseness of model coefficients
are studied by using the data collected in the Turku region. The data quality issues are
considered in Chapter 5. Next, a short description of the model transfer study is given.

The model transferability is examined in particular from the perspective of mode and
destination choice models. The transferability of trip generation rates has not been
studied. That is because in Finland, trip generation rates have traditionally based on the
cross-tabulation instead of logit formulation (see Section 5.3.2.1). However, we have
studied the sample size required to calculate trip generation rates based on the small
samples. The trip generation rates are considered in Chapter 5 and the results of model
transfer in Chapter 6.

The transferability of mode and destination choice models is studied by all four methods
described in Section 3.7. The studied methods are:

e transfer scaling,

®  Bayesian method,

® combined transfer estimation, and
®  joint context estimation.

Scale factor is used for distance variables and for variables “travel time” and “number of
transfers” in transfer scaling. In addition, the joint context estimation is studied by using
different kind of combinations of common and data-specific coefficients.

The model specifications investigated in this work are presented in Table 8 and the
definitions of the variables in Table 9. The distance variables for walking trips are given
in kilometres for a one-way trip between the origin and destination. Many different
distance functions were examined based on the log-likelihood values before the choice of
a piecewise linear function with a point of inflexion of 5 km was made. The travel times,
travel costs, and numbers of transfers are for a round trip. Travel times are in minutes, and
costs are in euros (1 euro=5.946 FIM). Parking costs (for one-way trips) have been cross-
tabulated from the mobility survey based on the costs car drivers had paid, and are
included in the car costs. Travel costs for public transport are zonal values, which have
been cross-tabulated from the mobility survey data based on the passenger ticket type.
Travel costs for cars are based on 0.10 euro/km in the HMA in 1995 and 0.12 euro/km in
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the Turku region in 1997. The formulation of cost variables is considered more precisely
in Appendix F and in Karasmaa et al. (1997) and Turun kaupunki et al. (1999d). In
estimation, generic coefficients for time and cost variables are used, because the mode-
specific coefficients did not differ statistically from each other. The only exception was
when estimating mode choice models for home-based work trips. In this case, the cost
coefficient for the car differed slightly from that estimated for public transport. However,
if the cost coefficient was assumed to be generic (as is usually the case), the travel time
coefficient for the car was equal to the coefficient estimated for public transport. The use
of generic coefficients is further justified by the multicollinearity problems, which are
discussed in more detailed in Appendix C.

Table 8: Model specifications for 1995 HMA and 1997 Turku area databases.

Variable Home-based work trips Other home-based trips

Distance 0-5 km (Walk) X X

Distance > 5 km (Walk) X

Total travel time (Car, Ptr) X

Number of transfers (Ptr)

Trip cost/income (Car, Ptr)

Cars/household (Car)

Walk dummy (Walk)

Car dummy (Car)

X | X [X[X|X|X[X][X

Log sum (Dest.)
Ln(jobs) (Dest.)

X | X | X [X[|X]|X

Size variable

- Population X

- Service employment X

- Retail employment X

Walk=Walk and bicycle
Ptr =Public transport
Car =Car

The size variable is the weighted sum of the inhabitants and jobs in the area. Rather
simple models, particularly for home-based trips, are used so as to be able to forecast the
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values of chosen variables in the future. That is, simple models are assumed to be more
convenient when doing forecasts and complex models, if the behaviour is studied. The
coefficient of size variable is fixed to one (based on the theoretical consideration of the
collective choice of destination points). The attraction variables included in the size
variable are normally logarithmic, so that the model is independent of the zoning system.
Thus, the logarithm expression is usually referred to as a size variable and the coefficients
of its components are known as weight-factors. The coefficients for the components of
size variable are, in principle, estimated in the same way as the other model coefficients.
Nevertheless, in this case, note that t-values from the estimation results do not test the

deviation from zero as the coefficient has been estimated inside the exponent function.

Table 9:

Definition of variables specified in mode and destination choice models.

Variable

Definition

Distance 0-5 km (Walk)

One-way distance for walk and bicycle trips between 0 and 5 km.
If the distance is > 5 km, the value of variable is 5.

Distance > 5 km (Walk)

= 0 for walk and bicycle trips between 0 to 5 km.
= distance-5 for walk and bicycle trips over 5 km.

Total travel time (Car)

Round trip total travel time (including walk access times, min)

Total travel time (Ptr)

Round trip total travel time (including walk access times, in-
vehicle time, waiting times, min)

Number of transfers (Ptr)

Round trip number of transfers

Trip cost/income (Car)

Round trip out of pocket travel cost (including parking cost)
divided by monthly household income/1000 (zonal average)

Trip cost/income (Ptr)

Round trip out of pocket travel cost divided by monthly
household income/1000)

Cars/household (Car)

Number of cars per household (zonal average)

Walk dummy (Walk)

=1 for walk and bicycle mode; =0 otherwise

Car dummy (Car)

=1 for auto mode; =0 otherwise

Log sum (Dest.)

Natural log of the denominator of the mode choice model

Ln(jobs) (Dest.)

Natural log of number of jobs in the destination area (zone)

Size variable Natural log of weighted numbers of population and jobs. (For
OHB different groups of jobs are used)
- Population The amount of inhabitants in the area
- Service The number of jobs in service industries
employment

- Retail employment

The number of jobs in retail industries
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Studying the effect of sample size

To explore the impact of sample size on transferring perfomance, model transferability is
tested using three to four different sample sizes. Consequently, all transferability tests
have been carried out by using 100 samples (resampled from the entire set of 1997 Turku
data) for each trip group, transfer method and sample size category. The sample sizes
used by trip groups are presented in Table 10. The respondents who did not make any
trips are not included in the data used in mode and destination choice modelling. The
number of respondents is fixed in each sample category, and the number of trips variates
around the average value presented in the table.

The resampling is performed by using bootstrap (see appendix G for more specific
information). That is, bootstrap samples are created by randomly resampling observations
from our original sample of n observations with replacement (Efron and Tibshirani 1993).
In each drawing, each observation has the same probability of being drawn, 1/n. This
resampling procedure implies that some observations will be drawn several times and
some not at all. The advantage of using bootstrap is that the variance in the coefficients
can also be studied for the entire set of data. However, the main reason for using
bootstrap, other than sampling without replacements, is that this procedure represents the
situation in which samples would have been drawn from the whole population.

Table 10:  The sample sizes and average numbers of trips in the study.
Turku region in 1997
(entire set of data: 4,675 respondents and 28,315 trips)*
Home-based work trips (4,442 trips) Other home-based trips (13,989 trips)
respondents average no. of trips respondents average no. of trips
425 400 140 400
850 800 275 800
1,700 1,600 550 1,600
3,400 3,200 1,100 3,200
4,675 4,450 2,300 6,400
- - 4,675 14,000

*

two-day diaries used
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Test of transferability

The testing process is divided into two phases. First the best possible way to transfer
models by using joint context estimation is defined by comparing the model coefficients,
based on small samples, to the coefficients estimated from the entire set of application
context data. Nine different combinations for using common and data-specific variables
are tested. The combinations (models A-1) studied in mode choice level are presented in
Table 11. The model definitions used in model transfer are presented in Table 8.

Table 11:  The combinations of data-specific variables for mode choice models tested in
the joint context estimation. The data-specific variables are marked by X"’
and letters A to | refer to different models.

Data-specific coefficient
Variable A B C D E F G H |
Distance 0-5 km (Walk) - X X X X X X X -
Distance > 5 km (Walk) - - X X X X X X X
Total travel time (Car, Ptr) - - - - - X - X -
Number of transfers (Ptr) - - - - - - - - -
Trip cost (Car, Ptr) - - - X X - - X
Cars/household (Car) - - - - X - X -

The initial premise was, that almost all possible combinations would be tested. However,
during the pre-testing some very unsatisfactory combinations were dropped. For example
the number of transfers is always estimated as being common because the coefficient of
this variable is so imprecise. This means that the estimation context data have to be
emphasized (the use of common variables emphasize the estimation context more than the
use of data-specific variables).

In addition, two different combinations of common and data-specific variables are used
for the destination choice level, for other home-based trips. First, all variables are kept as
common. Then the components (service employment, retail employment) of the size
variable (see Table 8) are estimated as data-specific. The destination choice model, for
home-based work trips, only includes one unconstrained coefficient (In(jobs)), thus there
are no different combinations to be tested for this trip group.

The best possible way to transfer models by using joint context estimation is evaluated by
comparing the model coefficients, based on small samples, to the coefficients estimated
from the entire set of application context data. The test measure is the percentual Mean
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Deviation (MD) from the coefficients estimated using the entire set of data. The model,
which produces the minimum error calculated as a percentual Mean Deviation from the
coefficients estimated from the entire set of data, is chosen to represent the joint context
estimation.

Transferring models by using
different combinations (A to I)
of common and data-specific

Mean Deviation
(MD-tests)

Model with the lowest
MD-value represents the

for each coefficient joint context estimation
variables — — |

- distance

: --> sum of test measure
- travel time

Step 1: the choice of joint context estimation alternative

Figure 12: The choice of the best way to use common and data-specific parameters in a
joint context estimation.

Secondly, after choosing the best possible way to use joint context estimation, the different
methods are compared to each other. Two approaches are undertaken to determine model
transferability: One compares model parameters between demand models, and the other
compares the forecasting results with the observed values. The steps in the testing process
are presented in Figure 13.

Tests based on the
application context
survey data (e.g

the variance of VOT
and RSEE)

data Transferred
model

- transfer scaling

- Bayesian method

- combined transf. est
- joint context est.

- sample models

likelihood tests
like TTS, Tl

Sample from
Turku data

Tests based on

the forecast

- elasticities (RSEEF)
- MAEF

(2*5*100)

Step 2: model transfer tests

Figure 13: The comparison process of different transfer methods.
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Model validation is carried out at three levels. Firstly, validation tests of the disaggregate
models are conducted through examination of the coefficient ratios, e.g. values of time,
and production of elasticities with respect to a cost and time variables. Two elasticity
tests are conducted. Firstly, in order to test the cost elasticity of the mode choice models,
a test is carried out to examine the effect of increasing car costs by 10 %. Secondly, the
effect of a 30 percent increase in public transport travel times is studied. Transfer
effectiveness is measured by calculating the proportion of models in which the error of
VOT, or sample enumeration error (RSEE), is less than 25 percent. Note that the error
limits defined may, in some cases, affect the conclusions. This is especially so if models
based on one given method slightly exceed the limit and the same method is slightly under
the limit when a different test measure is used. This is, why the average relative sample
enumeration errors are also calculated and presented in the appendixes.

Secondly, the disaggregate measures such as TTS and TI are used to test the model
parameters’ equality in two contexts. The Transferability Test Statistic (TTS) is used to
test the difference between the transferred model and the model estimated from the full
application context data set. The Transfer index (T1) is used to describe the disaggregate
transfer prediction accuracy or goodness-of-fit relative to the corresponding goodness-of-
fit of a similarly specified model estimated in the application context. The test statistic is
described more specifically in Section 3.8.

Finally, validation tests are undertaken by running the model system in its aggregate
implementation to derive base year matrixes and to extract the elasticities with respect to
cost and time variables at this level. The predicted and observed trips are compared to each
other, and the total error, known as MAEF, is calculated over four aggregated groups. The
effects of a 30 percent increase in the public transport travel time on the public transport
share, as well as the effects on car share of a 10 percent increase in travel costs by car, are
studied also in this aggregate level. The relative error for these tests is labelled RSEEF.
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Table 12:  Summary table of transfer evaluation measures used in the case study.
Quantity The description of the field of application
Mean Deviation (MD) This measure describes the mean deviation
(Equation 36) of the transferred coeffients from the set of

coefficients based on the full application
context data set.

The percentage of observations with
the error of VOT under 25 percent
(Equation 38)

This measure describes the accuracy and
preciseness of VOT.

Relative Sample Enumeration Error
(RSEE, RSEEF)
(Equation 45)

This measure describes the transferred
models’ ability to predict the effects of
changes in travel system. RSEE means that
the test has been applied by using the full
application context data set. RSEEF means
that elasticities are based on the running of
the whole model system.

Transfer Test Statistic (TTS)
(Equation 41)

This tests the hypothesis, if the parameter
values in context i are equal to the
parameter values in context j.

Transfer Index (TI)

This compares the predictive performance

(Equation 42) of the transferred model to the performance
of a similarly specified model, estimated on
the application context sample only.

MAEF This is the mean of the absolute values of

(Equation 46) the forecast error based on the entire traffic

forecast data.
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51 I ntroduction

This chapter presents some pecial issues related to the modelling work. According to Horowitz
(1981), the errors concerning disaggregate, random-utility demand models can be divided into
two categories: A digtinction is made between errorsthat cause correct modelsto yield incorrect
forecasts (such as errors in aggregating disaggregate models or in forecasting explanatory
variables), and those that cause modelsto yield incorrect forecasts, even if the modelsare used
correctly (for example, sampling, specification, and dataerrors). In model transfer, the above
mentioned errorsmay cause gpparent differences between the estimation and application context
parameters making it difficult to conclude whether the observed transfer biasisreal or not.
Therefore, in this chapter the uncertainty caused by thelatter class of errorsis examined dueto
its importance in model transfer. First, the issues related to data gathering methods are
considered. After that, the sample size requirements in modelling are investigated.

5.2 The influence of data gathering methods
521 Data and methods

Theam of thissectionisto analyse how the datagathering methods affect the quaity of the data,
indicated by the number of trips reported by the respondents, and other key variables. A
comparison of datagathering methodsis presented here, to seeif different methods used in the
HMA and in the Turku region affect the resultsin relation to model transferability. The HMA
datausedinthe mode transfer, was collected by using telephoneinterviews and one-day diaries.
Inthe Turku region, the data used in the modd transfer, was based on postal questionnaire and
two-day diaries.

The effect of data gathering methods is studied using the special data collected in the Turku
regionfor thispurpose. That is, before the data collection, the random samplewasdivided into
four different sub-samples according to the data gathering method employed. One of these
samples, namely the sample collected by postal questionnaires with one reminder is used

87
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in the modd transfer. Other sub-samples are used in studying the effect of data gathering
methods. All these samples have aready presented in Table 4 in Section 4.3.3. The data
gathering method is studied both at the trip generation level and at the mode choiceleve. The
main issues to be compared are:

o postal questionnaire vs. telephone interview,
° two-day vs. one-day diary,
° the effect of three remindersvs. the effect of one reminder only.

Thedataquality isstudied by comparing thebasic statistical parametersasresponseratesand
the number of trips and mode sharesaswell asby using statistical tests. A t-test has been used
in mode choice level to test if the coefficients estimated in two contexts differ Sgnificantly from
each other. A likelihood ratio test (Equation 39) hasbeen used to seeif thetwo contexts can be
represented by asingle model. The modd’ s ability to predict the effects of changein trafficis
examined by sample enumeration tests. The effects of a30 percent increaseintravel time on the
public transport share, aswell asthe effects of a 10 percent increasein car costs are studied.
Weemployed an“unredligtically” high percentageto study theincreasein travel timein public
transport in order to examine the differences between transfer methods, and not to study the
effects of travel timein practice.

5.2.2 Results
Comparison of trip-related data

Thedistributionsof trip groupsand modal split according to the datagathering method in the
Turku region are presented in Figures 14 and 15. It is obviousthat more bicycle and walk trips
were reported in the telephone interview than in the postal questionnaires. However, the
differenceswere smaller thanin many similar studies. The distribution of trip purpose groups
was quitesmilar in different data gathering methods. The most sgnificant differencewasin the
telephone interviews, which included more other home-based trips (53 %) and lessnon home-
based trips (21 %) than the postal questionnaires. 1t can probably be explained by the fact that
agreater share of bicycle and walk tripswere reported in telephone interviews. Most short
tripsareother home-based trips. It must also be noted that in practice the datawill be welghted
for age and sex to represent the total population. In such casesthe mode and trip distributions
may change. Theresults presented here are based on unweighted data, which arealso used in
estimating mode- and destination choice models. The questions concerning dataweighting are
discussed in Section 5.3.2.
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Figure 14: The shares of trip purpose groups according to the data gathering methodsin
the Turku region.
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Figure 15: The mode shares according to the data gathering methods in the Turku
region.
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Thetrip generation rates

Table 13 presents the weighted average trip generation rates defined by thetrip groupsused in
the Turku region. (There were two popul ation groups for home-based work trips: working
persons age 18-64 years and others, and three for other home-based trips. age 7-17, EHAP-
persons age 18- and HAP-persons). In the first part of the table the trip generation rates
calculated from the first day observations are presented and in the middle part, those
representing the second day. In thethird part of the table thetrip generation rates are calcul ated
based on the assumption that the persond trip generation rate isthe average of these two days,
and thefirst and second day observations are not independent of each other. Thismethod isaso
used in the modd transfer study. The average trip generation rate for these two daysis not the
average of thefirst and second day because the number of respondents on thefirst day differ
from the number of respondents on the second day; that is, the respondent burden stops some
people from informing us about the trips made on the second day.

On the whole, the trip generation rates based on first day observations were somewhat higher
than those based on second day observations. Thisismainly dueto the respondent burden on
the second day. The use of postal questionnaires created greater differencesfor other home-
based trips than the use of telephone interviews. That was probably due to the ability of the
interviewer in the phone interview to motivate and help the respondent disclose al the trips
made. Thetrip generation rates calculated as an average of thetwo dayswere quite smilar to
therates calculated from thefirst day observationsbeing, however, dightly smdler than thefirgt-
day trip generation rates, but this difference was not of great importance.

According to the resultsthetota trip generation rate did not vary very much, but the share of
peoplewith“notrip” (Table 14) washigher (13.5 percent) inthetdephoneinterviewsthaninthe
postal questionnaires (8.5 percent). Thisisbecause, inthemail survey, especidly inthe early
stage of theresponsg, it is likely that those with “no trip” probably thought that it was not
worthwhile returning the questionnaire. On the other hand, walk and bicycle trips were better
reported during telephoneinterviews (Figure 15). Thus, the non-responseerror and, the better
representativeness of the walk and bicycle trips by using telephone interviews maybe
“compensated” each other and thetota trip generation rate did not vary excessively between the
methods.
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Table 13: The trip generation rates (trips/person/day) by the data gathering method

(Kurri and Karasmaa 1999).

Thefirst day 2 days, 1 day, 2 days, Telephone
1reminder 3reminders 3reminders

Total trip generation rate 3.58 343 351 3.56

Home-based work trips age 18- 1.25 113 129 1.26

64 (working population)

Home-based work trips others 0.07 0.07 0.07 0.05

aged >6

Other home-based trips age 1.38 1.50 127 1.79

7-17

Other home-based trips, HAP* 187 1.82 176 1.92

Other home-based trips, EHAP* 1.80 157 179 2.06

The second day

Total trip generation rate 3.02 - 2.95 3.32

Home-based work trips age 18- 111 - 1.09 1.13

64 (working population)

Home-based work trips others 0.06 - 0.07 0.06

aged >6

Other home-based trips age 113 - 1.09 1.67

7-17

Other home-based trips, HAP* 1.62 - 152 1.70

Other home-based trips, EHAP* 1.42 - 141 1.64

Thetwo day average 2 days, 1 day, 2 days, Telephone
1reminder 3reminders 3reminders

Total trip generation rate 3.50 - 3.46 3.54

Home-based work trips age 18- 1.25 - 1.29 1.23

64 (working population)

Home-based work trips others 0.07 - 0.07 0.05

aged >6

Other home-based trips age 134 - 127 1.77

7-17

Other home-based trips, HAP* 1.86 - 172 1.87

Other home-based trips, EHAP* 1.73 - 1.73 1.91

*

*

HAP is aperson who mainly use car for travelling
EHAP is aperson who usually cannot use a car to travel



92 CHAPTERS5. DATA-COLLECTION METHOD AND SAMPLE SIZE AS
SOURCES OF VARIATION IN MODEL COEFFICIENTS

Table 14: The amount of personswith ” no trip” and of the people who made more than
four trips in the different data gathering methods studied (Kurri and

Karasmaa 1999).
Trips | Initia question- | 1st reminder 2nd reminder 3rd reminder
naire (1st call) (2nd call) (3rd call) (4-9cal)

2 day, 0 630 8.4 % 202 | 148% - - - -
lreminder | >4 2383 | 3L.7% 316 | 23.1%

total 7512 1368
1 day, 0 139 7.7 % 45 [11.0% 18 | 132% 5 6.0 %
3reminders | >4 565 31.3% 92 [225% 28 | 20.6% 16 | 19.0%

total 1803 409 136 84
2 day, 0 100 9.3% 27 | 127 % 12 | 125% 7 1125%
3reminders | >4 373 34.5% 47 [ 221% 20 | 20.8% 8 [143%

total 1080 213 96 56
2 day, 0 145 15.0% 58 | 12.7% 23 [ 12.0% 10 | 79%
1reminder, | >4 234 24.2% 106 | 23.1% 45 | 234 % 45 | 35.7%
telephone total 966 458 192 126

Table 14 showsthat the share of peoplewith“notrip” does not appear to decrease noticeably
after thefirst reminder in postal questionnaires. The share of peoplewho have made morethan
four trips decreases in postal questionnaires when more reminders are sent out; however, in
telephoneinterviewsthe number of callsdoesnot appear to play soimportant arole. Thisisthe
opposite of the preconception that reaching people who make many trips requires more attempts
than reaching less mobile people.

Results based on the mode choice models

Tables 15 and 16 contain the mode choice modelsfor home-based work trips and other home-
based trips defined by the datagathering methods. The model specifications have aready been
explained in Section 4.5.

The models cannot be compared, as such, because a great deal of the variation between the
coefficientsisdueto random variation (due, for example, to the small sample) and only a part
is caused by the differences between the data gathering methods. However, al the modelsare
presented in order to provide a better overview of the situation, and to enable usto evaluate the
differences between the methods aswell as can be done. In addition, thefirst and second-day
models for the data based on the two-day diarieswith one reminder are presented, so we can
better evaluate the effect of two-day diariesversusone-day diaries. Inaddition to the number
of observations, the mode shares are also presented because the modal share of the least



5.2 Theinfluence of data gathering methods 93

represented mode definitely affects model accuracy. The mode sharesmay also give some
additiona information about the possible reasonswhy model parameters differ from each other.

Table 15: Estimation results of home-based work trips using different data gathering
methods; estimated from data collected in the Turku region in 1997.

Postal Survey 2 day,
Teleph
2 day, 1 reminder Intzrpvi(::
2day,3 | lday,3
total Istday [2ndday |reminders|reminders
A B C D E F

Distance 0-5 -0.878 -0.848 -0.914 -1.034 -0.896 -0.778
(Walk) (-24.2) (-17.0) (-17.0) (-13.5) (-9.2) (-8.4)
Distance >5 -0.339 -0.371 -0.298 -0.375 -0.441 -0.540
(Walk) (-11.0) (-8.6) (-6.7) (-6.3) (-4.4) (-6.7)
Total travel time -0.022 -0.022 -0.022 -0.029 -0.023 -0.041
(Ptr, Car) (-8.2) (-5.8) (-5.7) (-5.1) (-3.3) (-5.0)
Walk-dummy 2137 2.067 2.242 2.014 1.949 0.166
(Walk) (11.4) (7.8) (8.3) (5.0) (4.0 (0.3)
Car-dummy -0.506 -0.481 -0.576 -1.515 -0.720 -1.760
(Car) (-2.6) (1.8) (-2.0 (-3.8) (-1.4) (-3.3)
Cars/household 0.658 0.633 0.707 1.189 0.798 1.094
(Car) (3.8) 2.7) (2.8) (3.6) (1.8) (2.8)
Trip cost/income -0.884 -0.994 -0.723 -1.157 -0.875 -1.698
(Ptr, Car) (-7.2) (-5.8) (-4.1) (-4.8) (-2.9) (-5.3)
Number of trip obs. 4442 2347 2095 1223 665 758
mode share distribution
* walk and bicycle 1407 760 647 369 175 209
* car 2417 1272 1145 651 388 443
* public transport 621 315 303 203 102 106
p?(c) 0.2011 0.1985 0.2044 0.2208 0.2190 0.1598
VOT (Car, Ptr) 21.4 19.0 26.1 215 22.6 20.7
Sample enumeration (RSEE)
Ptr travel time + 30 % -4.8 -4.7 -4.9 -7.0 -5.6 -7.5
Car cost + 10 % -0.8 -1.2 -0.9 -1.5 -1.1 -2.1

Walk=walk and bicycle
Ptr=public transport (bus)
Car =driver or passenger
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Table 16: Estimation results of other home-based trips using different data gathering
methods; estimated from data collected in the Turku region in 1997.

Postal Survey 2 day,
] Telephone
2 day, 1 reminder Interview
2day, 3 [lday,3
total I'stday |2'ndday [reminders [reminders
A B C D E F

Distance 0-5 -1.038 -1.050 -1.023 -0.884 -0.937 -0.948
(Walk) (-49.0) (-36.4) (-32.7) (-22.0) (-17.6) (-20.7)
Distance >5 -0.247 -0.260 -0.232 -0.343 -0.425 -0.312
(Walk) (-13.5) (-10.9) (-8.6) (-7.5) (-6.6) (-7.4)
Total travel time -0.014 -0.014 -0.013 -0.017 -0.021 -0.018
(Car, Ptr) (-7.3) (-5.6) (-4.7) (-4.2) (-3.8) (-3.9
Number of transfers -0.437 -0.495 -0.378 -0.301 -0.543 -0.435
(Ptr) (-10.5) (-8.4) (-6.4) (-3.7) (-4.4) (-4.6)
Walk-dummy 2.157 2.148 2.173 2.033 1516 2.116
(Walk) (20.9) (14.8) (13.9) (9.2 (5.0 (8.2
Car-dummy -0.893 -0.864 -0.922 -0.798 -0.857 -0.901
(Car) (-7.7) (-5.5) (-5.4) (-3.5) (-2.8) (-3.5)
Carg/household 1.173 1.106 1.251 1.110 0.949 0.969
(Car) (13.3) (9.3 (9.6) (6.0) (4.2 (4.9
Trip cost/income -1.739 -1.809 -1.655 -1.147 -1.716 -1.734
(Car, Ptr) (-20.4) (-15.6) (-13.2) (-7.2) (-7.7) (-8.5)
Number of trip- obs. 13989 7 609 6 380 3587 2164 3042
mode share distribution
* walk and bicycle 5928 3279 2 652 1494 835 1493
* car 6 407 3459 2942 1659 1086 1226
* public transport 1651 871 780 434 243 323
p*(c) 0.2265 0.2323 0.2198 0.2126 0.2199 0.2216
VOT (Car, Ptr) 6.9 6.6 6.7 12.7 10.5 8.9
Sample enumeration (RSEE)
Ptr travel time +30 % -2.3 -2.3 -2.3 -2.8 -3.1 -2.6
Car cost + 10 % -1.5 -1.5 -1.4 -1.0 -1.4 -1.5

Walk=walk and bicycle
Ptr=public transport (bus)
Car =driver or passenger
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The differences between the coefficients were compared with t-tests. In addition, the differences
between the model parameters were tested by comparing the two models estimated in context
I and j to seeif they are equal to the model estimate with the pooled datafrom context i and |
with the likelihood ratio tests (Equation 39). The results of the statistical tests are presented in
Table 17. However, note that due to repeated measurements (see Section 5.3.3.3 and
Appendix H), t-vaues are higher than they would be for independent observationsand the null
hypothesisof theequality of the coefficientsto beregected too easily. When comparing the one-
day and two-day interviewsthereare a so different number of repeated observations between
these two data sets.

Table 17: The test statistic of the difference between the mode choice model coefficients
by different data gathering methods.

The Data Gathering M ethod t-test X2 -value*
Home-Based Work Trips

Thefirst day versus the second day - 6.7
Telephone interview versus postal questionnaire distance 0-5 km 22.3
(2 day, 3 reminders) (t-value 2.1)

One day (E) versus two day (D) postal questionnaire - 8.4
One reminder (A) versus three reminders (D) 104

Other Home-Based Trips

Thefirst day versus the second day - 2.2
Telephone interview versus postal questionnaire trip cost/income 51.8
(2 day, 3 reminders) (t-value 2.3)
Oneday (E) versustwo day (D) postal questionnaire trip cost/income 16.7
(t-vaue 2.1)
One reminder (A) versus three reminders (D) trip cost/income 30.5
(t-value 3.1)
distance 0-5 km
(t-value 2.6)

* The critical risk level value of 0.05; 14.1 in home-based work trips and 15.5 in other home-based trips.

According to theresults, based only on the home-based work trips, the modedls estimated viathe
telephoneinterview and the postal questionnaire differed from each other duetothedifferences
inthedistancevariable. It also seemsto bethe case that the level of coefficientsfor time and
cogtsishigher when using telephoneinterviews than when using postal questionnaires, inspite of
thefact that the differences are not statistically significant.



96 CHAPTERS5. DATA-COLLECTION METHOD AND SAMPLE SIZE AS
SOURCES OF VARIATION IN MODEL COEFFICIENTS

When we consider the other home-based trips, the results based on the one-day diary also
differed from those based on the two-day diary and the number of reminders significantly
affected themode parametersaswell. Thetable showsthat the“ cost per income” coefficient
had, in all cases, the biggest deviations between the models. The difference between the
coefficients of cost per income was highly problematic. When the two-day, three times
reminded data were used, without the data collected by the second and third reminder, the
differencetill existed (thisexamination wasmadeto ascertain the effect of remindersparticularly
for this“two-day, 3reminders’ sampledata). Thus, it can be concluded that the reminders, at
least, did not causeall the differences. When the model was estimated using the individually
observed values instead of the zonal values or using only the cost variable, without the
denominator income, these differences did not exist. That is, the differences between the
coefficients are probably derived from the use of zonal mean values for income variable.

523 Conclusions

Theresearch suggested the generd opinionthat theteephoneinterview isusudly amorerdiable
method of collecting information than the postal questionnaire. Thewalk and bicycletrips, in
particular, were better reported in telephone interviews, and also “no trip” responses were
better captured in the telephone survey.

The differences between the data collection methods were greater when crosstabulating mode
sharesand trip generation rates than when consi dering themode and destination choice models.
The differences between the trip generation rates or mode shares are not very important in our
case, because the main focus is studying the transferability of mode and destination choice
modds. Thus, the forecagts, which are used when testing the whole modd system, are made by
using constant trip generation rateswhich are cal culated using the entire set of gpplication context
data. In addition, theforecast processincludestheiteration of the alternative-specific constants,
so that the mode shares represent the welghted mode sharesinthe area. However, generaly
when estimating totally new models or transferring model sthe correct trip generation ratesand
mode share distribution have a necessarily greater importance. Therefore, in this case, the
telephone interview should be preferred.

The differencesin quality between one- and two-day-questionnaires seem to be quite small.
Nevertheless, thelower response rate and the respondent burden appear to play agreater role
when two-day-questionnaires are used. The advantage of atwo-day diary isthe largetrip
samplesize with reasonable costs. Thisisespecially useful inthe kind of surveysdonein the
Turku region, where additiona origin-destination field surveyswerenot carried out for internal
trips, but the travel demand matrix was formulated using mobility surveys. It must so be noted



5.3 Theimportance of sample size 97

that thetwo-day diary does not increase the number of respondents. Consequently, thelarger
number of trips based on two-day diaries does not increase the statistical accuracy to the same
extent as the number of respondents increases does, because the trips made during thefirst and
the second day are not total ly independent of each other. About 43 percent of the home-based
tripsand 11 percent of the other home-based trips made in thefirst day were also madein the
second day. (Thetrip wasregarded asbeing the sameif thetype of origin or destination wasthe
same on both thefirst and second day and if the main mode-choi ce was the same on both days.
In addition, the departure time was required to vary by no more than two hours on both days).

Withregard to model transfer, it can be said that the survey method appearsto affect theresults
at many different levels. However, the differences e.g. between the postal and telephone
interviews are not so important when studying model transferability, but they do have more
importancein red transfer situations. There was also evidence, that the data gathering method
can affect the mode choiceleve, thereby suggesting that some of the differences between the
coefficientsin the estimation and the application context discussed in Chapter 6 may be caused
by the data gathering method and not just by red differencesinlocal conditionsinthe HMA and
in the Turku region.

Theresultswere quite Smilar to other internationa studies, dthough the differences between the
methodswere smaller thanin most previous studies. Maybe, dueto thetime resources of the
outsi de survey organization thetelephoneinterview wasnot planned ascarefully asit should have
been (thetelephoneinterview and the postd questionnaire had the same questionnaireform). In
spite of that, the resultsrelating to the response rate, the share of people with no trip and trip
generation rates can be considered quite reliable; however, more detailed analyses concerning
the mode choice model s can not be made because the sample size achieved by the telephone
interview istoo small.

5.3 Theimportance of samplesize

5.3.1 Introduction

Choosing the sample sizeis another important aspect of the planning and design of the survey.
Samples may be chosen on the basis of the maximum acceptable levels of error in certain

information to be collected, or on the basis of the sample size required for model buildingin
travel demand modelling.
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Smith (1979) and Sopher (1982) have proposed methods for estimating the required sample
Szefor givenlevelsof accuracy required from across-classfication mode of trip generation. It
isrelatively smpleto specify the sample-size requirements for agiven accuracy of trip rate.
However, sample sizestend to be more difficult to determinefor calibration of trip distribution
models, and there have been some significant differences of opinion on the sample-size
requirementsfor calibrating logit model s of mode choice (Sopher 1991). No method has been
adopted by the professionfor determining the required sample sizefor ahousehold travel survey.
Instead, sample sizes are determined sometimes on the basis of statistical assessment (such as
minimum samplesizesfor cartainjurisdictionswithin the survey region), and sometimesby smply
determining how many observations can be obtained for the available budget.

In this chapter we consider the sample Sze required for mode and destination choice moddlling,
aswell asfor thetrip generation level. Theam isto consder the sample sizein thefirst three
seps of the traditiona four-step model (excluding trip assignment) and to eva uate which part of
themodel systemisinacritical pathinthe modd transfer. However, our purpose has not been
to give any precise sample size recommendations. The purpose has rather been to examine
different criteria and evaluate the accuracy which can be reached using these criteria.

The study isbased on the reference data collected in the Turku region in 1997. Theimportance
of sample size is studied with respects to:

° how much datais required to cross-classify trip generation rates (Section
5.3.2),

° how much datais required to determine accurately mode shares (Section
5.3.2),

° what isthe sample size required in mode and destination choice modelling and

how (the absolute) sample size affects the variation of mode and destination
choice model parameters (Section 5.3.3), and

° how the use of atwo-day diary instead of aone-day diary affectsthe sample
Sizethat isnecessary for estimating mode and destination choice models.

All thesefactorsaffect thefinal outcome of model estimation and transfer. Thefirst threeitems
aredirectly connected to the issues concerning the data requirementsin model transfer. By
comparing thetwo-day diariesto the one-day diarieswea so try to evaluate the possible effects
of different kinds of datain an estimation and application context. In our case, aone-day diary
was used in the HMA and a two-day diary in the Turku region.
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532 The samplesizerequired in atrip generation level
53.21  Problem description and methodology

Next, the sample sizerequired to accurately definethetrip generation rates, aswel asfor finding
the correct trip shares, is consdered. The trip generation models have been calculated using
simple cross-tabul ations, which were made separately for each sample examined. Under the
circumstances, the trip generation rates have not been actually transferred, but have been
calculated in every trip group and sample size studied.

The trip generation rates are calculated from the sample data by dividing the number of tripsin
each trip group and population group by the relevant population. There are two popul ation groups
in home-based work trips. working persons age 18-64 years and other population, and three in
other home-based trips: age 7-17, EHAP-persons age 18- and HAP-persons (HAP-personis a
person that practically always has accessto acar for persond trips. Others are EHAP-persons).
The preciseness of trip generation rates undergoes two phases of testing. First, the trip- and mode
shares of unweighted data are calculated. Second, the data are extended to respond to the whole
population and then the mode shares and trip generation rates are calculated again from this
weighted data. The weighting was done according to five age groups. To test the required sample
Size the trip generation rates calculated from the samples are compared with the trip generation
rates calculated based on thefull dataset. Wealow a maximum deviation of 5 percent from the
real trip generation rate (atrip generation rate based on the average of 100 bootstrap samples
using the whole dataset). A one percent maximum deviation is allowed for mode shares (thus, if
the correct mode share is 25 percent, the values between 24 to 26 are allowed). The sample size
is aways given as a number of respondents unless otherwise stated.

5322 Results

Figure 16 presentsthetrip generation rates and 95 percent confidenceintervals (based on the
normal digtribution assumption) for home-based work trips by trip group and class for weighted
data. Figures 17 to 18 present the proportion of the 100 samples with the error below 5
percent. The sample size requirement i s defined with respect to the result which can be reached
with the entire set of data. Thus; first, the number of “full” samples, based on the bootstrap
samples, not exceeding a5 percent deviation, is defined for the whole set of data. Then, a
number, 5 percent | ess, isdefined for the samples, e.g. if the number of “full” sampleswhichdo
not exceed a 5 percent deviation is 99 percent, the number required for the samples not
exceeding the5 percent deviationis94. The“relative’ criteriawith respect to thefull sampleis
used because itisdifficult togive any exact vaueswhich should be gained, and in many cases
even by using the entire set of dataresults can be regarded as being too imprecise. Hence, we
try to find an acceptable sample size after which results show only asmall level of improvement.
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Figure 16: The variation of trip generation rates and 95 % confidence intervals for
home-based work trips as a function of sample size based on 100 bootstrap
samples and weighted data.
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Figure 17: The percentage of trip generation rates with the error below 5 percent as
a function of sample size; home-based work trips, 18-64 aged persons.
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Figure 18: The percentage of trip generation rates with the error below 5 percent as
a function of sample size; home-based work trips, other persons.

Thefigures show that the sample sizerequired to accurately cross-tabulate trip generation rates
for home-based work trips is 3,300 respondents with this cross-classification strategy.
However, becausethetrip generation rate of “other” isso small, the absol ute effect of thisclass
ismargina (e.g. theweighted amount of tripsfor 18-64 aged employed is 124,594, whereasit
IS7,425 for others). Decreasing the sample size does not result in asignificantly worse total
generation, even when the sample size of 1,900 respondents is used.

The weighted and unweighted values do not differ from each other remarkably. The weight
factor does not actually alwaysimprovethemodd. That is, sometimesthetrip generation rate
based on the unwelghted datais closer to the“right” trip generation rate (based on theweighted
data) than the small sample trip generation rate based on the weighted data. Thisis because
errorsin the estimations of the two additional parametersare not always comparablewith the
problem caused by the differences.

Figures 19 to 22 illustrate the variation of trip generation rates for other home-based trips.
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Figure 19: The variation of trip generation rates and 95 % confidence intervals for
other home based trips as a function of sample size based on 100
bootstrap samples and weighted data.
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Figure 20: The percentage of trip generation rates with the error below 5 percent as
a function of sample size; other home-based trips, 7-17 aged persons (the
unweighted curve is behind the weighted curve).
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Figure 21: The percentage of trip generation rates with error below 5 percent as a
function of sample size; other home-based trips, EHAP-persons over 17
years of age.
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Figure 22: The percentage of trip generation rates with error below 5 percent as a
function of sample size; other home-based trips, HAP-persons.
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As for home-based work trips, the trip generation rates are quite precise even though the
variation for the smallest sample sizesis quite large. Also, in this case the weighted and
unweighted values do not differ from each other remarkably. The most restrictive group is
“persons 7-17" requiring the sample size of 3,800 respondents to achieve an error below the
given criteria; however smaller sample sizes still produce reasonable results.

M ode shares

Next the sample size, which isrequired to accurately get the mode shares by cross-tabulating
fromthedata, isexamined. Figures23to 26 present the variationsin mode shares according to
the sample size, and the sample size required for each (walk and bicycle, ptr, car) mode share.
The sample sze requirement is defined by the criteriathat the maximum alowable deviaion from
the correct mode share is 1 percent; thus, e.g. if the correct mode shareis 25 percent, the
values between 24 and 26 are allowed. In other words; first, the number of “full” samples,
based on the bootstrap samples, not exceeding a1 percent deviation, is defined for the whole
set of data. Then, anumber, 5 percent less, is defined for the samples, e.g. if the number of
“full” sampleswhich does not exceed a 1 percent deviation is 80 percent, the number required
for the samples not exceeding the 1 percent deviation is 76 (0,95* 80).

Figures23to 26 show that when considering the smallest sample size, themode sharesarevery
imprecise, and even for the largest sample size (representing the whole data set), only 58to 76
percent of observations for home-based work trips and 78 to 95 percent for other home-based
trips go below the 1 percent error limit. This 1 percent absolute error limit, isactually, stricter
than the 5 percent relaive limit used in relation to trip generation rates. However, inred lifethe
1 percent deviation is regarded to be as the maximum error to be allowed in amajor study.

InTurku, theresultsfor public transport shares appear to be more precise than those for car and
walk and bicycle. Thisis because the absolute deviation favours the less represented mode
share by alowing alarger reative error for thismode. Therelative errors are quire smilar for dl
modes.

When dlowing for 5 percent poorer result than obtained by using the maximum sample size, the
samplesizerequired for home-based work tripsis 4,400 respondentsand for other home-based
trips 3,900 respondents. This means that 4,400 respondents, i.e. all the respondents, are
required to get the precisenessrequired in the Turku region. The result also meansthat more
observations are required to define the mode sharesthan isthe casefor thetrip generation rates.
Thebest possibleresultis aso worse on arel ative basi s when defining mode shares than when
defining trip generation rates.
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Figure 23: The variation of mode shares and 95 % confidence intervals for home-

based work trips as a function of sample size based on 100 bootstrap
samples and weighted data.
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Figure 24: The percentage of samples with mode share difference below 1 percent as
a function of sample size; home-based work-trips.
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Figure 25: The variation of mode shares and 95 % confidence intervals for other
home-based trips as a function of sample size based on 100 bootstrap
samples and weighted data.
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Figure 26: The percentage of models with mode share difference below 1 percent as

a function of sample size; other home-based trips.
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53.3 The sample size required in mode- and destination choice model
estimation

5.3.3.1 Introduction

In this section the sample size required to estimate mode- and destination choice models
is considered. It is well known that in principle sampling errors are roughly inversely
proportional to the square root of the size of the estimation data set. Thus, for example,
the data-set size must be quadrupled in order to halve the sampling errors (Horowitz 1981).
Based on this premise, Koppelman and Chu (1983) have formulated analytic relationships
for sample size and the precision of parameter estimates. Their methodology estimates the
sample size Ns required to obtain parameter estimates with a prescribed percent confidence
(1-ov) within a given percent z of true values, by the mathematical relationship:

N =(S*22), (48)

where S is the standard error of the parameter estimate, and z is expressed as the accepted
mean deviation of the true parameter value. This equation performs well in ideal
situations in which only one observation per person is used. However, in the Finnish
travel surveys, questions are asked for all the trips made for one or two days. This means
that there will be correlation between the answers provided by the same person. This is
known as the repeated measurement problem. Repeated measurements violate the
assumption that the error terms are independent and means that we can no longer rely on
the variance estimates obtained in this way (Cirillo et al. 2000). Thus, the sample size
requirements have to be studied in another way.

This chapter considers the sample size requirements for mode- and destination choice
modelling. In addition the repeated measurement problem (described above) is discussed.
The samples are drawn by using bootstrap and the sample size is always presented in
persons if it is not indicated otherwise. The need for observations is considered from two
different aspects which are also used in the model transfer experiment in Chapter 6. The
test measures of these two aspects are VOT (value of time), RSEEF (relative sample
enumeration error for forecast).

The investigation is divided into the three parts:

- In the first part of the subsection the model parameters’ preciseness is
considered at quite a general level. That is, the model coefficients based on
small samples are compared to the coefficients from the entire set of data. The
test measure is the percentual Mean Deviation (Equation 36) from the
coefficients estimated using the entire set of data.
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- Next the variation of coefficientsis studied using both estimated and observed standard
deviations (Equations 49 to 50 presented in Section 5.3.3.3). The repeated
measurement issue, in particular, is discussed in this subsection.

- Inthethird part of the sudy, different criteriafor defining the sample sze requirements
areconsidered. Two different test measures (VOT, RSEEF) used in evaluating the
model transfer effectivenessare discussed in thischapter (Equations38 and 45). TTS
is not considered due to its tendency allways reject the hypothesis of the model
parameters equality.

5.3.3.2 Resultsbased on the percentual MD and confidence intervals

Table 18 contains mode choice moddsfor home-based work trips and other home-based trips
estimated from the entire set of datain the Turku region. The value of time estimated for the
home-based work tripsis 3.60 euro/h (21.4 FIM/h) and for the other home-based trips 1.15

euro/h (6.7 FIM/h).

Table 18: Mode and destination choice models for home-based work trips (HBW)
and other home-based trips (OHB) using the “ reference data” (two-day
diaries, 1 reminder) collected in the Turku region in 1997.
HBW OHB
Variable o o
Coefficient Std. t-value Coefficient Std. t-value

Distance 0-5 km (Walk) -0.8775 0.0363 -24.2 -1.0380 0.0212 -49.0
Distance > 5 km (Kv) -0.3388 0.0308 -11.0 -0.2470 0.0183 -13.5
Total travel time (Car, Ptr) -0.0222 0.0027 -8.2 -0.0135 0.0019 -7.3
Number of transfers (Ptr) - - -] -0.4372 0.0415 -10.5
Trip cost/income (Car, Ptr) -0.8839 0.1220 -7.2| -1.7390 0.0853 -20.4
Cars/household (Car) 0.6578 0.1720 3.8 1.1730 0.0881 13.3
Walk dummy (Walk) 2.1370 0.1880 11.4 2.1570 0.1060 20.4
Car dummy (Car) -0.5061 0.1950 -2.6| -0.8932 0.1150 -7.7
Log sum (Dest.) 0.7335 0.0170 43.2 1.2020 0.0089 134.8
Scale factor (Dest.) 1.0000 0.0000 - 1.0000 0.0000 -
Number of trip observations 4,442 13,989
p2(c) 0.2011 (mode), 0.1431 (dest) 0.2265 (mode), 0.2806 (dest)
Walk = Walk and bicycle Scale factor: Scale factor:
Ptr = Public transport - In (jobs) 1.00 - inhabitants 1.00
Car =Car - retail employment 14.89

- service employment  2.52

Figures 27 and 28 present the variation of travel time coefficients by sample size for the two-
day data. Thevariation of 100 modd coefficients per each sample Szeis compared with the 95
percent confidence interval based on the average value of observed standard deviations
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of coefficientsthrough bootstrap. The 95 percent confidence interva ismarked by linesin the
figures. From the figures we can see that the coefficients estimated by using small samplesare
distributed around the coefficient, which have been estimated by using the entire set of data.
However, thevariation of model parametersincreases grestly when the sample size decreases
and in some cases the signs of coefficients are actually wrong. The results also show that
although the sample sizeis an important factor in model preciseness, thereisalimit beyond

which the results show only asmall level of improvement.

Turku region, home-based work trips,
travel time coefficient by sample size
0.02
0.00 /000 -0.004
- oS > Q012 -0.015
5 002 KFuddeses 2 ston
2 4 %
% -0.04 :%0)00% <><5> & & © aa L2 -0.030
3 o " o &W > So36 -0.031
0,06 | 00490 0042 o
(o4
-0.08
425 850 1700 3400 4675
sample size (respondents)

Figure 27: The variation of travel time coefficients and 95 % confidence intervals of
home-based work trips estimated from the two-day data in the Turku
region.
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Figure 28: The variation of travel time coefficients and 95 % confidence intervals of

other home-based trips estimated from the two-day data in the Turku

region.
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Table 19 presentsthe percentual mean deviation valuesfor al coefficients. However, notethat
the results relating to the home-based work trips and other home-based trips are not to be
compared directly according to the sample size due to the different number of trips per person
inthesetrip groups. Thatis, the same sample size of persons represents a different number of
trips depending on the trip purpose. 1n addition, because two-day diaries were used, about 43
percent of the home-based tripsbut only 11 percent of the other home-based trips madein the
first day were a'so made in the second day. The more observations in common (in the two
days), the less precise the coefficients are.

Table 19: The percentual mean deviations of the mode and destination choice model
coeffients based on small samples versus the coefficients based on the
entire set of original two-day data.

The percentual mean deviation of the coefficient (MD)
Turku region
trip sample sample | travel | cars/hh | dist>5 |cost/inc | dist0-5 | no. of logsum
group | size size time transfers
(persons) | (trips)
HBW 425 400 45.1 129.4 443 59.7 195 - 23.2
850 800 | 323 1015 30.7 36.5 12.6 - 18.2
1,700 1,600 | 235 54.3 19.0 26.9 9.3 - 117
3,400 3,200 | 14.6 38.5 131 175 55 - 9.0
4,675 4,675 | 130 38.1 9.7 14.8 51 - 8.0
OHB 140 400 100.5 76.8 127.5 329 155 80.3 17.7
275 800 73.0 42.0 53.2 24.7 111 54.6 15.9
550 1,600 | 48.9 34.3 28.7 185 7.5 35.0 11.6
1,100 3,200 | 329 25.2 274 13.2 6.0 245 84
2,300 6,400 | 274 16.0 16.2 9.3 41 153 3.8
4,675 13,900| 17.3 11.8 104 8.8 2.2 12.0 3.7

HBW = home-based work trips
OHB = other home-based trips

Themost precise mode choice coefficient is* distance 0-5" and the most impreci se coefficients
are coefficients“ carsper household”, “travel time” and “number of trandfers’. Onthewhole, the
use of “number of transfers’ variable decreasesthe accuracy of themodels. In particular, the
variance of travel time coefficient increases. Thisismainly related to the assignment package
and aso to the network coding. The variable “ cars per household” is problematic becauseitis
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not based on theindividua vaues but the zond vauesby using adivison of 23 zones. Thesame
problem was detected using the” cost per income” variable dueto the fact that the incomes were
calculated by using zonal values based on 23 zones. The coefficient “ distance >5" of other
home-based tripswas a so quite imprecise because of the small number of tripswhichinthis
category.

Amemiya (1978) has shown that when the sequential estimation is applied using standard
multinomid logit estimation programs, the variance-covariance matrices of the estimates printed
for themargind probabilitiesof higher-level models (in that casethe destination choicelevd) are
incorrect and too small. That was also the casein thisstudy. The coefficientsfor destination
choice models (not presented here) are very precise. However, the sequentia estimation, which
was used and thelack of aternative specific constantsin destination choice models may cause
the absolute values of upper level coefficients to be overestimated.

5.3.3.3 Repeated measurement issue

Next the model parameters’ variation and repeated measurement issue are considered with
respect to two different kindsof standard deviations. The std: isthe mean value of estimated
standard errors based on the results derived from the Alogit estimation program (Hague
Consulting Group 1992) and stdp is the observed standard deviation calculated from the
distribution of 100 model coefficients through the bootstrap procedure.

N
Z std.
std = i1 , where
(49)
std.= the estimated std-value of the coefficient based on the Alogit
(50)

N = the number of sample models

B = mean value of coefficients estimated from sample models

Theoretically the std: should be closeto stdy, if any biasdoesnot exist. However, in cases
repeated observations are taken from an individual, thisis not the situation.
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Table 20 showsthat in our case thereisalarge difference between the estimated and observed
standard deviation. Theratio of thestd, and std isapproximately 1.5 regardless of the sample
size. Itislikely that large part of the difference is due to the repeated measurements. The
repeated measurement error isgreater in other home-based tripsthan in home-based work trips.
Thisisdueto thelarger number of trips per person in the other-home-based trips, dthough there
arefewer observationsin common between the first and second day when considering the other
home-based trips.

Table 20:

The comparison of estimated (stdi) and observed (stdp) standard deviations
based on the two-day data collected in the Turku region.

std: ver sus stdp

Turku region

group |size

trip |sample

travel time cars’hh dist >5 cost/inc dist 0-5 no. of trans-
fers

stdt  stdp | stdt  stdp | stdt  stdp | stdt stdp | stde stdp | stdt stdp

HBW | 425

0.010 0.013| 061 108 | 0.13 0.18 | 043 065|013 021 - -

850

0.007 0.010| 042 086 | 007 014|030 042|009 011 - -

1,700

0.005 0.006| 029 047 005 008|021 029 ]0.06 0.10 - -

3,400

0.003 0.004] 020 031|004 006|015 018 | 0.04 0.06 - -

4,675

0.003 0.004|0.17 033|003 005|012 017 | 0.04 0.06 - -

OHB | 140

0.012 0017|054 116018 035|055 078|013 020|027 054

275

0.008 0.013] 037 064|009 017|037 051)]009 014|018 032

550

0.006 0.009]| 026 049 | 0.06 010|026 040|006 0.10 (012 0.19

1,100

0.004 0.006| 0.18 036|004 009|018 028|004 008|009 011

2,300

0.003 0.003| 0.13 0.17 | 003 0.04 | 012 013|003 004 | 006 0.06

4,675

0.002 0.003] 009 0.7 | 002 0.03]0.09 0.13]002 0.040.04 0.06

HBW = home-based work trips
OHB = other home-based trips

The common observationson thefirst and the second day aswell asthe other repeated answers
provided by thesameindividua, do not affect the observed variation but decreasethe estimated
std-values. This means, that:

- estimated standard deviations are underestimated and t-val ues based on these standard
deviations are incorrect because they are too high.
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- inmodel transfer, the coefficientsbased on the Bayesian gpproach, or combined transfer
estimation, which use the std: in emphasizing the estimation and application context
parameter values, may be biased. Thisissueis discussed further in Appendix H.

Although theestimated standard deviationsare underestimated, the coefficientsfor new sample
model s are consistent and asymptoticaly efficient. However, Brundell-Freij (1995) has stated
in her study, that for small sample sizesthe absolute values of the coefficients are systematicaly
overestimated, and the estimated standard deviations are systematically underestimated.

It must al so be noted that the standard deviations of coefficients can never be exactly derived
from sample size (Rao 1973) because they depend on the samples from which they have been
estimated. That was al so the reason why the importance of sample sizewas studied by drawing
random bootstrap samples.

5334  Thesamplesizerequirement based on theratio of timeand cost coefficients
(VOT)

This chapter considersthe sample sizerequired for mode- and destination choice modelling
based onthe VOT-tests. Figures 29 and 30 present the value of time according to the sample
size. Thedigribution of VOT is presented in the upper part of theillustration and three different
sample size criteria, namely 10, 25 and 50 percent error limits, are described in the lower part
of theillustration. From those, the middiemost, 25 percent error limitsfor the VOT estimatesare
marked by linesin the upper part of the illustration.

The sample sizeis consdered to be large enough if theresult isno more than 5 percent poorer
than the result obtained by using the entire set of data. For example, 84 percent of the models
yield an error below 25 percent when the entire set of dataisused. Thus, therequired share of
observations, which go below the 25 percent error, is 80 percent (0,95* 84); 5 percent lessthan
if the largest sample sizeis used.

We have chosen thisrelative error criterion because it is difficult to define any acceptable
absolute error limits, which would berdevant in al situations. The acceptable error isgreatly
dependent on the purpose of the modd. 1n addition, in many cases, the absolute results which
can be reached are rather poor even by using the entire set of data. The three error criteria
presented are not definitive recommendations, but rather illustrate how the sample size
requirements can be evaluated.
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Figure 29: The sample size required for home-based work trips based on the ratio of
the time and cost/income coefficients (VOT criteria, 95 % of the best
possible result).
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Other home-based trips, VOT
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Figures 29 and 30 show, that when using 10 percent error criteria, the sample size required for
modelling home-based work tripsis 4,400 respondents and for modelling other home-based
trips 4,500 respondents. The corresponding sample size requirements according to the 25 and
50 percent error-limits are, 3,800 and 2,100 for home-based trips and 4,450 and 2,900 for
other home-based trips. Note that these recommendations provide resultswhich are only 5
percent worse than “perfect” model yields. In many cases smaller preciseness may be
considered as acceptable. On the other hand, the results, where only 45 percent (HBW) or 38
percent (OHB) of models yield error below 10 percent (although the entire set of datahas been
used) cannot be considered as acceptable.

5335 Thesamplesizerequirement based on the elasticity tests

Figures 31 to 34 present how the variation of model parameters affectsthe model’ s ability to
predict changesin public transport shares or car shares, if the public transport travel time
increases 30 percent or car costsincrease 10 percent.  Thesetestsare carried out by running
the whole current forecast process (the whole forecast process based on the current land use
and impedances) and including theiteration processof the dternative-specific constants, so that
the mode shares represent the wel ghted mode sharesin the area. The sample Size requirement
has been examined for three different error- criteria, that isthe percentage of modelswith the
RSEEF error under 10, 25 or 50 percent has been defined. The sample sizeis considered to be
large enough if theresult isno morethan 5 percent poorer than the result obtained by using the
largest sample size. From those, the middlemost, 25 percent error limits are marked by black
dash lines in the upper part of the figure.

Figures 31 to 34 show that the sample sizerequired according to the dagticity testsvaried from
1,300 to 4,300 respondents in home-based work trips and from 300 to 4,200 respondentsin
other home-based trips. The 10 percent criteriawas mostly in adominating position. However,
in some cases, the strict error-criteriamay lead to asmaller sample size recommendation than
when using broad criteria. Thisis because the comparison is not based on the absolute values,
but is produced with respect to the best possibleresult for each criterion. Thus, if the curveisflat
the sample size requirement may be higher for 50 percent criteriathan for 25 percent criteria
However, normally the strict error-limitisin the critical path becauseit ismore sensitiveto the
decrease in the sample size.

Theresultsweremainly rather good. However, the elasticity test for home-based work trips
showsthat the models ability to predict changesin car shares affected by a 10 percent increase
in car costswas quite poor even when using the entire set of data. On the other hand, note that
the absolute errors are samdler than therelaive errors, which are quite high dueto the small redl
effect inthiscase. Themodelsfor other home-based trips are more precise than the model sfor
home-based work trips.
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Home-based work trips,
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Figure 31: The variation of change in public transport (ptr) shares, when public
transport travel time isincreased by 30 percent in home-based work trips.
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Figure 32: The variation of change in car shares based on the new sample models,
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5336 Summary of sample size requirements

The sample size requirements, based on the criteria studied, are presented in Table 21. The most
restrictive (critical) valuesareindicated in thetablein bold type. Table 19 and Figures31to 34
show that the travel time coefficient is more precise than the cost coefficient, when based on the
treatment of the home-based work trips. Further, the cost coefficient is more precise than the
travel time coefficient, when based on the treatment of the other home-based trips (even when
the sample sizerequirement is, in both cases, larger for the elasticities based on thetravel time
effect).

Table 21: The sample size required to estimate new models based on the four different

criteria.
The sample sizerequired
criteria trip below 10 % below 25 % below 50 %
group
respon- |corresp. | respon- | corresp. | respon- | corresp.
dents test valuel| dents test valug| dents test value
VOT HBW | 4,400 45 || 3800 84 | 2100 100
oHB || 4500 36 || 4450 84 | 2900 o4
RSEEF HBW [ 3,100 53 | 3000 90 | 1.300 %5
ptr time oHB || 4200 52 | 4,000 90 | 1,900 %5
RSEEF HBW [ 2,300 32 | 3400 48 | 4300 85
carcosts | 5ug I 2200 9 1,200 o4 300 o4

HBW= home-based work trips
OHB= other home-based trips

Theminimum adequate sample size obtained from the VOT criteria(whichisthemost restrictive
criterium) for home-based work trips is 4,400 respondents. The sample size is 4,500
respondents for other home-based trips. The corresponding values, based on the RSEEF
criteria, are 4,200 and 4,300, respectively. The adequate sample sizes, based on a 25 percent
error limit, which are later used in the transferability study (Chapter 6) are 3,800 for home-based
work trips, and 4,450 respondents for other home-based trips.

The sample size requirements, based on the first day of the two-day travel diary, were also
examined. The sample sze required for moddling, would be 4,600 respondents when only the
first day diaries, or correspondingly the one-day diary were used. It meansthat the one-day data
responds in reducing the sample size equally with the two-day data. However, if the
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absolute leve of errorsisto be consdered, the two-day datayielded clearly better results than
the first day diaries alone.

For those coefficientswherethe el asticity testswerenot carried out (e.g. carghh), the sensitivity
to elasticity error can be roughly calculated from Table 19, based on the known relationship
between the RSEEF and the MD for the travel time and costs. For example, when comparing
the average RSEEF (presented in appendixes | and J) to the MD-values presented in Table 19,
it can be noted that the 25 percent mean deviation error of time or cost per income coefficient
affects the average RSEEF by less than 20 percent.

5.3.3.7 The CV-values

Findly, we havetried to find aunit of measurement by which the different modd parameters
preciseness can be evaluated and compared. This unit of the measurement is the CV-value
whichisdefined asaratio of observed standard deviation of coefficient (stdp) divided by the
coefficient estimated from theentire set of data(CV(B)), and it isused to systematicdly evauate
the preciseness of model parameters. Actually, the CV-value isinverse of t-value and it
describesthe stability of the model parametersonly implicitely, asit isameasure of therisk of
having an incorrect coefficient. The advantage of usng CV-vauesisthat they canbeeasly used
in model transfer in order to evaluate in a variable-oriented way how the coefficients of
estimation and gpplication context should be emphasized. However, in model transfer, estimated
standard deviationsfor gpplication context parameters (stdk) must be used as the numerator and
the coefficients estimated from the entire set of origina estimation context data as the
denominator (CV(A)) (see Chapter 6).

TheCV-vauescalculated for coefficientsestimated from the data collected in the Turku region
are presented in Figure 35. The aim of the analysisisto compare the precisenessof different
coefficients and eva uate the behaviour of the CV(B)-vauesin order to find out, if the CV(B)
criteria can be used to define the minimum sample size for estimation of new sample
models.

Figure 35 presentsthemean CV (B)-vauesfor al coefficients cal culated asan average value of
100 random samples in each sample size category. The maximum CV (B)-vaue which is
alowed for estimating new modelsis marked by an arrow. This maximum vaueis defined
according to the sample size requirement based on the 25 percent error-limit. Hence, in
principle, the CV (B)-value of the coefficient, which was most restrictivewhen using the VOT,
or elasticity tests, was chosen as the acceptable CV(B)-vaue.
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Figure 35: The mean CV(B)-values of sample model coefficients, for home-based

work trips and other home-based trips.

Figure 35 shows, that it isnot easy to determine the CV-value unambiguously because many
different criteriacan beused. If the CV-vaueisdefined by the sample size determined from both
the VOT-test and the RSEEF- (elasticity) tests, the VOT-test will generaly be the more
restrictive condition. The difficulty with this measure is that the VOT is more sensitive to
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the sample size than the CV vaue defined for the separate coefficients. Accordingly, the CV-
vaueisnearly equal for samples over 2,500 respondents. However, the precise estimation of
VOT requires asamplesize of over 4,400 or 4,500 respondents. The next question is, which
coefficientsare used to predict changesintraffic. Inthiscaseonly the effects of the 30 percent
increasein public transport travel time and a 10 percent increasein car costs were evaluated.
Had the sampl e size been based on the behaviour of some other coefficients, e.g. car ownership
(cars per household), it would have been larger.

Based on the chosen 25 percent criteria, the maximum CV-vaue alowed in home-based trips
1S0.20. In other home-based tripsthe maximum valueis0.21. Onewould expect, that the new
sample model s can be estimated precisdly if the CV-valuesfor al mode coefficientsarebelow
thiscritical CV-vaue. Thisisthe adequate condition required to caculate elasticities precisdly;
however, the estimation of VOT may require even larger sample sizes. In addition, note that
CV-vauesare dependent on the modd structure and model definitions, so they must alwaysbe
defined separately for every model type used.

5.3.3.8 Discussion

The size of the required sample depends on the purpose of themodd. If themain purposeisto
forecast the total demand, the sample size required can be smaller than the sample size needed
to precisely estimate one particular coefficient.

Theinvestigation showsthat in our casetrip generation rates can be accurately cross-tabul ated
by using asample size of 3,800 respondents. The samplesizerequiredis abit larger for other
home-based trips (3,800) than for home-based work trips (3,300) due to the different
segmentation of thesetrip groups. Thisis because for other home-based trips three different
segments were used instead of the two segments that were used for home-based work
trips.

Theweighted and unweighted values do not differ from each other remarkably; however, inthis
case, al the sample sizes are weighted, based on the five age groups. In real situations, for
larger samples, it ispossibleto use more precise weighting proceduresand obtain dightly better
results.

As defining mode shares precisely proved to be much more difficult than the cross-tabulation of
trip generation rates. 1f mode shares, based on the samples, differed significantly from those
based on the whole mobility survey, the weighting of data could not correct the errors.
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Because defining the mode shares correctly is one of the main purposes of mobility surveys, it
will beimportant, in the future, to find amethod by which mode shares can be determined more
precisely. In principle, the process of defining mode shares is independent of mode and
destination choicemodelling. The mode shares are based on the cross-tabul ation of mobility
survey data, and are only used in theforecast processto correct aternative-specific constantsto
accurately present the real weighted mode shares in the area.

The sample size required for mode- and destination choice modelling has been evauated, based
ontheVOT and RSEEF measures. Theresultsare evaluated with respect to these measures,
which can be obtained by using the entire set of data.

The consegquences of exceeding thelimitsof 10, 20 and 50 percent error have been considered.
According to the tests, the adequate sample size by which the models are nearly as good asthe
models estimated by using the entire set of data, was 4,400 respondents for home-based work
trips and 4,500 respondents for other home-based trips. Thisis more than is used in many
sudiesin Finland. By using only thefirst day diariesin the Turku region, it was concluded that a
sufficient sample size would be 4,600 respondents. Thisrequirement was based on therelative
goodnesswith respect of theresultsbased onthe entire set of data. However, the absolute level
of precisenesswas much better when using two-day diariesthan when using first day diaries
only. So, it can be seen, that although the two-day diary does not increase the statistical
accuracy of the responses (the number of respondents does not increase), it may improvethe
quality of the mode and destination choice models, assuming that the sample sizeisnot greatly
reduced by the use of two-day diary.

The most imprecisecoefficients, inour case are* number of trandfers’ and “ cars per household”.
Thevariable* cars per household” and aso “ cost per income” are problematic becausethey are
zonal valuesrather than individua values. All the variables produced by Emme/2 program are
a so problematic, especialy the number of transfers. Thisis due to the program’ s tendency to
produce too many transfers. Therefore, there are many different factors affecting the
imprecisenessof themode parametersand amost al thevariableshavetheir own weaknesses.
Theresultsalso show that although the sample sizeisan important factor in model preciseness,
thereisalimit beyond which the results show only asmall level of improvement.

Finadly, we havetried to find aunit of measurement by which the preciseness of the different
model parameters can be evaluated and compared. We would also expect this measure to be
used in model transfer, asameans of eva uating variable-oriented models, and to determine how
the estimation and appli cation context detail shaveto be emphasi zed. Thisunit of measurement
isthe CV-value which is defined as the ratio of standard error of a coefficient divided by
coefficient estimated from the whol e estimation context data set. The initial premiseis,



126 CHAPTERS5. DATA-COLLECTION METHOD AND SAMPLE SIZE AS
SOURCES OF VARIATION IN MODEL COEFFICIENTS

that the greater the CV-values, the moreimprecisethe model parametersare. The maximum
CV-vaueallowed for the modelsto be estimated reliably was defined as 0.2 for home-based
work trips and 0.21 for other home-based trips.



6 COMPARISON OF TRANSFER METHODS
6.1 Theaim and contents

Thischapter presentsthetransfer of mode and destination choice modelsof internal tripsin the
HMA to the Turku region. The HMA database is used to estimate the modelsthat are to be
transferred. The datacollected inthe Turkuregionin 1997 representsthe transfer context to
which the estimated HMA modelsaretransferred. All four methods described in Section 3.7
are examined. The methods used in the study have been described in Section 4.5.

In principlethe results of spatia transferability can methodologically be generdized to tempora
transferability, or vice versa. However, spatial transfer is more challenging than temporal
transfer, due to the big differences between the two sets of data. Thus, if we can show that
gpatial transfer is possiblein some contexts, we can becertain that a similar approach can be
used as part of temporal transfer. The temporal aspect for HMA model transfer is discussed,
e.g., in (Karasmaa 1996a, Karasmaa 1996b, Karasmaa 1997, Karasmaa 1998, Karasmaa
2000) and the experiments for applying SP-data in model transfer have been reported in
(Karasmaa 1995, Kurri et al. 2001).

Theresults are presented in two parts. Section 6.2.1 presentsthe results based on the home-
based work trips. Section 6.2.2 considersthe results of other-home-based trips. Some of the
main findings are summarized in Section 6.3.

6.2 Results
6.21 Home-based work trips

Table 22 contains mode and destination choice model s for home-based work trips estimated
from the entire set of data. These models are considered to be base (HMA) and target (Turku)
modelsin an estimation and application context. The model specifications are presented in
Section 4.5. The value of time estimated from the HMA datawas 2.25euro/h (13.4 FIM/h).
The valueof time estimated from the Turku datawas 3.60euro/h (21.4 FIM/h). The value of
timeisbased on the assumption of an averageincome of 2,144 euro/month/household (12,750
FIM/month/household) in the HMA and 2,405euro/month/household (14,300 FIM/month/
household) in the Turku region.

127
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Table 22 Estimation results of home-based work trips using the entire set of data
collected in the Helsinki metropolitan areain 1995 and in the Turku region
in 1997.
Helsinki Metropolitan Area Turku Region
Variable
Coefficient Std, t-value | Coefficient Std, t-value
Distance 0-5 km (Walk) 09256 i 00615 : 51| -08775 i 00363 |  -24.2
Distance > 5 km (Walk) -0.4452 i 0.0390 -11.4| -0.3388 : 0.0308 -11.0
Total travel time (Car, Ptr) -0.0277 i 0.0031 i -9.0| -0.0222 | 0.0027 -8.2
Trip cost/income (Car, Ptr) -1.5860 | 0.1400 i -11.3| -0.8839 i 0.1220 7.2
Cars/household (Car) 1.1470 | 0.2760 ‘i 42| 06578 | 01720 ‘i 3.8
Walk dummy (Walk) 1.2900 i 0.2330 55( 21370 | 0.1880 11.4
Car dummy (Car) -1.8970 { 0.2590 -7.3| -0.5061 i 0.1950 i -2.6
Log sum (Dest.) 0.5399 | 0.0178 304 07335 i 0.0170 43.2
Ln(jobs) (Dest.) 1.0000 i 0.0000 i -] 1.0000 i 0.0000 -
Number of trip observations 1,993 4,442
p2(c) 0.2336 (mode) and 0.1407 (dest) 0.2011(mode) and 0.1431 (dest)
Walk = Walk and bicycle
Ptr = Public transport
Car =Car

Table22 showsthat the coefficient for the costs/income differssignificantly in the estimation and
application contexts. The difference in parameters can be influenced by the differencesin
incomes between thetwo areas. Thedifferences of parameters can a so berelated to thezoning
system, and of course, to many other factorsrelated to both the transportation system and the
land use structure.

As an example of the comparison of the different transfer methods, Figure 36 presents the
variation of travel time and cost coefficients according to the transfer method. The grey arrow
marksthe coefficient estimated from the entire set of estimation context data, and the black one
the coefficient estimated from the entire set of application context data.

Figure 36 showsthat thevariationisgreat in new sample models, transfer scaling, joint context
estimation and combined transfer estimation approaches. The differences between these
methods are, on thewhole, quite small. By being highly precise, the Bayesian approach differs
greatly from the other methods. 1n spite of its stahility, the Bayesian gpproach was never ableto
fully substitute the model estimated from the entire set of gpplication data. Thiscan be explained
by the tendency of the method to emphasi ze the coefficients derived from the origind estimation
context data. The Bayesian gpproach emphasi zes the coefficients with respect to theinverse of
thevariances of each coefficient. Sincethenumber of observationsislarger leading to smaller
varianceof coefficient, the coefficients of the estimation context datamay be emphasized too
sronglyinmodd transfer. If thetransfer biasissmall, the Bayesian gpproach yidds good results
becauseit efficiently restrictsthe variation of coefficients. However, if transfer biasislarge, as
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inthiscase, the Bayesian gpproach does not performwell. The combined transfer estimation
method generalizes the Bayesian method in relation to transfer bias. Hence, we can see the
effects of transfer bias by comparing the results from Bayes and the combined transfer
estimation.
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Figure 36: The variation of coefficients of travel time and cost per income by transfer
method in the Turku region in 1997; home-based work trips.
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Results based on theratio of time and cost coefficients (VOT)

Figure 37 presents the variation of value of time (VOT). The VOT based on the whole
estimation context data (2.25 euro/h) ismarked by agrey arrow and the VOT estimated from
the entire set of application context data (3.60 euro/h) is marked by ablack arrow. Note, the
VOT based on the estimation context data represents the naive transfer, that isthe Situation in
which the estimation context models are applied in the gpplication context. The maximum error
wedefineas*acceptable’ israther high, 25 percent. Thelower part of thefigure presentsthe
proportion of the models with an error of less than 25 percent.

The variation around “the VOT based on the entire set of data” becomes quite largein new
sample modd s, transfer scaling or combined transfer estimation, but becomes smaller, when the
samplesizeincreases. Thus, transfer scaling, combined transfer estimation and the new sample
models give quite smilar results. By being highly precise, the Bayesian approach and joint
context estimation differ from the other methods. However, note, in thesmallest sample sizes,
thejoint context estimation looksworsethan it actually is, becausein spite of its preciseness, it
dlightly exceeds the allowed 25 percent error.

Dueto the use of different combinations of common and data-specific variables (for samples
425 to 1,700 respondent only distance variables were estimated as data-specific, but distance
variablesand also time variable are data-specific for samplesof 3,400 and 4,675 respondent)
thevarianceof VOT islarger when using the sample sizesof 3,400 and 4,675 respondentsthan
when using smaller samples. In spite of this, the observations concentrate better around the
correct value when using the largest sample sizes. The next question is, how much isthe
improvement due to the use of more data specific variables and how much issmply aresult of
thelarger sample size. When considering Figure 45 presented later, one can conclude, that the
combination of common and data-specific variableshasonly asmall effect in thiscase, and the
improvement is mainly caused by the larger sample size.
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Figure37:  Thevariation based on the ratio of time and cost coefficients (VOT), and

the proportion of models with the error below 25 percent by transfer
method in the Turku region; home-based work trips.
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Results based on the elasticity tests

Figures 38 and 39 show the effect of the variation of the transferred model parameterson the
model’ sability to predict the effect of changesin the trangportation system. Two elaticity tests
(RSEEF) are carried out on the aggregate model system. Firstly, in order to test the cost
eladticity of themode choice models, atest is carried out to examine the effect of increasing car
costsby 10 %. Secondly, the effect of a 30 percent increasein public transport travel timesis
studied. Both tests are carried out by running the whole forecast process (based on the current
land use and impedances) and including theiteration process of the dternative-specific constants
(the processisdescribed in Section 4.4.2). For the sake of comparison, thecorresponding tests
(RSEE) performed by applying the unweighted mobility survey data used in estimation are
presented in Appendix K. The biggest difference between these two methodsisthe calibration
of theaternative-specific constants. By ca culating the e asticity with the mobility survey data,
aternative-specific constantsare not corrected in any way. Therun of theforecast includesthe
iterative processin order to correct the alternative specific constants, so that the mode shares
represent the welghted mode sharesin the area. In addition, by calculating RSEE, only mode
shares can vary and destination choices are constant, but in calculating RSEEF, destination
choices can aso vary.

In Figures 38 and 39, the black arrows mark the "real" decrease in car (-1.1%) or public
transport share (-5.1 %) represented in the application context Situation. Thegrey arrows mark
the naive transfer. The 30 percent increase in the public transport travel time represents the
Stuation in which the transfer biasis small but the variation of coefficients based on the small
samplesislarge. On the other hand, the effect of a 10 percent increasein the cost of travel by
car representsasituation in which thetransfer biasislarge (even the variation of coefficientsis
still quitelarge). The*acceptable’ relative error (25 percent) in Figures 38 and 39 ismarked by
black dash lines.

The variation around “the correct value” becomes quite large due to the use of the minimal
samples, but is smaller, when the sample size increases. The effect of a 30 percent increasein
publictransport travel timeproducesa-0.8to-10.0 percent changein the public transport share
when the minima samples are used. The variation of the effect of a 10 percent increasein car
costs, on the car mode shareis +2.0 t0 -3.9 percent. The average RSEEF, as a function of
samplesize, ispresented for all transfer methodsin Appendix |. The RSEEF variesfrom 101 to
-81 percent, for a 30 percent increase in public transport travel time and from 107 to -221
percent for a10 percent increasein car costs. Thus, by considering the cost el agticities, theerror
islarger than theerror for travel time agticities. Onereason for thismight be the large transfer
bias in the cost per income coefficient.
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Theresults show, that the methods arequite smilar. Only the Bayesan approach differsfrom the
other methods. Consequently, in our data the effect of the sample size is larger than the
difference between the best four methods. By comparing the RSEEF-results based on the
sample enumeration tests (RSEE) presented in Appendix I, it isobserved, that theiteration of
aternative-specific constantsis helpful.
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Figure38: Thevariation of change in public transport (ptr) shares by transfer method,
when public transport travel timeisincreased by 30 percent in the Turku
region; home-based work trips.



134 CHAPTER 6. COMPARISON OF TRANSFER METHODS

Home-based work trips,
10 % increase in car costs
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Figure39:  Thevariation of changein car shares by transfer method, when car costs
isincreased by 10 percent in the Turku region; home-based work trips.
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Results based on the disaggr egate measur es of transfer ability

Theresultsbased onthe TTS- and Tl -values are summarized in Figures40to 43. Thecloser to
zerothe TTS-valueis, themorelikely thetransferred model isto be similar to the application
context model estimated from the entire set of data. TI has an upper bound of one whichis
attained when the trandferred model performs aswell asthe model estimated using the entire set
of the application context data. As sequential estimation is used, the results of the mode and
destination choice level are presented separately.
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Figure40: The variation of TTSvalues and the average TTSvalues for transferred
mode-choice models in the Turku region; home-based work trips.
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Home-based work trips, mode choice
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Figure4l: Thevariation of Tl-values and the average Tl values for transferred mode-
choice models in the Turku region; home-based work trips.
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Home-based work trips, destination choice
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Figure42: The variation of TTSvalues and the average TTSvalues for transferred
destination-choice models in the Turku region; home-based work trips.
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Home-based work trips, destination choice
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destination-choice models in the Turku region; home-based work trips.
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Theillustrationsshow that the TTS-vauesare very high showing that the null hypothesisof the
equaity of modelswasrgected in most cases. On the other hand, the transfer index value Tl,
which is the ratio of the proportion of explained variation in estimation context data by
transferred model to proportion of explained variation by the best possible estimation context
model, isuniformly high, ranging in value from 0.86 to 0.99 for mode choice models and from
0.94 to 0.99 for destination choice models.

The differences between the best transfer methods are quite small. The Bayesian approachis
also stablein this case, but does not yield excellent predicting performance in the mode choice
level. It isto be noted that joint context estimation yields excellent results for the mode choice
level, but is not so competitive at the destination choice level. Thisis because detination choice
depends on local conditions and now, the coefficient of In(jobs) has been estimated as a
common variable. Thejoint context method brings such noisy information into the gpplication
context in theform of surveyed data, in contrast to other methods only bringing parameters and
variances. Inthiscase, the model sbased on the Bayesian method, combined transfer estimation
or new sample model swould bepreferablefor destination choicelevel athough thejoint context
estimation has been used in the mode choice level.

Theresults based on the aggregated trip distribution

Figure 44 presents the transferred models ability to replicate observed aggregate shares. To
assess predictive performance, the Turku region is subdivided into 4 regions (Central city area
of Turku, suburb, Kaarina+Raiso+Naantali and Lieto+PiikkiG) Aggregate origin-destination-
predictions of the travel demand (whole modd system) are obtained for each of these regions.
Mean absolute error (MAEF) values are computed using the aggregate predictionsto assess
forecast accuracy (see Appendix L). Thus, thetest is carried out by running the whole forecast
processand includestheiteration processof the aternative-specific constants, so that the mode
sharesrepresent the weighted mode sharesinthearea. The prediction efficiency is better the
smaller the MAEF-index is.

Figure 44 showsthat different methods give quite smilar results. By being quite precise, the
Bayesan method differs dightly from the other methods. The MAEF-vduefor naivetrander is
0.22, and the corresponding vauefor the model based on the entire set of datais0.20. Thus,
maybe due to theiteration of aternative-specific constants, the difference between the naive
transfer and the model based on the entire set of application context datais not notable.
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Figure44: The variation of MAEF-index by transfer method for home-based work trip models.

Theresultsrelating to alter native specifications for using joint context estimation

The results relating to different ways of combining common and data-specific variables by using
the joint context estimation are presented in Figures 45 and 46 and in Appendix M. The
combinations used when comparing different transfer methods are presented in Table 23 (the
model symbol referred to in the brackets isthe model type presented in Chapter 4.5 in Table 11).
The best combination was chosen based on the sum of MD-values for the three most important
trangport policy coefficients (travel time, costs and cars per household). Additiondlly, the total MD-
valuefor all coefficients was calculated. The conclusions based on these two sum-measures are
quite smilar. The main principleisthat the more accurate the models are (the larger the sample
size is) the more efficient it is to use data-specific variables. The combinations in which the
precise variables (e.g. distance) are estimated as data-specific and imprecise variables (e.g. cars
per household) as common give the best results. For the destination choice level, the coefficient
for In(jobs) is fixed to one and the log sum variable is always estimated as common.

Table 23: The best combinations of data-specific variables based on the MD in joint
context estimation; home-based work trips.

Sample size The best combination of data-specific variables based on
the MD
mode choice

425 distance 0-5, (model B)

850 distance 0-5, (model B)

1,700 distance 0-5, (model B)

3,400 distance 0-5, distance 5, travel time, (model F)

4,675 distance 0-5, distance 5, travel time, (model F)

Destination choice level-no data-specific coefficients
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Next, the chosen combinations (that isthe combinations used in Section 6.1 and presentedin
Table23) are compared to the unchosen combinationsto see, how well the chosen combination
performs with respect to the other combinations. Figure 45 presentsthe variation of the VOT
based on each combination of data-specific and common variables. Correspondingly, Figure 46
presents the results of the sample enumeration tests (RSEE). The RSEE isused instead of the
RSEEF because it is easier and |ess time-consuming to calculate than the RSEEF and the
relationship between the RSEE and the RSEEF is known (Appendix 1)
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Figure45:  The comparison of the error in the ratio of time and cost coefficients (VOT
error) when using different combinations of joint context estimation (the
symbols A to | refer to data-specific variables in the models); home-based
work trips.

Theexamination of VOT showsthat, dueto theimpreciseness of the coefficientswhen using the
smalest sample szes, the combinations A, B, C and G are preferable when using samples of the
size 42510 1,700 respondents. Thisis especidly, because the time and cost/income variables
are estimated as common when using these combinations. Upwards of the sample sizeof 1,700
respondents the differences between the combinations are rather small. In two cases out of the
five, the best combination based on the VOT-criteria differed from that based on the MD-
criteria. Thisismainly becausethe MD-criteriais based on the goodness of the whole modd and
theVOT isonly concerned with theratio of two predetermined coefficients, namely travel time
and cost/income. However, the difference between the chosen and the best combination wasin
these cases very small. Hence, the results presented in Section 6.1 can be regarded as
representing quite well the best combination of joint context estimation.
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When consdering the RSEE-va ues presented in Figure 46, the advantage of using data-specific
variables can be seen. When considering the el asticities based on the 10 percent increase of
travel costs, thetransfer biasislarge and the use of data-specific variables proved to be usefull
regardless of which variableswere estimated as data-specific. Dueto the smdl trandfer bias, the
RSEE-error issmaller for time-elasticities and the importance of the chosen combination is
smaller aswell. Thebest combination based onthe RSEE-valuesisin three casesfromfivethe
samewhen based onthe MD-vaues. However, whenitisdifferent, the difference with respect
to the best model was rather small.
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Comparison of thetest results

Next, the test results of the different tests are compared to each other. The main purpose of the
comparison isto summarize the results based on the different test measures and to evauate how
often different test measures give similar results.

Table 24 presentsthe successratefor different test measures. The successrateisdefined asthe
percentage of modelswhere the method was the best according to each test measure. Note, the
success rate does not describe the size of differences between the test measures but only how
many times each transfer method was assessed to be the best one. On many occasions, in
particular when considering thelargest sample sizes, the differences between the methodswere
rather small.

Table 24: The success rate (%) of the transfer methods by the test measure in
home-based work trips (subscript t and c refer to time and cost).

425 respondents

VOT RSEEFt £ RSEEFc | RSEEt | RSEEc TTS mode TTS dest TTS total | TImode | Tl dest

new model 10 7 16 12 19 0 15 1 0 29
transfer scaling 19 17 27 16 16 7 25 9 4 24
Bayes 55 9 5 3 5 12 8 25 11 7
combined est. 8 20 17 22 10 25 29 19 24 20
joint context est 8 47 35 47 50 56 23 46 61 20

850 respondents

VOT RSEEFt = RSEEFc  RSEEt RSEEc TTS mode TTS dest | TTS total | TImode | Tl dest

new model 13 6 25 11 24 1 39 18 2 41
transfer scaling 19 19 28 28 25 31 29 38 35 21
Bayes 54 4 1 0 2 4 1 4 3 2
combined est. 11 11 18 12 8 11 19 25 10 30
joint context est 3 60 28 49 41 53 12 15 50 6

1,700 respondents

VOT RSEEFt = RSEEFc  RSEEt RSEEc TTS mode TTS dest | TTS total | TImode | Tl dest

new model 12 20 15 11 29 6 38 32 9 39
transfer scaling 16 18 34 26 23 12 14 13 23 20
Bayes 61 1 0 0 0 0 2 1 0 2
combined est. 10 10 28 16 8 34 39 28 20 25
joint context es 1 51 23 47 40 48 7 26 48 14

3,400 respondents

VOT RSEEFt | RSEEFc | RSEEt = RSEEc TTS mode TTS dest TTS total | TImode | Tl dest

new model 20 16 16 10 24 10 39 41 11 41
transfer scaling 18 21 24 26 26 16 17 8 17 17
Bayes 43 0 2 0 0 0 0 0 1 0
combined est. 14 17 17 15 8 14 43 23 12 42
joint context esf 5 46 41 49 42 60 1 28 59 0

4,675 respondents

VOT RSEEFt RSEEFc  RSEEt RSEEc TTS mode TTS dest | TTS total | TImode | Tl dest

new model 10 30 25 18 35 5 40 49 8 43
transfer scaling 20 8 17 24 18 10 5 0 11 4
Bayes 58 0 1 0 0 0 16 2 0 13
combined est. 7 20 24 6 8 6 34 20 5 32
joint context es 5 42 33 52 39 79 5 28 76 8
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The main findings relating to the characteristics of the different tests are:

- Thejoint context estimation was in most cases the best method. However when considering
the VOT, the Bayesian method gave the best results.

- Although thejoint context estimation was usually the best method at mode choicelevel, new
sample models and combined transfer estimation gave better results at the destination choice
level.

- TTSwasthemost sengtivetothesamplesize. That is, thelarger the sample size the better the
joint context estimation proved to be at mode choice level. At destination choice level, new
sample models and combined transfer estimation gave the best results.

Next the percentage of casesinwhich two different tests give smilar recommendationsfor the
best method are considered. Not dl the possible comparisons are made, but we have presented
some basic findings made from the comparison.

Table 25: The number of cases in which each test-pair recommend the same transfer
method when considering home-based work trips.

sample size (respondents)
425 850 1700 3400 4675
VOT*/TTSy4 21 16 15 18 16
TTS o0 Tlhroge 9 9% 95 9% 97
VOT/RSEEFt 13 14 7 13 12
VOT RSEEFc 25 20 10 19 19
VOT/RSEEt 14 15 7 13 12
VOT/RSEEC 21 16 13 24 14
RSEEFCc/RSEEC 60 49 27 42 60
RSEEFt/RSEEt 66 54 57 47 69

Table 25 showsthat theresultsbased onthe TTSand Tl are nearly identical. The RSEE and
RSEEF also give quite similar results. However, the comparison of other testsindicated more
contradictory results. Thisis mainly due to the fact that the Bayesian method gave the best
resultswhen considering the VOT whereas the joint context estimation proved to be the best
method when using the other tests.
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6.2.2 Other home-based trips

Table 26 contains mode and destination choice model s for other home-based trips estimated
from the entire set of data. The model specificationsare presented in Section 4.5. Thevaue of
time estimated from the Turku datais 1.1euro/h (6.7 FIM/h). Thevaueof timeestimated from
the HMA datais 1.5 euro/h (8.9 FIM/h). The vaue of time is based on the assumption of an
averageincomeof 2,144 euro/month/household (12,750 FIM/month/household) intheHMA
and 2,405 euro/month/household (14,300 FIM/month/household) in the Turku region.

Table 26: Estimation results of other home-based trips using the entire set of data
collected in the Helsinki metropolitan area in 1995 and in the Turku region
in 1997.
Helsinki Metropolitan Area Turku Region

Variable

Coefficient Std. t-value Coefficient Std. t-value
Distance 0-5 km (Walk) 07812 | 00325 i 240| -1.0380 i 00212 |  -49.0
Distance > 5 km (Kv) -0.3539 { 0.0290 -122| -0.2470 i 00183 i -13.5
Total travel time (Car, Ptr) -0.0197 i 0.0032 -6.2| -0.0135 { 0.0019 ‘i -7.3
Number of transfers (Ptr) -0.1189 { 0.0615 -1.9| -04372 { 0.0415 ‘i -10.5
Trip cost/income (Car, Ptr) -1.8910 | 0.1170 -16.1| -1.7390 { 0.0853 i -20.4
Cars/household (Car) 1.3700 i 0.2010 ‘i 6.8 11730 i 0.0881 13.3
Walk dummy (Walk) 0.7118 i 0.1310 5.4 21570 i 0.1060 20.4
Car dummy (Car) -1.7690 | 0.1850 i -95| -08932 { 0.1150 i 1.7
Log sum (Dest.) 1.5670 0.0187 83.8 1.2020 0.0089 134.8
Scale-factor 1.0000 { 0.0000 - 1.0000 { 0.0000 -
Number of trip observations 4,149 13,989
p2(c) 0.2008 (mode), 0.3667 (dest) 0.2265 (mode), 0.2806 (dest)
Walk = Walk and bicycle Scale factor: Scale factor:
Ptr = Public transport - inhabitants 1.00 - inhabitants 1.00
Car =Car - retail employment 28.73 - retail employment 14.89

- service employment 2.29 - service employment  2.52

Table 24 showsthat the coefficients for the “number of transfers’ and distance variables differ
significantly in estimation and application context. The difference for number of transfers
between can at least be partialy explained by the uncertainty of the “number of transfers’
variabledueto thedifficultiesin controlling this variable using the Emme/2 ass gnment program.

Figure 47 presentsthe variation of travel time and cost coefficients by transfer method. The
coefficientsbased on the entire set of estimation and application context dataare marked by the
arrows.
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Thefigure showsthat the variation isgreat when using modelsbased on small samples, transfer
scaling or combined transfer estimation approaches. However, the differences between these
methods are, on the whole, quite small. By being highly precise, the Bayesian approach differs
greatly from the other methods. Dueto the small transfer biasbetweentheorigina coefficients
intheestimation and application context, the Bayesi an gpproach performsespecia ly well when
consdering cost per income variable. Thejoint context estimation also gives quite preciseresults
for thetime variable.

Other home-based trips, coefficients of travel time
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Figure 47: The variation of coefficients of travel time and cost per income by transfer

method in the Turku region in 1997; other home-based trips.
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Results based on theratio of time and cost coefficients (VOT)

Figure 48 presentsthe variation of value of time (VOT) for other home-based trips. The grey
arrow marksthe VOT, calculated from the entire set of estimation context data (naive transfer)
and the black arrow from the entire set of application context data. The bottom of the Figure
presents the proportion of the models with the error below 25 percent.
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Figure 48: The variation based on the ratio of time and cost coefficients (VOT), and
the proportion of models with the error below 25 percent by transfer
method in the Turku region; other home-based trips.
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Thevariation around “the VOT based on the entire set of data’ becomes quite large due to the
useof theminima samples, but thisissmaller, when thesampleszeincreases. Thejoint context
estimation yields the best results excluding the full sample models for which the combined
transfer estimation and new sample modelsyield best results giving the 88 percent proportion of
models with an error below 25 percent. By using the smallest sample size, the differences
between the methods areinitialy rather small, but becomelarger asthe sample sizeincreases.
The joint context estimation performs poorly for the smallest sample size, because many
coefficients are so imprecisethat they have to be estimated as common coefficients (Tables 11
and 27). Thismeansthat the estimation context datais emphasized too strongly. On the other
hand, dso when the largest sample sizeisused, the modesbased on thejoint context estimation
arenot asgood as one could expect. Thisisbecause three data-specific coefficients (distance
variablesand cost/income) were utilized. The use of data-specific coefficientsimprovesthe
quality of the number of transfersin public transport (dueto the large transfer bias for this
coefficient) (Appendix N). However, generally, itincreasesthevariation of the coefficientsand
gives poorer estimates for VOT than the combination used for the smaller sample sizes. If
distance variableshad only been estimated as data-specific, the best result for VOT would have
been much better (88 percent). Due to the common scale-factor used for “travel time” and
“cost per income” variables, transfer scaling does not yield good results.

Results based on the elasticity tests

Thetop of Figures49 to 50 show the effect of the variation of the transferred model parameters
on the modd’ s ability to predict the effect of changesin transportation system. Arrows mark the
"red" decreasein the car or public transport share, calculated from the forecasts based on the
entire sets of estimation and gpplication context coefficients. Thisrea valuewas-3.0for the
decreasein the public transport share (in Figure49) and -2.2 for the decrease in the car share
(in Figure 50).

The 30 percent increase in the public transport travel time represents asituationin which the
transfer biasisrather large, and aso the variation of coefficients based on the small samplesis
large. On the other hand, the effect of a 10 percent increase in the cost of travel by car
representsastuation in which thetransfer biasissmall, and the variation of coefficientsisaso
quitereasonable. The “acceptable’ relative error (25 percent), in Figure 49 and 50, is marked
by black dash lines. The lower part of Figure 49 and 50 presents the probability that the
RSEEF error will be lessthan 25 percent. The corresponding test results achieved by applying
the unweighted mobility survey data are presented in Appendixes Jand O.
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The effect of a30 percent increase of public transport travel time produced a+8.9to —7.4
percent changein the public trangport share when the minimum sampleswere used. Thevariation
of the effect of a 10 percent increase in car costs, on the car mode share was +0.7 to 4.5
percent. The RSEEF varied from -397 to +147 percent, for a 30 percent increase in public
transport travel time and from —132 to +105 percent for a 10 percent increase in car costs.
Thus, the coefficients of cost per income variable are more precise than the coefficientsfor
travel time, and the transfer bias is also smaller for cost per income variable.

The new sample model s and the model s based on the combined transfer estimation approaches
arehighly senditiveto the samplesize. In addition, transfer scaling gives systematically biased
estimates especidly for thetravel time coefficient, which isscaled with the* number of transfers’.
Joint context estimation yields quite safe results, being the best method for the smallest samples.
In spite of its sability, the Bayesian method is never able to predict the effects of a 30 percent
increase in public transport travel time. However, by predicting the effect of a 10 percent
increase in car costs on the car mode share, the Bayesian approach proved superior for al
sample sizes due to the small transfer bias between the estimation and application context.
However, thisisonly in the case of the dternative-specific constants for mode choice modelsare
re-estimated iteratively. If the dternative-specific constants are not caibrated to represent the
mode sharesin the observed weighted mobility survey data, the Bayesian approachisunableto
predict changes in the transportation system at all (Appendixes Jand O).
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the decrease in ptr share

Other home-based trips,
30 % increase in ptr travel times
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Figure49: Thevariation of changein public transport (ptr) shares by transfer method,

when public transport travel time is increased by 30 percent in the Turku
region; other home-based trips.
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Other home-based trips,
10 % increase in car costs
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Figure50: The variation of change in car shares by transfer method, when car costs
are increased by 10 percent in the Turku region; other home-based trips.
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Results based on the disaggr egate measur es of transfer ability

Figures 51 to 54 present the results based on the TTS- and TI-values. In this case, the magnitude
of the TTS-values of transferred models or new sample modelsindicates that transferred models
are never ableto fully substitute the best application context model. On the other hand, Transfer
Indexes (TI) for transferred models arein amost all casesin excess of 80 percent, suggesting that
the transferred models provide a significant component of the information obtained from the
gpplication context modd . The methods differ only dightly from each other; however, joint context
estimation, new sample model sand combined transfer estimation can beregarded asbeing dlightly
better than the other methods.
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Figure51: The variation of TTSvalues and the average TTSvalues for transferred
mode choice models in the Turku region; other home-based trips.
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Other home-based trips, mode choice,
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Figure52: Thevariation of Tl -values and the average Tl-values for transferred mode

choice models in the Turku region; other home-based trips.
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Other home-based trips, destination choice
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Figure53: The variation of TTSvalues and the average TTSvalues for transferred
destination choice modelsin the Turku region; other home-based trips.
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Other home-based trips, destination choice,
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Figure54: The variation of Tl-values and the average Tl-values for transferred
destination choice modelsin the Turku region; other home-based trips.
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Theresults based on the aggregated trip distribution

Figure 55 presentsthe MAEF-index calcul ated for the other home-based trips. Asin Section
6.2.1 the Turku region issubdivided into 4 regions, and aggregate OD-predictions are obtained
for each of theseregions. The MAEF-index is ca culated asasum of the absolute differences of
the observed and the predicted values. Asfor home-based work trips, theresults based on the
entire set of data give areference point when assessing the predictive performance of the
transferred models. Based on this, the acceptable MAEF-value can be regarded as being
approximately 0.25.
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Figure55:  Thevariation of MAEF-index for other home-based trips.

Figure 55 shows that, as was the case with home-based work trips, most methods give quite
similar results. By being highly precise, the Bayesian method differsfrom the other methodsin
givingasmaler MAEF-error. It can also be seen that the increase in the sample size does not
necessarily improvetheforecast prediction accuracy. Thus, sometimesthe forecast based ona
small sampleisbetter than the forecast based on the entire set of data. The possible reasonsfor
this might be the following:

- Themodds are gpplied to the weighted mobility survey datafor al possible origin-destination
pairs, not to the data for which they are estimated. Thus the model coefficients are
concentrated around the values based on the entire set of data, not around the external
observed values. Thus, the MAEF describesthe effect of sampling error, if the MAEF for
entire set of datawould be perfect, but not the sample size effect with respect to the observed
data.
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- Theiteration of aternative-specific coefficients correct the origina mode sharesto represent
the mode shares based on the weighted mobility survey.

- Thelack of dternative-specific coefficientsin destination choicelevel. When comparing the
rho-squared p?(0) and pA(c) the differenceisvery smal indicating that the aternative-specific
constants arein fact, the best determining variables and the level-of service and socio-
economic attributesonly explainasmall part of thetravel behaviour. In destination choicelevel
when there are 118 different alternatives the problem is worse than in the mode choice level.

Theresultsrelating to alter native specifications for using joint context estimation

Theresultsreating to different ways of combining common and data-specific variablesby using
thejoint context estimation are presented in Appendix N. The best combinations are presented
in Table 27. Aswith home-based trips, the best combination is chosen based on the sum of
Mean Deviations (Equation 36) for the three most important transport policy coefficients (travel
time, cost and cars per household). The coefficient for “number of transfers’ was always
estimated as common in this study.

The choice between common and data-specific variablesin the destination choicelevel isnot
made by considering the absolute values of size coeffients but by making certain that the
relationship between the coefficients of size variables are as accurate as possible. Thisis
because, in this case, the relationship is more important than the absol ute values.

Table 27: The best combinations of data-specific variables based on the MD in joint
context estimation; other home-based trips.

SAMPLE SIZE THE BEST COMBINATION OF DATA-SPECIFICVARIABLES

mode choice
140 Distance 0-5, (model B)
275 Distance 0-5, (model B)
550 Distance 0-5, distance 5, (model C)
1,100 Distance 0-5, distance 5, (model C)
2,300 Distance 0-5, distance 5, (model C)
4,675 Distance 0-5, distance 5, cost/income (model D)
destination choice
140 Retail employment, service employment (model B)
275 Retail employment, service employment (model B)
550 Retail employment, service employment (model B)
1,100 Retail employment, service employment (model B)
2,300 Retail employment, service employment (model B)

4,675 Retail employment, service employment (model B)
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Figures 56 and 57 present the sengitivity andysisfor different combinations of data-specific and
common variable.

Other home-based trips,
The percentual VOT-error

140
——A(-)
120 H B (dist0)
EF \ —— C (distO, dist5)
100 ’ X, —2— D (dist0, dist5, cost/inc)
D E (dist0, dist5, cost/inc, time, cars/hh)

—*—F (distO0, dist5, time)

80 A , )
| -\\\ —e— G (dist0, dist5, cars/hh)
60 —+— H (dist0, dist5, cost/inc, time)
\A\A\ —— | (dist5, cost/inc, cars/hh)
40

2 ABCCE—a—_, i

140 275 1100 2300 4675
>ample size (respondents)

%

Figure56: The comparison of the error in the ratio of the time and cost coefficients
(VOT-error) when using different combinations of joint context estimation;
other home-based trips (the symbols Ato | refer to data-specific variablesin
the models).

The examination of VOTsshowsthat the differences between the combinations becomes quite
large when using the smallest sample sizes, but they will be smaller, when the sample size
increases. When using the smallest sample sizes, the combinations A, B, C and Gwereclearly
better than the other combinations, in which the data-specific variableswere used for time or
cost/incomevariables. When using thelargest sample size the choiceof combinationisonly of
minor importance.

In 4 cases out of 6 (6 sample sizes), the best combination based onthe VOT-criteriadiffered
from that based on the M D-criteria. However, the difference between the chosen and the best
combination was in these cases very small.

When considering the RSEE, the differences of combinationsare dightly smaller than with the
VOT. Inthiscaseonly in4 casesout of the 12, the best combination is achieved when using the
RSEE-test. Onthe other hand, the difference between the best and the chosen combination was
dwaysnegligible. Although thetransfer biasissmal in both cases (when considering theincrease
of ptr timeor car costs), the examination of the RSEE gives clear evidencethat the use of data-
specific variablesis useful when predicting changes in the transportation system.
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Figure 57:

The comparison of the RSEE-error when using different combinations of

joint context estimation; other home-based trips (the symbols Ato | refer to

data-specific variables in the models).
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Comparison of thetest results
Table 28 presentsthe successratefor different test measures. The successrateisdefined asthe

percentage of cases when the method was the best according to each test measure.

Table28:  The success rate (%) of the transfer methods by the test measure (subscript
t and c refer to time and cost)

140 respondents

VOT RSEEFt = RSEEFc = RSEEt RSEEc TTS mode TTS dest TTS total| TI mode =TI dest

new model 12 11 17 17 4 3 24 6 1 21
transfer scaling 12 21 10 12 25 2 17 9 1 18
Bayes 4 24 43 6 40 16 7 13 17 8
combined tr. est 5 1 3 8 11 10 21 18 10 24
joint context est 67 43 27 57 20 69 31 54 71 29

275 respondents

VOT RSEEFt RSEEFc | RSEEt = RSEEc TTS mode TTS dest TTS total Tl mode @ Tl dest

new model 17 12 14 27 7 8 10 5 7 13
transfer scaling 5 20 16 6 21 3 28 13 0 29
Bayes 0 12 42 2 29 3 5 5 3 7
combined tr. est 13 16 5 9 5 23 12 20 24 6
joint context est 65 40 23 56 38 63 45 57 66 45

550 respondents

VOT RSEEFt = RSEEFc = RSEEt RSEEc TTS mode TTS dest TTS total| TI mode =TI dest

new model 20 19 12 28 14 7 17 5 9 16
transfer scaling 8 15 10 12 20 1 25 8 1 26
Bayes 0 5 50 0 23 0 8 2 0 7
combined tr. est 12 18 9 19 5 41 17 28 40 17
joint context esf 60 43 19 41 38 51 33 57 50 34

1100 respondents

VOT RSEEFt RSEEFc | RSEEt = RSEEc TTS mode TTS dest TTS total Tl mode Tl dest

new model 29 20 6 30 16 4 15 1 6 16
transfer scaling 5 7 16 10 20 0 16 1 0 15
Bayes 0 2 50 0 20 0 8 0 0 9
combined tr. est 11 22 9 18 11 67 12 44 62 12
joint contextesl 55 49 19 42 33 29 49 54 32 48

2300 respondents

VOT RSEEFt = RSEEFc = RSEEt RSEEc TTS mode TTS dest TTS total| TI mode =TI dest

new model 22 19 16 38 14 0 18 15 0 19
transfer scaling 2 5 5 0 27 0 6 4 1 5
Bayes 1 0 46 0 20 0 15 2 0 14
combined tr. est 17 23 20 13 14 86 15 30 86 14
joint context esf 58 53 13 49 25 14 46 49 13 48

4675 respondents

VOT RSEEFt RSEEFc | RSEEt &= RSEEc TTS mode TTS dest TTS total Tl mode @ Tl dest

new model 24 26 20 25 18 0 45 19 0 46
transfer scaling 0 0 6 10 19 0 0 0 0 0
Bayes 0 0 40 7 20 0 16 0 0 15
combined tr. est 24 22 20 18 16 95 11 37 94 11
joint _context est 52 52 14 40 27 5 28 44 6 28

The main findings relating to the characteristics of the different tests are:

- Regardless of the sample size, thejoint context estimation was the best method in 40 to 70
percent of cases when testing VOT, RSEE or RSEEF.
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- TTSwasthe most sengitive to the sample size (especialy a the mode choiceleve). That is,
for small sample sizesjoint context estimation wasthe best method, but when thesamplesize
was increased this test preferred combined transfer estimation.

- Joint context estimation was usually the best method for mode choice, whereasthe distribution
of the best method was more uniform for the destination choice.

Table 29 presents the percentage of cases in which two different tests give similar
recommendations for the best method.

Table29: The number of casesin which each test-pair recommend the same transfer
method when considering other home-based trips.

sample size (respondents)
140 275 550 1100 2300 4675
VOT*/TTS, 4 58 45 43 18 25 15
TTS 00/ Tlinoge 95 o1 95 95 95 96
VOT/RSEEFt 42 50 58 65 78 85
VOT/RSEEFc 26 28 30 29 33 32
VOT/RSEEt 64 55 47 61 64 63
VOT/RSEEC 19 20 22 18 21 20
RSEEFCc/RSEEC 43 44 45 52 41 43
RSEEFt/RSEEt 51 57 61 81 87 93

Table 29 showsthat theresultsbased onthe TTSand Tl are nearly identical. The relationship
between the RSEEF and the RSEE depends on the transfer bias. In principle, the RSEEF and
the RSEE measure the same thing. However, the RSEEF differsfrom the RSEE by including the
effect of destination choicemodel sand theiteration of dternative-specific constants. Inthecase
of cost-elasticities, the transfer bias was small giving agood prediction performance for the
Bayesan method. The goodness of the Bayesian method wasbetter ill, when the dternative-
specific constants were corrected viathe iteration process. Thiseffect islarger in the case of the
Bayesian method than for the other transfer methods, which explainsthe differences between the
RSEE and the RSEEF. The effect of transfer bias can aso be seen when comparing the VOT

to the RSEE or the RSEEF. When comparing the VOT andthe TTS, it was noteworthy that
the increase in sample size decreased the similarity of the test results of these two tests.
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6.3 Conclusions

Themain purpose of thischapter wasto investigate the gpplicability of different transfer methods
asafunction of transfer bias and the preci seness of mode coefficients, and to further examine,
if thejoint context estimation method could be devel oped to control the effect of transfer bias
more efficiently than previoudly.

Generdly, the smaller the transfer bias and the more precise the coefficients are, the better the
transferred models performed. On the other hand, the research indicated that athough the
coefficients in the HMA and in the Turku region differed quite a lot, the model transfer
performed usudly better than the new application context model s estimated by using the same
sample size.

Thejoint context estimation proved to be the best method. Thisisgreatly dueto the utility
scaling components which makeit possibleto takeareal differencesinto account. Theresults
were still improved given that the imprecise variables (such as * number of transfers’, “travel
time” and “cars per household”) were estimated as common and the precise variables as data
specific. That is, the estimation context was emphasized for the imprecise variables and the new
application context for precise variables.

The combined transfer estimation and the models based on the small samples were highly
sengitiveto the sample size. The coefficients based on these two methods were rather equal with
each other. Thisislargely the result of the dominance of the transfer scaling component of the
combined transfer procedurewhich effectively resultsin aprocedure correspondingtoasimple
re-estimation of the model using the small application context dataset.

Transfer scaling also did not yield good results. The problem is that for example, in our case, a
common scalefactor was used for travel time and the number of transfers when considering other
home-based trips. If theratio of the coefficients of these variables does not remain the same in
the estimation and application context, the models ability to predict the effects of changesin the
transportation system may become rather weak. Both of these coefficients are normally quite
imprecise, thus the risk of having biased coefficientsis high.

Asaconclusion, Table 30 presents the results listed in order of quality. The joint context
estimation performed well especialy if the transfer bias was large and only some of the
coefficientswere precise. However, in Situations of small transfer bias, the Bayesian method
yielded good results aswell. However, dueto itsinability to explicitly take account of the
transfer bias, it was often biased. The Bayesian approach emphasizes the
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coefficientswith respect to theinverse of the variances of each coefficient. Thismeansthat the
coefficients based on the estimation context datawill be emphasized too strongly in the model
transfer, since the number of observationsislarger inthiscontext. The Bayesian method aso
suffersfrom arepeated measurement problem when the normal Finnish dataisused. Repested
measurementsimply that therewill be correl ation between the answers provided by the same
individud, and thereforein the error termsin the utility function. This means, that when estimating
the new sample models, the variation of modd coefficients representsthe red variation, but due
totheincorrect standard deviationscal cul ated by estimation program, the estimated coefficients
based on the Bayes an method or combined transfer estimation are no longer correct. Thisbias
isinvestigated more precisaly in Appendix H. Appendix H showsthat the Bayesian estimates
especialy may be biased due to the correlations between the answers.

Inthe case of large transfer bias and imprecise coefficients, thereisactudly not very much to do.
However, in this scenario joint context estimation is seen as the best (safest) method.

Table30: The summary of the order of quality of transfer methods according to the
transfer bias and precision of model parameters

IMPRECISE COEFFICIENTS PRECISE COEFFICIENTS

Small transfer bias Bayes Joint context estimation
Joint context estimation Transfer scaling
Transfer scaling Combined transfer estimation
Largetransfer bias  (Joint context estimation) Joint context estimation
Combined transfer estimation
Transfer scaling

The differences between the methods were larger for other home-based trips than for home-
based work trips. Thiswasespecialy sowithregardto VOT and elagticity testsfor travel time.
Onereason for thismight be that the transfer scaling method performed lesswell for other home
based tripsthan for home-based trips due to the common scale factor used for thetravel time
and the number of transfersin modelling other home based trips. Another noteworthy point is,
that the repeated measurement problem was larger for home-based work trips than for other
home-based trips (see Section 5.3.3.3). As a consequence of that the real variation of
coefficients in home-based work trips was larger than in other home-based trips.

Theresearch aso indicated that the effects that are produced by sample size and many other
factors connected to the modelling is often greater than that produced by the differences
between the best methods.



164 CHAPTER 6. COMPARISON OF TRANSFER METHODS

Table 31 presents the sensitivity analysis of the sample size required in model transfer. The
samplesizerequirementswere evaluated in terms of two differerent hypothetical error limits
using the tests already applied in Chapter 5. TTSisnot considered dueto its tendency aways
reject the hypothesis of the equality of the model parametersin two contexts.

Theresultsindicatethat the mode and destination choice models madeinthe HMA were well
transferable if the decrease of 15 percent of the best possible test measure was accepted.
However, if only the 5 percent error was allowed, the advance of model transfer wassmaller.
The sample sizerequirement was 2,500 respondentsfor home-based work tripswhen 5 percent
error limit was used and 1,400 respondents when 15 percent error limit was used. The
corresponding values for other home-based trips were 4,450 and 2,400 respondents,
respectively. Inamost all cases the best transferred model yielded better results than the
corresponding new sample model

Table 31: The sensitivity analysis of the sample size requirements in model transfer.

the results compared to the value, which is |the results compared to the
5 percent below the maximum value, which is 15 percent
below the maximum
trip required |[the required [required [the required |required
group |sample [percent |sample |sample |percent |sample [sample
sizefor |of sizefor |sizefor |of sizefor |sizefor
new models |thebest |[joint models  [thebest [joint
sample |for transfer |context |for transfer  |context
model which method* [estima- [which method* |estima-
based on |the error tion** the error tion**
25 % of test of test
error valueis vaueis
limit below below
25% 25%
VOT HBW 3,800 80 900 3,100 71 800 2,000
OHB 4,450 84 - - 75 2,300 2,300
RSEEF [(HBW 2,800 20 2,400 2,400 80 400 1,700
prrime oug | 4,000 90 - - 81 2,400 | 2,400
RSEEF |HBW 3,200 48 2,500 2,500 43 1,400 1,400
car
costs OHB 1,200 94 (400) 1,200 84 0 250
* based on the test-val ue presented in previous column
*x the sample size which is needed to get the same test value as required sample size produces for new

sample models
- can not be achieved when using model transfer
X the HMA model explains this test measure good enough
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When comparing thedifferent test measuresit can be said, that joint context estimation wasthe
best gpproach in 40 to 70 percent of caseswhen testing RSEE or RSEEF and a so when testing
VOT for other home-based tri ps. The Bayesan method wasthe best method whentestingVOT
for home-based work trips. TTS gave partially contradictory results with respect the other
methods. It wasa sothe most sensitivefor the sample size. The problemwhenusing TTSis,
that two models having totally different coefficients may havethesame TTS. Although these
two models can be similar in some ways, their ability to predict the effect of changesin a
transportation system is nevertheless different. 1t was aso shown, that TTS test has strong
tendency to regject transferehility. On the other hand Transfer Indexes (T1) for transferred model's
werein amost all casesinexcess of 80 percent, suggesting that the transferred model s provide
asignificant component of the information obtained from application context model.

The greatest problem in model transfer isthe large range of fluctuation caused by imprecise
coefficients. Themore new application context parameters are emphasized (e.g. by using data-
specific coefficients), the grester the confidenceinterva of the coefficients and thelarger therisk
of arriving at biased coefficientsis. So, when choosing the model definitions, we are trying to
find amodd, which does not exceed the predefined error limit, but which produces better results
more often than the new sample model. Next, a short interpretation of areal model transfer
situation and the different choices which are to be made are presented:

- Thefirst sepinmodel transfer isdata collection. The data collection methods should be
amilar in estimation and gpplication contexts. In addition, it isimportant to ensure, that
the sample sizeislarge enough to definemode shares accuratdy (if thereisnot any other
statistical source).

- Thenetwork description should bemadesmilarly aswell. Thismeans, for example, that
similar demand functionsin traffic assignment are used in both contexts.

- In principle, the same variables used in the estimation context should be used in the
application context aswell. However, if both datasets are available, the estimation
context models can be re-estimated and different variable combinations can be tested.
When using joint context estimation, it isaso possible to add additiond attributeswhich
are not represented in the estimation context model.
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- The model specifications should be made similarly. That is, thevariables, which are
differently defined, aretotally different variablesand thusare not to betransferred. The
sole exception is, if data-specific coefficients are used in ajoint context estimation.

- Theuse of dternative-specific dummy-variablesin the destination choice level isnot
normally recommended dueto the difficulty of forecasting the importance of these kind
of attributes. However, if they are needed, they can be applied by estimating new
sample model s at the destination choice level and by using some other transfer method
at the mode choice level.

- The choice of transfer method depends on the kind of data available. If both the
estimation and application context dataare available, the best transfer method isjoint
context estimation. When using the Bayesian method or the combined transfer
estimation, the parameter vectors and covariance-matrices are needed in both contexts.
Note, if the Bayesian gpproach isused, the repeated measurements should beignored
(e.g. drawing randomly only one observation per respondent from the data). Transfer
scaling isthe easiest way; only the coefficients of estimation context model and the
application context data are needed.

- When using joint context estimation, the best choi ce between common and data-specific
variables depends on the transfer bias and the preciseness of the coefficients. It can be
dated that the more common variablesthe mode includesthe smdler the variance of dl
the coefficientsis. On the other hand, the mode which only includes common variables,
strongly emphasizesthe estimation context model parameters. Thisis problematic when
thetransfer biasislarge. Thus, thecommon variablesaremost suitablefor Stuationsin
which the observed varianceof the application context coefficientsisrather high andthe
transfer biasis known to be small.

In Chapter 5 we defined the CV measure as being able to compare the preciseness of different
coefficientsandyticaly, and in such away asto be able to evauate which variables should be
estimated as common and which as data-specific, when using joint context estimation. The
CV(A) vaueis defined astheratio of the standard error of anew sample model coefficient
divided by the coefficient estimated from the whol e estimation context dataset. Theestimation
context parameters must be used as the denominator, because in areal transfer situation the
gpplication context parameters, based on the entire set of data, are unknown. Theinitia premise
isthat the greater the CV (A)-values, the more imprecise the model parameters are.
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The CV(A)-valuesfor empirical casesare presented in Figure 58. Thevariation of CV(A) is
congdered in gppendices P and Q. We have not defined any absolute value for the acceptable
CV(A), becausethe sample size requirements depend on the purpose for which the modelsare
to be estimated. However, CV(A)-vaues can be used asatool for selecting the variableswhich
areto be estimated as data-specific. One can formulate a hypothetical confidence limit to
describe the minimum preciseness of the coefficients by which the data-pecific coefficients can
be used. That is, the data-gpecific coefficients should be used for coefficients which are under
the confidence limit and common coefficients should be usedfor other variablesinthemodd. In
thiscase, the coefficientsthat exceed thelimit will befixed to the well-known estimation context
situation and the data-specific coefficients will only be used for precise coefficients. If al the
coefficients exceed the confidence limit, the model should be estimated using only common
coefficients. Thisis the way this processis generally done.

Home-based work trips, CV(A)
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0.5 ':l\
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Figure 58:

The mean CV(A)-values estimated for models based on the small samples.




7. DISCUSSION

The main purpose of the study was to compare alternative methods of spatial transfer as a
function of sample size, and identify the factors affecting the model quality and the
preciseness of model parameters. As a large part of the difference in coefficients and
predictions is due to the discrepancies in the formulation of the initial data, or random
variation, and only partly due to the real differences in the estimation and application
context, the main objective of this study was to investigate the relationship between the
transfer bias (difference between the estimation and application context parameter
estimates) and the impreciseness caused by the sample size. In addition, different test
measures for studying model transferability were compared and the applicability of the
traditional statistical tests, with respect to those based on the prediction accuracy of sample
enumeration tests and forecasts, were assessed.

The approach of primarily studying model transfer as a function of sample size rather than
transfer bias proved to be successful. This is because in a real transfer situation the
preciseness of the model coefficients can be roughly evaluated, but it is not known whether
the transfer bias is caused by the random variation in the estimated model parameters, or
whether it actually presents real differences in travel behaviour.

The use of bootstrap (Efron and Tibshirani 1993) when resampling observations made it
possible to effectively illustrate the variability in the test measures that arise as a function
of decreasing sample size. It was shown that the results based on individual samples may
greatly differ from each other, giving a totally different model transfer performance. It was
also indicated that the effect that is produced by sample size and many other factors
connected to the modelling are often greater than that produced by the differences between
the best transfer methods.

Data quality

The first step in modelling is data collection. The research highlighted the fact that
telephone interview is usually a more reliable method of collecting information than the
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postal questionnaire. The walk and bicycle trips, in particular, were better reported in
telephone interviews, and also people without trips were better captured in the telephone
survey. It seemed to be that the representativeness of mode shares is more dependent on
the data collection method than sample size even if the sample size is a very important
factor as well. We also obtained evidence that the data gathering method can have an effect
in the mode- and destination choice level, thereby suggesting that some of the differences
between the coefficients in the estimation and the application context may be caused by the
data gathering method and not just by real differences in local conditions in the HMA and
in the Turku region. Although these effects are very important in real transfer situation, they
do not affect the conclusions drawn from the model transferability, because studying the
real differences was not the focus of this thesis but rather the main purpose was to study
model transferability by using models which include different levels of impreciseness and
transfer bias.

Model Transferability

On the whole, the comparison of different transfer methods by using many different kinds
of tests highlighted effectively the differences between the methods. The goodness of the
models is not an unambiguous issue but is dependent on the purpose for which model is
estimated. In most cases, the joint context estimation proved to be the best transfer
method. As Badoe (1994) has concluded this is largely due to the utility scaling
components. This raises the potential for a "universal choice model", in which utility
attribute parameters are common to all the contexts, and the scales and constants are
expressed as functions of an urban structure. In this study it was shown that the results
could still be improved further when the imprecise variables (such as "number of transfers",
"travel time" and "cars per household") are estimated as common and the precise variables
as data-specific.

The combined transfer estimation and the new sample models were highly sensitive to the
sample size. The coefficients based on these two methods were very similar with each
other. This is largely the result of the dominance of the transfer scaling component of the
combined transfer procedure which effectively results in a procedure corresponding to a
simple re-estimation of the model using the small application context dataset.

Transfer scaling did not yield good results either. The problem is that for example, in our
case, a common scale factor was used for travel time and the number of transfers when
considering other home-based trips. If the ratio of the coefficients of these variables does not
remain the same in the estimation and application context, the models ability to predict the
effects of changes in the transportation system may become rather weak. Both of these
coefficients are normally quite imprecise, thus the risk of having biased coefficients is high.
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The sample size needed in model transfer is highly dependent on the accuracy required for
each step in the forecast system. No definite advice can be given as to the required precision
of the system, but the need for the accuracy depends on the purpose for which models are
used. In this research we did not consider, when the models are precise enough, but the
results were mainly compared to the results based on the entire set of data, which was
assumed to represent the best achievable situation. At the mode and destination choice
level two different accuracy criteria were tested: 5 and 15 percent decreases from the best
possible result. When considering the 5 percent error limit in model transfer, we were not
essentially able to decrease the sample size requirement. However, when considering the
15 percent error limit, the sample size requirement was only half the number of
observations needed to estimate the best possible model.

We also obtained evidence that although the mode and destination choice models could be
transferred using a quite small data set, an appropriate definition of mode shares and also
defining trip generation rates correctly requires much more data. In principle, the process
of defining mode shares and trip generation rates is independent of mode and destination
choice modelling. The mode shares and trip generation rates are based on the cross-
tabulation of mobility survey data, and mode shares are only used in the forecast process
to correct alternative-specific constants to accurately present the real weighted mode shares
in the area. The 1 percent absolute error limit that we defined to be the maximum
allowable deviation from the correct mode share was quite strict. However, in real
modelling the 1 percent deviation is regarded to be definitely the maximum error to be
allowed. Due to the large sample size needed to define mode shares accurately, the use of
separate OD-surveys, instead of a mobility survey, would be preferable for this purpose.

The use of empirical data highlighted problems which are not connected to the transfer
method itself, but greatly affect the model transfer. Of these, the most important was the
repeated measurement issue. Repeated measurements imply that there will be a correlation
between the answers provided by the same individual, and therefore in the error terms in
the utility function. Consequently, the estimated standard deviations are underestimated and
t-values based on these standard deviations are incorrect because they are too high.
However, repeated measurements do not affect the parameter estimates of new sample
models, the transfer scaling or joint context estimation, but they do affect the results based
on the Bayesian method and combined transfer estimation. The correlation between the
observations means that when using the Bayesian method in particular, the results may be
strongly biased.
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The comparison of different tests

Model transferability has traditionally been evaluated on the basis of how well transferred
models reproduce existing behaviour rather than on their ability to adequately forecast
changes in travel demand. The comparison of VOT and elasticities to the corresponding
TTS-values indicated, however, that statistical tests are not able to evaluate the goodness
of transferred models with a high enough degree of versatility. For example, two models
that have totally different values for their coefficients may have the same likelihood-value
and hence the same TTS. Consequently, their ability to predict the effect of changes in a
transportation system may differ greatly. Hence, because the main purpose of the policy
models is to predict the changes in the transportation system, as was the case for example
in the HMA and in the Turku region, the conclusions based on the RSEEF and VOT
should be emphasized.

Another related problem both in calculating the TTS as well as in calculating elasticities
is that in modelling the scale parameter p in the choice probability function (Equation 3)
is fixed to one. This means that the absolute level of the coefficients is actually dependent
on the real value of p. Consequently, the ratio of the model parameters to each other can
be estimated reliably but the absolute level of the parameters is unknown. Consequently the
comparison of model parameters on an equal basis, as has been the case in many
transferability studies, is not justified. Another problem is that in spite of the fact that the
absolute level of the model parameters is unknown, the elasticities are highly dependent on
the absolute level of the coefficients, which can be regarded as a weakness of the logit
model formulation.

Conclusions

The research confirmed the general view that model transfer is useful in situations in which
a large data set can not be collected. Generally, the smaller the transfer bias and the more
precise the coefficients are, the better the transferred models perform. On the other hand,
it was shown that due to the difficulty in defining mode shares accurately based on small
samples, spatial transfer cannot be recommended as a primary method, in spite of the fact
that mode and destination choice models can be transferred quite reliably. Consequently,
the largest utility for model transfer can be achieved when it is applied to model updating
rather than to spatial transfer. Model updating using only a small set of new application
context data makes it possible to update models more frequently and economically than
used be the case.
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Generally, spatial transfer tends to succeed better when there is a significant number of
equal transport conditions in the estimation and application context areas. This means that
depending on the mode shares, two or three different areal models should be used as the
basis of modelling in Finland.

In future, it will be important to improve the quality of the data and the travel demand
models. For example, research into the use of individual variables, different modelling
techniques and developing totally new modelling approaches at the destination and route
choice level would be of benefit. This is because many factors connected to the modelling
itself are greater than those produced by the differences between the best transfer methods.

Improving the quality of the model also helps to develope the ultimate goal whereby the
data-specific coefficients can be used as much as is possible, to improve model
transferability. This is especially important in cases where the transfer bias is large.
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APPENDIX C

The comparison of sequential and simultaneous estimation
1.  Problem description

In this chapter the effect of estimation method in estimating nested logit models is
examined. In principle the simultaneous estimation is more efficient than sequential
estimation, due to the full information used in simultaneous estimation. It is also well
known, that even the the sequential estimation method is simple, and produce estimates
which are consistent; it has potentially strong problems. For example, if there are not
sufficient data to estimate lower nest models, the estimates may be inefficient both in the
sense that information is omitted at the lower levels and that the errors thus obtained are
passed on to the superior level (Ortuzar and Willumsen 1994).

In our case, the results based on the estimations in the HMA and in the Turku region
indicated that the coefficients of mode- and destination choice models differ greatly
depending on the estimation method. As an example of that, Table C.1 presents the
simultaneously and sequentially estimated models for home-based work trips and other
home- based trips when using the entire set of empirical Turku data. For other home-based
trips we have presented two different cases depending on if mode or destination choice is
on the upper level. This has been made because when using the same order than used in
sequential estimation, the coefficient of logsum is over 1.

Table C.1 shows that the models of home-based work trips did not differ very much from
each other. The value of time is 3.6 euro/h (21.4 FIM/h) using sequential estimation for
home-based work trips and 2.3 euro/h (13.6 FIM/h) by simultaneously estimated model.
However, the differencies for other home-based trips are larger. The value of travel time
coefficient, in particular, seems to be biased when using simultaneous estimation. The
value of time for other home-based trips is 0.02 euro/h (0.1 FIM/h) by simultaneously
estimated models and 1.2 euro/h (6.9 FIM/h) for sequentially estimated models.

Next the possible reasons causing differences between the sequential and simultaneous
estimation are studied. Because in preliminary studies the variable “number of transfers”
affected strongly the coefficient of travel time, the examination is made both for the
models with the variable “number of transfer” as well as for the models without this
variable. The effect of the logsum variable is studied because when empirical data was
used the parameter for the logsum was over one when estimating the models for other
home-based trips. Therefore simultaneous estimation also was problematic, in particular,
for other home-based trips.
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Table CI: Estimation results of mode choice models using simultaneous or
sequential estimation of home based work trips and other home based
trips Estimated from data collected in the Turku region in 1997. The
shaded models are used in model transfer in Chapter 6.

Home Based Work Trips Other Home Based trips

Sequential |Simultaneous [Sequential [Simultaneous |Simultaneous

estimation |estimation estimation |[estimation A |estimation B
Distance 0-5 -0.878 -0.812 -1.038 -1.153 -0.914
(Walk) (-24.2) (-23.0) (-49.0) (-82.8) (-46.5)
Distance > 5 -0.339 -0.344 -0.247 -0.282 -0.215
(Walk) (-11.0) (-13.3) (-13.5) (-17.6) (-14.3)
Total travel time -0.022 -0.017 -0.014 -0.006 -0.0002
(Ptr, Car) (-8.2) (-7.7) (-7.3) (-5.9) (-0.2)
Number of transfers - - -0.437 -0.600 -0.591
(Ptr) (-10.5) (-16.1) (-17.7)
Walk-dummy 2.137 2.041 2.157 2.903 2.461
(Walk) (11.4) (15.7) (20.4) (28.4) 42.1)
Car-dummy -0.506 -0.903 -0.893 -0.872 -0.624
(Car) (-2.6) (-5.5) (-7.7) (-8.9) (-7.3)
Cars/household 0.658 1.288 1.173 1.768 1.399
Car) (3.8) (10.3) (13.3) (24.2) (24.4)
Trip cost/income -0.884 -1.073 -1.739 -2.311 -1.709
(Ptr, Car) (-7.2) (-12.7) (-20.4) (-52.6) (-31.0)
Ln(nr of jobs) 1.000 1.000 - - -
(Dest) - -
Log sum 0.734 0.826 1.202 0.738 1.354
(Dest) (43.2) (16.8) (134.8) (35.1) (36.4)
Scale factor - - 1.000 1.000 1.000
- service employment - - 14.89 14.70 14.53
- retail employment - - 2.52 2.43 2.31
Number of trip 4,442 4,442 13,989 13,989 13, 989
observations
p*(c) 0.2011 and 0.1486 0.2265 and 0.2689 0.2690
(mode and dest) 0.1431 0.2802
VOT (FIM/h) 21.4 13.6 6.9 2.2 0.1

Walk=walk and bicycle A mode choice on the upper level
Ptr=bus and train B destination choice on the upper level

Car =driver or passanger
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2.  Methodology

The importance of estimation method is studied by using simulated data, because there is
no real certainty as to which of these two methods better corresponds to the real situation.
In the simulated data the true model coefficients are known, and can be compared with the
results of the two estimation methods.

The main steps of the study are:

l. The artificial data are created using Monte Carlo simulation, assuming the true
coefficients in Table C.2 and C.3. Choice probabilities are approximated by
repeating Monte Carlo simulation process 100 times with the parameters held
constant. The generation of attribute values is mainly based on the attribute
values taken from the data set (HBW) used in the case study. However, two
different logsum parameters are used to study the effect of logsum variable. That
is, totally 200 samples are taken, 100 with the logsum of 0.8 and 100 with the
logsum of 2.0.

The empirical values of the origin and the starting time has been used as the basis
of the simulation. In the empirical data, trips are directed from home to
destination, or from destination to home. However, when simulating data, all the
trips are directed from home to destination. Therefore, when the trip in empirical
data is directed from destination to home, the home is used to represent an origin,
and the starting time of the trip is also changed to correspond to the reversed
situation in the empirical data.

2. A set of alternatives is defined (354 alternatives, 3 modes and 118 destinations),
and the respective utilities are conducted from the attributes of that alternative.
After the computation of utilities, choices are simulated by drawing a uniform
random number from O to 1 for each individual and choice set, and comparing it to
the logit probabilities to determine which alternative was chosen. All the
coefficients and the individual-specific error term are assumed to have zero
variation across the sample. These assumptions correspond to those of the basic
linear logit model.

3. The models are estimated for each simulated sample by using both the
simultaneous and sequential estimation. The results are presented in Tables C.2
and C.3. We have calculated the average coefficients for 100 mode and
destination choice models to compare, how well different estimation methods can
repeat the coefficients used in data simulation.
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Table C.2: The average coefficients for 100 mode choice models using simultaneous
or sequential estimation and simulated data.

Simulated data Simulated data
(logsum=0.8) (logsum=2.0)

Coefficients |Sequential [Simultaneous [Sequential |Simultaneous

used in data |estimation [estimation estimation |estimation

generation
Distance 0-5 -0.878 -0.882 -0.872 -0.854 -0.814
(Walk) ) (-2.3) (-2.4) (-2.3) (-2.5)
Distance >5 -0.334 -0.340 -0.338 -0.311 -0.344
(Walk) () (-10.8) (-12.8) (-8.7) (-8.7)
Total travel time -0.022 -0.022 -0.021 -0.018 -0.014
(Ptr, Car) ) -7.7) (-8.8) (-6.5) (-6.7)
Walk-dummy 2.137 2.167 2.216 2.392 2.401
(Walk) () (11.7) (16.4) (12.0) (10.5)
Car-dummy -0.506 -0.302 -0.480 -0.256 -0.211
(Car) ) (-1.8) (-2.5) (-1.9) (-1.7)
Cars/household 0.658 0.681 0.703 0.722 0.683
(Car) ) 3.7 (4.0) (3.9) 4.7
Trip cost/income -0.884 -0.885 -0.897 -0.755 -0.940
(Ptr, Car) ) (-6.6) (-9.4) (-5.5) (-10.6)
Logsum (Dest) 0.8/2.0 0.812 0.820 2.166 2.1990

) (45.0) (16.5) (90.8) (21.4)

Scale factor 1.000 1.000 1.000 1.000 1.000
Number of trip 4,442 4,442 4,442 4,442 4,442
observations
VOT (FIM/h) 21.4 21.1 18.1 22.0 17.9

Walk=walk and bicycle
Ptr=bus and train
Car =driver or passanger
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Table C.3: The average coefficients for 100 mode and destination choice models using
simultaneous or sequential estimation and simulated data for the model
including the “number of transfers”.

Simulated data Simulated data
(logsum=0.8) (logsum=2.0)

Coefficients [Sequentially |Simultaneous |Sequential |Simultaneous

used in data |estimation estimation estimation |estimation

generation
Distance 0-5 -0.878 -0.872 -0.869 -0.854 -0.811
(Walk) ) (-2.3) (-2.4) (-2.3) (-2.5)
Distance > 5 -0.334 -0.343 -0.337 -0.309 -0.342
(Walk) ) (-10.8) (-12.8) (-8.7) (-8.7)
Total travel time -0.022 -0.024 -0.021 -0.017 -0.012
(Ptr, Car) ) (-7.7) (-8.8) (-6.5) (-6.7)
Nr of transfers -0.437 -0.25 -0.27 -0.32 -0.38
(Ptr) () (-4.0) (-6.0) (-3.4) (-5.1)
Walk-dummy 2.137 2.118 2.206 2.417 2.445
(Walk) ) (11.7) (16.4) (12.0) (10.5)
Car-dummy -0.506 -0.280 -0.478 -0.173 -0.256
(Car) ) (-1.8) (-2.5) (-1.9) (-1.7)
Cars/household 0.658 0.658 0.687 0.716 0.659
(Car) ) 3.7 (4.0) (3.8) “4.7)
Trip cost/income -0.884 -0.869 -0.872 -0.742 -0.973
(Ptr, Car) ) (-6.6) (-9.4) (-5.5) (-10.6)
Logsum (Dest) 0.8/2.0 0.848 0.826 2.135 2.321

) (44.1) (16.5) (88.5) (21.4)

Scale factor 1.000 1.000 1.000 1.000 1.000
Number of trip 4,442 4,442 4,442 4,442 4,442
observations
VOT (FIM/h) 214 21.1 18.1 22.0 17.9

Walk=walk and bicycle
Ptr=bus and train
Car =driver or passanger
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Tables C.2 and C.3 show that the variance in the coefficients is larger for sequentially
estimated models than for those estimated simultaneously. Although simultaneous
estimation is more efficient than corresponding sequential estimation, sequential
estimation was, unlike the simultaneous estimation, always able to repeat the coefficients
used in the data creation. That is, the models based on the sequential estimation seem to
be identifiable. However, when using simultaneous estimation, the coefficient of travel
time, in particular, is biased in the situation where the logsum is 2.0. The problem is less
significant when using models without the variable “number of transfers” than when using
models with them.

Generally, simultaneous estimation has been thought of as being better than sequential
estimation, because simultaneous estimation optimize the entirety of mode-and destination
choice. However, this strength of the method can also be regarded as weakness. The
probability that a certain destination (from all of the 118 destinations) is really chosen, is
small. The lack of alternative-specific constants at the destination choice level makes it
even more difficult to find an optimal solution.

The abovementioned simulation tests indicated that both the logsum and the variable
number of transfers affect those results that are based on the simultaneous estimation.
However, in essence, the problem is mainly caused by the multicollinearity, as is described
in Rich (2002) and Horowitz (1981).

Horowitz (1981) has shown, that the use of zonally averaged variables in maximum-
likelihood estimation will normally yield inconsistent estimates of disaggregate choice
probabilities. It will also produce inconsistent estimates of zonal-average choice
probabilities, unless the following conditions are fulfilled:

- The zonally averaged explanatory variables are not correlated with any disaggregate
explanatory variables that are included in the model’s specification

- The zonally averaged variables have the same joint distribution function in each zone,
both in the estimation data set and in the data sets used for forecasting.

These conditions are not fulfilled in this study. The principal component analysis (not
presented here) also suggested the use of generic coefficients for time and cost. That is,
due to the identification problem that arises when using simultaneous estimation,
sequential estimation was used in this research. The inverse order of mode and destination
choice was also tested when using simultaneous estimation. However, the prediction
performance for these models was not good.
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APPENDIX F

The formulation of cost and parking cost variables
Travel costs for car

Travel costs for cars are based on 0.10 euro/km in the HMA in 1995 and 0.12 euro/km in
the Turku region in 1997. These costs include both the fuel costs and other variable costs
and the parking costs. Fixed charges are not taken into account.

Parking costs (for one-way trips) have been cross-tabulated from the mobility survey based
on the monthly costs car drivers had paid, and are included in the car costs.

The average cost for home-based work trips was assumed to be the price of a monthly cost
divided by 25, which was the average number of work trips made in a month. When
calculating the average cost for other home-based trips, only those people who were paid
their parking as a single payment, were included to the examination.

Below is presented the average values of parking costs according to the destination zone
in the case of the trip is directed from home to destination. In other case, when home is
destination, the corresponding parking cost is defined according to the origin area.
Parking costs are presented only those areas, in which the cost is different from zero.

Parking cost (eur) Parking cost (eur)

Area Area

HBW OHB HBW, OHB
1 Kluuvi 1.00 1.36 4 Turku city centre 0.31
2 Kamppi 0.68 0.68 5 Turku city centre 0.15
3 Punavuori 0.91 0.91 6 Turku city centre 0.13
4 Kaartinkaupunki 0.97 0.97 7 Turku city centre 0.15
5 Kruununhaka 1.23 1.23 8 Turku city centre 0.23
6 Katajanokka 0.45 0.45 56 Karsamaki-Runosmaki  1.38
7 Ullanlinna, Eira, Kaivopuisto 0.34 0.34 72 Pansio-Perno 0.13
8 Munkkisaari 0,00 0.00 98 Piikkio city centre 0.09
9 Ruoholahti, Jatkasaari 0,00 0.00
10 Etu-T6616 0.35 0.35
11 Taka-T6o610 0.12 0.01
12 Meilahti 0.12 0.12
13 Ruskeasuo, Pikku Huopalahti 0,00 0.00
14 Lansi-Pasila 0.02 0.25
15 Pohjois-Pasila 0.00 0.00
16 Ita-Pasila 0.02 0.03
17 Hakaniemi 0.19 0.19
18 Kallio 0.09 0.19
19 Sornéinen 0.01 0.17
20 Alppiharju 0.00 0.14
21 Vallila 0.00 0.06
22 Hermanni 0.00 0.00
23 Kumpula, Toukola 0.00 0.00
24 Kapyla, Koskela 0.00 0.00
63 Tapiola 0.00 0.28

101 Lentoasema 0.00 0.32
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Travel costs for public transport

Travel costs for public transport are zonal values, which have been cross-tabulated from
the mobility survey data. The travel cost in public transport were calculated as an average
cost based on the ticket types respondents indicated they owned. The average costs were
calculated in divisions of four zones.

HMA

The average cost for home-based work trips was assumed to be the daily price of a
monthly ticket divided by 70, which was the average number of trips made in a month.
The average cost for other home-based trips was calculated as an average of travel costs
approximated to the ticket type respondents indicated they owned. The monthly daily
price of a monthly ticket was divided by 45. For people under 17 years old the price of a
children’s ticket was used. In addition, some discount tickets were also taken into account.
The average costs of public transport are as followed:

Hki city centre Hki suburb Espoo+Kauniainen Vantaa
Hki city centre 0.84 0.84 1.77 1.77
Hki suburb 0.84 1.77 1.77
Espoo+Kauniainen 1.09 1.93
Vantaa 1.09

Turku region

The average cost of the internal trips made in the Turku city area was defined to be 0.79
euros/trip. The price between the Kaarina and Turku was approximated to be 0.84
euros/trip and between the Raisio and Turku 1.68 euros/trip. Other prices are based on the
distance rates. The factor 0.75 when using distance rates is based on the assumption that
approximately 60 percent of all passangers have season ticket and approximately 45
percent of all passangers are children. The final ticket price was defined as follows:

if (((origin=Turku) and (destination=Turku))) then price:=0.79

el se if((origin=Kaarina) and (destination=Turku)) then price:=0.84

el se if((destination=Turku) and (destination=Kaarina)) then price:=0.84
el se if((origin=Raisio) and (destination=Turku)) then price:=1.68

el se if((destination=Turku) and (destination=Raisio)) then price:=1.68
(*according to distance rate*)

else if ((0<=dist) and (dist<6)) then price:=0.75*1.68

else if ((6<=dist) and (dist<9)) then price:=0.75*1. 85

else if ((9<=dist) and (dist<12)) then price:=0.75*2.19

else if ((1l2<=dist) and (dist<16)) then price:=0.75*2.52

else if ((16<=dist) and (dist<20)) then price:=0.75*2.86

else if ((20<=dist) and (dist<25)) then price:=0.75*3. 36

else if ((25<=dist) and (dist<30)) then price:=0.75*3.70

else if ((30<=dist) and (dist<35)) then price:=0.75*4.20

else if ((35<=dist) and (dist<40)) then price:=0.75*4.70

else if ((40<=dist) and (dist<45)) then price:=0.75*5.05

else if ((45<=dist) and (dist<50)) then price:=0.75*5.55
hav[j]:=2*(price)
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APPENDIX G
The description of the bootstrap technique

This appendix gives a brief review of the bootstrap sampling methodology. The procedure
of calculating bootstrap quantities is presented more specifically in Efron and Tibshirani
(1993).

The bootstrap was introduced in 1979 as a computer-based method for estimating the
standard erfor of parameter 6 (Efron and Tibshirani 1993). The basic idea of bootstrap is
to take that sample which we are interested in and use it as a population and then by
resampling create a new sample, a bootstrap sample, which we use to compute the
quantities that we are interested in. If we repeat this several times, obtaining lots of
bootstrap samples, we can use the mean of the computed quantities as an estimate of the
expected value of this bootstrapped quantity (Bergstrom 1999).

According to Efron and Tibshirani (1993) bootstrap methods depend on the notation of a
boostrap sample. Let F be the empirical distribution, putting probability 1/n on each of the
observed values Xx;, i=1,2,...,n. A bootstrap sample is defined to be a random sample of
size n drawn from F, say

x*=(x,*, x,*%, ..., X,*) :
F- (x/*, X%, ..., ;). M

The star notation indicates that x* is not the actual data set x, but rather a randomized, or
resampled, version of x.

There is another way to say: the bootstrap data points x;*, x,*, ..., x_* are a random sample
of size n drawn with replacement from the population of n objects (x;, X,,..., X,). Thus, we
might have x;*=X;, X,*=X;, X 3*=X3, X *=X 53, ..., X, *=X ;. The bootstrap data set (x *,
X5*,..., X ,*) consists of members of the original data set (x;, X, ,..., X, ), some appearing
zero times, some appearing once, some appearing twice, etc.

The bootstrap estimate of seg(0) is the standard error of 0 for data sets of size n randomly
sampled from F. Computationally, the bootstrap algorithm works by drawing many
independent bootstrap samples, evaluating the corresponding bootstrap replications, and
estimating the standard error of 6 by the empirical standard deviation of the replications.
The result is called the bootstrap estimate of standard error, denoted by seg, where B is the
number of bootstrap samples used.
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2)

The ideal bootstrap estimate se, has the smallest possible standard deviation among nearly
unbiased estimates of sex(0), at least in an asymptotic (n—e°) sense. It is not hard to show
that se; always has greater standard deviation than s¢ . The practical question is “how
much greater?”

The increased variability due to the stopping after B bootstrap replications, rather than
going on to infinity, is reflected in an increased coefficient of variation,

. . 2+E(A)+2
cv(se,) —J cv(se.) TR 3)

Here a is a parameter that measures how long-tailed the distribution of 6* is; a is zero for
the normal distribution, it ranges from -2 for the shortest-tailed distributions to arbitrarily
large values when F is long-tailed. Table G1 compares cv(seg) with cv(se,) for various
choices of B, assuming »=0.

Table G1. The coefficient of variation of sey as a function of the coefficient of
variation of the ideal bootstrap estimate se. and the number of
bootstrap samples B (Efron and Tibshirani 1993).

B-
25 50 100 200 %
cv(se,) 0.25 0.29 0.27 0.26 0.25 0.25
0.20 0.24 0.22 0.21 0.21 0.20
0.15 0.21 0.18 0.17 0.16 0.15
0.10 0.17 0.14 0.12 0.11 0.10
0.05 0.15 0.11 0.09 0.07 0.05

0.00 0.14 0.10 0.07 0.05 0.00
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APPENDIX H

The effect of repeated measurements in model transfer
1. Introduction

This appendix concerns the repeated-measurement issue. As stated in Chapter 5.3.3.3,
repeated answers provided by the same individual do not affect the real variation (std,), but
decrease the estimated standard error (std,-values). The repeated measurement issue is
considered because, although some of the methods react directly with observed variation,
others (Bayesian approach and combined transfer estimation) only react to the estimated
standard deviations (that is, the coefficients will be emphasized with respect to the inverse
of their estimated variances) in model transfer. Thus the differences between these two
standard deviations and correlations may cause differences in the comparison of the model
transfer methods.

2. Repeated measurement
2.1 Problem describtion and methodology

The aim of this appendix is to investigate the degree to which the repeated measurement
error might affect the results found in Chapter 6.

First, we look at what happens, if the repeated measurement problem, which occurs in
estimation and application context, is removed. That is, the Turku data, including only
one randomly chosen observation per respondent, is used in model transfer. In this case,
the whole set of one observation per respondent HMA data (1,133 trip observations) is
used as the estimation context data. The samples of 650 respondents in the Turku data are
used in the application context (the sample size is the same as for the whole one
observation per respondent data in the Turku region).

Using normal two-day data creates the reference situation. The sample size is chosen so
that the observed standard deviation stdp for the estimation and application context is the
same as the stdp-value gathered by using the one observation per respondent set of data.
In addition, the estimation context samples are taken so that the coefficients are as similar
as possible to those using the one observation per respondent HMA data. In estimation
context, the coefficients should be similar to those estimated by using the one observation
per respondent set of data. However, there are some small differences between these
models (Table H.1).

The studied combinations are presented in Figure H.1. The model coefficients for
estimation context data sets and for seed samples of application context samples are
presented in Table H.1.
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Estimation context data (HMA) Estimation context data (HVIA)
- “normal” one-day data - 1 obs/respondent data
(1587 trip-observations) (1133 trip-observations)
Application context data (Turku) Application context data (Turku)
- “normal” two-day data - 1 obs/respondent data
(1600 trip-observations) (650 trip-observations)
Transferred model VOT and sample numeration
- 5 methods | test for mode choice
- 100 samples - two test cases
- 1 sample size
Figure H.1: The process when studying the effect of the repeated measurement

issue.

The model transfer is investigated by all five methods studied in Chapter 6. All
transferability tests have been made by using 100 samples (resampled from the Turku 1997
dataset) for each transfer method and studied combination. The combination B (only
coefficient for distance 0-5 is estimated as data-specific) of data-specific coefficients is
used for the joint context estimation. This is the combination, which proved to best for the
corresponding stdp variation in empirical data.

The “normal” two day data represents the empirical data used in Chapter 6. The one
observation per respondent data has been thought to represent the data, in which the
repeated measurement problem is undoubtedly absent. In principle, the unbiased data
could be formulated by merely eliminating the common observations.

Note, due to the two-day diaries used in the Turku area, the repeated measurement issue
is more serious for application context (Turku) data than for the HMA data.
Consequently, the repeated measurement correction is of a different size for the estimation
and application context data sets. That is, when using the one day per respondent data, the
effect of using two day diaries is also removed.
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Table H.1: The coefficients for estimation context models and for seed samples used
in the estimation context when studying repeated measurement issue.
HMA* HMA** Turku *** Turku ****
1587 resp 1 obs/resp entire data lobs/resp
Distance 0-5 km -0.952 -0.911 -0.878 -0.873
(-13.1) (-11.0) (-24.2) (-14.1)
Distance >5 km -0.474 -0.449 -0.339 -0.321
(-9.5) (-8.3) (-11.0) (-6.6)

Total travel time -0.027 -0.028 -0.022 -0.023
(Car, Ptr) (-7.9) (-6.9) (-8.2) (-5.1)
Trip cost/income -1.364 -1.397 -0.884 -0.984
(Car, Ptr) (-9.1) (-7.8) (-7.2) (-4.8)
Cars/household 1.022 1.229 0.658 0.633
(Car) (3.3) (3.4) (3.8) (2.2)
Walk dummy 1.499 1.283 2.137 1.925
(Walk) (5.5) 4.1) (11.4) (6.2)
Car dummy -1.858 -1.973 -0.506 -0.584
(Car) (-6.5) (-5.7) (-2.6) (-1.8)
pz(c) 0.2336 0.2235 0.2011 0.1845
No of 1,587 1,133 4,442 1,530
observations

* estimation context data and model for reference data

o estimation context data and model for one observation / respondent data

HAk data from which the reference samples of 1,600 trip-observations have been taken

HAAK data from which the “one observation per respondent” samples including 650 trip-observations

have been taken

2.2 Results

Figures H.2 and H.3 present the main findings. Figure H.2 shows that the VOT error of
the new sample models is the same for both data sets. This is plausible, because the sample
size for the one observation per respondent data was chosen so that stdp would be the
same as that from using the reference data. However there are differences between the
results concerning the Bayesian method and the combined transfer estimation. One could
expect that the Bayesian method would be better for the empirical data than for the one
observation per respondent data, because the std: is more highly overestimated in the
application context (due to the 2-day data) than in the estimation context, causing the
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application context coefficients to be a bit more highly emphasized as well. Nonetheless,
due to the violated correlations of empirical data, the results are quite the opposite. The
Bayesian method, in particular give better results when using one observation per
respondent data.

Percentage of models with the
VOT-error below 25 percent
100 /-\
80 \
— 60 t>—/’//’\ — e empirical
o) \
> 40 \ —m— 1 obs/resp
20
0
new transfer Bayes combined joint
sample scaling transfer est. context est.
model
Figure H.2: The VOT for samples taken one observation/respondent data and
empirical reference data.
Table H.2: The average-VOT-error based on the 100 models estimated using
empirical reference data and one observation per respondent data.
Home-based work trips, average VOT-error
empirical 1 obs/resp
new model 25.5 25.5
transfer scaling 21.2 21.3
Bayes 22.7 7.8
combined transfer est 28.5 28.9
joint context est. 14.1 13.2

When considering the RSEE error (Figure H.3), the results concerning the Bayesian
method and the combined transfer estimation look quite similar. However, the more
precise examination indicates that there are differences by considering the average RSEE
values presented in Table H.3. Also, in this case, the combined transfer estimation and the
Bayesian procedure, in particular, give better results when using the one observation per
respondent data. Due to the larger transfer bias, the differences are greater for cost-
elasticities than for time-elasticities. The differences between these two cases are smaller
for the combined transfer estimation, because this method emphasize, in any ways, the
application context data.
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Percentage of models with the RSEE error
below 25 % (ptr travel time increase)
100.0
80.0 - /ﬁ\ /&:
e 60.0 \ / —e—empirical
° 40.0 —m—1 obs/resp
20.0 -
0.0 - —
new sample transfer Bayes combined joint
model scaling transfer est.  context est.
Percentage of models with the RSEE error
below 25 % (car costs increase)
100
80
. 60 1 "/ﬂ\ —e—empirical
° 40 —#—1 obs /resp
20
0 - —
new sample transfer Bayes combined joint
model scaling transfer est. context est.
Figure H.3: The RSEE for samples taken from the one observation per respondent
data and from empirical reference data.
Table H.3: The average RSEE based on the 100 models estimated using empirical
reference data and one observation per respondent data.
Home-based work trips (average RSEE)
empirical reference data one observation/respondent data
ptr time + 30 % car costs +10 % | ptr time + 30 % car costs +10 %
new model 19.6 27.6 16.1 25.1
transfer scaling 18.3 29.1 17.1 26.9
Bayes 63.1 88.5 55.2 54.9
combined transfer est 18.1 33.0 16.2 25.1
joint context est. 17.1 22.9 15.6 14.6
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APPENDIX I

The average RSEE and RSEEF-values for 100 transferred models, home-
based work trips in the Turku region. (The best method and results are shaded)

Home-based work trips

RSEE (%) RSEEF (%)
sample size 425 ptr time + 30 % car costs + 10 % ptr time + 30 % car costs + 10 %
new model 34.1 63.5 30.0 74.2
transfer scaling 34.7 65.1 30.6 65.7
Bayes 65.3 102.4 31.8 98.5
combined transfer est. 33.7 61.6 29.3 73.8
joint context est. 324 53.0 17.0 64.6
sample size 850
new model 26.8 41.3 24.1 49.4
transfer scaling 26.4 41.8 23.7 44.5
Bayes 66.1 98.8 359 96.3
combined transfer est. 26.5 40.7 235 52.2
joint context est. 19.6 35.5 13.5 52.9
sample size 1,700
new model 17.2 28.1 153 34.5
transfer scaling 17.6 322 18.0 39.6
Bayes 65.6 90.1 38.6 95.2
combined transfer est 17.5 28.7 15.7 36.5
joint context est. 14.0 31.6 10.9 45.0
sample size 3,400
new model 13.0 19.0 10.7 29.5
transfer scaling 12.6 20.9 13.0 30.7
Bayes 58.7 82.4 38.2 90.4
combined transfer est 13.2 19.1 10.9 29.8
joint context est. 11.2 18.0 9.2 27.3
Sample size 4,675
new model 11.7 15.1 10.5 25.7
transfer scaling 12.1 19.1 13.6 34.8
Bayes 55.6 65.2 34.0 87.5
combined transfer est 11.9 17.0 10.4 26.0
joint context est. 10.3 15.5 9.4 25.0
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APPENDIX J

The average RSEE and RSEEF-values for 100 transferred models, other
home-based trips in the Turku region. (The best method and results are shaded)

Other home-based trips

RSEE (%) RSEEF (%)
Sample size 140 ptr time + 30 % car costs +10 % ptr time + 30 % car costs +10 %
new model 75.7 32.7 67.6 27.1
transfer scaling 81.9 334 51.8 24.7
Bayes 96.9 23.7 32.5 6.6
comb. transf. est. 75.2 32.1 65.9 259
joint context est. 45.5 30.7 352 19.4
sample size 275
new model 60.5 25.8 51.3 19.7
transfer scaling 77.3 29.4 50.7 18.1
Bayes 101.7 23.7 343 6.9
comb. transf. est. 59.5 25.5 49.2 17.1
joint context est. 36.6 232 27.3 12.9
sample size 550
new model 41.0 20.3 35.2 14.8
transfer scaling 63.6 23.1 42.0 16.1
Bayes 105.8 23.1 422 5.0
comb. transf. est 40.3 20.7 34.6 14.6
joint context est. 27.1 17.9 253 10.4
sample size 1,100
new model 29.9 14.2 23.6 9.7
transfer scaling 64.1 18.9 41.2 11.1
Bayes 106.7 22.6 46.5 4.8
comb. transf. est 29.5 14.3 23.3 9.7
joint context est. 22.6 13.6 16.9 7.5
sample size 2,300
new model 23.9 10.9 19.0 5.8
transfer scaling 66.4 16.7 429 8.8
Bayes 96.9 20.1 48.0 3.9
comb. transf. est 23.6 10.9 19.0 5.8
joint context est. 19.4 11.5 16.0 9.0
sample size 4,675
new model 15.0 7.1 11.9 3.8
transfer scaling 64.1 14.4 39.0 7.6
Bayes 79.0 17.8 49.2 3.2
comb. transf. est 14.8 7.1 11.9 3.7
joint context est. 15.3 7.2 10.0 5.4
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APPENDIX K

The variation of RSEE for home-based work trips in the Turku region

Home-based work trips,
30 % increase in ptr travel time
%
£ o 425 resp
8 o T TIIRRIII IR I IITIr I e ............ - 850 resp
§ % ROCE  RRCR T > 1700 resp
S o 3400 resp
° -10
2 estimation cShtext ° m 4675 resp
- _12 4
-14
new sample transfer Bayes combined joint
model scaling transfer est. context est.
Percentage of models with the
RSEE below 25 %
100
80
—e&— new sample model
60 — @ transfer scaling
2 —~—Bayes
40 combined transf est.
—¥— joint context est.
20
0 T T T T
0 1000 2000 3000 4000 5000
sample size (respondents)
Figure K.1: The variation of changes in public transport shares (ptr) by transfer

method, when public transport travel time is increased by 30 percent in
the Turku region; home-based work trips.
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Home-based work trips,
10 % increase in car costs

%
1
e 4
©
? 0 8 o 425 resp
8 _1 applicatior -+ e e - 850 resp
.E CORONErnrrnnns 8% il b4 T s aanan
p g ¢ 1700 resp
i -2 estimation ¥ o 3400 resp
§ 3 ponext o = 4675 resp
2 °
= 4
new sample transfer Bayes combined  joint
model scaling transfer est. context est.

Percentage of models with the
RSEE below 25 %

100
80 S
—H —e— new sample model
60 - - —m— transfer scaling
2 ﬁ —— Bayes

40 % combined transf est.
20 - ./ —¥— joint context est.

0 T T T T

0 1000 2000 3000 4000 5000
sample size (respondents)
Figure K.2: The variation of change in car shares by transfer method, when car costs

are increased by 10 percent in the Turku region; home-based work trips.
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APPENDIX L

An example of MAEF-index (comparison of observed and predicted trips
when using entire set of Turku data)

The Turku region is devided into the following four zones:

. Central city area of Turku (wide area 17)

. Suburb (wide areas 11, 12, 14, 16, 18 ja 20)

. Kaarina + Raisio + Naantali (wide areas 7, 9, 10, 15, 22-24)
. Lieto + Piikki6 (wide areas 2, 4-6 ja 13)

Table L.1 and L.2 present the weighted generation-attraction matrices of observed and predicted
trips based on the models estimated from the entire set of 1997 Turku data.

Table L1: The comparison of observed and predicted trips for home-based work trips
(predicted/observed)
Attraction

Generation )] 2) (3). 4)
Central city area 18114/21096 6692/8293 1854/2531 282/654
Suburb 30554/31564 29265/25186 8236/5010 1441/1277
Kaarina+Raisio+Naant. 10611/10526 10365/7975 9542/13234 723/995
Lieto + Piikkio 3702/3058 3616/2091 1475/1102 1459/3974
Total 62981/66244 49938/43545 21107/21877 3905/6900

Table L.2: The comparison of observed and predicted trips for other home-based trips

(predicted/observed)
Attraction

Generation €8 (2) 3) 4)
Central city area 66958/76445 7957/16374 556/2689 20/712
Suburb 60847/68201 114878/76419 8722/9180 455/1702
Kaarina+Raisio+Naant. 10409/13720 15053/9264 56685/46039 371/546
Lieto+Piikkid 3465/4735 6089/3113 1597/1579 17265/14561
Total 141679/163101 | 143977/105170 67560/59487 18111/17521




APPENDIX M: MD-values, home-based work trips

207

APPENDIX M

MD-values for different combinations of joint context estimation; home-
based work trips.

Turku region, home-based work trips sample size 425 respondents
cost travel time cars/hous. dist. >5 dist. 0-5 mostimportanjtotal
A 63.4 22.5 59.3 23.6 13.7 145.2 182.5
B 41.9 271 45.6 29.5 16.0 114.5 160.0
Cc 48.6 36.1 51.7 41.3 18.2 136.4 196.0
D 58.8 36.1 56.2 44.3 18.2 151.1 213.7
E 58.8 45.1 135.3 47.2 21.7 239.2 308.1
F 54.3 36.1 59.3 44.3 19.4 149.7 213.3
G 53.2 40.6 127.7 44.3 19.4 221.4 285.1
H 60.0 45.1 103.4 50.2 19.4 208.4 278.0
| 57.7 31.6 132.3 32.5 16.0 221.5 269.9
sample size 850 respondents
A 55.4 18.0 51.1 18.9 8.3 124.5 151.8
B 30.6 22.5 35.0 20.7 10.3 88.1 119.0
C 33.9 27.1 38.0 28.0 11.7 99.0 138.8
D 36.2 271 44 .1 28.6 11.9 107.3 147.8
E 39.6 31.6 94.3 27.4 10.0 165.4 202.9
F 35.1 27.1 39.5 28.0 12.3 101.6 142.0
G 37.3 31.6 95.8 28.9 12.4 164.7 206.0
H 49.8 40.6 77.5 41.6 21.7 167.9 231.2
| 37.3 271 97.3 26.3 10.3 161.7 198.2
sample size 1700 respondents
A 46.4 18.0 40.4 17.1 7.1 104.9 129.0
B 27.2 18.0 30.1 15.9 7.3 75.3 98.5
c 27.2 22.5 31.5 18.9 9.0 81.2 109.1
D 27.2 18.0 36.6 18.9 8.8 81.8 109.5
E 24.9 18.0 50.2 18.3 7.5 93.1 118.9
F 27.2 22.5 31.9 18.9 9.1 81.6 109.6
G 27.2 22.5 53.5 18.9 9.3 103.2 131.4
H 28.3 22.5 54.0 19.8 10.5 104.8 135.1
| 26.0 18.0 54.7 18.3 7.5 98.8 124.6
sample size 3400 respondents
A 35.1 9.0 30.3 12.4 4.7 74.3 91.4
B 17.0 13.5 22.8 10.9 4.6 53.3 68.8
c 17.0 18.0 22.0 12.1 5.2 57.0 74.4
D 17.0 13.5 24.6 12.4 5.2 55.1 72.8
E 17.0 13.5 39.2 13.0 5.5 69.7 88.2
F 15.8 13.5 21.0 12.4 5.5 50.3 68.2
G 18.1 18.0 38.6 13.0 5.4 74.7 93.1
H 18.1 13.5 41.7 13.0 5.6 73.3 91.9
| 17.0 13.5 38.8 12.4 4.6 69.3 86.2
sample size 4675 respondents
A 30.55 13.5 32.53 10.92 5.70 76.60 93.22
B 18.10 9.02 25.84 8.56 5.70 52.96 67.22
c 15.84 13.5 23.72 9.45 5.70 53.08 68.22
D 13.58 13.5 27.06 9.74 5.81 54.16 69.71
E 14.71 13.5 38.77 9.45 6.61 67.00 83.05
F 13.58 13.5 23.11 9.45 6.04 50.21 65.69
G 16.97 13.5 38.16 9.74 6.15 68.65 84.55
H 19.23 13.5 43.02 15.35 7.29 75.78 98.42
| 13.58 9.0 38.46 9.15 5.47 61.05 75.67

The models estimated by using the joint context estimation:

A)
B)
C)
D)
E)
F)
G)
H)
)

all coefficients are common
distance 0-5 km is data-specific
distance coefficients are data-specific
trip cost and distance coefficients are data-specific
trip cost, cars/household and distance coefficients are data-specific
travel time and distance coefficients are data-specific
cars/household and distance coefficients are data-specific

travel time, cost and distance coefficients are data-specific
coefficients of cars/household, cost and distance (0-5) variables are data-
specific
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MD-values for different combinations of joint context estimation; other
home-based trips

Turku region, other home-based trips sample size 140 respondents
cost travel time cars/hous. dist. >5 dist. 0-5 nr.of transfers mostimportan total
A 42.6 88.9 50.5 85.8 13.6 57.9 182.0 339.3
B 32.2 51.9 41.7 52.2 13.8 69.1 125.8 260.9
C 32.8 59.3 55.4 121.5 14.9 68.6 147.5 352.5
D 30.5 74 .1 76.2 122.7 15.3 64.0 180.8 382.8
E 31.6 1111 74.7 124.7 15.6 54.9 217.4 412.6
F 33.4 1111 39.9 123.9 16.8 67.5 184.4 392.5
G 37.4 59.3 74 1 118.2 15.8 70.0 170.8 374.8
H 31.6 1111 74.2 120.6 16.6 63.4 216.9 417.5
| 32.8 74 .1 73.9 78.9 13.7 65.0 180.8 338.4
sample size 275 respondents
A 38.0 74 .1 40.9 76.1 9.2 51.5 153.0 289.8
B 22.4 44 .4 29.0 42.5 8.7 64.7 95.8 211.7
C 23.3 44 .4 28.1 48.2 10.1 63.8 95.8 217.9
D 21.9 59.3 39.2 47.0 10.4 59.5 120.4 237.3
E 26.5 88.9 41.8 55.1 11.8 48.9 157.2 273.0
F 22.4 81.5 28.1 50.2 11.3 62.9 132.0 256.4
G 25.9 51.9 41.8 51.8 10.8 62.0 119.6 244.2
H 24.2 81.5 47.7 53.4 11.7 58.6 153.4 277 .1
| 25.3 51.9 41.8 61.1 9.2 61.1 119.0 250.4
sample size 550 respondents
A 30.5 59.3 32.1 64.8 6.0 45.7 121.9 238.4
B 16.7 42 .4 28.4 21.2 6.1 52.6 87.5 167.4
c 16.7 29.6 21.2 27.9 6.8 59.7 67.5 162.0
D 16.7 44 .4 28.0 27.5 6.9 53.8 89.1 177.3
E 19.6 59.3 34.4 32.8 7.4 42.8 113.3 196.3
F 16.1 59.3 21.2 29.1 7.6 58.8 96.6 192.1
G 19.6 37.0 34.1 30.4 6.8 57.4 90.7 185.3
H 17.8 51.9 37.0 29.1 7.4 53.3 106.7 196.5
| 17.8 37.0 34.2 41.3 5.8 56.5 89.0 192.6
sample size 1,100 respondents
A 23.6 44.4 20.9 47.8 4.8 36.6 88.9 178.1
B 9.8 22.2 22.2 24.3 4.8 52.6 54.2 135.9
c 12.7 22.2 15.9 23.5 5.6 52.6 50.8 132.5
D 12.7 29.6 18.8 23.5 5.8 45.1 61.1 135.5
E 12.7 44 .4 23.1 25.1 5.9 31.3 80.2 142.5
F 12.7 44.4 15.9 23.9 6.5 51.5 73.0 154.9
G 13.8 29.6 25.6 24.7 5.9 49.9 69.0 149.5
H 13.2 37.0 24.0 24.3 6.6 441 74.2 149.2
| 13.8 29.6 26.3 31.6 4.7 51.9 69.7 157.9
sample size 2,300 respondents
A 17.3 37.0 16.2 32.4 3.9 27.4 70.5 134.2
B 8.6 19.3 17.9 16.2 3.9 41.2 45.8 107.1
c 9.2 22.2 11.9 16.2 3.9 38.9 43.4 102.3
D 9.8 30.4 13.6 16.2 4.8 29.7 53.8 104.5
E 9.8 33.3 15.5 17.4 4.6 22.9 58.6 103.5
F 9.2 35.6 11.9 16.2 4.8 36.6 56.7 114.3
G 10.9 24 .4 15.3 16.2 4.8 36.6 50.6 108.2
H 10.4 33.3 17.9 20.2 4.8 22.9 61.6 109.5
| 9.8 24 .4 15.3 24 .3 3.9 36.6 49.5 114.3
sample size 4,675 respondents
A 11.5 22.2 12.4 20.6 2.9 19.2 46.1 88.8
B 7.5 14.8 16.5 13.4 3.9 29.0 38.8 85.1
C 7.5 14.8 11.3 12.1 3.9 27.7 33.6 77.3
D 7.5 14.8 11.0 11.3 3.9 20.4 33.3 68.9
E 7.5 22.2 13.3 13.0 3.9 16.5 43.0 76.4
F 6.9 22.2 10.5 11.3 3.9 27.2 39.6 82.0
G 8.6 14.8 13.1 12.6 3.9 27.0 36.5 80.0
H 7.5 22.2 13.5 16.6 3.9 17.8 43.2 81.5
| 7.5 14.8 13.4 16.6 3.9 26.8 35.7 83.0

The models estimated by using the joint context estimation:

A) all coefficients are common

B) distance 0-5 km is data-specific

C) distance coefficients are data-specific

D) trip cost and distance coefficients are data-specific

E) trip cost, cars/household and distance coefficients are data-specific

F) travel time and distance coefficients are data-specific

G) cars/household and distance coefficients are data-specific

H) travel time, cost and distance coefficients are data-specific

I)  coefficients of cars/household, cost and distance (0-5) variables are data-specific
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APPENDIX O

The variation of RSEE for other home-based trips

Other home-based trips,
30 % increase in ptr travel time
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Figure O.1: The variation of change in public transport (ptr) shares by transfer
method; when public transport travel time is increased by 30 percent in
the Turku region; other home-based trips.
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Other home-based trips,
10 %increase in car costs
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Figure O.2: The variation of change in car shares by transfer method, when car costs

are increased by 10 percent in the Turku region; other home-based trips
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The variation of CV(A) in home-based work trips
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CV(A), cars/hh
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The variation of CV(A) in other home-based trips
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CV(A), nr of transfers in ptr
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