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Degradation of operation mode purity in a gyrotron with an off-axis
electron beam
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The two-dimensional self-consistent time-dependent theory of beam-wave interaction
in gyrotron resonators has been modified to account for eccentricity of the annular
hollow electron beam. Numerical analysis yields the effect of beam eccentricity on the
previously known limiting values of the azimuthal index of the mode, beyond which
stationary single-mode operation becomes impossible. c© 2003 American Institute of
Physics. [DOI: 10.1063/1.1528938]

I. INTRODUCTION

High-power high-frequency gyrotrons play an essential
role as microwave sources for plasma heating and current
drive in all modern magnetic fusion machines. As the size
and performance of experimental devices is increased to-
wards a commercial reactor, also the requirements for
frequency and unit output power of gyrotrons tighten.
It is therefore important to know the operational limits
of such gyrotrons. One significant group of limitations
may arise from stochastic processes, whose onset becomes
more likely with increasing output power. Stochastic be-
havior can be seen both in electron trajectories and in rf
oscillations.

In Ref. 1 it was proved in cold-cavity approximation
that under the influence of a high-frequency field with
a Gaussian-type axial profile, possible chaos in electron
trajectories can be only transient. After leaving the in-
teraction cavity the electrons will again follow regular
trajectories. In numerical studies with a realistic field2

we have found that electron trajectories in a gyrotron res-
onator can become stochastic in the vicinity of some par-
ticular initial conditions. Under normal operating con-
ditions, that is, in the regimes of high efficiency, there
are few such trajectories and they do not significantly
disturb power generation or the operation of depressed
collectors.

As far as stochasticity of rf oscillations is concerned,
detailed analyses of the one-dimensional self-consistent
theory of gyrotron oscillations (see Refs. 3–5) have shown
that gyrotrons can generate nonstationary oscillations in
addition to stationary ones. In fact, it seems to be an
intrinsic property of gyrotrons that the output signal is
periodically modulated or even chaotic for certain oper-
ating conditions. The regimes of different types of oscilla-
tions form a complicated map in the operating parameter
plane6. These findings are supported by recent experi-
mental results7. However, for high-power high-frequency
gyrotrons it is relevant to adopt a two-dimensional model
described in Refs. 8 and 9 due to their large-diameter in-
teraction cavities and short wavelengths. Such a model
discards the representation of the rf field as TE modes
and corresponding Bessel functions and, instead, treats
the envelope of the field as a function of both the axial
and the azimuthal coordinate. In Ref. 10 it was shown

that stationary single-mode operation of a gyrotron be-
comes impossible above certain values of the azimuthal
index m of the mode.

In practice several factors may make the electron beam
deviate transversally from its desired position in the cav-
ity. The shorter the wavelength, the more sensitive the
tube is to beam misalignment. The effects of misalign-
ment on efficiency, starting current, mode interaction,
and frequency shift have been reported earlier (see, for
example, Refs. 11–14 and references therein). In this pa-
per I report two-dimensional self-consistent calculations
of the temporal behavior of gyrotron oscillations in the
case of a misaligned electron beam. The results obtained
in Ref. 10 are generalized by relaxing the requirement of
a concentrically placed beam. Some reasonable assump-
tions have been made to limit the number of new param-
eters. The effect of beam eccentricity on the oscillations
was computed for two combinations of the generalized gy-
rotron variables ∆ (cyclotron resonance mismatch) and
I (dimensionless current).

II. THEORY

In the ideal case of a concentrically placed electron
beam the electron motion and the time- and spatially-
dependent high-frequency field in the resonator can be
calculated from9
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where p is the complex transverse momentum of the
electron normalized to its initial absolute value, ζ =
(β2

⊥0ω/2β‖0c)z and ξ = 1
8α2β2
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frequency mismatch, ωc/2π = 28B/γrel is the electron cy-
clotron frequency in GHz, B is the magnetic field in T,
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8β4
⊥0β

−2
‖0 ωct is

the dimensionless time, δ = 8β2
‖0β

−4
⊥0 [ω − ω(ζ)]ωc

−1 de-

scribes variation of the cut-off frequency ω(ζ) along the



Phys. Plasmas, Vol. 10, No. 1, January 2003 Degradation of operation mode purity in a gyrotron. . . 297

resonator axis, ω is the cut-off frequency at the exit from
the resonator, and I is the dimensionless current:

I = 9.4 · 10−4I0β‖0β
−6
⊥0

J2
m±1

(

2π
λ Rel

)

γrel(ν2 − m2)J2
m(ν)

. (2)

Here I0 is the beam current in amperes, J is the Bessel
function, m is the azimuthal index of the mode, λ is the
wavelength, Rel is the electron beam radius, and ν is the
zero of the derivative of the Bessel function. This descrip-
tion is valid for operation at the fundamental cyclotron
resonance.

The system of equations (1) has to be supplemented
by the standard initial condition for the momentum,
p(0) = exp(iϑ0) with 0 ≤ ϑ0 ≤ 2π, and by the boundary
condition for the field at the entrance to the interaction
space:

f(0, τ) = 0, (3)

which means that at the entrance the field must vanish.
At the exit from the interaction space (ζ = ζout) the
so-called reflectionless boundary condition is applied:

(

f(ζ, ξ, τ)
1√
πi

∫ τ

0

1√
τ − τ ′

∂f(ζ, ξ, τ ′)

∂ζ
dτ ′

)∣

∣

∣

∣

ζ=ζout

= 0.

(4)

In the azimuthal direction periodic boundary conditions
are used. Finally, an initial condition for the field is
needed. A field profile with only one maximum in the
axial direction and a small deviation from perfect sym-
metry in the azimuthal direction can be described by the
initial condition

f(ζ, ξ, 0) =

[

0.1 + 0.01 sin

(

2πξ

ξmax

)]

sin

(

πζ

ζout

)

,

(5)

which has been used in all computations of this study.
Here ξmax = π

4 α2β⊥0
2m.

If the hollow beam is shifted with respect to the res-
onator in the transverse direction, the description above
must be slightly modified. Assuming the beam thickness
to be negligible, the ideal (dashed line) and shifted (solid)
beams can be described by the circles in Fig. 1. Due to
a shift D, the distance of guiding centers from the cavity
axis has changed from Rel to R(ϕ) at the azimuthal angle
ϕ. These quantities are related as

R2
el = R(ϕ)2 + D2 − 2R(ϕ)D cosϕ,

so that

R(ϕ) = D cosϕ +
√

R2
el − D2 sin2 ϕ. (6)

The equations (1) can still be used to solve the evolution
of the rf field. Only the current parameter I must be
replaced by an azimuth-dependent parameter

Ĩ(ϕ) =
J2

m±1

(
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)

J2
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) × I, (7)
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FIG. 1: Transversally by the distance d shifted electron beam
(solid line) in the coordinate system of the resonator. The
original position is indicated by the dashed circle.

where I should now be interpreted as the dimensionless
current of the same beam if it were located concentrically
with the resonator. Note that in many earlier papers on
this subject (Refs. 11–14, for example) one proceeds by
using the Graf’s summation theorem for Bessel functions,
which leads to an expression for Ĩ averaged over ϕ. In
this context, however, we need a parameter which is ex-
plicitly dependent on ϕ, and this is what our derivation
so far has yielded. Making still the assumption that the
intended position of the beam is at the first maximum
of the Bessel function Jm±1, that is, 2πRel/λ = νm±1,1,
where νm,p denotes the pth zero of the derivative of Jm,
and introducing a dimensionless misplacement parameter
d̃ = D/Rel, we obtain

Ĩ(ϕ) =
J2

m±1

(

νm±1,1

[

d̃ cosϕ + (1 − d̃2 sin2 ϕ)1/2
])

J2
m±1 (νm±1,1)

×I.

(8)

This is easily applied in the numerical code used in
Ref. 10. One also needs to define the ranges of spa-
tial coordinates. This was done by setting ζout = 15,
β⊥0 = 0.426, and β‖0 = 0.316, which describe an “av-
erage” gyrotron resonator length, a typical accelerating
voltage of 92 kV, and pitch factor α = 1.35. While β⊥0

and β‖0 only scale the resulting mcrit, one should be
aware that qualitatively different results would be ob-
tained with ζout far from 15.

III. RESULTS

Numerical solution of (1) requires a lot of computa-
tion, and several runs are needed to determine the crit-
ical value of m with other parameters fixed. Therefore
I have limited this study to two points in the parameter
plane (∆, I). The most significant point is the one giving
maximum perpendicular efficiency in stationary single-
mode operation, (∆ = 0.60, I = 0.01). Above mcrit, the
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FIG. 2: Critical azimuthal index of the mode as a function of
d̃ = D/Rel. Also the contours of d = D/λ are shown. Here
∆ = 0.60, I = 0.01. The error bars indicate how precisely
mcrit could be estimated with reasonable computational cost.

8

10

12

14

0 0.05 0.1 0.15

0.03 0.1 0.2 0.3

PSfrag replacements

m
c
r
i
t

d̃

FIG. 3: Critical azimuthal index of the mode as a function of
d̃ = D/Rel. Also the contours of d = D/λ are shown. Here
∆ = −0.60, I = 0.01. The error bars indicate how precisely
mcrit could be estimated with reasonable computational cost.

field changes from its optimal shape into a less favorable
configuration with two maxima in the axial direction.
This transition is caused by competition between modes
with different axial indices, and after a temporary co-
existence the favorable mode is suppressed by its com-
petitor giving lower efficiency, as described in Ref. 10.
The other point of interest was chosen to lie symmet-
rically at (∆ = −0.60, I = 0.01) to make comparison
between forward- and backward-wave interaction. It was
found that the stability of backward-wave interaction is
limited by gradually growing periodic oscillations when
m > mcrit. No completely chaotic oscillations due to
beam misalignment were observed in the present study.

The variation of the critical value of the azimuthal in-
dex of the mode m is shown as a function of d̃ = D/Rel

in Figs. 2 and 3. While these data points serve well to
extend our previous study10 in terms of the formalism
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FIG. 4: Maximum tolerable displacement d = D/λ as a
function of the azimuthal index of the mode for ∆ = 0.60,
I = 0.01.
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FIG. 5: Maximum tolerable displacement d = D/λ as a func-
tion of the azimuthal index of the mode for ∆ = −0.60,
I = 0.01.

presented in this article, the same data are shown again
in a more application-related way. Instead of d̃ one is
often more interested in the quantity d = D/λ, whose
contours are shown in Figs. 2 and 3. Plotting the max-
imum tolerable value dcrit of d as a function of m, we
obtain Figs. 4 and 5.

IV. CONCLUSIONS

In this paper I have presented a straightforward way
to include electron beam misalignment into the self-
consistent two-dimensional model for time-dependent gy-
rotron oscillations. Due to the heavy computations re-
quired, the study was focused to two combinations of the
generalized gyrotron parameters ∆ and I . Both for pos-
itive and negative ∆, increasing misalignment tends to
lower the threshold above which stationary single-mode
operation becomes impossible. This is the effect one
would expect symmetry-breaking to have. There exists
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also an opposite effect: the effective beam current de-
creases when the beam is shifted [see Eq. (7)], and more
regular behavior is generally seen at lower currents. The
results suggest, however, that symmetry breaking domi-
nates in our cases.

From the practical point of view, the most significant
result is shown in Fig. 4. It was previously known that
with our choice of ζout, β⊥0, and β‖0, the ultimate limit
for high-efficiency operation is at m ≈ 46. Now it be-
comes evident that in the region 40 <∼ m <∼ 46 the operat-
ing mode is very sensitive to beam misalignment. For ex-
ample, the critical misplacement dcrit = 0.15 for m = 45,
which means 0.26mm in a 170GHz gyrotron. Together
with high-order mode operation one should therefore al-
ways consider how precisely the beam can be placed into
its correct position in the resonator. Once the wave-
length and operating mode have been specified, Figs. 4
and 5 can be used for rough estimation of the tolerance
in beam position.

For comparison with other effects of beam misalign-
ment, Fig. 2 is useful. The slight decline of mcrit with in-
creasing d̃ is accompanied by much more severe changes
in efficiency and starting current. For example, when
d̃ = 0.06, mcrit is still about 40, but perpendicular effi-
ciency has dropped by 32% from its ideal value, and the
starting current correspondingly increased by 47% (see
Refs. 11 and 14).
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