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Modeling of interfaces and layers with the finite-difference time-domain method
(FDTD) is considered in this thesis. New numerical models are developed and ver-
ified.

A surface impedance boundary condition relates the tangential electric and magnetic
fields on an interface between two materials. The exact surface impedance uniquely
defines the electromagnetic fields outside the material. The material structure is
removed from the computational space. The resulting computational savings are
huge in electrically large problems, like the modeling of coated targets in military
applications.

Using the surface impedance techniques in numerical methods is extremely reason-
able when the reflection of electromagnetic fields from materials is difficult to com-
pute directly. For example, if the wavelength inside the material under investigation
is very small compared to the wavelength outside the material, the straightforward
discretization of the fields inside the material is not a clever approach. The surface
impedance boundary conditions may be utilized in such situations.

In this thesis, a higher-order FDTD-model of interfaces with metals and semicon-
ductors is developed and verified [1]. As the most important new feature, the model
takes arbitrary excitations into account in a general fashion using spatial derivatives
on the interface. Novel techniques for modeling of dielectric layers on metal surfaces
are also developed [2, 3]. Application of the surface impedance concept to derive
analytical absorbing boundary conditions is also considered [4].

An alternative and original model for electrically thin dispersive layers is introduced
[5]. Unusual electromagnetic properties of dispersive layers are numerically studied
in the frequency range, where the real parts of material parameters are negative [6].

Applications of the surface impedance concept to modeling of antennas with arti-
ficial electromagnetic materials are presented with numerical results for prototype
devices.

Keywords: FDTD, surface impedance boundary condition, dielectric layer,
surface impedance, absorbing boundary condition, metamaterial
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Abbreviations

ABC Absorbing Boundary Condition

ADE Auxiliary Differential Equation

AMEST Antenna Design, Measurement Techniques and Standardization

BW Backward Wave (medium), Bandwidth

DNG Double Negative (material)

EBG Electromagnetic Bandgap

FDTD Finite-Difference Time-Domain

FEM Finite Element Method

MoM Method of Moments

PDE Partial Differential Equation

PEC Perfect Electric Conductor

PMC Perfect Magnetic Conductor

PML Perfectly Matched Layer

SIBC Surface Impedance Boundary Condition

TEx Transverse Electric with respect to x-axis

TMz Transverse Magnetic with respect to z-axis

UPML Uniaxial Perfectly Matched Layer

VSWR Voltage Standing Wave Ratio
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α, a, b constants

B susceptance

β, γ variables

Γ damping factor

c0 the speed of light in vacuum

C surface capacitance

δ Dirac delta function (distribution), damping factor

∆x spatial resolution of the FDTD mesh along x-axis

∆t the discrete time increment in FDTD-method

Dt first order differential operator with respect to time

Et tangential electric field vector

Ez|i,j,k z-component of electric field vector evaluated at spatial grid point i, j, k

Ez|n z-component of electric field vector evaluated at time step n

ε0 permittivity of vacuum

ε′ real part of permittivity

εr relative permittivity

Ht tangential magnetic field vector

f frequency of electromagnetic field
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G conductance

G a partial differential operator

Iinp input current

In modified Bessel function of the first kind, of order n

j imaginary unit

Js surface current density

k wavenumber

k wave vector of electromagnetic wave

L inductance, surface inductance

L Laplace-transform operator

µ0 permeability of vacuum

µ∞ permeability in the limit ω −→ ∞

µ permeability dyadic (a linear mapping from vectors to vectors)

n unit normal vector

ω angular frequency of electromagnetic field

ω0 resonant angular frequency, center frequency

p1, q1 constants

πN
k=1 a product over indices 1 to N

r radius, radial coordinate

R resistance, reflection coefficient

s Laplace-transform variable

S11 input return loss parameter

σ electric conductivity

∑n
k=1 summation over indices 1 to n
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θ angle (of incidence)

ux unit vector along Cartesian coordinate axis x

U a scalar function

Vinp input voltage

η0 wave impedance in free space

∂k

∂xk k’th order derivative with respect to variable x

∫ b

a
integration from a to b

∗ convolution (integral)

∇ gradient, a differential operator, a mapping from scalar fields to vector fields

∇t restriction of the gradient to a plane tangential to an interface

X reactance

x, y, z coordinate variables in Cartesian coordinate system

ξ, τ, u integration variables

χm magnetic susceptibility

Zin input impedance

Zs scalar surface impedance

Zs surface impedance operator

× cross product of two vectors

· dot product
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Chapter 1

Introduction

During the recent decades, the finite-difference time-domain method (FDTD)
has been widely accepted as a reliable computational tool in numerical elec-
tromagnetics. The explicit nature of the time-stepping algorithm to solve
Maxwell’s equations conveniently enables the visualization of the electromag-
netic fields inside the medium under investigation. This feature is a great
benefit compared to frequency-domain methods, like the Method of Moments
(MoM) or the Finite-Element Method (FEM). The division of the problem
space into small cells can be a great advantage in the FDTD method when
modeling small geometrical features. In some problems, however, the required
spatial resolution may considerably increase the computational burden. There-
fore, direct inclusion of the fine geometrical features of the structure under
consideration into an FDTD-model by choosing a very small cell size is not a
reasonable approach. In such problems, an equivalent local relation between
the tangential electric and magnetic fields may sometimes be derived and used
to reduce the number of cells in the discrete space. The computational savings
are known to be remarkable in many problems.

In the frequency domain and in some simple problems, the quotient of the elec-
tric and the magnetic field on the material surface is called surface impedance.
More generally, surface impedance is a linear operator, a tensor, mapping
vectors to vectors. The surface impedance is inherently a frequency-domain
concept. In the finite-difference time-domain method, we work in the time do-
main. Therefore, conversion from the frequency domain into the time domain
must be accomplished for the surface impedance to be suitable for numerical
analysis. Fourier-transform techniques can be utilized in this context.

The use of equivalent surface impedance boundary conditions allows us to
remove the material under consideration from the computation space, thus
enabling the use of the conventional coarse discretization outside the material
body. This approach has been theoretically well known long time ago. The
frequency-dependence of the impedance functions in the impedance boundary
conditions represents a challenge for time-domain techniques. Hence, even if
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an analytical impedance boundary condition is given, its implementation into
finite-difference time-domain technique is often a non-trivial task.

In this thesis, contributions are made to FDTD modeling in the following three
topics: 1) modeling of material interfaces, 2) modeling of electrically thin lay-
ers and 3) modeling of metamaterials. The major part of the thesis is devoted
to modeling of material interfaces using impedance boundary conditions. Al-
gorithms for conductors with and without material coatings are developed
and verified in chapters 2,4 and 5. The surface impedance concept is also
utilized in antenna applications in chapter 8, and to obtain absorbing bound-
ary conditions in chapter 3. Regarding the second topic, a subcell model for
frequency-dispersive coatings is developed in chapter 6. The proposed model
generalizes several earlier models, which have been formulated for dielectric
and conductive layers without frequency dispersion. The advantages of the
proposed models as compared with some earlier models are demonstrated with
numerical simulations. The third topic, modeling of metamaterials, is treated
in chapter 7.

This thesis is mainly based on six papers: [1]–[6]. In the first paper, a higher-
order FDTD model of interfaces with metals and semiconductors is developed.
The model is based on higher-order surface impedance boundary conditions
(SIBC). The model proposed in [1] is useful if an isotropic dielectric and con-
ductive half-space is illuminated with an arbitrary excitation. Paper [2] in-
troduces a new FDTD model for coated ideal conductors, and the model is
extended for coatings on more general conductors in [3]. The models in [2]–[3]
are very useful when simulating scattering from coated targets. A new sub-
cell FDTD model for electrically thin dispersive layers is developed in [5] and
applied to predict cut-off frequencies of a rectangular waveguide. The fifth pa-
per [4] discusses the relation between surface impedance boundary conditions
and absorbing boundary conditions (ABC). It is shown that the exact surface
impedance boundary conditions provide a better starting point for deriving
ABC’s than the conventional Engquist-Majda equation. A class of analytical
absorbing boundary conditions is derived where both the tangential electric
and magnetic fields simultaneously appear.

Comparative discussion of the proposed models and known models is per-
formed in every chapter, where new algorithms are formulated. The advantages
of the proposed surface impedance models for interfaces with conductors and
dielectric layers over many existing models ([7]–[14]) are discussed. The sug-
gested FDTD model designed for modeling electrically thin layers represents
an extension of the known models [15, 16, 17, 18, 19] to frequency-dispersive
layers. The designed models are investigated with the conventional Yee algo-
rithm [20], which has been popularized by Taflove [21, 22].

Metamaterials are materials that cannot be found or are not readily available
in nature. A lot of research efforts have been recently put into the study of
metamaterials because of their potentially revolutionary applications. They
possess some unusual electromagnetic properties that are numerically stud-

2



ied in this thesis. Wave propagation, refraction and focusing phenomena in
uniaxially anisotropic metamaterial slabs are numerically studied in paper [6].
Simulated results are presented and comparisons with theoretical results are
made. In particular, the behavior of the evanescent waves in metamaterials is
numerically studied in a novel way.

As a more practical part of the thesis, certain antennas with composite materi-
als are investigated. This work has been done as a part of AMEST project, in
co-operation with Nokia Research Center and the Technical Research Centre
of Finland (VTT). The developed FDTD models for the AMEST project will
be discussed in this thesis. Properties of some antennas will be numerically
analyzed using the developed numerical models.
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Chapter 2

Modeling Interfaces with

Dielectric and Conducting

Materials

Modeling material interfaces using the surface impedance technique is the topic
of this chapter. Earlier models known from the literature are presented and a
new higher-order model is introduced. The new model is numerically verified
by comparing to analytical results.

2.1 Introduction to Known Models

Accurate FDTD modeling of metal and other conducting elements is a chal-
lenging task because the fields in these materials vary in space extremely
quickly compared to surrounding air or dielectrics, demanding extremely dense
meshes for accurate discretization of electromagnetic fields in metals. Usually,
the conductivity of metal is assumed to be infinite (so that the fields inside
metal elements are assumed to be zero) or a simple Leontovich surface im-
pedance boundary condition (SIBC)

Et = Z(ω)n × Ht (2.1)

is used, as in [7]–[8]. Here, index t denotes the tangential field components, n is
the unit vector pointing outwards from the conducting body. In the frequency
domain the surface impedance of an isotropic non-magnetic conductor in (2.1)
reads

Z(ω) =
η0

√

ε2,r − j σ2

ωε0

. (2.2)

The material parameters of the conductor are the relative permittivity ε2,r and
the conductivity σ2. The wave impedance of free space is denoted by η0. The
use of surface impedances is very reasonable if the system contains conductive
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parts. By using an appropriate SIBC, the volume of the conducting material
can be eliminated from the computational space. The computational savings
are discussed in [7], and it is clear that the surface impedance approach can
tremendously reduce the computational burden.

Although the simple impedance boundary condition (2.1) allows to avoid calcu-
lation of fields inside conductors, its accuracy is limited due to the assumption
that the waves inside metal propagate normally to the interface, whatever is
the frequency or the source configuration and position. The Leontovich im-
pedance boundary condition is valid if the fields outside the conductor vary
very slowly in the direction along the surface as compared to the wavelength
in metal. This condition can become invalid for instance in densely packed
devices, where there are other conductors (e.g., wires or strips) near to the
modeled interface, or where metal parts have complex geometry with sharp
edges. Thus, more elaborate models are needed to model metal components
in modern microwave devices.

Maloney and Smith showed in [7] with a couple of test problems that their
FDTD model based on the simple impedance boundary condition is in good
agreement with the exact results for large values of conductivity and a simple
line source. However, it was found that for small conductivities the model
proposed in [7] works not quite well. The same is true for the method proposed
by Beggs et al. in [8]. Let us discuss the basics of Beggs’ method, which is based
on the Leontovich SIBC with the following high conductivity approximation:

σ

ωε2

� 1, (2.3)

where ε2 = ε2,rε0 is the dielectric constant of the material half-space. Beggs et

al. presented two SIBC-formulations. In the first one, the surface impedance
is split into parts as

Zs(ω) =

√

jωµ2

σ2

= Rs(ω) + jωLs(ω), (2.4)

where the resistance, defined as Rs(ω) =
√

ωµ2/(2σ2) and the inductance

Ls(ω) =
√

µ2/(2σ2ω) are evaluated at the desired frequency. Considering a
two-dimensional TEy-case, the SIBC on the boundary z = 0 is written as [8]

Ex(t) = RsHy(t) + Ls
∂

∂t
Hy(t). (2.5)

This time-domain SIBC in then incorporated into the FDTD-algorithm by
applying the Faraday-Maxwell law near the interface. Hence, the SIBC just
modifies the usual update equation for Hy-component in Yee’s algorithm. It
should be noticed that a half-cell spatial error near the boundary is neglected
in this procedure. This fact certainly reduces the accuracy of the model. Also,
this model is valid at a single frequency only. A more useful model presented
in [8] is a dispersive surface impedance implementation that is valid over a
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wide frequency band. The underlying assumptions being the same, the SIBC
in the frequency domain reads

Ex(ω) = Z
′

s(ω) [jωHy(ω)] , (2.6)

where the auxiliary quantity Z
′

s is obtained from the actual surface impedance
in the following manner:

Z
′

s =
Zs(ω)

jω
. (2.7)

The time-domain equivalent of (2.6) can be obtained via inverse Fourier-
transform operation as

Ex(t) = Z
′

s(t) ∗
∂

∂t
Hy(t). (2.8)

The convolution is implemented recursively. A Laplace-transform pair

L
{

1

πt

}

=
1√
s

(2.9)

was utilized in [8] to obtain the time-domain equivalent of the frequency-
domain surface impedance Zs(ω). Again, the Faraday-Maxwell law is used
to obtain the discretized form of the SIBC. For very large conductivities, the
model properly reduces to the PEC boundary condition, as is easily seen from
(2.8). In the limit σ2 −→ 0, however, the discrete form of the model is equiv-
alent to a perfect magnetic conductor (PMC) on the boundary, clearly an
incorrect result. The reason for this is, of course, the high conductivity ap-
proximation. There is clearly a need for better SIBC models, although the
most important application region lies in the higher conductivity regime.

Maloney and Smith created a better model by alleviating the high conductivity
approximation. In their publication [7], they start from the Leontovich SIBC
and assume that

∣

∣

∣

∣

ε2,r − j
σ2

ωε0

∣

∣

∣

∣

� sin2(θi). (2.10)

With this assumption (θi is the angle of incidence), the surface impedance is
of the form

Zs(ω) =
η0

√

ε2,r − j σ2

ωε0

, (2.11)

and the use of the Leontovich SIBC is justified. The surface impedance may
be written in the Laplace domain using the substitution s = jω, where s is the
Laplace domain variable. The exact inverse Laplace transform is known and
the SIBC in the time-domain takes the form

Et(t) =
η0

ε2,r

{[n × Ht(t)] +

∫ t

0

αeατ [I1(ατ) + I0(ατ)] [n × Ht(t − τ)] dτ

}

, (2.12)
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where α = −σ2/(2ε2) and In is the Bessel function of the first kind and order
n. Notice that again the SIBC in (2.12) is seen to reduce correctly to the PEC
boundary condition in the limit σ2 −→ ∞, since the integrand behaves as the
Dirac delta function in this limit. It may be also noticed that if ε2 = ε0 and
the limit σ2 −→ 0 is taken, the result is quite reasonable, namely

Et = η0 [n × Ht] . (2.13)

For the normal incidence, this means matching to the free space wave im-
pedance η0. Hence, an absorbing boundary condition should be obtained in
this case. From the numerical point of view, interleaving of the field compo-
nents in Yee’s lattice forces us to make approximations. Maloney and Smith
used the magnetic field component half-cell away from the boundary and half
time step earlier in time to approximate the magnetic field on the boundary.
Through many numerical examples, Maloney and Smith showed that their
model works well for relatively large conductivities. However, for loss tangents
(denoted here by p) smaller than p ≈ 1, they reported increasing discrepancy
with decreasing loss tangent. It will be later shown that the problems with the
Maloney-Smith formulation can be considerably alleviated. First, a couple of
other methods are briefly discussed.

Kellali et al. explored the possibility of inclusion of the angle of incidence
in an FDTD SIBC model. Their formulation is valid for any single angle of
incidence. Kellali et al. used the simple surface impedance which is correct
only for the normal incidence in implementing the convolution product [9].
Kellali treated the horizontal and the vertical polarizations of the incident
waves separately. Kellali’s way of including the angle of incidence cannot be
considered as a great generalization, since the incidence angle must be a priori

known. In many practical problems, the incident wave is so complicated that a
formulation which is valid only for a single angle of incidence cannot be applied.
Kellali also used the idea of implementing the Leontovich SIBC in the time
domain by fitting a series of exponential functions to the time domain surface
impedance. This method allows the recursive evaluation of the convolution
integral, being much more efficient than direct integration that should be done
at every time step over the entire time history of the fields.

Oh and Schutt-Aine did not make the high conductivity approximation in [10],
but the angle of incidence is not included into their implementation. Oh and
Schutt-Aine used a series of first-order rational functions to approximate the
impedance function in the Leontovich surface impedance relation. This formu-
lation is again limited in the sense that the tangential variations of the fields
on the interface are just neglected. Oh and Schutt-Aine wrote the impedance
function of the Leontovich SIBC in the Laplace domain as

Zc(s) = η

√

s
a

1 + s
a

(2.14)
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and then used a normalized impedance function ZN(s′) defined as

ZN(s′) =
1

η
Zc(as′) =

√

s′

1 + s′
. (2.15)

The normalized impedance function can be approximated by

ZN(s′) = 1 −
L
∑

i=1

Ci

ωi + s′
, (2.16)

where L denotes the number of first-order rational functions used in the ap-
proximation [10]. Now, the expression for the surface impedance boundary
condition in the time domain can be written as [10]

Et(t) = Zc(t) ∗ n × Ht(t)

≈ η [n × Ht(t)] − η

∫ t

0

L
∑

i=1

aCie
aωi(t−τ) [n × Ht(τ)] . (2.17)

This SIBC forms the basis of the discrete implementation, which is not consid-
ered here. Oh and Schutt-Aine reported quite good agreement with the exact
results in one-dimensional example case, where the magnitude of a reflection
coefficient from a half-space was calculated.

The use of rational approximations in the Laplace-domain seems a bit strange
at first glance because the exact inverse Laplace transform of the Laplace-
domain impedance function is known. Oh and Schutt-Aine showed in [10] that
the maximum relative error of their approximation can be made very small,
even if the number of terms in the approximation is quite acceptable. Their
formulation has the advantage of eliminating the preprocessing time required
for the exponential approximation of the time-domain impedance function.
After all, the elimination of the preprocessing time can be regarded as a small
improvement as compared to the previous models like [7].

More recently, Yuferev et al. used the perturbation theory in their SIBC
implementation [11]. They used the high conductivity approximation, which is
not made in this thesis. The numerical results presented in [11] do not indicate
very good accuracy even for a relatively high conductivity of 1 S/m. Their
model is designed to upgrade FDTD codes, where perfect electric conductor
(PEC) boundary conditions have already been implemented. Yuferev starts
with the general SIBC relating the tangential field components. It reads

E = f(H) (2.18)

on the interface between the two media. The time-domain impedance function
f is supposed to be known. In the one-dimensional example case, Yuferev et

al. write the general SIBC of form (2.18) in discrete space as

En
i ≈ f(H

n−1/2
i−1/2 ). (2.19)
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The boundary nodes are denoted by i. This approximation is then combined
with the normal update equation for the tangential magnetic field. Yuferev
assumes in [11] that the electric field on the interface is much smaller than
inside the dielectric medium. This assumption implies that their formulation
is not valid when the dielectric constant and the conductivity of the second
medium are simultaneously small. The update equation for the magnetic field
half cell away from the boundary was derived using the perturbation theory
for the postulated small parameter relating the field components near the
interface. Whenever the computational accuracy is appreciated, then Yuferev’s
method should be avoided, although results based on their model may have
some engineering value.

Farahat et al. discuss the higher order SIBC in [12]. They use a more sophisti-
cated version of the simple Leontovich SIBC which has the so called Mitzner’s
and Rytov’s approximations included. The appropriate SIBC in TEy configu-
ration is of the form

Et = T1 ∗ Hy −
1

R
T2 ∗ Hy − T3 ∗

(

Hy

8R2
+

1

2

∂2Hy

∂s2

)

, (2.20)

where ∗ denotes the convolution product, R is the local radius of curvature, s
is the arc length and the time-dependent functions Ti, i = 1, 2, 3 are written
in the following form [12]:

T1(t) =

√

µ

ε

[

δ(t) +
σ

2ε

(

I1(
σt

2ε
) − I0(

σt

2ε
)

)

e−
σt
2ε

]

,

T2(t) =
1

ε
e−

σt
2ε , (2.21)

T3(t) =
t

ε
√

εµ

[

I0(
σt

2ε
) − I1(

σt

2ε
)

]

e−
σt
2ε ,

where In(t) is the modified Bessel function of order n and δ(t) is the Dirac
delta function. The first term of (2.20) corresponds to the Leontovich SIBC.
The functions T2 and T3 are related to the Mitzner’s and Rytov’s approxi-
mations, respectively. Contour-path method was used in [12] to account for
the curvature of the cylindrical scatterer. They, however, neglect some spatial
errors in the discretization which may actually deteriorate the expected accu-
racy resulting from the higher order formulation. Power series expansions were
also used in their implementation, introducing an additional error source. It is
not clear from the numerical examples presented in [12] whether their higher-
order SIBC-model is accurate or not, because comparison to exact solution is
omitted.

As discussed in this chapter, the proposed model is totally different from those
presented in [11] and [12]. The proposed model is mathematically quite simple,
because power series expansions or perturbation techniques are not needed. In
what follows, it is shown that by starting with the exact operational surface
impedance and by using a suitable rational approximation, the SIBC models
proposed in [7]–[8] can be extended to be valid for small conductivities as well
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(an absorbing boundary condition is obtained for negligible values of conduc-
tivity and no dielectric contrast). The inclusion of the angle of incidence in
the model is performed in a quite general fashion by turning the tangential
wavevector into a spatial derivative. Hence, the presented formulation is a
good approximation for all angles of incidence.

In section 2.2, the exact surface impedance for modeling conductive half-spaces
is presented and a rational approximation scheme is introduced. The FDTD-
implementation of the surface impedance relation is discussed in section 2.3. In
section 2.4, the proposed model is validated by comparing to the exact results.
The results are compared with the results obtained using the Maloney-Smith
method, since the proposed method is considered to be a natural higher-order
extension of that method.

2.2 The Exact Surface Impedance Model

Consider a problem, where the solution space consists of a region of free space
(ε1 = ε0, µ1 = µ0, σ1 = 0) and another region of a conductor (ε2 = ε2,rε0, µ2 =
µ0, σ2 6= 0). The interface between these two regions is assumed to be planar.
The problem geometry and the equivalent surface impedance model are shown
in Figure 2.1.

Region I: free space

Region II: isotropic dielectric and
conductive half-space

ε ,µ ,σ

ε ,µ0 0

2 0 2

(a)

y

zero fields behind the interface

x
E = Z n H

n z

(b)

Figure 2.1: (a) The interface between free space and isotropic dielectric and con-
ductive half-space. (b) The equivalent surface impedance model.

The second medium can be modeled with the exact surface impedance operator
which can be derived, for example, by using the equivalent circuit theory as in
[23]. In the frequency domain the exact SIBC reads

Et = Zs · n × Ht, (2.22)
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where the impedance operator is of the form

Zs = Z(ω)
k
(

I t + ∇t∇t

k2

)

√

k2 + ∇2
t

. (2.23)

Here, I t is the two-dimensional unit dyadic, and ∇t is the two-dimensional
gradient operator. Both operators are defined in the plane of the interface
between the two media. The coefficient Z(ω) is the same as in the Leontovich
boundary condition and it is given by (2.2). The exact surface impedance
relation (2.22) simulates the conducting half space and it forms the basis of
the subsequent derivations.

The difference in the starting point as compared to [7] is evident. In [7] the
assumption

∣

∣

∣

∣

ε2,r − j
σ2

ωε0

∣

∣

∣

∣

� sin2(θi), (2.24)

where θi is the angle of incidence was made to justify the use of Leontovich’s
surface impedance relation of the form

Et = Zs(ω)n × Ht. (2.25)

It is easily seen that the assumption (2.24) is not valid (for all angles of inci-
dence) for small values of σ2/(ωε0) and for typical relative dielectric constants
of conductors (usually they are close to unity).

2.3 An FDTD Implementation of the Surface

Impedance

To keep the notations simpler, the derivation of the new method is done in two
dimensions, and the three-dimensional case is briefly discussed later. Consider
a two-dimensional problem of excitation of a conducting half space by TE-
polarized sources. Let the interface be located at y = 0 with n = uy and let
the currents of the sources flow in the z-direction. Thus, we have the field
components Hx, Hy and Ez in a 2D FDTD lattice.

It is convenient to introduce the Laplace transform variable s = jω. In the
Laplace-transformed domain, the scalar part of the surface impedance operator
reads

Z(s) =
η0√
ε2,r

√
s

√

s + σ2

ε2

. (2.26)

The inverse Laplace transform of (2.26) is known to be

Z(t) =
η0√
ε2,r

[

αeαt(I0(αt) + I1(αt))u(t) + δ(t)
]

, (2.27)
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where u(t) denotes the Heaviside unit step function, δ(t) is the Dirac delta dis-
tribution, and the constant α = −σ2/2ε2. Functions I0 and I1 are the modified
Bessel functions of the first kind and of order zero and one, respectively.

The denominator of the expression in (2.23) is a pseudo-differential operator.
Any practical use of this exact SIBC implies a rational approximation of the
square root function in its expression. Let us introduce such an approximation
of the function

√
1 − x2 on the interval −1 ≤ x ≤ 1 in the form

√
1 − x2 ≈ a + bx2

1 + dx2
. (2.28)

Different choices of the coefficients corresponding to different approximation
schemes can be found in [24]. A good approximation of the square root in
(2.28) is obtained by choosing a = 0.99973, b = −0.80864, d = −0.31657, cor-
responding to the so called Chebyshev on a subinterval approximation scheme.
These parameters are used in the numerical simulations. Using the rational
approximation of the form (2.28) in (2.22)–(2.23) and simplifying, we have the
following equation for the phasor quantities:

(

−aε2µ0s
2 − aσ2µ0s − b

∂2

∂x2

)

Ez =

− η0√
ε2,r

Z(s)

(

−ε2µ0s
2 − σ2µ0s − d

∂2

∂x2

)

Hx. (2.29)

The dispersion relation for materials with conductivity σ2 is k2 = −ε2µ0s
2 −

σ2µ0s, and it was used in deriving (2.29). In contrast to the simple impedance
boundary condition, this boundary condition contains tangential derivatives
of both electric and magnetic fields thus taking into account field variations
along the interface. Boundary conditions of this type are known as higher-order

impedance boundary conditions.

Next, this equation will be transformed into the time domain. The product of
two Fourier-transformed (or Laplace-transformed) quantities in the frequency
domain corresponds to a convolution in the time domain. The Dirac delta
function convolved with a smooth function f(t) reproduces the function f(t).
Using the transform pair s ↔ ∂/∂t we obtain the desired SIBC in the time
domain:

−aε2µ0
∂2Ez

∂t2
− aσ2µ0

∂Ez

∂t
− b

∂2Ez

∂x2
=

η0√
ε2,r

[

σ2µ0
∂Hx

∂t
+ d

∂2Hx

∂x2
+ ε2µ0

∂2Hx

∂t2

]

+
η0√
ε2,r

·
∫ t

0

αeατ (I0(ατ) + I1(ατ)) ·
[

σ2µ0
∂Hx(t − τ)

∂(t − τ)
+ d

∂2Hx(t − τ)

∂x2
+ ε2µ0

∂2Hx(t − τ)

∂(t − τ)2

]

dτ. (2.30)

By letting σ2 → ∞ and integrating once, we see that equation (2.30) reduces
to Ez = 0 at the boundary, which is the boundary condition for a perfectly
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conducting half-space. If we try to discretize equation (2.30) at t = n∆t, we
find that the standard center difference scheme for ∂2Hx/∂t2 cannot be used.
The reason is that the update equation is derived for Ez at time step n+1, but
we do not know the value of Hx at this time step. This problem can be avoided,
if we use the Maxwell equations and replace ∂Hx/∂t by −∂Ez/µ0∂y. When
this substitution is used under the convolution integral, we have to extract the
electric field components at time step n + 1 from under the integral and solve
the resulting equation for Ez at time step n + 1. As an example, consider the
lattice boundary at y = 0. The discretization is done on that boundary at the
grid position (i, 0) at time step n. The update equation is then obtained for Ez

located at (i, 0) at time step n + 1. No half-cell temporal or spatial differences
are neglected. This is different from the implementation presented in [7] and
[8], where the tangential magnetic field at the boundary was approximated
by the nearest neighbor evaluated half time step earlier in time. The most
important new feature of this method is inclusion of the pseudo-differential
operator in the denominator of (2.23) by using a rational approximation. In
the earlier FDTD models [7, 8, 10] that operator was just neglected.

It may be noticed that a straightforward discretization of ∂Ez/∂y using cen-
tral differencing on the boundary is impossible because the fields behind the
boundary surface are not defined. We have found that a third order accurate
difference approximation for ∂Ez/∂y of the form

∂Ez

∂y

∣

∣

∣

∣

n

i,0

≈
−11Ez

∣

∣

n

i,0
+ 18Ez

∣

∣

n

i,1
− 9Ez

∣

∣

n

i,2
+ 2Ez

∣

∣

n

i,3

6∆y
(2.31)

works quite well. This scheme can be utilized in the discretization of ∂2Ez/∂y∂t
as well. A similar approach to approximate the normal derivative of the electric
field was previously published by Lee et al. in [13], where the FDTD-modeling
of thin PEC-backed sheets was discussed. The approximation of ∂2Ez/∂y∂t
was based on the use of a quadratic Lagrange interpolation polynomial. It
can be shown that the use of the cubic Lagrange interpolation formula leads
(after differentiation) to the approximation of form (2.31). To approximate
the second order x-derivative of the tangential magnetic field on the boundary
we evaluate the quadratic Lagrange interpolation polynomial for the fields at
the boundary. The result is

∂2Hx

∂x2

∣

∣

∣

∣

n

i,0

≈
15∂2Hx

∂x2

∣

∣

n

i,1/2
− 10∂2Hx

∂x2

∣

∣

n

i,3/2
+ 3∂2Hx

∂x2

∣

∣

n

i,5/2

8
. (2.32)

The problem of an efficient evaluation of the convolution integral is a common
feature of the proposed methods and the methods in [7]–[8]. This is briefly
discussed next. To discretize (2.30) the convolution integral is approximated
as a sum of the form

n−1
∑

m=0

F (m)f(Ez|n−m, Hx|n−m), (2.33)
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where the function f refers to the part of the integrand that depends on the
field components Ez and Hx at time steps 1 . . . n. Assuming a piecewise linear
behavior of f(Ez, Hx), the coefficients F (m) can be calculated as

F (m) =

∫ m+1

max (0,m−1)

α∆t (1 − |ξ − m|) eα∆tξ [I0(α∆tξ) + I1(α∆tξ)] dξ. (2.34)

These coefficients are evaluated numerically in the beginning of FDTD sim-
ulations. For an efficient implementation, as discussed in [7] and in [8], the
coefficients F (m) can be obtained as a series of exponentials as

F (m) =

p
∑

k=1

βke
γ̂km =

p
∑

k=1

βkγ
m
k . (2.35)

This is the so called Prony’s method [28]. The summary of Prony’s method
with some practical hints for finding the coefficients βk and γk can be found
in the Appendix of [7] or in [8]. The numerical results in section 2.4 were
calculated with p = 13. Essentially identical results were obtained with even
smaller number of terms in the exponential approximation. Overall, the pa-
rameter p has a negligible effect on the results provided that it is about p > 6.
Now, the integral in (2.30) at the grid position x = i∆x may be expressed as
a discrete sum in the form

n−1
∑

m=0

F (m)f(Ez|n−m
i , Hx|n−m

i ) = F (0)f(Ez|ni , Hx|ni )

+

p
∑

k=1

n−1
∑

m=1

βkγ
m
k f(Ez|n−m

i , Hx|n−m
i )

= F (0)f(Ez|ni , Hx|ni ) +

p
∑

k=1

Gk|ni , (2.36)

where G′
ks at each position x = i∆x satisfy a recursive relation of the form

Gk|1i = 0 , k = 1, . . . , p

Gk|ni = γkGk|n−1
i + βkγkf(Ez|n−1

i , Hx|n−1
i ) , k = 1, . . . , p. (2.37)

After careful discretization of (2.30) with the described recursive convolution
we obtain the final update equation for the electric field at the lattice boundary
(y = 0):

Ez|n+1
i,0 =

1

A

{

−2aε2,r∆y
(

−2Ez|ni,0 + Ez|n−1
i,0

)

+ aσ2µ0c
2
0∆t∆yEz|n−1

i,0

− 2b(c0∆t)2∆y

∆x2

(

Ez|ni+1,0 − 2Ez|ni,0 + Ez|ni−1,0

)

(2.38)

+
η0σ2(c0∆t)2(1 + F (0))

3
√

ε2,r

(

−11Ez|ni,0 + 18Ez|ni,1 − 9Ez|ni,2 + 2Ez|ni,3
)

+

√
ε2,rc0∆t(1 + F (0))

6

[

18Ez|n+1
i,1 − 9Ez|n+1

i,2 + 2Ez|n+1
i,3 +

11Ez|n−1
i,0 − 18Ez|n−1

i,1 + 9Ez|n−1
i,2 − 2Ez|n−1

i,3

]

− 2η0d(c0∆t)2∆y(1 + F (0))
√

ε2,r

∂2Hx

∂x2

∣

∣

∣

∣

n

i,0

− 2η0(c0∆t)2∆y
√

ε2,r

p
∑

k=1

Gk|ni

}

,
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where ∂2Hx/∂x2 is discretized according to (2.32) and the coefficient A is
defined as

A = 2aε2,r∆y +
11

6

√
ε2,rc0∆t(1 + F (0)) + aσ2µ0c

2
0∆t∆y. (2.39)

In the three-dimensional case, the numerator of (2.23) does not simplify as in
two dimensions. Thus, the resulting SIBC is more complicated to discretize,
although the square root may be approximated in a similar fashion as in two
dimensions. It turns out that the resulting SIBC is a fourth-order PDE.

2.4 Validation of the Model

The method is validated by calculating the reflected fields and the total fields
on the interface in the presence of a line current I(t) radiating over a half-space.
The exact solution for this problem in time domain can be calculated using
numerical integrations. Let a line current source be located at (x, y) = (0, ys)
and the interface be at y = 0. The analytical expression for the reflected
electric field in the Fourier domain at the position (x0, 0) is of the form [7]

Er
z(ω, x) = −µ0ω

2π
I(ω)

∫ ∞

0

R(ω, ξ)
1

√

1 − ξ2
e
−j ωys

c0

√
1−ξ2

cos
ωx0ξ

c0

dξ, (2.40)

where the reflection coefficient R is

R(ω, ξ) =

√

1 − ξ2 −
√

ε2,r − j σ2

ωε0
− ξ2

√

1 − ξ2 +
√

ε2,r − j σ2

ωε0
− ξ2

. (2.41)

The total electric field on the interface is

Et
z(ω, x) = −µ0ω

2π
I(ω)

∫ ∞

0

1 + R(ω, ξ)
√

1 − ξ2
e
−j ωys

c0

√
1−ξ2

cos
ωx0ξ

c0

dξ. (2.42)

The numerical results are shown in the time domain. To enable a compar-
ison, the reflected and the total waveforms have to be transformed into the
time domain. This is performed by numerical integration after suitable trans-
formations of variables to facilitate the convergence of the integrals in (2.40)
and (2.42). The integrals from 0 to ∞ are split into two integrals: from 0 to
1 and from 1 to ∞. A reasonable transformation of the integration variable
in the first integral is to set ξ = sin u. The singularity is removed, because
dξ = cos u du cancels the denominator having the singularity. In the sec-
ond integral from 1 to ∞, we first notice that

√

1 − ξ2 = −j
√

ξ2 − 1 (the
negative sign is chosen to get a decaying exponential) and then substitute
√

ξ2 − 1 = u. The singularity is again removed, and accurate integration is
possible even with quite simple quadratures. The exact results presented be-
low are calculated by implementing numerical integrations with the midpoint
rule. The differentiated gaussian pulse of the form
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Figure 2.2: (a) The reflected electric field at the observation point. The numerical
reflection from the interface is small, if the proposed model is used. However, due
to the fact that the higher-order terms were neglected in the model by Maloney and
Smith, there is significant error in the reflected wave if that model is used. It is no-
ticeable that the proposed model gives very similar results as a third-order analytical
absorbing boundary condition. (b) The total electric field at the observation point.
The total electric field simulated with the present model is close to the analytically
calculated total electric field.

I(t) =
t − τ0

τ
e−( t−τ0

τ )
2

(2.43)

with τ0 = 40∆t, τ = 12∆t is used as a source throughout the simulations.
The analytical Fourier transform I(ω) of this function can be easily calculated.

It is natural to start the numerical examples with the case σ2 = 0, ε2,r = 1 to
see how well the proposed method reduces to an absorbing boundary condition
(ABC). The results are shown in Figure 2.2. A third order analytical ABC
with Chebyshev on a subinterval approximation of the square root was used
to calculate the numerical reference result in the figure. The analytical ABC
is based on [25]. It is seen that the proposed method reduces to a quite
good ABC. To see which ABC is better, further studies would be necessary.
Liao’s third order ABC’s [26] are used at the other boundaries throughout the
simulations.

The reflected and total waveforms for σ2 = 0.01 S/m calculated with the
proposed method, the method proposed by Maloney and Smith, and the exact
waveforms at the observation point on the interface are shown in Figure 2.3.
Liao’s third order ABC’s [26] are used at the other boundaries. To illustrate
the performance of the proposed method at oblique incidence, the fields are
observed at point (x0, 0), where x0 = 20∆x. The distance from the interface to
the source is d = 10∆y. Square grid cells are used with ∆x = ∆y = 0.015 m.
The size of the time step was chosen to be ∆t = ∆x/(2c0) in all the simulations.
Based on the numerical experiments, we found that the stability limit for our
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Figure 2.3: (a) The reflected electric field at the observation point. (b) The total
electric field at the observation point.

model is stricter than the usual Courant limit for the Yee algorithm. However,
a suitable choice of the time step yields stable results, also at late times.
Analytical derivation of the stability limit for the proposed technique may be
quite difficult.

The proposed method gives rather accurate results for σ2 = 0.01 S/m (Fig-
ure 2.3), while the SIBC implementation of Maloney and Smith yields clearly
incorrect reflected waveform and too small amplitude for the total field. The
conductivity is rather small in this case, and the possible errors are more clearly
visible in the reflected wave, which is the smaller quantity. Actually, the an-
alytical SIBC is almost an ABC in this case. The loss tangent p = σ2/ωε2 at
the peak frequency is p ≈ 0.24. It is clear that the high conductivity approxi-
mation made in [7]–[8] is not valid in this case.

Snapshots of the total electric field distributions at time step n = 110 are
shown in Figure 2.4. The source is in the grid position (50, 10). Discrepancy
near the boundary is evident. The largest difference occurs near the boundary
where the angle of incidence is far enough from the normal. In Figure 2.5, the
waves are calculated for a larger conductivity, namely for σ2 = 0.1 S/m. In
this case, the proposed method agrees very well with the exact result. The
Maloney-Smith scheme produces slightly worse results. The reflected and the
total electric field are of the same order of magnitude, the reflected field still
being the smaller quantity. The third case which is considered is the case
when σ2 = 1 S/m. The results are presented in Figure 2.6. In this case, the
total field is slightly smaller quantity. Both methods agree well with the exact
waveforms. For still larger conductivities the SIBC is quite close to the PEC
boundary condition. This situation is shown in Figure 2.7, where σ2 = 10
S/m. The total field is clearly smaller than the reflected field. The agreement
is seen to be quite good for both methods and for both the reflected and total
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(a) (b)

Figure 2.4: (a) The total electric field distribution near the interface at n = 110
using the proposed method. A line current has radiated a pulse near the interface.
Due to the small conductivity (σ2 = 0.01 S/m) and the absence of dielectric contrast
(ε2,r = 1), the boundary absorbs most of the energy, and the reflected wave is very
small. (b) The total electric field distribution at n = 110 using the Maloney and
Smith method.

electric fields. In this case, the loss tangent at the peak frequency is already
quite large: p ≈ 240. The high conductivity approximation made in [7]–[8] can
be seen to be valid in this case. Indeed, the numerical and the exact solutions
are almost indistinguishable.

2.5 Discussion

A new finite-difference time-domain model of conductors and dielectrics with
nonzero conductivity using a higher order impedance boundary condition has
been introduced. The advantage of the new approach compared to the previ-
ously published methods is that it takes the angle of incidence into account
while not making assumptions about a large conductivity of the material. The
differences and the similarities to the existing methods have been discussed
and the method has been validated by comparing to the analytical results for
a half space excited by a line current over a wide range of conductivities.
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Figure 2.5: (a) The reflected electric field at the observation point. (b) The total
electric field at the observation point.
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Figure 2.6: (a) The reflected electric field at the observation point. (b) The total
electric field at the observation point.
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Figure 2.7: (a) The reflected electric field at the observation point. It is seen that
the proposed model yields similar results as the model by Maloney and Smith, if
the conductivity of the half-space is very high. (b) The total electric field at the
observation point.
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Chapter 3

Analytical Absorbing Boundary

Conditions

Absorbing boundary conditions (ABC) are widely used within the FDTD
method. Ideally, an ABC should absorb all electromagnetic waves impinging
to the lattice boundary regardless of the angle of incidence or the frequency
of the incident wave. In this chapter, the history of ABC’s is briefly discussed
first. Then, a new class of analytical absorbing boundary conditions based
on the exact surface impedance boundary condition simulating an empty half
space will be derived. The ABC’s are verified with a two-dimensional FDTD
program with comparison to some analytical ABC’s based on the Engquist-
Majda one-way wave equation [25].

3.1 History of Absorbing Boundary Conditions

The use of absorbing boundary conditions to truncate the computational lat-
tice is a very common feature in FDTD simulations. Several approaches have
been taken during the recent decades to solve this problem.

An old class of analytical ABC’s is based on the so called Bayliss-Turkel radi-
ation operators. The idea is to construct a linear partial differential operator
where spatial and time derivatives of the fields are present [30]–[31]. An appro-
priately constructed operator annihilates the outgoing waves and the numerical
lattice can be truncated, an important feature in modeling antennas, for ex-
ample. Bayliss-Turkel radiation operators are usually written in cylindrical
or spherical coordinates. This fact makes the implementation into cartesian
FDTD-programs quite cumbersome. A better idea is to consider the wave
equation in cartesian coordinate system and to derive the ABC’s locally.

The simplest analytical ABC’s based on Engquist-Majda wave equation are the
first and the second order Mur ABC’s [44]. They are easy to implement, and
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the computational burden does not become prohibitive even in large compu-
tational domains. This kind of ABC’s are formulated for one field component
only. As an example, the two-dimensional wave equation in cartesian coordi-
nates reads

∂2U

∂x2
+

∂2U

∂y2
− 1

c2

∂2U

∂t2
= 0, (3.1)

where U is a scalar function, for example an electric field component in the
FDTD algorithm, and c is the wave phase velocity [27]. Defining a partial
differential operator G as

G =
∂2

∂x2
+

∂2

∂y2
− 1

c2

∂2

∂t2
, (3.2)

the wave equation can be compactly written as GU = 0. Engquist and Ma-
jda showed [25] that decomposition of the partial differential operator G into
product of two operators as G = G+G− where

G+ =
∂

∂x
+

∂

c∂t

√

√

√

√1 −
c2 ∂2

∂y2

∂2

∂t2

G− =
∂

∂x
− ∂

c∂t

√

√

√

√1 −
c2 ∂2

∂y2

∂2

∂t2

(3.3)

leads to a possibility to exactly absorb the outgoing numerical waves of ar-
bitrary incidence angles at the lattice boundary x = xmin by applying the
operator G− to the wave function. The operator G+ performs the same oper-
ation at the lattice boundary x = xmax [27]. The operators G− and G+ are
pseudo-differential operators. Thus, they cannot be directly applied to nu-
merical analysis. The problem is how to approximate the function

√
1 − x2 as

uniformly as possible on the interval −1 ≤ x ≤ 1. It has been found that quite
good approximation properties can be achieved with a rational approximation
of the form √

1 − x2 =
a + bx2

1 + dx2
. (3.4)

This approximation was already used in the previous chapter. After the ra-
tional approximation, a partial differential equation (PDE) representing the
corresponding analytical ABC may be derived. It is worth noticing that the
rational approximation above is valid only for propagating waves. To effi-
ciently absorb also evanescent waves, the square root should be approximated
outside the interval −1 ≤ x ≤ 1 as well. This possibility is not explored in
this treatise.

Higdon introduced a series of linear partial differential operators for the absorb-
tion of outgoing waves [32]. This feature is similar to the method by Bayliss
and Turkel. The exact absorption occurs at specific angles of incidence. As an
example, consider plane waves traveling with the speed c towards the lattice
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boundary x = 0 in a two-dimensional cartesian FDTD grid. Higdon proposed
a differential annihilator as a product of the form

[

L
∏

l=1

(

cos αl
∂

∂t
− c

∂

∂x

)

]

= 0 (3.5)

for exact absorption of waves at incidence angles αl, l = 1, . . . , L (relative to
the −x-axis). It may be shown that the Engquist-Majda analytical ABC’s are
a special case of the more general Higdon ABC, corresponding to some set of
coefficients αl. Higdon’s ABC’s have the convenient feature of not requiring
space derivatives tangential to the grid outer boundary. Thus, the problem of
evaluating the parallel space derivatives near lattice corners is removed.

Liao et al. presented a totally different ABC in [26] which is based on extrap-
olation in space and time. Numerical experiments indicate that Liao’s ABC is
much better than the second-order Mur ABC [27]. Unlike the ABC’s discussed
earlier, Liao’s ABC are capable of realizing the theoretical level of reflection
[27]. The underlying Newton’s extrapolation process is robust and makes no
assumptions about the angle of incidence of the waves.

The perfectly matching layer (PML) absorbing boundary condition, first in-
troduced by Berenger in [33] should be used, when only a very small reflection
from the lattice boundary is allowed. However, PML’s require quite large com-
putational efforts and are more tedious to efficiently implement into FDTD
programs. PML’s are based on constructing an artificial layer with a suitable
conductivity profile to terminate the computational lattice. More sophisti-
cated versions of PML ABC’s have been recently developed. PML’s will not
be discussed here in detail, because a contribution to the analytical ABC’s is
the main topic is this chapter.

In the rest of this chapter, a new class of analytical ABC’s which stems from
the exact impedance boundary condition simulating empty half space is intro-
duced. The key characteristic feature of this approach is the presence of both
tangential electric and magnetic fields in the ABC, which, as we show, leads
to a possibility to derive ABC with only second-order differentiations which is
approximately as accurate as the conventional third-order schemes.

We start with a discussion of an interesting connection between the exact
impedance boundary condition for isotropic half space and the Engquist-Majda
equation [25] for the absorption of plane waves. The Engquist-Majda wave
operator operates on one field component. Thus, all the resulting absorbing
boundary conditions are always for one field component only. In section 3.2
we introduce the exact surface impedance boundary condition for modeling
the behavior of an isotropic half-space with material parameters ε and µ. In
the case when ε = ε0 and µ = µ0, the resulting surface impedance boundary
condition should work as an ABC. The Engquist-Majda wave operator is also
derived in this case.

In section 3.3, a class of ABC’s connecting the tangential field components
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is derived using a general form of rational approximation to approximate the
involved pseudo-differential operator. The performance of the proposed ABC’s
is studied and comparisons with some previously introduced analytical ABC’s
are made with a test 2D FDTD program. These results are presented in section
3.4.

3.2 SIBC and Its Relation to the Engquist-

Majda Equation

To set up the scene and introduce the necessary relations, we will now discuss
the surface impedance boundary condition and the Engquist-Majda equation,
since both can be used in derivations of analytical ABC’s. To terminate the
grid of calculation domain, we should somehow simulate a virtual boundary
with free space. It is known that the Engquist-Majda equation applied to
every tangential component of the electric field on the boundary can serve for
this purpose. On the other hand, theoretically one can demand that the exact
surface impedance boundary condition (SIBC) connecting tangential electric
and magnetic fields on the same boundary be satisfied. This condition can be
derived, for instance, using the equivalent circuit theory [23]. The SIBC reads

Et = Zs · n × Ht, (3.6)

where the impedance operator is of the form

Zs = η
k
(

I t + ∇t∇t

k2

)

√

k2 + ∇2
t

. (3.7)

Index t denotes the tangential field components, and n is the unit vector
pointing outwards from the dielectric (or vacuum) half space. To simplify the
notation, let the interface be located at y = 0 with n = uy. Equations (3.6)
and (3.7) for plane waves e−j(kxx+kyy+kzz) take the form

Exux + Ezuz = η
I t − ktkt/k

2

√

1 −
(

k2
x+k2

z

k2

)

· uy × (Hxux + Hzuz) . (3.8)

where kt = kxux + kzuz is the tangential component of the wave vector. After
simplifying equation (3.8), we obtain the SIBC’s for the electric field compo-
nents:

Ex = η
Hz − 1

k2 (k2
xHz − kxkzHx)

√

1 − k2
x+k2

z

k2

Ez = η
−Hx − 1

k2 (kxkzHz − k2
zHx)

√

1 − k2
x+k2

z

k2

. (3.9)
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Physically, these conditions simply demand that the electric and magnetic
fields are related to each other as in plane waves traveling in an infinite isotropic
space, so the surface impedance on the truncation boundary equals to the wave
impedance of free space.

It is clear and it is known (see [45]) that the impedance formulation and
the Engquist-Majda equation are related, as they express the same feature
of the absence of reflection (“matching”). Let us show how the Engquist-
Majda equation can be derived from the SIBC for the tangential electric field
component Ez. Similar derivation may be done for Ex. We make use of the
y-component of the Maxwell equation

∇× H = ε0
∂E

∂t
(3.10)

in the form
−jkxHz + jkzHx = −ε0jωEy (3.11)

and the equation
−jkyEz + jkzEy = −µ0jωHx (3.12)

to obtain an equation for the Ez -component only:

(

k

√

1 − k2
x + k2

z

k2
+ ky

)

Ez = 0. (3.13)

Finally, transforming the k’s to partial differential operators (∂/∂t ↔ Dt etc.)
we obtain

(

Dt

c

√

1 − D2
x + D2

z

(Dt/c)2
− Dy

)

Ez = 0. (3.14)

This is the Engquist-Majda pseudodifferential equation. With different ap-
proximations of the square root, a class of analytical absorbing boundary con-
ditions can be derived, as is well known from the literature.

One can observe that in this derivation the Maxwell equations have been used
once more, which involves differentiations of the fields. The same can be said
about the ABC’s derived from the one-way wave equation. The wave equation
already contains second-order derivatives of the fields. On the other hand, the
impedance boundary condition follows directly from the Maxwell equations.
As we already pointed out, the SIBC is simply the relation between the electric
and magnetic fields in plane waves. This suggests that one can expect to obtain
a better accuracy from an ABC, if the same approximation for the square root
is used in the surface impedance boundary condition as compared to ABC’s
based on the Engquist-Majda operator or on the one-way wave equation. This
possibility will be explored next.
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3.3 The Derivation of a Class of Analytical

ABC’s

In the following derivation, we consider the two-dimensional TMz -case. Let
us first introduce a rational approximation of the function

√
1 − x2 on the

interval −1 ≤ x ≤ 1 in the form

√
1 − x2 ≈ a + bx2

1 + dx2
. (3.15)

Using this approximation, the second equation in (3.9) takes the form

(ak2 + bk2
x)Ez = −η(k2 + dk2

x)Hx (3.16)

with η =
√

µ0/ε0. Using the free space dispersion relation k2 = ω2/c2 with the
Fourier-transform pairs jω ↔ ∂/∂t and −jkx ↔ ∂/∂x we obtain the partial
differential equation

a

c2

∂2Ez

∂t2
+ b

∂2Ez

∂x2
= − η

c2

∂2Hx

∂t2
− ηd

∂2Hx

∂x2
. (3.17)

It is worth noting that the second order time derivative of Hx can be expressed
using the electric field Ez:

∂2Hx

∂t2
= − c

η

∂2Ez

∂y∂t
. (3.18)

The resulting equation is

a

c2

∂2Ez

∂t2
+ b

∂2Ez

∂x2
=

1

c

∂2Ez

∂y∂t
− ηd

∂2Hx

∂x2
. (3.19)

We discretize this equation about an auxiliary lattice point, located half-cell
away from the interface. Note that we do not have to neglect any spatial or
temporal differences. The resulting update equation for the electric field is

Ez|n+1
i,0 = −Ez|n−1

i,1 +
2a∆y

c∆t + a∆y

(

Ez|ni,0 + Ez|ni,1
)

+
c∆t − a∆y

c∆t + a∆y

(

Ez|n+1
i,1 + Ez|n−1

i,0

)

− b(c∆t)2∆y

∆x2(c∆t + a∆y)

(

Ez|ni+1,1 − 2Ez|ni,1 + Ez|ni−1,1+

Ez|ni+1,0 − 2Ez|ni,0 + Ez|ni−1,0

)

− ηd(c∆t)2∆y

∆x2(c∆t + a∆y)

(

Hx|n+1/2
i+1,1/2 − 2Hx|n+1/2

i,1/2 + Hx|n+1/2
i−1,1/2+

Hx|n−1/2
i+1,1/2 − 2Hx|n−1/2

i,1/2 + Hx|n−1/2
i−1,1/2

)

. (3.20)

It may be noticed that in the cases a = 1, b = d = 0 and a = 1, b = −1/2, d = 0
this new ABC reduces to the first and the second order Mur ABC’s, respec-
tively. It is well known that these ABC’s, however, are not quite good, which
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is because they are based on rather coarse approximations of the square root
in equation (3.15). By choosing the coefficients of the rational approximation
appropriately, we obtain much better ABC’s than the second order Mur ABC,
while retaining essentially similar complexity of the update equation. A table
of coefficients corresponding to different approximation methods designed to
approximate (3.15) can be found in [24].

Usually, the third order ABC’s resulting from the rational approximation of the
square root in the form (3.15) are formulated as third order partial differential
equations for one field component. We will show in numerical examples that
we obtain similar performance with our second order PDE where both the
electric and magnetic fields are present. Our analysis yields similar results as
presented by Wang et al. in [34] and Ramadan et al. in [35] in the 2D-case,
but the starting point is different, and our derivations establish the connection
between SIBC’s and ABC’s. Next, we extend the proposed method to the
general 3D-case.

3.4 Analytical ABC’s in the 3D-case

In the three-dimensional situation, the derivatives in the numerator of (3.9)
do not drop out. Hence, the analytical ABC cannot be directly formulated
as a second order PDE. The reduction of order is, however, possible if we use
Maxwell’s equation and the following definitions:

Ax =
ky

ηk
Ez,

Az = − ky

ηk
Ex. (3.21)

With these definitions, we have the following equations relating the electric
field and the just defined auxiliary field quantities:

(kky + ak2 + b(k2
x + k2

z))Ez = −ηd(k2
x + k2

z)Ax,

(kky + ak2 + b(k2
x + k2

z))Ex = ηd(k2
x + k2

z)Az. (3.22)

Transforming these equations into the time domain, we obtain the following
PDE’s:

∂2Ez

∂y∂t
− a

c

∂2Ez

∂t2
− bc

(

∂2Ez

∂x2
+

∂2Ez

∂z2

)

− dηc

(

∂2Ax

∂x2
+

∂2Ax

∂z2

)

= 0,

∂2Ex

∂y∂t
− a

c

∂2Ex

∂t2
− bc

(

∂2Ex

∂x2
+

∂2Ex

∂z2

)

+ dηc

(

∂2Az

∂x2
+

∂2Az

∂z2

)

= 0.(3.23)

These PDE’s can be discretized in a similar way as in two dimensions. The
definition of the auxiliary field quantities Ax and Az does not induce extra
complexity to the FDTD-algorithm, since they are actually already calculated
in the normal Yee updating scheme as parts of the magnetic field components
Hx and Hz, respectively.1 So we just need to save those components for later

1The subindices of A refer to these two magnetic field components.
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use in the discretized version of (3.23). As an example, consider the magnetic
field Hx. In light of (3.21), we can update the auxiliary variables Ax and Bx

according to

Ax|n+1/2
i,j+1/2,k+1/2 = Ax|n−1/2

i,j+1/2,k+1/2 −
∆t

µ0∆y

(

Ez|ni,j+1,k+1/2 − Ez|ni,j,k+1/2

)

,

Bx|n+1/2
i,j+1/2,k+1/2 = Bx|n−1/2

i,j+1/2,k+1/2 +

∆t

µ0∆z

(

Ey|ni,j+1/2,k+1 − Ey|ni,j+1/2,k

)

. (3.24)

These update equations are only needed on the boundary. After updating the
A′s and B′s we add them together to get the magnetic fields on the boundary.
We may think that we split the Hx located in the plane of discretization (half-
cell from the actual boundary) as Hx = Ax + Bx, since the sum of the discrete
equations in (3.24) yields the usual update equation of Hx in free space (after
using Hx = Ax + Bx).

The ABC’s in (3.23) are analogous to the 2D ABC’s in the sense that the
second order Mur ABC can be recovered by suitably choosing the parameters.
However, in contrast to the Engquist-Majda conditions, third order accuracy
is expected with these second order conditions when a suitable rational ap-
proximation is used.

3.5 Validation of the ABC’s with Comparison

Studies

To study the performance of the ABC in equation (3.20) we have constructed
a two-dimensional test lattice with the size of 20 × 200 cells. The source is a
hard source at the center of the lattice with the time-dependence

Ez|n20,100 =















1
32

[10 − 15 cos (2πfn∆t)

+6 cos (4πfn∆t) − cos (6πfn∆t)] , n ≤ 30

0, n > 30

(3.25)

where f = 1 GHz, ∆t = 0.9999∆x/(
√

2c), and ∆x = ∆y = 0.015 m. This
pulse has a very smooth decay to zero. The reflection errors are studied on the
left side of the lattice. The local error calculated at time step n = 80 is shown in
Figure 3.1. It is clear that our ABC’s corresponding to the Padé approximation
(a = 1, b = −0.75, d = −0.25) and the Chebyshev on a subinterval (a =
0.99973, b = −0.80864, d = −0.31657) approximation of the square root in
equation (3.15) are much better than the second order Mur ABC. To enable
comparisons with a third order method, the Liao’s third order ABC [26] was
implemented. Actually, the performance of the proposed ABC with Chebyshev
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Figure 3.1: Local error on one side of the lattice at time-step n=80.

on a subinterval is seen to be about as good as that of the third order Liao’s
ABC. The standard discretization of the third order analytical PDE produces
exactly the same results as the proposed analytical ABC’s based on second
order PDE, thus they have not been plotted in the figure.

Let us next study the global errors, which are probably a better measure for the
performance of the ABC, since the squared errors are calculated and spatially
summed over the whole two-dimensional FDTD-lattice. The global errors as
functions of time steps are shown in Figure 3.2. It is evident from the figure
that our second order ABC’s perform much better than the second order Mur’s
ABC. In the case of Chebyshev on a subinterval, the global error is seen to be
even smaller than for Liao’s third order ABC. For time steps from 0 to 70 it is
seen that the Padé approximation provides the smallest global error. This is
natural, because the Padé approximation corresponds to having a triple zero of
the wave reflection for normal incidence, and, at earlier times, the components
propagating at grazing angles are small. The decay of the global error after
about n = 150 just reflects the fact that the source has been switched off some
time ago and the errors become smaller.

Comparison of second-order Mur and higher-order Lindman ABC’s with PML
ABC’s can be found in [36]. It is evident that PMLs outperform those ana-
lytical ABC’s. However, the use of analytical ABC’s allows the efficient and
accurate enough solving of many practical problems without the need to invoke
PML ABC’s.
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Figure 3.2: The global error power reflected back to the lattice as a function
of time.

3.6 Conclusions

A new class of analytical absorbing boundary conditions has been derived and
some comparisons have been made with other analytical ABC’s. These new
absorbing boundary conditions contain both electric and magnetic fields, and
physically they are closely related to the exact surface impedance boundary
condition. In the two-dimensional case, it was found that by keeping both the
tangential electric and the magnetic field in the derivation, we may reduce the
order of the PDE from 3 to 2 while keeping the performance of the third order
ABC. In the 3D-case, we may reduce the order of the PDE by introducing two
auxiliary variables that can be conveniently updated in the standard Yee al-
gorithm. Also, the connection between the exact surface impedance boundary
condition and the Engquist-Majda analytical absorbing boundary condition
has been discussed, for better understanding of the background of the new
method.
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Chapter 4

Electrically Thick Coatings on

Ideal Conductors

Modeling of material coatings is of interest in many electromagnetic problems.
In this chapter, we introduce a new FDTD model of electrically thick layers
on ideally conducting surfaces. The model is based on higher-order surface
impedance boundary conditions. The model is numerically verified with some
example problems, where analytical solutions are conveniently available.

4.1 Introduction

Numerical modeling of structures containing layers of materials with high elec-
trical contrasts is a challenging task. A typical situation is a relatively electri-
cally thick layer on a metal surface. Several models have been developed for
the finite-difference time-domain method. The present problem, modeling of
metal surfaces with a dispersive material coating, can be solved by the FDTD-
method basically in three ways: 1) by a direct discretization of the fields inside
the coating, 2) by using the surface impedance boundary condition (SIBC) or
3) by appropriately modifying the standard FDTD-update equations to in-
clude to effect of the material layer. The method based on the use of surface
impedance boundary conditions is considered in this chapter. In contrast to
the direct discretization, this approach is very effective if many small cells are
needed to resolve the fields in the layer, and leads to significant computational
savings.

The surface-impedance approach for solving the problem has already been
considered in the literature. Probably the most well known is the formulation
presented by Lee et al. in [13]. Their formulation is based on the use of the
first order Leontovich SIBC relating the tangential electric field and its nor-
mal derivative to each other. Wang extended this method to be valid for any
fixed single angle of incidence and reduced a two-dimensional problem to a
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one-dimensional one. In his papers [37]–[38] he separately considers the paral-
lel and perpendicular polarizations. Oh and Schutt-Aine discuss a simplistic
SIBC-model in [10], where the tangent in the impedance function was simply
approximated by its argument. That formulation is restricted to electrically
thin layers.

The Leontovich SIBC was used by Penney et al. in [14], where radar cross sec-
tion calculations for frequency-dispersive, coated targets were presented. They
used frequency domain basis functions to expand the appropriate impedance
function and applied z-transform techniques to derive the update equations
for FDTD. Penney’s approach requires a separate routine for finding the opti-
mal coefficients for the basis functions, and the approximation may be coarse
unless many basis functions are used.

The SIBC technique has also been successfully applied to model conductive
bodies by Maloney and Smith in [7], by Beggs et al. in [8] and by Kellali et

al. in [9]. Also, a higher-order SIBC model has been introduced by Farahat et

al. in [12]. They use power series expansion with perturbation techniques and
neglect some spatial errors in the discretization, which may lead to significant
numerical errors and even deteriorate the expected increase in accuracy as
compared with the Leontovich SIBC. No comparisons of the numerical results
with analytical results were presented in [12], where scattering from conductive
cylinders was considered. It appears that until now, no higher-order models
for metal-backed coatings have been developed for FDTD. Overall, there exist
only a few publications dealing with FDTD modeling of coated bodies using
surface impedance boundary conditions.

So called subcell models have also been applied to model thin layers in FDTD.
Some early papers were published by Tirkas and Demarest in [15] and by
Maloney and Smith in [16]. Some other models have also been published
by Luebbers and Kunz, Railton and McGeehan and by Wu and Han in [17,
18, 19], respectively. According to the comparison made by Maloney and
Smith in [39], the models by Tirkas and Demarest and by Maloney and Smith
appear to be more accurate than the other models. The subcell techniques can
handle electrically thin layers only. The SIBC approach is more reasonable if
electrically thick layers are modeled.

In this chapter, we start with the exact operational surface impedance and
explicitly derive the higher-order SIBC in a 2D example problem. After pre-
senting the methodology, numerical simulations with comparisons to the an-
alytical results are shown in one- and two-dimensional example cases. The
comparison studies are done in both time and frequency domains. In many
numerical examples, comparison with Lee’s model [13] is presented.

A rational approximation of the tangent appearing in the surface impedance
function is very critical if accurate algorithms are desired. The proposed ra-
tional approximation is verified to lead to much more accurate results than
reported in [13, 37, 38]. The tangential variation of the fields on the interface
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is included by turning the tangential wave numbers into spatial derivatives,
which leads to higher-order SIBCs. This was not done in [13, 37, 38]. Thus,
the presented SIBC is a good approximation of the exact SIBC for a wide
range of angles of incidence.

4.2 The Surface Impedance Model

Let us consider the problem where a metal plane is covered with a lossy dis-
persive material layer of thickness d. The complex permittivity of the layer is
taken to be of the form

ε(ω) =

(

ε1 +
β

ω2
0 − γω2 + jδω

)

ε0. (4.1)

This is a rather general expression, and by suitably choosing the parameters
ε1, β, γ and δ we can model layers made of Lorentz, Debye or Drude medium.
The usual conducting (with conductivity σ) dielectric (with dielectric constant
ε1) layer can also be obtained from (5.1) by choosing ω0 = 0, γ = 0, β = σ,
δ = ε0. The permeability of the layer is supposed be a constant µ = µrµ0. The
exact surface impedance boundary condition for time-harmonic fields on the
interface between the coating and free space reads

Et = Zs · n × Ht, (4.2)

where the surface impedance operator is of the form [23, 40]

Zs = jηk
tan (

√

k2 + ∇2
t d)

√

k2 + ∇2
t

[

I t +
∇t∇t

k2

]

. (4.3)

Index t denotes the tangential field components, k is the wave number within
the layer and n is the unit vector pointing outwards from the interface. ∇t is

the restriction of the gradient operator to the plane of the interface, and I t is
the unit dyadic in the plane of the interface. The wave impedance is defined
in the usual way as

η =

√

µ

ε
. (4.4)

To be more explicit, let the air-dielectric interface be located at y = 0 with
n = uy, so that the appropriate tangential field components in our 2D case
are Ez and Hx. The exact SIBC in (4.2)-(4.3) now takes the form :

Ez = −jωµ
tan (

√

k2 − k2
xd)

√

k2 − k2
x

Hx. (4.5)

The transformation of the tangential gradient operator to the spectral domain
as ∇t ↔ −jkt has been used. In Lee’s formulation, the operator ∇t was
dropped out, although he mentioned in [13] that the tangential variations of
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the fields might be included. Wang’s model is valid for a fixed single value of
incidence angle only, clearly still a severe limitation. The inclusion of the angle
of incidence in a general fashion is an important new feature of the proposed
model.

In the following section, the required approximation techniques are discussed
and the SIBC in equation (4.5) is transformed into the time-domain and dis-
cretized for the use in the FDTD method.

4.3 On the Required Approximations

Lee et al. approximated the tangent by writing it as a quotient of sine and
cosine and using Taylor’s polynomials to expand the sine and cosine functions.
The problem in that approach is that quite many terms are required to obtain
a wide enough range of accurate approximation required to model physically
interesting phenomena. Regarding the accuracy of the model, this will turn
out to be a severe limitation. The function tan(x) has the first singularity
on the positive real axis at x = π/2 and the second singularity at x = 3π/2.
If x � π/2, corresponding to an electrically thin layer, the problem reduces
to a simple one. The more interesting and numerically challenging region is,
however, around singularities, where the thickness resonances come into play.
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Figure 4.1: (a) The (2,2) rational approximations. The singularity of the pro-
posed rational approximation occurs in the correct position. (b) The (4,4) rational
approximations. The proposed rational approximation has a much wider range of
applicability.

For accurate numerical modeling, it is important that the singularities of the
rational approximation coincide with the singularities of the tangent. This is
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not the case in the scheme used in [13, 37, 38], where the following rational
approximation was used:

tan(x) = x
1 + p1x

2 + p2x
4

1 + q1x2 + q2x4
(4.6)

with p1 = −1/6, p2 = 0, q1 = −1/2, q2 = 0 or p1 = −1/6, p2 = 1/120, q1 =
−1/2, q2 = 1/24, if a more accurate approximation is desired. A consid-
erably more uniform accuracy is obtained by requiring that the singulari-
ties of (4.6) coincide with the singularities of the tangent. Additionally, we
may match the approximation with the exact expression in one or several
points to get a linear system of equations for the coefficients. Based on
this idea, the coefficients of the proposed rational approximation are p1 =
−1/π2, p2 = 0, q1 = −4/π2, q2 = 0 if one pole-pair of the tangent is mod-
eled, or p1 = −5/(4π2), p2 = 1/(4π4), q1 = −40/(9π2), q2 = 16/(9π4) if two
pole-pairs of the tangent are modeled. The tangent function and the different
rational approximations are shown in Figure 4.1. The integers m and n in the
notation (m,n) refer to the order of polynomials in the numerator and the
denominator of the rational approximation, respectively. It is clearly seen that
the proposed rational approximations are much more uniformly close to the
tangent function than those used by Lee et al. and by Wang. This fact implies
dramatically better accuracy in numerical simulations, as we will demonstrate
in the following section.

At this point, we apply the proposed rational approximation to the SIBC in
(4.5). We use the rational approximation with general coefficients and express
the time derivative of the magnetic field Hx as a normal derivative of the
electric field Ez according to −µ0∂Hx/∂t = ∂Ez/∂y to obtain the following
SIBC in the frequency domain:

[

1 + q1(k
2 +

∂2

∂x2
)d2 + q2(k

2 +
∂2

∂x2
)2d4

]

Ez =

µrd

[

1 + p1(k
2 +

∂2

∂x2
)d2 + p2(k

2 +
∂2

∂x2
)2d4

]

∂Ez

∂y
. (4.7)

This may be transformed into the time domain using the substitutions k2 =
ε(ω)µω2 and jω ↔ ∂/∂t. It is seen that the tangential variations of the fields on
the interface are accounted for in a general fashion by including the tangential
derivatives of the fields to the SIBC. In the one-dimensional case, the spatial
derivatives tangential to the interface just drop out.

In addition to the rational approximation, the evaluation of the normal deriva-
tive of the electric field (∂Ez/∂y in this case) is a critical issue significantly
influencing the accuracy. In earlier papers Lee et al. and Wang tried to include
the effect of the dielectric coating into the evaluation of the normal derivative.
Lagrange’s interpolation polynomial was constructed from three points: one
point on the metal surface, another on the dielectric-air interface where the
SIBC is applied and the third point one cell away from the interface. However,
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according to the very definition of the SIBC, the fields behind the dielectric-
air boundary are not defined. Based on this fact, we construct a second-order
accurate difference approximation of the normal derivative on the interface in
the form

∂Ez

∂y

∣

∣

∣

∣

n

i,0

≈
−3Ez

∣

∣

n

i,0
+ 4Ez

∣

∣

n

i,1
− Ez

∣

∣

n

i,2

2∆y
. (4.8)

The derivation of this expression can be easily done using the Taylor series
and demanding second order accuracy. It may be noticed that this approxi-
mation does not depend on the dielectric parameters of the layer. Based on
the numerical simulations, this approximation was found to be more accurate
than that of [13, 37, 38].

Next, the SIBC in (4.7) will be transformed into time domain and discretized
in the case of dielectric and conductive layers. Substituting jω = s and k2 =
−εµs2 − σµs, the SIBC takes the form

[

1 − q1ε2µ2d
2s2 − q1σµ2d

2s + q1d
2 ∂2

∂x2
+

q2d
4(ε2

2µ
2
2s

4 + 2ε2µ
2
2σs3 + σ2µ2

2s
2) + q2d

4 ∂4

∂x4
− 2q2ε2µ2s

2 ∂2

∂x2
−

2q2σµ2s
∂2

∂x2

]

Ez = µrd

[

1 − p1ε2µ2d
2s2 − p1σµ2d

2s + p1d
2 ∂2

∂x2
+

p2d
4(ε2

2µ
2
2s

4 + 2ε2µ
2
2σs3 + σ2µ2

2s
2) + p2d

4 ∂4

∂x4
−

2p2ε2µ2s
2 ∂2

∂x2
− 2p2σµ2s

∂2

∂x2

]

∂Ez

∂y
, (4.9)

where we have denoted ε2 = ε1ε0 and µ2 = µrµ0. Transformation into time
domain proceeds using the relation s ↔ ∂/∂t. After minor simplification, the
final form of the SIBC reads

[

1 − (q1ε2µ2d
2 − q2σ

2µ2
2d

4)
∂2

∂t2
− q1σµ2d

2 ∂

∂t
+ q1d

2 ∂2

∂x2
+

q2d
4(ε2

2µ
2
2

∂4

∂t4
+ 2ε2µ

2
2σ

∂3

∂t3
) − q2d

4 ∂

∂x4
+ 2q2ε2µ2

∂4

∂t2∂x2
−

2q2σµ2
∂3

∂t∂x2

]

Ez = µrd

[

1 − (p1ε2µ2d
2 − p2σ

2µ2
2d

4)
∂2

∂t2
−

p1σµ2d
2 ∂

∂t
+ p1d

2 ∂2

∂x2
+ p2ε

2
2µ

2
2d

4 ∂4

∂t4
+ 2p2ε2µ

2
2σd4 ∂3

∂t3
+

p2d
4 ∂4

∂x4
− 2p2ε2µ2

∂4

∂t2∂x2
− 2p2σµ2

∂3

∂t∂x2

]

∂Ez

∂y
. (4.10)

The derived SIBC (4.10) is discretized at time step t = n · ∆t if one pole-pair
of the tangent is modeled, and at t = (n−1) ·∆t if two pole-pairs are modeled.
Spatially, the discretization is performed at grid location (x, y) = (i∆x, 0) and
the discrete equation is then solved for Ez|n+1

i,0 . Center differences are used, for
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example

∂4Ez

∂t4

∣

∣

∣

∣

n−1

i,0

≈
Ez

∣

∣

n+1

i,0
− 4Ez

∣

∣

n

i,0
+ 6Ez

∣

∣

n−1

i,0
− 4Ez

∣

∣

n−2

i,0
+ Ez

∣

∣

n−3

i,0

∆t2
. (4.11)

for fourth order time derivatives and

∂2Ez

∂x2

∣

∣

∣

∣

n−1

i,0

≈
Ez

∣

∣

n−1

i+1,0
− 2Ez

∣

∣

n−1

i,0
+ Ez

∣

∣

n−1

i−1,0

∆x2
(4.12)

for the second order spatial derivative along the interface. The difference
scheme in equation (4.8) is applicable in evaluating the mixed derivatives. As
an example, we discretize

∂2Ez

∂t∂y

∣

∣

∣

∣

n−1

i,0

≈ 1

2∆t

(

∂Ez

∂y

∣

∣

∣

∣

n+1

i,0

− ∂Ez

∂y

∣

∣

∣

∣

n−1

i,0

)

=

−3Ez

∣

∣

n+1

i,0
+ 4Ez

∣

∣

n+1

i,1
− Ez

∣

∣

n+1

i,2
− (−3Ez

∣

∣

n−1

i,0
+ 4Ez

∣

∣

n−1

i,1
− Ez

∣

∣

n−1

i,2
)

4∆t∆y
. (4.13)

The difference approximations in (4.11)–(4.13) above are used in the case where
two pole-pairs of the tangent are modeled. If one pole-pair is modeled, the
discretization proceeds analogously at t = n · ∆t.

Let us first consider the discrete equations in the case where one pole-pair of
the tangent is modeled. Using the discretization principles described above,
we have the discretized SIBC in the form:

Ez|ni,0 −
q1µ2d

2

∆t2
(

Ez|n+1
i,0 − 2Ez|ni,0 + Ez|n−1

i,0

)

−
q1σ2µ2d

2

2∆t

(

Ez|n+1
i,0 − Ez|n−1

i,0

)

+
q1d

2

∆x2

(

Ez|ni+1,0 − 2Ez|ni,0 + Ez|ni−1,0

)

=

µrd

{−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2
2∆y

−

p1ε2µ2d
2

2∆y∆t2









−3Ez|n+1
i,0 + 4Ez|n+1

i,1 − Ez|n+1
i,2

−2(−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2)
−3Ez|n−1

i,0 + 4Ez|n−1
i,1 − Ez|n−1

i,2









−

p1σµ2d
2

4∆y∆t

[

−3Ez|n+1
i,0 + 4Ez|n+1

i,1 − Ez|n+1
i,2

−(−3Ez|n−1
i,0 + 4Ez|n−1

i,1 − Ez|n−1
i,2 )

]

+

p1d
2

2∆x2∆y









−3Ez|ni+1,0 + 4Ez|ni+1,1 − Ez|ni+1,2

−2(−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2)
−3Ez|ni−1,0 + 4Ez|ni−1,1 − Ez|ni−1,2























(4.14)

We find the terms containing Ez|n+1
i,0 and solve for it to obtain the final SIBC
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that can be implemented into FDTD programs:

Ez|n+1
i,0 =

1

A1

{

−12∆y∆t2Ez|ni,0 + 12q1∆yε2µ2d
2
(

−2Ez|ni,0 + Ez|n−1
i,0

)

−

6q1σµ2d
2∆y∆tEz|n−1

i,0 −

6p1µrµ2ε2d
3









4Ez|n+1
i,1 − Ez|n+1

i,2

−2(−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2)
−3Ez|n−1

i,0 + 4Ez|n−1
i,1 − Ez|n−1

i,2









−

12q1∆y∆t2d2

∆x2

(

Ez|ni+1,0 − 2Ez|ni,0 + Ez|ni−1,0

)

−
6µrd∆t2

(

−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2
)

−

3p1µrµ2d
3σ∆t

[

4Ez|n+1
i,1 − Ez|n+1

i,2

−(−3Ez|n−1
i,0 + 4Ez|n−1

i,1 − Ez|n−1
i,2 )

]

+
6µrp1d

3∆t2

∆x2









4Ez|ni+1,1 − Ez|ni+1,2

−2(−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2)
−3Ez|ni−1,0 + 4Ez|ni−1,1 − Ez|ni−1,2























.(4.15)

The constant A1 in equation (4.15) is defined as

A1 = −12q1∆yε2µ2d
2−6q1σµ2d

2∆y∆t−18p1µrµ2ε2d
3−9p1µrµ2σd3∆t. (4.16)

This algorithm works well for electrically thick layers. However, it may be
noticed that the constant A1 tends to zero as the layer thickness d tends to
zero. There is a simple trick to avoid the resulting instability for very thin
layers, namely to write Ez|ni,0 in a more “implicit” manner as an average in

the form Ez|ni,0 ≈ (Ez|n+1
i,0 + Ez|n−1

i,0 )/2. The update equation will be slightly
modified in that case, and the resulting scheme is stable for a wide range of
layer thicknesses. However, the discretization scheme described above is more
accurate for electrically thick coatings, which is the focus of our discussion.

Next, we derive the update equations in the case where two pole-pairs of the
tangent are modeled. Some partial derivatives that do not contain Ez|n+1

i,0

after discretization, have been written in the nondiscretized form for brevity.
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Discretizing and solving for Ez|n+1
i,0 yields

Ez|n+1
i,0 =

1

A2

{

−Ez|n−1
i,0 + q1σµ2d

2∂Ez

∂t

∣

∣

∣

∣

n−1

i,0

+

q1ε2µ2d
2 − q2σ

2µ2
2d

4

∆t2
(

Ez|ni,0 − 2Ez|n−1
i,0 + Ez|n−2

i,0

)

−

q2ε2µ
2
2σd4

∆t3

[

−3Ez|ni,0 + 3Ez|n−1
i,0 − Ez|n−2

i,0

Ez|ni,0 − 3Ez|n−1
i,0 + 3Ez|n−2

i,0 − Ez|n−3
i,0

]

−

q2ε
2
2µ

2
2d

4

∆t4
(

−4Ez|ni,0 + 6Ez|n−1
i,0 − 4Ez|n−2

i,0 + Ez|n−3
i,0

)

−

q1d
2∂2Ez

∂x2

∣

∣

∣

∣

n−1

i,0

− q2d
4 ∂4Ez

∂x4

∣

∣

∣

∣

n−1

i,0

=

µrd

[

1

2∆y

(

−3Ez|n−1
i,0 + 4Ez|n−1

i,1 − Ez|n−1
i,2

)

−

p1σµ2d
2

2

∂2Ez

∂y∂t

∣

∣

∣

∣

n−1

i,0

− (p1ε2µ2d
2 − p2σ

2µ2
2d

4)
∂3Ez

∂y∂t2

∣

∣

∣

∣

n−1

i,0

+

p2ε2µ
2
2σd4

2∆y∆t


























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





4Ez|n+1
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i,2 −
3
(

−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2
)

−
3
(

−3Ez|n−1
i,0 + 4Ez|n−1

i,1 − Ez|n−1
i,2

)

+

3
(

−3Ez|n−2
i,0 + 4Ez|n−2

i,1 − Ez|n−2
i,2

)

−
3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2−

3Ez|n−1
i,0 + 4Ez|n−1

i,1 − Ez|n−1
i,2 +

3
(

−3Ez|n−2
i,0 + 4Ez|n−2

i,1 − Ez|n−2
i,2

)

−
3Ez|n−3

i,0 + 4Ez|n−3
i,1 − Ez|n−3

i,2



































+

p2ε
2
2µ

2
2d

4

2∆y∆t4



















4Ez|n+1
i,1 − Ez|n+1

i,2 −
4
(

−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2
)

+

6
(

−3Ez|n−1
i,0 + 4Ez|n−1

i,1 − Ez|n−1
i,2

)

−
4
(

−3Ez|n−2
i,0 + 4Ez|n−2

i,1 − Ez|n−2
i,2

)

−3Ez|n+1
i,0 + 4Ez|ni,1 − Ez|ni,2



















+

p1d
2 ∂3Ez

∂y∂x2

∣

∣

∣

∣

n−1

i,0

+ p2d
4 ∂5Ez

∂y∂x4

∣

∣

∣

∣

n−1

i,0

]}

. (4.17)

The constant A2 in the update equation above is defined as

A2 = −q2ε2µ
2
2σd4

∆t3
− q2ε

2
2µ

2
2d

4

∆t4
− 3p2ε2µ

2
2σd4

2∆y∆t
− 3p2ε

2
2µ

2
2d

4

2∆y∆t4
. (4.18)

Similar remarks regarding the alternative discretization scheme as discussed
above in the case of one pole-pair modeled apply here.
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4.3.1 An Alternative Discretization Method

The impedance condition (4.7) can also be expressed as

[

1 + q1(k
2 +

∂2

∂x2
)d2 + q2(k

2 +
∂2

∂x2
)2d4

]

Ez =

µ2d

[

1 + p1(k
2 +

∂2

∂x2
)d2 + p2(k

2 +
∂2

∂x2
)2d4

]

∂Hx

∂t
. (4.19)

This form of the boundary condition can be conveniently applied, if certain
approximations are utilized. First, the magnetic field components are located
half cell away from the interface. That difference can be neglected in the
discretization without much loss in the accuracy. Further, if it is enough to
model just one thickness resonance, we can set p2 = q2 = 0. Also, the spatial
derivatives along the interface can be dropped out. The equation (4.19) now
takes the form

[

1 + q1k
2d2
]

Ez = −jωµ2d
[

1 + p1k
2d2
]

Hx. (4.20)

In the time domain, this is equivalent to

[

1 − q1σµ2d
∂

∂t
− q1ε2µ2d

2 ∂2

∂t2

]

Ez =

−µ2d

[

1 + p1σµ2d
2 ∂

∂t
+ p1ε2µ2d

2 ∂2

∂t2

]

∂Hx

∂t
. (4.21)

Suppose we want to discretize at time step t = n∆t using central differences.
This would yield discrete electric field terms Ez|n+1 to the left hand side, and
magnetic field terms Hx|n+3/2 to the right hand side of equation (4.21). At
the time of imposing the value of Ez|n+1 on the boundary, the magnetic fields
at the time step n + 1/2 are known, but the fields at time step n + 3/2 are
yet to be computed. Therefore, we have to neglect some terms or use other
discretization techniques. A second and third order derivatives of the magnetic
field can be approximated second-order accurately as

∂2Hx

∂t2

∣

∣

∣

∣

n

≈ 3Hx|n+1/2 − 7Hx|n−1/2 + 5Hx|n−3/2 − Hx|n−5/2

2∆t2
(4.22)

and

∂3Hx

∂t3

∣

∣

∣

∣

n

≈ 2Hx|n+1/2 − 7Hx|n−1/2 + 9Hx|n−3/2 − 5Hx|n−5/2 + Hx|n−7/2

∆t3
.

(4.23)
These expressions were derived using Taylor series and requiring second-order
accuracy. Notice that one extra term is required in both expressions as com-
pared with central differences to obtain second-order accuracy. Numerical
experiments were made with and without the second and third order time
derivatives of the magnetic field, and no improvement in accuracy was ob-
served if those terms are included. Stability problems were not observed when
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the unconventional difference approximations (4.22–4.23) were tested. How-
ever, rather good results are obtained by simply setting p1 = 0 so that just a
single derivative of the magnetic field Hx remains in the right hand side. The
discrete boundary condition reads

Ez|n+1
i,0 =

1

A3

{

−
(

1

2
+

q1σµ2d

2∆t

)

Ez|n−1
i,0

+
q1ε2µ2d

2

∆t2
(

−2Ez|ni,0 + Ez|n−1
i,0

)

− µ2d

∆t

(

Hx|n+1/2
i,1/2 − Hx|n−1/2

i,1/2

)

}

, (4.24)

where

A3 = −1

2
− q1ε2µ2d

2

∆t2
− q1σµ2d

2∆t
. (4.25)

This boundary condition was implemented: the results and comparisons with
the original method published in [2] will be discussed in section 4.4.

4.3.2 Discretization Techniques for Dispersive Coatings

For more general coatings having frequency-dispersion, it is convenient to de-
fine a couple of auxiliary variables to avoid higher-order derivatives. The fol-
lowing auxiliary variables, defined on the interface only, are introduced:

A =
ε(ω)

ε0

Ez, B = µrd
ε(ω)

ε0

∂Ez

∂y
. (4.26)

Equation (4.7) with the simpler (p2 = q2 = 0) rational approximation now
takes the form
[

1 + q1d
2 ∂2

∂x2

]

Ez + q1µ2ε0d
2ω2A = µrd

[

1 + p1d
2 ∂2

∂x2

]

∂Ez

∂y
+ p1µ0ε0d

2ω2B.

(4.27)
or in the time domain:
[

1 + q1d
2 ∂2

∂x2

]

Ez − q1µ2ε0d
2∂2A

∂t2
= µrd

[

1 + p1d
2 ∂2

∂x2

]

∂Ez

∂y
− p1µ0ε0d

2 ∂2B

∂t2
.

(4.28)
The discretization of (4.28) is performed with central-differences in the usual
manner, and the result is:

Ez|ni,0 +
q1d

2

∆x2

(

Ez|ni+1,0 − 2Ez|ni,0 + Ez|ni−1,0

)

+

q1µ2ε0d
2

∆t2
(

A|n+1 − 2A|n + A|n−1
)

=

µrd

2∆y

(

−3Ez|ni,0 + 4Ez|ni,1 + Ez|ni,2
)

+

µrp1d
3

2∆x2∆y









−3Ez|ni+1,0 + 4Ez|ni+1,1 − Ez|ni+1,2

−2(−3Ez|ni,0 + 4Ez|ni,1 − Ez|ni,2)
−3Ez|ni−1,0 + 4Ez|ni−1,1 − Ez|ni−1,2









+

p1µ0ε0d
2

∆t2
(

B|n+1 − 2B|n + B|n−1
)

. (4.29)

41



The auxiliary equations (4.26) are now transformed into the time-domain and
integrated once before discretization with central differences. The resulting
discrete integrals are evaluated second-order-accurately using the trapezoidal
rule. The auxiliary variables at time step t = (n + 1) · ∆t are then solved and
substituted into (4.29). Consider the discretization of the auxiliary equation
relating A and Ez on the interface. Substituting the expression for ε(ω) and
multiplying with the denominator, we obtain

(ω2
0 − γω2 + jδω)A =

[

(ε1ω
2
0 + β) − ε1γω2 + jε1δω

]

Ez. (4.30)

This is transformed into the time domain using jω ↔ ∂/∂t and integrated
once from 0 to t = n · ∆t. Then we have

γ
∂A

∂t
+ δA + ω2

0

∫ t

0

A dτ = ε1γ
∂Ez

∂t
+ ε1δEz + (ε1ω

2
0 + β)

∫ t

0

Ez dτ. (4.31)

The integrals are evaluated second-order-accurately with the trapezoidal rule.
This approach leads to summations that can be performed recursively quite
efficiently. We obtain the discrete equation

(4γ + ω2
0∆t2 + 2δ∆t)A|n+1 = (4γ − ω2

0∆t2 − 2δt)A|n +
[

4ε1γ + (ε1ω
2
0 + β)∆t2 + 2ε1δ∆t

]

Ez|n+1
i,0 −

[

4ε1γ − (ε1ω
2
0 + β)∆t2 − 2ε1δ∆t

]
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n
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1

2
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4(ε1ω
2
0 + β)∆t2

n
∑

m=1

1

2
(Ez|n−m+1 + Ez|n−m). (4.32)

The equation for B|n+1 is derived completely analogously. The result is

(4γ + ω2
0∆t2 + 2δ∆t)B|n+1 = (4γ − ω2

0∆t2 − 2δt)B|n +
[

4ε1γ + (ε1ω
2
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] µrd
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1
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(
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∣
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+
∂Ez
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∣

∣

∣

∣

n−m
)

. (4.33)

The final update equation for dispersive coating is obtained after substitut-
ing A|n+1 and B|n+1 from equations (4.32) and (4.33) into equation (4.29).
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Defining variables R1 and R2 as

R1 = (4γ − ω2
0∆t2 − 2δt)A|n −

[

4ε1γ − (ε1ω
2
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2
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and
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, (4.35)

we may write the final update equation in the form

Ez|n+1
i,0 =
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(
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C1
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)

}

, (4.36)

with the constants C1 and C2 defined as C1 = 4γ + (ω0∆t)2 + 2δ∆t and

C2 = −q1µ2ε0d
2
[

4ε1γ + (ε1ω
2
0 + β)∆t2 + 2ε1δ∆t

]

− 3p1µ2ε0d
3

2∆x

[

4ε1γ + (ε1ω
2
0 + β)∆t2 + 2ε1δ∆t

]

. (4.37)

Observe that the auxiliary variables at time steps n − 1 and n have been cal-
culated previously in the algorithm, according to equations (4.32) and (4.33).
Next, we will numerically study the performance of the developed FDTD mod-
els.
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4.4 Numerical Verification of the Proposed Mod-

els

4.4.1 Pulse Reflection in One Dimension

Let us now numerically verify the proposed model. In the first example, a
differentiated Gaussian pulse is reflected from a coated ideal conductor. This
problem can be formulated as a 1D problem in FDTD. The magnitude and
the phase of the reflection coefficient on the boundary are calculated with
the proposed method and with Lee’s method. In this situation, the suggested
more uniform approximation of the tangent function in the SIBC can be tested.
Comparison is made with exact reflection coefficient at normal incidence.

Dielectric Conductive Layers

The exact reflection coefficient in the case of normal incidence to be considered
first is of the form

R =
jη tan (kd) − η0

jη tan (kd) + η0

. (4.38)

The wave impedance in free space is denoted by η0. In numerical examples, we
have µ = µ0. Thus, the wave number k inside the layer is equal to k = ω

√
ε/c.
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Figure 4.2: (a) Magnitude of the reflection coefficient for εr = 8, σ = 0.1 S/m.
(b) Phase of the reflection coefficient for εr = 8, σ = 0.1 S/m.

Let us first study the models based on a coarser rational approximation where
p2 = q2 = 0. The first simulation is done for the case, where εr = 8, σ = 0.1
S/m and d = ∆x = 2 mm. The results are shown in Figure 4.2. The fields
involved are Ez and Hy, and the SIBC is applied at the boundary x = 0. The
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time step is equal to the Courant stability limit. At 4 GHz, the argument of
the tangent is approximately equal to 1.34. Hence, on the frequency range
from 0 to 4 GHz, good agreement should be expected. This is indeed the case
for both the proposed method and Lee’s method. At 8 GHz, the argument
of the tangent is about 2.68. Hence, satisfactory agreement for the proposed
method should be anticipated up to 8 GHz. The incorrect position of the
singularity in Lee’s method induces some deviation from the exact result. For
larger frequencies, the accuracy is slightly worse for both methods.
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Figure 4.3: (a) Magnitude of the reflection coefficient for εr = 20, σ = 0.3 S/m. (b)
Phase of the reflection coefficient for εr = 20, σ = 0.3 S/m.

Next we increase the dielectric constant and the conductivity of the layer to
εr = 20 and σ = 0.3 S/m, respectively. The thickness of the layer is the
same as in the first example, d = 2 mm. There is a jump discontinuity in
the phase of the reflection coefficient, as is seen in Figure 4.3. The proposed
method yields quite accurate results for both the magnitude and the phase of
the reflection coefficient, whereas the local minimum of the magnitude and the
position of the jump discontinuity of the phase of the reflection coefficient are
incorrectly given by Lee’s method. The discrepancy is most likely mainly due
to the erroneously positioned pole of the rational approximation.

Before proceeding to numerical examples where two pole-pairs of the tangent
are modeled, one example where εr = 50, σ = 0.5 S/m is considered. The
results are shown in Figure 4.4. The proposed method agrees well with the
exact results up to about 12 GHz. For larger frequencies, the results are
totally wrong. The reason for this is evidently the limited validity range of
the rational approximation. Again, Lee’s method is much less accurate than
the proposed method. It will be seen later that the proposed higher-order
formulation correctly models also the frequency range from 12 GHz to 20 GHz
if two pole-pairs of the tangent are modeled.

Next, we include nonzero coefficients p2 and q2 with the appropriate extra terms
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Figure 4.4: (a) Magnitude of the reflection coefficient for εr = 50, σ = 0.5 S/m. It
is stressed that the simpler rational approximation is not valid after f = 12 GHz.
(b) Phase of the reflection coefficient for εr = 50, σ = 0.5 S/m.

into the model. In Figure 4.5, results for εr = 5, σ = 0.5 S/m are shown. In
this case, we have changed the thickness of the layer to be d = 4 mm. It is
interesting to see that even with one pole-pair modeled (p2 = q2 = 0), the
proposed higher-order model yields approximately as accurate results as the
lower-order Lee’s formulation with p2 6= 0, q2 6= 0. Now, the local minimum
of the magnitude of the reflection coefficient calculated with Lee’s method
occurs in the correct frequency region, as expected, since the singularity of the
rational approximation used by Lee et al. is now properly positioned, as can
be seen in Figure 4.1 b).

The disadvantage of the rational approximation with p2 6= 0, q2 6= 0 used by
Lee et al. is that there is a singularity at about x = 3 (see Figure 4.1 b)).
This is the most probable reason for the qualitatively incorrect results of Lee’s
method for f > 14 GHz. Another possible reason is the inaccurate evaluation
of the normal derivative in the Lee’s model. The version of the proposed model
where two pole-pairs are modeled agrees very well with the analytical results.

Another example of the proposed higher-order model with p2 6= 0, q2 6= 0 is
shown in Figure 4.6. There was a stability problem in Lee’s method for these
parameters, hence those results are missing from the figure. The results should
be compared with Figure 4.4, where the same parameters of the coating were
used but the results were calculated with simpler rational approximations.
The range of applicability is seen to be much wider when two pole-pairs of
the tangent are modeled. The agreement is seen to be excellent for f=0 . . . 12
GHz and quite satisfactory for f=12 . . . 20 GHz for both the magnitude and
the phase of the reflection coefficient. The thickness of the coating is about
d = (0.57 . . . 0.94)λ at these frequencies. Here, λ denotes the wavelength inside
the layer. The convergence of the algorithm with decreasing cell size is also
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Figure 4.5: (a) Magnitude of the reflection coefficient for εr = 5, σ = 0.5 S/m. (b)
Phase of the reflection coefficient for εr = 5, σ = 0.5 S/m.

demonstrated in Figure 4.6. It is noticed that the thickness resonance is shifted
to correct position when smaller cells are used. However, small discrepancy
in the magnitude of the reflection coefficient remains. This is due to limited
accuracy of the rational approximation.

A further numerical study of the choice of the coefficients of the rational ap-
proximation reveals that the coefficients may be optimized to yield still better
accuracy. We observe some discrepancy in the position and the depth of the
magnitude of the reflection coefficient in Figure 4.6 when the cell size is ∆x = 2
mm. It turns out that slightly increasing parameter q2 shifts the position of
the second thickness resonance closer to the exact value (∆x = 2 mm). In
Figure 4.7 we see how the results change if we increase the parameter q2 by 4
percent. The resonance occurs at the correct frequency, but the depth of the
dip is overestimated. The depth can be adjusted by reducing parameter p2

by 6 percent. After the modification of q2 and p2, the accuracy is seen to be
excellent. Increase in the accuracy for these empirically modified parameters
occurs for other parameters of electrically thick coatings, too. A good ana-
lytical basis to determine the optical parameters p1, p2 and q1, q2 could be the
minimization of the error of the input impedance over certain frequency range
in a certain norm. This issue is not addressed here.

The proposed model can correctly handle layers with thickness up to about
one wavelength. This is considered to be a significant improvement to the
earlier models, which are only applicable to relatively thin layers.

Layers of Lorentz, Debye, and Drude Media

Next we show that the model also correctly handles more complicated layers
made of Lorentz, Debye or Drude materials. The problem setting is the same
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Figure 4.6: (a) Magnitude of the reflection coefficient for εr = 50, σ = 0.5 S/m. (b)
Phase of the reflection coefficient for εr = 50, σ = 0.5 S/m.

as described above. The magnitudes of the reflection coefficients are calculated
for each of the different layers. The permittivity of the Lorentz coating is
assumed to have a single pole-pair. The following parameters are used for
the Lorentz coating: ε1 = 5, β = 7.0 · 1021 rad2/s2, ω0 = 5.0 · 1010 rad/s,
γ = 1, δ = 5.0 · 109 s. Here, β is the change in the relative permittivity due
to the Lorentz pole pair, ω0 is the undamped frequency of the pole pair and
δ is the damping factor. The corresponding relative permittivity is shown in
Figure 4.8 a). Although not shown here, the reflected wave is highly oscillatory.
Figure 4.8 b) shows that despite the complexity of the coating the magnitude of
the reflection coefficient agrees rather well with the exact result. The thickness
of the coating is d = 2 mm. In the rational approximation of the tangent, we
have p2 = q2 = 0 with nonzero p1 and q1.

For Debye coating, we choose ε1 = 15, β = 5, ω0 = 1 rad/s,γ = 0, δ = 1.0 · 1011

s. Here, β is the change in relative permittivity due to the pole and δ is the
pole relaxation time. The magnitude of the reflection coefficient agrees well
with the exact result in Figure 4.9 b). The thickness of the coating is 2 mm.

Finally, Drude coating of thickness d = 3 mm is considered. The parameters
are ε1 = 1, ω0 = 0, β = 5.0 · 1020 rad2/s2, γ = 1 and δ = 8.33 · 107 s. In the
simulated frequency range, the agreement of the reflection coefficient in Figure
4.10 b) with the exact result is seen to be good. The real part of the relative
permittivity is close to unity, while the imaginary part has a singularity at
ω = 0, tending to 0 as ω → ∞.
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Figure 4.7: (a) Magnitude of the reflection coefficient for d = 2 mm, εr = 50,
σ = 0.5 S/m. Better accuracy is obtained by empirically adjusting the parameters
of the rational approximation. (b) Phase of the reflection coefficient for εr = 50,
σ = 0.5 S/m.

4.4.2 Cylindrical Wave in Two Dimensions

In this example, we consider a two-dimensional TMz case (electric field compo-
nent Ez is excited), where a cylindrical line source is placed above the dielectric
conductive coating. Comparison will be made in the time domain, where the
reflected and the total waveforms on the interface are calculated in a position,
where the angle of incidence is oblique. One pole-pair of the tangent is modeled
in this example. Comparison is made with the analytical results obtained by
evaluating the integrals (2.40) and (2.42) with the appropriate exact reflection
coefficient at oblique incidence.

Dielectric and Conductive Coatings

Arbitrarily choosing εr = 5, σ = 0.5 S/m, the reflected and the total waveforms
on the interface were calculated by numerically computing the inverse Fourier
transform of the exact frequency-domain solution. The line source (a differen-
tiated Gaussian pulse) is located 10 cells above the air-dielectric interface and
15 cells along the interface away from under the line source in the example
results shown in Figures 4.11–4.15. The methodology to calculate the exact
solution is based on the plane wave spectrum [28], similarly as in chapter 2.

In Figure 4.11 a) both methods are seen to agree quite well with the exact re-
flected waveform, the proposed method being slightly more accurate. In Figure
4.11 b), however, the proposed method is seen to be much more accurate. By
increasing the dielectric constant of the layer, we obtain more complicated
waveforms. The results for εr = 20, σ = 0.2 S/m are shown in Figure 4.12.
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Figure 4.8: (a) The frequency dependence of the relative permittivity function of
the Lorentz coating. (b) The magnitude of the reflection coefficient.

The source is now 20 cells above the interface. It it seen that the proposed
method still follows the exact solution quite accurately. The results are again
compared with the results calculated with Lee’s model. The proposed method
seems to be more accurate in this case. Many other simulations that are not
shown here support the superiority of the proposed model with respect to Lee’s
model. In this latter example, the layer thickness is d = 1.5 cm, corresponding
to 1.06λ at the peak frequency of the spectrum of the incident wave.

The surface impedance is quite sensitive to the change of the permeability of
the coating. Let us examine this case by letting the relative permeability of
the coating to be µr = 2. The corresponding reflected electric field is shown in
Figure 4.13 a). We further change the relative permeability to µr = 3, and the
agreement of the simulated and the analytical results in Figure 4.13 b) is seen
to be good. The reflected wave has become highly oscillatory, and the model
has some difficulties to produce the correct amplitude of the electric field.
Simulation with the simpler discretization technique was also run, and the
simpler model was found to be less accurate with these parameters. Notice that
the present model can only handle coatings whose permeability is constant,
more complicated layers with frequency-dispersive permeability function can
be modeled with the subcell technique, as will be shown in chapter 6.

Let us further compare the different discretization techniques. Let the coating
have the parameters εr = 80, σ = 0.2 S/m, d = 1.5 cm and the source be
located 20 cells above the interface, and 15 cells along the interface away from
under the source. From the results in Figure 4.14, it is obvious that the simpler
model is very useful, although slightly less accurate than the original model.
The difference between the results calculated with the models is more evident
in Figure 4.14 b), where the total electric field at the observation point as a
function of time is shown.

50



0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

15

20

Frequency [GHz]

Re ε
r
(ω)

Im ε
r
(ω)

(a)

2 4 6 8 10 12 14 16
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Frequency [GHz]

|R
|

FDTD
Exact

(b)

Figure 4.9: (a) The frequency dependence of the relative permittivity function of
the Debye coating. (b) The magnitude of the reflection coefficient.

Dispersive Coatings

In the following, we test the developed model for dispersive coatings. The
source is located 20 cells above the interface and 15 cells away along the in-
terface. Thus, the angle of incidence is 36.9 degrees. The rather complicated
updating scheme works very accurately, as can be seen in Figure 4.15 a), where
the reflected electric field on the air-dielectric interface is numerically simulated
with FDTD and compared with analytical results. Similar level of agreement
was observed in the total field, too. The relative permittivity function versus
angular frequency is shown in Figure 4.15 b). The position of the resonance
is chosen so that the incident wave has significant amount of energy near that
frequency.

To obtain a coating of Drude type, we set ω0 = 0. Some other parameters
of the coating are also modified. A totally different frequency-dependence of
the permittivity function is realized [see Figure 4.16 b)]. The reflected electric
field in Figure 4.16 a) agrees very well with the analytical solution.

Finally, we check the model performance for a coating of Debye type. Sea
water is a common example of a material obeying Debye-type permittivity
relation. A numerical example is given in Figure 4.17 a), and the permittivity
expression is presented in Figure 4.17 b).

These coatings are electrically rather thick, and neglecting the spatial deriva-
tives along the interface will not noticeably change the results. Our rigorous
analytical approach is seen to yield very accurate results for many different
coatings, and the derived scheme is the same for different types of frequency
dispersion, as long as we assume a single pole-pair. In fact, dielectric and
conductive coatings can be obtained as special cases from the general formu-
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Figure 4.10: (a) The frequency dependence of the relative permittivity function of
the Drude coating. (b) The magnitude of the reflection coefficient.

lation for frequency-dispersive coatings. However, it is possible to avoid the
cumbersome auxiliary variables if frequency-dispersion is negligible, enabling
simpler updating techniques.

4.5 Scattering width calculations

It is well known that the scattering cross section of an object can be ma-
nipulated with a dielectric coating. This issue is demonstrated with FDTD
simulations in this section. An FDTD code based on pure scattered-field
formulation was written for this purpose. Another possibility would be to
use the total-field/scattered-field formulation, which is, however, less attrac-
tive since there are dispersion errors in the incident fields. Contrary to the
total-field/scattered-field technique, the pure scattered-field technique has the
obvious advantage that the incident fields are calculated from exact analytical
expressions. The scattered fields are updated according to the conventional
FDTD algorithm outside the scattering body. When the simulation proceeds,
the scattered field is effectively generated on the surface of the object. The
impedance boundary conditions on the surface of the object are formulated in
terms of the incident and scattered fields as follows:

Escat
t = −Einc

t + Zs(ω) ·
[

n ×
(

Hinc
t + Hscat

t

)]

. (4.39)

The simulations are made in 2D situation, hence the object is infinitely long in
one spatial dimension and the scattering cross section reduces to the scattering
width of the object. Scattering from a square cylinder is studied here. The
square shape is easy to accommodate in our rectangular Yee lattice, hence this
simple geometry has been chosen. The problem geometry is shown in Figure
4.18. A near-field to far-field transformation is implemented [41] to calculate
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Figure 4.11: (a) Reflected waveform at the observation point on the interface. (b)
Total waveform at the observation point.

the scattered far-fields. It was observed that the low-frequency behavior of
scattering width is correctly modeled only if the transformation boundary is
relatively close to the object. For larger frequencies, the exact position of the
transformation boundary has negligible effect on the scattered far-fields. On
the transformation boundary, equivalent electric and magnetic currents (Jeq

and Meq, respectively) are calculated according to

Jeq = n × H, Meq = −n × E. (4.40)

Here, n denotes the unit normal vector pointing outwards from the trans-
formation boundary. Using the equivalent surface currents Jeq and Meq, a
complex-valued pattern function F (θ), independent of the radial distance r, is
computed as

F (θ) =
ej π

4

√
8πk

∮

C

[ωµ0u
′
z · Jeq(r

′) − ku′
z × Meq(r

′) · ur] e
jkur·r′dC ′, (4.41)

where primes denote the coordinates on the transformation contour C, and ur

is the radial unit vector.

The two-dimensional bistatic radar cross section is defined as the ratio of the
power scattered per unit angle in certain direction divided by the incident
power per unit length. Mathematically, the radar cross section is given by [27]

RCS(θ) = 2π
|F (θ)|2
|Einc|2 , (4.42)

and it has the dimensions of meters.

A wide band differentiated Gaussian pulse is used as the incident pulse. The
incident electric field is of the form

Einc
z = f(ct − x cos(θinc) − y sin(θinc)), (4.43)
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Figure 4.12: (a) The reflected electric fields at the observation point. Comparison
with Lee’s method reveals that the proposed method is much more accurate. (b)
The total electric field at the observation point.

where f is the differentiated Gaussian pulse and θinc is the angle of incidence.
The coordinate origin is located in the geometrical center point of the scatterer.
The incident magnetic field components are readily calculated from Maxwell’s
equations:

H inc
x = −sin(θinc)

η0

Einc
z , H inc

y =
cos(θinc)

η0

Einc
z . (4.44)

The scattering width is calculated to a direction specified by the angle θscat

(see Figure 4.18). Let the cylinder have a square cross section with side length
L = 10 cm (corresponding to 50 cells in FDTD). In Figure 4.19 a), results
for θinc = θscat = 0 are shown. For a reference see [8], where the scattering
width magnitude for a well-conducting (σ = 20 S/m) cylinder with the same
dimensions is shown.

It is seen in Figure 4.19 a) that coatings can dramatically reduce scattering in
a certain frequency range. The scattering width magnitude for small frequen-
cies behaves similarly regardless of the coating. For very small frequencies, the
scattering width magnitude becomes negligible. This is natural since the inci-
dent waves do not “see” the scatterer if the wavelength is very large compared
with the size of the object. It is also seen that a change in the conductivity of
the coating controls the depth of the peak of the scattering width magnitude
in this particular case. For a thicker coating, the resonance occurs at lower fre-
quencies, as expected. For electrically thinner coatings (the physical thickness
is kept constant), the resonance is shifted to higher frequencies. Scattering
width magnitudes at scattering angle θscat = 60 degrees are presented in Fig-
ure 4.19 b). Results for the PEC cylinder are similar to those presented in [8]
for a well-conducting cylinder.
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Figure 4.13: (a) The reflected electric fields at the observation point. The relative
permeability of the coating is µr = 2, other parameters as in Figure 4.12. (b) The
reflected electric fields at the observation point. The relative permeability of the
coating is µr = 3, other parameters as in Figure 4.12. Apparently, the reflected
electric field is quite sensitive to the change of permeability of the coating. The
simpler discrete model is less accurate.

4.6 Conclusions

A new accurate SIBC-based FDTD model of dispersive and conductive ma-
terial layers on metal surfaces has been presented and verified by comparison
with analytical results. Three significant improvements to the existing models
were introduced. As the first important new feature, tangential variations of
the fields on the interface were accounted for in a general fashion using spatial
derivatives. Secondly, an accurate approximation of the surface impedance
function was presented. As a third improvement, the proposed model can
handle more complicated dispersive coatings, where the permittivity function
is of Lorentz, Debye or Drude type. Many numerical examples clearly indicate
the advantages of the proposed model as compared with the earlier models.
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Figure 4.14: (a) Reflected waveform at the observation point on the interface. The
simpler model appears to yield almost as accurate reflected waveform as the original
more complicated model. The approximation Ez|n ≈ (Ez|n+1 + Ez|n−1)/2 has been
used in the discretization. Results without this unnecessary approximation are so
close to these results that they have not been plotted in the figure for the sake
of clarity. (b) Total waveform at the observation point. Here, a more significant
deviation from the analytical result can be observed. In particular, the simpler
model overestimates the amplitude of the first three peaks. At later times, both
models yield essentially similar results, which agree well with the analytical result.
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Figure 4.15: (a) The reflected electric field at the observation point on the interface.
Ideally conducting planar metal interface is coated with a Lorentzian layer with one
pole-pair. The parameters of the coating are: d = 2.0 cm, ε1 = 20, β = 1.6 · 1019

1/s2, ω0 = 4.7 · 109 1/s, γ = 1, δ = 3.0 · 107 s. (b) The relative permittivity of the
Lorentzian coating as a function of angular frequency.
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Figure 4.16: (a) The reflected electric field at the observation point on the interface.
The parameters of the Drude coating are: d = 1.5 cm, ε1 = 20, β = 1.6 · 1019 1/s2,
ω0 = 0, γ = 1, δ = 3.0 · 108 s. (b) The relative permittivity of the Drude coating as
a function of angular frequency.
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Figure 4.17: (a) The reflected electric field at the observation point on the interface.
The parameters of the Debye coating are: d = 1.5 cm, ε1 = 20, β = 20, ω0 = 1,
γ = 0, δ = 5.0 · 10−10 s. (b) The relative permittivity of the Debye coating as a
function of angular frequency.
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Figure 4.18: The problem geometry. Scattering widths of cylinders are computed
with FDTD using impedance boundary conditions.
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Figure 4.19: (a) The scattering width magnitude of square cylinders at scattering
angle θscat = 0 degrees versus frequency. (b) The scattering width magnitude of
square cylinders at scattering angle θscat = 60 degrees versus frequency.
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Chapter 5

Coatings on More General

Conductors

FDTD-modeling of various coatings on conductors is continued in this chapter.
Instead of an ideally conducting backing, a more general conductor backing
is now considered. Modeling of general conductors requires the recursive con-
volution technique, which was described in chapter 2. In this rather general
situation, the higher-order SIBC would become too complicated to implement
in a stable manner, and we deal with first-order boundary conditions.

5.1 Introduction

If the field diffusion into the conductor backing is not negligible, we must work
with more general impedance boundary conditions accounting for the field
diffusion. This extension is implemented here in a novel and consistent way.

We start with an analytical impedance boundary condition simulating coated
dielectric and conductive materials. Utilizing some approximations in the ana-
lytical frequency-domain SIBC, we derive the appropriate impedance boundary
conditions in the time domain in section 5.2 and develop the associated discrete
FDTD model in section 5.3. The model is then carefully verified by comparison
with exact results in 1D and 2D example problems. In the one-dimensional
case, we simulate reflection of a pulse from the interface between air and a
coated conductor. In the 2D case, we simulate the reflection of a cylindrical,
obliquely incident pulse from the interface. Both time and frequency domain
comparisons are made, and normal and oblique incidence angles are tested. As
special cases, the proposed model is equivalent to modeling a coating on per-
fect electric conductor or a dielectric and conductive material body without the
coating, or even empty space. Hence, the proposed method is a considerably
more general tool for FDTD modeling than the earlier methods. Numerical
examples are given to demonstrate that the model properly reduces to the
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earlier models in the aforementioned special cases.

5.2 The Analytical Surface Impedance Model

Let us consider a problem where a dielectric and conductive body is covered
with a dielectric and conductive coating of thickness d. The complex permit-
tivity of the coating is of the form

εc = ε′c − j
σc

ω
(5.1)

and the permittivity of the material body under the coating is

εm = ε′m − j
σm

ω
. (5.2)

The relative dielectric constants are denoted by ε′c,r and ε′m,r. The perme-
abilities are supposed to be constants: µc and µm for the coating and the
conductive backing, respectively. The problem geometry and the equivalent
surface impedance model are shown in Figure 5.1.

εm σm,

incident
electromagnetic
wave

conducting body

d ε ,σ coatingc c

(a)

y

zero fields behind the interface

xE = Z n Hs(ω)

(b)

Figure 5.1: (a) The problem geometry. The reflection of an electromagnetic wave
from a coated conducting target is modeled. (b) The equivalent surface impedance
model and the chosen coordinate system. This coordinate system is used in the
analytical considerations (z-axis upwards).

The classical surface impedance boundary condition on the interface between
free space and a coating is of the form

Et = Zs(ω)n × Ht, (5.3)

where the subscript t refers to the tangential components of the fields and n

is the unit surface normal pointing outwards from the interface.

The analytical surface impedance may be obtained from a simple transmission-
line model [42]. Let the thickness of the coating with the characteristic im-
pedance ηc be equal to d, and the material under the coating have the char-
acteristic impedance equal to ηm. Considering the coating as a section of a
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transmission line of length d with the characteristic impedance equal to ηc,
terminated with the impedance ηm, the input impedance (corresponds to the
surface impedance in this model) seen by a normally incident wave at distance
d from the termination reads

Zs(ω) = ηc
ηm + jηc tan(kcd)

ηc + jηm tan(kcd)
, (5.4)

where kc is the wave number inside the coating. Similar expression as (5.4)
is frequently encountered in microwave engineering, where the term (input)
impedance is usually used [42]. The surface impedance boundary condition
based on (5.4) is the basis of the proposed model. The earlier SIBC models for
conductors by Maloney and Smith and by the author (see chapter 2) assume
ηc = 0 (no coating), and the models for coated ideal conductors by Lee et

al. and by the author suppose that ηm = 0 (see chapter 4). In the following
section, the generalization of the earlier FDTD models is investigated.

5.3 Derivation of the SIBC in the Time do-

main

Let the unit surface normal vector of the planar interface be n = uy, so that
the interface is parallel to the xz-plane. The impedance boundary condition
(5.3)–(5.4) now takes the form

Ex = Zs(ω)Hz, Ez = −Zs(ω)Hx. (5.5)

In the following, we will derive the SIBC relating Ez and Hx as an example.
The derivation for Ex and Hz proceeds similarly. For numerical purposes, a
rational approximation of the tangent function appearing in the surface im-
pedance function (5.4) must be introduced. Some authors (see, e.g. [10]) have
simply utilized the approximation tan(x) ≈ x, which is valid for quite small ar-
guments of the tangent function. Obviously, any algorithm (like that presented
in [10]) based on the approximation tan(x) ≈ x is restricted to electrically thin
coatings without thickness resonances. In fact, if the coating is PEC-backed,
the entire impedance function does not depend on the permittivity and con-
ductivity of the coating at all. A more accurate yet simple approximation that
is used here reads:

tan(x) ≈ x

1 − q1x2
, (5.6)

where the parameter q1 = 4/π2 is chosen to correctly capture the singular
behavior at x = π/2, a pole of the tangent. Evidently, it is reasonable to use
approximation (5.6) rather than tan(x) ≈ x if it does not cause troubles in
the discrete model. These two approximations will be compared in section
5.5. Although it is easy to construct arbitrarily accurate approximations of
the impedance function, they are increasingly complicated to implement in
discrete form. A more accurate rational approximation was used by the author
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in chapter 4 where the backing was an ideal conductor, but we will show that
the very simple approximation in (5.6) is enough to yield very accurate results
in many cases. The reason for choosing a simpler rational approximation here
is that we want to avoid very high-order derivatives in the model that would
lead to unconventional discretization techniques or even stability problems.

We write k = ω
√

εcµc and substitute the approximation of the tangent into
the analytical SIBC obtaining

[

1 + j

√

µm

εm

√

εc

µc

ω
√

εcµcd

1 − q1ω2εcµcd2

]

Ez =

−
[√

µm

εm

+ j

√

µc

εc

ω
√

εcµcd

1 − q1ω2εcµcd2

]

Hx. (5.7)

5.3.1 Dielectric and Conductive Coatings

Let us first discuss dielectric and conductive coatings without frequency dis-
persion. The model will be later generalized to dispersive coatings as well. We
multiply with the term 1 − q1ω

2εcµcd
2 and substitute expressions (5.1)–(5.2)

into (5.7). After minor simplification we get

[

1 − q1ε
′
cµcd

2ω2 + jq1µcσcd
2ω +

√

jωµm

jωε′m + σm

(jωε′c + σc)d

]

Ez =

−
√

jωµm

jωε′m + σm

(

1 − q1ε
′
cµcd

2ω2 + jq1µcσcd
2ω
)

Hx − jωµcdHx. (5.8)

We use the Laplace transform as in chapter 2 obtaining the time-domain
boundary condition:

Ez + q1ε
′
cµcd

2∂2Ez

∂t2
+ (q1µcσcd

2 + η̂mε′cd)
∂Ez

∂t
+ η̂mσcdEz +

η̂m

∫ t

0

αeατ [I0(ατ) + I1(ατ)] ε′cd
∂Ez

∂(t − τ)
dτ =

−µcd
∂Hx

∂t
− η̂m

(

Hx + q1ε
′
cµcd

2∂2Hx

∂t2
+ q1µcσcd

2∂Hx

∂t

)

−

η̂m

∫ t

0

αeατ [I0(ατ) + I1(ατ)] ·
(

σcdEz(t − τ) + Hx(t − τ) + q1ε
′
cµcd

2 ∂2Hx

∂(t − τ)2
+ q1µcσcd

2 ∂Hx

∂(t − τ)

)

dτ,(5.9)

where we have denoted

η̂m =

√

µm

ε′m
. (5.10)

The term σcdEz(t − τ) was moved under the second integral because the re-
cursive relations used to evaluate the two integrals are different.
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5.3.2 Frequency-Dispersive Coatings

The model will now be extended to coatings with frequency dispersion. How-
ever, we will assume a constant permeability as before. We define auxiliary
variables in the same manner as earlier to simplify the algorithm:

A =
εc(ω)

ε0

Ez, B =
εc(ω)

ε0

Hx. (5.11)

Similar definitions are made for Ex and Hz. Here we will derive the update
equation for Ez only, as above. Regarding constants C1, C2 and variable R1,
the notation is the same as in chapter 4, where dispersive coatings on ideally
conducting surfaces were dealt with.

After straightforward derivation, we obtain the time-domain boundary condi-
tion:

Ez + q1ε0µcd
2 ∂2A

∂t2
+ η̂mε0d

∂A

∂t
+

η̂m

∫ t

0

αeατ [I0(ατ) + I1(ατ)]

(

ε0d
∂A

∂(t − τ)

)

dτ =

−µcd
∂Hx

∂t
− η̂m

(

Hx + q1ε0µcd
2∂2B

∂t2

)

−

η̂m

∫ t

0

αeατ [I0(ατ) + I1(ατ)] ·
(

Hx(t − τ) + q1ε0µcd
2 ∂2B

∂(t − τ)2

)

dτ, (5.12)

The discrete models will be developed next.

5.4 The Discrete FDTD Model

The convolution integrals are approximated as sums of the form

n
∑

m=0

F (m)f(Ez|n−m, Hx|n−m), (5.13)

where the function f refers to the part of the integrand that depends on the
fields Ez and/or Hx at time steps 1 . . . n. Assuming a piecewise linear behavior
of f , the coefficients F (m) may be calculated as in chapter 2. The coefficients βl

and γl are obtained as solutions of linear systems of equations and polynomial
equations as in chapter 2, described in detail in [7, 28]. Now, the first integral
of ε′cd∂Ez/∂(t−τ) in (5.9) at the grid position (x, y, z) = (i∆x, 0, (k+1/2)∆z)
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can be expressed as a discrete sum in the form

n
∑

m=0

F (m)

(

ε′cd
Ez|n−m+1

i,0,k+1/2 − Ez|n−m−1
i,0,k+1/2

2∆t

)

=

F (0)

(

ε′cd
Ez|n+1

i,0,k+1/2 − Ez|n−1
i,0,k+1/2

∆t

)

+

p
∑

l=1

n
∑

m=1

βlγ
m
l

(

ε′cd
Ez|n−m+1

i,0,k+1/2 − Ez|n−m−1
i,0,k+1/2

2∆t

)

= F (0)

(

ε′cd
Ez|n+1

i,0,k+1/2 − Ez|n−1
i,0,k+1/2

2∆t

)

+

p
∑

l=1

Φl|ni,0,k+1/2, (5.14)

where the variable Φl satisfies the recursive relation of the form

Φl|1i,0,k+1/2 = 0 , l = 1, . . . , p

Φl|ni,0,k+1/2 = γlΦl|n−1
i,0,k+1/2

+ βlγl
ε′cd

2∆t
(Ez|ni,0,k+1/2 − Ez|n−2

i,0,k+1/2) , l = 1, . . . , p. (5.15)

Notice that the term with F (0) =
∑p

l=1 βl as a multiplier is extracted from
the recursion formula. This is due to the fact that the term Ez|n+1

i,0,k+1/2 occurs
within the convolution integral, disabling the direct recursion. The second
convolution integral involving the term σcdEz(t − τ) and the magnetic fields
can be computed recursively according to

Ψl|1i,0,k+1/2 = 0 , l = 1, . . . , p

Ψl|ni,0,k+1/2 = γlΨl|n−1
i,0,k+1/2 + βl

[

σcdEz|ni,0,k+1/2 + Hx|n−1/2
i,1/2,k+1/2

+
q1ε

′
cµcd

2

∆t2

(

Hx|n+1/2
i,1/2,k+1/2 − 2Hx|n−1/2

i,1/2,k+1/2 + Hx|n−3/2
i,1/2,k+1/2

)

+
q1µcσcd

2

2∆t
(Hx|n+1/2

i,1/2,k+1/2 − Hx|n−3/2
i,1/2,k+1/2)

]

, l = 1, . . . , p.(5.16)

The tangential electric and magnetic fields in the Yee lattice are not collocated.
This is not a severe problem, as will be shown with numerical examples in
the following section. Suppose we want to discretize the analytical SIBC at
time moment t = n · ∆t, where ∆t is the time step in the FDTD algorithm.
The electric field component, for instance Ez at time step t = n · ∆t at the
grid position (x, 0, z) = (i∆x, 0, (k + 1

2
)∆z), denoted shortly Ez|ni,0,k+1/2, is

related to the magnetic field component at the same position, which may
be approximated with the magnetic field component Hx located at half-cell
distance away from the interface and half time step earlier in time. That is,

Hx|ni,0,k+1/2 ≈ Hx|n−1/2
i,1/2,k+1/2. (5.17)

This approach has been successfully used by some authors [7, 8]. Another
simple approach is to just neglect the spatial error. This approach has been
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used in [14] without significant loss of accuracy. Extrapolation techniques
may also be developed, but they easily lead to stricter stability limits or even
stability problems. In some problems, the magnetic field may be eliminated
using Maxwell’s equations, leading to a boundary condition involving only the
electric field. This approach has been utilized in [50]. Let us now discuss how
the time-domain SIBC (5.9) derived above can be discretized.

5.4.1 Discrete Model for Dielectric and Conductive Coat-

ings

The derivatives in the left hand size of (5.9) are discretized with the usual
central differences at time step t = n ·∆t. The update equation will be derived
for Ez|n+1

i,0,k+1/2, necessitating the approximation

Ez|ni,0,k+1/2 ≈
Ez|n+1

i,0,k+1/2 + Ez|n−1
i,0,k+1/2

2
(5.18)

to obtain a stable algorithm when the coating thickness tends to zero1. A good
discussion of Prony’s method to calculate the coefficients βl and γl in the con-
text of impedance boundary conditions can be found in [7]. Here, the discrete
time derivative under the convolution integral has the term Ez|n+1

i,0,k+1/2. Hence,
we have to extract that one term separately from the sum approximating the
integral. The first term in the right-hand side of (5.9) is discretized at t = n·∆t
and (i, 1/2, k + 1/2). The second term in parentheses is evaluated at the same
position at t = (n−1/2) ·∆t, because of the presence of the second-order time
derivative, which could not be directly evaluated at t = n · ∆t (since Hx|n+3/2

is not known at time step t = (n+1)·∆t). Using these discretization principles
and solving for Ez|n+1

i,0,k+1/2, we obtain the update equation

Ez|n+1
i,0,k+1/2 =

1

A

{

−1

2
Ez|n−1

i,0,k+1/2 −
q1ε

′
cµcd

2

∆t2

(

−2Ez|ni,0,k+1/2 + Ez|n−1
i,0,k+1/2

)

+
η̂mε′cd(1 + F (0)) + q1µcσcd

2

2∆t
Ez|n−1

i,0,k+1/2

−η̂m

(

σcdEz|ni,0,k+1/2 +

p
∑

l=1

Ψl|ni,0,k+1/2

)

−η̂mHx|n−1/2
i,1/2,k+1/2 −

η̂mq1ε
′
cµcd

2

∆t2

(

Hx|n+1/2
i,1/2,k+1/2 − 2Hx|n−1/2

i,1/2,k+1/2

+Hx|n−3/2
i,1/2,k+1/2

)

− µcd

∆t
(Hx|n+1/2

i,1/2,k+1/2 − Hx|n−1/2
i,1/2,k+1/2)

− η̂mq1µcσcd
2

2∆t
(Hx|n+1/2

i,1/2,k+1/2−Hx|n−3/2
i,1/2,k+1/2)−η̂m

p
∑

l=1

Φl|ni,0,k+1/2

}

,(5.19)

1In the previous chapter this approximation was not necessary for relatively thick coat-
ings. However, for very thin coatings, this approximation must be used also in the model of
the previous chapter to ensure stability.
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where the constant A is defined as

A =
1

2
+

q1ε
′
cµcd

2

∆t2
+

η̂mε′cd(1 + F (0)) + q1µcσcd
2

2∆t
. (5.20)

The variables Ψ and Φ, defined on the interface only, satisfy the recursive rela-
tions (5.15) and (5.16) as discussed above. A simpler algorithm corresponding
to the approximation tan(x) ≈ x is obtained by letting q1 = 0 in (5.20). To
obtain the update equation for Ex, we need to replace Ez with Ex and Hx

with −Hz in the above derivations and to define the corresponding auxiliary
variables.

5.4.2 Discrete Model for Dispersive Coatings

Using the auxiliary variables, we obtain the discrete equation (the same as
(4.32), repeated here for convenience)

(4γ + ω2
0∆t2 + 2δ∆t)A|n+1 = (4γ − ω2

0∆t2 − 2δt)A|n +
[

4ε1γ + (ε1ω
2
0 + β)∆t2 + 2ε1δ∆t

]

Ez|n+1
i,0 −

[

4ε1γ − (ε1ω
2
0 + β)∆t2 − 2ε1δ∆t

]

Ez|ni,0 −

4ω2
0∆t2

n
∑

m=1

1

2
(A|n−m+1 + A|n−m) +

4(ε1ω
2
0 + β)∆t2

n
∑

m=1

1

2
(Ez|n−m+1 + Ez|n−m). (5.21)

Similarly, the auxiliary equation relating Hx and B is discretized, and we
obtain

(4γ + ω2
0∆t2 + 2δ∆t)B|n+1/2 = (4γ − ω2

0∆t2 − 2δt)B|n−1/2 +
[

4ε1γ + (ε1ω
2
0 + β)∆t2 + 2ε1δ∆t

]

Hx|n+1/2
i,0 −

[

4ε1γ − (ε1ω
2
0 + β)∆t2 − 2ε1δ∆t

]

Hx|n−1/2
i,0 −

4ω2
0∆t2

n
∑

m=1

1

2
(B|n−m+1/2 + B|n−m−1/2) +

4(ε1ω
2
0 + β)∆t2

n
∑

m=1

1

2
(Hx|n−m+1/2 + Hx|n−m−1/2). (5.22)

We define constant C1 as C1 = 4γ + ω2
0∆t2 + 2δ∆t. Variable R1 is defined as

R1 = (4γ − ω2
0∆t2 − 2δt)A|n −

[

4ε1γ − (ε1ω
2
0 + β)∆t2 − 2ε1δ∆t

]

Ez|ni,0 −

4ω2
0∆t2

n
∑

m=1

1

2
(A|n−m+1 + A|n−m) +

4(ε1ω
2
0 + β)∆t2

n
∑

m=1

1

2
(Ez|n−m+1 + Ez|n−m). (5.23)
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The discrete boundary condition becomes

Ez|n+1
i,0,k+1/2 =

1

A

{

−1

2
Ez|n−1

i,0,k+1/2 −
q1ε0µcd

2

∆t2

(

R1

C1

− 2A|n + A|n−1

)

− η̂mε0d(1 + F (0))

2∆t

(

R1

C1

− A|n−1

)

− µcd

∆t

(

Hx|n+1/2
i,1/2,k+1/2 − Hx|n−1/2

i,1/2,k+1/2

)

−η̂mHx|n−1/2
i,1/2,k+1/2 −

η̂mq1ε0µcd
2

∆t2

(

B|n+1/2
i,1/2,k+1/2 − 2B|n−1/2

i,1/2,k+1/2 + B|n−3/2
i,0,k+1/2

)

−η̂m

p
∑

l=1

Ψl|ni,0,k+1/2−η̂m

p
∑

l=1

Φl|n+1/2
i,1/2,k+1/2

}

.(5.24)

The discrete convolutions are evaluated according to following recursive rela-
tions:

Ψl|1i,0,k+1/2 = 0 , l = 1, . . . , p

Ψl|ni,0,k+1/2 = γlΨl|n−1
i,0,k+1/2

+ βlγl
ε0d

2∆t
(A|ni,0,k+1/2 − A|n−2

i,0,k+1/2) , l = 1, . . . , p. (5.25)

and

Φl|1i,0,k+1/2 = 0 , l = 1, . . . , p

Φl|n+1/2
i,0,k+1/2 = γlΦl|n−1/2

i,0,k+1/2 + βl

[

Hx|n−1/2
i,1/2,k+1/2 +

q1ε0µcd
2

∆t2

·
(

B|n+1/2
i,1/2,k+1/2 − 2B|n−1/2

i,1/2,k+1/2 + B|n−3/2
i,1/2,k+1/2

)]

,

l = 1, . . . , p. (5.26)

Again, the general model for dispersive coatings can be used to model dielectric
and conductive coatings without frequency dispersion. However, the algorithm
is unnecessarily complicated due to the auxiliary variables.

The present discrete scheme should be straightforward to apply in other coor-
dinate systems as well, since we only need the tangential electric field on the
interface and the tangential magnetic field defined at half-cell distance from
the interface. In rectangular coordinates, one might utilize the contour-path
algorithm [43] to account for the curvature of the impedance surface. An
attempt towards this direction was made by Farahat et al. in [12].

The absence of spatial derivatives along the interface is a convenient feature
near corner points, since the same discrete scheme can be applied. Although
the surface impedance is not defined at corner points, because the tangential
vectors cannot be defined, we can use the same scheme with acceptable errors.
In [8], scattering of infinitely long conducting cylinders with rectangular cross-
section was studied using first-order accurate impedance boundary conditions.
It has been demonstrated in [8] that the use SIBCs and the direct discretization
approach give similar results for the scattering width magnitude.
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5.5 Numerical Verification of the Model

Let us study the accuracy of the proposed model with numerical examples.
One and two-dimensional example problems are considered. In both example
problems, the electric field is excited with a differentiated Gaussian pulse of
the form

I(t) = (t − τ1)e
−
(

t−τ1
τ2

)2

. (5.27)

The smoothness and the wide spectrum of this pulse enable a convenient study
of reflected waves in both time and frequency domains. Some of the problems
are solved by directly discretizing the fields within the coating and the con-
ductor backing. Comparison of the memory requirements and the CPU times
of the two approaches reveal that huge computational savings can be realized.

5.5.1 Reflection from a Coated Conductor at Normal

Incidence

For normally incident waves, we can easily calculate the exact reflection coef-
ficient versus frequency as

R(ω) =
Zs(ω) − η0

Zs(ω) + η0

. (5.28)

The numerical reflection coefficient is calculated as the ratio of the reflected
and the incident spectrums, which are computed in the FDTD simulation as
running sums, according to the discrete Fourier transform.

The problem is solved with the FDTD method as a one-dimensional problem.
The spatial cell size is ∆x = 2 mm, and the time step size is equal to the
Courant stability limit: ∆t = ∆x/c0, where c0 is the speed of light in vacuum.
The parameters of the pulse in (5.27) are τ1 = 24∆t, τ2 = 7.2∆t.

Let us first consider the case when the thickness of the coating is d = 2 mm,
the relative dielectric constant of the coating is ε′c,r = 2, and the conductiv-
ity of the coating is σc = 0.01 S/m. The material body behind the coating
is assumed to have the parameters ε′m,r = 1, σm = 0.05 S/m. Unless other-
wise mentioned, the relative permeabilities of the materials are equal to unity.
Notice that the conductivities and the relative dielectric constants of the ma-
terials are quite small. Therefore, rather weak reflection should be expected.
The simulated and the exact reflection coefficients are shown in Figure 5.2.
The agreement in the magnitude of the reflection coefficient in Figure 5.2 a)
is very good in the frequency range from 0 GHz to about 8 GHz, and satisfac-
tory for higher frequencies from 8 GHz to 20 GHz. This is expected, since the
rational approximation of the tangent has a limited range of good accuracy.
For frequencies near 6 GHz, the waves are mostly absorbed. Indeed, an ab-

sorbing boundary condition may be obtained by setting ε′c,r = 1, σc = 0 S/m,
ε′m,r = 1 and σm = 0 S/m. The simulated phase of the reflection coefficient
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agrees quite well with the analytical result in the entire frequency range under
consideration. Notice that also the simpler model based on the approximation
tan(x) ≈ x yields quite reasonable results for this electrically thin coating.
However, the limitations of the simpler approach become evident in the case
of an electrically thicker coating to be considered next.
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Figure 5.2: (a) Magnitude of the reflection coefficient. Parameters of the coating:
d = 2 mm, ε′c,r = 2, σc = 0.01 S/m. Parameters of the conductive material: ε′m,r = 1,
σm = 0.2 S/m. (b) Phase of the reflection coefficient.

Indeed, let us consider the case when the thickness of the coating is d = 1 mm,
the relative dielectric constant of the coating is ε′c,r = 30, and the conductivity
of the coating is σc = 0.4 S/m. Now, larger differences between the methods
based on the two approximations of the tangent should occur, because the
coating is electrically thicker. The conductor behind the coating is assumed
to have the parameters ε′m,r = 5, σm = 80 S/m. The simulated and the exact
reflection coefficients are presented in Figure 5.3. The accuracy is quite good in
the frequency range from 0 GHz to 20 GHz. It is seen that the simple rational
approximation in (5.6) is enough to model the first thickness resonance quite
accurately. On the contrary, the simpler model based on the approximation
tan(x) ≈ x is much less accurate.

This problem was also solved with straightforward discretization of the fields
inside the coating and the conducting backing. Based on numerical experi-
ments, six times denser mesh (∆x = 0.333 mm) is required for this particular
problem to obtain similar accuracy as with the SIBC approach if the fields
are directly discretized with a uniform mesh. Thus, the equivalent problem
space in terms of cells increases by a factor of six to 1200 cells, plus the space
required for the coating and the conductor backing. Here, six cells are enough
to resolve the fields inside the coating. Since the fields decay exponentially in
the lossy conductor, the infinite conductor backing can be modeled as a finite
structure spanning 60 cells in FDTD. Obviously, although the analytical SIBC
is for infinite half-spaces, it can be applied to modeling of finite structures.
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Figure 5.3: (a) Magnitude of the reflection coefficient. Parameters of the coating:
d = 1 mm, ε′c,r = 30, σc = 0.4 S/m. Parameters of the conductive material: ε′m,r = 5,
σm = 80 S/m. The small ripples at higher frequencies do not indicate instability of
the method. They appear because the FDTD mesh is very coarse (7.5 cells per free
space wavelength at 20 GHz). The precise shape of the excitation pulse also affects
the results. (b) Phase of the reflection coefficient.

In such situations, one must be assured that the fields decay enough within
the structure. For highly conducting backings, the SIBC technique is applica-
ble for relatively small structures with negligible difference as compared with
structures having infinite backings.

The CPU times of these two approaches were compared. The simulation using
the proposed SIBC technique took 3.0 seconds, 1.9 seconds of which were con-
sumed to Prony’s method and just 1.1 seconds were enough for the definition
of variables and time-marching. The simulation with the direct discretization
method took 15.0 seconds. We will see that the differences are more prominent
in 2D problems.

As the last example in the frequency domain, we consider the case when d = 2
mm, ε′c,r = 10, σc = 0.1 S/m, ε′m,r = 1, σm = 0.5 S/m. The magnitude and the
phase of the reflection coefficient are presented in Figures 5.4 a) and 5.4 b).
Again, the agreement is very good for smaller frequencies and slightly worse
for higher frequencies.

Here, the direct calculation using the direct discretization is performed with
four times denser mesh (∆x = 0.5 mm) than the computation based on the
proposed SIBC model. The conducting backing can be modeled as a finite
structure with a thickness 120∆x = 6 cm.
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Figure 5.4: (a) Magnitude of the reflection coefficient. Parameters of the coating:
d = 2 mm, ε′c,r = 10, σc = 0.1 S/m. Parameters of the conductive material: ε′m,r = 1,
σm = 0.5 S/m. (b) Phase of the reflection coefficient. Four times sparser mesh can
be used with the proposed technique than with the direct discretization approach
to obtain roughly similar level of accuracy.

5.5.2 Line Current in Two Dimensions, Oblique Inci-

dence

Next we consider the problem of a line current radiating a cylindrical wave
over a coated material body. We compare our simulation results with the exact
results directly in the time domain. The analytical time domain waveforms at
a given point on the interface can be calculated by representing the incident
cylindrical wave as a sum of plane waves in the frequency domain, integrating
over the interface, and taking the inverse Fourier transform. The plane wave
expansion technique can be found in [28]. The FDTD model was implemented
into a 2D FDTD program, with field components Hx,Hy, and Ez, and a z-
polarized excitation (TE-polarization). The spatial cell size is ∆x = ∆y = 1.5
cm, and the time step is equal to the Courant stability limit: ∆t = ∆x/(

√
2c0).

The time dependence of the point excitation is the same as in the first example,
with τ1 = 40∆t, τ2 = 12∆t. The fields are calculated at points, where the
incidence angle is oblique. Different angles of incidence will be studied.

Coatings on Semiconducting Surfaces

Here, the model in its most general form is examined. Let the line current
be located at the distance 20∆y = 30 cm from the interface. In the first
example, the fields are calculated on the interface, 15∆x = 22.5 cm away from
the point just below the source. Thus, the angle of incidence for the results
in Figure 5.5 a) is 36.9 degrees, while the results in Figure 5.5 b) are for the
angle of incidence equal to 53.1 degrees (the source is located at the distance
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15∆y = 22.5 cm from the interface and the fields are calculated at the distance
20∆x = 30 cm to the x-direction from the source).
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Figure 5.5: (a) Reflected waveform at the observation point. Parameters of the
coating: d = 1.5 cm, ε′c,r = 20, σc = 0.1 S/m. Parameters of the conductive backing:
ε′m = 1, σm = 10 S/m. (b) Parameters of the coating: d = 3.0 cm, ε′c,r = 15, σc = 0.2
S/m. Parameters of the conductive backing: ε′m,r = 2, σm = 3 S/m. Despite the
oblique angle of incidence, the agreement with the exact results is very good.

The reflected waves in the time domain are displayed in Figure 5.5 a). The
parameters of the coating are: d = 1.5 cm, ε′c,r = 10, σ = 0.1 S/m, and
the parameters of the conducting backing are ε′m,r = 1, σm = 10 S/m. The
agreement with the exact results is excellent. The results in Figure 5.5 b) have
been calculated with the following parameters: d = 3.0 cm, ε′c,r = 15, σc = 0.2
S/m, ε′m,r = 2, σm = 3 S/m. Again, the proposed model yields very accurate
results for incidence angle equal to 53.1 degrees.

Let us discretize the fields within the coating and the conductor in the usual
fashion using five times denser mesh: ∆x = ∆y = 0.3 cm. The reflected field
using this technique is plotted in Figure 5.5 a). The required CPU time to run
the total field FDTD code using the present impedance boundary condition is
3.1 s, while the CPU time with the direct approach is much longer: 458.3 s
or 7.64 min. The computation lattice has the size 100 × 80 square cells when
the SIBC is used, and 500 × 400 square cells when direct the discretization
approach is used. Every fifth electric field value from the time domain data
from the larger simulation is recorded, enabling the data to be plotted in Figure
5.5 a). Also, the amplitude of the waves has to be corrected by a factor of five
due to the finer grid. Evidently, huge reduction in the computation time is
achievable already in this relatively small 2D problem. Even more significant
computational benefits would be obtained in large 3D problems.

Obviously, the direct approach requires roughly 5×5 = 25 times more memory
in this 2D example than the SIBC approach. The exact factor can be slightly
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Figure 5.6: (a) The problem geometry to study the performance of the model
near grazing incidence. P denotes the position of the source and O is the point on
the interface under the source. The reflected electric fields are observed at points
A,B,C and D. OP= 10∆y, OA= 30∆x, OB= 50∆x, OC= 70∆x, OD= 90∆x. (b)
The reflected electric fields at different observation points on the interface. The
proposed model is seen to be accurate also near grazing incidence.

smaller, because extra variables have to be defined on the impedance boundary.
Typically, the number of boundary cells is a relatively small fraction of the total
number of cells in the discrete space. Therefore, the additional cost of defining
extra variables on the impedance boundary is indeed very small, especially in
3D problems.

We will now study how the model performs near grazing incidence. Towards
this objective, we observe the reflected electric fields at different points on the
air-coating interface, corresponding to different angles of incidence [see Figure
5.6 a)]. The distance of the source from the interface is now decreased to
10∆y = 15 cm to keep the computational domain smaller for faster calculation.
The simulated and the analytical waveforms at the observation point A,B,C,
and D are plotted in Figure 5.6 b). We see in Figure 5.6 b) that the proposed
model is very accurate also near grazing incidence. The time delays and the
decaying amplitudes of the pulses corresponding to the increasing distance
from the source are evident in Figure 5.6 b).

The validity of the Prony’s method in this particular problem is seen in Figure
5.7 a), where the analytical impulse response and the series representation of it
are presented as functions of the discrete time step. The impulse responses for
the 1D problem, the results of which were displayed in Figure 5.2, are shown
in Figure 5.7 b). The agreement is very good indeed.

The surface impedance is quite sensitive to the change of the permeability of
the coating. Let us examine this case by letting the relative permeability of
the coating to be µr = 1.2, other parameters are as in Figure 5.5 a). The
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Figure 5.7: (a) The discrete impulse response (σm = 10 S/m, εm,r = 1), calcu-
lated directly with numerical integration, and as a series of exponential functions
according to Prony’s method. Obviously, the analytical impulse response can be
very accurately represented as a series of exponential functions. The number of
terms in the series is p = 20. The matrix systems that needs to solved to obtain the
coefficients βl and γl can be close to singular, especially larger systems. Therefore,
it is reasonable to keep the parameter p quite moderate to avoid unstable solutions.
(b) The impulse responses for the 1D problem in 5.2 (σm = 0.2 S/m, εm,r = 1). The
number of terms is p = 14.

corresponding reflected electric field is shown in Figure 5.8 a). An extra hump
appears in the reflected field near time step n = 80. We further change the
relative permeability to µr = 1.5, and the agreement of the simulated and the
analytical results in Figure 5.8 b) is seen to be slightly worse than in Figure
5.8 a). This is not surprising: the coating is already electrically so thick that
the approximation of the impedance function matches worse with the exact
impedance function.

The analytical SIBC was derived considering the normal incidence. However,
it is expected to produce accurate results if the material coating and the metal
backing are electrically dense enough, as in the previous example. Let us now
study numerically how the model performs if the coating is electrically thin
or both the coating and the metal backing are just air. Let the coating be
1.0 cm thick and have the parameters ε′c,r = 2 and σc = 0.1 S/m. The peak
of the spectrum of the incident wave occurs at fp = 0.53 GHz so that the
imaginary part of the relative permittivity at the peak frequency fp is equal to
−3.4. Obviously, the coating is electrically rather thin: at the peak frequency

we have
√

|ε′c,r|kpd ≈ 0.22 (the wavenumber in free space at fp is denoted by

kp). The parameters of the backing are ε′m,r = 2, σm = 1 S/m. Figure 5.9 a)
shows that the simulated reflected electric field agrees well with the analytical
result. The positions of the source and the observation point are the same as
in the previous example.
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Figure 5.8: (a) Reflected waveform at the observation point. Parameters are as in
Figure 5.5 a), except that the relative permeability of the coating is µr = 1.2. (b)
Reflected waveform at the observation point. Parameters as in Figure 5.5 a), except
that the relative permeability of the coating is µr = 1.5. The reflected wave becomes
more oscillatory, and the accuracy is slightly worse.

Reduction to an Absorbing Boundary Condition

Here we demonstrate that the model properly reduces to an absorbing boundary

condition. Suppose now that the coating is removed and the backing consists
of free space. For this purpose, we choose ε′c,r = 1, σc = 0 S/m and ε′m,r = 1,
σm = 0 S/m. An absorbing boundary condition, valid for normal incidence,
should be obtained in this case. We compare the results of the proposed model
with the Mur first order analytical ABC [44] in Figure 5.9 b). It is seen that the
proposed model reduces to an ABC that is quite similar to the first-order Mur
ABC in terms of performance, although the discretization details are different.
In this case, when we actually simulate just empty space, it is expected that
higher-order models would be more accurate. Any higher-order version of the
present model should obviously be constructed so that the resulting ABC in
the case of free space material parameters is considerably better than the first
order Mur ABC.

Further confidence about the performance of the ABC is obtained with a 2D
example problem, schematically shown in Figure 5.10. The point source is
implemented exactly as in [4]. The spatial cell size and the time step are also
the same as in [4]: ∆x = ∆y = 1.5 cm, ∆t = 0.9999∆tc, where ∆tc is the
Courant stability limit. The local reflection error is calculated on the lower
boundary of the lattice at time step n = 80 and it is plotted in Figure 5.11 a)
as a function of the grid position along the lattice boundary. It is seen that the
maximum local error with the present ABC is smaller than with the first order
Mur ABC and larger than with the second order Mur ABC. A good measure
of the overall quality of any ABC is obtained by integrating the reflected fields
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Figure 5.9: (a) Reflected waveform at the observation point. Parameters of the
coating: d = 1.0 cm, ε′c,r = 2, σc = 0.1 S/m. Parameters of the conductive backing:
ε′m,r = 2, σm = 1 S/m. Very good correspondence with the exact result is obtained
also for this electrically thin coating at oblique incidence. (b) The coating is removed
and the backing is free space. The reflected electric field magnitude decreases and
an absorbing boundary condition is obtained.

over the whole spatial lattice. The results of this procedure are shown in Figure
5.11 b). It appears that the proposed SIBC model reduces to an ABC, which
is better than the first order Mur ABC but worse than the second order Mur
ABC. At early times in the simulation, the present ABC reflects more than
the first-order Mur ABC. However, the reflected error power with the present
method becomes smaller than with Mur I after time step n ≈ 60.

Reduction of the Model to Conducting Bodies Without Coatings

An interesting special case occurs if the coating is removed, that is ε′c,r = 1,
σc = 0 S/m, and only the conducting backing is left. An FDTD model for this
case has been introduced by Maloney and Smith in [7]. The results in Figure
5.12, calculated for two different sets of parameters for the metal body, verify
that the proposed model gives similar results as the model by Maloney and
Smith in the special case when the coating is removed. The agreement with
the exact results is good. The computational savings in modeling conducting
structures using impedance boundary conditions are discussed in [7, 8].

Coatings on Ideally Conducting Surfaces

Finally, we study the case when the coating is present and the backing is a
perfect electric conductor (PEC). We compare with the exact results and with
the model in chapter 4 by letting σm −→ ∞ in the present model. The re-
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Figure 5.10: A 2D test problem to test the performance of the ABC, which
can be obtained from the proposed impedance boundary condition. The exci-
tation is a short pulse, implemented as a hard source in FDTD (i.e. the time
dependence of the electric field Ez is fixed in a single grid point).

sults in Figure 5.13 are for the angle of incidence equal to 36.9 degrees. It is
interesting to see that the proposed first-order model yields almost as accu-
rate results as the higher-order model in [50]. The coatings here are already
electrically rather thick, but if still thicker coatings need to be modeled, the
higher-order model in [50] should be employed with a more accurate rational
approximation.

Comparison of results in Figures 5.5 a) and 5.13 a) reveals that the oscilla-
tions after the first two peaks are smaller in Figure 5.5 a) than in 5.13 a).
The difference could have been anticipated; the lossy backing present in the
simulation of Figure 5.5 a) suppresses the waves. For the coating (ε′c,r = 100,
σc = 0.01 S/m) on PEC-backing [results of the FDTD model in Figure 5.13 b)],
the differences in the computational efficiency between the SIBC model and
the direct discretization technique are even more prominent than in the earlier
example. This is because the coating here is electrically thick and physically
three times thinner than in the earlier example [Figure 5.5 a)]. The present
SIBC method requires only 1.31 seconds of computation. The higher-order
model of [50] takes just 0.86 seconds of computation, since the discrete scheme
is slightly simpler in the case of PEC-backings and fewer auxiliary variables
are required than in the more general model considered in this paper. The
use of 18 times finer mesh requires 85.8 minutes of computation with the di-
rect approach. The computation lattice is 40 × 50 square cells with the SIBC
method and 900 × 720 square cells with the direct approach. Hence, approxi-
mately 324 times more memory is required to store the fields with the direct
approach than with the SIBC approach. A smaller lattice for the SIBC code
was chosen than in the previous example to keep the calculation time of the
direct approach reasonable. In fact, the direct approach would require even
finer mesh to obtain similar accuracy as the SIBC model in Figure 5.13 b).
The results of the direct technique are not shown in the figure to maintain
clarity.
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Figure 5.11: (a) The local reflection error along the lattice boundary. (b) The
global reflected error power as a function of time.

To be assured that the model works well also in the case of electrically thin
coatings, we show one more example with the parameters d = 1.0 cm, ε′c,r = 3,
and σc = 0.01 S/m. The reflected and the total field at the observation point
on the interface (the angle of incidence is 36.9 degrees) as functions of time are
shown in Figure 5.13. The simulated results using the proposed model agree
very well with the analytical results and the results of the higher-order model
[50].

As in the previous chapter, we also verify that the model developed for dis-
persive coatings is valid. Consider first a coating with Lorentzian parameters.
The source is 20 cells above the interface (OP= 20∆y), and OA= 15∆x. Re-
flected electric fields as functions of time for coatings of Lorentz and Drude
type are shown in Figure 5.15. The agreement was found to be good also near
grazing incidence.

Based on the numerical experiments with the proposed model, we conclude
that the proposed model is suitable for accurate modeling of electrically thin
and relatively thick coatings on dielectric and conductive materials, that can
be electrically dense or sparse. It is stressed that the model presented in this
chapter can be directly applied in a general 3D situation if an orthogonal mesh
is used.

5.6 Conclusions

A new accurate SIBC-based FDTD model for dielectric and conductive ma-
terial layers with dielectric and conductive backings has been presented and
verified by comparison with analytical results. The numerical results show
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Figure 5.12: (a) Reflected waveform at the observation point. Parameters of the
conductive material: ε′m = 1, σm = 0.3 S/m. (b) Reflected waveform at the ob-
servation point. Parameters of the conductive material: ε′m = 5, σm = 1.0 S/m.
Evidently, the proposed model yields similar results as the method by Maloney and
Smith in the special case when the coating is removed.

that despite the first-order SIBC was used, which is exact only for the nor-
mal incidence, the model is very accurate also near grazing incidence provided
that the materials to be simulated do not have negligible electrical density.
Also in the extreme case when the simulated materials are just free space,
the proposed model properly reduces to an absorbing boundary condition, al-
though the resulting ABC is a simple first-order ABC. The proposed model
accounts for the first thickness resonance of the coating, enabling accurate
numerical modeling of many practical coatings. The suggested FDTD model
was shown to properly reduce to some existing models in the important spe-
cial cases where we simulate an empty space, or the coating is absent or the
conductor backing consists of a perfect electric conductor. The computational
savings obtained using the proposed model as compared to the use of direct
discretization techniques were discussed and found to be significant.
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Figure 5.13: (a) Reflected waveform at the observation point. Parameters of the
coating: d = 1.5 cm, ε′c,r = 20, σc = 0.1 S/m. Perfectly conducting backing. (b)
Parameters of the coating: d = 0.5 cm, ε′c,r = 100, σc = 0.01 S/m. Perfectly
conducting backing. The proposed model correctly reduces to an existing model
for coatings on perfect conductors (the discretization details are slightly different).
The proposed first-order model is almost as accurate as the higher-order model
introduced in [50], even though a simpler rational approximation is used here than
in [50].
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Figure 5.14: (a) Reflected waveform at the observation point. Parameters of the
coating: d = 1.0 cm, ε′c,r = 3, σc = 0.01 S/m. Perfectly conducting backing. (b)
Total electric field at the observation point. The results of the proposed model, the
higher-order model and the analytical calculation are almost indistinguishable.
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Figure 5.15: (a) Reflected waveform at the observation point. Parameters of the
Lorentzian coating: d = 2.0 cm, ε1 = 20, β = 2.5 · 1019 1/s2, ω0 = 5.0 · 109 1/s,
γ = 1, δ = 2.0 · 108 s. Parameters of the conductor backing: εm,r = 1, σm = 4 S/m.
Similar level of agreement was observed also for the total electric field. (b) Reflected
waveform at the observation point. Parameters of the Drude coating: d = 2.0 cm,
ε1 = 20, β = 2.5 · 1019 1/s2, ω0 = 0 1/s, γ = 1, δ = 2.0 · 108 s. Parameters of the
conductor backing: εm,r = 1, σm = 4 S/m. Similar level of agreement was observed
also for the total electric field. The Drude coating is obtained from the Lorentzian
coating simply by setting ω0 = 0 1/s.
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Chapter 6

Subcell Model for Dispersive

Layers

An alternative technique to model electrically thin material layers is introduced
in this chapter. The model is more useful than the SIBC model in cases, where
there is no metal backing. The model is also better than the SIBC model if the
material parameters of the layer have multiple pole pairs. Again, the model is
verified with several numerical examples by comparison with analytical results.

6.1 Introduction

There is one main reason to use subcell techniques rather than SIBC methods
for frequency-dispersive layers: the application of the SIBC approach for more
general dispersive layers, where there is no metal backing, leads to transition
conditions, which are very complicated to accurately implement into FDTD
method.

The subcell technique is clearly an efficient approach, since coarse mesh may
be used, and the memory requirements remain almost unchanged after the
insertion of a layer provided that the layer fills only a small amount of the
computation space. Some models for dielectric and conductive layers based
on subcell techniques can be found in the literature. Tirkas and Demarest
proposed a model for thin dielectric layers in [15]. Maloney and Smith took
a slightly different approach in [16] when modeling dielectric and conductive
layers. Some other models have also been suggested [17, 18, 19], but they
have been verified by Maloney and Smith in [39] to be less accurate than the
models by Maloney and Smith and by Tirkas and Demarest. A disadvantage
of the subcell method is its inability to model electrically thick layers. In such
situations, one should resort to SIBC’s or to direct discretization methods.
A review of direct discretization algorithms has been presented by Young in
[51]. Notice that the previous subcell techniques [15, 16, 17, 18, 19] are not
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applicable to dispersive layers.

In this chapter, we formulate a new subcell technique, which allows model-
ing quite general dispersive layers, possibly having multiple pole pairs. The
proposed model reduces to the model by Maloney and Smith in the case of
dielectric and conductive layers. The new model is formulated in the general
3D case in section 6.2, and validation studies are conducted with 1D and 2D
FDTD programs in section 6.2 both in time and frequency domains. Quite
good agreement with the analytical results is observed.

6.2 The Subcell Technique for Dispersive Lay-

ers

The basic idea of the model is quite simple: we will average the electric and
magnetic flux densities so that they will simulate the presence of a thin disper-
sive layer. The layer is assumed to be located in free space, although this need
not necessarily be the case. Both tangential and normal to the layer field com-
ponents will be affected by the model. Consider deriving update equations for
the tangential magnetic field components in the vicinity of a dispersive layer
of thickness d and with the frequency-dependent isotropic permeability

µ(ω) = µ0

(

µ∞ +
P
∑

k=1

βm,k

ω2
0m,k − γm,kω2 + jδm,kω

)

, (6.1)

where P is the number of pole pairs and the subscript k refers to the k’th pole
pair. The subscript m refers to magnetic layer. An appropriate choice of the
parameters in the above expression allows us to obtain a layer of Lorentz, Debye
or Drude type as special cases. Similarly, the expression for the permittivity
is taken to be of the form

ε(ω) = ε0

(

ε∞ +
P
∑

k=1

βe,k

ω2
0e,k − γe,kω2 + jδe,kω

)

(6.2)

with analogous definitions of the parameters as above. Let the layer partially
fill a single plane of FDTD cells in the 3D FDTD lattice. A slice of the
FDTD lattice in xy-plane in shown in Figure 6.1 a). The geometry of a one-
dimensional interface problem, which is considered later, is shown in Figure
6.1 b). If the volume fraction occupied by the layer is α, then we may calculate
the averaged magnetic flux density inside the cells containing the dispersive
layer according to B = αµ(ω)Hlayer +(1−α)µ0Hfree space with 0 ≤ α ≤ 1. Using
the magnetic susceptibility χm,k(ω) associated with the k’th pole pair, defined
as

χm,k(ω) =
βm,k

ω2
0m,k − γm,kω2 + jδm,kω

, (6.3)
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(a) (b)

Figure 6.1: (a) A slice of the FDTD lattice in the xy-plane. A special update
scheme is developed for the field components denoted with non-filled objects. Extra
variables are introduced for the field components normal to and inside the layer. (b)
The problem geometry in a 1D problem. The reflection of a z-polarized pulse from
a coated ideal conductor is studied.

we obtain the equation

B = αµ0

[

µ∞ +
P
∑

k=1

χm,k(ω)

]

H + (1 − α)µ0H. (6.4)

As an example, let us derive the update equation for the z-component of the
tangential magnetic field [see Figure 6.1 a)]. The magnetization Mz,k and the
magnetic field Hz are related through the magnetic susceptibility according to

Mz,k = µ0χm,k(ω)Hz (6.5)

and the magnetic current Kz,k may be expressed with the magnetization Mz,k

as
Kz,k = jωMz,k. (6.6)

From the z-component of the Faraday law, we obtain the equation

[1 + α(µ∞ − 1)]µ0
∂Hz

∂t
= −uz · (∇× E) − α

P
∑

k=1

Kz,k. (6.7)
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The dot product of the curl and the unit vector uz picks the z-component from
the curl. The discrete form of equation (6.7) in integral form reads

Hz|n+1/2
i+1/2,j+1/2,k+1/2 = Hz|n−1/2

i+1/2,j+1/2,k+1/2 −
∆t

[1 + α(µ∞ − 1)]µ0

{

· α∆y
(

Ey,in|ni+1,j∗,k+1/2 − Ey,in|ni,j∗,k+1/2

)

+ (1 − α)∆y
(

Ey|ni+1,j+1/2,k+1/2 − Ey|ni,j+1/2,k+1/2

)

− ∆x
(

Ex|ni+1/2,j+1,k+1/2 − Ex|ni+1/2,j,k+1/2

)

− α∆t

[1 + α(µ∞ − 1)]µ0

P
∑

k=1

Kz,k|ni+1/2,j+1/2,k+1/2

}

. (6.8)

By j∗ we emphasize that Ey,in lies within the layer, between the grid locations
j and j + 1/2. Using the definitions for the magnetization Mz,k in (6.5) and
for the magnetic current Kz,k in (6.6) we obtain the auxiliary equation

ω2
0m,kMz,k + jωγm,kKz,k + δm,kKz,k = µ0βm,kHz. (6.9)

The update equations for the auxiliary variables Kz,k and Mz,k for any k can
now be obtained by discretizing equations (6.9) and (6.6):

Kz,k|n+1
i+1/2,j+1/2,k+1/2 =

2γm,k − δm,k∆t

2γm,k + δm,k∆t
Kz,k|ni+1/2,j+1/2,k+1/2

+
2µ0βm,k∆t

2γm,k + δm,k∆t
Hz|n+1/2

i+1/2,j+1/2,k+1/2

−
2ω2

0m,k∆t

2γm,k + δm,k∆t
Mz,k|n+1/2

i+1/2,j+1/2,k+1/2,

Mz,k|n+3/2
i+1/2,j+1/2,k+1/2 = Mz,k|n+1/2

i+1/2,j+1/2,k+1/2

+ ∆tKz,k|n+1
i+1/2,j+1/2,k+1/2. (6.10)

Notice that in the limit α −→ 0 with µ∞ = 1 the coupling between Hz and the
auxiliary variables Kz,k and Mz,k disappears, and we obtain the usual update
equation for the magnetic field Hz in free space, as required for consistency of
the model. Also, if βm,k = 0 for all k and µ∞ = 1 implying that the auxiliary
variables are zero, leads to the usual update equations in free space.

The quantity 1 + α(µ∞ − 1) can be regarded as the averaged relative per-
meability in the limit ω −→ ∞. To get the update equation for the normal
component of the magnetic field Hy, which is inside the layer, we need to re-
place 1 + α(µ∞ − 1) with µ∞ and set α = 1 in the equations (6.8) and (6.10)
above with appropriate changes in the subscripts. Then, Hy,in (or Ey,in in
the subsequent verifications) inside the coating is involved in the calculation
through the integral form of Maxwell’s equations or the curl in equation (6.8)
should be interpreted as to be evaluated with averaged quantities along each
edge of the FDTD-cell.

The derivation of the update equations for the electric field components in the
case of a layer in free space is quite analogous and is not shown here. However,
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in the case when metal is coated with a layer, we must account for the fact that
the tangential electric field decays to zero in the vicinity of the ideal conductor.
This situation is most conveniently described in the 1D case. Suppose that
there is an ideally conducting wall at x = 0 [see Figure 6.1 b)] and let the
coating on the wall have thickness d. Let the electric field be polarized along
the z-axis. The PEC wall implies that we have Ez|0 = 0 all the time. The
tangential magnetic field half-cell away from the PEC wall can be updated as
described above. However, the simple averaging of the electric flux density Dz

in the vicinity of the PEC wall is not a good approach.

To demonstrate how the PEC wall is accounted for, consider deriving the
update equation for the field component Ez|1 in the immediate vicinity of the
coating. Usually, the fields are assumed to be piecewise linear across each
FDTD cell. Hence, we make a very natural assumption that the electric field
behaves linearly in the range ∆x/2 < x < 3∆x/2 with the slope chosen so
that a linear extrapolation to x = 0 would yield zero electric field. Thus, we
assume that

Ez(x) =
x

∆x
Ez|1. (6.11)

Next, we calculate the spatially averaged electric flux density near the wall and
use it to deduce the effective permittivity of the coating in the limit ω −→ ∞.
Integrating from x = ∆x/2 to x = 3∆x/2 we obtain

Dz|1 =
1

∆x

∫ 3∆x
2

∆x
2

εω→∞(x)
x

∆x
Ez|1 dx

= ε0

[

9 − ε∞
8

+
d2

2∆x2
(ε∞ − 1)

]

Ez|1

= ε0εr,∞,ave(d, ε∞)Ez|1. (6.12)

This relation is utilized when updating the electric field near the boundary.
The consistency requirements are easy to check: if ε∞ = 1, we have εr,∞,ave = 1
regardless of the layer thickness d and if d = 0, we obtain εr,∞,ave = 1 for
ε∞ = 1. Notice that the above derivation is only necessary if the layer thickness
d > ∆x/2. For smaller thicknesses, magnetic properties of the layer are known
to dominate the shape of the reflected waveform. This fact can be easily seen
from the Leontovich SIBC, which takes the form

Ez = jωµ(ω)dHy, (6.13)

if the tangent function in the impedance Zs(ω) = jη tan(kd) is approximated
with its argument: tan(kd) ≈ kd. Hence, we may use εr,∞,ave = 1 if d < ∆x/2
and the wavelength inside the layer is not very small. In the next section, we
will demonstrate a pulse reflection from a wall coated with a layer having a
rather complicated frequency-dependence of the material parameters.

It was observed from numerical experiments that the conductivity of the layer
may be approximated by simple averaging according to σave = ασ, where α is
the volume fraction of the layer occupying the adjacent cells to Ez|1. Thus,
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for a coating of thickness d and conductivity σ, we obtain

σave =
d

2∆x
σ (6.14)

Introducing the electric polarization current J and polarization P we obtain
the update equation for the electric field Ez|1 next to the metal wall in 1D-case:

Ez|n+1
1 =

2εr,∞,aveε0 − σave∆t

2εr,∞,aveε0 + σave∆t
Ez|n1 +

2∆t

∆x (2εr,∞,aveε0 + σave∆t)

(

Hy|n+1/2
3/2 − Hy|n+1/2

1/2

)

−

2α∆t

2εr,∞,aveε0 + σave∆t

P
∑

k=1

Jz,k|n1 , (6.15)

where the magnetic field Hy|1/2 in updated as described above. In equation
(6.15) we use expressions (6.12) and (6.14) for the averaged permittivity and
conductivity. The variables Jz,k and Pz,k are updated completely analogously
to Kz,k and Mz,k in (6.10).

6.3 Verification of the Proposed Model

6.3.1 Pulse Reflection from a Coated Ideal Conductor

We start with a problem of a TE-polarized pulse reflecting from a metal wall
coated with a dispersive layer. We consider a fixed set of material parameters
of the coating, and calculate the numerical reflection coefficients and time-
domain waveforms varying the thickness of the coating. The numerical results
are then compared to the exact results.

Frequency-Domain Validation

Consider as an example a layer of a material whose relative permittivity and
permeability are shown in Figure 6.2. The parameters are of the Lorentz
type. The permittivity has one resonance, while the permeability has two
resonances. The parameters for the permeability are µ∞ = 1, βm,1 = 4 · 1020

(rad/s)2, βm,2 = 1.25 · 1021 (rad/s)2, ωpm,1 = 2 · 1010 (rad/s), ωpm,2 = 5 · 1010

(rad/s), γm,1 = γm,2 = 1, δm,1 = 5 · 109 rad/s, δm,2 = 4 · 109 rad/s. The
permittivity has parameters ε∞ = 2, βe,1 = 9 · 1020 (rad/s)2, ωpe,1 = 3 · 1010

rad/s, γe,1 = 1, δe,1 = 5 · 108 rad/s. The electrical conductivity is taken to be
zero. The goal here is to demonstrate how the thickness of the coating affects
the results. Hence, the above parameters are kept fixed and the thickness of
the layer is varied in the numerical examples below.
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The fields are recorded one cell away from the PEC boundary. Notice that a
confident comparison of the phase of the reflection coefficient is only possible
provided that the thickness of the layer is close to ∆x, since the electric field on
the air-coating interface is not available unless d = ∆x. For the magnitude of
the reflection coefficient, this is not critical in this 1D case. Only the magnitude
of the reflection coefficient is shown for thinner coatings.
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Figure 6.2: (a) Relative permittivity of the coating. (b) Relative permeability of
the coating.

The magnitude and the phase of the reflection coefficient in the case when
d = 0.9∆x = 1.8 mm are shown in Figure 6.3. Rather good agreement with the
exact results is obtained. In Figure 6.3 a), the largest discrepancy occurs near
the second resonance, corresponding to the pole of the permittivity. The jump
discontinuity of the phase of the reflection coefficient in Figure 6.3 b) occurs
at slightly smaller frequency than it should. Anyway, every resonance of the
layer is qualitatively very well and quantitatively rather accurately modeled.

Next we decrease the thickness of the coating, choosing d = 0.5∆x = 1 mm.
The numerically calculated and the exact magnitude of the reflection coefficient
as a function of frequency are shown in Figure 6.4 a). It is observed that the
resonance associated with the permittivity is not so strong as in Figure 6.3 a).
In Figure 6.4 a), there is almost zero reflection at about 8 GHz, the position
of the second resonance of the permeability. Further decreasing the thickness
of the coating, we set d = 0.1∆x = 0.2 mm. The result is presented in Figure
6.4 b). The resonance associated to the permittivity near 4.8 GHz has almost
been smeared out, and the dips are not so deep as in the case of a thicker
coating. These results show that the model works properly when the thickness
of the coating is varied and also verifies that the magnetic properties of the
coating dominate when the coating is electrically very thin. Simulations for
smaller damping factors for permeability were made, and very good agreement
was observed even in that case. However, a more realistic case, where the
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Figure 6.3: (a) The magnitude of the reflection coefficient. (b) The phase of the
reflection coefficient. The material parameters as a function of frequency are shown
in Figure 6.2.

maximum real part of the permeability in the considered frequency range is
about 4 was chosen as a numerical example.

Time-Domain Validation

We show some time domain waveforms for the cases considered above. The
incident electric field is a differentiated gaussian pulse throughout the simula-
tions. The exact reflected electric field on the interface as a function of time
may be calculated via inverse Fourier transform. Thus, the integral

Eref
z (t) =

1√
2π

∫ ∞

−∞
R(ω)Einc

z (ω)ejωt dω (6.16)

must be evaluated. The total field is obtained by replacing R(ω) with 1 +
R(ω) in the expression above. The surface impedance model may be used
to calculate the exact reflection coefficient. In this problem, the PEC-backed
coating can be modeled with a surface impedance of the form

Zs(ω) = j

√

µ(ω)

ε(ω)
tan
(

√

ε(ω)µ(ω)ωd
)

. (6.17)

The exact reflection coefficient as a function of frequency is then obtained from

R =
Zs(ω) − η0

Zs(ω) + η0

, (6.18)

where η0 is the free space wave impedance. The material parameters in Figure
6.2 were used to calculate the results in Figures 6.5–6.6. The agreement with
the exact results is seen to be good also in the time domain. It is seen that
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Figure 6.4: (a) The magnitude of the reflection coefficient. Layer thickness d = 1
mm. (b) The magnitude of the reflection coefficient. Layer thickness d = 0.2 mm.

the oscillations of the reflected wave become smaller when the thickness of the
coating is decreased. This is natural, since a PEC wall is obtained in the limit
d = 0.

6.3.2 Cut-off Frequency of a Loaded Waveguide

First, consider a rectangular waveguide with the widths of the walls equal to
a = 30 mm and b = 15 mm. Suppose there is a thin magnetic layer of thickness
d along the broader wall in the middle of the waveguide. The permeability of
the layer is taken to be of the Lorentz type with a single pole pair. In the
lossless case, we may calculate the exact cut-off frequencies of this waveguide.
Contrary to the previous example, we keep the thickness of the layer fixed
and present a more detailed validation of the model by varying the material
parameters and by comparing with the exact results. For a single pole-pair
lossless Lorentz layer, there are three parameters to vary: µ∞, βm = ω2

pm and
ω0m.

The problem geometries are shown in Figure 6.7. Before numerical examples,
we present an analytical expression for the cut-off frequencies of the waveg-
uide loaded with a dispersive layer. For the fundamental TE10-mode to be
considered here, the field distributions over the small height of the waveguide
remain almost uniform for the components tangential to the layer. Hence, the
approximate expression for the propagation constant (the cross section of the
waveguide is uniform in the x-direction) is applicable [63]:

kx =

√

ω2
dµ(ω) + (b − d)µ0

d
ε(ω)

+ b−d
ε0

−
(π

a

)2

. (6.19)

The cut-off frequency of the TE10-mode is obtained by requiring that kx = 0
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Figure 6.5: (a) Reflected waveform on the boundary. d = 1.8 mm. (b) Total
waveform on the boundary. d = 1.8 mm.

and solving for ω. Notice that the approximate analytical result does not see
the position of the layer. However, the expression (6.19) is very accurate for
the TE10-mode, and reduces to the exact result for an empty waveguide if
ε(ω) = ε0 and µ(ω) = µ0. Rigorous derivation of the exact cut-off frequency is
omitted here, because it would lead to extremely long and tedious transcen-
dental equations without significant increase of accuracy for the TE10-mode.
The cut-off frequency may be calculated in a 2D-FDTD program using, for
instance, a differentiated gaussian pulse point excitation inside the waveguide,
and recording the time domain waveforms at an observation point. The ob-
served fields are transformed into the frequency domain and the peaks in the
spectrum correspond to the cut-off frequencies of the different modes propa-
gating in the waveguide.

The thickness of the layer is equal to d = 0.25∆x = 0.25∆y = 0.375 mm.
Hence, we have discretized the cross section of the waveguide with a grid of
20 × 10 FDTD cells. We first take the permeability to be independent of the
frequency and vary the relative permeability. The cut-off frequency of the
TE10-mode is seen to decrease with increasing permeability, as expected. The
agreement with the analytical results is rather good: the maximum relative
error in Figure 6.8 a) is about one percent.

The results for varying βm = ω2
pm are shown in Figure 6.8 b). Here, we fix

µ∞ = 1 and the resonant frequency of the layer is chosen to be less than the
cut-off frequency of the TE10-mode of an empty waveguide. We have chosen
ω0m = 2 · 1010 rad/s. The maximum relative error is less than one percent. In
Figure 6.9 a), ω0m = 4 · 1010 rad/s, being larger than the cut-off of an empty
waveguide (ωc,TE10 = π · 1010 rad/s). The result is seen to be clearly different
from that in Figure 6.8 b).
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Figure 6.6: (a) Reflected waveform on the boundary. d = 1 mm. (b) Reflected
waveform on the boundary. d = 0.2 mm.

(a) (b)

Figure 6.7: (a) A cross-section of a rectangular waveguide with perfectly conducting
walls loaded with a dispersive magnetic layer of the Lorentz type. (b) A cross-section
of a rectangular waveguide loaded with a dispersive dielectric layer of the Lorentz
type. The thickness of the layer is exaggerated in the figures.

In Figure 6.9 b), we vary the resonant frequency of the layer around the cut-
off frequency of the unloaded waveguide. We set µ∞ = 1 and ωpm = π · 1010

rad/s. The cut-off frequency of the loaded waveguide is seen to converge
towards the cut-off frequency of the empty waveguide when we move away
from the resonant frequency of the layer. More precisely, the cut-off frequency
fc,l of the loaded waveguide tends to the cut-off frequency fc,u of the unloaded
waveguide with increasing resonant frequency of the layer. On the other hand,
fc,l remains slightly above fc,u even if the resonant frequency of the layer is
arbitrarily small.

As regards the tangential components of the fields, the results presented so
far confirm that the proposed new model works correctly. We present one
more example, where the normal components are also affected. We place a
layer with the Lorentzian permittivity (with a single pole pair) in the middle
of the waveguide and calculate the cut-off frequencies versus the parameters
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Figure 6.8: (a) The numerical and the analytical cut-off frequencies of the TE10-
mode in the loaded waveguide versus µ∞. (b) The numerical and the analytical cut-
off frequencies of the TE10-mode in the loaded waveguide versus ωpm. The resonant
frequency of the layer is smaller than the cut-off frequency of the TE10-mode of an
empty waveguide.

of the layer. The shorter wall of the waveguide is now supposed to be 9
mm, and the thickness of the layer is equal to 1 mm. The layer thickness
is increased from the previous example to observe a significant change in the
cut-off frequency. It is seen from the analytical expression that the cut-off
frequency is more sensitive to magnetic layers than to dielectric layers. The
FDTD results and the analytical results are shown in Figures 6.10–6.11. In
Figure 6.10 a), ωpe = 0, and the ε∞ is varied. In Figure 6.10 b), ε∞ = 1,
ω0e = 2 · 1010 rad/s and ωpe is changed. This is also the case with the results
in Figure 6.11 a), except that ω0e = 4 · 1010 rad/s. Finally, in Figure 6.11 b),
ε∞ = 1, ωpe = π · 1010 rad/s and the resonant frequency ω0e of the layer is
varied. The maximum relative error of the cut-off frequency is at most one
percent in all the cases considered in this paper.

6.4 Introduction to FDTD Modeling of Ferrite

Layers

Some FDTD algorithms for the treatment of magnetized ferrites have been
formulated. Usually, the algorithms utilize a direct discretization of the electric
and magnetic fields inside ferrites. An FDTD model for thin ferrite layers is
introduced in this chapter. The model is based on the Leontovich SIBC. Also,
techniques to handle thin layers without SIBC-formulation are discussed.

Some good papers dealing with FDTD-modeling of magnetic materials have
been published. Okoniewski and Okoniewska have modeled ferrite-loaded
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Figure 6.9: (a) The numerical and the analytical cut-off frequencies of the TE10-
mode in the loaded waveguide versus ωpm. The resonant frequency of the layer is
larger than the cut-off frequency of the TE10-mode of an empty waveguide. (b)
The numerical and the analytical cut-off frequencies of the TE10-mode in the loaded
waveguide versus ω0m.

waveguides in [52]. They supplemented Maxwell’s equations with an equa-
tion of motion describing the physics of ferrites and then implemented their
numerical algorithm.

Partially magnetized ferrites were modeled by Pereda et al. in [53]. Their
model is based on the constitutive relation, where an empirical expression for
the permeability tensor is used. Due to the complicated frequency dependence
of the permeability, they made a severe approximation and removed some fre-
quency dependence by averaging over the frequency range of interest. However,
the results for the phase constant of the fundamental mode of a ferrite-loaded
waveguide presented in [53] show that the accuracy is relatively good: errors
are typically a couple of percent. Pereda et al. also introduce a method to
reduce the errors introduced by their approximation.

Like ferrites, also plasmas exhibit anisotropic constitutive parameters. FDTD
modeling of magnetized plasmas has been discussed by Hunsberger et al. in
[54]. Hunsberger et al. modeled electronic plasmas with recursive convolution
techniques. Their formulation takes both the frequency dispersion and the
anisotropy into account at the same time. Very good results were reported
in [54] for the reflection and transmission coefficients in a one-dimensional
example case. Also, Faraday’s rotation was demonstrated.
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Figure 6.10: (a) The numerical and the analytical cut-off frequencies of the TE10-
mode in the loaded waveguide versus ε∞. (b) The numerical and the analytical cut-
off frequencies of the TE10-mode in the loaded waveguide versus ωpe. The resonant
frequency of the layer is smaller than the cut-off frequency of the TE10-mode in an
empty waveguide.

6.5 Constitutive Relation and SIBC for Fer-

rites

For a saturated ferrite medium the permeability is a dyadic of the form

µ = µ0

[

µI − (µ − 1)h0h0 − jµa × I
]

(6.20)

where I is the unit dyadic and the unit vector h0 is parallel to the constant
bias magnetic field. The parameters µ and µa for lossless ferrites are defined
as

µ =
ωH(ωH + ωM) − ω2

ω2
H − ω2

, µa =
ωMω

ω2
H − ω2

. (6.21)

The constants ωH and ωM are related to the constant magnetic field amplitude
H0 and the saturation magnetization M0 through the gyromagnetic ratio γ
according to ωH = γH0, ωM = γM0. In the subsequent derivations, the
vector h0 is assumed to be directed along one of the cartesian coordinate axis.

In the following, modeling of a ferrite slab positioned on an ideally conducting
surface magnetized in the direction normal to the surface is mainly discussed.
In the locally quasistatic approximation, a surface impedance boundary con-
dition may be derived that is valid for relatively thin slabs. The appropriate
SIBC on the air-ferrite interface reads [55]

Et = jωµ0d

(

µI t − jµan × I t +
1

ω2εµ0

∇t∇t

)

· n × Ht. (6.22)
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Figure 6.11: (a) The numerical and the analytical cut-off frequencies of the TE10-
mode in the loaded waveguide versus ωpe. The resonant frequency of the layer is
larger than the cut-off frequency of the TE10-mode of an empty waveguide. (b)
The numerical and the analytical cut-off frequencies of the TE10-mode the loaded
waveguide versus ω0e.

As before, n is the unit normal vector pointing outwards from the interface
and ∇t is the restriction of the gradient operator to the plane of the interface.
The thickness of the slab is denoted by d.

6.6 FDTD Model for Ferrite Layers

Despite of approximations, the SIBC in (6.22) is rather complicated. In one-
dimensional case, it becomes simpler, because the spatial derivatives drop out.
The algorithm is most conveniently described in the one-dimensional case,
although similar ideas may be used in two and three dimensions. In what
follows, it is seen that the algorithm is rather complicated already in the one
dimensional case. Therefore, let us start with the 1D-case of a pulsed wave
reflection from a ferrite layer on a metal surface. Assuming that the interface
is located at x = 0, we have the following SIBC’s for the tangential fields:

Ey = −jωd (µ0µHz − jµ0µaHy) = −jωdA,

Ez = jωd (µ0µHy + jµ0µaHz) = jωdB, (6.23)

where auxiliary variables A and B have been introduced. If the term contain-
ing ∇t can be neglected in (6.22), then equations (6.23) result in the general
3D-case, and the subsequent derivations can be modified appropriately. Some
problems may, however, arise with the spatially (in the tangential direction)
non-collocated nature of the field components. Simply neglecting the tangen-
tial spatial errors may lead to a bad algorithm.
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Assuming z-polarized incident field, the incident field has only Ez– and Hy–
components, but the slab causes the plane of polarization to rotate. Therefore,
it is necessary to introduce the field components Ey and Hz. For good stability
properties of the FDTD model, it is desired to obtain update equations for
the magnetic field components located half cell away from the interface. The
electric field components are calculated from the SIBC’s above and substituted
into the update equations for the magnetic fields. It is noticed that due to the
anisotropy of the layer, a linear pair of equations must be solved to obtain the
final update equations.

It was found that attempts to straightforwardly discretice the SIBC’s in (6.23)
lead to poor stability properties. For some parameter choices, the resulting
algorithm may work, but the fields blow up for some other choices. The goal
here is to develop an algorithm that is stable for any reasonable set of param-
eters ωH , ωM , d. However, the condition kd � 1 must be satisfied, since the
SIBC is based on the approximation tan(kd) ≈ kd, which is only valid under
the aforementioned condition. For larger values of kd, usual discretization of
the fields inside the slab is a feasible approach although a fine mesh may be
then necessary.

Consider the discretization of the relation between the auxiliary variable A
and Hy and Hz. After multiplication, we obtain from (6.23) the equation

(ω2
H − ω2)A = µ0

[

ωH(ωH + ωM) − ω2
]

Hz − jµ0ωMωHy. (6.24)

An important issue at this point is the discretization of this equation. It could
be easily discretized at t = (n−1/2)∆t, using center differences for derivatives.
Then, the coefficients of the component at time step t = (n + 1/2)∆t would
not include both ωH and ωM . This is a severe problem if a robust algorithm
is desired. To avoid this problem, we turn the equation (6.24) into the time
domain and integrate it once to obtain

ω2
H

∫ t

0

A dt +
∂A

∂t
= µ0ωH(ωH + ωM)

∫ t

0

Hz dt + µ0
∂Hz

∂t
− µ0ωMHy. (6.25)

The spatial indices are not shown; it is understood that the fields are evaluated
near the interface. Equation (6.25) is discretized at time step t = n∆t. The
integration is performed second-order-accurately with the trapezoidal rule us-
ing the linear interpolation of the fields. In the discrete form, we obtain, after
some algebraic manipulation,

(4 + ω2
H∆t2)A|n+1/2 = (4 − ω2∆t2)A|n−1/2 +

µ0(4 + ωH(ωH + ωM)∆t2)Hz|n+1/2 −
µ0(4 − ωH(ωH + ωM)∆t2)Hz|n−1/2 −

2µ0ωM∆t(Hy|n+1/2 + Hy|n−1/2) −

2ω2
H∆t2

n
∑

m=1

(A|n−m+1/2 + A|n−m−1/2) +

2µ0ωH(ωH + ωM)∆t2
n
∑

m=1

(Hz|n−m+1/2 + Hz|n−m−1/2). (6.26)
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It is seen that once the magnetic fields are known at time step t = (n−1/2)∆t,
the auxiliary variable A at the same time step can be calculated according to
(6.26). To solve for Ey at time step t = n∆t, we remember that A and Ey are
related according to Ey = −jωdA, or in discrete form at t = n∆t:

A|n+1/2 = A|n−1/2 − ∆t

d
Ey|n. (6.27)

This expression for A|n+1/2 is now substituted into (6.26) and solved for Ey|n.
The result is

(4 + ω2
H∆t2)∆tEy|n = d

[

2ω2
H∆t2A|n−1/2−

µ0(4 + ωH(ωH + ωM)∆t2)Hz|n+1/2 + µ0(4 − ωH(ωH + ωM)∆t2)Hz|n−1/2 +

2µ0ωM∆t(Hy|n+1/2 + Hy|n−1/2) +

+2ω2
H∆t2

n
∑

m=1

(A|n−m+1/2 + A|n−m−1/2) −

2µ0ωH(ωH + ωM)∆t2
n
∑

m=1

(Hz|n−m+1/2 + Hz|n−m−1/2)

]

.

Finally, the Ey|n is substituted into usual Maxwell’s equation in discrete form:

Hz|n+1/2
1/2 = Hz|n−1/2

1/2 − ∆t

µ0∆x
(Ey|n1 − Ey|n0 ) . (6.28)

After simplification, the following equations relating Hz|n+1/2 and Hy|n+1/2 are
obtained:

C1Hz|n+1/2
1/2 − C2Hy|n+1/2

1/2 = C3Hz|n−1/2
1/2 − ∆t(4 + ω2

H∆t2)Ey|n1 −

d

[

−2ω2
H∆t2

n
∑

m=1

(A|n−m+1/2 + A|n−m−1/2)+

4µ0ωH(ωH + ωM)∆t2
n
∑

m=1

1

2
(Hz|n−m+1/2

1/2 + Hz|n−m−1/2
1/2 ) −

2ω2
H∆t2A|n−1/2 − 2µ0ωM∆tHy|n−1/2

1/2

]

(6.29)

and

C1Hy|n+1/2
1/2 + C2Hz|n+1/2

1/2 = C3Hy|n−1/2
1/2 + ∆t(4 + ω2

H∆t2)Ez|n1 −

d

[

−2ω2
H∆t2

n
∑

m=1

(B|n−m+1/2 + B|n−m−1/2)+

2µ0ωH(ωH + ωM)∆t2
n
∑

m=1

(Hy|n−m+1/2
1/2 + Hy|n−m−1/2

1/2 ) −

2ω2
H∆t2B|n−1/2 + 2µ0ωM∆tHz|n−1/2

1/2

]

. (6.30)
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In the equations above, the constants C1, C2, C3 are defined as

C1 = µ0

[

∆x(4 + ω2
H∆t2) + d(4 + ωH(ωH + ωM)∆t2)

]

,

C2 = 2dµ0ωM∆t, (6.31)

C3 = µ0

[

∆x(4 + ω2
H∆t2) + d(4 − ωH(ωH + ωM)∆t2)

]

.

Denoting the right-hand sides of equations (6.29–6.30) by RHS2 and RHS1,
respectively, we obtain the final update equations for the tangential magnetic
field components:

Hy|n+1/2
1/2 =

1

C2
1 + C2

2

[C1 · RHS1 − C2 · RHS2] ,

Hz|n+1/2
1/2 =

1

C2
1 + C2

2

[C2 · RHS1 + C1 · RHS2] . (6.32)

It is seen that as d = 0, then C2 = 0 and Hy and Hz become actually decoupled.
If only Hy is nonzero in the incident wave, Hz remains zero all the time. This
is correct, since in the case d = 0 we have just an ideally conducting wall.
Examining the update equation for Hy in the case of d = 0 reveals that it
corresponds to the case where the electric field component on the interface
is equal to zero. Thus, the model correctly reduces to the PEC boundary
condition if d = 0. If ωM � ωH , then the surface impedance is very large,
and the discrete model should reduce to a PMC boundary condition. Now,
|C1| and |C2| are large, and we correctly have just zero magnetic fields on the
boundary.

The discrete sums can be implemented recursively adding one term to the
sum. Comparing to the usual FDTD algorithm, three additional variables are
needed per magnetic field component on the boundary: the auxiliary variable,
its integral and the integral of the related magnetic field component. The
model can be modified to include a loss term. For example, it is possible to
incorporate parameters µ and µa of the form

µ =
ωH(ωH + ωM) − ω2

ω2
H − ω2 + jΓω

, µa =
ωMω

ω2
H − ω2 + jΓω

(6.33)

into the model. If these parameters were used, all the described steps would
proceed in an analogous fashion.

6.7 A Subcell Technique for Thin Ferrite Lay-

ers

Before numerical examples, an alternative approach for modeling electrically
thin ferrite layers is introduced. It is not evident from the literature if anyone
has adopted this approach when modeling ferrites. FDTD-models for dielectric
and conducting layers using subcell techniques have been presented by Tirkas
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and Demarest in [15] and by Maloney and Smith in [16]. Both of these models
are based on modifying Maxwell equations within or in the vicinity of the layer.

Consider the same one-dimensional test problem. If the thickness d of the
layer is very small, so that d < ∆x, then a subcell technique may be used.
Denoting 0 ≤ α = d/∆x ≤ 1, we may average the operational and the scalar
constitutive relations just in front of the metal boundary to obtain the averaged
constitutive relation in the form:

B = αµ · H + (1 − α)µ0H. (6.34)

This rather simple equation is the basis of the proposed subcell technique. It is
immediately seen that if d = 0, then α = 0 and the usual constitutive relation
in free space is used. The same discretization techniques as above may be
utilized in discretizing (6.34). In the general 3D-case, a special update scheme
for the normal components have to be developed. Similar ideas were used as
in the beginning of this chapter (see also [5]).
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Figure 6.12: (a) The spectrum of the incident electric field Ez. The peak occurs at
ωpeak = 2.2 · 1010 1/s. (b) The parameters µ and µa versus ω for ωH = 3.5 · 1010 1/s
and ωM = 1.0 · 1010 1/s.

It is observed that the Yee algorithm can be easily extended for the treatment
of magnetized ferrites using the discretization scheme presented above. Setting
α = 1, we merely supplement the usual Maxwell equations with the constitu-
tive relation relating B and H in regions, where ferrites are located. This can
be done regardless of the dimension of the computational space.

6.7.1 Numerical Examples in 1D-Case

The two models are demonstrated with a one-dimensional FDTD-code cal-
culating pulse reflection from a ferrite layer located on an ideally conducting
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Figure 6.13: (a) Reflected time-domain electric field Ez on the air-ferrite interface.
ωM = 1.0 · 1010 1/s. (b) Reflected time-domain electric field Ey on the air-ferrite
interface. There is only a small reflected Ey-component due to the Faraday rotation
within the ferrite layer.

surface. The incident pulse is a differentiated gaussian pulse with electric field
oscillating in the xz-plane, with the peak of the spectrum occurring at about
ωpeak = 2.2 · 1010 1/s. For angular frequencies larger than ω = 9 · 1010 1/s,
there is negligible amount of spectral content. The spectrum of the incident
electric field Ez is shown in Figure 6.12 a). The parameters µ and µa versus
angular frequency are shown in Figure 6.12 b).

We arbitrarily choose ωH = 3.5 · 1010 1/s and d = 1 mm. The thickness of
the layer is equal to d = ∆x/2. Setting ωM = 1.0 · 1010 1/s we calculate
the reflected electric fields on the air-ferrite interface with both models. The
results are seen in Figure 6.13.

Next, we take ωM = ωH = 3.5 ·1010 1/s. The corresponding reflected fields are
presented in Figure 6.14. Increasing ωM to ωM = 8 · 1010 1/s we obtain the
results in Figure 6.15.

It is interesting to check the special case when ωH = 0, (without considering
whether this is physical or not) since then we have µ = 1 and Ez = jωµ0dHz +
µ0ωMdHy. We choose ωM = 3.0 ·1011 1/s obtaining Ez = 377Ω ·Hy +j28Ω ·Hz

at ω = ωpeak = 2.2 · 1010 1/s. This almost corresponds to matching the Ez

to the free space: Ez = 377Ω · Hy. Indeed, it is seen from Figure 6.16 that
the plane of the polarization has rotated almost exactly 90 degrees and the
reflected Ez-component is rather small, while the shape of the reflected Ey-
component is like the incident field. Some discrepancy between the subcell
and the SIBC-based methods in Figure 6.16 a) is also observed.
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Figure 6.14: (a) Reflected time-domain electric field Ez on the air-ferrite interface.
ωM = 3.5 · 1010 1/s. (b) Reflected time-domain electric field Ey on the air-ferrite
interface. There is a larger reflected Ey-component than in Figure 6.13.

6.8 Conclusions

A new model for treating electrically thin dispersive layers and coatings in
FDTD simulations was introduced. The model is based on an appropriate av-
eraging of the electric and magnetic flux densities and on the use of auxiliary
quantities like polarization current and magnetization. The most important
feature of the model is its ability to accurately model dispersive layers having
multiple resonances of material parameters. The model is applicable for elec-
trically thin layers. A great advantage of the model is that we do not have to
consider the angle of incidence of the incident waves, because the local nature
of the model accounts for oblique incidence as well. With the proposed model,
the use of cumbersome surface impedance boundary conditions for dispersive
layers having multiple pole pairs is avoided. The proposed model was numeri-
cally verified with a couple of test problems by comparison with the analytical
results. The results given both in time and frequency domains indicate rather
good accuracy of the model. The model was found to be suitable for the
analysis of waveguides loaded with a dispersive layer.

Also, FDTD modeling of saturated ferrites has been dealt with. A novel SIBC-
based technique was introduced for modeling relatively thin ferrite layers on
ideally conducting surfaces. Some numerical examples were given in the one-
dimensional case. The developed model could be applied to the analysis of
ferrite-loaded waveguides, where the thickness of the ferrite layer is so small
that a direct quantization of the fields is not a feasible approach. An alternative
subcell technique was briefly discussed, and it was found to produce similar
results as the SIBC-model.
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Figure 6.15: (a) Reflected time-domain electric field Ez on the air-ferrite interface.
ωM = 8 · 1010 1/s. (b) Reflected time-domain electric field Ey on the air-ferrite
interface.
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Figure 6.16: (a) Reflected time-domain electric field Ez on the air-ferrite interface.
The rotation of the plane of polarization from xz-plane close to xy-plane is evident.
This is natural, since the fields Ez and Ey on the interface are coupled through
µa. Notice the scaling in the figure is refined. (b) Reflected time-domain electric
field Ey on the air-ferrite interface. The incident z-polarized electric field has been
transformed into y-polarized electric field.
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Chapter 7

Metamaterials

Wave propagation and refraction phenomena in metamaterials are considered
in this chapter. Metamaterials are materials that cannot be found or are not
readily available in nature. Metamaterials are artificially engineered materials.
In this chapter, FDTD algorithms for dispersive media are briefly discussed
first. The FDTD method is then applied in the numerical simulations of a
slab having unusual electromagnetic properties implied by the negative values
of the material parameters in a certain frequency range. Wave propagation
phenomena are mainly observed as predicted by the theory, but our simulations
do not support a possibility of making a “perfect” lens from a slab of isotropic
double negative material. The behavior of evanescent waves in metamaterials
is numerically studied using a special type of source function in FDTD.

7.1 Introduction

Metamaterials have received much attention during the last years, because they
possess unusual electromagnetic properties, like, for example, the opposite
directions of phase and group velocities. Double negative (DNG) materials
have negative permittivity and permeability, and they belong to the class of
metamaterials. These media that are capable of supporting backward waves,
have been also called backward wave (BW) media in the literature [56]. In BW
media, the refraction phenomenon is anomalous in the sense that the power
flow is refracted negatively, i.e. to the same side of the normal of the interface.
As discussed in [56], it is not necessary for the medium to be a DNG medium
to be able to support backward waves, because anomalous refraction can also
be realized with anisotropic media with only one negative material parameter.

The pioneering work on BW materials by Veselago [57], where slab lenses
were mentioned, has gained much attention during recent years, despite some
differing opinions on the subject [58]. Isotropic BW materials are often called
Veselago materials. The possibility to realize a perfect lens with isotropic BW
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slabs was discussed by Pendry in [59]. Numerical and theoretical considerations
of wave propagation in isotropic BW slabs excited with a line current above the
slab were presented by Ziolkowski and Heyman in [62]. Guidance of waves in
a slab of uniaxially anisotropic metamaterial has been theoretically discussed
by Lindell and Ilvonen in [72].

point source

first focus

second focus

free space

metamaterial
slab

free space

ds
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d-d s

d-d s

d ε (ω) = µ (ω) = −1r r 00
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image plane

amplitude
x

y

metamaterial slab

z

(b)

Figure 7.1: (a) The ray picture of perfect lens. The near fields created by the point
source are focused inside the slab, and the source field is reproduced in the second
focus behind the slab. (b) The profile of the magnitude of evanescent fields within
a DNG slab. The amplitude of evanescent fields grow exponentially inside a lossless
slab having the relative material parameters equal to εr = µr = −1 at the excitation
frequency.

Controversial opinions regarding negative refraction effect and the perfect lens
call for more detailed studies of the wave phenomena in backward-wave media.
In this thesis, wave propagation through uniaxially anisotropic BW slabs is
numerically studied, and comparison is made with the theory presented in [56].
The theory predicts that there are regions in certain BW media, where the wave
vector becomes complex, thus resulting in exponentially decaying waves. These
regions are bounded by the asymptotes of the wave vector surfaces, which can
be shown to be hyperbola. We study these phenomena numerically using the
finite-difference time-domain (FDTD) method in a 2D-problem of a line current
radiating in the vicinity of a BW slab. Also, the existence of surface waves
on the interface between free space and BW medium is demonstrated with
an example case. The BW medium is realized with Lorentzian constitutive
parameters having a single pole pair.

Negative material parameters within certain frequency band have been realized
using an array of split ring resonators and wire segments [64]. The wires
provide negative effective permittivity, and the split rings the negative effective
permeability of the medium.

An important topic in this chapter is the numerical study of propagation of
electromagnetic fields created by a line source in a planar DNG slab. Uniaxially
anisotropic slabs are first studied, and the isotropic DNG slab is considered as
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a special case. A ray picture of the fields produced by a point source above an
isotropic DNG slab is shown in Figure 7.1 a). In Figure 7.1 b), the behavior
of evanescent fields within a planar DNG slab is presented.

An example problem with some theoretical discussion are presented in section
7.3. Results from the numerical simulations are shown and discussed in section
7.4. Our numerical simulations show that the wave propagation and refraction
phenomena heavily depend on the parameter choices of the BW medium and
are qualitatively in agreement with the theory.

7.2 Numerical Model of Dispersive Medium

The constitutive relations for a frequency dispersive isotropic medium read

D = ε(ω)E, B = µ(ω)H. (7.1)

Negative permittivity and permeability are realized with the Lorentz medium
model. The expressions for the permittivity and permeability are of the form

ε(ω) = ε0

(

1 +
ω2

pe

ω2
0e − ω2 + jΓeω

)

,

µ(ω) = µ0

(

1 +
ω2

pm

ω2
0m − ω2 + jΓmω

)

. (7.2)

This model corresponds to a realization of BW materials as mixtures of con-
ductive spirals or omega particles, as discussed in [73]. In this artificial ma-
terial both electric and magnetic polarizations are due to currents induced on
particles of only one shape, which provides a possibility to realize the same dis-
persion rule for both material parameters, as in (7.2). Note that the medium
realized by Smith et al. is built using different principles [64]. For the uniaxial
materials that we consider in this thesis we assume that the negative compo-
nents of the material parameters are realized by small uniaxial spiral inclusions
(racemic arrays with equal number of right- and left-handed particles) and
possess frequency dispersion defined by (7.2). The positive components of the
material parameters are equal to the free-space permittivity and permeability
values, assuming that there are no particles oriented along these axes.

In numerical simulations, it is important to use frequency-dependent material
parameters, since there is no possibility to use constant negative material pa-
rameters in FDTD and have it run stably. Also, any physical realization of
metamaterials is dispersive, since constant and negative material parameters
would imply negative stored energy density in the medium. Hence, a good
FDTD model for frequency-dispersive media should be employed even when
working with essentially point frequency, as in the subsequent simulations.

Equations (7.1) and (7.2) form the basis of the used FDTD model for BW
materials. The two most important known FDTD methods for modeling dis-
persive materials like Lorentz materials are the recursive convolution method
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and the auxiliary differential equation method, where the constitutive param-
eters are expressed with the help of susceptibility. In the first method, D and
E and B and H are related through a convolution integral. This approach is
rather tedious. Another possibility is to use the auxiliary differential equation
technique, which is slightly easier to implement. In this latter method, the
polarization current associated to each Lorentz pole pair is introduced. These
two models are discussed in detail in [27].

A third method to discretize fields in Lorentz medium, classified as direct
integration method in [51], is based on the direct discretization of the PDE
representing the time-domain equivalent of the simplified frequency-domain
constitutive relation. The proposed discretization scheme is a modification
of this method. The idea is to transform (7.1) into the time domain using
the relation jω ↔ ∂/∂t with one integration before discretization using center
differences. Usually, FDTD models based on the constitutive relation are di-
rectly (after multiplication with the denominator) discretized, as discussed in
a summary of FDTD algorithms for dispersive media in [51]. We found in [65]
that one integration prior to discretization yields naturally a stable scheme
without heuristic tricks, such as the (in principle) unnecessary approximation
Ez|n ≈ (Ez|n+1 − Ez|n−1)/2, which has to be utilized to preserve stability for
wider variety of material parameters.

As an example, an update equation for the electric field component Ez in-
side BW material is next derived. Multiplying with the denominator of the
permittivity in (7.2) we obtain the equation

(ω2
0e − ω2 + jΓeω)Dz = ε0(ω

2
0e + ω2

pe − ω2 + jΓeω)Ez. (7.3)

Transforming into the time domain and integrating once yields

ε0(ω
2
0e +ω2

pe)

∫ t

0

Ez dτ + ε0ΓeEz + ε0
∂Ez

∂t
= ω2

0e

∫ t

0

Dz dτ +ΓeDz +
∂Dz

∂t
. (7.4)

The integral is evaluated with the trapezoidal rule, corresponding to the dis-
crete approximation

∫ t

0

Ez(x, y, τ) dτ ≈ 1

4

(

Ez|n+1
i,j + Ez|ni,j

)

+
n
∑

m=1

1

2

(

Ez|n−m+1
i,j + Ez|n−m

i,j

)

, (7.5)

where t = n∆t and (x, y) = (i∆x, j∆y), according to the common notation.
Discretizing equation (7.4) at the time step t = n∆t using center differences
and the trapezoidal rule, and solving for Ez|n+1

i,j gives the following update
equation:

Ez|n+1
i,j =

1

4 + (ω2
pe + ω2

0e)∆t2 + 2Γe∆t

[

(4 − (ω2
pe + ω2

0e)∆t2 − 2Γe∆t)Ez|ni,j

+
1

ε0

(4 + ω2
pe∆t2 + 2Γe∆t)Dz|n+1

i,j − 1

ε0

(4 − ω2
pe∆t2 − 2Γe∆t)Dz|ni,j

− 4(ω2
pe + ω2

0e)∆t2Ψ|n1 +
4

ε0

ω2
pe∆t2Ψ|n2

]

, (7.6)
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where

Ψ|n1 = Ψ|n−1
1 +

1

2

(

Ez|ni,j + Ez|n−1
i,j

)

, Ψ|n2 = Ψ|n−1
2 +

1

2

(

Dz|ni,j + Dz|n−1
i,j

)

. (7.7)

Thus, the discrete sums of the time histories of Ez and Dz are stored in vari-
ables Ψ1 and Ψ2. The memory requirements for the suggested discretization
technique are the same as in the case of the direct discretization without inte-
gration. This model has been published in [65] and it is used in the following
simulations. This scheme produces similar results as other known models.
However, even the largest time step dictated by the stability limit for the Yee
algorithm in free space can be used in all the results presented in this chapter.
This feature is common to the direct-integration method in [51]. The auxil-
iary differential equation technique becomes unstable unless the time step is
somewhat reduced from the Yee limit.

7.3 An Example Problem and Theoretical Dis-

cussion

Consider a z-directed line current in free space located at distance ds from a
BW slab of thickness d. Let the interface between free space and the BW slab
be located at y = 0. The problem space is two-dimensional, with the field com-
ponents Hx, Hy, and Ez. The peak of the incident spectrum is at ωp = 5.0 ·109

rad/s, and the parameters in (7.2) are the following: ω0e = ω0m = 1.0 · 109

rad/s, ω2
pe = ω2

pm = 4.8 · 1019 (rad/s)2, Γe = Γm = 0. With these choices,
we obtain ε(ω) = µ(ω) for all ω and ε(ω)/ε0 = µ(ω)/µ0 = −1 at ω = ωp.
The spatial resolution ∆x = ∆y = 1.5 cm is used throughout the simulations.
To be able to demonstrate the properties of BW materials, the incident spec-
trum is quite narrow, so that the relative constitutive parameters are close to
minus one for the frequencies having significant spectral content. Absorbing
boundary conditions are used to terminate the computational domain at the
outer boundaries of the lattice. For simplicity, we have used Liao’s third or-
der ABC, although more sophisticated ABC’s are available. The use of usual
ABC’s requires a small gap between the outer boundary of the computational
space and the BW material slab. The chosen coordinate axes and the problem
geometry are shown in Figure 7.2. Next, we briefly present some theoretical

Figure 7.2: The slab problem under consideration and the chosen coordinate
system.
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results from [56] (see also [6]) that are important here for comparison purposes
with our numerical results. Wave propagation in BW slabs is studied with
different value combinations of the medium parameters µx, µy and εz. For our
TE-polarized case, the Poynting vector STE can be shown to read [56]

STE =
µ · kTE

2k0η0µ0µxµy

|E0|2, (7.8)

where |E0| is the amplitude of the TE-polarized electric field of the plane
wave, kTE is the wave vector with two cartesian components kx and ky, k0 =

ω
√

ε0µ0 is the free space wave number, and η0 =
√

µ0/ε0 is the free space wave
impedance. Denoting the angle between the outwards-pointing unit normal
vector uy and the wave vector kTE by θ, one can derive the dispersion equation
and solve it for the wave number as in [56]. The result is

kTE(θ) = k0

√

µxεz

cos2 θ + µx

µy
sin2 θ

. (7.9)

For any given set of parameters, we may plot the projection curves of the wave
vector surfaces in the plane. For certain choices of the medium parameters,
the wave number becomes complex, resulting in exponentially decaying waves
inside the BW material. In our simulations, |kTE| = k0 at the operation
frequency, and after substituting kx = k0 sin(θ), ky = k0 cos(θ), we readily
obtain an alternative representation of (7.9):

k2
x

µx

µy

+ k2
y = k2

0µxεz. (7.10)

For infinite slabs, any physical power flow must be directed downwards away
from the source. This requires that

uy · STE < 0. (7.11)

The necessary condition for any transmission is

uy · kTE

µx

< 0 ⇐⇒ ky

µx

< 0. (7.12)

Clearly, the phase velocity is directed oppositely to the power flow provided
that µx < 0. Negative refraction of the Poynting vector requires that

kxux · STE < 0 ⇐⇒ µy < 0. (7.13)

For the interface problem, we will also need to know conditions for the existence
of surface waves. The input impedance on the surface filled by a uniaxial
material is, for TE-polarized fields,

Zinp =
ωµx

βTE

, (7.14)
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where the normal component of the propagation factor reads

βTE =

√

µx

µy

(ω2εzµy − k2
x) (7.15)

with the square root branch defined by Im(βTE) < 0. kx is the propagation
factor along the surface. Thus, the eigensolutions for an interface between this
medium and free space satisfy the following equation:

µx

βTE

+
µ0

β0

= 0, (7.16)

where
β0 =

√

ω2ε0µ0 − k2
x, (7.17)

with Im(β0) < 0.

Surface waves along the interface exist provided that both betas are imaginary,
of course with negative imaginary parts: βTE = −jαTE and β0 = −jα0, where
αTE > 0 and α0 > 0. The eigenvalue equation becomes

µx

αTE

+
µ0

α0

= 0. (7.18)

Obviously, if all the material parameters are positive, this equation has no
solutions, but if µx < 0, surface wave solutions are possible. This is well
known for interfaces with free-electron plasma.

Five different cases will be considered in the following. In the first case, we
choose µx > 0, µy < 0, and εz < 0. The wave vector surface is a two-
sheeted hyperboloid with the axis parallel to the x-axis. The asymptotes of
the hyperbola in the xy-plane divide the plane into regions of complex and real
wave vectors. Waves that are propagating parallel to the y-axis are supposed
to decay exponentially inside the slab. Indeed, for µx = 1, µy = −1, εz = −1
the dispersion equation (7.10) takes the form

−k2
x + k2

y = −k2
0, (7.19)

which represents, for a given k0, the two-sheeted hyperboloid in kxky -plane
with the axis parallel to kx. It is easily seen from (7.19) that for waves with
kx = 0, ky becomes complex and the fields inside the slab decay exponentially
with the distance from the interface.

In the second case, µx > 0, µy < 0, εz > 0. The wave vector surface is a
two-sheeted hyperboloid with the axis parallel to the surface normal. In our
2D-case, real wave vectors exist inside the region bounded by the asymptotes
of the hyperbola associated to the wave vector surfaces. In this case, the
dispersion equation (7.10) for µx = 1, µy = −1, εz = 1 takes the form

−k2
x + k2

y = k2
0. (7.20)

As a third case, we consider the situation complementary to the second case
in the sense that the signs of all the parameters are changed. Notice that this
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does not affect the shape of the wave vector curves, so that the dispersion
equation is of the form (7.20). We have µx < 0, µy > 0, and εz < 0. In
fact, the Poynting vector is refracted positively in this case [see (7.13)], but
this is an interesting case anyway because of the aforementioned contrast with
respect to the second case.

The fourth case consists of the usual isotropic BW slab (µx = µy < 0, and
εz < 0) where focusing and negative refraction phenomena are present. The
wave vector curves are ellipses (in our case of two equal parameters they are
circles), and real wave vectors exist everywhere inside the slab.

The fifth case is specially chosen to show the existence of surface waves in the
case when µx < 0, µy < 0, and εz > 0. We can easily see from (7.10) that there
are neither real wave vectors nor backward waves, since k2

x + k2
y = −k2

0 < 0
for µx = µy = −1, εz = 1. However, it was found that surface waves on the
interface are easily excited in this case. Let us now present the numerical
results.

7.4 Numerical Results and Comparison with

the Theory

In the first four cases, we show the electric field distribution at three suitable
chosen increasing time steps to illustrate the wave propagation and refraction
phenomena. In the fifth case, we illuminate a rectangular cylinder to see
the surface waves. Whenever a constitutive parameter is said to be positive,
it is supposed to be a constant and equal to the free space permittivity or
permeability. Negative material parameters obey the Lorentzian dispersion
rule and equal −ε0 or −µ0 at the center frequency.

7.4.1 Case I: µx > 0, µy < 0, εz < 0

In this case, the theory shows that the wave vectors are complex inside the
slab within a region bounded by the asymptotes of a hyperbola. Inspection of
Figure 7.3 c) reveals that there is indeed a region in the slab, where the electric
field in negligible all the time. There are some fields within the slab just under
the source. The hyperbola-shaped wavefronts propagate obliquely downwards
inside the slab and the power flow is refracted negatively. The distance of the
source from the first interface is discretized with 5 cells, and the thickness of
the slab corresponds to 80 cells.
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(a) (b) (c)

Figure 7.3: (a) The electric field Ez penetrating into the slab. Slab boundaries
are indicated by black lines. The snapshot is taken at time step n = 400. (b) The
electric field within the slab. Notice the region in the center of the slab, where the
field amplitudes are very small. The snapshot is taken at time step n = 560. (c) It
appears that the wavefronts inside the slab are hyperbolas, in agreement with the
theory. The snapshot is taken at time step n = 1060.

7.4.2 Case II: µx > 0, µy < 0, εz > 0

In Figure 7.4 a), a cylindrical wave is penetrating into the BW slab. In Figure
7.4 b), some numerical dispersion is visible. There are significant fields inside
the region where the theory yields real wave vectors, while the fields are rather
small elsewhere. Despite some dispersive effects, the wavefronts of constant
field value are reminiscent of hyperbolas. The phase velocity is directed down-
wards. Some weak focusing of the power flow is seen in Figure 7.4 b). The
phase velocity inside the slab is directed downwards, as can be seen from the
theory.

(a) (b) (c)

Figure 7.4: (a) The electric field Ez penetrating into the slab. The snapshot is
taken at time step n = 240. (b) The electric field within the slab. Some waves have
already passed through the slab. It is seen that there are small fields in the region,
where the wave vector is complex, as predicted by the theory. The snapshot is taken
at time step n = 400. (c) Dispersive effects are more clearly seen inside the slab. The
electric field is concentrated to the lower side of the slab. The wavefronts behind the
slab outside the region of large amplitudes are prolate ellipses. ds = 5∆y, d = 80∆y.
The snapshot is taken at time step n = 980.
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7.4.3 Case III: µx < 0, µy > 0, εz < 0

To complete the analysis, we change the signs of the parameters of the second
case. Clearly, the wave vector surfaces as defined by (7.9) are not changed.
In fact, the Poynting vector is refracted positively in this case. However, the
phase velocity is directed upwards [see (7.12) and (7.13)]. This phenomenon is
clearly seen during the simulation. From Figure 7.5 we see that the electric field
distributions inside the slab are quite similar to those of Figure 7.4 except that
the wavefronts are less distorted in Figure 7.5. In Figure 7.5 c), the wavefronts
behind the slab are seen to be oblate ellipses with the center on the lower
interface of the slab.

(a) (b) (c)

Figure 7.5: (a) The electric field Ez penetrating into the slab. Wavefronts are
dramatically bent. The electric field distribution is recorded at time step n = 220.
(b) The electric field within the slab. Some waves have already passed through
the slab. The wavefronts are seen to be hyperbolas. The electric field distribution
is recorded at time step n = 400. (c) Interestingly, the wavefronts behind the slab
appear to be ellipses with the center on the lower interface of the slab. ds = 5∆y, d =
80∆y. The electric field distribution is recorded at time step n = 720.

7.4.4 Case IV: an Isotropic Slab with µx < 0, µy < 0,
εz < 0

Here we consider the usual isotropic BW (or double negative) slab with all the
relative material parameters close to minus one. This case has been studied,
for example, by Ziolkowski and Heyman in [62] in the case of Drude slabs.
We obtained quite similar results with our alternative discretization technique
in the case of isotropic Lorentz medium. The electric field distributions are
shown in Figure 7.6. We can calculate the positions of the foci from the slab
thickness d and the distance ds of the source from the interface. Notice that
we must have ds < d to have a focus inside the slab. The foci should appear
at y = −ds inside the slab and at y = −(2d − ds) behind the slab. The
appropriate derivations can be found in [62].

From Figure 7.6 a) we see that the electric field is concentrated in the expected
position of the first focus. In Figure 7.6 c), the second focus behind the slab is
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(a) (b) (c)

Figure 7.6: (a) The electric field Ez penetrating into an isotropic BW slab. The
electric field Ez is shown at time step n = 400. (b) The electric field within the
isotropic BW slab. Some waves have already passed through the slab. The first
focus inside the slab is seen in the figure. The electric field Ez is shown at time
step n = 560. (c) The second focus behind the BW slab has become visible. ds =
20∆y, d = 60∆y. The electric field Ez is shown at time step n = 900.

also visible. It takes some time for the foci to develop, as is seen from Figure
7.6 b), where the second focus is not yet seen. The incident spectrum has some
small components for which the relative material parameters are not exactly
minus unity. Hence the wavefronts are not perfect circles as predicted by the
theory. Anyway, these results are in agreement with the theory concerning
negative refraction of the Poynting vector. However, no “perfect” focusing has
been observed, meaning that the focus area is always not smaller that about
half wavelength. Steady state solutions for the foci were not obtained. This
same observation was also made by Ziolkowski and Heyman in [62]. Numerical
experiments to study focusing have been also reported by Loscialpo in [68] and
by Cummer in [69].

7.4.5 Case V: µx < 0, µy < 0, εz > 0

For this set of material parameters, the theory predicts that the waves decay
exponentially everywhere inside the slab. However, we have found that surface
waves, i.e. waves that decay exponentially with the distance from the interface,
are easily excited in this case, in accordance with the theoretical prediction,
see 7.18. To see this phenomenon, we illuminate a rectangular cylinder with
a pulse having a slightly broader spectrum. The electric field distribution
induced on the surface of the cylinder is shown in Figure 7.7. Figure 7.7
a) shows how the surface waves begin to develop. The source has just been
switched off in Figure 7.7 a). In Figure 7.7 b), surface waves have propagated
along the surface to the opposite side of the cylinder as well. In agreement
with the theory, there are no fields inside the cylinder except for the immediate
vicinity of the surface of the cylinder.
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(a) (b)

Figure 7.7: (a) The surface waves begin to develop. The source has just been
switched off at time step n = 360. (b) At a later moment of time (n = 1020),
surface waves exist around the cylinder. As is known from the theory, there are
negligible fields inside the cylinder.

7.5 Evanescent Fields in Backward-Wave Slabs

The resolution wave limit of any optical device is well known: it is impossible
to resolve details smaller than half wavelength. The physical reason of this
limitation comes from the fact that evanescent waves in the Fourier spectrum
of an object exponentially decay in the direction from the object plane. The
decay factor reads α =

√

k2
t − k2

0, where k0 is the wavenumber in free space,
and kt is the wavenumber of Fourier components in the object plane. The faster
the field varies in the object plane, the faster it decays in the direction normal
to the object plane. However, it was recently found that a very special kind
of lens made of a material with negative relative parameters εr = −1, µr = −1
(at a certain frequency) can “amplify” the evanescent part of the spectrum,
thus opening a way to realize a “superlens” with sub-wavelength resolution
[59, 60, 61].

The reason for this counterintuitive behavior is the fact that for a fixed fre-
quency, an interface between free space and a backward-wave medium with
εr = −1, µr = −1 supports surface waves with arbitrary propagation con-
stants along the interface [63]. Indeed, the eigenvalue equation for surface
modes (surface polaritons) on an interface between two isotropic media with
parameters ε1,2 and µ1,2 reads

√

k2
1 − k2

t

ε1

+

√

k2
2 − k2

t

ε2

= 0, TM modes (7.21)

µ1
√

k2
1 − k2

t

+
µ2

√

k2
2 − k2

t

= 0, TE modes (7.22)

where indices 1, 2 correspond to the two media. If ε2 = −ε1 and µ2 = −µ1,
both (7.21) and (7.22) are identically satisfied for all propagation constants kt

along the interface. This means that any evanescent incident plane wave is
exactly in phase with one of the eigenmodes of the surface wave spectrum. If
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the interface is infinite in space, the amplitude of the excited surface wave be-
comes infinite. The amplification of evanescent fields in backward-wave slabs
utilizes this resonant excitation of waveguide modes with large propagation
constants. The incident field excites an eigenmode of the slab that is formed
by two exponentially decaying field components inside the slab. The spectrum
of eigenmodes traveling along a slab can be found from the expression for the
reflection or transmission coefficients: they have singularities at the spectral
points. For material parameters satisfying µr = −1 and εr = −1 the trans-
mission coefficient equals simply exp(αd), where α is the decay factor of an
evanescent mode from the source and d is the slab thickness [59]. Thus, there
is only one eigenmode, and that solution corresponds to infinitely large kt and
α. For larger values of α the excitation is closer to the resonance with this
eigenmode, and the field amplitude excited in the slab waveguide is larger.

In paper [66], however, it has been concluded that if the width of the slab is
limited, the restoration of fields is physically meaningless as it involves infinite
energy. To clarify the behavior of the evanescent fields in a BW slab or a
finite width, we study the fields from a source that creates only evanescent
spectrum in the time domain with the finite-difference time-domain (FDTD)
method. Time domain waveforms at suitably chosen observation points and
snapshot field distributions are calculated. Our simulations show that the
amplification indeed occurs, and it is due to the surface modes excited on the
slab boundaries.

7.5.1 The Problem Formulation

In any backward-wave medium the negative permittivity and permeability
must be dispersive, and here we adopt the Lorentz model to account for the
frequency dispersion. The expressions for the permittivity and permeability
are of the form (7.2). Numerical techniques appropriate to simulations of a
material with the above parameters with FDTD can be found in [65, 27, 51].
The discretization scheme used in this thesis is described in detail in [65].

Let the interface between free space and a BW slab lie along the x-axis. The
excitation plane (a line in our 2D cut) is located at distance ds from the BW
slab of thickness d. In order to be able to study the behavior of the evanescent
field, we excite a BW slab by a source which produces no traveling waves in
the direction orthogonal to the source plane. We choose the incident electric
field that depends on the x-coordinate along the interface and on the time t
in the following manner:

E(x, t) = e
−
(

x−x0
xd

)2

r(t) cos (kxx − ω0t). (7.23)

The ramp function r(t) increases smoothly from 0 to 1 over about 50 periods
of the cosine function. It is very important that the amplitude grows slowly
enough; a rapid increase in the amplitude does not yield a constant amplitude
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on the second slab interface or in the image plane, because of a wide frequency
spectrum of the source. x0 is taken to be the x-coordinate in the middle of the
slab and xd determines the rate of decay of the incident electric field amplitude
as measured from x0. ω0 is the center angular frequency of the excitation. Due
to the finite simulation space, we have given a spatial profile to the incident
field to obtain a decaying amplitude near the boundaries of the simulation
space. The shape of the profile is the normal distribution. The incident fields
propagate to +x-direction along the interface but decay exponentially in the
y-direction normal to the slab boundaries. From the dispersion relation in free
space, k2

x +k2
y = ω2/c2 we see that by choosing kx > ω0/c (ky = 0) in (7.23) we

obtain exponentially decaying fields away from the source in the y-direction.
In our numerical simulations, we use kx = 13.62 m−1 (k0 = 9.17 m−1).

The problem space is two-dimensional, with the field components Hx, Hy, and
Ez. The peak of the incident spectrum is at ω0 = 2.75 · 109 rad/s, and the
parameters in (7.2) are the following: ω0e = ω0m = 0.55 · 109 rad/s, ω2

pe =
ω2

pm = 1.482 · 1019 (rad/s)2, Γe = Γm = 0. With these choices, we obtain
ε(ω) = µ(ω) for all ω and ε(ω)/ε0 = µ(ω)/µ0 = −1 at ω = ω0.

When losses are included, we keep ω0e and ω0m as above and modify ωpe

and ωpm appropriately to obtain <εr(ω) = <µr(ω) = −1. Liao’s third-order
absorbing boundary conditions (ABC) [26] are used to terminate the computa-
tional domain at the outer boundaries of the lattice. The slab has finite width,
which is large compared with the thickness of the slab.

We excite a slab of thickness 7∆y = 9 cm, carrying out the simulations in a
500 × 60 lattice. The source plane is located at a distance ds = 3∆y = 4.5
cm from the boundary of the slab (tangential magnetic field components are
defined on the interfaces). Determining the precise spatial profile of the source,
we take x0 = 250∆x and xd = x0/3.5 in (7.23).

(a) (b) (c)

Figure 7.8: (a) The source fields are visible above the slab. (b) The evanescent
fields above the slab create surface waves on the boundaries of the slab. (c) The
evanescent mode has been amplified by the slab: strong field amplitudes are visible
on the second interface. The fields are stronger on the second interface than on the
first interface and the source region.

The problem formulation described above enables us to study how the evanes-
cent fields behave in a BW slab and how the surface modes are excited. The
numerical results are presented and discussed next. Majority of these results
have been published in [67].
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7.5.2 Numerical Results

FDTD simulations have been run to see how the electric fields behave on the
slab boundaries and inside the slab. The electric fields created by the source at
an early stage of the simulation are seen in Figure 7.8 a). The snapshot electric
field distribution in Figure 7.8 b) shows that the fields have passed through
the slab and the field amplitudes on the slab boundaries are high. The electric
field distribution in Figure 7.8 c) is recorded at a later moment of time. Figure
7.8 c) reveals that the electric fields are much stronger on the second interface
than on the first interface. Evidently, the excited evanescent mode is amplified
by the slab. Notice that the source is just reaching its maximum amplitude at
n = 3000, although the fields created by the source are not visible in Figure
7.8 c) due to the scaling.

Next we record the electric fields as a function of time at some observation
points. Both lossless and lossy slabs will be considered. All the observation
points are on the line x = 250∆x: one in the middle of the slab, another on
the lower interface and the third in air in the image plane, which is located
at the distance d − ds from the second interface. The electric fields at these
points as functions of time are shown in Figures 7.9 and 7.10. Figure 7.9 a)
shows that the electric field amplitude is larger on the lower boundary of the
slab than inside the slab. The incident electric field amplitude in the source
plane is equal to unity. The source and the observation point inside the slab
are located at equal distances from the upper slab boundary. Therefore, it is
expected that the electric field amplitude in the middle of the slab is equal
to 1. We have observed slightly larger amplitude in the middle of the slab.
The incident electric fields and the fields in the image plane are compared in
Figure 7.10. From the theory, is it expected that the electric field amplitude
in the image plane equals the incident electric field amplitude. The fields in
the source plane and in the image plane are quite close to each other, see
Figure 7.10.

Let us now compare the results in Figure 7.9 with analytical results. The
evanescent mode decays away from the source plane as a function of distance
y by a factor of

T1 = e−
√

k2
x−k2

0y (7.24)

until it hits the upper boundary of the slab. In the slab of thickness d, the
fields are amplified by a factor of

T2 = e
√

k2
x−k2

0d. (7.25)

Combining these factors, we obtain the transmission coefficient from the source
plane to the second interface as

T = e
√

k2
x−k2

0(d−ds), (7.26)

where ds is the distance of the source from the upper boundary of the slab.
Substituting the parameters we obtain T ≈ 1.57. In the numerical simulations,

118



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time step

A
m

pl
itu

de

Inside
Back edge

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time step

A
m

pl
itu

de

Inside
Back edge

(b)

Figure 7.9: (a) The electric field amplitude on the second boundary of the slab is
larger than that of the source field, and also larger than the amplitude in the middle
of the slab. This result verifies that the evanescent fields are amplified by the slab.
(b) Small losses slightly reduce the amplification effect. The relative permittivity
equals εr(ω) = µr(ω) = −1 − j0.019 at the operation frequency.

the maximum ratio of the field amplitudes on the lower interface and on the
source plane equals 1.55, being quite close to the analytical result. The fact
that the calculated value is smaller should have been expected, because in
the numerical model the incident field amplitude decays from the slab center,
while the estimation is for the plane-wave excitation. It is observed that some
amplitude variation occurs in the image plane. This phenomenon has also been
reported by Rao and Ong in [71]. The amplitude modulation takes longer time
for smaller losses. In our simulation, we see smaller variations in the amplitude
than Rao and Ong observed in [71]. This may be explained with a longer turn-
on-time of the source or with different problem parameters kx or d.

Let us check how a further increase of losses affect the results. In Figures 7.11,
results for Γe = Γm = 1.0 · 108 1/s and Γe = Γm = 2.0 · 108 1/s are shown,
respectively. The results are quite expected: the field amplitudes and their
variations in the image plane are smaller.

7.6 Conclusions

Wave propagation and refraction phenomena in uniaxially anisotropic BW
slabs have been studied with the FDTD method. Special attention was paid
to the shape of the wavefronts and to the regions inside the slabs, where the
wave vector becomes complex, thus resulting in exponentially decaying waves.
The numerical results for anisotropic BW slabs were seen to qualitatively agree
with the theoretical results. The effects of negative refraction, (imperfect) fo-
cusing, and surface wave excitation have been demonstrated. Potentially useful
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Figure 7.10: (a) The evanescent electric fields in the image plane are close to the
fields in the source plane. This is also in agreement with the theory. (b) Small losses
decrease the image quality, but evanescent waves are obviously still amplified and
they contribute to the fields in the image plane. The relative material parameters
equal εr(ω) = µr(ω) = −1 − j0.019 at the operation frequency.

transformations of wave fronts between spherical, elliptical, and hyperbolical
can be realized in homogeneous uniaxial backward wave slabs.

We have also numerically demonstrated that the evanescent modes are ampli-
fied in a lossless frequency dispersive backward-wave slab. The field amplitude
at the other side of the slab is larger than the source amplitude, and the “am-
plification ratio” agrees well with the analytical estimation. The numerically
observed electric fields in the image plane approximately reconstruct the source
fields above the slab. Thus, our numerical results support the conclusion of
paper [59] based on the theoretical analysis of an infinite lossless backward-
wave slab. Our results do not contradict the conclusion of [66] about infinite
field energy required for the restoration of evanescent fields. This is because
due to the finite cell size all the wavenumbers in the spectrum are finite and
the field amplitudes are finite everywhere.
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Figure 7.11: (a) As expected, the field amplitude in the image plane decreases
with increasing losses. The relative material parameters equal εr(ω) = µr(ω) =
−1−j0.038 at the operation frequency. (b) The relative permittivity equals εr(ω) =
µr(ω) = −1 − j0.076 at the operation frequency.
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Chapter 8

Application of the SIBC-FDTD

Technique to Modeling of

Antennas

FDTD modeling of certain antennas are dealt with in this chapter. In par-
ticular, novel antennas with artificial impedance surfaces is studied. A simple
analytical model was used in [75] to study the radiation properties of antennas
with impedance surfaces. Although some understanding about the radiation
characteristics of antennas with impedance screens can be obtained with that
model, it was limited to the case of infinite screen width. An FDTD model
for finite-size antenna structures with impedance surfaces is developed in this
chapter. Monopole and dipole antennas near impedance surfaces are numer-
ically analyzed using FDTD codes developed by the author. The impedance
boundary conditions are again applied in the conventional rectangular Yee
lattice.

Some simulation results are also compared to measurement results obtained in
the Radio Laboratory. The required FDTD theory is first developed and ver-
ified against analytical results with simple examples. The example problems
used in the verification of the model are not realistic problems, since realistic
problems rarely possess analytical solutions. After being convinced that the
numerical model works properly, we study numerically some realistic anten-
nas. The results indicate that some rather simple devices can have interesting
properties and might be useful in mobile terminals.

8.1 Motivation

Novel artificial impedance surfaces have been introduced in some applications:
in antenna reflectors to double the field of a wire antenna [74], in mobile
antennas [75], and in microwave filters [76], to name but a few.
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The artificially engineered, so called mushroom structure, considered in this
thesis, belongs to a wider class of electromagnetic band gap (EBG) structures.
Within the surface wave bandgap, EBG materials suppress surface waves. Sur-
face wave suppression is desirable since they distort the radiation pattern of
an antenna and degrade the efficiency. The promise of EBG structures stems
from the fact that they can mimic perfect magnetic conductors near the res-
onant frequency. Hence, the reflected field of an antenna placed in proximity
of such a reactive lossless impedance surface will be in phase with the incident
field, thus contributing to the radiation of the antenna. This is contrary to
the situation, where an antenna radiates near an ideal electric conductor. In
that case, the reflected waves are out of phase and the radiation of the antenna
is decreased. Artificial impedance surfaces are often called artificial magnetic
conductors (AMC) or high impedance surfaces (HIS), since they behave like
ideal magnetic conductors in the resonance, where the equivalent surface im-
pedance of the structure tends to infinity.

We will study the effect of certain impedance screens to the properties of
different antennas. A simple prototype consists of a half of a folded dipole or a
straight dipole antenna near an impedance surface. The impedance screen will
change the directivity properties of such an antenna and enables better input
matching when the radiating element is fed with a 50 Ω transmission line.

8.2 Surface Impedance Model

The classical Leontovich surface impedance relation on the impedance surface
reads

Et = Zsn × Ht, (8.1)

where index t marks the tangential field components, and n is the unit vector
normal to the surface.

D d

(a)

D d

h

dielectric substrate ground plane

εr

(b)

Figure 8.1: (a) The artificial impedance surface with closely spaced metal patches,
top view. (b) Side view.

The artificial impedance surface considered in this thesis is an array of con-
ducting patches located at a distance h from the ground plane. The space
between the array of patches and the ground is filled with a dielectric with a
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relative permittivity εr. A waveguide structure is formed between the ground
and the array. To prevent electromagnetic waves from traveling there, vias
arrays may be positioned between the array and the ground [74]. The square
patches have the side length D and spacing d � D. The patches are also
supposed to be small compared to the wavelength: D � λ. The structure
described above will be referred to as a mushroom structure. See Figure 8.1,
where the structure is illustrated and the dimensions are defined. For the
mushroom structure, the surface impedance is of the form [77]

Zs(ω) = η

j√
εr

tan(k
√

εrh)

1 − (εr+1)kD
π
√

εr
log
(

2D
πd

)

tan(k
√

εrh)
, (8.2)

where η is the wave impedance in the substrate. For small arguments of
tangent, a reasonable approximation is tan(x) ≈ x and the surface impedance

Zs(ω) =
jωL

1 − ω2LC
(8.3)

may be used with

L = µ0h, C =
Dε0(εr + 1)

π
log

(

2D

πd

)

, (8.4)

as introduced in [74]. The FDTD-model will be derived from these equations.
The parameters L (surface inductance) and C (surface capacitance) describe
the properties of the structure introduced in [74]. A dynamic model for ar-
tificial reactive impedance surfaces has been later introduced by Tretyakov
and Simovski in [77], where the expressions for the surface inductance and
capacitance with different models are presented.

Let us see how the surface impedance expression (8.2) reduces to the expres-
sion (8.3) if we use a rational approximation of the tangent as in chapter 5.
Approximating

tan(x) ≈ x

1 − q1x2
, (8.5)

where the constant q1 = 4/π2, we obtain from (8.2) that

Zs(ω) =

j
√

µ0
εrε0

k0
√

εrh

1−q1k2
0εrh2

1 − (εr+1)k0D log( 2D
πd )k0

√
εrh

π
√

εr(1−q1k2
0εrh2)

. (8.6)

Multiplying both the numerator and the denominator by 1 − q1k
2
0εrh

2 and
simplifying, we obtain

Zs(ω) =
jωµ0h

1 − q1ω2µ0ε0εrh2 − (εr+1)ω2Dµ0h
π

log
(

2D
πd

)
. (8.7)

It is seen that this expression is of the form (8.3) with the same inductance
but with a modified capacitance

C ′ = C + q1εrε0h. (8.8)
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If q1 = 0, corresponding to tan(x) ≈ x, we consistently obtain C ′ = C.

We will first develop an FDTD model for the impedance boundary condition
(8.1) and show some simulation results calculated with 1D and 2D FDTD
programs. After being convinced that the FDTD model works properly, we
will perform the simulations in the 3D situation, where the dimensions in (8.2)
are meaningful.

8.3 FDTD Implementation of the Surface Im-

pedance

Let the interface between free space and the impedance surface lie on the xz-
plane. Let us derive the update equation for the electric field component Ez

on that interface. As before, the algorithm is designed for the conventional
Yee lattice [20](we consider the 2D TMz situation first). From equations (8.3)
and (8.1) we get, in the frequency domain:

−jωLHx = Ez + (jω)2LCEz. (8.9)

This can be easily transformed into the time domain using the inverse Fourier
transform:

−L
∂Hx

∂t
(x, y, t) = Ez(x, y, t) + LC

∂2Ez

∂t2
(x, y, t). (8.10)

This could be easily discretized to obtain an update equation for one field com-
ponent. However, the resulting scheme would be unstable for relatively large
impedances. The goal here is to develop a robust algorithm, which produces
reasonable results for surface impedance ranging from zero to j∞. Thus, a
naive discretization of (8.10) with possibly extrapolating one of the field com-
ponents on the surface to reduce the error originating from the spatial inter-
leaving of the field components is not a clever approach. Instead, we integrate
equation (8.10) from t = 0 to t = n∆t using the trapezoidal rule. In discrete
form, on the impedance surface, we have:

Hx|n+1/2
i,0 = −∆t

2L

n
∑

l=1

(

Ez|n−l+1
i,0 + Ez|n−l

i,0

)

− ∆t

4L

(

Ez|n+1
i,0 + Ez|ni,0

)

− C

∆t

(

Ez|n+1
i,0 − Ez|ni,0

)

. (8.11)

Good stability properties of the algorithm are very much appreciated. There-
fore, a half-cell spatial error between Hx and Ez was neglected in the discretiza-
tion in (8.11) and compatibility with Yee’s algorithm is maintained combining
the equation with the normal Yee update equations. It will be demonstrated
that excellent agreement with exact results can be obtained. Equation (8.11)
requires the whole time history of Ez. To avoid storing all the past values of
Ez we calculate the sum recursively in the following manner. Let

Ψ|ni,0 =
n
∑

l=1

1

2

(

Ez|n−l+1
i,0 + Ez|n−l

i,0

)

. (8.12)
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The auxiliary variable Ψ can be updated as follows:

Ψ|0i,0 = 0,

Ψ|1i,0 =
1

2
Ez|1i,0, (8.13)

Ψ|ni,0 = Ψ|n−1
i,0 +

1

2

(

Ez|ni,0 + Ez|n−1
i,0

)

.

Now, we can use the Maxwell-Ampère law in integral form to obtain a time-
stepping relation for electric field Ez on the impedance surface. We have

Ez|n+1
i,0 − Ez|ni,0 =

(

Hx|n+1/2
i,−1/2 − Hx|n+1/2

i,1/2

) ∆t

ε0∆y

+
(

Hy|n+1/2
i+1/2,0 − Hy|n+1/2

i−1/2,0

) ∆t

ε0∆x
. (8.14)

Finally, we combine equations (8.11)–(8.14) and get the update equation for
the Ez-component:

Ez|n+1
i,0 =

1

A

{(

4ε0∆yL + 4LC − ∆t2
)

Ez|ni,0+

4L∆t

[

(

Hy|n+1/2
i+1/2,1 − Hy|n+1/2

i−1/2,1

) ∆y

∆x
− Hx|n+1/2

i,1/2

]

− 4∆t2Ψ|ni,0, (8.15)

where the constant A is defined as

A = 4ε0∆yL + 4LC + ∆t2 (8.16)

If the surface impedance approaches zero, then the electric field components
are zero all the time, corresponding to the PEC boundary condition. If the
surface impedance tends to infinity, then the update equation reduces to the
normal update equation for electric field in free space except that the tan-
gential magnetic field is zero at the boundary. Hence, assuming continuity of
the performance of the FDTD algorithm using equation (8.15), the algorithm
remains stable for all values of the surface inductance L and for any surface
capacitance C. Numerical experiments support this hypothesis.

8.4 Verification of the Model

A convenient way to validate the proposed FDTD model is to calculate the
reflection coefficient from a one-dimensional interface. This is performed in
the following subsection. Another validation study is conducted in a two-
dimensional TMz-case, where the near-field radiation patterns are calculated
and comparison is made to the exact results. Validation of the model in [29]
was done quite briefly and in 2D-case only. A more careful verification is
presented here.
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8.4.1 Pulse Reflection from a One-Dimensional Inter-

face

The exact reflection coefficient based on the surface impedance model is

R =
Zs(ω) − η0

Zs(ω) + η0

=
jωL − η0(1 − ω2LC)

jωL + η0(1 − ω2LC)
. (8.17)

The magnitude of R is equal to unity for all frequencies. The numerically
calculated real and imaginary parts of R are compared to the exact results. The
incident and the reflected waveforms are recorded on the boundary of a one-
dimensional FDTD grid, and the numerical reflection coefficient is evaluated
as

R(ω) =
Eref (ω)

Einc(ω)
, (8.18)

where the Eref (ω) and the Einc(ω) are the Fourier-transformed incident and
reflected electric fields, respectively. The Fourier-transform can be calculated
“on the fly” so that the appropriate discrete sum

E(ω) = ∆t

N
∑

n=1

E(n∆t)e−jωn∆t (8.19)

is evaluated recursively within the time-loop of the FDTD program. Arbitrarily
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Figure 8.2: (a) Real part of the reflection coefficient. (b) Imaginary part of the
reflection coefficient.

setting L = 100 nH and C = 1 pF, the first results are calculated. The nu-
merically calculated and the exact reflection coefficients are shown in Figure
8.2. The agreement is just excellent, even though a half-cell error was made
in the discretization. It is seen that for very small frequencies, the boundary
is like an electric wall. Looking at the expression for the surface impedance,
this is expected. For about 0.5 GHz, the real part of the reflection coefficient
is equal to one. The peak in Figure 8.2 a) is seen to occur approximately at

127



0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

R
e 

 R

FDTD
Exact

(a)

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Frequency [GHz]

Im
  R

FDTD
Exact

(b)

Figure 8.3: (a) Real part of the reflection coefficient. (b) Imaginary part of the
reflection coefficient.

this frequency. From the expression for the surface impedance (8.3), we may
calculate the resonant frequency. For the parameters used above, it is

fres =
1

2π
√

LC
≈ 0.5 GHz. (8.20)

Notice that for larger frequencies the denominator of (8.3) becomes negative
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Figure 8.4: (a) The total electric field on the boundary. (b) The reflected electric
field on the boundary.

and the surface impedance tends to zero. Therefore, the reflection coefficient
R −→ −1 as ω −→ ∞. Now, let us choose L = 10 nH while keeping C the
same. From Figure 8.3 it is seen that the peak is shifted to higher frequencies.
It is also interesting to look at the time-domain variation of the fields. The
exact reflected electric field on the interface as a function of time may be
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calculated via inverse Fourier transform. Thus, the integral

Eref
z (t) =

1√
2π

∫ ∞

−∞
R(ω)Einc

z (ω)ejωt dω (8.21)

must be evaluated. With a simple transformation of variable, this may be
transformed to an integral from 0 to ∞. The integration is then performed
with a second-order accurate mid-point rule by terminating the integration
interval in the point, where the spectrum of the incident pulse has decayed to
a negligible value. The total electric field and the reflected electric field in the
time-domain are shown in Figure 8.4.
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Figure 8.5: (a) Real part of the reflection coefficient. (b) Imaginary part of the
reflection coefficient.

As the final example, we set L = 1 nH and change the capacitance to C = 5
pF. The peak is now considerably narrower, as can be seen in Figure 8.5. This
is due to a smaller value of L, which tends to keep the surface impedance close
to zero unless the frequency is very close to the resonant frequency. Again, the
agreement with the exact results is very good. The FDTD-simulated resonant
frequency is about 0.4 percent smaller than the exact resonant frequency. This
is a characteristic feature of the FDTD method, because the actual numerical
wave velocity in the discrete lattice is less than the speed of light in vacuum.
Hence, FDTD-calculated resonant frequencies are typically slightly smaller
than the exact values.

8.4.2 Near-Field Patterns in Two-Dimensional Case

Another validation consists of making comparisons to the results calculated
with the exact image theory [56] in [73]. In [73], the wire antenna was located
above an infinite impedance surface. In our model, we take the impedance
surface to be wide (w = 47.7 cm) enough to enable comparison.
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Figure 8.6: (a) The normalized near-field pattern for wide screen with Zs = j0.2 ·η.
(b) The normalized near-field pattern for wide screen with Zs = j · η.

The results of our numerical simulations together with the exact results are
presented in Figure 8.6. In our simulations, we take for simplicity C = 0 and
change the value of L to get the desired surface impedance (η =

√

µ0/ε0 is
the free space wave impedance). The excitation frequency is 1 GHz and the
fields are observed at r = 4.77 cm distance (kr = 1, k = 2π/λ) from the origin,
which is taken to be on the surface just below the antenna. The antenna
is located at 4.77 mm distance from the origin. The patterns are calculated
dividing the observed electric field magnitude by the corresponding quantity in
free space. The numerically calculated patterns in Figures 8.6 a) and b) agree
very well with the exact patterns [73]. Note that the patterns shown in [29]
were calculated with a coarser mesh, with only 10 cells corresponding to the
distance r. The agreement with exact results is better here than in [29], since
the patterns in Figure 8.6 have been calculated with two times denser grid:
r = 20∆x = 20∆y. The distance of the line source from the surface is only
2 cells. It is remarkable that the results are still so accurate. PML absorbing
boundary conditions with quadratic polynomial grading are used to truncate
the computational zone with negligible reflection from the outer boundaries of
the lattice.

The reference result may be calculated employing the exact image theory [48].
The image of a time-harmonic current I ( jω suppressed ) reads

Ii = δ+(ζ)I − 2jkη

Zs(ω)
e−

jkη

Zs(ω) u(ζ)I. (8.22)

The image current consists of the geometrical image (delta function) and the
distributed image along the semi-infinite line ζ ≥ 0 (ζ = 0 at the position of
the image current). Line current I creates an electric field

E = −ηk

4
H

(2)
0 (kR)I, (8.23)
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where R is the distance from the antenna to the observation point and H
(2)
0 is

the Hankel function. Using the polar coordinates in Figure 8.7, we have the
distance from the antenna as

R0 =
√

r2 sin2 θ + (r cos θ − h)2 (8.24)

and the distance from an arbitrary point on the line ζ ≥ 0 reads

R(ζ) =
√

r2 sin2 θ + (r cos θ + h + ζ)2. (8.25)

The reflected electric field is calculated as an integral

Eref (r, θ) = −ηk

4

∫ ∞

0

H
(2)
0 (kR(ζ)) Ii(ζ) =

−ηk

4
H

(2)
0 (kR(0)) I − 2jηkG

Zs(ω)
I, (8.26)

where

G =

∫ ∞

0

e−
jkηζ

Zs(ω) H
(2)
0 (kR(ζ)) dζ. (8.27)
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Figure 8.7: The problem geometry: wire antenna radiating over an impedance
surface. Exact image theory is applied to calculate the analytical near-field
pattern.

A transformation of the integration variable according to kζ → ξ allows us to
eliminate k from the integrand. This may be useful if the exponent is large, and
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the numerical integration would require very fine sampling of the integration
variable. The total electric field pattern, normalized to a field pattern produced
by a single line current takes the form

F (r, θ) = 1 +
H

(2)
0 (kR(0)) − 2jkηG

Zs(ω)

H
(2)
0 (kR0)

(8.28)

The reference results in Figure 8.6 have been calculated by numerically eval-
uating F (r, θ), using the simple mid-point rule in the numerical integration,
and truncating the integration at sufficiently large value of ζ.

8.5 FDTD Modeling of a Finite-Size Antenna

The goal of this study is to calculate the near-field pattern of a device with
finite rectangular cross-section. As an example, we consider a rectangular
PEC-cylinder that is covered with an artificial impedance layer, modeled by
a certain reactive impedance. This simplistic example helps to understand
how the directivity and radiation properties of more realistic antennas might
be manipulated using impedance surfaces. In our example, only the surface
of the PEC-cylinder closest to the wire antenna is covered by an impedance
layer. The other three sides are ideally conducting. When calculating in two
dimensions, the wire antenna is modeled as a single soft-sourced Ez-component
near the metal cylinder. The fields are observed at a distance of 5 cm. The
size of the cross-section of the cylinder is 2×4 cm and the excitation frequency
is 1.0 GHz.

The normalized near-field patterns in this case for two different surface impedances
are presented in Figure 8.8. As in the case of a very wide impedance surface,
we see that the radiation is increased when the surface impedance is increased.
The fields are concentrated on the upper side of the device, as was predicted
in paper [73].

We may also study the currents induced on the surface of the same cylinder
(size of the cross-section is 2 cm × 4 cm). The surface currents Js are easily
calculated from the magnetic fields on the surface according to

Js = n × H. (8.29)

Here, n is the unit normal vector pointing outward from the surface. The
surface current (normalized absolute values of the currents) distributions for
the same surface impedance values are presented in Figure 8.9. The goal here
is to qualitatively see how the surface currents behave around the box. This
gives further confidence about the validity of the FDTD model. The plotting
index runs clockwise around the box, starting from the lower left corner.

The peaks in Figure 8.9 a) have a clear explanation: the surface currents
close to the antenna are large for the case of small impedances, and there
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Figure 8.8: (a) Near-field pattern for a finite-size (cross section) antenna with
Zs = j0.2 · η. (b) Near-field pattern for a finite-size (cross-section) antenna with
Zs = j · η.

are current singularities at the box corners. We observe that also the current
density induced on the box are mainly concentrated on one side of the device.
In Figure 8.9 b), the peak in the middle is clearly smaller, but the singularities
in the current distribution in the corners of the structure (indices near 20 and
60) become more clearly visible. This again corresponds to the conclusions
made from the simple analytical model: in this case when the properties of
the surface are closer to magnetic screen, the near fields and induced currents
are less localized near the source.

8.6 Modeling of Antenna Prototypes

Some antenna prototypes were built to study the radiation properties of an-
tennas with impedance surfaces. In the near field, good screening is desired on
the user side of a mobile phone. On the other hand, the radiation field should
be large enough in the far zone. This treatise focuses on the calculation of the
input return loss parameter, voltage standing wave ratio and the relative band-
width. Also, near-field patterns are presented. Far-field radiation patterns are
not studied here, they could be examined by implementing the near-field to
far-zone transformation into FDTD codes. Numerical results suggest that the
directivity in the near-field changes very dramatically with the dimensions of
the antenna. It was also found that the impedance bandwidth can be quite
large, if impedance surfaces are appropriately utilized.
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Figure 8.9: (a) The surface current distribution with Zs = j0.2η. Since the surface
impedance on the top side of the structure is quite low, most currents are induced
there, near the source. (b) The surface current distribution with Zs = jη. Strong
singularities in the current distribution appear near the corners of the structure,
where the surface impedance abruptly changes. The induced currents are relatively
low on the top surface, since the impedance of that surface is relatively high.

8.6.1 Antenna Prototypes

Measurements have been conducted in the Radio Laboratory within the AMEST
project. Some parameters for several antenna prototypes have been measured.
Input impedance of an antenna is an important quantity to know for match-
ing purposes, and it has been measured for some simplistic prototypes. The
surface currents induced on the impedance surface were also measured for a
couple of antenna prototypes. These quantities can be numerically calculated
with the FDTD method.

In Figure 8.10 a), a simple prototype is shown, were one half of a folded dipole
is located near a metal screen. The antenna is fed with a 50 Ω coaxial cable
through a small hole in the metal plate. The metal plate is large enough
to practically completely confine the fields above the plate. The support of
the antenna strip is made of a dielectric material with a dielectric constant
approximately equal to εr ≈ 4.5.

Another series of measurements was performed for a prototype shown in Figure
8.10 b), where the metal screen is replaced with an impedance surface with
metal patches on a dielectric layer with metal backing. The surface impedance
of the screen depends on the size of the patches, the width of the narrow slots
between them and on the thickness of the dielectric material, as discussed in
[77]. If these parameters are properly adjusted, the radiation properties of
an antenna with the screen are supposed to be much better than with metal
screen. This was already numerically seen in the previous section: the radiation
increases with increasing surface impedance.

134



(a) (b)

Figure 8.10: (a) One half of a folded dipole near metal screen. (b) One half of a
folded dipole near an impedance screen with an array of metal patches. The antenna
is fed with a 50 Ω coaxial cable through the metal plane. The center conductor of
the coaxial cable is connected to the metal strip of the radiator. The other end of
the radiator is connected to the large metal ground plane. Due to the metal ground
plane, the mirror image of one half of the antenna simulates the other half of the
antenna, so that the whole system radiates as the complete antenna in the upper
half space where the radiator is located.

8.6.2 FDTD Model in the 3D Case

The presented two-dimensional FDTD model is easily extended to the three-
dimensional case. Taking the surface lie parallel to the xz-plane, we merely
introduce another SIBC for the other tangential electric field component, Ex

in the form
(1 − ω2LC)Ex = jωLHz. (8.30)

This is discretized completely analogously as in two dimensions. The largest
modifications to the 2D-model come from the antenna feed models. Some
good models have been published. In this work, a simple coaxial feed model is
implemented into FDTD program. The outer conductor of the coaxial cable
is attached to the metal plate, and the inner conductor is connected to the
strip. This is modeled by setting the electric field components inside the
conductors equal to zero. A virtual one-dimensional transmission line serves
as the feeding transmission line. It is understood that there is no need to
model the transmission line structure because it is located behind the metal
plate. The only important issue here is that the fields at the feed point are
realistically modeled. The currents and voltages inside the coaxial cable are
time-stepped with Yee’s algorithm. The voltage between the inner and the
outer conductor in the plane of the plate is related to the electric field in the
following form

Ex = ± V

∆x
, (8.31)

where the sign depends on the orientation of the electric field component in
the FDTD lattice. The Ey -component is related to the feeding voltage in a
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similar fashion.

It is pointed out that the approximation (8.5) of the exact surface (8.2) is a
good approximation for k

√
εrh < π/2, where h is the thickness of the dielectric

layer (dielectric constant is εr) in the mushroom structure in Figure 8.10 b). In
our simulations, we work around 2 GHz, and the thickness is at most 10 mm.
For the used prototypes, εr = 2.3 and the condition k

√
εrh < π/2 is clearly

valid.

8.6.3 Basic Definitions

The relative bandwidth is defined as

BW =
∆f

fr

, (8.32)

where fr is the resonant frequency and ∆f is the width of the frequency range
where usually VSWR < 2 (−9.5 dB input return loss allowed) or VSWR < 3
(−6 dB input return loss allowed). The voltage standing wave ratio is defined
as

VSWR =
1 + |S11|
1 − |S11|

. (8.33)

8.6.4 Half of a Folded Dipole Near Impedance Surface

Let us first consider the prototype in Figure 8.10 a). The sizes of the structures
in the FDTD program are chosen so that they correspond to the actual sizes.
In this first case, the surface impedance model is not needed, and we can just
add a metal layer into the problem space. The S11 parameter is calculated
by extracting the input and reflected voltages and taking a Fourier-transform
of these quantities. A good discussion of the calculation of different antenna
parameters can be found in [46]. Denoting the input and the reflected Fourier-
transformed voltages by Vinp(ω) and Vref (ω) we have

S11(ω) =
Vref (ω)

Vinp(ω)
. (8.34)

The input impedance of the antenna may be calculated utilizing the S11 pa-
rameter or directly taking the ratio of the input voltage Vinp(ω) and the input
current Iinp(ω):

Zin(ω) =
Vinp(ω)

Iinp(ω)
. (8.35)

The input current in (8.35) can be obtained using Faraday’s law at the feed
point. Hence, in the FDTD lattice, the input current is obtained from the
magnetic field components surrounding the feed point. The input voltage is
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Figure 8.11: Magnitudes of S11-parameters as functions of frequency for antennas
near metal screen and near impedance screen. The distance of the metal loop from
the surface is denoted by d. Better matching is obtained for larger distances.

obtained from the transmission-line feed model. The S11 parameters for the
antennas in Figure 8.10 are shown in Figure 8.11. The minimum magnitude
of the reflected voltage at the feeding point occurs at about f ≈ 1.98 GHz for
the metal screen.

Experimentally, the real part of the input impedance was measured at the
frequency point at which the imaginary part of the input impedance vanishes.
Hewlett-Packard network analyzer was used, and the Smith chart was traced
to find the frequency corresponding to zero input reactance: the frequency was
1.946 GHz for antenna near metal screen. The corresponding input resistance
was then found to be R ≈ 10.9 Ω. To enable comparison, we find the frequency
from the numerical results corresponding to the zero of the input reactance. It
is found at about f ≈ 1.893 GHz. For f ≈ 1.893 GHz, it is seen from Figure
8.12 b) that the real part of the input impedance is R ≈ 10.8 Ω, being very
close to the experimentally obtained value.

Input return loss parameters for the antenna with impedance surface have also
been plotted in Figure 8.11. The effect of increasing the distance of the antenna
from the impedance surface is clearly seen in Figure 8.11: better matching is
obtained for larger distances from the impedance screen. If the distance of
the antenna from the impedance screen is 8.3 mm, the input resistance at
f = 1.793 GHz, where X = 0, increases to R ≈ 27.5 Ω. The measured values
are relatively close to the simulated ones: X = 0 at f = 1.832 GHz and
R = 25.7 Ω. For larger distance from the impedance screen, the simulated
input resistance at X = 0 is R = 33.4 Ω (f = 1.806 GHz), whereas the
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Figure 8.12: (a) Input impedance of the simple antenna prototype with a metal
screen. (b) A magnification.

measured values are R = 34.4 Ω and f = 1.868 GHz, respectively. The
agreement between the measured and the simulated results can be regarded
as relatively good. The resonances near 5 GHz can be explained with the
resonance of the impedance surface: the surface impedance near 5 GHz is
rather large, and the surface behaves nearly as a magnetic conductor.

The reflection phase characterizations of the EBG ground plane for low profile
wire antenna applications have been discussed by Yang et al. in [79]. They
found that the frequency band for which the phase of the reflection coeffi-
cient from the impedance surface is about 90 ± 45 degrees yields good input
matching. Obviously, this is not the frequency region where the EBG surface
behaves like a PMC or a PEC surface. The the resonance band of an artificial
impedance surface can be defined, for instance, as the frequency band where
the reflection coefficient has the phase within −90 degrees and +90 degrees.
The operational bandwidth of a wire antenna over an impedance surface should
preferably lie in both the input match frequency band and the resonance band
of the high impedance surface. The simulated results in Figure 8.11 support
the above referenced claim regarding input matching, although the structure
here is not optimized and higher surface impedance (thicker structure) than
realized here would lead to better input matching.

Input resistances were calculated and measured as a function of the distance
of the antenna from the screen. The results are shown in Figure 8.13 a). The
voltage standing wave ratios and the relative bandwidth at −6 dB matching
level for two specific distances are given in Figure 8.13 b). The input impedance
for a fixed distance of the antenna from the screen is shown in Figure 8.14.

The dielectric antenna support is modeled by properly adjusting the relative
permittivities of the involved cells in the discrete space. The cross-section of
the support is taken to be 2 × 1 cells. Averaging is employed at the edges
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Figure 8.13: (a) The input resistance of the antenna near the impedance surface
as a function of the distance of the antenna from the screen. The simulated and
measured values correspond relatively well with each other. (b) The voltage standing
wave ratios of antennas near impedance surface, corresponding to distances d = 8.3
mm and d = 9.6 mm.

and corners in accordance with Maxwell’s equations in integral form. The
dielectrics has the relative permittivity εr = 4.5. The dielectric support is
electrically rather thin. Hence, few cells are enough to model the dielectric
support. The very small thickness of the strip is neglected. If the thickness
of the strip were directly modeled, the increased computational requirements
would severely slow down the calculation. The size of the metal screen is 30
mm × 62 mm (20 × 42 cells in discrete space). Liao’s third-order ABC’s [26]
are used at the outer boundaries of the lattice to terminate the computational
domain. They are simple (much simpler than PML) to implement and provide
rather good absorbtion of the waves at the boundaries.

The following parameters have been used in the simulations of the mushroom
structure in Figures 8.13 a)–b): h = 3.4 mm, D = 5.0 mm, d = 0.3 mm.
The size of the impedance screen is 33 mm × 58 mm, and the distance of the
antenna from the screen is varied. The height of the antenna is 30.9 mm and
the width is 9.0 mm. The impedance surface is discretized with a 22×40 mesh.
The surface impedance of this structure is readily calculated from (8.3) to be
Zs ≈ j53 Ω at the resonant frequency. This is quite moderate value, and is not
supposed to dramatically increase the radiation of the antenna as compared
to the case where the metal screen is used. The maxima of R and X in the
investigated frequency range are increased as compared to the case of metal
screen. The correspondence between the dimensions of the actual structure
and the effective dimensions of the FDTD-modeled structure is not perfect.
For instance, the effective sizes of the antenna and the impedance screen are
larger than the actual sizes. This is well known to be a characteristic feature of
the FDTD method. For PEC objects, the dimensions are effectively about one
quarter of a cell larger than the actual sizes. With this in mind, one can try to
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Figure 8.14: Input impedance of the simple antenna prototype with the im-
pedance surface. X ≈ 0 at 1.79 GHz and R ≈ 27.5 Ω at 1.79 GHz. The
resonant frequency is smaller as compared with that of the antenna with a
metal screen. The distance of the antenna from the impedance screen is 8.3
mm.

compensate for the resulting simulation errors by setting slightly smaller than
actual sizes to FDTD codes. It is worth noticing that the effective gap sizes
may be smaller than the actual size. In our antenna problem, the distance of
the antenna from the screen could be effectively smaller than what is wanted
to simulate. Considerably finer cell size would remove these problems, but the
increased computational requirements would be unacceptable.

Normalized near-field patterns of the antenna with the mushroom structure
are presented in Figure 8.15. The patterns are slightly broader in the case
of impedance screen. The patterns have been calculated with respect to an
origin, which is located in the plane of the screen, below the top point of the
loop. The angle in the patterns is with respect to the plane of the screen in
the horizontal counterclockwise direction.

If the impedance of the screen is further increased, the resonant frequency
continues to decrease. However, it is not obvious whether such an impedance
surface could be realized using the mushroom structure. To obtain high-
impedance surfaces, we should work closer to the resonance. Hence, we should
increase the surface inductance L or the surface capacitance C or both. If we
considerably increased the substrate thickness h to increase L, the structure
could not be considered as a surface and the surface impedance model would
not apply. On the other hand, trying to significantly increase the capacitance
would require unrealistically high permittivity of the substrate or very small
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Figure 8.15: (a) Normalized near-field pattern for a one half of the folded dipole,
thickness of the substrate is varied. Pattern calculated at distance r = 3.0 cm from
the origin. Antenna is located at distance 9.0 mm from the screen.

distance between the patches, which would lead to manufacturing problems.

8.6.5 Dipole Antenna Near Impedance Surface

Let us now study a dipole antenna radiating in the vicinity of an impedance
surface. The structure of the screen is similar to that presented in Figure 8.10
b). The screen size in these simulations is 33 mm × 70 mm (corresponds to
22 × 44 FDTD mesh). The other screen parameters are D = 5 mm, d = 0.3
mm. The substrate thickness will be varied. The dipole arms are 30.2 mm
long (19 FDTD cells), 3.0 mm wide (2 cells), and 0.6 mm thick (the effective
radius of a thin current filament is used to calculate the effective thickness
of the wires), and the dipole is fed in the gap between the arms using the
transmission-line feed model [78].

Voltage standing wave ratios for different substrate thicknesses are shown in
Figure 8.16 a). The distance of the dipole from the screen is d = 8.0 mm. The
resonant frequency of the antenna decreases with increasing substrate thick-
ness, and the input impedance of the antenna approaches the characteristic
impedance (50 Ω) of the feeding coaxial cable when the substrate thickness is
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Figure 8.16: (a) Voltage standing wave ratios for a dipole antenna over the im-
pedance surface. The substrate thickness is varied, and the distance of the antenna
from the screen is fixed: d = 8.0 mm. Two observations can be made: 1) the resonant
frequency of the antenna decreases with increasing substrate thickness (increasing
surface impedance), 2) the matching is better if the impedance of the surface is
larger. (b) Normalized near-field patterns for a dipole over impedance surface.

increased.

The normalized patterns in Figure 8.16 b) are calculated on a circle with radius
3.0 cm from the feeding point of the dipole, in the horizontal plane. The
antenna is located at distance d = 7.5 mm (or 5 cells) from the screen. The
patterns are calculated at f = 1.75 GHz, and normalized to maximum values.
The effect of substrate thickness is seen in the results: there are smaller fields in
the back side of the antenna in the case of thinner substrate (or smaller surface
impedance). Also, the pattern is broader if the impedance of the surface is
larger.

Surface current distributions are shown in Figures 8.17 and 8.18. The current
distributions are symmetric, and inspection of Figure 8.17 b) reveals that the
maxima of Jz occur in the middle of the screen, as could be expected based
on the 2D study made earlier in this chapter. The current distributions were
calculated with parameters h = 7 mm, d = 7.5 mm, at frequency 1.75 GHz.
More maxima and minima would be seen if the currents were calculated at
resonances occurring at higher frequencies.
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Figure 8.17: (a) The magnitude of the x-component of the surface current induced
on the front face of the antenna. (b) The magnitude of the z-component of the
surface current induced on the front face of the antenna.

8.7 Conclusions

An FDTD model of a wire antenna near an impedance surface has been de-
veloped. We have shown that the results calculated with the proposed FDTD
model compare strikingly well with the exact solution to the problem in the
special case of an infinite screen when the exact solution is available. The
presented FDTD model allows solving more realistic and complicated prob-
lems where the introduced impedance relation is applicable. The study of a
finite-size two-dimensional model of an antenna has been made, and the results
confirm theoretical predictions made on the basis of the infinite-screen model.
Some 3D results were shown, where real antenna prototypes were simulated.
Ideas and potential candidates for future antennas on portable devices have
been established.

143



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

5 10 15 20

5

10

15

20

25

30

35

40

45

Surface current |J
x
|, back face

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

5 10 15 20

5

10

15

20

25

30

35

40

Surface current |J
z
|, back face

(b)

Figure 8.18: (a) The magnitude of the x-component of the surface current induced
on the back face of the antenna. Again, maxima occur near the corners of the screen.
(b) The magnitude of the z-component of the surface current induced on the back
face of the antenna.
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Chapter 9

Conclusions

Several SIBC-based new FDTD models have been introduced in this thesis.
The mathematical basis of each of the models has been discussed and numerical
simulations have been carried out to verify the developed models.

In Chapter 2, a finite-difference time-domain model of conductors and di-
electrics with nonzero conductivity using a higher order impedance boundary
condition has been introduced. The advantage of the new approach compared
to the previously published methods is that it takes the incidence angle into
account while not making assumptions about a large conductivity of the ma-
terial. The differences and the similarities to the existing methods have been
discussed and the method has been validated by comparing to the analytical
results for a half space excited by a line current over a wide range of conduc-
tivities.

Although the model was only verified in a two-dimensional case, it is expected
that a quite similar derivation is possible in the general three-dimensional
case, too. It is noticed that in a simple one-dimensional case, the proposed
model does not introduce any improvement to the existing model by Maloney
and Smith. A stability analysis of the proposed method was not performed.
The stability limit of the proposed model may be different from that of the
standard Yee algorithm, because center differences were not used everywhere
in the algorithm. Due to the presence of the recursive convolution technique
in the algorithm, the stability analysis may not be easy to carry out.

In Chapter 3, a new class of analytical absorbing boundary conditions has
been derived and some comparisons have been made with other analytical
ABC’s. These new absorbing boundary conditions contain both electric and
magnetic fields, and physically they are closely related to the exact surface
impedance boundary condition. In the two-dimensional case, it was found that
by keeping both the tangential electric and magnetic fields in the derivation,
we may reduce the order of the PDE from 3 to 2 while keeping the performance
of the third-order ABC. In the 3D case, we may reduce the order of the PDE
by introducing two auxiliary variables that can be conveniently updated in

145



the standard Yee’s algorithm. Also, the connection between an exact surface
impedance boundary condition and the Engquist-Majda analytical absorbing
boundary condition was discussed, for better understanding of the background
of the new method.

An FDTD algorithm for electrically thick material coatings on ideally conduct-
ing surfaces was developed in Chapter 4. The advantages over some previous
models were demonstrated, and the model was verified with many numerical
examples. The most important features of the developed model are the ac-
curate rational approximation of the impedance function, the inclusion of the
angle of incidence into to model and the capability of the model to treat dis-
persive coatings of Lorentz, Debye, or Drude type. Alternative discretization
techniques were discussed and their influence on the accuracy was noticed.
The proposed higher-order model applies to dispersive coatings as well as to
dielectric and conductive coatings. If the spatial derivatives are dropped out
from the model, we recover a first-order model, which is still rather accurate,
and has the distinct advantage of being directly applicable in a 3D situation.

The model of chapter 4 was extended in chapter 5 to apply to coatings on more
general conductors. First-order model using recursive convolution technique is
developed and verified. The resulting algorithm is rather general indeed: dis-
persive coatings on dielectric and conductive bodies can be accurately modeled
with the introduced method.

An alternative technique for modeling material layers was formulated in chap-
ter 6. The method is based on appropriate modification of the usual update
equations for dispersive materials. Although the model is limited to electrically
thin layers, it is seen to be more useful than the SIBC model in cases, where
the layer has no metal backing. Also, electrically thin layers with multiple
pole pairs are easier to handle with the subcell technique than with the SIBC
method. The reason for this is that more terms in the rational approximation
of the impedance function is needed when modeling layers with multiple pole
pairs. However, the SIBC model is superior to the subcell model especially in
the case of electrically thick dielectric and conductive coatings.

FDTD modeling of saturated ferrites was also dealt with in chapter 6. This
is numerically an extremely challenging problem, since the field components
orthogonal to the direction of the constant magnetization are coupled. A novel
SIBC-based technique was introduced for modeling relatively thin ferrite layers
on ideally conducting surfaces. Some numerical examples were given in the
one-dimensional case. The proposed SIBC-based FDTD technique for ferrite
layers is in principle extendable to the general 3D case. It becomes, however,
increasingly complicated, and was not considered in this thesis. With some
approximations, the proposed ideas might be utilized regardless of the spatial
dimensionality.

The developed model could be applied to the analysis of ferrite-loaded waveg-
uides, where the thickness of the ferrite layer is so small that direct quantiza-
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tion of the fields is not a feasible approach. An alternative subcell technique
was briefly discussed, and it was found to produce similar results as the SIBC
model. This fact suggests that subcell-techniques, if properly constructed, may
be competitive with SIBC-based techniques in the case of electrically thin lay-
ers. The advantage of the subcell techniques is that the formulation can be
based on the constitutive relations.

Chapter 7 was devoted to modeling of metamaterials. As a marginal but use-
ful contribution, a novel discretization technique for dispersive materials of
Lorentz type with a single pole pair was introduced. The proposed discrete
model has better stability properties than some commonly used models. The
model was applied to the analysis of wave propagation and refraction phenom-
ena in isotropic and uniaxially anisotropic metamaterials. The perfect lensing
effect of a homogeneous, isotropic DNG slab predicted by some theoreticians
was not observed. However, large amplitudes in the positions of expected foci
were observed in the numerical simulations. No steady-state foci were found.
Wave propagation in anisotropic DNG slabs was found to be in agreement with
the theoretical results available in the literature.

In chapter 8, an FDTD model of a wire antenna near an impedance surface was
developed. It was shown that the results calculated with the proposed FDTD
model compare strikingly well with the exact solution in a one-dimensional
case. Reflection coefficient from a one-dimensional interface was calculated. As
a further validation, near-field patterns were calculated in a two-dimensional
special case of a wire antenna over an infinite screen. Again, very good agree-
ment with exact results was obtained.

The presented FDTD model for artificial impedance surfaces allows solving
realistic and complicated problems where the introduced impedance relation
is applicable. The study of a finite-size two-dimensional model of an antenna
was made, and the results confirm theoretical predictions made on the basis
of the infinite-screen model. Monopole and dipole antennas near impedance
surfaces were numerically studied using the proposed SIBC-technique. The
simulation results provide understanding how impedance surfaces change the
antenna parameters and how they can be utilized in antennas.
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