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Effect of Reflections on Nonstationary Gyrotron
Oscillations

Markus I. Airila and Pia Kåll

Abstract— We present an extension of the self-consistent time-
dependent theory describing nonstationary processes in gyrotrons
to allow for reflections. Different mathematical descriptions
of partial reflection of the output signal are compared, and
numerical algorithms for analyzing them are given. Using a novel
description, we have computed a map of gyrotron oscillations,
which identifies the regimes of stationary, periodically modulated
and chaotic oscillations in the plane of generalized gyrotron
variables when reflection is present. In general, reflections drive
the gyrotron into quasiperiodic oscillations instead of chaos,
but also the threshold current for chaotic oscillations decreases
somewhat. The results can be exploited in the development of
high-power gyrotrons for electron cyclotron resonance heating
(ECRH) and electron cyclotron current drive (ECCD) of fusion
plasmas, but also in low-power applications, where chaotic
oscillations might be useful.

Index Terms— Gyrotron, reflections, quasiperiodicity, chaos

I. INTRODUCTION

SEVERAL theoretical studies have predicted that gyrotrons
can generate periodically modulated and chaotic oscilla-

tions in addition to stationary ones. The regimes of different
types of oscillations form a complicated map in the operating
parameter plane. In general, nonstationary oscillations are
more likely to appear at higher values of the beam current,
and, indeed, the onset of chaotic oscillations requires a much
larger current than is routinely used in present high-power
high-frequency gyrotrons. [1]–[4] These theoretical findings
are supported by recent experimental results [5].

Fusion energy research demands increasingly powerful
high-frequency gyrotrons for plasma heating and current drive.
Such tubes should provide a stable high-power signal at
a well-defined frequency, which requires operation in the
region of stationary oscillations and high efficiency. On the
other hand, many applications in physics, industry, and even
medicine would take advantage of the bandwidth broadening
resulting from chaotic oscillations: e.g., significantly better
uniformity of volumetric microwave heating can be achieved
using waves with a broadband spectrum. Although stationarity
of microwave oscillations seems to be characteristic for high-
efficiency operation of an ideal (reflectionless) tube [4], it has
been found that reflection of microwaves from the window,
the load, or output-section inhomogeneities could lower the
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threshold for stochastic oscillations even to one tenth of its un-
perturbed value [6], [7], negatively influence mode competition
[8], [9], and give rise to frequency jumps during pulses which
heat the cavity [10]. Recently it has been suggested on the
basis of numerical simulations [11], [12] that reflections make
a gyrotron show complicated quasiperiodic behavior rather
than oscillate chaotically. In any case reflections may pose
a limitation for the attempts to increase output power using
higher beam current or, on the other hand, make it possible
to achieve desired bandwidth broadening without raising the
current unrealistically high.

In this paper we discuss different reflection models for
numerical work and report self-consistent calculations of the
temporal behavior of gyrotron oscillations in the case of partial
reflection of the signal at the output. Our work is based on
the description of gyrotron interaction given in [1], which
assumes that the transversal structure of the high-frequency
field is fixed but the field amplitude is allowed to vary in
the axial direction. In our calculations reflection is taken into
account by artificially launching a backward-traveling wave
representing the delayed reflected signal. The main results of
our computations are given as a detailed map covering the
most relevant part in the plane of the generalized gyrotron
variables: cyclotron resonance mismatch and dimensionless
current. In addition, we analyze output signals to distinguish
between chaos and quasiperiodicity, and show that our model
is consistent with a description valid for stationary cases. Com-
pared to previous studies of nonstationary oscillations with
allowance for reflections, the present approach is rather general
by nature, since we have worked with the simplest model for
the resonator—cylindrical—and made no assumptions about
the cause of reflection. The reflection is described by the
reflection coefficient R and the delay time T .

II. MATHEMATICAL REFLECTION MODELS

A. Gyrotron equations without reflection

To describe self-consistently nonstationary gyrotron oscilla-
tions we use the system of partial differential equations derived
in [1]:

dp

dζ
+ i(∆ + |p|2 − 1)p = if(ζ, τ) (1)

∂2f

∂ζ2
− i

∂f

∂τ
+ δf =

I

2π

∫ 2π

0

p dϑ0 (2)

where p is the complex transverse momentum of the electron
normalized to its initial absolute value, ζ = (β2

⊥0ωc/2β‖0c)z
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is the dimensionless coordinate (0 ≤ ζ ≤ ζout), β⊥0 = v⊥0/c
and β‖0 = v‖0/c are normalized electron velocities, ∆ =
2(ω−ωc)/β2

⊥0ω is the frequency mismatch, ωc is the electron
cyclotron frequency, f(ζ) is the axial profile of the high-
frequency field amplitude in the resonator, τ = 1

8
β4
⊥0β

−2

‖0 ωt is

the dimensionless time, δ = 8β2
‖0β

−4

⊥0
[1 − ω(ζ)/ω] describes

variation of the critical frequency ω(ζ) along the resonator
axis, ω is the cut-off frequency at the exit from the resonator,
and I is the dimensionless current. This description is valid
for operation at the fundamental cyclotron resonance.

The system of equations (1)–(2) has to be supplemented
by the standard initial condition for the momentum, p(0) =
exp(iϑ0) with 0 ≤ ϑ0 < 2π, and by the boundary condition
for the field at the entrance to the interaction space:

f(0, τ) = 0, (3)

which means that the wave energy cannot propagate into the
input taper. The ideal case without reflection is obtained using
the reflectionless boundary condition at the exit from the
interaction space:

f(ζout, τ) + K {f(ζ, τ); ζout} = 0 (4)

with a shorthand notation

K {f(ζ, τ); ζ0} ≡ 1√
πi

∫ τ

0

1√
τ − τ ′

∂f(ζ, τ ′)

∂ζ
dτ ′

∣

∣

∣

∣

ζ=ζ0

.

(5)
Finally, an initial condition for the field profile is needed. We
started the computations with a field

f(ζ, 0) = 0.1 sin

(

π
ζ

ζout

)

, (6)

which simulates an axial field profile with only one maximum.
The electron perpendicular efficiency η⊥ which describes

the extraction of the electron orbital momentum from the beam
is given by the expression

η⊥ = 1 − 1

2π

∫ 2π

0

|p(ζout)|2 dϑ0 (7)

and can be calculated at any time when the field profile is
known.

Reflections should be added to this formulation in a way
that allows flexible adjustment of all significant parameters
characterizing reflection. In the following we discuss several
alternatives. Fig. 1 illustrates how the gyrotron resonator is
described in these models. In (a), corresponding to the reflec-
tionless case, just the interaction cavity has been sketched,
and the generated wave exits the resonator in its entirety. The
helical electron trajectories depict the beam interacting with
the RF field.

B. Geometrically induced reflection

Reflections can be induced by defining a narrowing (an
iris) at the output section with the help of the function δ(ζ)
appearing in Eq. (2), as illustrated in Fig. 1(b). The critical
frequency is inversely proportional to the cavity radius, so that

δ(ζ) =
8β2

‖0

β4
⊥0

(

1 − ω(ζ)

ω

)

=
8β2

‖0

β4
⊥0

(

1 − R0

R(ζ)

)

, (8)

a) no reflection

b) reflection by geometric obstacles

e) external reflected wave

em wavee

c) reflection by boundary condition; no delay

d) reflection by boundary condition; delayed

Fig. 1. Illustration of different ways to describe reflections in gyrotrons. (a)
In the reflectionless case the whole electromagnetic wave exits the resonator.
(b) Reflections were modeled in [7] with the help of an iris located at a
distance comparable to the length of the interaction space. (c) A reflective
boundary condition can be applied at the resonator end, using the phase of
the reflection coefficient to simulate delay. (d) The iris can be replaced by
the reflective boundary condition at the same location. (e) The reflected wave
can be actively launched after the delay time T .

where R0 stands for the cavity radius at the exit and R(ζ)
differs from R0 only at the iris. The reflection is delayed
by extending the waveguide beyond the resonator: Eq. (2)
is solved for f in the whole region ζ ∈ [0, ζiris], but the
current term is set to zero for ζ > ζout, signifying the fact that
beam-wave interaction takes place in the resonator only. The
dimensionless cavity length ζout in real gyrotrons is usually
around 15. At the exit boundary behind the iris one can use the
reflectionless boundary condition. Using this approach with
ζiris ≈ 40, stochastic oscillations were found in [7] with
operating parameters normally corresponding to a stationary
output signal.

In numerical solution of Eqs. (1)–(2), the grid of discrete
coordinate values must be extended all the way to the iris,
which makes it impractical to study reflections from distant
components (about one resonator length, a few centimeters, is
still tolerable). Since we wish to simulate reflections taking
place further away, this model turns out to be inappropriate.
Also, as we aim at a general map of gyrotron oscillations in the
presence of reflections, a description in terms of the general
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reflection parameters R and T is preferred to any one using
geometric parameters (as the position, length and depth of the
iris).

C. Reflective boundary condition

Alternatively, reflection can be taken into account by the
normalized boundary condition at the exit from the interaction
space:

Reiρ =
f(ζout, τ) + K {f(ζ, τ); ζout}
f(ζout, τ) − K {f(ζ, τ); ζout}

(9)

where R is the absolute value of the reflection coefficient and
ρ is the phase shift in the reflection [see Fig. 1(c)]. For R =
0 this boundary condition reduces to the reflectionless case.
Since the energy density of the field is proportional to the
square of the field amplitude, the fraction of power reflection
is R2.

In order to minimize the number of parameters characteriz-
ing reflection, one can simulate reflection delay by altering the
phase shift ρ. The phase shift corresponding to a delay T is
simply ρ = ωT +ρ′, where the shift ρ′ occurs instantaneously
at the reflection point. This approach is very general: there
remains only one (complex) parameter characterizing the
reflection. For practical application of the results one must
estimate R and ρ in the specific case of interest (see, e. g., [8]).
However, all features of delayed reflection can be reproduced
in this way only if the output signal is stationary, as in [13].
Instead, when nonstationary processes are considered, also the
amplitude modulation plays a role. This fact should enter the
model as well: a delayed amplitude of the reflected wave must
be used so that artificial correlation between the amplitudes of
the reflected and resonator fields is avoided.

Amplitude modulation of the delayed signal can be properly
taken into account by introducing a variant of the model
[see Fig. 1(d)]. This alternative is obtained by combining
the description presented above with the model of Sec. II-
B: just replace the iris with the reflective boundary condition
at the same position. While the reflected wave can be modeled
truly delayed this way, the limitations caused by the extended
computation domain remain.

D. Three-wave model

Fig. 1(e) illustrates the model which we chose for this study
and which allows us to perform all computations between
ζ = 0 and ζ = ζout. The limitations in the size of the
computation grid can be circumvented by treating the reflected
wave fR and the resonator field (here called f0) as separate
quantities and launching fR only after the delay time T . In
regard to the role of the phase shift ρ in determining the
behavior of the system, we refer to the discussion given in
[12]. First, it was demonstrated there that variations of the
distance to the reflecting load in the length scale comparable
to this distance itself certainly have a significant effect on
the oscillations. This results from the fact that the delay
time and the eigenfrequencies change remarkably. On the
other hand, small variations of the distance (of the order of
half wavelength) also somewhat affect the radiation spectra

but have no influence on the qualitative behavior. It can be
concluded that the exact phase difference between the reflected
and resonator fields is responsible for the small changes, but
the parameter ρ′ (having a value between 0 and 2π and
thus constituting a negligible fraction of the total phase shift
ρ) cannot be used to switch the system between stationary,
periodic, and chaotic states. We (somewhat arbitrarily) set ρ′ to
a value representing total reflection, ρ′ = π, which determines
ρ through the relation ρ = ωT + ρ′, and regarded R and T as
the significant variable parameters characterizing reflection.

We now describe how our model is mathematically formu-
lated. Assume that the outgoing wave is partly reflected by
an obstacle located at z = zout + z0. Then the reflected part,
traveling at the velocity of light, reaches the resonator end
again after the dimensionless time

T =
β4
⊥0ωz0

4β2
‖c

. (10)

We simulate this with a new wave whose amplitude is R
times the amplitude of the outgoing wave at the time moment
τ − T . After entering the resonator at the output cross-
section, the reflected wave travels backwards and experiences
another (total) reflection at the input tapering. This is most
conveniently formulated by dividing the reflected wave further
into backward- and forward-propagating parts fR1 and fR2,
respectively. Due to the co-existence of three waves, the
electrons now obey the equation of motion

dp

dζ
+ i(∆ + |p|2 − 1)p = i [f0(ζ, τ) + fR1(ζ, τ) + fR2(ζ, τ)] ,

(11)
and the evolution of the fields in a cylindrical resonator
[δ(ζ) ≡ 0] is obtained from

∂2f0

∂ζ2
− i

∂f0

∂τ
=

I

2π

∫ 2π

0

p dϑ0, (12)

∂2fR1

∂ζ2
− i

∂fR1

∂τ
= 0, (13)

∂2fR2

∂ζ2
− i

∂fR2

∂τ
= 0, (14)

i. e., the beam current acts as the source of f0 while the
reflected waves travel freely in the resonator.

The initial and boundary conditions for f0 and p are the
same as in the reflectionless model of nonstationary oscilla-
tions. The reflected waves, instead, do not exist at all when
τ < T , so the initial condition for them is

fR1(ζ, 0) = fR2(ζ, 0) = 0. (15)

The backward-wave fR1 is launched using the boundary
condition

fR1(ζout, τ) = −R [f0(ζout, τ − T ) + fR2(ζout, τ − T )] .
(16)

We take into account multiple reflections with the fR2 term,
and our calculations are therefore not limited to small R. In
the reflection at the input taper, ζ = 0, the backward-wave
fR1 becomes forward-propagating again and is since then
described by fR2 alone. Otherwise the boundary condition (16)
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would later cause unphysical reflection at ζ = ζout. In order
to convert fR1 into fR2, we used as a mathematical trick the
reflectionless boundary condition at ζ = 0, that is,

fR1(0, τ) − K {fR1(ζ, τ); 0} = 0. (17)

This is simply a means of preventing fR1 from having a
forward-propagating component and should not be interpreted
as a statement that the wave travels into the beam tunnel.
The requirement that also the total field of the reflected wave
fR1 + fR2 should vanish at ζ = 0 can now be fulfilled by
exciting the wave fR2 with a boundary condition describing
total reflection

fR2(0, τ) = −fR1(0, τ). (18)

Finally, we let the wave fR2 exit the resonator without further
reflection:

fR2(ζout, τ) + K {fR2(ζ, τ); ζout} = 0. (19)

Now Eqs. (11)–(14) as well as the corresponding initial and
boundary conditions together are equivalent to Eqs. (1)–(2)
with the exception that the incoming wave is actively launched
inwards at ζ = ζout.

III. COMPUTATIONS

The finite difference scheme used in [4] is perfectly suitable
for numerical solution of the equations for all reflection models
presented in the previous section. The form of the equations
for f remains the same in all cases, so that it is the discrete
counterpart of (2),

1

h2
fn+1

j+1 −
(

2

h2
+

i

∆τ
+ δj

)

fn+1
j +

1

h2
fn+1

j−1 = gn
j − i

∆τ
fn

j ,

(20)
for j = 1, . . . , N − 1, which is to be solved at each time step.
Here h is the spatial step, ∆τ the time step, fn

j = f(jh, n∆τ),
and the discretized current term

gn
j =

s
∑

k=0

Ip(jh, n∆τ, k∆ϑ0)

s
(21)

is obtained by solving the equation of motion for electrons
using the known field profile fn and a fourth-order Runge-
Kutta integration routine. Different descriptions of reflection
lead to different δj , gn

j , and N . Also the boundary conditions
for each model are formulated separately. The resulting linear
system of equations remains tridiagonal, whichever model is
used. To solve it, we used the routine given in [14] after
generalizing it to complex variables.

When an iris is modeled at the output cross-section, the
computation region is extended by increasing the number of
grid points (to N ′, say) while keeping the same value of h.
The boundary conditions are the same as in the reflectionless
case; they can be written

fn+1
0 = 0 (22)

and


−2
√

n + 1 +

n
∑

j=0

1√
n + 1 − j



 fn+1
N ′−1

+





h
√

πi√
∆τ

+ 2
√

n + 1 −
n

∑

j=0

1√
n + 1 − j



 fn+1
N ′

=

n
∑

j=0

f j
N ′−1

− f j
N ′√

n + 1 − j
. (23)

At the location of the iris, δj is let differ from zero according
to (8). The absence of beam-wave interaction outside the
resonator is taken into account by setting gn

j = 0 for N <
j ≤ N ′.

As far as the description of reflection with the help of the
reflective boundary condition (9) is concerned, the right-hand
boundary condition is written in discrete form as

(1 + Reiρ)



−2
√

n + 1 +

n
∑

j=0

1√
n + 1 − j



 fn+1
N−1

+

[

(1 − Reiρ)
h
√

πi√
∆τ

+ (1 + Reiρ)



2
√

n + 1 −
n

∑

j=0

1√
n + 1 − j







 fn+1
N

= (1 + Reiρ)

n
∑

j=0

f j
N−1

− f j
N√

n + 1 − j
. (24)

Finally, we write out the discretized boundary conditions
corresponding to (16), (17), and (18) for the reflected waves
of the three-wave model:

fn+1
R1,N = −R

[

f
n+1−T/∆τ
0,N + f

n+1−T/∆τ
R2,N

]

, (25)



2
√

n + 1 −
n

∑

j=0

1√
n + 1 − j



 fn+1
R1,0

+





h
√

πi√
∆τ

− 2
√

n + 1 +

n
∑

j=0

1√
n + 1− j



 fn+1
R1,1

=

n
∑

j=0

f j
R1,1 − f j

R1,0√
n + 1 − j

, (26)

and
fn+1
R2,0 = −fn+1

R1,0, (27)

the three boundary conditions not mentioned here being sim-
ilar to those in the reflectionless case.

In the calculations we used ζout = 15, which is close to
the optimum with respect to efficiency. The spatial step length
was h = 0.25, and the time step was increased from ∆τ =
0.02 (used in [4]) to ∆τ = 0.1, since the region ∆ < 0,
where the solutions vary rapidly in time, was left outside of
the present study. To give some idea about the magnitudes of
the dimensionless time scale, we give corresponding physical
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delay time and modulation frequencies assuming the operating
frequency to be ω/2π = 170 GHz, accelerating voltage U =
90 kV, and the pitch factor α = 1.3.

Adding reflections to the system, we give rise to a new
time scale defined by the delay T . This means that the initial
transient phase of the oscillations becomes remarkably longer
in comparison to the reflectionless case. Therefore, also much
longer computations are needed for finding out the type of
oscillations of the gyrotron. Instead of τend = 500 (tend ≈
13 ns) used in [4], we extended the numerical solution of the
Eqs. (1)–(2) up to τend = 15 000 (tend ≈ 380ns) to ensure
that the oscillations have attained their final state.

IV. RESULTS

As an illustration of the effect of reflections, we show
in Figs. 2–4 three different output signals (a) together with
their Fourier spectra (b) and autocorrelation functions (c).
These signals have been obtained using parameter values
∆ = 0.20 and I = 0.10; this point belongs to the stationary
region of Fig. 1 in [4] [reproduced here as Fig. 6(a)]. The
choice of reflection parameters was done as follows: We chose
to simulate reflections from the gyrotron window and took
therefore T = 200, which corresponds to reflection at a
distance of about 0.8 m from the cavity with our assumptions
about the gyrotron (see above). The reflection coefficient R
was then varied so that the different types of oscillations were
found. Up to R = 0.20 the oscillations remain stationary—
beyond that value, nonstationary phenomena appear.

Fig. 2 shows periodic oscillations resulting from R = 0.25
(power reflection 6 %). The signal is modulated by a few
discrete frequencies that can easily be distinguished in the
Fourier spectrum. The dominant modulation frequency corre-
sponds approximately to the back-and-forth transit time of the
wave between the input taper and the reflection point. Also the
autocorrelation function reflects the fact that the signal repeats
itself—it reaches almost unity again and again after several
delay times. For R = 0.30 (power reflection 9 %), the signal
already shows quite strong aperiodicity (Fig. 3). However,
there remain two dominant frequencies in the spectrum, and
the fundamental period is clearly visible as the maxima of
the autocorrelation function. In Fig. 4 we show that the
signal becomes chaotic, shows a broad spectrum and has
practically no autocorrelation as the reflection coefficient is
increased to R = 0.45 (power reflection 20 %). In spite of
the drastic change in the output signal, generation efficiency
decreases only a little with increasing R. In the absence of
reflections, the time-averaged orbital efficiency 〈η⊥〉 is 12.4 %,
the corresponding values for different R being shown in the
captions of Figs. 2–4. Finally, to address the question whether
reflections really drive the system into chaos and not into a
quasiperiodic orbit, we show Fig. 5, which corresponds to
∆ = 0.0, I = 0.018 and the same reflection parameters
as in the previous example. Here the signal appears to be
aperiodic, but its spectrum reveals that it is to a large extent
composed of a few frequencies. This is the most typical case in
the parameter region we have studied, and therefore we can
confirm the conclusion made in [12] that usually reflection

0

0.05

0.1

0.15

0.2

0 5 10 15

|f|

ζ

Fig. 7. The stationary field envelope |f(ζ)| calculated with the three-wave
model (solid line) and with the model of Sec. II-C using ρ = 2.25 rad (129◦)
(dashed line) and ρ = 4.00 rad (229◦) (dotted line). Also the field profile
corresponding to the reflectionless case is shown (dash-dot). Here ∆ = 0.60,
I = 0.01.

leads to quasiperiodicity instead of chaos. The chaotic case
of Fig. 4 probably just indicates the fact that reflection can
slightly lower the threshold for chaotic oscillations. Indeed,
Fig. 6(a) shows that the point ∆ = 0.20, I = 0.1 is located
rather close to the boundary of the chaotic regime even in the
absence of reflection.

In order to generalize the “map” of Fig. 6(a), we repeated
with reflections the computations presented in [4]. The results
are shown as a new map in the operating parameter plane in
Fig. 6(b). Due to the increased computation time, we limited
our study to the most interesting region in the (∆, I) plane:
0 ≤ ∆ ≤ 0.8, 0.003 ≤ I ≤ 0.1. This parameter range is
almost completely characterized by stationary oscillations if
there is no reflection. The reflection coefficient was chosen to
be R = 0.45, which is comparable to the effect of the iris used
in [7]. This value is rather high for high-power gyrotrons, but
in low-power applications the reflection could be even stronger
if introduced on purpose to generate chaotic oscillations. Also
here we have taken T = 200.

To demonstrate that the models of Secs. II-C [reflective
boundary condition (9)] and II-D (three-wave) give similar
results in a stationary case, we show in Fig. 7 the stationary
field profile for ∆ = 0.60, I = 0.01 calculated using
both approaches. With these parameter values one obtains
the maximum orbital efficiency in the absence of reflections.
The phase shift corresponding to T = 200 was found to be
ρ = 2.25 rad (129◦) in this case. The profiles agree rather well,
but note that by varying ρ in the stationary model, one obtains
very different profiles. With R = 0.45, the perpendicular
efficiency η⊥ decreases from 75 % of the reflectionless case
to 45–70 % depending on ρ.

In general [compare Fig. 6(b) to Fig. 6(a)], the following
effects of reflections on gyrotron operation can be listed:

• The threshold current for chaotic oscillations decreases
somewhat due to 20 % power reflection.

• Nonstationary output appears also with parameter values
close to the maximum efficiency point.

• Automodulation with a long period (comparable to the
delay T ) and quasiperiodic oscillations occur over large
regions of the operating parameter plane.
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Fig. 2. (a) Gyrotron signal, (b) its power spectrum, and (c) autocorrelation function for ∆ = 0.20, I = 0.10, R = 0.25, and T = 200. The signal
|f(ζout)| = |f0(ζout) + fR2(ζout)| is clearly modulated by a few discrete frequencies and it repeats itself almost perfectly after several delay times. The
time-averaged orbital efficiency 〈η⊥〉 is 11.8 %.
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Fig. 3. (a) Gyrotron signal, (b) its power spectrum, and (c) autocorrelation function for ∆ = 0.20, I = 0.10, R = 0.30, and T = 200. Two dominant
peaks appear in the spectrum in spite of the apparent irregularity of the signal. 〈η⊥〉 = 11.6 %.
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Fig. 4. (a) Gyrotron signal, (b) its power spectrum, and (c) autocorrelation function for ∆ = 0.20, I = 0.10, R = 0.45, and T = 200. The signal is
chaotic with a broad spectrum and practically no autocorrelation. 〈η⊥〉 = 11.0 %.
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Fig. 5. (a) Gyrotron signal, (b) its power spectrum, and (c) autocorrelation function for ∆ = 0.0, I = 0.018, R = 0.45, and T = 200. Clearly separated
frequency peaks reveal that the signal is quasiperiodic.
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Fig. 6. (a) Topology of different kinds of oscillations of a gyrotron in the (∆, I) plane in the absence of reflections (Fig. 1 of [4]). The white region
corresponds to stationary oscillations, gray regions correspond to automodulation, and dark regions to chaotic oscillations. (b) A part of the region shown in
(a) with R = 0.45 and T = 200. Note that the parameter ranges differ.

V. SUMMARY AND CONCLUSIONS

We have presented a flexible formulation to describe re-
flections in the self-consistent time-dependent gyrotron theory
and given the numerical algorithm needed for corresponding
computations. The most important parameters characterizing
reflection were concluded to be the absolute value of the
reflection coefficient and the delay time. When stationary
oscillations are considered, the reflection phase could be used
instead of the delay time. The effect of the reflection phase
on the stationary field profile, and consequently on generation
efficiency, is rather strong. Using our description, reflections
from distant objects can be simulated without remarkably
slowing down the computations. However, the system itself
attains its final state in a time scale that is much longer than
the delay, so the computer runs must be accordingly extended
in duration.

The breakdown of stationary oscillations to automodulation
and further into chaotic oscillations was illustrated with a
specific example and by recomputing the map of gyrotron
oscillations presented in [4] with reflections included. It was
found that new regions of nonstationary oscillations are gen-
erated and the existing ones shift to slightly lower currents
due to reflection. Our results support the idea that reflection
tends to drive a gyrotron into quasiperiodic rather than chaotic
oscillations. Chaos appears in Fig. 4 just as a curiosity
indicating small changes in the locations of the chaotic regimes
in the parameter space.

It is interesting that automodulation was found for almost
all current values when 0.6 ≤ ∆ ≤ 0.8. This is in sharp
contrast with the reflectionless case, where the high-efficiency
region is surrounded by regimes of stationary oscillations only.
Our findings can therefore be exploited in the development
of high-power gyrotrons, which should provide a stationary
signal even in the case of accidental reflections. By identifying
in the operating parameter plane those regions where chaotic

oscillations may be obtained, the results also ease the design
of gyrotrons for applications which require broad bandwidth.
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