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Abstract

Two-equation turbulence modelling for computational fluid dynamics and espe-
cially for analyses of high-lift aerodynamics applications is studied in depth in this
thesis. Linear Boussinesq-type modelling is abandoned and a more sophisticated
explicit algebraic Reynolds stress modelling (EARSM) approach is chosen as a con-
stitutive relation between the turbulent stress tensor and the mean-velocity gradient
and turbulent scales. The proposed techniques to extend the EARSM method for
significantly curved flows are critically discussed and assessed.

The main focus of this study is on development of a new scale-determining
two-equation model to be used with the EARSM as a constitutive model. This
new k − ω model is especially designed for the requirements typical in high-lift
aerodynamics. In the model development, attention is especially paid to the model
sensitivity to pressure gradients, model behaviour at the turbulent/laminar edges,
and to calibration of the model coefficients for appropriate flow phenomena. The
model development is based on both theoretical studies and numerical experiment-
ing. A systematic study is carried out to find the most suitable operational second
scale-variable for this model. According to this study, ω itself was chosen. The de-
veloped model is finally assessed and validated for a set of realistic flow problems
including high-lift aerofoil flows.

Keywords: Computational fluid dynamics, turbulence modelling, high-lift aerody-
namics, k-omega model, explicit algebraic Reynolds stress model
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Nomenclature

A constant in the decay law of grid-generated turbulence
A0, . . . , A4, A′

3 model coefficients in Reynolds stress modelling
AXi

, AU , AK, AΦ convection-related coefficients in self-similar equations
B constant in the logarithmic velocity law
C various model coefficients (specified by subscripts)
Cp pressure coefficient (p− p∞)/(1

2
ρ∞U

2
∞

)
D cylinder diameter
D
Dt

material derivative ∂
∂t

+ uk
∂

∂xk

Dij, D(a)
ij turbulent plus molecular transport (diffusion) of the Reynolds

stress component u′iu
′
j and of aij, respectively

D a formal total transport operator
F1 mixing function in Menter’s k − ω models
Fij nondimensional Reynolds stress redistribution tensor,

Fij = Φij/ε

G filter function
H channel height
H12 shape parameter, H12 = δ1/δ2
It first invariant of tensor tij
IIt, IIa, IIS , IIΩ second invariants of tensors tij , aij , Sij , and Ωij (or Ω∗

ij),
respectively

IIIt, IIIa, IIIS third invariants of tensors tij , aij , and Sij, respectively
IV tensor invariant defined as SklΩlmΩmk (or SklΩ

∗

lmΩ∗

mk)
L generally a length-scale; also plate length
Mijkl fourth-rank tensor defining Φ

(r)
ij as Φ

(r)
ij = Mijkl∂Uk/∂xl

Mijkl nondimensional Mijkl, Mijkl = Mijkl/k
N number of individual samples in an ensemble; also a short-

hand notation in the EARSM expression, N = A3 +A4P/ε

NT nondimensional eddy viscosity in self-similar equations
P production of k; also mean pressure
Pij production of the Reynolds stress component u′

iu
′
j

P1, P2 shorthand notation in the EARSM expression
Q source term; also shorthand notation in the EARSM

expression

Q source term of self-similar equations



10 Nomenclature

R second scale variable in k − R models, R ∼ k2/ε; also
radius

Re Reynolds number
S scalar measure of mean strain rate S =

√
2SijSji

~S , Sk surface-area vector of a computational control volume (cell)
Sij mean strain-rate tensor nondimensioanlized by the turbulent

time scale
SR auxiliary function in the rough-wall expression for ωw

T averaging time
T

(k)
j turbulent transport of k
Tijk turbulent transport of the Reynolds stress component u′

iu
′
j

Tip′ , Tq′j transformation matrices between coordinate systems
Tl inner product of gradients of the turbulent scale variables
U one of the Cartesian mean-velocity components Ui, U = U1

U mean velocity vector
Ub bulk velocity
U nondimensional velocity variable in self-similar equations
V general velocity-scale; also a tensor invariant defined as

SklSlmΩmnΩnk (or SklSlmΩ∗
mnΩ∗

nk); and also volume of a
computational cell

V transverse convective velocity in self-similar equations in
general and also in the idealized edge problem in particular

W azimuthal velocity component in the combustor flow
Xi vector of unknown variables in self-similar problems
a1 Bradshaw’s structural parameter, a1 = −a12

aij Reynolds stress anisotropy tensor aij = u′iu
′
j/k − (2/3)δij

b half width of a wake
c chord length of an aerofoil
cf skin-friction coefficient τw/(1

2
ρ∞U

2
∞

)
cd drag coefficient
cl lift coefficient
d distance to the nearest wall point
f a ramp-function f = max [(δ0 − y)/δ0; 0] in power solu-

tions of the idealized edge problem

fβ∗ an auxiliary function in Wilcox’s k − ω model
fmix mixing function for the model coefficients
g second scale variable in k − g models, g ∼

√
k/ε

h wire spacing of turbulence-generating grid
k kinetic energy of turbulent motion per unit mass
k+

s sand-roughness height ks scaled by the viscous length-scale,
k+

s = ksuτ/ν

K nondimensional turbulent energy in self-similar equations
kl second scale variable in k − kl models, kl ∼ k5/2/ε
l second scale variable in k − l models, l ∼ k3/2/ε
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lT turbulent length-scale, lT ∼ l
lmix turbulent mixing length
m, m̃ exponents of k in the generalized second-scale formulation
m′ shorthand notation in the generalized second-scale

formulation
n, ñ exponents of ε in the generalized second-scale formulation
n′ shorthand notation in the generalized second-scale

formulation
nu, nk, nω exponents of the power solutions to the idealized edge

problem

p pressure
q exponent in the decay law of grid-generated turbulence
r radial coordinate
s curvilinear wall-following coordinate
s′ij fluctuating part of the strain-rate tensor
t time
u′iu

′
j Reynolds stress tensor

u′u′, u′v′, v′v′ = u′1u
′
1, u′1u

′
2, u′2u

′
2, respectively

u′iu
′
ju

′

k turbulent transport of the Reynolds stress component u′
iu

′
j

by fluctuating velocity field, i.e. Tijk minus pressure
diffusion

uτ friction velocity, uτ =
√
τw/ρ

vT turbulent velocity-scale
x one of the Cartesian coordinates xi, x = x1

x Cartesian coordinates xi

x
′ displaced location vector in two-point correlations
y one of the Cartesian coordinates xi, y = x2; also

wall-normal coordinate
y+ wall-normal coordinate scaled by the viscous length-scale,

y+ = yuτ/ν

Greek Symbols
Γ circulation; also argument of fmix

Γ1, Γ2, Γ3 arguments of fmix

∆ Clauser’s delta, ∆ = Ueδ1/uτ ; also increment of a variable
Π Coles’ wake-strength parameter
Πij Reynolds stress redistribution tensor
Φij , Φ

(s)
ij , Φ

(r)
ij , Φ

(w)
ij pressure-strain correlation, its slow, rapid, and wall parts

Ωij mean vorticity tensor
Ω

(r)
ij vorticity modification by curvature, Ω

(r)
ij = −εijkω(r)

k

Ω∗

ij apparent net vorticity tensor, Ω∗

ij = Ωij − τΩ
(r)
ij /A0

α angle of attack; also second scale variable, α ∼ kε
β1, . . . , β10 coefficients in the explicit tensor expression for the

Reynolds stress anisotropy



12 Nomenclature

βT nondimensional pressure-gradient in boundary layers,
βT = (δ1/τw)dp/dx

β∗ model coefficient, β∗ = a2
1 ≈ 0.09

γ model coefficient in k − ω models
δ thickness of a turbulent shear layer
δ0 length-scale of the idealized edge problem
δ1 displacement thickness of a turbulent shear layer
δ2 momentum thickness of a turbulent shear layer
δij Kronecker’s delta
ε dissipation rate of turbulent kinetic energy k
εij dissipation rate of u′iu

′
j

εijk permutation tensor
ζ second scale variable in k − ζ models, ζ ∼ ε2/k2

η transverse similarity coordinate
θ angular coordinate of the U-bend geometry
κ von Kármán constant of the logarithmic velocity law
κl slope of the mixing-length distribution in the logarithmic layer
λ growth exponent of the homogeneous shear flow
µ dynamic viscosity
µT dynamic eddy viscosity
ν kinematic viscosity, µ/ρ
νT kinematic eddy viscosity, µT/ρ
νk, νω̃, νφφ, νφk shorthand notation for various diffusivities
ξ spatial separation vector in two-point correlations
ξ streamwise similarity coordinate
ρ fluid density
σ model coefficients of diffusive terms (specified by subscripts)
τ turbulent time-scale, τ = k/ε; also shear stress; and also second

scale variable in k − τ models, τ ∼ k/ε

φ general second scale variable, φ ∼ kmεn

ϕ second scale variable in k − ϕ models, ϕ ∼ ε/k1/2

χ argument of fβ∗ in Wilcox’s k − ω model
ω second scale variable in k − ω models, ω ∼ ε/k
ω̃ perturbed definition for ω, ω̃ ∼ ε1±δε/k1±δk with δε and δk being

small perturbations of the order of 0.1
ω

(r)
k rotation rate vector of the local basis of a curvilinear streamline-

coordinate system

Subscripts
e value just outside the edge of a turbulent flow
f free-stream value
pw fictive potential-flow value on the wall
w wall value
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∞ farfield value
1,2 references to model coefficient sets 1 and 2, i.e. inner and outer

model coefficients

Superscripts
+ variable scaled by viscous length and velocity scales, ν/uτ and

uτ , respectively
′ fluctuating quantity
(eq) equilibrium value
(ex) higher-order residual of a polynomial truncated to first order
(T ) turbulent
(V ) viscous

Abbreviations and Acronyms
APG adverse pressure gradient
ARSM algebraic Reynolds stress model
BSL Menter’s baseline k − ω model
CC curvature correction/corrected
CC-WJ curvature corrected Wallin-Johansson EARSM based on ARSM

derived in a suitable streamline coordinate system
CFD computational fluid dynamics
DES detached-eddy simulation
DNS direct numerical simulation
EARSM explicit algebraic Reynolds stress model
EVM eddy-viscosity model
GLM general linear model for the Reynolds stress redistribution tensor
GQLM general quasi-linear model (an extension of GLM)
iWJ Wallin-Johansson EARSM based on ARSM derived in the inertial

coordinate system (standard WJ-EARSM)
MUSCL monotonic upwind schemes for conservation laws
LES large-eddy simulation
LRR Launder-Reece-Rodi RSM
LRR-IP a simplified “isotropization of production” version of the LRR
RANS Reynolds-averaged Navier Stokes (equations)
RSM differential Reynolds stress model
SST Menter’s shear-stress transport model
SSG Speziale-Sarkar-Gatski RSM
TNT Kok’s k − ω model for turbulent/non-turbulent interfaces
WJ Wallin-Johansson EARSM
ZPG zero pressure gradient
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1 Introduction

Experimental testing and research using wind tunnels have been very important
tools in aircraft design throughout the history of aviation. Actually, one could claim
that the success of the Wright brothers’ 1903 Flyer and their later developments was
at least partially owing to the elaborate surveys they carried out using their small
wind tunnel. The experimental wind-tunnel work has, indeed, been an unavoidable
part of aircraft design and aeronautical research work since those historic times, the
centenary which we are now celebrating. While being much more viable than direct
flight testing, experimental wind-tunnel work is, however, very expensive and time
consuming. Thus, some kind of more cost-effective alternative techniques replac-
ing the wind-tunnel experiments would be a great advantage for the aeronautical
industry.

Great expectations have been set on the computational fluid dynamics (CFD)
methods during the computer era of the past few decades. Computational meth-
ods have, indeed, rendered some of the wind-tunnel testing unnecessary, but only a
part of it. The computational methods that have been utilized in the aircraft industry
during the last few decades have mostly been crude approximative methods with se-
vere limitations in terms of modelling the physics of real fluid flow. Potential-flow
solvers coupled with boundary-layer methods can be mentioned as representative
examples of such methods. The physically correct and general mathematical model
for fluid flow at Reynolds numbers relevant to aeronautics, and almost all engi-
neering, is a highly nonlinear system of partial differential equations known as the
Navier-Stokes equations. The mathematical nonlinearity of these equations has its
roots in the physics of fluid flow. Fluid flow, except at extremely low Reynolds
numbers, is a nonlinear dynamical system, which in certain circumstances shows
chaotic-like behaviour. All this nonlinear physics is inherently described by the
Navier-Stokes equations. It is quite clear that no analytical solutions can be found
for such a complex system for any practical problems. Moreover, the numerical so-
lution of such a system is not straightforward. The influence of the physical as well
as mathematical nonlinearity is most often seen in the fact that almost all flows of
engineering interest are at least partially turbulent, i.e. unsteady, three-dimensional,
randomly fluctuating, and highly vortical down to very small scales in space and
time. The appearance of shock waves in supersonic flows is another salient foot-
print of the nonlinearity. Shock waves can be satisfactorily handled with the present
numerical methods, but turbulence must be filtered away by means of so-called
Reynolds averaging in almost all engineering flow problems due to the enormous
computational work the direct solution of turbulent motion would require. The



16 Introduction

equations and the numerical solution algorithms do not prevent the direct numerical
simulation of turbulent flows (DNS) from being performed in principle. DNS is,
indeed, nowadays used for low Reynolds number flows in simple geometries for
scientific rather than engineering purposes. In principle, only the huge computer
capacity requirement prevents its use for engineering problems. The solution of
Reynolds averaged Navier-Stokes (RANS) equations is the best available option for
most aerodynamical problems these days and in the near future.

The RANS approach is physically much more realistic than the potential-flow
methods and other highly simplified models of fluid flow. On the other hand, it
is a much more elaborate and time-consuming approach, and therefore it has only
recently started to drift into the designers’ toolboxes. It may be mentioned as an
example that the high-lift devices and configurations of the most recent major all-
new civil-transport aircraft, Airbus A-380, are designed, at least partially, using
the RANS-CFD methods, except in the preliminary design phase [1]. About ten
years ago, when the aerodynamic design of Boeing 777 aircraft was carried out, no
RANS methods at all were utilized in its high-lift design [2]. Of course, the RANS
methods are also used in longer-term high-lift aerodynamics-related research work,
where the time-scales are much larger than in the design work.

Although being superior over the simpler methods in terms of physical realism,
the RANS methods, however, involve one major weakness — the effects of the tur-
bulent motion on the mean flow are unknown and must be modelled. The influence
of turbulence is seen as a new term in the equations. This term is the divergence of a
second-order correlation tensor of the fluctuating parts of each velocity component.
This correlation tensor is known as the Reynolds stress tensor, and it is the object
that needs to be modelled. The accuracy and reliability of turbulence modelling is
one of the major limiting factors, among the large computing times, of efficient ex-
ploitation of the RANS-based CFD methods in high-lift aerodynamics problems in
the aircraft design work. While computer performance seems to continue to rapidly
increase, the accuracy and reliability of turbulence modelling has to be improved
to really meet the designers’ needs and thus to strengthen the value of the RANS
methods as design tools. This is the goal of this study.

The turbulence modelling presently employed in aerodynamics is usually based
on two-equation models employing a linear relationship between the Reynolds stress
and the mean strain-rate tensors. This relationship is known as the generalized
Boussinesq model. This may be a too restricting assumption in complex problems
typical in high-lift aerodynamics, because a multitude of different flow phenom-
ena may be present in a single problem. Therefore, turbulence modelling with a
wider range of applicability than the Boussinesq models must be sought. Differ-
ential Reynolds stress modelling (RSM), in which a modelled transport equation is
solved for each stress component, is in principle a more general class of models
with a wider range of applicability. RSMs are, however, considered a too com-
plex approach for the industrial high-lift aerodynamic design work. On the other
hand, the two-equation models can be extended for a wider range of applicabil-
ity by developing more advanced nonlinear relations between the stress tensor and
the mean-velocity gradient and the turbulent scales. These relations are generally
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called constitutive models. The two-equation turbulence models can be thought to
consist of two more or less separate parts: the scale determining model, which pro-
vides scalar information about the turbulence, and the constitutive model, which
determines the Reynolds stress tensor. Explicit algebraic Reynolds stress models
(EARSM) are an interesting and promising subset of nonlinear constitutive models.
In this approach, part of the higher-order description of physical processes on the
RSM-level is transferred onto the two-equation modelling level. The EARSM ap-
proach is considered to be a suitable type of constitutive modelling for the present
purposes.

Most of the existing two-equation scale-determining models are designed in
conjunction with the linear constitutive modelling. This fact may compromise the
performance of the model when combined with an EARSM or another nonlinear
constitutive model. The aim of this study is to develop a new two-equation scale-
determining model to be used purely with an EARSM as the constitutive model.
The model is designed to be utilized mainly for aerodynamic problems, especially
for high-lift aerodynamics. This does not mean that the model is unsuitable for
all other flow problems, but the focus will be kept in flow phenomena that have
an important role in typical high-lift aerodynamics problems. The goal is that the
model becomes mature enough to be taken into practical use within a very short
time frame. Therefore, too complex or revolutionary modelling techniques should
be avoided. The approach is to first select a suitable starting-point scale-determining
model, and then to completely recalibrate it for the present purposes in conjunction
with the selected EARSM constitutive model. Further development of the EARSM
is also explored in this study.

A general overview of turbulent flows, on the concept of RANS and turbulence
modelling is first given in Chapter 2. The most important flow phenomena in a
typical high-lift aerodynamics problem are reviewed in Chapter 3. Also, the re-
quirements and challenges that these flow situations pose for turbulence modelling,
and the capabilities of different existing models to cope with these flows is dis-
cussed. The starting-point model is selected from the grounds of this review. It
turned out that a k − ω-type model of the form developed by Menter [3] seems to
be the most promising starting point. Also, the elementary flow cases used in the
development, calibration, and validation is chosen in accordance with the review in
Chapter 3. Chapter 4 includes a description of the numerical solution methods used
in the various computations made in this study. The novel contributions and devel-
opments of this study are reported in Chapters 5 and 6. Chapter 5 first describes
the selected baseline constitutive model, i.e. the EARSM developed by Wallin and
Johansson [4]. After this, the proposed techniques to extend the algebraic stress
modelling approach for curved flows, including the recently proposed strain-rate
based technique by Wallin and Johansson [5], are discussed in depth. This method
is also validated for some two- and three-dimensional flows where the curvature ef-
fects on turbulence are important. Theoretical analysis concerning the k− ω model
is conducted in Chapter 6 in order to get a better understanding on how the model
coefficients influence the model behaviour. The theoretical work also provides ex-
plicit constraints which are extremely useful in the calibration process. Most of the
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existing k−ω models are reviewed in the light of the theoretical analysis, and most
of them are shown to be unsuitable to be combined with any nonlinear constitu-
tive model. The actual recalibration is carried out after the theoretical part using
the selected elementary flows and the derived constraints. A separate study about a
possible alternative operational scale variable in the form φ = kmεn is conducted
in Chapter 6. This involves formulation of a set of criteria for such an alternative
variable and theoretical derivation of constraints for the parameters m and n to sat-
isfy the posed criteria. It is, however, concluded that the original k− ω formulation
(m = −1 and n = 1) is optimal for the k − ω models, because it leads to the
simplest and numerically least troublesome form of the equations. Finally, in Chap-
ter 7, the model is preliminarily assessed for a few practical two-dimensional flow
cases including high-lift aerofoil flows.
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2 On Turbulent Flows and
Turbulence Modelling

2.1 What Is Turbulence?

Anyone who has ever stopped for a moment to watch, say, smoke rising from a
chimney, or any other large-scale flow occurring in every-day life, knows that such
flows do not follow any smooth deterministic patterns. Instead, such flows in most
situations have a very complex irregular behaviour — these are called turbulent
flows. Flows with shear strain or thermal buoyancy are likely to be turbulent always
when inertial effects in the flow are large enough in comparison to viscous damping.
This is the case in the majority of flows of practical interest. Only slow small-scale
flows, such as a candle flame, do not share this behaviour, and they are known as
laminar flows. But, as pointed out by Tennekes and Lumley [6]: “in fluid dynamics
laminar flow is the exception, not the rule.”

The inertial forces increase with increasing fluid density ρ, and with square of
the velocity scale V of the flow. The magnitude of the viscous effects increase with
the dynamic viscosity of the fluid µ, but depends only linearly on V . The inertial
forces are proportional to the inverse of the length-scale L while the viscous forces
depend on 1/L2. A nondimensional measure of the ratio of the inertial and viscous
forces can be formulated using these four variables. This parameter is known as
the Reynolds number named after Osborne Reynolds, a great scientist of the 19th
century. The Reynolds number Re is defined as

Re ≡ ρV 2/L

µV/L2
=
ρV L

µ
=
V L

ν
(2.1)

where ν = µ/ρ is the kinematic viscosity. The Reynolds number takes usually quite
large values in flows of engineering or other practical interest. For instance, Re may
get a value of tens of millions in the flow past a wing of a typical transport aircraft.

Turbulent flows are always time-dependent and three-dimensional, and the flow
variables such as the velocity vector or pressure fluctuate randomly. For instance,
Bradshaw [7] describes turbulence as:

“Turbulence is a three-dimensional time-dependent motion in which vortex
stretching causes velocity fluctuations to spread to all wave lengths between a

minimum determined by viscous forces and a maximum determined by the
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boundary conditions of the flow. It is the usual state of fluid motion except at low
Reynolds numbers.”

Turbulence is an efficient mixing agent. For instance, it mixes different gases in
combustion processes so that combustion becomes much more efficient. Turbulent
flows are also diffusive and dissipative. The former means that turbulence spatially
spreads everything the flow contains including turbulence itself. The latter means
that turbulence increases losses of mechanical energy. Hence, turbulence may have
either positive and negative consequences from the engineer’s point of view.

From the mathematical point of view, the nonlinear convective terms in the
Navier-Stokes equations, i.e. momentum transport equations, are related to the non-
linear dynamics of fluid flow. The nonlinear dynamics features all the instability
phenomena and turbulence that characterize fluid flow. Owing to this nonlinearity,
no general analytical solutions to Navier-Stokes equations are known.

The wide spectrum of scales in both time and space is a characteristic feature
of turbulent motion. The individual structures of turbulent flow are called eddies.
The concept of eddy is somewhat loosely defined. It could be associated with a vor-
tex, but usually the word “eddy” is used for any identifiable disturbance with some
length-scale estimate roughly charaterizing its spatial extent. Thus, rather than be-
ing a single vortex line, an eddy can be kept as a vortical disturbance. See Tennekes
and Lumley [6] for a more detailed discussion. The spectrum width of turbulent
motion depends on the Reynolds number as may be understood from the above ci-
tation. The largest eddies are of the size of the flow, for instance the width of a shear
layer. The largest eddies are not affected by viscosity if the Reynolds number is suf-
ficiently large. Large eddies interact with the mean flow and with the other eddies
of comparable length scales. The mean-flow strain-rate is the agent of the energy
supply for turbulent motion by means of stretching the largest turbulent eddies when
the vorticity associated with such an eddy happens to be suitably oriented relative
to the mean-flow strain-rate. Large eddies are usually highly anisotropic, because
the mean strain-rate prefers certain directions. Straining intensifies the vorticity of
the strained eddies because the angular momentum must be conserved. This way,
the turbulent eddies continuously obtain energy from the sheared mean flow. Sim-
ilarly, the eddies stretch each other, because different eddies contain vorticity and
strain rate in varying directions. As the eddies stretch each other, smaller eddies are
produced and fed with energy. This cascade process goes on towards smaller and
smaller length scales until the Reynolds number associated with the eddies becomes
so small that friction damps out the motion and dissipates the energy into heat. The
length, velocity, and time scales related to the dissipative motion are known as Kol-
mogorov scales. The dissipative small-scale eddies do not much depend on the
mean-flow strain-rate. Significant interaction takes place only between eddies of
comparable length scales. Therefore, small eddies are much more isotropic than
large ones. Thus, there are at least two different kinds of eddies in turbulent flows
with a moderate or high Reynolds number: the large eddies that interact with the
mean flow but do not show any significant viscous dissipation, and the small ed-
dies that do not have direct interaction with the mean flow and are responsible for
the viscous dissipation. If the Reynolds number is high enough, there will also be
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an intermediate range of eddies that depend neither on mean flow nor on viscosity.
This part of the turbulent energy-spectrum is known as the inertial subrange.

The wide spectrum of scales renders direct numerical simulation (DNS) of tur-
bulent motion impractical for almost all engineering purposes. Today, DNS is ap-
plied to low Reynolds-number flows in simple geometries. DNS is useful for tur-
bulence research, and it also provides reference data for turbulence modellers. In
DNS, all the details down to the dissipative motion must be resolved with sufficient
accuracy. The amount of required computational work and storage space increases
rapidly with the Reynolds number. Hence there is no reason to believe that DNS
will become a practical flow-simulation tool for aeronautical engineering within any
reasonable time frame.

The nature of the large eddies or structures depends on the mean flow de-
tails. There seems to be identifiable types of large structures characteristic for
certain mean flows. For instance, planar mixing-layers are dominated by nearly
two-dimensional Brown-Roshko rollers and braid regions between the rollers [8].
As another example, the streamwise vortices and the low-speed streaks between
them in flows near solid walls are worth mentioning. Such eddies are called coher-
ent structures. The appearance and the properties of the coherent structures usually
strongly vary from one mean flow to another. This is one of the reasons why it is ex-
tremely difficult to construct a general turbulence model that would work properly
for a wide range of different flows. This difficulty, related with the coherent struc-
tures, gives motivation to try simulating only the large-scale motion using some
kind of model for the effects of the small-scale motion that has first been filtered
away from the transport equations. This concept is known as the large eddy simula-
tion (LES). It has shown encouraging potential for certain kinds of flows. However,
LES is still restricted to relatively low Reynolds numbers, and it has not yet reached
a sufficiently mature level for routine engineering use. In most of the aeronautical
engineering problems, LES is still very far from becoming a practical tool.

2.2 Reynolds-Averaged Navier-Stokes Equations

In turbulent flows, the flow variables can be decomposed into the mean and fluc-
tuating parts. This is known as the Reynolds decomposition. For instance, in the
cases of stationary mean flow, the velocity field can be expressed as

ui(xi, t) = Ui(xi) + u′i(xi, t) (2.2)

where ui is the instantaneous velocity component, u′
i is the fluctuating part, and U

is the mean velocity which can be defined, e.g. as a long-time average

ui(xi) = Ui(xi) = lim
T→∞

1

T

∫ t+T

t

ui(xi, t)dt (2.3)

The long-time Reynolds average given by (2.3) is not sensible in flows with some
kind of nonturbulent unsteadiness, such as transient or periodic behaviour. In such
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situations, a more general decomposition and averaging approach is needed. The
ensemble average is defined as

ui(xi, t) = Ui(xi, t) = lim
N→∞

1

N

N∑

1

ui(xi, t) (2.4)

Now, the mean field is defined as an average of a large number of realizations of
the flow in question, and thus the mean field may be a function of time. Phase
averaging is a special case of the ensemble average valid for strictly periodic flows.
In this case, each cycle can be taken as an individual realization. The conventional
time averaging, the ensemble averaging, and the phase-averaging approaches lead
to the same system of Reynolds-averaged equations for incompressible flows.

For compressible flows, the density weighted Favre averaging

ũi =
ρui

ρ
(2.5)

is a more useful concept than the traditional Reynolds averaging. In this study, the
equations are written using the traditional Reynolds-averaging concept instead of
the Favre averaging, although the mean-flow solution method used in Chapters 5
and 7 is suitable for compressible flows. The interest here is mainly in only slightly
compressible flows, and thus it is thought to be justified to ignore the compressibil-
ity in turbulence modelling. In general, however, Favre’s density weighting can be
applied to each of the averaging concepts to extend the averaging for compressible
flows. Thus, the same RANS-equations are valid for compressible flows with forced
unsteadiness as well as for stationary compressible flows.

Substituting the decomposition (2.2) for velocity and pressure into the transport
equation for momentum

∂ui

∂t
+ uk

∂ui

∂xk

= −1

ρ

∂p

∂xi

+
∂

∂xk

(
ν
∂ui

∂xk

)
(2.6)

yields

∂

∂t
(Ui + u′i) + (Uk + u′k)

∂

∂xk

(Ui + u′i) = −1

ρ

∂

∂xi

(P + p′)

+
∂

∂xk

(
ν
∂

∂xk
(Ui + u′i)

) (2.7)

Averaging this and taking into account that u′ = 0 and U = U , the Reynolds-
averaged momentum equation

∂Ui

∂t
+ Uk

∂Ui

∂xk

= −1

ρ

∂P

∂xi

+
∂

∂xk

(
ν
∂Ui

∂xk

)
− ∂

∂xk

(u′iu
′

k) (2.8)

is arrived at. The last term is new compared with (2.6) and it arises from averag-
ing the nonlinear convection term of the fluctuating velocity. It is divergence of
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a correlation tensor known as the Reynolds stress tensor. If the energy equation
is needed, as is the case in compressible flows and in incompressible flows with
variable temperature, then also correlations between the fluctuating velocity and
temperature will arise in the energy equation. The same happens with all neces-
sary transport equations for any scalar fields of interest. These terms are generally
known as scalar fluxes and their modelling is beyond the scope of this work.

2.3 Equation for the Reynolds Stress Tensor

The exact transport equation for the Reynolds stress tensor is derived from the trans-
port equation for the fluctuating velocity component u′

i obtained by subtracting (2.8)
from (2.7). This equation is multiplied by another fluctuating velocity component
u′j and averaged. The same equation written for u′

j is then multiplied by u′i, aver-
aged and the resulting equations are added together. As a result of this, a transport
equation system for u′iu

′
j is obtained

Du′iu
′
j

Dt
= −u′ju′k

∂Ui

∂xk
− u′iu

′

k

∂Uj

∂xk︸ ︷︷ ︸
=Pij

− 2ν
∂u′i
∂xk

∂u′j
∂xk︸ ︷︷ ︸

=εij

+
1

ρ
p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)

︸ ︷︷ ︸
=Φij

+
∂

∂xk

(
−u′iu′ju′k −

1

ρ

(
δikp′u′j + δjkp′u′i

)
+ ν

∂u′iu
′
j

∂xk

)

︸ ︷︷ ︸
=Dij

(2.9)

or its shorthand notation

Du′iu
′
j

Dt
= Pij − εij + Φij + Dij (2.10)

The term designated as production, Pij , is the rate at which energy is fed from
the mean flow to each stress component. The vortex stretching mechanism dis-
cussed in Section 2.1 is responsible for this process. The production term can be
computed directly from the stress and the mean-flow strain-rate components and
thus needs no modelling.

The second term εij is a viscous dissipative term. It is, however, not exactly
consistent with the definition of the viscous dissipation of turbulent energy

k ≡ 1

2
u′ku

′

k (2.11)

According to e.g Ref. [6], the exact dissipation rate of k is defined as

ε ≡ 1

2
ν

(
∂u′k
∂xl

+
∂u′l
∂xk

)(
∂u′l
∂xk

+
∂u′k
∂xl

)
= 2νs′kls

′

lk (2.12)

The dissipation rate ε is the rate at which the kinetic energy of turbulence (k) is
dissipated into heat by viscosity. On the other hand,

1

2
εkk = ν

∂u′l
∂xk

∂u′l
∂xk

6= ε (2.13)
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The trace of εij divided by two is exactly equivalent with (2.12) only in case of ho-
mogeneous turbulence. In the context of RANS modelling, however, εij is usually
said to be the dissipative term. Similarly, half of its trace is assumed to be equal
to ε, the viscous dissipation of k. The term εij is actually a leftover of the total
viscous term when part of that term is identified as the viscous gradient-diffusion,
which is discussed below. In reality, the diffusive term takes a more complex form
that cannot be evaluated explicitly. As the gradient-diffusion term is neat and can
be computed explicitly without any modelling, it is attractive to keep the diffusive
term in the simple gradient form, and to absorb the remaining part into the dissi-
pative term. For more details of the viscous term, see e.g. Ref. [9]. In practice,
the difference between the true dissipation ε and εkk/2 is believed to be negligible
even in strongly inhomogeneous turbulence. Dissipation cannot be computed from
available variables, hence it must be modelled.

Φij can be called the redistribution term, because its trace is zero and thus it
neither produces nor destroys mechanical energy. It merely redistributes the energy
between the stress components. It is also commonly known as the pressure-strain
term, because it is a correlation between fluctuating pressure and strain rate. In
addition to the dissipation, the redistribution term needs to be modelled with care.

The remaining term Dij has a form of divergence of a sum of three fluxes: the
transport by velocity fluctuations, i.e. the triple velocity correlation u′

iu
′
ju

′

k, the
pressure transport flux, and the viscous flux of each stress component. The pressure
diffusion originates from splitting the actual correlation between the fluctuating ve-
locity and pressure into the above mentioned traceless pressure-strain correlation
Φij and the pressure diffusion as

−
(
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

)
= p′

(
∂u′i
∂xj

+
∂u′j
∂xi

)

︸ ︷︷ ︸
pressure-strain correlation

−
(
∂u′ip

′

∂xj
+
∂u′jp

′

∂xi

)

︸ ︷︷ ︸
pressure diffusion

(2.14)

The rationale behind this form is to isolate the traceless redistribution term. The
pressure diffusion is usually believed to be small and its modelling is not consid-
ered as important as that of the other terms in (2.9) [10, 11]. This belief is critically
reviewed in Section 3.5. The physical meaning of the flux terms is to spatially
spread the energy associated with each stress component. From the mathematical
point of view, they act similarly to molecular diffusion and usually all three terms
are referred to as diffusive fluxes. It must be remembered, however, that this termi-
nology is only relevant for the averaged equations. In reality, for instance u′

iu
′
ju

′

k is
convective transport by turbulent velocity fluctuations; it originates from the con-
vection term and does not depend on viscosity at all.
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2.4 Reynolds Stress Closure Modelling

2.4.1 General Remarks

Differential Reynolds stress modelling (RSM), i.e. closing Eq. (2.10) by means
of modelling unclosed terms, is virtually the most sophisticated level of RANS
turbulence-modelling available for any practical simulations today. Modelling ap-
proaches of an even higher level of description are currently being studied. The
structure-based turbulence modelling [12, 13] and two-point closures, see e.g. [14],
may be mentioned as examples of such ideas. However, these concepts are still
far from becoming practical engineering tools. The RSM approach aims at clos-
ing the system (2.10) in order to obtain a numerically solvable system of transport
equations for each stress component and the dissipation rate of k. This is an at-
tractive idea in principle, since all the physical processes governing the evolution
of the stress tensor are involved in the equations. The important production term
and also the convection by mean flow can be computed without modelling. This is
the main motivation of the RSM approach. On the other hand, some very important
terms must be modelled. Models for these terms may be complex, involving sev-
eral coefficients to be calibrated, and derivation of some of these models is based
on quite strong simplifying assumptions such as quasi-homogeneity of turbulence.
Moreover, the results are often very sensitive to the details of modelling.

The basic concepts of the RSM were defined as early as in 1945 by Chou [15].
A few years later, Rotta made an important and lasting contribution to RS mod-
elling [16]. In the 1970s the RSM gained more attention in the wake of the impor-
tant work by Hanjalić and Launder [10] and by Launder et al. [11]. Since those
years, many researchers have contributed to the field and proposed models of vary-
ing level of description and complexity.

2.4.2 Tensor Functions

Tensor functions are needed in modelling the unknown tensor-valued variables that
appear in the Reynolds stress equations. The unknown terms must be closed in
terms of the known variables. This does not mean that the available known variables
are the only variables on which the unclosed terms depend on in reality. Part of the
necessary information is simply lost in the Reynolds averaging, and the best that
can be done in the context of RANS is to expand the unclosed terms as functions of
the known variables only. Tensor-valued quantities must be modelled as isotropic
tensor-valued tensor functions of the available tensor and scalar variables. This is
because the coordinate-frame invariance must be preserved — the laws of physics
do not depend on the orientation and the metrics of the chosen coordinate system.

Isotropy means here that the functional form of a tensor-valued tensor function
does not depend on the coordinate system. In other words, let tij , and q(1)

ij , . . . , q
(m)
ij

represent the components of some tensors in a certain coordinate system with

tij = f(q
(1)
ij , . . . , q

(m)
ij ) (2.15)
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being valid in that system. If t′ij , and q′(1)ij , . . . , q
′(m)
ij represent the components of

the same tensors in some other system, then

t′ij = f(q
′(1)
ij , . . . , q

′(m)
ij ) (2.16)

must hold with f having exactly the same form as in (2.15).
In fact, the requirement of tensor-valued function simplifies the problem since

polynomials are the only tensor-valued functions of tensors. Thus, an arbitrary
tensor tij that depends on the other tensors q(1)

ij , . . . , q
(m)
ij may be formally expressed

as

tij(q
(1)
ij , . . . , q

(m)
ij ) =

∞∑

k=1

αkT
(k)
ij (2.17)

where T (k)
ij are various tensor groups, i.e. matrix products of the tensors q(1)

ij , . . . , q
(m)
ij ,

and αk are scalar coefficients that may depend on the scalar invariants of the q(n)
ij -

tensors. Fortunately, the number of linearly independent tensor groups is limited.
All groups of higher than a certain order can be reduced to combinations of lower-
order groups and scalar invariants according to the generalized Cayley-Hamilton
theorem. Also, the number of irreducible invariants is always limited. The Cayley-
Hamilton theorem states that a cubic product of a tensor tij with itself in three
dimensional space can be expressed as

tiktkltlj =
1

3
IIItδij +

1

2
IIttij + Ittiktkj (2.18)

where IIIt = tkltlmtmk, IIt = tkltlk, and It = tkk are the scalar invariants of
tij . The right-hand side includes tij only in the second, first and zeroth powers.
Thus, all third- and higher-order terms in any tensor polynomial can be reduced by
successively applying this formula. For more details, see e.g. Refs. [17, 18].

Although the number of terms in any tensor polynomial representation is lim-
ited, the functional form of a representation is not yet closed. The expressions for
the scalar coefficients αk are still to be determined. A general approach is to expand
the coefficient functions in terms of the invariants to some order. Coefficients of
such expansions must then be determined using, e.g. physical constraints and em-
pirical data. Constant coefficients, i.e. zeroth order expansions, are often used in
the simplest-level modelling.

2.4.3 Terms that Need Modelling

The redistributive pressure-strain correlation Φij , the dissipation tensor εij, and the
turbulent transport terms must be modelled. The redistribution tensor may be rede-
fined by subtracting the deviatoric part of the dissipation tensor from it as

Πij = Φij − (εij −
2

3
εδij) (2.19)

This way, all the traceless inter-component redistributive effects are lumped to-
gether. Note that ε is the dissipation rate of k and it must be modelled at the level of
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two-equation modelling as well. More or less similar modelling of ε may be used
for RS- and two-equation modelling. In (2.9), the turbulent transport is embedded
in the total transport Dij. The turbulent flux is given by

Tijk = −u′iu′ju′k −
1

ρ

(
δikp′u′j + δjkp′u′i

)
(2.20)

Using the definitions Πij and Tijk, Eq. (2.10) may be rewritten as

Du′iu
′
j

Dt
= Pij −

2

3
εδij + Πij +

∂

∂xk

(
Tijk + ν

∂u′iu
′
j

∂xk

)
(2.21)

where the terms that need modelling (Πij and Tijk) are clearly separated from the
other terms that are readily explicit in terms of the available variables and ε. Mod-
elling of ε is discussed in the context of the two-equation modelling.

2.4.4 Redistribution Tensor

In the context of single-point RANS modelling, the redistribution tensor is assumed
to be a function of the Reynolds stresses or the nondimensional anisotropy tensor

aij ≡ uiuj/k − (2/3)δij (2.22)

the mean-velocity gradient, and the scalars k and ε. The number of variables can
be reduced by nondimensionalizing the mean-velocity gradient using the turbulent
time-scale k/ε. Thus, the redistribution tensor may be formally written as

Πij = εFij

(
aij,

k

ε

∂Ui

∂xj

, δij

)
(2.23)

It is convenient to split the velocity-gradient tensor into its symmetric and skew-
symmetric parts, i.e. the nondimensional strain-rate and vorticity tensors defined
as

Sij ≡ 1

2

k

ε

(
∂Ui

∂xj
+
∂Uj

∂xi

)
and Ωij ≡ 1

2

k

ε

(
∂Ui

∂xj
− ∂Uj

∂xi

)
(2.24)

in order to make the necessary tensor algebra easier. Using Sij and Ωij , (2.23) is
rewritten as

Πij = εFij (aij, Sij,Ωij, δij) (2.25)

where ε is used to nondimensionalize the tensor-valued function Fij to be sought.
Fij depends also on δij , since it is a tensor-valued function. The functional form of
Fij must satisfy the symmetry condition Fij = Fji and its trace must be zero, Fii =
0. Locality in space and time has been assumed. This means that the model does
not depend on the values elsewhere in space or values at previous times although
in reality such dependencies may take place. In general, the redistribution term
may depend also on the viscosity in the near-wall region. Therefore, the turbulent
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Reynolds number ReT = k2/(εν) could be added as an argument of Fij . The brief
discussion here, however, is limited to the case of a high Reynolds number where
the influence of viscosity is negligible.

Usually, more attention is paid to modelling the pressure-strain correlation than
to the dissipation anisotropy. One reason for this is that the dissipation anisotropy is
usually quite small except near the walls. In most of the present-day models, e.g [11,
19], the latter term is thought to be embedded into the model for the pressure-
strain term, which implies Πij = Φij . More recently, also separate models for the
dissipation anisotropy have been proposed, see e.g. Refs. [20, 21]. The algebraic
Reynolds stress modelling within this study is based on the former approach, and
thus explicit modelling of the dissipation anisotropy is not discussed here.

Modelling of the pressure-strain term is based on the formal solution of the
Poisson-equation for the fluctuating pressure in incompressible flow, see e.g. [22]

∇2p′ = −2ρ
∂Uk

∂xl

∂u′l
∂xk

− ρ
∂2

∂xk∂xl

(
u′ku

′

l − u′ku
′

l

)
(2.26)

This equation is linear in p′, and includes two source terms of which only the first
one depends on the mean-velocity gradient. This suggests that the complete solu-
tion is a sum of a harmonic solution that satisfies Laplace’s equation ∇2p′ = 0,
and two particular solutions called the slow and the rapid solutions. The rapid so-
lution is driven by the source term that depends on the mean-velocity gradient. The
word rapid indicates that this part responds immediately to a change in the mean-
velocity gradient. Obviously, the velocity pressure-gradient correlation is also split
into the harmonic, slow and rapid parts. The harmonic part is zero in homogeneous
turbulence, and it is rather unimportant also in inhomogeneous flows except in the
immediate vicinity of walls [23]. The slow part is independent of the mean-velocity
gradient. Modelling of the slow part is much more straightforward than that of
the rapid part. The derivation of the most commonly used redistribution models
is found in most of the textbooks on turbulence modelling. The discussion here
largely follows the book “Statistical theory and modeling for turbulent flows” by
Durbin and Petterson-Reif [22].

Initially anisotropic turbulence has a tendency to return to isotropy in the ab-
sence of the mean-velocity gradient. This is because there is no directional forcing
in such a situation (the turbulent energy will obviously decay at the same time,
since there is no production). It is the slow term that is responsible for this return to
isotropy process. The slow term is usually assumed to be a tensor function of only
the anisotropy itself, besides δij , as

Φ
(s)
ij = εF (s)

ij (aij, δij) (2.27)

Therefore, it may be expanded as

F (s)
ij = −C1aij + Cn

1 (aikakj −
1

3
IIaδij) (2.28)

No independent higher-order terms exist because of (2.18). The coefficients C1

and Cn
1 may be functions of the invariants IIa and IIIa. Some models include also
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strain-dependent parameters such as P/ε = −aklSlk. The most popular model for
the slow part is the simple Rotta model [16]

F (s)
ij = −C1aij (2.29)

which ignores the nonlinear term. This is just a linear relaxation of aij towards zero.
The second-order term is included in some models, e.g the SSG model by Speziale
et al. [24]. It may, however, cause stiffness and thus troubles in numerical solution.
The nonlinear term is often ignored in the model as it is usually of little impor-
tance in shear-dominated flows. The SSG model also features a shear-dependent
coefficient C1 as

C1 =
1

2

(
C0

1 + C1
1P/ε

)
(2.30)

The factor 1/2 is owing to the fact that the anisotropy tensor is scaled using 2k in
Ref. [24].

Modelling of the rapid part is started from an equation obtained from (2.26) by
dropping the slow part of the source term as

∇2p′ = −2ρ
∂Uk

∂xl

∂u′l
∂xk

(2.31)

The formal solution of this equation for homogeneous turbulence in unbounded
space is obtained with the free-space Green function 1/(4π|x− x

′|) as

p′(x) =
1

4π

∫∫∫
∞

−∞

2ρ

|x − x′|
∂Uk

∂xl

∂u′l(x
′)

∂x′k
d3

x
′ (2.32)

The mean-velocity gradient can be excluded from the integral by assuming homo-
geneous turbulence, which implies that also the mean-velocity gradient is constant
in space. Next (2.32) is differentiated with respect to xi and integrated by parts to
obtain

∂p′(x)

∂xi
=

ρ

2π

∂Uk

∂xl

∫∫∫
∞

−∞

1

|x− x′|
∂2u′l(x

′)

∂x′k∂x
′
i

d3
x
′ (2.33)

The x-derivative is changed to x
′-derivative, which is possible because

∂

∂xi

(
1

|x − x′|

)
= − ∂

∂x′i

(
1

|x − x′|

)
(2.34)

Next, the rapid part of the velocity pressure-gradient correlation, which in homo-
geneous turbulence equals minus the pressure-strain correlation, see Eq. (2.14), can
be formed as

Φ
(r)
ij = −1

ρ

(
u′j
∂p′

∂xi
+ u′i

∂p′

∂xj

)
(2.35)

= − 1

2π

∂Uk

∂xl

∫∫∫
∞

−∞

1

|x − x′|

[
u′j(x)

∂2u′l(x
′)

∂x′i∂x
′

k

+ u′i(x)
∂2u′l(x

′)

∂x′j∂x
′

k

]
d3

x
′
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The right-hand side contains two-point correlations, although the velocity pressure-
gradient correlation is a single-point correlation. This manifests one of the cen-
tral difficulties in closing the Reynolds stress transport equations, especially their
pressure-related terms. Pressure fluctuations influence at a distance but these effects
have to be approximated using local values only. This fact, among the assumption
of homogeneity, renders modelling of the pressure-terms quite vague. Owing to
the assumed homogeneity, the two-point correlations are functions of the distance
ξ = x − x

′ only. Moreover, u′j(x) and u′i(x) may be brought inside the derivative
operators with respect to x

′ since they do not operate on these fluctuating velocity
components as they are functions of x only. Eq. (2.35) may then be written as

Φ
(r)
ij = − 1

2π

∂Uk

∂xl

∫∫∫
∞

−∞

1

|ξ|

[
∂2u′ju

′

l(ξ)

∂xixk
+
∂2u′iu

′

l(ξ)

∂xjxk

]
d3ξ (2.36)

which may be formally written in terms of a fourth-rank tensor Mijkl as

Φ
(r)
ij = Mijkl

∂Uk

∂xl
= kMijkl

∂Uk

∂xl
(2.37)

The remaining task is to construct a model for the fourth-order tensor Mijkl. This
is accomplished by systematically expanding Mijkl in powers of the anisotropy
tensor. There are a few constraints for Mijkl. First, it must preserve the symmetry
in i, j and its trace must be zero when contracted on i = j. When contracted on
j = k, its trace must equal 2u′iu

′

l. In short:

Mijkl = Mjikl; Miikl = 0; Mijjl = 2u′iu
′

l (2.38)

These constraints have been known since the times of Chou [15] and Rotta [16]
although they did not attempt to construct models for Mijkl explicitly [25]. As the
dependence of Φ

(r)
ij on the mean-velocity gradient is expressed by (2.37) in the case

of homogeneous turbulence, Mijkl may be assumed to be a nondimensional func-
tion of aij only. W.C. Reynolds has shown that the most general expansion of the
Mijkl tensor in terms of aij that satisfies the constraints (2.38) contains 15 tensor
groups up to the fourth1 power of aij and 15 scalar coefficient functions that may
depend on the anisotropy invariants and possibly also of the turbulent Reynolds
number [25, 26]. By substituting such an expansion into (2.37) and applying the
constraints (2.38), the complete expression for Φ

(r)
ij is obtained. This consists of

eight tensor groups up to the third power in aij , and their coefficient functions. De-
spite this, most of the widely used models are linear in aij , and there are, indeed,
grounds to claim that a model for Φ

(r)
ij should be linear in aij, see Refs. [25,27]. On

the other hand, a high-order representation is needed to satisfy the strong realizabil-
ity conditions. This means that linear models may in some extreme circumstances
predict negative normal stresses. However, the algebraic Reynolds stress models

1Terms such as aimamjaknanl appear in the expansion since Mijkl is a fourth-rank tensor.
These cannot be further reduced, since they involve only quadratic matrix products.
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discussed and used in this study are based on the so-called general quasi-linear
model (GQLM)

Φ
(r)
ij = C2kSij +

C3

2
k

(
aikSkj + Sikakj −

2

3
aklSlkδij

)

− C4

2
k (aikΩkj − Ωikakj)

(2.39)

in which the C-coefficients may in general be functions of the anisotropy invariants
and possibly also of the turbulent Reynolds number. All special cases of (2.39) with
only constant coefficients form the class of general linear model (GLM). In fact, the
majority of the widely used models, such as the LRR model by Launder et al. [11],
its truncation known as the isotropization of production model (LRR-IP), and many
others belong to this class.

Homogeneous turbulence has been assumed in the derivation of (2.36), although
virtually all problems of practical interest are inhomogeneous. The developed mod-
els may be considered quasi-homogeneous models, i.e. they should be applicable
to flows in which the turbulent quantities vary in space only relatively slowly. It
is usually thought that the quasi-homogeneous models are applicable away from
solid walls and inappropriate only near the walls. Solid walls have several effects
on the pressure-strain term that have not been considered in the development of the
quasi-homogeneous models. These are the kinematic wall-blocking effect, the low-
Reynolds number effects, and possibly the contribution of the ignored harmonic
part of the pressure. The wall-blocking effect is the most important of these, and
it is usually modelled as an additional term Φ

(w)
ij . This represents the non-local

wall-echo of pressure fluctuations, and it depends on the wall-normal direction and
distance. This fact makes its modelling rather cumbersome, especially for complex
geometries.

It has been observed that the quasi-homogeneous modelling alone is sufficient
for most purposes in high-Reynolds number aerodynamics if ε is modelled using an
appropriate ω model-equation [28, 29]. Such an approach does not provide correct
asymptotic near-wall behaviour of the turbulent quantities, but the mean velocity
profile and the wall shear-stress can usually be predicted with sufficient accuracy.
Also, the algebraic stress modelling studied and employed in this study is based on
the quasi-homogeneous model only. Therefore, the wall effects and their modelling
are not discussed here in more detail.

2.4.5 Turbulent Transport

Some kind of a gradient-diffusion model is usually selected for the turbulent trans-
port plus pressure diffusion. The gradient transport models are based on the reason-
ing that the turbulent transport can be modelled as diffusion, because the fluctuating
convective velocity field is quite random. Recall that molecular diffusion is also a
kind of random transport at the molecular scales. It is usually assumed that the tur-
bulent transport dominates over the pressure diffusion, and the latter is then thought



32 On Turbulent Flows and Turbulence Modelling

to be absorbed into the model for turbulent transport. The generalized gradient
diffusion model by Daly and Harlow [30]

Tijk ≈ Cs
k

ε
u′ku

′

l

∂u′iu
′
j

∂xl
(2.40)

which involves a vector-valued diffusivity, is probably the most popular of such
models. More complex models that are symmetric with respect to all three indices
have been proposed e.g. by Hanjalić and Launder [10]

Tijk ≈ Cs
k

ε

(
u′iu

′

l

∂u′ju
′

k

∂xl
+ u′ju

′

l

∂u′iu
′

k

∂xl
+ u′ku

′

l

∂u′iu
′
j

∂xl

)
(2.41)

Complete symmetry is, however, not a critical requirement since the flux will be
contracted with the divergence operator ∂/∂xk .

A simpler scalar-diffusivity gradient-diffusion model can also be applied, see
e.g. Refs. [28, 29]. This equals the eddy-viscosity concept and reads

Tijk ≈ σkνT

∂u′iu
′
j

∂xk
(2.42)

where σk is a model coefficient usually with a constant value and νT ∼ k2/ε ∼ k/ω
is the eddy viscosity. Eq. (2.42) is used in the model developed in this study.

2.5 Two-Equation Modelling

2.5.1 Basic Formulation

In the concept of two-equation modelling, the idea of solving a transport equation
for each stress component is replaced by some explicit constitutive relation. This
means that the stress tensor is assumed to be an algebraic function of the local
mean-velocity gradient and the two turbulent scale variables. These scale variables
are then solved from the two transport equations of the model. This hypothesis is,
of course, not generally valid, but the two-equation concept has, however, turned
out to be a quite adequate level of modelling for many applications. The physical
realism of two-equation modelling in more complex flows largely depends on the
constitutive relation.

The two-equation turbulence models can be thought to consist of two more or
less separate parts: the scale-determining model, and the constitutive model. The
most popular constitutive model is the linear generalized Boussinesq eddy-viscosity
model

u′iu
′
j = −2νTSij +

2

3
kδij = −2CµvT lTSij +

2

3
kδij (2.43)

where Cµ is usually constant 0.09 and vT and lT are the turbulent scale variables:
velocity scale and length scale, respectively. There are also more general nonlin-
ear constitutive models, which include higher-order tensor products of the mean-
flow strain-rate and vorticity tensors Sij and Ωij , respectively. Explicit algebraic
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Reynolds stress models (EARSM) are an important special class of these nonlinear
constitutive models. This is because these models are derived from a differential
Reynolds stress model by invoking the so-called weak-equilibrium assumption. The
nonlinear constitutive modelling is discussed in more detail in Section 2.5.2, and in
Chapter 5.

The scale-determining model consists of two modelled transport equations for
the selected scale variables. The velocity scale is typically solved from the turbulent
kinetic energy k = u′ku

′

k/2, because its transport equation needs relatively little
modelling. The exact transport equation of k is easily derived from (2.9) by taking
half of its trace to obtain

Dk
Dt

= −u′iu′j
∂Ui

∂xj

− 1

2
εkk +

∂

∂xj

(
T

(k)
j + ν

∂k

∂xj

)
(2.44)

The advantage of this equation over (2.10) is that it includes no redistribution term,
thus only the dissipative term εkk/2 and the turbulent transport plus pressure dif-
fusion have to be modelled. As explained above, εkk/2 is not exactly the viscous
dissipation rate of k, except in homogeneous turbulence. In the following, it is as-
sumed, however, that εkk/2 = ε for the sake of simplicity. The difference is merely
semantics in the context of modelling, where only crude generic models for this
term are employed. The dissipation rate will be modelled using the second scale
variable. Recalibration of a generic model equation for the second scale variable
for the high-lift aerodynamics purposes is the principal goal of this study.

As in the context of RSM, gradient-diffusion models are used for the turbulent
flux

T
(k)
j =

1

2
Tjii = −k′u′j −

1

ρ
p′u′j (2.45)

which consists of the turbulent transport plus pressure diffusion. The simple eddy-
viscosity-based gradient diffusion model

T
(k)
j ≈ σkνT

∂k

∂xj

(2.46)

is the only reasonable option with linear constitutive modelling. Nonlinear consti-
tutive modelling gives more freedom for choosing the turbulent transport models,
because also the normal-stress anisotropy is reasonably modelled. For instance, the
Daly-Harlow model (2.40) [30] has been used in nonlinear two-equation modelling.
In this study, however, the simpler scalar diffusivity approach (2.46) is chosen. It
is assumed that (2.46) is usually adequate at the level of two-equation modelling.
It also seems to be numerically more stable and robust, and it slightly reduces the
coding effort in the implementation.

Substituting (2.46) for T (k)
j in (2.44), a simple model equation for k can be

written as
Dk
Dt

= P − ε+
∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
(2.47)

where P is the production of k by the mean-flow gradients

P = −u′iu′j
∂Ui

∂xj
(2.48)
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The choice of the second scale variable is not that obvious, although ε has been
the most popular choice since Jones & Launder published their k − ε model [31],
which then became very popular and is nowadays known as the standard k − ε
model. The exact dissipation equation is very difficult to model in comparison with
the k-equation. This is especially the case in the near-wall region, see e.g. Rodi &
Mansour (1993) [32].

Generic modelling is an alternative route to obtain models for the second scale
variable. Most engineering models can be kept as generic models, also the standard
k − ε model. The word generic means here that we are not looking for a term-by-
term modelled closure for the exact transport equation of ε or another scale variable
derived from it. It is felt that the obstacles lying on the route to such a derivation
are too high. Instead, the generic approach has usually shown to be a more efficient
way to set up engineering models for the second scale variable.

It can be argued that the evolution of any second scale variable is governed by
a certain limited set of physical processes. The simplest approach leads to an ana-
logue with the transport equation of turbulent energy k. It includes four different
terms representing the following physical processes: convection by the mean flow,
production by the mean-flow gradients, viscous dissipation, and diffusion which ac-
tually consists mostly of turbulent random convection. The molecular diffusion is
typically small in fully turbulent flows. Actually, it is misleading to speak about pro-
duction of the second scale variable by the mean-flow gradients, since this variable
is related to viscous dissipation, which is not directly produced by the mean-flow
gradients. These two, however, are indirectly related since the spectral energy flux
to the dissipative motion may be estimated as proportional to the production rate of
k if the transport terms are not dominant over the production and dissipation.

After all, the idea of quite simplistic generic modelling is to hypothesize that
the evolution of the second scale variable is basically governed by the very same
physical processes as that of k. Assuming this, a transport model of similar form
as (2.47) but dimensionally consistent with an arbitrary second scale variable φ can
be set as

Dφ
Dt

=
φ

k
(Cφ1P − Cφ2ε) +

∂

∂xj

[
(ν + σφνT )

∂φ

∂xj

]
(2.49)

In practice, the second variable is of the form of φ ∼ kmεn. The success of this kind
of model largely depends on the choice of the scale variable φ, or in other words on
the choice of the parameters m and n. For instance, the standard ε model of Jones
& Launder and Wilcox’s ω model are special cases of (2.49), but they behave very
differently from each other. This is not only because of the different calibration
of their model coefficients, but also because transformations from one m,n-pair to
another produces extra terms that depend on inner products of the gradients of k
and φ. Therefore, each choice of m and n in (2.49) leads to a different model that
may or may not work satisfactorily in the flow problem of interest.
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2.5.2 Algebraic Reynolds Stress Modelling and Non-Linear Two-
Equation Models

Differential Reynolds stress models can be simplified by modelling the transport
terms by some means. Algebraic Reynolds stress models (ARSM) are derived this
way. The most usual means to model the transport terms was first proposed by
Rodi [33]. In this approach, the total transport of k is exploited in modelling of the
stress tensor as follows

D
(
u′iu

′
j

)
= kD

(
u′iu

′
j

k

)
+
u′iu

′
j

k
D(k) (2.50)

where D is a formal total transport operator including all the terms of the modelled
Reynolds stress transport-equation that involve derivatives of u′

iu
′
j. These terms are

the transport by mean flow, the turbulent transport (diffusion), and the molecular
diffusion. Given that D(k) = P − ε and writing (2.50) in terms of the anisotropy
tensor results in

D
(
u′iu

′
j

)
= kD (aij) +

(
aij +

2

3
δij

)
(P − ε) (2.51)

The algebraic model for the transport terms is now obtained by ignoring the first
term on the right-hand side

D
(
u′iu

′
j

)
≈
(
aij +

2

3
δij

)
(P − ε) (2.52)

The algebraic approximation may be further improved by modelling also D(aij)
partially by some algebraic expression. In particular, the sensitivity to the mean-
flow curvature may be improved this way. Such techniques are one of the foci of
this study and they are discussed and studied in detail in Chapter 5.

As a matter of fact, it is convenient to rewrite the RSM equation system in terms
of the anisotropy tensor and then to ignore the transport terms of aij . This is ob-
viously equivalent to applying (2.52) to the original form of the equation system
expressed in terms of u′iu

′
j. If the quasilinear model (2.39) is adopted for the redis-

tribution tensor, the modelled equation system for aij can be written as

τ

(
Daij

Dt
−D(a)

ij

)
= A0

[(
A3 + A4

P

ε

)
aij + A1Sij − (aikΩkj − Ωikakj)

+ A2

(
aikSkj + Sikakj −

2

3
aklSlkδij

)] (2.53)

where τ is the turbulent time-scale k/ε. Terms with different physical interpretation,
such as production, dissipation, etc. are here lumped together and sorted according
to their tensorial form. Coefficients A0, . . . , A4 are functions of the original RSM
coefficients only. Eq. (2.53) may be called a general quasilinear Reynolds stress
model. Quasilinearity is a highly favourable feature when seeking the explicit so-
lution for the ARSM. The tensor algebra becomes extremely complex in the case
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of higher-order models. In principle, however, there is an explicit solution for all
ARS models. This fact is based on the reducibility of the higher-order tensors ac-
cording to the Cayley-Hamilton theorem. Indeed, new explicit solutions for some
higher-order ARSMs have been found very recently by Grundenstam et al. [34].
Such elaborate algebraic manipulation is needed in solving such ARSMs that it can
only be accomplished using symbolic manipulation software.

The corresponding general quasilinear ARSM is now obtained in the weak equi-
librium limit as

0 =

(
A3 + A4

P

ε

)
aij + A1Sij − (aikΩkj − Ωikakj)

+ A2

(
aikSkj + Sikakj −

2

3
aklSlkδij

) (2.54)

This is an implicit algebraic tensor equation. It could, in principle, be solved
iteratively. However, an iterative solution is found to be numerically troublesome
in practical flow problems. Although (2.54) is tensorially linear, it contains a scalar
nonlinearity. Therefore, multiple roots exist, and iteration may converge towards a
non-physical root. Fortunately, an explicit solution can be found for (2.54) with the
aid of tensor algebra.

In the weak-equilibrium limit, the anisotropy tensor can be assumed to only
depend on the mean velocity-gradient tensor and the turbulent time scale k/ε. It
is convenient to split the mean velocity gradient into the strain rate and vorticity
tensors and to scale them using the turbulent time scale just as explained in Sec-
tion 2.4.4. Thus, the anisotropy tensor can formally be expressed as

aij = f(Sij,Ωij) (2.55)

where f is an isotropic second-order tensor-valued tensor function. The general-
ized Cayley-Hamilton theorem implies that the most general representation for a
symmetric traceless second-order tensor, such as aij , which depends on two other
second-order tensors is a tensor polynomial containing ten independent terms. Each
term consists of a tensor group with a required tensorial form and a scalar coefficient
that generally depends on the scalar invariants of the two tensors. This is known as
the integrity basis of aij and it forms the most general representation basis for aij .
The dimension of the integrity basis is higher than the number of the independent
components in the represented tensor aij as it may have only five linearly inde-
pendent components. The greater number of base-terms guarantees the minimum
dimension of five in all possible situations when some of the groups may vanish.
Thus the integrity basis is redundant in terms of linearly independent representation
for each component of aij . For more details, see e.g. Refs. [17] and [18]. The
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integrity basis for aij is given by

aij = β1Sij

+ β2 (SikSkj − IISδij/3) + β3 (ΩikΩkj − IIΩδij/3) + β4 (SikΩkj − ΩikSkj)

+ β5 (SikSklΩlj − ΩikSklSlj) + β6 (SikΩklΩlj + ΩikΩklSlj − IV δij/3)

+ β7 (SikSklΩlpΩpj + ΩikΩklSlpSpj − 2V δij/3)

+ β8 (SikΩklSlpSpj − SikSklΩlpSpj) + β9 (ΩikSklΩlpΩpj − ΩikΩklSlpΩpj)

+ β10 (ΩikSklSlpΩpqΩqj − ΩikΩklSlpSpqΩqj)

(2.56)

Also the number of independent scalar invariants is limited to five in the case of
three-dimensional mean flow

IIS = SklSlk IIΩ = ΩklΩlk

IIIS = SklSlmSmk IV = SklΩlmΩmk V = SklSlmΩmnΩnk
(2.57)

In two-dimensional mean flows, only two independent invariants IIS and IIΩ exist.
A linear system of equations for the β-coefficients is obtained by inserting

(2.56) into (2.54) and applying (2.18) to reduce all the higher-order groups. The
resulting linear system can be solved for the β-coefficients. But the solution is not
yet complete, since there is still an unknown scalar parameter P/ε = −aklSlk. Ear-
lier models used a fixed equilibrium value for P/ε to close the solution, see e.g.
Ref. [35]. This approach leads to a singular solution that needs further approxi-
mations to remove the singularities. This procedure is known as regularization. A
complete solution features an explicit solution for P/ε. Such an approach provides a
readily regular solution. Girimaji [36] and independently Wallin and Johansson [4]
were the first to derive a complete EARSM.

An equation for P/ε must be derived in order to find a complete solution. Such
an equation may be derived by expressing P/ε in terms of the determined solution
of aij . This scalar polynomial equation is cubic in the case of two-dimensional mean
flow and of the sixth order if the mean flow is three-dimensional, see Ref. [4] for
details. The cubic equation can be solved explicitly, while the sixth-order equation
cannot. In three-dimensional situations, the solution may in practice be approx-
imated using the solution of the cubic equation. The explicit solution (EARSM)
derived by Wallin and Johansson [4] is given in Section 6.6.2. As aij is known from
the EARSM, the Reynolds stress tensor may finally be expressed as

u′iu
′
j = k(

2

3
δij + aij) (2.58)

EARSMs are formally nonlinear two-equation models. There are also such non-
linear two-equation models that are not derived as explicit solutions for ARSMs or
as approximations of such solutions. Such models may be considered as nonlinear
extensions of the ordinary eddy-viscosity two-equation models while EARSM may
be considered as truncations of RSMs.
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2.6 Other Models

So far, only the traditional Reynolds stress and two-equation modelling have been
discussed. In fact, many more types of turbulence models exist. From the view-
point of aerodynamics, perhaps the other most important model classes presently
employed are the one-equation models and the algebraic mixing-length models.
On the other hand, the traditional RANS Reynolds stress modelling has quite se-
vere limitations in terms of its generality. These problems are also addressed in
this study. Therefore, some scientists have been looking for some novel modelling
approaches with a higher level of description. Structure-based modelling [12, 13]
and two-point closure modelling, see e.g. [14] are worth mentioning as examples
of proposed new concepts. To date, such concepts have not matured enough to
be exploited with any engineering purposes. Therefore, these approaches are not
discussed in this study, although they might become more important in the future.

The one-equation modelling has actually become rather popular in the field of
aerodynamics after Baldwin and Barth [37] and later, Spalart and Allmaras pub-
lished their models that are based on generic transport equations for the eddy vis-
cosity (or turbulent Reynolds number) and tuned for aerodynamic flows. However,
the Baldwin-Barth model never became as popular as its successor, the Spalart-
Allmaras model, which has become some sort of standard model in aerodynamics
in the USA. Earlier one-equation models were based on the transport equation for
k with prescribed length-scale. The range of applicability of such models is more
limited than that of two-equation models where the second scale variable is solved
from a modelled transport equation. Obviously, the modern one-equation mod-
els, such as the Spalart-Allmaras model suffer from this incompleteness as well,
although the second scale-variable does not appear explicitly in their formulation.
These models are best suited for boundary-layer flows with no complex features.

Algebraic mixing-length models can be seen as the model class of the lowest
level of description and of the most limited range of applicability and the least
generality. This approach was first proposed by Prandtl in the 1920s. It is based
on the analogy between the mixing by molecular motion and by turbulent eddies.
In a broader sense, the concept of the eddy-viscosity is also based on this anal-
ogy. The mixing-length model by Balwin and Lomax [38] developed for boundary-
layer flows has been very popular in aerodynamics up to the 1990s when more
sophisticated one- and two-equation models started to become more popular also in
boundary-layer dominated applications.
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3 Requirements for Turbulence
Modelling in High-Lift Problems

3.1 Overview

Modern jet-transport aircraft are typically designed for high subsonic cruise veloc-
ities such as 80 . . . 85% of the speed of sound. This unavoidably implies high wing
loading. High wing loading, on the other hand, implies high stalling speed, which
is unfavourable for landing and take-off. In order to keep the stalling speed within
acceptable limits in landing and take-off situations, the wings are equipped with
high-lift devices. These devices are usually extended from the leading and trailing
edges of the wing for take off and landing, and they are retracted into the main wing
for other phases of flight so that the wing retains its clean shape designed for cruise
flight. Slotted trailing-edge flaps of one or more elements are typical examples of
high-lift devices. Leading-edge devices are another important means of augmenting
lift. The most typical examples of these are plain leading-edge flaps, Krüger flaps,
and slotted slats. A combination of a slotted leading-edge slat and a slotted trailing
edge flap of one or more elements is perhaps the most typical arrangement.

Multicomponent aerofoils are able to produce considerably higher maximum
lift than single-component ones. Smith [39] provides quite a thorough discussion
on this subject. Such a lengthy description is out of the scope of this study. Instead,
only some brief remarks will be given. A three-component aerofoil in a typical
take-off configuration is used as an example, see Fig. 3.1.

An aerofoil of two or more components can always be designed to give higher
lift than a single-element aerofoil having the same chord. This is quite easy to un-
derstand with the aid of the following rough and highly simplified explanation. Each
element set to an angle of attack deflect the flow past it, and thus its downstream
element is exposed to a reduced effective angle of attack compared to that of an
isolated element at the same geometric angle. Therefore, the downstream elements
can be set to higher geometric angles than an isolated element without making them
stall. Each element can be set to a higher geometric angle than the element just
ahead of it. Of course, the situation is not that simple in reality, but this gives a
rough overview of the physics involved. In reality, each element strongly interacts
with the other and there are several mechanisms that increase the lift at a given angle
as well as mechanisms that allow higher angles to be used without the risk of stall.
Most of these mechanisms are interactions carried over by the pressure field, and
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Slat wake

Main−wing boundary layer

Slat boundary layer

Merging  wakes

Flap Boundary layer

Slat−cove vortex

Flap−cove vortex

Mixing layer

Figure 3.1: A three-element aerofoil in take-off configuration at an angle of attack of 20 degrees.
The total pressure distribution shows flow regions where the losses occur. The most important flow
details are identified. Note also the very thin boundary layers on the lower surfaces of the main wing
and the flap.

thus do not directly depend on the viscosity. The vicinity of the trailing edge of an
upstream element reduces the suction peak of a downstream element. Similarly, the
leading edge of a downstream element induces lower pressure around the trailing
edge of its upstream element. Both effects relieve the pressure rise in which the
boundary layers are exposed, and therefore increase the margin of boundary-layer
separation. It is, indeed, important to understand that the high-lift devices work
primarily by means of manipulating the pressure field. There has been a lot of mis-
understanding about how the slat influences the flow about the main element. It was
long believed by many authors that a gap between a slat and a main wing functions
by means of boundary-layer control, i.e. by imposing high-energy fluid into the re-
tarded main-wing boundary layer. This misconception originates possibly from the
work of Prandtl in the 1920s and 30s, and remained at least up to the early 1970s, if
not even longer, see Smith [39]. For experimental and numerical studies of high-lift
problems, see e.g. Refs. [40–45].

Fig. 3.1 shows that there are a number of turbulent flow details that are likely to
have an important role in the whole problem. These are at least: boundary layers un-
der adverse pressure gradient (APG), wakes under pressure gradient and curvature,
merging wakes and possibly mergers of a boundary layer and a wake, mixing layer,
and vortices. The importance of accurate modelling of the APG boundary layers
is very well known, but also the importance of modelling the slat wake turbulence
properly enough has been stressed by Rumsey et al. [46] and by Ying et al. [42].
It is thought that a successful numerical simulation of this complex flowfield can
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only be carried out if these individual flow features can be modelled with suffi-
cient accuracy. Therefore, the focus in the turbulence model development in this
study is largely put on the APG boundary layers, wakes, and also on mixing layers.
The modelling of curvature-affected turbulence is dealt with as well. Some studies
found in the literature concerning the above mentioned individual flow details are
discussed in the next subsections.

It must be remembered that turbulence modelling is not the only source of error
and uncertainty in high-lift flow situations. Transition locations are another impor-
tant source of uncertainty. They should be known a priori, or estimated by some
means, because the turbulence models cannot predict them reliably. The overall
flow field is usually very sensitive to the transition locations. In CFD validation
work the computed results are compared with experimental wind-tunnel data. The
computations are typically made without simulating the wind-tunnel walls. Al-
though wind-tunnel corrections are usually applied to the experimental data, there
are still always uncertainties about the possible wall interference. These problems
are, however, beyond the scope of this study. Only the turbulence modelling aspects
are considered.

3.2 Boundary Layers under Adverse Pressure
Gradients and Boundary-Layer Separation

3.2.1 Experimental Work and Suitable Test Cases

Sufficiently accurate modelling of turbulence in adverse pressure gradient (APG)
boundary layers and separation is perhaps the most important requirement for the
turbulence models employed in CFD analyses of high-lift problems. This is because
separation of APG boundary layers on aerofoil upper surfaces often controls the
maximum lift.

There are many experimental studies about APG boundary layers that can be
exploited in assessment of turbulence modelling. These flow cases can be divided
into equilibrium and non-equilibrium boundary layers. The latter class of flows may
also involve separation. The former group of flows is especially suitable for basic
development and initial validation of turbulence models, since equilibrium APG
boundary layers at a limit of infinite Reynolds number can be considered as self-
similar. Self-similarity is a very favourable feature, because the governing equa-
tions can be reduced to a system of ordinary differential equations, which allows
easy and very fast numerical solution. By exploiting this, a large number of solu-
tions can be computed within a short time frame. This is very important, especially
in the model-calibration phase. Therefore, experimental studies about self-similar
boundary layers will first be reviewed.

A loosely defined criterion for a boundary layer to be in equilibrium is that the
nondimensional pressure-gradient parameter

βT =
δ1
τw

dp

dx
(3.1)
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remains constant along the flow with sufficient accuracy. Here, τw is the wall shear-
stress, and δ1 is the displacement thickness of the boundary layer defined as

δ1 =

∫ δ

0

(
1 − U

Ue

)
dy (3.2)

where δ is the thickness of the boundary layer and Ue is the velocity on its outer
edge. There are also stricter definitions for equilibrium boundary layers. In this
study, however, it is believed that the self-similar equations approximate the flow
with sufficient accuracy always if βT can be kept constant.

The concept of self-similar boundary layers was first introduced by Clauser
in the 1950s [47]. Clauser’s experimental data will be used as one of the ref-
erences also in this work, although its accuracy, especially in the sense of two-
dimensionality [48], is perhaps not at the best possible level measured by modern
standards. The first of Clauser’s two experiments (designated as the FLOW-2200
in the 1968 AFOSR-IFP-Stanford Conference [48]) showed a region of nearly con-
stant βT varying between the values of 1.7 and 1.8. The boundary layer in Clauser’s
second experiment (FLOW-2300) includes two different regions with nearly con-
stant βT . The first one of these had βT ≈ 5, and the second one βT ≈ 8. The
variation of βT is somewhat more rapid than in the most of the more modern exper-
iments. Despite this, there seems to be a common agreement that this flow can be
considered as an equilibrium boundary layer. On the other hand, it is known that
these flows are not purely two-dimensional, but it is not quite clear to the author
how severe implications this fact may have on the quality of the data in this case.
The highest βT -case suffers from the three-dimensionality perhaps more than the
other two, because the boundary-layer thickness achieved a value of about one half
of the test-section width [48].

The proceedings of the 1968 AFOSR-IFP-Stanford Conference [48] includes
also other useful sets of experimental data. One of them is a mild APG boundary
layer of βT ≈ 0.9 by Bradshaw [49] (FLOW-2500). Bradshaw [49] contributed to
the conference also another, stronger APG boundary layer with βT ≈ 5 (FLOW-
2600). Unfortunately, the velocity profiles measured by Bradshaw and by Clauser
disagree when βT ≈ 5. It is not known by the author whether this is owing to
the mentioned three-dimensionality observed in Clauser’s experiment. Owing to
this uncertainty, the benefits of this case for calibration and validation remain mod-
est. There is also a more recent experimental work on a strong APG equilibrium
boundary layer by Skåre and Krogstad [50]. This flow has βT ≈ 20, and βT remains
constant with a better accuracy than is usually seen in the older work from the 1950s
and 60s. This flow will be used for more detailed study and validation of the model
developed in this study.

Non-equilibrium cases that are closer to real-life problems are of course needed
for further validation. APG boundary layers that eventually separate from a smooth
surface are suitable for this purpose. This is because the model’s ability to pre-
dict separation location can be assessed. Perhaps the most often referred to non-
equilibrium APG boundary-layer cases are the one by Samuel and Joubert [51], and
the two cases by Driver [52]. Only one of these three cases, one case by Driver,
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involves separation. Therefore, this case will be used for validation of the model
developed in this study.

Driver’s flow features only a tiny recirculation region. Assessment for massive
separation has to be undertaken with some other test case. Flow past a backward
facing step is a common validation case for turbulence modelling, see e.g. Driver
and Seegmiller [53]. It may be a less relevant problem to high-lift aerodynamics,
however, because it involves a separation forced by the geometry, the step upper-
corner, whereas in high-lift aerodynamics, the most influential separation typically
takes place on a smooth surface owing to an action of adverse pressure gradient.
On the other hand, also separations fixed by the geometry occur in the slat and flap
coves. The step cases are perhaps more relevant to the problem of reattachment,
which is not of such critical importance in high-lift aerodynamics as the prob-
lem of predicting the separation. In addition to the backward-facing step cases,
a periodic flow past steep two-dimensional hill-shaped protuberances in a plane
channel is worth mentioning. This configuration has been studied by means of a
highly resolved large-eddy simulation by Mellen et al. [54], and by Temmerman
and Leschziner [55]. Although this flow features separation from a smooth surface,
the separation is still almost fixed by a fairly small local radius of curvature on the
hill crest. This, among some other features of this flow, makes it less relevant to
high-lift aerodynamics, although it is suitable for studying turbulence modelling in
a separated recirculating flow. The planar asymmetric diffuser flow studied by Obi
et al. [56] and by Buice and Eaton [57, 58] is perhaps a more suitable test case for
this purpose. It features fully developed inflow from a plane channel, a ramp with
an angle of ten degrees on one of its walls while the other wall is straight. The flow
separates from the inclined wall and reattaches after a large region of recirculation.
This flow has become quite a popular test case for turbulence models, although it
has turned out to be a very challenging one. It is used in this study for testing the
model in a massively separated flow.

3.2.2 Turbulence Modelling

It has been shown by several authors that most of the commonplace k−εmodels fail
in predicting APG boundary layers and separation with sufficient accuracy for high-
lift aerodynamics purposes [59–63]. Wilcox has shown that his k − ω model per-
forms clearly better for APG boundary layers than the k−ε models [60]. Moreover,
the k−ω model can be solved down to the wall without any near-wall modifications.
Menter showed later that Wilcox’s model suffers from a severe anomaly which then
became known as the free-stream sensitivity [64] — the solutions are highly sen-
sitive to the specified free-stream boundary conditions for k and ω. Menter devel-
oped a zonal k − ω BSL model that inherited the favourable features of Wilcox’s
model but not the free-stream sensitivity [3, 65]. He then showed that the ability to
correctly model APG boundary layers and separation largely depends on the con-
stitutive model, and that the traditional linear Boussinesq model is not sufficient for
this purpose. He then developed an extension of the Boussinesq model that prevents
the shear-stress anisotropy from exceeding a certain limit. The resulting model is
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known as the k − ω SST model, and it quite soon became the state-of-the-art tur-
bulence model in aerodynamics applications. The SST model is not a nonlinear
model in the tensorial sense, i.e. it relies on a tensorially linear relation between the
Reynolds stress and the strain-rate tensors. However, the coefficient of this relation-
ship, Cµ, depends on a mean-strain (or vorticity) invariant. The correct sensitivity of
Cµ upon the strain rate is more important in APG boundary layers and in separating
flows than the tensorially nonlinear terms of the constitutive model. This has been
confirmed by Apsley and Leschziner [66]. The higher-order terms are more impor-
tant in predicting the normal-stress anisotropy (quadratic terms) and the effects of
the mean-flow curvature, swirl, or other secondary-strain effects (cubic terms).

The role of the constitutive model and the scale-determining model in separating
APG flows has been studied recently, e.g. by Rumsey and Gatski [62] and by Hell-
sten and Laine [63]. It has become quite clear that both parts of the model are critical
in modelling turbulence of APG flows. Choosing a proper scale-determining model
is especially important near the wall and in predicting the wall shear-stress in near-
equilibrium conditions, while the constitutive model is critical, regardless of the
chosen scale-determining model, in capturing non-equilibrium effects usually im-
posed by relatively rapid streamwise changes. Considering the scale-determining
model in the light of the previous studies and validation efforts, it seems that the
most straightforward way to achieve the goals of this work is to start from the k−ω
framework and to recalibrate all the model coefficients in a systematic fashion. A
more thorough and elaborate alternative would be to try to find a new scale variable,
and to develop and calibrate a model equation for it. This route has been recently
chosen by Bézard [67]. He developed a new k − kl model for high-lift flows to
be used with an EARSM as the constitutive model (l is a turbulent length scale).
Bézard’s work is a parallel effort with the present work within the HiAer project.

Some authors have developed linear and nonlinear k−εmodels that, comparably
with the k−ω models, are able to predict APG boundary layers with better accuracy
than the usual k − ε models. This is usually achieved by adding a new term in the
ε-equation. Yap [68] was probably the first to do so, and therefore these extra terms
are often called Yap-terms or Yap-like terms. Yap introduced a term which tends
to drive the turbulent length-scale towards its equilibrium value near the wall in
APG boundary layers. The more recent proposals include cross-diffusion terms
that have a similar influence as the Yap-term, see e.g. Rahman [69] and Merci [70].
Such a cross-diffusion term can be derived, e.g. by transforming Wilcox’s k − ω
model into the k − ε form. As an example from the differential Reynolds stress
modelling level, the work by Hanjalić and Jakirlić [71] and by Hanjalić et al. [72]
should be mentioned. They attempted to avoid excessive near-wall length scales by
incorporating a term that depends on the length-scale gradient in the ε-equation of
their low-Reynolds-number Reynolds stress model.

Lien and Leschziner have compared a full differential Reynolds stress model, a
nonlinear quadratic eddy-viscosity model, and a linear eddy-viscosity k−εmodel in
a high-lift aerofoil case [73]. They found that none of the studied models performed
well in respect of resolving separation, although the higher-order models performed
better than the linear eddy-viscosity model. All the models predicted too high shear-



Wakes 45

stress values near the wall. Lien and Leschziner pointed out that this is owing to
an overestimated near-wall anisotropy. Therefore, they dropped the wall term from
the rapid part of the redistribution model to reduce the near-wall anisotropy level.
As a result, they obtained a slight improvement in accuracy. Hanjalić et al. [72]
have also studied the full differential Reynolds stress modelling in APG situations.
As Lien and Leschziner, they concluded that it is important to model accurately the
near-wall behaviour of each stress component, because the mean pressure-gradient
partially influences the turbulence through the near-wall anisotropy. This require-
ment unavoidably leads to rather complex modelling approaches. Such approaches
are not chosen for this work in order to avoid an impractically complicated model
with reduced robustness. It is believed by the author that a reasonably good sensitiv-
ity to the pressure-gradient effects can be achieved by means of simpler modelling,
which does not necessarily provide correct near-wall anisotropies. This belief is
based on the experience with the k − ω models in APG flows. Near-wall modifi-
cations that lead to a fairly accurate near-wall anisotropy prediction were found to
have only a negligibly small effect on the mean-velocity field [63, 66, 74].

Massively separated flows involve a mixing layer between the retarded recir-
culating fluid and the high-momentum fluid adjacent to it. This shear layer may
feature coherent periodic oscillations. Experience has shown that the RANS tur-
bulence models have serious difficulties in modelling the effects of this kind of
motion [66]. This usually leads to a delayed reattachment, since the strong mix-
ing effect of these oscillations may have been missed in the modelling. Further-
more, the computational results of massively separated flows often tend to remain
time-dependent — perhaps another indication that turbulence models are not ca-
pable of modelling all the mixing of momentum needed to satisfy the momentum
equation. Massively separated flows remain a big challenge for RANS turbulence
modelling, while LES is in principle a very potential means of simulating them, but
only in case of small Reynolds numbers to date. LES is far beyond being useful in
high-lift aerodynamics, and thus the above discussed shortcoming of the present-
day RANS modelling largely limits the accuracy and reliability of CFD in high-lift
aerodynamics. Recently proposed hybrid RANS/LES concepts, such as detached
eddy simulation (DES) [75, 76] have shown some potential to predict aerodynamic
flows involving massive separation. However, the hybrid RANS/LES approaches
are based more on intuition than rigorous physical and mathematical analysis. For-
tunately, the prediction of the onset of separation is usually more critical in high-lift
aerodynamics than the accurate simulation of massive separation. Therefore, the
focus of this study is chiefly on the former phenomenon.

3.3 Wakes

3.3.1 Experimental Work and Suitable Test Cases

Just as the boundary layers can be broadly divided into the equilibrium and non-
equilibrium ones, the plane wakes can be classified as fully developed far wakes
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and developing wakes. This classification is, of course, somewhat impractical being
valid mainly for laboratory flows, since the wakes in real-life engineering problems
are usually at least mildly three-dimensional and other phenomena, such as vortices,
may be embedded in the wakes. In developing, calibrating, and validating turbu-
lence models, however, simple planar wakes are useful as test cases. Wakes achieve
an approximately self-similar state only quite far away from the wake-generating
body. Again, the self-similar cases are very useful for the calibration and initial
validation purposes. Developing wakes can then be used for further validation.

A self-similar planar far-wake has been studied already as early as in the 1930s
by Fage and Falkner [77], and there are a number of studies carried out after those
times. In most of the studies, the wake was generated using a circular cylinder per-
pendicular to the flow. Townsend pointed out in the late 1940s that the flow requires
more than one thousand cylinder diameters to develop before the stress distributions
become approximately self-similar, while the mean-velocity profile approximately
reaches its self-similar form much closer to the cylinder, about one hundred diam-
eters behind it [78]. In Townsend’s first experiments [78], x/D ranged from 90 to
725, where D is the cylinder diameter. Later, he extended his measurements up to
x/D = 950 [79], and this work resulted in a slightly different conclusion that the
requirements for dynamical similarity are very nearly satisfied when x/D > 500.
In light of Townsend’s work, it is clear that the measurements have to be undertaken
at least one hundred diameters downstream if not further away. This requirement
invalidates the experiment by Fage and Falkner dating back to 1932, since they
performed the measurements in a position with x/D = 36 only. Planar wakes
behind circular cylinders have been studied later at least by Thomas 1973 [80],
Fabris1979 [81], and by Antonia and Browne 1986 [82,83]. Thomas made his mea-
surements at x/D = 160, Fabris used larger distances, x/D = 200 and 400, and
Antonia and Browne had 420. The values x/D = 160 and 200 are quite low, but
these can probably be kept as sufficient distances when the focus is on the mean-
velocity profiles. The Reynolds stresses that will be used for comparison are mea-
sured at x/D = 400 (Fabris), and at x/D = 420 (Antonia and Browne). Also, the
shear-stress distribution measured by Townsend beyond x/D = 500 will be used as
a reference. In addition to the wakes generated by cylinders, one wake of a flat plate
will be taken as a reference. This is from the work of Weygandt and Mehta [84].
Unfortunately, they did not report the mean-velocity profile in [84]. Instead, the
data is taken from [28] readily in the similarity scaling. In this case, the wake seems
to be slightly asymmetric for some reason. In principle, the far wake does not de-
pend on the geometry of the object that created it, although the near wake strongly
depends on it. The popularity of the circular cylinder as a wake generator is proba-
bly owing to the fact that wakes of blunt bodies reach self-similarity after a shorter
distance of development than those of streamlined bodies.

Whereas the self-similar far wake is useful in the basic development, calibration,
and initial validation of turbulence models, developing wakes are more practical
cases for further validation. Ramaprian et al. have measured a wake behind a flat
plate, but only up to x/δ2 = 80 [85]. Here δ2 is the momentum thickness of the
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wake defined as

δ2 =

∫ δ/2

−δ/2

U

Ue

(
1 − U

Ue

)
dy (3.3)

They found that x/δ2 = 80 is far too small a value to reach the self-similar state.
This became evident when they analysed the data by Pot [86] that became available
just after their own experiments. Pot’s measurements extended up to x/δ2 = 960.
Before Pot’s work, it was thought that a wake would reach the fully developed
self-similar state after a distance of only about x/δ2 = 25. Owing to Pot’s data,
Ramaprian et al. came to the conclusion that self-similarity is reached only at about
x/δ2 = 350, which is drastically further downstream than what was believed before.
They pointed out that the wake has an intermediate phase 25 < x/δ2 < 350, where
the mean-velocity profile may be approximately self-similar, but the spreading rate
differs from its final asymptotic value and depends on the details of the wake origin.
Also, the ratio between the turbulent and mean kinetic energies has not yet become
constant. Taking these observations into account, it seems reasonable to compute
the wake of a flat plate at least somewhat past the location of x/δ2 = 350 and to
compare the results with Pot’s data. This will be done in Section 7.2.

The effects of curvature and pressure gradient on wakes have been experimen-
tally studied at least by Nakayama [87] and by Ramjee et al. [88]. Nakayama stud-
ied the effect of weak curvature and pressure gradient on a fully developed plane
wake. He found that even weak curvature and pressure gradient have significant
effects on turbulence, especially on the shear stress, while the effect on the mean
velocity remains small. Ramjee et al. [88] studied a wake of a symmetric aerofoil
in a curved duct. This experiment is closer to the practical situation of the slat wake
travelling above the curved upper surface of a main wing. Ramjee et al. studied two
cases with different radii of curvature. In both cases, the radius scaled by the width
of the wake is smaller than in Nakayama’s experiment, and thus stronger curvature
effects can be expected. Ramjee et al. had R/δ ≈ 9 and 18, while the minimum
value of R/δ in Nakayama’s experiments was 25. Unlike Nakayama, Ramjee et al.
made no effort to separate the effects of curvature and pressure gradient. Ramjee et
al. observed that the curved wake is significantly asymmetric, the inner side being
thicker than the outer. The inner side is that one which is closer to the centre of cur-
vature. This is consistent with the fact that the effect of curvature is to destabilize
turbulence on the inner side and to stabilize on the outer side.

Liu et al. [89] have measured wake flows under zero, mild favourable, and ad-
verse pressure gradient. Wakes exposed into sufficiently strong positive pressure
gradient may show an increasing velocity defect relative to the surrounding fluid.
This may ultimately lead to a flow reversal. Sometimes, the flow reversal in the slat
wake may even initiate the stall of a multi-component aerofoil (off-surface separa-
tion). According to Smith [39], this is a relatively rare situation since the boundary
layers are usually more prone to separate than wakes exposed to the same pressure
field. Therefore, the boundary-layer separation is often responsible for the stall ini-
tiation. The flow reversal in wakes has, however, recently gained the attention of
Driver and Mateer [90]. They studied wakes under three different adverse pressure
gradients both experimentally and computationally. Two of these three cases in-
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volved flow reversal. The work by Driver and Mateer seems to form a good test
case for turbulence modelling. The use of this case is not, however, included in this
study, but it will very likely be exploited in future work.

3.3.2 Turbulence Modelling

Wilcox [28] compared the far-wake velocity profiles computed with his k−ω model,
with the standard k − ε model, and with the RNG k − ε model [91, 92] to the ex-
perimental data by Fage and Falkner [77] and by Weygandt and Mehta [84]. Both
the k − ε models showed too slow a spreading rate and a very sharp outer edge.
The k−ω results were in much better agreement with the experimental data. How-
ever, as will be discussed later in this work, the results obtained with this k − ω
model are highly sensitive to the free-stream values of k and ω, and therefore much
worse results can be obtained if slightly different free-stream values are chosen.
Also, Menter shows that the standard k − ε model predicts inhibited spreading and
unphysically sharp edge for this flow [3]. Menter’s k − ω models share this short-
coming — this is quite obvious since Menter’s models are designed to behave like
the standard k−ε model in free turbulent flows in order to eliminate the free-stream
sensitivity.

The curvature effects on wakes seem not to be much different from those on
boundary layers. This is not very surprising since curvature mainly influences the
outer part of boundary layers, which is often said to have a lot of similarities with
wakes. Turbulence modelling for curvature-affected flows is quite deeply discussed
in Section 5.2. The modelling technique is studied and validated for a boundary
layer, for a flow in a U-duct with a small radius of curvature, and for a swirling
flow in a combustion chamber, see Ref. [93]. The validation for curved wakes is not
covered in this study because of the mentioned similarities of boundary layers and
wakes.

Carlson et al. have computed plane wakes in zero, mild favourable, and mild
adverse pressure gradients employing a linear EVM and an EARSM both based
on a k − ε model [94]. Both models predicted all the three wake flows in rea-
sonably good agreement with the experimental data measured by Liu et al. [89].
According to this study, the higher-order constitutive modelling (EARSM) does not
contribute to the accuracy in this case. This is quite reasonable, since the pressure
gradients were rather mild and there are no curvature or other complicating sec-
ondary strains present. The practical problem of the slat wake exposed to strong
and variable pressure gradient and curvature is more challenging, and the benefits
of more advanced constitutive modelling probably become more important. Driver
and Mateer computed wakes in heavily decelerated flows described above using the
Spalart-Allmaras one-equation model and Menter’s k − ω SST model [90]. They
observed that these models failed to capture the flow reversal.
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3.4 Interaction of Wakes and Boundary Layers

The slat wake runs in the close vicinity of the main-wing upper surface and its
boundary layer such that these two turbulent layers may interact with each other
and merge eventually. This is a consequence of the optimal slat positioning — the
slat must be placed sufficiently near the main-wing leading edge to allow efficient
interaction of the pressure fields of these two elements. On the other hand, exces-
sively close slat setting leads to an early merger of the slat wake and the main-wing
boundary layer. This would limit the maximum lift, because the merged layer is
very thick and prone to separation. Naturally, the optimal flap setting is determined
in a similar fashion as well. Roughly speaking, the two above described factors
are the most important aerodynamic mechanisms contributing to the slat and flap
positioning. The interaction and merging process is very sensitive to the details of
the upstream wake and boundary layer. Thus, it is very important to predict them
accurately, as pointed out by Rumsey et al. [46] and by Ying et al. [42].

The interaction of wakes and boundary layers is a rather complicated process.
Squire [95] provides a comprehensive review on this subject. Squire [95] and Ying
et al. [42] divide the interaction process into three phases: unmerged, merging, and
fully merged phases. In the example shown in Fig. 3.1, the slat wake and the main-
wing boundary layer are unmerged over a major portion of the main wing. The
second phase begins only near the main-wing trailing edge.

In the first phase, there is a potential core between the layers. In spite of this
core, the layers interact already in this phase. Savill and Zhou [96] have made a
comprehensive study about the interaction process in the unmerged phase. This
process depends on the wake structure. The near wakes of blunt bodies, such as
circular cylinder, are characterized by organized large-scale structures, while the
structures in the near wakes of aerofoils and other streamlined bodies as well as in
all far wakes are much less organized. In the former case, rapid interaction takes
place, while the interactions in the latter cases are slow according to Savill and
Zhou. In high-lift problems, the interaction between the slat wake and the main-
wing boundary layer is likely to appear more like the slow process. Savill and Zhou
detected three different slow interaction mechanisms. The first is the interchange of
so-called mushroom vortices. Vortices are occasionally drawn out from one layer
into another. These vortices retain their structure and identity to some extent in
the new environment. This way they change the turbulent structure of both layers.
The second mechanism is that structures larger than the mushroom vortices develop
from the outer boundary layer towards the wake inner edge and the edges may
instantaneously meet each other. This happens less frequently than the interchange
of the mushroom vortices. These two mechanisms share a common feature in that
they function via instantaneous bridging of the irrotational potential core. As for the
third mechanism, the pressure fluctuations induced by the large-scale motion in the
wake may interfere with the boundary layer (interaction by the irrotational field).

The second phase corresponds to the initial merger of the layers. This phase is
the most important and the most complicated according to Squire [95]. Although the
outer wake and the inner boundary layer may remain almost unaffected, the overlap
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region differs strongly from the outer edge of an isolated boundary layer and from
the inner edge of an isolated wake. Active interchange of turbulent structures be-
tween the wake-side and the boundary-layer side takes place. There may be a shift
between the zero-points of the shear stress and strain, or in other words, counter-
gradient transport of momentum. The eddy-viscosity models, even the nonlinear
ones including EARSMs, cannot capture this. In principle, only full differential
Reynolds stress models are capable of predicting such phenomena. The modelling
strategy selected in this study is not, however, replaced by the differential Reynolds
stress modelling, although the ARSM approach is in principle inappropriate for this
flow feature. This shortcoming just has to be accepted, because the differential
Reynolds stress modelling was initially defined to be out of the scope of this study
as a too large development step for turbulence modelling to be utilized in the prac-
tical high-lift aerodynamics work within a short time-span. It must be remembered
that this study aims at new modelling tools that can be implemented in industrial
use within a very short time frame. Squire [95] and Agoropoulos and Squire [97]
reviewed the ability of the k− ε, ARSMs, and even differential RSMs to predict the
merging flow. The conclusion was that, for simulations of two-dimensional isolated
merging-flow experiments, it is sufficient to use some kind of an algebraic Reynolds
stress model, although these models cannot model the counter-gradient transport.

In the final phase of interaction, the layers are fully merged and form a new
thicker boundary layer. The turbulence structure in such a new boundary layer
differs from that of ordinary boundary layers developed alone. The shear-stress
levels in the outer region are much lower than in ordinary boundary layers, see
Squire [95]. This phase takes a long distance to develop. In practical high-lift
problems, the layers usually pass the trailing edge well before the full merger is
reached. Therefore, this final phase is of less interest in high-lift aerodynamics than
the first two phases.

Several factors, such as pressure gradient, curvature, upstream conditions, and
three-dimensionality may influence the interaction and the merging process. Squire
points out that adverse pressure gradient accelerates the merger process via en-
hanced turbulent mixing [95]. Also the upstream history influences the interaction
and the merging process. The slat wake tends to be significantly asymmetric, its in-
ner side being thicker and more turbulent. This asymmetry accelerates the merging
process. According to Squire, this is owing to the slat-cove separation and vortex.
Also the curvature of the wake may influence the wake asymmetry. The EARSM
technique for curved flows discussed in Section 5.2 may be beneficial here. Besides
its ability to better capture the curvature effects on the wake, it has been observed to
predict a higher turbulence level for the slat-cove vortex than the standard EARSM
technique (unpublished work by the author).

Systematic turbulence model validation for this interaction problem has to be
left for future work. The three-element aerofoil problem, which is used as a feasi-
bility test in Section 7.5.4, will give a qualitative picture about the predictive realism
of the new model for this problem. The velocity profiles through the boundary-
layer/wake system are studied at four locations, giving some insight on the models’
ability to predict the merging.
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3.5 Mixing Layers

3.5.1 Experimental Work and Suitable Test Cases

Mixing-layer-like situations appear in high-lift aerodynamics in separated flows be-
tween the retarded recirculating flow and the high-speed fluid adjacent to it. There-
fore, separated flows can be partially idealized using the simple planar self-similar
mixing layer. A mixing-layer-like situation also occurs above the flap system, where
irrotational high-energy fluid is injected from the flap slot alongside the very thick
layer of retarded fluid formed by the merging wakes of the main wing and the slat,
see Fig. 3.1. For these reasons, the planar self-similar mixing layer is selected as
one of the elementary flows used in the model development and calibration.

Mixing layers differ from wakes most significantly owing to the fact that energy
is constantly fed from the mean flow to the turbulent motion in mixing layers, while
this energy transfer decays in wakes with the distance as the velocity difference
decays. The fact that turbulence gets less and less energetic as the wake evolves
downstream explains the observations that wakes “remember” the upstream distur-
bances over significantly longer distances and it takes a much longer distance for
a wake to reach the self-similar state than mixing layers [84]. Mixing layers also
differ from simple wakes owing to their apparent antisymmetry. Actually, spatially
evolving mixing layers are always asymmetric — not antisymmetric but genuinely
asymmetric. The low-speed side spreads more rapidly than the high-speed side [98].
Owing to at least these differences, it is difficult to model both wakes and mixing
layers accurately with exactly the same model. It even seems to be difficult to pre-
dict both sides of a mixing layer accurately with the same model. Indeed, one kind
of free shear flow is difficult to model correctly with a model calibrated for some
other kind of free shear flow.

Free turbulent shear flows are strongly governed and characterized by coher-
ent large-scale structures. These structures depend on the flow geometry and type.
For instance, axisymmetric and planar wakes obviously feature very different large-
scale structures. The well-known plane/round jet anomaly of turbulence models
is one consequence of completely different dominant structures in those two ele-
mentary flows. The large-scale structures and intermittency are also closely related
matters. Turbulence is said to be intermittent near the edges of shear layers because
irrotational fluid is entrained between subsequent large structures. Intermittency is
not directly accounted for in RANS turbulence modelling, since fully turbulent flow
is assumed already in the derivation of the RANS equations. Turbulence models can
be and are of course calibrated to take into account the effects of intermittency in
one or more elementary flows for which it is calibrated. It is, however, difficult
to calibrate a model for more than one sort of intermittent behaviour, and different
patterns of large-scale motion in each flow mean also different intermittency. This
is clearly seen also in this study. The planar mixing layers are strongly governed
by highly organized coherent structures known as Brown-Roshko rollers and braids
or ribs, see [8]. These very organized structures are nearly two-dimensional and
similar structures exist also at very low Reynolds numbers similarly as the well
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known von Kármán vortices in flows behind cylinders. One could perhaps argue
that such motion should be classified as unsteady mean flow instead of turbulent
motion. One indication of the difficulties of turbulence models to capture this or-
ganized motion as part of the turbulence is that two-dimensional simulations are
prone to turn time-dependent. A converged steady-state solution is very difficult
to obtain. Exploitation of the self-similarity allows a one-dimensional solution in
which such problems are obviously avoided. It was already mentioned earlier that
similar difficulties often arise in simulations of massively separated flows.

In this study, only such a mixing layer is studied where the fluid is at rest on one
of its sides. The similarity coordinate is simply η = y/(x− x0). There is an exten-
sive work by Liepmann and Laufer dating back to 1947 [99]. Later, Wygnanski and
Fiedler measured this flow, and their results are also used as reference data in this
study [98]. Castro and Bradshaw studied a stably curved mixing layer but they also
provide a velocity profile of a straight mixing layer in a form of a curve fitted to the
measured data points [100]. The spreading rates measured by Liepmann and Laufer
and by Wygnanski and Fiedler differ from each other to some extent. Wygnanski
and Fiedler refer to some differences in the experimental setup, but the reason for
this difference remains essentially unclear. This difference partially weakens the
value of this case in the model development and calibration. However, it gives at
least a qualitative reference. Wygnanski and Fiedler suggested two possible rea-
sons. First, unlike Liepmann and Laufer, they used a trip wire in the nozzle to make
the flow turbulent, while Liepmann and Laufer had an initially laminar mixing layer
which turned turbulent at about 6 cm from the nozzle, and the measurements were
taken from x = 30 . . . 90 cm. It was attempted by the author to rescale the data
using different values of x0, but it turned out that values close to zero make the
profiles to best collapse on each other. Thus, the uncertainty of x0 is not the reason
for the different spreading rate. Moreover, when a mixing layer has reached the
fully developed self-similar state, it should not depend on the upstream conditions
any more. Hence, it seems unlikely that the tripping is responsible for the different
spreading rates. Another possible reason suggested by Wygnanski and Fiedler is
the solid wall they had in the plane x = 0, while Liepmann and Laufer had no such
plate. There might have also been some other differences in the experimental setup.
For instance, the relative distance of the wall that confines the flow above the layer
is not reported and it may influence the spreading rate especially if the wall is placed
too close to the layer. Nevertheless, the results by Liepmann and Laufer and by Cas-
tro and Bradshaw support each other. Unfortunately, Castro and Bradshaw do not
provide turbulent stresses for the straight mixing layer case. Moreover, extracting
the stress data from the report by Liepmann and Laufer is difficult because some
of the parameters needed for rescaling are not explicitly given. Their shear-stress
data is included in Fig. 6.12, but it must be kept in mind that it might be inaccurate,
since the scaling factors are approximated by comparing velocity profiles plotted
over differently scaled y-coordinates found in their report [99].
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3.5.2 Turbulence Modelling

Wilcox [28] compared the mixing layer velocity profiles computed with his k − ω
model, with the standard k−ε model, and with the RNG k−ε model [91,92] to the
experimental data by Liepmann and Laufer. As for the far-wake flow, both the k−ε
models showed too sharp edges on both sides of the layer. The k−ω result featured
smooth edges, but it must be again stressed that this result is highly dependent on
the free-stream values, and that some other choices of the free-stream values can
lead to sharp-edged solutions. Excessive asymmetry is a common feature of all the
numerical solutions shown by Wilcox as well as the solutions shown in Section 6.4.2
of this study. Moreover, this fault seems to be common to most standard turbulence
models as it was detected already in the early days of Reynolds stress modelling [10,
11].

The excessive asymmetry of the computed results deserves some more atten-
tion. It is the mean-velocity convection that initially drives the turbulent-energy
distribution towards the low-speed side. The convection terms are obviously larger
on the high-speed side. However, there must be some balancing effect since the
measurements indicate only very slight asymmetry. This balancing effect is not ad-
equately modelled in the present turbulence models since they provide excessively
asymmetric results. Wygnanski and Fiedler [98] provide a comparison of each term
in the equation of k based on the their measurements. This data was investigated by
the author, and it was observed that the pressure diffusion term

− ∂

∂xj

(p′u′j) (3.4)

might possibly be such a balancing term. Indeed, modelling of this term has been
omitted completely, since there seems to be an almost common agreement that the
pressure diffusion term is usually negligibly small, or that it can be absorbed into
the model of the turbulent transport. These assumptions seem not to hold for the
mixing layer according to Wygnanski and Fiedler. DNS data about a time-evolving
mixing layer by Rogers and Moser reveal that the pressure diffusion is indeed not
negligibly small [101]. The time-evolving mixing layer, however, differs from the
present flow as it is antisymmetric about the midplane. Thus the DNS-data does
not reveal if the pressure diffusion really is responsible for balancing the distorting
influence of the mean-velocity convection.

There have been some attempts to model the pressure diffusion term [102–104].
Lumley [102] assumed that the pressure-velocity correlation −p′u′j has a linear
dependence on the triple velocity correlation −u′

ku
′

ku
′
j of the turbulent transport

term, and thus his model essentially is merely a reduction of the model coefficient
of the turbulent transport model by 20%. This model simply represents counter-
gradient diffusion, and thus it does not transport turbulent energy from the low-
speed side to the high-speed side. Kim and Chung [103] constructed a model in
which the pressure-velocity correlation is split to a slow and rapid part just as the
inter-component redistributive pressure-strain term is traditionally split. Also De-
muren et al. split this term in a similar fashion [104]. The slow term is mainly



54 Requirements for Turbulence Modelling in High-Lift Problems

counter-gradient diffusion and is modelled as a part of the turbulent flux model fol-
lowing Lumley’s approach. The rapid term represents gradient diffusion and possi-
bly other types of transport. If the latter is true, this term might have an opposing
effect on the mean-velocity convection in the spatially evolving mixing layers. At
least, Kim and Chung achieved some improvements in predicting the mixing layer
and also other free shear-flows by using their approach that also involves a model for
the rapid term [105]. Unfortunately, the asymmetry-balancing role of the pressure
diffusion cannot be verified reliably since there are no DNS studies about spatially
evolving planar mixing layers to the author’s knowledge.

The above-mentioned improvements achieved by Kim and Chung [105] in pre-
dicting free shear-flows were, however, not purely owing to the pressure diffusion
model. They also incorporated a model for the intermittency consisting of a generic
transport equation for the intermittency factor γ. In fact, the asymmetrically dis-
tributed intermittency could be another possible reason for the excessive asymme-
try of the computed results. Judging from the mixing-layer results by Kim and
Chung [105], the intermittency modelling actually seems to be a more important
factor than the pressure-diffusion modelling in this case. Such an additional com-
plexity in modelling is not desirable from the viewpoint of the present work, and
thus no attempts are made within this study to remedy the predicted excessive asym-
metry in mixing layers. After all, the boundary layers and wakes are more important
elementary flows to high-lift aerodynamics than the mixing layers.

3.6 Vortices

Trailing vortices are always present in flowfields around real three-dimensional lift-
ing wings or any other lifting bodies. In two-dimensional idealized problems, there
are obviously no trailing vortices present, but as seen in Fig. 3.1, vortices can well
occur in two-dimensional flow fields owing to flow separation. The slat- and flap-
cove vortices may be quite energetic and also quite influential on the downstream
wake development.

Turbulence in vortices is usually strongly affected by the streamline curvature.
Wallin and Girimaji have studied algebraic Reynolds stress modelling in an isolated
vortex [106]. They found it is essential that the weak-equilibrium assumption to
derive the algebraic stress model is invoked in a proper stream-following coordinate
system. In that particular case, this means cylindrical coordinates. In more general
flows, the curvature method for ARSM is needed. This is discussed in Section 5.2.
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4 Numerical Methods

4.1 Self-Similar Flow Problems

4.1.1 Overall Description of the Solution Method

The calibration process of a turbulence model may require a large number of com-
putations with different values for the model coefficients in different flows. This
would mean a very elaborate and time consuming effort if all calibration compu-
tations are performed using a full Navier-Stokes solver. Fortunately, many simple
flow situations may be idealized as one-dimensional self-similar approximations.
In this study, plane channel flows, equilibrium boundary layers (less the viscous
layer), planar far wake and mixing layer are studied.

A specific solver for self-similar turbulent flow problems was designed and set
up to be employed in the model calibration process. The solver was designed in
a generalizable and modular fashion. This means that the core of the solver is in-
dependent of the boundary conditions, integral constraints, and other flow-specific
information. All flow-specific features are programmed in separate modules. The
flow-specific modules are connected to the solver core using an interface module.
When a new problem is to be set up, only a new flow-specific module must be pro-
grammed and installed into the interface. No changes are needed in the solver core.
Also the details of turbulence modelling are isolated in a particular module outside
the core. The modular structure turned out to be a good and flexible strategy. Fur-
thermore, it reduces the amount of code verification and debugging when new cases
are being set up. The code is written using the Fortran-90 programming language.

The system of equations consists of three ordinary differential equations in the
present flow cases. These are the momentum equation, and the turbulence model
equations for the turbulence kinetic energy k and the second scale variable φ. The
second-scale equation is written in a generalized form where the second scale vari-
able is expressed as φ ∼ kmεn, see Appendix A. The system of equations may be
expressed in the following general form

d

dη

[
VXi −

p∑

j=1

(δijν + σXiXj
NT )

Xi

Xj

dXj

dη

]
= Qi + AXi

Xi (4.1)

where i = 1 . . . p with p denoting the number of equations. The summation rule of
repeated indices is not applied here over indices that appear as subscripts of another
subscript, such as i in σXi

. In the present cases, p = 3, and X T = (U ,K,Φ). Here,
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U is the nondimensional velocity variable, and K and Φ are the nondimensional
turbulent scale variables. NT is the nondimensional eddy viscosity, η is the nondi-
mensional similarity coordinate, and V is the transverse convective velocity. The
diffusive terms are here written in a generalized form involving also gradients of
variables other than Xi. The diffusivities σXiXj

associated with such gradient terms
are usually zero, but the generalized second-scale equation includes a term propor-
tional to the gradient of k, see Appendix A. This is why the diffusive term is here
expressed as a general sum of gradient diffusions of all variables. The source term
consists of two parts

Qi = Qi + AXi
Xi (4.2)

where the former is the original source term of the equations expressed in the Carte-
sian coordinate system, and the latter appears as a result of the similarity transfor-
mation and it originates from the convective term. The coefficients AXi

depend on
the flow case. The details of the terms and factors of (4.1) and the boundary condi-
tions as well as the integral constraints for each flow case are described in the next
subsections.

The solver is based on the finite-difference method and implicit pseudo-time
integration. Artificial time derivatives are added to the left-hand sides of the equa-
tions (4.1) in order to facilitate the pseudo-time integration. The diffusive terms
are discretized using the standard central-differencing scheme. A second-order up-
wind scheme is used for the convective term in cases where it is nonzero. The
upwind scheme was chosen to introduce some numerical dissipation that is neces-
sary especially with such turbulence models which tend to predict sharp edges for
turbulent layers, see Sections 6.2.4 and 6.3. The pseudo-time integration is for-
mulated in the ∆-form similarly to the FINFLO solver [107, 108]. In the implicit
phase, the convective term is discretized using the first-order upwind scheme. The
source terms are integrated using either explicit or implicit Euler scheme depending
on their sign. Negative terms are integrated implicitly. This is facilitated by means
of approximating the source terms at the new pseudo-time level of n + 1 using the
following linearization

Q(n+1)
i ≈ Q(n)

i +

(
∂Qi

∂Xj

)(n)

∆Xj (4.3)

where ∆Xj is the quantity to be solved at each pseudo-time step, i.e. the change of
the variable Xj over the pseudo-time step. Only the diagonal terms of the Jacobian
∂Qi/∂Xj are kept in order to simplify the implicit method. A similar approximation
is made also in the FINFLO solver. As the stability of the implicit Euler method is
quite limited in case of positive source terms, they are integrated explicitly.

4.1.2 Plane Channel Flow

Fully developed Poiseuille flow between two parallel flat plates, i.e. the plane chan-
nel flow is one of the simplest turbulent flow problems. The fully developed flow
can readily be described as a function of only the wall-normal coordinate y. Only
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one mean-velocity component is nonzero and there is no convection by the mean
velocity.

The variables can be scaled either by the bulk velocity

Ub =
1

H

∫ H

0

U(y)dy (4.4)

or by the friction velocity uτ =
√
τw/ρ, where τw is the wall shear stress. The

former scaling is relevant when the mass-flow rate is known and the latter one when
the pressure gradient is known. In this case, the bulk velocity Ub is used as the
velocity scale and the channel height H is the length scale, thus η = y/H and
U = U/Ub. The turbulent variables are nondimensionalized as K = k/U 2

b and
Φ = φHn/(U2m+3n

b ), where the latter is derived from the scaling of k and ε, which
is E = εH/U3

b . The eddy viscosity is, in this case, scaled as N = νT/ν. The
convection-related factors V = Ai = 0 since the convective terms are zero. The
viscous diffusion term is kept in this case since the flow is solved down to the wall
through the viscous sublayer. The Reynolds number is defined by Re = UbH/ν.
The system of equations reduces to

1

Re

d

dη

[
(1 + NT )

dU
dη

]
= Q1 (4.5)

1

Re

d

dη

[
(1 + σkNT )

dK
dη

]
= Q2 (4.6)

1

Re

d

dη

[
(1 + σφφNT )

dΦ

dη
+ σφkNT

Φ

K
dK
dη

]
= Q3 (4.7)

The streamwise mean-pressure gradient is the source term of the momentum equa-
tion, Q1 = −dp/dx. The pressure gradient is computed from the wall shear stress
as

dp

dx
= −2τw = −cf (4.8)

in the present case as the mass-flow rate is given. The source terms of the turbulence
model equations Q2 and Q3, including the cross-diffusion terms, appear in their
original form, see (6.74) for Q3.

No-slip boundary conditions, U = K = 0, are given on the wall (η = 0). The
wall-value of Φ obviously depends on the choice of the parameters m and n. In
case of ω as the second scale variable, its wall value is approximated as explained
in Section 6.4.7, see also Ref. [109]. Symmetry conditions are given on the mid
plane of the channel. As no inflow boundary conditions can be specified in this
case, the correct mass-flow rate must be maintained by requiring that the solution
satisfies the integral constraint (4.4), which now becomes

∫ 1/2

0

U(η) dη − 1

2
= 0 (4.9)

when Ub is used as the velocity scale. The integral constraint is implemented by
multiplying the source term −dp/dx by a factor (1+c) where c depends on the value
of the left-hand side of (4.9), and c becomes zero when (4.9) is exactly satisfied.
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The code was initially validated by computing the simple laminar channel flow
and comparing the numerical result with the analytical parabolic velocity profile. As
the numerical and analytical solutions agreed perfectly in that case, the code with
the turbulence model activated was next validated for turbulent cases. Menter’s BSL
k−ω model was employed in the validation phase. The velocity profiles at a number
of different Reynolds numbers were compared with the logarithmic law. Also the
skin-friction coefficient as a function of the Reynolds number was compared with a
semi-empirical correlation by Dean [110], see Section 6.4.5.

4.1.3 Equilibrium Boundary Layers at the Limit Re → ∞

This and the following free shear-layer cases differ from the channel flow quite
remarkably, since these flows develop in the streamwise direction. This fact implies
that also convection by the mean velocity takes place. The other difference is that
the self-similar momentum equation is no more exact in these cases as it is in the
channel case. Various minor simplifications must be made in order to arrive at self-
similar equations, see Ref. [28].

The derivation is started by assuming that the boundary layer is in equilibrium
in the sense that the nondimensional pressure-gradient parameter

βT =
δ1
τw

dp

dx
(4.10)

is constant along the layer. Furthermore, it is assumed that Reδ1 = Ueδ1/ν → ∞.
The outer layer, also known as the defect layer, scales in a different way from the
viscous wall layer. The proper length scale in the former must be proportional to
the boundary-layer thickness while in the latter, the proper length scale is ν/uτ .
Therefore, similarity equations can only be derived separately for the viscous wall
layer and for the defect layer. This problem is avoided by omitting the viscous wall
layer and by placing the inner edge of the domain in the logarithmic layer where the
logarithmic boundary conditions can be given. This means that the viscous diffusion
terms may be ignored in the equations.

The original equations must be transformed into a new ξ−η system. The stream-
wise coordinate is scaled as ξ = x/L with L being a fictive plate length. The
wall-normal coordinate is scaled as η = y/∆ where ∆ is known as Clauser’s delta
defined by

∆ =

∫ δ

0

Ue − U

uτ
dy =

Ueδ1
uτ

(4.11)

It should be noted that ∆ is a function of x. This means that the ξ − η system
is a non-orthogonal curvilinear coordinate system as the constant-η curves are not
straight. The scaling of the variables is as follows

U(η) = [Ue(x) − U(x, y)]/uτ(x) (4.12)

K(η) = k(x, y)/u2
τ(x) (4.13)

Φ(η) = φ(x, y)
[Ue(x)δ1(x)]

n

[uτ(x)]2(m+2n)
(4.14)
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The last one of these is derived from the scaling of k and ε, which is

E(η) = ε(x, y)∆(x)/u3
τ(x) (4.15)

The original equations are transformed into the new system, and certain simpli-
fying assumptions are made to arrive at a system of equations that are independent
of ξ. The derivation involves lengthy algebra and therefore it is not presented here.
Part of the derivation is given by Wilcox [28], and the complete derivation is given
in two unpublished memoranda by the author (Helsinki University of Technology,
Laboratory of Aerodynamics, MS-64, 2002 and MS-65, 2002, in Finnish). The
resulting system of equations is

d

dη

[
−(1 + 2βT )ηU −NT

dU
dη

]
= −U (4.16)

d

dη

[
−(1 + 2βT )ηK − σkNT

dK
dη

]
= −K +Q2 (4.17)

d

dη

[
−(1 + 2βT )ηΦ − σφφNT

dΦ

dη
− σφkNT

Φ

K
dK
dη

]

= [n− 1 + 2(3n+m− 1)βT ]Φ +Q3 (4.18)

The corresponding equations for the k − ω and k − ε models are also given by
Wilcox [28] but in a slightly different form. The equations given above are, how-
ever, mathematically equivalent with those given by Wilcox when m = −1 and
n = 1 (k − ω models), and when m = 0 and n = 1 (k − ε models). By comparing
Eqs. (4.16) – (4.18) with the general form (4.1), it is immediately seen that

V = −(1 + 2βT )η (4.19)

AU = −1 (4.20)

AK = −1 (4.21)

AΦ = n− 1 + 2(3n+m− 1)βT (4.22)

Furthermore, Q1 = 0, and the turbulence model source terms Q2 and Q3 have the
same form as in the Cartesian system, see (6.74) for Q3.

The solution domain begins from the logarithmic layer and extends beyond the
outer edge of the boundary layer. Outside the boundary layer, U is set to zero and the
turbulent variables are given small free-stream values. The logarithmic boundary
conditions are given at the inner boundary. As the limit of infinite Reynolds number
is assumed, the thickness of the viscous wall layer is approaching zero and thus
the logarithmic conditions can be given arbitrarily close to the wall. This fact has
no significance for the solution, but it makes comparisons with experimental data
more straightforward, since the gap between the wall and the inner edge of the
computational domain can be taken as negligibly small. The logarithmic boundary
conditions at η → 0 are given by

U(η) = (− ln η + U0)/κ (4.23)

K(η) = 1/
√
β∗ (4.24)

Φ(η) = (κnηnβ∗m/2)−1 (4.25)
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where β∗ is a turbulence modelling parameter that usually is given a value of 0.09.
Wilcox proposes to include also higher-order terms proportional to η ln η in the
above formulas. Such terms, however, become negligibly small when η → 0, and
thus they are ignored in the present method. There is still one unknown parameter
U0 that must be derived using the integral constraint

∫
∞

0

U(η)dη − 1 = 0 (4.26)

which is obtained by substituting U solved from (4.12) into the definition of the
displacement thickness (3.2). The integral constraint is implemented by updating
U0 at each pseudo-time step by adding corrections that depend on the magnitude of
the left-hand side of (4.26).

The implementation of this problem was validated by comparing the results with
the measurements and with the results presented by Wilcox [28]. In the case of zero
pressure gradient, the results were compared also with those obtained with the full
Navier-Stokes solver FINFLO.

4.1.4 Far Wake

Planar wakes behind two-dimensional bodies become approximately self-similar
far downstream from the body. The measured velocity profiles and other quantities,
if measured sufficiently far downstream, collapse into single curves when properly
scaled. Despite this, a self-similar momentum equation can only be derived by
means of linearizing the streamwise convective term by assuming that

U
∂U

∂x
≈ Ue

∂U

∂x
(4.27)

in order to eliminate all x-dependent terms in the equation. This linearization is
based on the assumption that U → Ue as x→ ∞.

In this case, the variables are scaled as

η =
y

D

√
2D

(x− x0)cd
(4.28)

U(η) =
Ue − U(x, y)

Ue

√
2(x− x0)

Dcd
(4.29)

K(η) =
2(x− x0)

Dcd

k(x, y)

U2
e

(4.30)

Φ(η) =
(x− x0)

m+2n

(Dcd/2)m+nU2m+3n
e

φ(x, y) (4.31)

where x0 is the location of a virtual origin of the self-similar far wake. D and cd

are the diameter of the wake generating cylinder (or reference length of some other
wake generating body) and the drag coefficient, respectively.
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The equations are formally similar to Eqs. (4.16) – (4.18), and the convection-
related factors are given by

V = −η/2 (4.32)

AU = 0 (4.33)

AK = 1/2 (4.34)

AΦ = m + 2n− 1/2 (4.35)

The derivation is given in the unpublished memorandum by the author (Helsinki
University of Technology, Laboratory of Aerodynamics, MS-65, 2002, in Finnish).

The solution domain begins from the wake midplane and extends beyond the
outer edge of the wake. The boundary conditions are straightforward in this case.
Symmetry conditions are specified on the midplane, and the free-stream conditions
are specified on the outer edge just as in the boundary-layer problem. The integral
constraint ∫

∞

0

U(η)dη − 1

2
= 0 (4.36)

is implemented by adding an artificial control source term into the right-hand side of
the momentum equation. This term depends on the error of the integral constraint,
and it goes to zero when (4.36) is exactly satisfied.

The implementation of the far-wake equations was initially validated by com-
paring the velocity profile with the one presented by Wilcox [28]. In addition to this,
a comparison with a full Navier-Stokes solution was made. A wake of a flat plate
was computed with the FINFLO solver, see Section 7.2 for details. The velocity
profiles computed with FINFLO were scaled according to Eqs. (4.28) and (4.29).
This comparison is shown in Fig. 4.1. The computed velocity profile agreed very
well with Wilcox’s results when exactly the same turbulence model and free-stream
boundary values were employed. However, there is some difference between the
self-similar and full Navier-Stokes results in the outer part of the wake. This differ-
ence is of the order of the variation between measured profiles taken from different
experiments. The linearization of the convective velocity is believed to be the pri-
mary reason behind this discrepancy. Although this discrepancy indicates that the
self-similar wake solution is probably somewhat inaccurate, it does not mean that it
would be useless in this study. It is still considered to be very useful since different
turbulence models may give results that differ from each other clearly more than the
self-similar and full Navier-Stokes solutions.

4.1.5 Mixing Layer

A planar mixing layer between a uniform stream with velocity U1 and still fluid can
be considered as self-similar. No such linearizations are needed in this case as in
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Figure 4.1: The far wake flow (left), and the mixing layer (right). Solid curves are the self-similar
solutions and the other curves are from various x-stations of the full Navier-Stokes computations.
Symbols represent various experimental measurements, see e.g. Fig. 6.11 for details.

the far-wake flow. The scaling is given by

η = y/(x− x0) (4.37)

U(η) = U(x, y)/U1 (4.38)

K(η) = k(x, y)/U 2
1 (4.39)

Φ(η) =
(x− x0)

n

U2m+3n
1

φ(x, y) (4.40)

where x0 is again the location of a virtual origin. The convection-related factors are
as follows

V = −
∫ η

0

U(η′)dη′ (4.41)

AU = dV/dη (4.42)

AK = dV/dη (4.43)

AΦ = nU + dV/dη (4.44)

Also these equations are derived in the unpublished memorandum (Helsinki Uni-
versity of Technology, Laboratory of Aerodynamics, MS-65, 2002, in Finnish).

It is important to note that no symmetry or antisymmetry conditions can be
exploited in this case since the turbulence field is not symmetric, and thus the mean-
velocity field is not antisymmetric. The layer spreads more rapidly towards the
still-fluid side. The domain ranges over the whole layer from the still fluid up to
the undisturbed uniform flow. The boundary conditions for U are simply U = 0
at η = 0 and U = 1 at η = ηe, i.e. at the high-speed edge. The free-stream
conditions, similar to those in the wake and boundary-layer cases, are again given
for the turbulent variables. The boundary conditions define this flow completely,
and thus no other constraints are needed.
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The solution is validated in the same fashion as in the wake case. Again, the
solution agreed with that presented by Wilcox [28] when the same model and free-
stream conditions were used. Now, the self-similar solution agrees also well with
the full Navier-Stokes solution, see Fig. 4.1.

4.2 Two- and Three-Dimensional Mean Flows

4.2.1 General Remarks on the FINFLO Flow Solver

The new k−ω EARSM turbulence model proposed in this study, as well as Menter’s
models, have been implemented in the Navier-Stokes solver called FINFLO, see
e.g. Refs. [107, 108]. More specifically, the version FINF2D for two-dimensional
and axisymmetric flows with a two-componential mean-velocity field is utilized
in all of the two-dimensional and axisymmetric computations of this study. Only
the combustor case studied in Section 5.3.5 is computed using the FINFLO code
for general three-dimensional flows. FINF2D is built by using the same methods
and algorithms as the parent software FINFLO. For specific documentation of the
FINF2D version, see e.g. [29, 111]. The FINFLO code, developed at Helsinki Uni-
versity of Technology, is based on the finite-volume approach and utilizes structured
multi-block grids. The solution method is an implicit pseudo-time integration. A
multigrid cycling is used to accelerate convergence. The inviscid fluxes are evalu-
ated using Roe’s flux-difference splitting with formally third-order upwind-biased
MUSCL-type discretization, while the central-differencing scheme is used in the
calculation of the viscous fluxes. No simplifications, such as the thin-layer approx-
imation, are subjected to the diffusive terms.

The coupling of the EARSM constitutive model with the mean-flow equations
differs formally from the ordinary technique of linear two-equation models only in
the explicit phase. This is implemented by splitting the Reynolds-stress tensor into
three parts as

ρu′iu
′
j = −µT

(
∂Ui

∂xj

+
∂Uj

∂xi

− 2

3

∂Uk

∂xk

δij

)
+

2

3
ρkδij + ρka

(ex)
ij (4.45)

where µT = ρνT , and only the first two terms on the right-hand side of (4.45)
are kept in the approximate implicit phase. The influence of the third term on the
momentum and total-energy fluxes is taken into account in the explicit phase by
adding appropriate corrective terms after the standard flux computation procedure.
The tensor a(ex)

ij contains all terms of aij except the first-order term, i.e. the first term
on the right-hand side of (4.45), see Section 6.6.2. For details of the implementation
of the EARSM, see Ref. [112].

4.2.2 Far-Field Boundary Conditions

A particular circulation-correction method is applied at the far-field boundaries in
high-lift aerofoil computations. This method is not reported in Refs. [29, 107, 108,
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111], and thus it is explained here. The circulation correction means that the free-
stream boundary conditions are corrected by applying the lifting line-vortex theo-
rem. In incompressible two-dimensional flow, the lift may be expressed using a
vortex line placed at the quarter-chord line of the aerofoil. The vortex strength is
then

Γ =
1

2
V∞c cl (4.46)

where c is the chord of the aerofoil and cl is the lift coefficient. V∞ is the magnitude
of the free-stream velocity. According to the potential-flow theory, the lifting vortex
induces velocity disturbances at the far field given by

δU =
Γ(y − yv)

2π[(x− xv)2 + (y − yv)2]
(4.47)

δV =
−Γ(x− xv)

2π[(x− xv)2 + (y − yv)2]
(4.48)

where (x, y) are the coordinates of the far-field boundary point, and (xv, yv) is the
location of the vortex line, i.e. the quarter-chord point of the aerofoil. The velocity
field at the far-field boundary is corrected by adding the above-given corrections to
the free-stream velocity components. This may have a remarkable effect on the re-
sults even in cases where the far-field boundary is set quite far from the aerofoil, say,
at a distance of 30–50 chord lengths. It was shown in Ref. [113] that especially the
drag coefficient is sensitive to the far-field conditions. This circulation correction is
applied in all the high-lift aerofoil computations in this study.
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5 Constitutive Model

5.1 Baseline ARSM

The EARSM developed by Wallin and Johansson [4] is selected as the baseline
constitutive model. The motivation behind this choice is that this model is an ex-
act solution for the underlying ARSM in two-dimensional mean flows. Although,
the solution for the scalar P/ε is approximate in three-dimensional mean flows,
the model can still be considered as a complete solution for the ARSM. There-
fore, the model involves no singularities, and thus no approximate regularizations
are needed. Moreover, this model is a quartic solution valid for three-dimensional
mean flows unlike the model proposed by Girimaji [36]. The model coefficients
in the underlying ARSM (2.54) are chosen so that one of its terms vanishes. This
simplifies the explicit solution significantly, especially for three-dimensional mean
flows. Constant values are assumed for the rapid model coefficients in (2.39). The
coefficients A1 to A4 in (2.54) can be expressed as functions of the pressure-strain
model coefficients, see Eqs. (2.30) and (2.39), as follows:

A0 = C4/2 − 1
A1 = (3C2 − 4)/(3A0) A2 = (C3 − 2)/(2A0)

A3 = −(C
(0)
1 − 2)/(2A0) A4 = −(C

(1)
1 + 2)/(2A0)

(5.1)

The proposed values for C3 are typically within the range between 1.2 and 2. For
instance, Launder et al. proposed C3 ≈ 1.75 [11]. This means that the term with
A2 as coefficient may be of relatively little importance if C3 is close to 2. Choosing
C3 = 2 exactly renders A2 = 0, and the ARSM equation becomes

Naij = −A1Sij + (aikΩkj − Ωikakj) (5.2)

with

N = A3 + A4
P

ε
(5.3)

The other C-coefficient values are given in Table 5.1, and the corresponding A-
values are given in Table 5.2. The simple linear Rotta model is assumed for the
slow term, i.e C(1)

1 = 0. The given values follow from the LRR model with the
exception that C3 is set to 2, see Ref. [4]. The explicit solution is obtained as
explained in Section 2.5.2, and it is given in Section 6.6.2. Note that the final model
described in Section 6.6.2 also involves an attempt to model the ignored diffusion
of the anisotropy, which is mostly turbulent transport. For further details of this
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Table 5.1: The values of the redistribution model coefficients.

C0
1 C1

1 C2 C3 C4

3.6 0 0.8 2 1.11

Table 5.2: The values of the A-coefficients.

A0 A1 A2 A3 A4

−0.44 1.20 0 1.80 2.25

model, see Ref. [4]. The anisotropy-diffusion model prevents the coefficient of the
linear term (Cµ) from obtaining unphysically high values in regions with vanishing
shear. Also, the time-scale used for scaling the strain-rate and vorticity tensors is
redefined to never drop below a certain viscous lower limit as

τ = max

(
1

β∗ω
;Cτ

√
ν

β∗kω

)
(5.4)

with Cτ = 6.0 and β∗ = 0.09 if ω is defined as ε/(0.09k) as usual, and β∗ = 1 if
ω is defined as ε/k.

5.2 ARSM for Strongly Curved Flows

5.2.1 Basic Formulation

Turbulent flows are known to be sensitive to streamline curvature. It is also clear
that linear eddy-viscosity turbulence models are completely insensitive to the effects
of streamline curvature. On the other hand, differential Reynolds stress models are
able to capture these effects. EARSMs partially inherit the sensitivity to stream-
line curvature from the underlying RSMs. However, this sensitivity is partially
lost through the weak-equilibrium assumption invoked in order to derive algebraic
Reynolds stress models. It has been shown by several authors that, in principle, this
deficiency can be removed by modelling the ignored convection of the anisotropy
by some means. One approach is to seek a suitable curvilinear stream-following
coordinate system, and to invoke the weak-equilibrium assumption in this system.
Such an approach could be called a weak-equilibrium assumption consistent with
curved mean flows. This can be formally carried out as shown by e.g. Wallin and
Johansson [5,114], and similarly by Gatski and Jongen [18]. As a result, the mean-
velocity convection of the anisotropy can be written as

Daij

Dt
= Tip′

D

Dt
(Tp′rarsTsq′)Tq′j −

(
aikΩ

(r)
kj − Ω

(r)
ik akj

)
(5.5)

where

Ω
(r)
ij =

DTip′

Dt
Tp′j = −Tip′

DTp′j

Dt
(5.6)
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Tip′ and Tq′j are the transformation matrices between the Cartesian and curvilinear
system, and vice versa. It is important to note that this transformation varies in
space. The primed indices refer to the curvilinear system. In principle, the optimal
ARSM for curved mean flows can be obtained by ignoring only the first term on
the right-hand side of (5.5). The second term is algebraic, and it can be included
in the ARSM — in fact, by just modifying the vorticity tensor, since the ARSM
equation (5.2) already includes the tensor group aikΩkj − Ωikakj and Ω

(r)
ij is of

similar tensorial form as the vorticity tensor Ωij (skew-symmetry). Redefining the
vorticity tensor as

Ω∗

ij = Ωij −
τ

A0
Ω

(r)
ij (5.7)

corresponds to formulating the ARSM in a given curvilinear coordinate system. The
vorticity modification due to curvature Ω

(r)
ij is related to the rotation rate vector ω(r)

k

of the local basis of the curvilinear system by

Ω
(r)
ij = −εijkω(r)

k (5.8)

where εijk is the third-order permutation tensor. Its component has a value of 1 if
the indices form a positive permutation of (1, 2, 3) and −1 in case of a negative
permutation. All components with repeated indices are zero.

The problem of formulating a suitable ARSM for flows with streamline cur-
vature is now reduced to finding a suitable curvilinear system in which the weak-
equilibrium assumption is best satisfied. In principle, the optimal system is such
where the ignored differential term on the right-hand side of (5.5) is minimized.
Such an optimal coordinate system that really minimizes the effect of the weak-
equilibrium assumption cannot be found in closed form within the framework of
ARS modelling. Instead, a suitable approximation for it must be found. The meth-
ods proposed in the literature are critically discussed by the author in Ref. [93], and
this discussion is partially repeated below 1.

5.2.2 Streamline Coordinate System

Rodi and Scheuerer [115] used the streamline system in their curved boundary-layer
computations. In computations of more general flowfields, this means equating
ω

(r)
k with the rotation rate of a local basis attached to the velocity vector in the

selected coordinate system. Galilean invariance, which is commonly required from
rigorously derived turbulence models, is not satisfied. Therefore, other alternatives
have been proposed by various authors to replace the streamline system.

5.2.3 Acceleration Coordinate Systems

Girimaji [116] proposed using a local frame that follows the acceleration vector U̇k =
DUk/Dt. This is motivated by the acceleration being a Galilean invariant quantity.

1Note that Eq. (1) in that article is typed incorrectly; an extra a appears as a factor on the left-hand
side.



68 Constitutive Model

Girimaji only discussed two-dimensional applications. More recently, Wallin and
Johansson [114] proposed an approximate method for three-dimensional flows

ω
(r)
k = εlmk

U̇lÜm

U̇nU̇n

(5.9)

where Üm = DU̇k/Dt. Although not pointed out by Wallin and Johansson [114],
Eq. (5.9) can easily be shown to be equal to the exact form in two-dimensional mean
flows given by Girimaji [116]. Therefore, the behaviour of the acceleration basis is
studied using Eq. (5.9) in this study.

In circular flows, the acceleration vector is orthogonal to the velocity vector.
Therefore, the rate of change of the acceleration basis equals the rate of change
of the streamline basis in a fixed background frame. Thus, ARSM derived in the
acceleration frame is equal to the one derived in a streamline frame, provided that
the velocity of the background coordinate system is chosen so that the flow is cir-
cular. Girimaji stated that every flow can be considered as locally circular because
a suitable Galilean transformation can be made for the local frame in order to ar-
rive at locally circular flow, that is, to make the velocity and acceleration vectors
orthogonal. The central failure behind this reasoning is pointed out in this study.
That is, although the flow may formally be seen as locally circular from a certain
acceleration basis, it does not imply that such an acceleration system is suitable for
the weak-equilibrium assumption. As a matter of fact, the acceleration basis may
behave in a very wild manner and even become singular in certain circumstances.
The velocity and the radius of curvature of locally circular flow correspond to the
rotation rate of the local acceleration basis. Singularity formally corresponds to the
limit of the infinite rotation rate of the acceleration system and, thus, the vanishing
radius of curvature of the locally circular flow in that system.

As an example, let us consider a slightly curved flow that is first accelerating
and then, at a certain point, begins to decelerate (or vice versa). If the radius of cur-
vature of the streamlines is large enough, the velocity and the acceleration vectors
are almost aligned with each other. This is a typical situation in flows over slightly
curved surfaces, for example, on the upper surface of a wing. If the radius of cur-
vature is roughly constant, the basis of the curvilinear system should also change at
about a constant rate. The acceleration basis, however, singularly turns about 180◦

at the location where the streamwise acceleration changes its sign. In contrast, there
is no reason for the anisotropy components to change rapidly in such a situation.

Starting and ending curvature are further examples of singularities of the accel-
eration base. At the very instant when a fluid particle enters or exits any curved part
of a streamline, the acceleration vector immediately rotates to a new orientation,
which may be almost orthogonal to its former orientation. Also, the anisotropy ten-
sor may possibly change its orientation quite rapidly in this kind of situation, but
hardly as fast as the acceleration vector.
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5.2.4 Methods Based on the Strain-Rate Tensor

Spalart and Shur proposed using the rate of change of the strain-rate tensor Ṡij as
a measure of the rotation and curvature effects with the aim of correcting eddy-
viscosity models [117]. The rationale, in two-dimensional flows, was to identify
the rate of change of the direction of the principal axes of the strain-rate tensor,
Dα/Dt. This measure gives the rotation rate, ω(r)

i , in the direction normal to the
plane of the flow as

ω
(r)
3 =

S11Ṡ12 − S12Ṡ11

2(S2
11 + S2

12)
(5.10)

This measure for two-dimensional mean flows was also derived by Gatski & Jon-
gen [18]. It is expected to model the rotation rate of the optimal system quite
well because the material derivatives of the strain-rate and anisotropy tensors are
typically rather closely related to each other in the weak-equilibrium limit where
aij = f(Sij,Ωij) and, furthermore, the leading term of anisotropy is directly pro-
portional to Sij. Based on this reasoning, Eq. (5.10) is expected to be the best
available approximation for ω(r)

3 in two-dimensional mean flows. It is Galilean in-
variant, and, very recently, Wallin and Johansson derived a new, general strain-rate
based method that reduces to Eq. (5.10) in two-dimensional mean flows [5]. They
also showed that the original three-dimensional extension of Eq. (5.10) proposed
by Spalart and Shur [117] is inconsistent with helical flows where the axial velocity
component varies with the radial coordinate, see Refs. [5, 118].

The rationale behind the new, more general method derived by Wallin & Jo-
hansson [5] is to assume that the smallest error while ignoring the transport effects
of the anisotropy tensor aij is obtained in a system where also the transport of the
strain-rate tensor Sij has a minimum. This is identical to finding the best solution
for the Ω

(r)
ij tensor from the following relation

Ṡij ≡
DSij

Dt
≈ −

(
SikΩ

(r)
kj − Ω

(r)
ik Skj

)
(5.11)

This equation system is overdetermined since there are five (two in 2D) indepen-
dent equations for Ṡij and three (one in 2D) independent components of the system
rotation rate tensor Ω

(r)
ij , or ω(r)

i through (5.8). Eq. (5.11) can, however, be solved

in the least-square sense. For details, see Ref. [5]. The solution for ω(r)
i reads

ω
(r)
i =

II2
Sδij + 12IIISSij + 6IISSikSkj

2II3
S − 12III2

S

SplṠlqεpqj (5.12)

This relation, indeed, reduces to (5.10) in two-dimensional mean flows. The devel-
opment of this method [5] was motivated by the singular behaviour of (5.9), and the
acceleration-based methods in general, shown in Ref. [93].

5.2.5 Numerical Example

Flow in a 180◦ U-duct, see Monson et al. [119] and Monson and Seegmiller [120], is
an illustrative example containing local flow situations where the acceleration basis
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Figure 5.1: A-priori test (upper row) and actually predicted rotation rate ω
(r)
3 (lower row) accord-

ing to the stream-line method (left), the acceleration method (5.9) (middle), and the strain-rate
method (5.10) (right). The flow direction is from up to down. (Figure taken from Ref. [93].)

behaves unfavourably and even goes singular. First, a priori test of Eqs. (5.9), (5.10),
and the streamline method is performed. A priori means here that the rotation rate
ω

(r)
3 is evaluated from a frozen flowfield computed using the baseline EARSM.

Menter’s k − ω BSL model was used as the scale-determining model here [3].
The ω(r)

3 distributions are shown in Fig. 5.1. The plots reveal significant differ-
ences between each method. The angular velocity of the acceleration vector locally
obtains of the order of 100 times higher values than Eq. (5.10) gives near the end
of the curved duct. Furthermore, an unexpected area of relatively high negative
(clockwise) rotation is observed downstream of the bend in an area with almost
zero curvature. This is where the acceleration vector suddenly turns around. Sur-
prisingly, the acceleration system behaves quite smoothly in the beginning of the
curvature.

Next, the flowfield is really computed using the curvature corrections on the
same EARSM. As expected, the acceleration method (5.9) overestimates the curva-
ture effects so strongly that no steady-state solution can be obtained. Instead, the
flow tends to oscillate owing to the strong laminarizing influence of high ω(r)

3 . The
strain-rate method (5.10) and the streamline method allowed the solution to con-
verge, although the convergence rate slows down remarkably owing to the reduced
damping effect of the turbulence model. The predicted ω(r)

3 distributions are also
presented in Fig. 5.1. The exaggerated effect of the acceleration method amplifies
itself, mostly near the end of the curved duct, resulting in much higher values of ω(r)

3

than are observed in the a priori test. Unlike Eq. (5.9), the strain-rate method (5.10)
and the streamline method predicted quite similar ω(r)

3 distributions to those seen in
the a priori tests. A detailed comparison of the computed results with experimental
data is provided by Hellsten et al. [118]. This is also given in the next section.
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Given these observations, no generalizability can be expected from any curva-
ture corrections based on the coordinate system attached to the acceleration vector.
On the other hand, the strain-rate based method (5.12) developed by Wallin and Jo-
hansson [5] seems to be a promising method, and therefore it has been validated for
a few curvature-affected flows by Hellsten et al. [118] and by Wallin et al. [121].
Some of the validation results are also given in the next section.

5.3 Validation of the Curvature-Corrected EARSM

5.3.1 Final Form of the Curvature-Corrected EARSM

The new curvature-corrected EARSM (CC-WJ) by Wallin and Johansson [5] is
obtained from the baseline EARSM simply by replacing Ωij with Ω∗

ij defined by
Eqs. (5.7), (5.8), and (5.12). In addition, the coefficient A0, see Table 5.2, is re-
calibrated. This coefficient has no influence on the baseline EARSM, but it enters
the curvature-corrected model via (5.7). A0 was derived by considering the point of
neutral stability for the growth rate of k in rotating homogeneous shear flows, see
Ref. [5]. Wallin and Johansson found a value of −0.72 for A0. It is important to
note that recalibration of A0 influences all of the redistribution model coefficients
except C3 in this case, because A2 = 0. The new values of the redistribution model-
coefficients are seen in Table 5.3. Even C1

1 now has a nonzero value, which im-
plies that the underlying redistribution model is now quasi-linear while the baseline
model was based on a purely linear redistribution model. The new value of C2 actu-
ally disagrees with the rapid-distortion theory which implies C2 = 4/5. Wallin and
Johansson provide a more detailed discussion on this subject [5].

Table 5.3: The values of the redistribution model coefficients after recalibrating the A0-coefficient.

C0
1 C1

1 C2 C3 C4

4.6 1.24 0.47 2 0.56

5.3.2 Numerical Implementation

The strain-rate-based curvature correction methods involve numerical approxima-
tion of Ṡij = DSij/Dt in (5.12). In the present implementation, the velocity gradi-
ent components are computed onto each face of a control volume or cell using local
staggered cells according to the finite-volume approach as

1

V

∫

V

∂Ui

∂xj

dV =
1

V

∮

S

UidSj ≈
1

V

6∑

m=1

(UiSj)
(m) (5.13)

where ~S and V are the surface-area vector and volume of a staggered control vol-
ume, respectively. In the numerical algorithm, the control volumes are hexagonal



72 Constitutive Model

cells (in three-dimensional flows) and m spans over the faces of a staggered cell.
The necessary geometrical data of the staggered cells are approximated as aver-
ages of the surrounding actual cells. Next, the material derivatives of the strain-rate
components are computed in the actual-cell centrepoints in a conservative form as

1

ρV

∫

V

ρUk
∂Sij

∂xk

dV =
1

ρV

∫

V

∂

∂xk

(SijρUk) dV

=
1

ρV

∮

S

SijρUkdSk ≈ 1

ρV

6∑

m=1

(SijρUkSk)
(m)

(5.14)

where ~S and V now refer to the geometry of the actual cell. This way the numerical
error can, in principle, be kept small. However, a spatially oscillating distribution of
Ṡij may be obtained, especially when high-resolution grids are employed. Presently,
this problem is handled by applying a spatial filter for the computed rotation vector
field ωk

(r). A top-hat filter of the width of three computational cells in each direction
is employed. A filtered quantity q̂ is defined as

q̂(x) =

∫
V
G(x′) q(x′)dV∫
V
G(x′)dV

(5.15)

where the top-hat filter function G(x′) = 1 in the control volume at xi,j,k and its 26
neighbouring control volumes (8 in 2-D cases) with indices i± 1,j ± 1, and k ± 1
and zero elsewhere. This kind of filtering turned out to be a sufficient remedy in the
flows considered in this study. In practice, the singularity of (5.12) in non-strained
regions must be removed by introducing a small lower limit for the denominator,
10−6 was used in this study. It is felt, however, that the numerical computation of
Ṡij still needs further attention.

Another point that needs further attention is the programming in structured
multi-block solvers, such as the FINFLO-solver used in this study, see Chapter 4.
Programming of the above-described method to numerically approximate Ṡij is
quite straightforward inside a grid block, but the block-corners may pose program-
ming difficulties, especially when several grid blocks join in a single corner point.
Such programming problems are not fully resolved within this study, and are left for
future work. Thus, the present implementation of the curvature-corrected EARSM
can be reliably used only in relatively simple geometries that can be handled using
grids with no multiple block connections. In some more complex geometries, such
as the NHLP-2D three-element aerofoil discussed in Section 7.5.4, the present pro-
gramming may fail. In this particular case, the grid consists of 17 blocks connected
together in a rather complex manner. Therefore, the curvature-corrected EARSM
was not used in that case within this work.

The practical value of the curvature-correction method may remain smaller than
expected if it significantly adds the implementation effort and problems in com-
parison with the baseline EARSM. Therefore, more attention should be paid to the
numerical implementation issues to find sufficiently simple and robust algorithms
for practical exploitation of this method. It must be remembered, however, that the
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computational workload of the curvature-corrected EARSM is by far smaller than
that of a corresponding RSM. One possibility to approximate Ṡij would be to ap-
proximate the strain-rate components on the actual-cell faces simply as averages
of the surrounding centre-point values that are readily available. Programming of
this algorithm is straightforward even at the block corners. On the one hand, it is a
less accurate scheme than the one described above. On the other hand, as a result
of the more accurate algorithm needing to be filtered, its accuracy is lost as well.
Furthermore, the accuracy of the algorithm for approximating Ṡij is probably not as
an important matter as its robustness.

5.3.3 Two-Dimensional Boundary Layer on a Convex Wall

Rumsey et al. [122] have recently studied a curvature-corrected EARSM using the
two-dimensional Spalart-Shur equation (5.10) for isolated curvature effects in a
convex-curved boundary layer. This case has been experimentally studied by So
and Mellor [123]. The curvature correction improved the accuracy of the results,
especially for the shear stress and the skin-friction coefficient. The effect of curva-
ture in this flow can be considered moderate. Ratio of the largest turbulent length-
scale k3/2/ε in the boundary layer to the radius of wall curvature is about 0.05.
This flow is used for basic validation of the curvature-corrected EARS-modelling.
Menter’s k−ω BSL model was used as the scale-determining model in these valida-
tion computations. The curvature-corrected EARSM (CC-WJ) will be tested using
two different ways to obtain ω(r)

3 : the strain-rate method (5.12), which reduces to
Eq. (5.10) in two-dimensional mean flows, and the streamline method for compari-
son. As already pointed out, the latter method is not generalizable due to its lack of
Galilean invariance. It can, however, be used as a reference here because the coor-
dinate system can be attached to the apparatus. The results are compared with the
experimental data, with the results computed using the parent RSM (see Ref. [29]
for details), with the results obtained using the standard EARSM derived in the in-
ertial coordinate system (iWJ), and also with the BSL k − ω eddy-viscosity model
(EVM).

The computational domain consists of a straight duct, where the boundary layer
initially develops, the curved section, and a straight outlet channel, see Fig. 5.2. In
the computations, the length of the straight inlet duct has been chosen so that the
displacement and momentum thicknesses of the boundary layer and the skin-friction
coefficient match the experimental data at s = 24 in. The convex-wall geometry
equals the shape of the experimental setup while the concave outer wall is contoured
to obtain a pressure distribution as close to the measured one as possible. The
computational grid consists of 320 control volumes in the streamwise direction and
128 volumes in the transverse direction. The thickness of the first volume adjacent
to the convex wall is about 0.5 viscous units through the whole wall. Computations
were performed also using a medium grid (160 × 64) and a coarse grid (80 × 32).
It was found that the medium grid would have been sufficiently fine, actually. The
shear-stress profiles computed using the fine and the medium grids were virtually
identical, while those obtained with the coarse grid differed to some extent.
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The skin-friction coefficient along the convex wall is shown in Fig. 5.2. The
reference velocity used for nondimensionalizing the results, Upw, is the local wall
value of the corresponding potential flow. Clearly, both the CC-WJ EARSMs as
well as the RSM agree well with the measurements, while the standard EARSM
slightly overestimates the wall shear-stress, as expected. The eddy-viscosity model
gives clearly wrong results as it is completely insensitive to the effects of curvature.
The velocity and turbulent shear-stress distributions in the rear part of the curved
wall (s = 71 in) are shown in Fig. 5.3. The velocity and shear stress are expressed
in the curvilinear coordinate system following the tangential and normal directions
of the inner wall. Comparisons at more upstream locations within the curved part
s = 59 in and s = 67 in are shown in Ref. [118]. These are not repeated here
because they are very similar to the results at s = 71 in. The differences in the
velocity profiles are visible but quite small, while the shear-stress distributions re-
veal the differences very clearly. The turbulent shear stress −u′v′ is damped by the
curvature effect. This damping effect is most pronounced in the outer part of the
boundary layer. The RSM and the CC-WJ EARSMs capture this damping effect
quite accurately in this case, while the standard EARSM captures it only partially.
This is clear, because the streamline curvature enters in the RSM mainly in two
terms, the production and the convection. The standard EARSM only involves the
former effect while the idea behind the curvature correction technique is to approx-
imate the latter one. As a result, the CC-WJ EARSM gives a remarkable reduction
in β1 and consequently in µT in comparison with the standard EARSM. The choice
of the method to approximate ω(r)

3 makes no difference in this case.
The curvature correction does not seem to significantly affect the stability and

the convergence rate of the computations in this particular case. The CC-WJ EARSM
needs only a few percent more computing time per iteration cycle than the standard
EARSM and roughly 10–12% more than the EVM. In contrast to this, the RSM
needs about 50% more computing time per iteration cycle than the EVM. Further-
more, the convergence rate of the RSM computations was significantly lower, so
that the total computing time became several times larger than with all the other
models studied here.

5.3.4 Plane U-Duct Flow

Next, a flow with stronger curvature effects will be studied. The plane U-duct flow
experimentally studied by Monson et al. [119, 120] is such a flow, since the radius
of curvature is of the same order as the integral length-scale of turbulence which
can be estimated by the turbulent length-scale k3/2/ε. Ratio of this length scale to
the radius of wall curvature is about 0.7 in this case. Note, that this is more than
ten times larger than in the So & Mellor flow. Rumsey et al. [124] have studied
the curvature-corrected EARSM also in this particular flow. In this case, how-
ever, the curvature effect is not isolated as in the So & Mellor flow. In addition
to the streamline curvature, there are strong pressure gradients, flow separation,
and some three-dimensional phenomena. Therefore, excellent agreement with the
experiments cannot be expected from the computed results.
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Figure 5.2: Computational grid for the convex-curved boundary layer case, and the skin-friction
coefficient along the convex wall. The flow direction is downwards.

Figure 5.3: The convex-wall boundary layer. Velocity profiles (left) and turbulent shear stresses
(right) in the section where s = 71 in. Note that the stresses are transformed into the local wall-
tangential and -normal coordinate system.
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The Reynolds number based on the channel height h and the bulk velocity is 106.
The computational domain extends 4h upstream from the beginning of the curved
part and 12h downstream from the end of the curved part. The inlet boundary
conditions were approximated from the experimental data. The computational grid
consists of 288 × 160 control volumes in the streamwise and transverse directions,
respectively. The thicknesses of the first volumes adjacent to the walls vary from
0.2 to 1.2 viscous units. The computations were repeated also using a coarser grid
(144 × 80). No significant differences were found in the results obtained with the
fine and coarse grids.

The computations were performed using the same models as for the So & Mellor
flow, except the EVM. The velocity and Reynolds shear-stress profiles (in the curvi-
linear wall-tangential and -normal system) are shown in Fig. 5.4 at two locations, at
the beginning of the curved part (θ = 0 deg), and in the middle of it (θ = 90 deg).
The Reynolds stress components u′

1u
′
1, u′1u

′
2, and u′2u

′
2 are also shown as colour

plots in Fig. 5.5. Experimental results are available also at θ = 180 deg and even
further downstream. The flow separates near the location θ = 180 deg and it is
no more dominated by direct curvature effects. The separated flow is not very ac-
curately captured by any of the present computations, see Ref. [118]. Only the
locations θ = 0 deg and θ = 90 deg are studied here in order to focus on modelling
of the direct curvature effects. Fig. 5.4 shows that the differences in the velocity
profiles computed with different models are almost negligibly small. This is be-
cause the pressure gradient strongly dominates over the Reynolds-stress gradient in
the mean-momentum equations.

There are large differences between the predicted shear stresses already in the
beginning of the curved part. The strain-rate-based correction allows best agree-
ment with the measurements near the convex wall. The streamline correction and
the RSM also give shear-stress profiles close to the measured data and the results
of Rumsey et al. [124]. The standard EARSM predicts a shear-stress profile that
largely follows the strain rate and is therefore of opposite sign to the experimentally
observed values, except in the immediate vicinity of the wall. The effect of the cur-
vature correction here is primarily to reduce significantly the coefficient β1 of the
first-order term in the polynomial expression for aij , see Eqs. (2.56) and (6.112).
Owing to this reduction, the second-order term,

β4 (S1kΩ
∗

k2 − Ω∗

1kSk2) = Ω∗

12 (S11 − S22) (5.16)

which is of opposite sign, becomes dominant. As a result of this, the right sign and
magnitude are predicted for the shear stress in this area. Near the outer wall, the
CC-WJ variants seem to overestimate the shear stress to some extent in this station.

In the middle of the curved duct (θ = 90 deg), the predicted shear stress is al-
most zero near the inner side of the duct, except in the near-wall region. This is also
in quite a good agreement with the experiments, and in a very good agreement with
the results of Rumsey et al. [124]. The RSM predicts a small amount of positive
u′1u

′
2 while the CC-WJ variants give practically zero shear stress in this region, see

also Fig. 5.5. The colour plots also reveal that, according to the RSM, the reversal
of the normal-stress anisotropies takes place in this region, that is, u′

2u
′
2 > u′1u

′
1.
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This is also predicted with the CC-WJ models. This phenomenon is known to oc-
cur in shear flows subjected to rapid spanwise rotation, see for example, Bech and
Anderson [125]. On the outer side of the duct, all models agree with each other
reasonably well in this station. However, the predicted shear stresses are by far too
low in comparison with the experiments. This difference is likely owing to stream-
wise Taylor-Görtler vortices typically found in concave-curved boundary layers,
see Monson et al. [119]. Such vortices should probably be distinguished from the
turbulent motion because they are quite deterministic in structure. The present two-
dimensional computations naturally do not capture such vortices, and the turbulence
models are not designed to model such non-turbulent instabilities. The effect of
these vortices is, however, included in the measured stresses. The effect of this is
also seen in the mean-velocity profile near the outer wall. Experiments indicate a
fuller profile than the computations due to the enhanced mixing of the streamwise
mean-momentum. It is assumed that the Taylor-Görtler vortices could be captured
by a three-dimensional simulation. Averaged results from such a simulation should
be in a better agreement with the measurements also near the outer wall. In this
case, the use of the curvature correction seems to reduce the numerical stability and
the convergence rate to some extent, but these were still clearly better than with the
RSM.

5.3.5 Three-Dimensional Swirling Flow in a Model Combustor

Swirling flows involve additional strain components which may significantly influ-
ence the turbulence. The eddy-viscosity models are known to be unable to correctly
capture these effects. The sensitivity of the algebraic Reynolds-stress models to the
swirl effects is dependent on the coordinate system in which the weak-equilibrium
assumption is made just like the sensitivity to planar curvature. Swirling flow
is merely a more complex example of a curved flow. Therefore, the curvature-
corrected EARSM is next validated using the model combustor flow experimentally
studied by Roback and Johnson [126]. The geometry and the flow are axisymmetric
and the swirl velocity is induced by the inflow boundary conditions, see Fig. 5.6.

The computational domain is a 2-degree sector beginning from the inlet plane
and extending several tens of chamber diameters downstream of the interesting area.
The domain is discretized using a grid consisting of 256 cells in the axial and 72
cells in the radial directions. Only one layer of cells is used in the circumferential
direction, and the circumferential homogeneity is enforced using cyclic boundary
conditions. The inflow boundary conditions are approximated by interpolating the
experimental data. The high swirl rate tends to induce such a low pressure on the
axis of revolution that flow reversal through the outflow boundary may take place
if it is not brought sufficiently far away from the inflow plane. This is why the
computational domain is made very long. The present results are not guaranteed to
be completely grid independent. However, comparison with results obtained using
still coarser 128×36 grid indicate that the grid dependence is small enough to make
at least qualitative conclusions.

The CC-EARSM is tested using two different ways to obtain ω(r)
i : Eq. (5.12),
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Figure 5.4: The U-duct flow. Velocity profiles (upper row) and turbulent shear stresses (lower row)
in the beginning of the curved part, θ = 0 deg (left), and in the middle of it, θ = 90 deg (right).
Note that the stresses are transformed into the local wall-tangential and -normal coordinate system.
(Figure taken from Ref. [118].)

and a simplified streamline method that accounts for the azimuthal velocity compo-
nent W only. Owing to the axisymmetry, this is simply

ω
(r)
i = δi1

W

r
(5.17)

where r is the local radius from the axis of revolution. In the downstream part of the
chamber, the radial velocity component and the axial derivatives are small, and the
correction should then approach that of Eq. (5.17). Close to the inflow plane, (5.17)
is expected to be in error, and the θ-component of the rotation rate becomes non-
zero due to curvature in the x − r plane. See Ref. [118] for more results. The CC-
EARSM results are compared with the experimental data, with results computed
using an RSM, with standard iWJ EARSM results, and with linear eddy-viscosity
results. The RSM used in this case is not exactly the parent model of the EARSM.
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This particular RSM is of general linear type and the model coefficients are reported
by Rung et al. [127] in the context of another algebraic model derived from it. Also
the linear eddy-viscosity model differs from the BSL k− ω model. In this case, the
RSM- and the EVM-results are not computed by the author. Instead, they have been
provided by T. Rung and M. Schatz from Hermann Föttinger Institut at Technical
University of Berlin, see [121]. All other computational results presented in this
study are produced by the author.

The axial and circumferential mean-velocity components as well as the shear-
stress components uv and vw are shown in Fig. 5.7 at the station x = 406 mm, see
Fig. 5.6. An excessive axial velocity defect on the axis of revolution predicted by
the CC-EARSMs and by the RSM is a salient feature. The linear eddy-viscosity
model (EVM) predicts a linear rise of the azimuthal velocity similar to a solid-body
motion. The standard iWJ EARSM captures the curvature effect on the production
term and this leads to a slightly better but still qualitatively wrong azimuthal ve-
locity profile. The full differential Reynolds stress model is able to predict also the
curvature effects entering in the convective term. Therefore, the RSM gives a rather
good representation of the velocity profiles. The CC-EARSM using (5.12) as well
as the a priori curvature correction according to (5.17) leads to results of almost the
same quality as that of the RSM. The most important shear stress vw in the regions
of low strain-rate downstream the of recirculation is in a very good agreement with
that obtained by the RSM.

The outflow conditions that do not properly model the experimental setup are
probably the origin of the axial velocity dip on the axis. The high swirl rate induces
low pressure near the axis and this makes the flowfield very sensitive to the outflow
conditions. The experimental setup featured an endplate at x ≈ 1000 mm and an
exhaust duct mounted at a 90◦ angle relative to the chamber axis. This was not
known at the time of the computations. Attempts to better simulate the outflow will
be left for the future work.

The convergence rates of all computations in this case were slow. This is par-
tially owing to the stiffness introduced by the very long computational domain.
The strain-rate based curvature corrections tend to inhibit the convergence rate even
more. The streamline-based correction seems not to have such an unfavourable
effect in this case.
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Figure 5.5: Reynolds stress components in a curvilinear coordinate system following the wall-
tangential and -normal directions. From top to bottom: differential Reynolds stress model, curvature
corrected EARSMs using Eq. (5.12), and the streamline method, and in the last line, the standard
EARSM derived in an inertial coordinate system (iWJ). (Figure taken from Ref. [118].)
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Figure 5.6: An illustration of the swirling combustor by Roback and Johnson (1983) with a typ-
ical streamline pattern (projected onto the plane). The vertical line indicates the location where
the velocity profiles are studied. Note the horizontal shrinking of the image. (Figure taken from
Ref. [118].)

Figure 5.7: Velocity and shear-stress distributions in the model combustor at the station x =
406 mm. (Figure taken from Ref. [121].)
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6 Scale-Determining Model

6.1 Starting Point

As was concluded in Chapter 3, the most promising two-equation models for aero-
dynamical applications, especially for high-lift aerodynamics, seem to belong to the
category of the k−ω models. Thus, the k−ω models are selected for in-depth stud-
ies and for further development discussed in this chapter. The development aims at
a new k−ω model that is suitable for high-lift aerodynamics problems. It is strictly
designed to be used with the EARSM of Wallin & Johansson as the constitutive
model.

The development work starts from theoretical studies of some idealized flow
situations in Section 6.2. The analysis of the edge region between turbulent and
laminar flow is the most important of these. Constraints for the model coefficients
are derived as a result of the theoretical considerations. After this, existing k − ω
models are reviewed in Section 6.3, and possibilities to extend them to the EASRM
level are studied as well. The actual development of the new model then starts from
Menter’s k − ω BSL model [3]. The simple scalar-diffusivity gradient transport
model for the turbulent transport and pressure diffusion terms (2.46) are kept, al-
though the generalized gradient diffusion model of Daly and Harlow [30], or any
other more complicated model, could have been chosen as for many other nonlin-
ear two-equation models. It is, however, believed that the present choice makes
the model more robust and numerically stable. Furthermore, it makes the model
slightly simpler and easier to implement.

The existing k − ω models are not designed to be used with the EARSM or
with any other higher-order constitutive model. Therefore, when combined with
EARSM, some problems arise. Also, the original models that use the linear Boussi-
nesq constitutive model have some weaknesses, which may have significant influ-
ence in high-lift aerodynamic problems. For instance, as will be shown in Sec-
tion 6.3.2, Menter’s model predicts the planar far wake and the mixing layer flows
to spread clearly too slowly. Furthermore, its solutions for shear layers feature
unphysically sharp edges. When combined with the EARSM, somewhat too low
friction coefficient is predicted for a simple flat-plate boundary layer. Another fault
of this model combination in the same elementary flow is that the velocity profile
in the defect layer has a qualitatively wrong shape. There is a shallow pit in the
profile, shown also in Sec. 6.3.2. These elementary flows play an important role in
multi-element aerofoil problems. Such anomalies, among the observations made on
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the other k − ω models show that the constitutive model cannot be just replaced by
another one without any recalibration of the scale-determining model.

After the new model is developed, calibrated, and validated for certain elemen-
tary flows, its sensitivity to the free-stream values is carefully studied. Finally, a
systematic survey is made to look for possible other operational variables for which
the model could be alternatively formulated to avoid some criticized features of the
ω-formulation.

The new k − ω model proposed in this study is calibrated for such “building-
block flows” that are relevant for high-lift aerodynamics. These are: fully de-
veloped plane channel flow, equilibrium boundary layers with zero, adverse, and
favourable pressure gradients, planar far-wake flow, and a planar spatially evolv-
ing mixing layer. The calibration is assessed and fine-tuned using more complex
two-dimensional flow problems such as flows around aerofoils, see Chapter 7.

The benefits of the new model over Menter’s models are at least:

1. It predicts the wake and the mixing layer flows with clearly better accuracy.

2. It has a better behaviour on the edges of turbulent regions.

3. It is especially designed for the EARSM as the constitutive model.

4. As an EARSM-based model, it has more potential to predict complex flows.

The new model is, of course, designed to inherit the favourable features of Menter’s
models. One of these is that the model equations can be solved down to the wall with
no ad-hoc near-wall damping or correction functions. Another important advantage,
especially in high-lift aerodynamics, is that Menter’s model, as well as Wilcox’s
model, gives the turbulent length-scale in the wall layer of APG boundary layers
reasonably close to the experimentally observed values, while the k − ε models
typically predict far too high length-scale values. Owing to this fact, these models
are able to predict adverse pressure-gradient boundary layers more accurately than
most of the other models. Menter’s idea was to transform the standard k − ε model
into the ω-form and to combine the favourable features of it and Wilcox’s k − ω
model. This approach is not followed in this work, although two sets of model
coefficients are mixed in an almost similar fashion as in Menter’s work. In this work,
both sets of model coefficients are systematically calibrated without following any
existing model.

For the development phase, the following definition for ω is used

ω ≡ ε

k
(6.1)

and the model equations are formulated according to this definition. Finally, the
model is rewritten also using the traditional definition ω ≡ ε/(β∗k). The starting
point model equations can now be written as

Dk
Dt

= P − ε+
∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
(6.2)

Dω
Dt

=
ω

k
(Cω1P − Cω2ε) +

∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
+
σd

ω

∂k

∂xj

∂ω

∂xj
(6.3)
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with all five model coefficients Cω1, Cω2, σk, σω, and σd yet unspecified.

6.2 Constraints for the Model Coefficients

Some constraints for the model coefficients can be derived from analytical solu-
tions to the model equations. Analytical solutions exist only in some of the most
idealized flow situations. In this study, the following cases are exploited: decaying
isotropic turbulence in homogeneous undistorted flow, turbulence in homogeneous
shear flow, turbulence in the logarithmic layer of a ZPG boundary layer, and an
idealized free-stream edge of a shear layer. These cases, except the last one, can
be found in most of the turbulence modelling textbooks, see for instance [22]. The
last one of these is considered the most important case in this study. The obtained
constraints can be used as lower and upper limits for the calibration range of most
of the coefficients.

6.2.1 Decaying Isotropic Turbulence in Homogeneous
Undistorted Flow

The decay rate of approximately isotropic grid-generated turbulence in homoge-
neous undistorted mean flow can be measured in a wind tunnel. After the grid,
there will be no mean-flow gradients and thus no production. The turbulence will
start to slowly decay, and it also tends towards isotropy owing to the lack of mean
strain or any other directional forcing. After the initial transient, the decay of the
turbulent energy has been observed to approximately follow the law

k(x) =
Ak0

(x/h+ 1)q
(6.4)

where h is the wire spacing of the turbulence-generating grid and it acts as the length
scale in this flow, andA is a coefficient that depends on the Reynolds number and on
the details of the mesh geometry [23]. In these circumstances, the k − ω equations
reduce to

U
dk
dx

= −ε = −kω (6.5)

U
dω
dx

= −Cω2ω
2 (6.6)

The diffusion terms have been dropped, because the decay process is slow, so that
also the turbulence is almost homogeneous. The solution for ω is simply

ω(x) =
U

Cω2h

1

(x/h+ 1)
(6.7)

Substitution of ω from (6.7) and k from (6.4) into (6.5) yields

Cω2 =
1

q
(6.8)
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The decay rate has been measured in various experiments, but the results are quite
scattered. Values of q between 1.1 and 1.5 are reported in the literature. This implies
that

0.67 ≤ Cω2 ≤ 0.91 (6.9)

This should not be taken as a strict constraint because of the high uncertainty in the
experimental data. It gives, however, a hint of a suitable value for Cω2. Wilcox’s
k − ω model has Cω2 = β/β∗ = 0.83 which is close to the midpoint of this range.
The standard k− ε (transformed into ω-form) has Cω2 = 0.92 which is at the upper
end of the recommended range.

6.2.2 Homogeneous Shear Flow

In a homogeneous shear flow, the equations for k and ω reduce to

dk
dt

= P − kω (6.10)

dω
dt

= Cω1
ω

k
P − Cω2ω

2 (6.11)

and P = −u′v′dU/dy. The turbulent shear stress can be expressed using the
anisotropy as u′v′ = a12k. By substituting these, the equations become

dk
dt

= −a12
dU
dy
k − kω (6.12)

dω
dt

= −Cω1a12
dU
dy
ω − Cω2ω

2 (6.13)

It is known from the experiments that k grows exponentially while P/ε and a12

obtain constant values, when dU/dy is kept constant. The fact that

P

ε
= −a12

k

ε

dU
dy

(6.14)

implies that also ε grows exponentially and thus ω remains constant. Constant ω =
ω0 really satisfies (6.13) and

ω0 = −a12
dU
dy

Cω1

Cω2

(6.15)

Substitution of ω0 from (6.15) and the trial k(t) = k0e
λt into (6.12) gives

λ = a12
dU
dy

(
Cω1

Cω2
− 1

)
(6.16)

and
P

ε
=
Cω2

Cω1
(6.17)
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The measurements [128] have indicated that P/ε is between 1.4 and 1.8. Using
this, the limits for Cω1 as functions of Cω2 are

Cω2

1.8
≤ Cω1 ≤

Cω2

1.4
(6.18)

The difference of Cω2 and Cω1 is very important, because it largely controls the
spreading rate of free shear flows, such as wakes, which are considered important
in this study.

6.2.3 Log-Layer

The logarithmic layer of a zero pressure-gradient (ZPG) boundary layer is the third
special case where the equations can be simplified enough so that an analytical so-
lution can be found. This is because the convection can be assumed to be negligible
for all variables U , k, and ω, because k is constant in the log-layer, and third, be-
cause the mean velocity gradient is readily obtained from the logarithmic velocity
profile as

dU
dy

=
uτ

κy
(6.19)

The shear stress is also constant and known since −u′v′ = u2
τ . On the other hand,

−u′v′ = −a12k, thus k = −u2
τ/a12. Using these, we obtain

−u′v′dU
dy

= P =
u3

τ

κy
(6.20)

The equation for k reduces to P = ε, thus ε is known, too. Therefore, ω = ε/k =
−a12uτ/(κy). Finally, the eddy viscosity is defined as νT = Cµk/ω, where Cµ

may have a constant value of β∗ in case of linear constitutive modelling, or it may
be variable if more general constitutive modelling is employed. The formula for
σω is obtained by inserting the above results into the ω-equation, which in these
conditions reduces to

σω
d

dy

(
νT

dω
dy

)
+
ω

k
(Cω1P − Cω2ε) = 0 (6.21)

This gives

σω =
a3

12

κ2Cµ
(Cω2 − Cω1) (6.22)

The anisotropy a12 is

a12 = −Cµ
1

ω

dU
dy

= Cµ
uτ

κy

κy

a12uτ

(6.23)

yielding
a12 = −

√
Cµ (6.24)
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and finally

σω =

√
Cµ

κ2
(Cω2 − Cω1) (6.25)

This would imply that σω should not be constant but a function of the variable Cµ.
However, it happens that Cµ really is almost constant in a ZPG log-layer and the
classical value of 0.09 can well be used in (6.25).

6.2.4 Edges of Shear Layers

The idealized edge problem

So far, no constraints for the coefficients σk and σd have been derived. The follow-
ing analysis of the model behaviour near the edges of laminar and turbulent flow
will provide constraints for the diffusion coefficients. Also σω will have another
constraint for the outer-edge region in addition to (6.25), which is active in the log-
arithmic layer.

The behaviour of two-equation turbulence models on the edge regions between
turbulent and laminar flows can be understood with the aid of the analysis first de-
duced by Cazalbou et al. [129]. Furthermore, this approach provides constraints for
the diffusion coefficients. A model that satisfies these constraints behaves properly
near the free-stream edges of turbulent regions, and it should show no anomalous
sensitivity to the free-stream values. This is confirmed by numerical tests, see Sec-
tion 6.4.6.

Cazalbou et al. assumed that the turbulent transport (modelled as turbulent dif-
fusion) balances the transport by mean flow, while the production and destruction
terms and also the molecular viscosity are negligible on the outer edges of turbulent
shear layers. This means that the model equations reduce to a nonlinear convection-
diffusion problem locally in such regions. Moreover, one-dimensionality must be
assumed in order to be able to find an analytical solution. The practical problems
are multi-dimensional, of course, even locally in the edge zone. However, the ve-
locity gradient as well as the gradients of the turbulent scales are often quite well
aligned with the edge-normal direction especially in thin shear flows that are in
an equilibrium state, e.g. equilibrium boundary layers, far wakes, etc. The sim-
plified one-dimensional problem is considered to be physically relevant with such
situations. The exact conditions for the physical validity of the one-dimensional
problem are as follows. The molecular viscosity is negligibly small (Re → ∞).
This is thought to be a reasonably realistic assumption also at large finite Reynolds
numbers since νT is comparable with ν only in a narrow zone around the edge as
νT goes to zero linearly according to the solutions that are to be derived. Both
the mean-flow transport and turbulent transport are assumed to be aligned with the
edge-normal direction, and the entrainment velocity

Ue sin

(
dδ
dx

)
− Ve cos

(
dδ
dx

)
≈ Ue

dδ
dx

− Ve (6.26)

is constant along the edge. Ue and Ve are the mean-velocity components at the
edge. In (6.26), dδ/dx denotes the streamwise rate at which the turbulent layer
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penetrates into the surrounding flow, or which is equivalent, the angle between the
edge and the velocity of the free flow. This angle is usually quite small, and hence
the simplified form of (6.26) is often adequate. In practice, the entrainment velocity
is seldom constant along the edge, but it often varies relatively slowly. Finally,
the convective velocity is assumed to be constant near the edge. This is a rather
realistic assumption since we are only interested in a relatively narrow zone near
the edge where changes in the convective velocity are typically small. After all,
it is assumed that the behaviour of the original equation system can be understood
by studying a simplified one-dimensional nonlinear convection-diffusion problem.
The dominance of the transport terms over the production and dissipation will be
checked after the solution is found.

Near the edge, the mean-momentum equation and k−ω model equations reduce
to

V
dU
dy

=
d

dy

(
νT

dU
dy

)

V
dk
dy

=
d

dy

(
σkνT

dk
dy

)
(6.27)

V
dω
dy

=
d

dy

(
σωνT

dω
dy

)
+ σd

νT

k

dk
dy

dω
dy

Note, that the factor 1/ω in the cross-diffusion term must here be replaced by νT/k
in order to find a solution also in case of variableCµ. The convective velocity V may
be associated with the entrainment velocity (6.26) of some real problem, and, as
stated above, it must be assumed to be constant. In this problem, all the variables
U , k, and ω are defined as positive quantities that go to zero on the edge. Thus
U can be considered either as a velocity defect of a wake-like flow or a velocity
excess of a jet-like flow. Cazalbou et al. presented a solution to a corresponding
problem for the k − ε models, and later Kok [130] carried out a similar analysis for
the k−ω models of the form of (6.2) and (6.3). Cazalbou et al. and Kok formulated
the problem in a moving coordinate frame to make V zero. In such a frame, the
problem takes the form of an unsteady nonlinear diffusion problem. The present
system of equations (6.27), which is written in a stationary frame, is obtained from
Kok’s equations, or vice versa, by a simple Galilean transformation.

Solution of linear models with constant C �

Kok found that the following power functions form at least a weak solution to (6.27)
if σk, σω, and σd are suitably selected [130]:

U(y) = U0f
σkσω/(σω−σk+σd) (6.28)

k(y) = k0f
σω/(σω−σk+σd) (6.29)

ω(y) = ω0f
(σk−σd)/(σω−σk+σd) (6.30)

where

f(y) = max

(
δ0 − y

δ0
; 0

)
(6.31)
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Here, U0, k0, ω0, and δ0 are the characteristic scales of the problem, and the convec-
tive velocity becomes

V = − σkσω

σω − σk + σd

Cµko

ω0δ0
(6.32)

Note that here Cµ is not absorbed into the definition of ω as in Ref. [130]. Depend-
ing on the values of the diffusion coefficients, it may happen that (6.28) – (6.30)
are not differentiable enough at y = δ0 to form a rigorous solution of (6.27). In
such a case, Eqs. (6.28) – (6.30) can be considered a weak solution. For proof, see
Ref. [129].

Now, constraints can be derived from the requirements that (6.28) – (6.30) must
be non-singular to form at least a weak solution to the problem, and that the slope
of the velocity remains bounded at the edge. The resulting conditions are

σω − σk + σd > 0 (6.33)

σk − σd > 0 (6.34)

σω − σk + σd ≤ σkσω (6.35)

If a smooth edge is required from the solution, then “≤” must be replaced by “<”
in (6.35). To ensure that diffusion really dominates over production and dissipation,
we have to require the exponent of f in the production and dissipation terms to be
larger than that in the diffusion term. If Cµ is assumed constant, these terms of the
k-equation can be written as

d
dy

(
σkνT

dk
dy

)
∼ f (σk−σd)/(σω−σk+σd) (6.36)

P = νT

(
dU
dy

)2

∼ f [(2σk−1)σω+σk−σd]/(σω−σk+σd) (6.37)

ε = kω ∼ f (σω+σk−σd)/(σω−σk+σd) (6.38)

Thus, the above requirement is satisfied when

σk > 0.5 and σω > 0 (6.39)

Also the source and sink terms of the ω-equation must go to zero more rapidly than
its diffusion and cross terms. It is straightforward to show that this is also ensured
by satisfying (6.39).

A new solution of a variable C � case idealizing nonlinear models

The validity of the above analysis and the applicability of the constraints (6.33) –
(6.35) and (6.39) to models utilizing nonlinear constitutive relations, such as EARSMs,
is not obvious. This is because the solution (6.28) – (6.30) is only valid for models
based on the Boussinesq approximation with constant Cµ. Fortunately, the con-
tribution of the higher-order terms to the principal shear stress in the momentum
equation is negligible near the outer edges of shear layers. The present modelling
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Figure 6.1: Cµ as a function of S according to Wallin-Johansson EARSM in simple parallel flows
with ∂U/∂y being the only nonzero velocity-gradient component.

of the diffusive terms of k and ω is also independent of the higher-order terms. Thus,
the only difference that actually must be considered is the fact that Cµ is variable in
nonlinear constitutive modelling.

In the following, the analysis is extended for variable Cµ assuming that Cµ is of
a similar power form as the solutions of U , k, and ω. A condition that solutions of
power form exist is that νT ∼ f . Since νT = Cµk/ω, k/ω must be proportional to
f 1−m if Cµ ∼ fm. With these assumptions, it is straightforward to show that

U(y) = U0f
σkσω(1−m)/(σω−σk+σd) = U0f

nu

k(y) = k0f
σω(1−m)/(σω−σk+σd) = k0f

nk (6.40)

ω(y) = ω0f
(σk−σd)(1−m)/(σω−σk+σd) = ω0f

nω

satisfy the system (6.27) if m < 1. It is immediately seen that if Cµ decreases
towards the edge as with m > 0, the edges in the solutions become sharper. This
may well lead to a situation where the velocity exponent nu, originally larger than
one with constant Cµ, now becomes less than one. The edge will be perfectly sharp
with dU/dy being indefinite always when nu ≤ 1. This is an unphysical situa-
tion and may also cause numerical troubles. In practice, the numerical dissipation
and the molecular viscosity may alleviate the situation to some extent, but also the
numerical solutions will be qualitatively wrong at least when nu < 1. If Cµ in-
creases towards the edge as with m < 0, the exponents increase and the solution
around the edge just becomes smoother. This has no severe consequences since the
Reynolds-averaged distributions around the shear-layer edges are smooth in real-
ity. Now, knowing that Cµ distributions decreasing towards the edge may spoil the
solution even qualitatively, this kind of situation must be avoided. Therefore, the
question is: in which circumstances could Cµ decrease towards the edge? In the
nonlinear constitutive models, Cµ is typically approximately inversely proportional
to the nondimensional strain parameter S =

√
2SijSji when S is not small. The

actual expression of Cµ in the Wallin-Johansson EARSM is quite complex, see Sec-
tion 6.6.2, and it is not easily seen that Cµ ∼ S−1 at high S-values. Plotting Cµ as
a function of S shows that it approximately is, see Fig. 6.1. Therefore, S increasing
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towards the edge may be an unfavourable situation. Now, S is given by

S =
1

ω

dU

dy
∼ f [σkσω(1−m)+(σk−σd)m− σω ]/(σω−σk+σd) (6.41)

A situation where S remains constant or decreases when the edge is approached
would be favourable. This is achieved when dU/dy decreases at least as rapidly as
ω. This is the case only if the exponent in (6.41) is non-negative. Hence, a new
condition

σk ≥ σω +mσd

σω +m(1 − σω)
(6.42)

is obtained. Now m is an unknown parameter and different values have to be con-
sidered. Cases with m > 0 are not of interest as it was already seen that positive
values of m representing decreasing Cµ are potentially unfavourable, and the aim
here is to derive a constraint to avoid solutions with decreasing Cµ. In the case of
m = 0, this constraint reduces to σk ≥ 1. In practice, it may be safer to require

σk > 1 (6.43)

This constraint was actually first derived by Bézard [131] very recently when he
studied the ratio of production to dissipation based on the solution (6.28) – (6.30)
valid for constant Cµ. In the case of m < 0, constraint (6.42) becomes less restric-
tive if σd > 1−σω . This, in turn, happens always to be the case if (6.33) is satisfied
and if σk > 1. Hence, it is sufficient simply to apply (6.43), and thus the former
constraint in (6.39) must be replaced by (6.43). The constraints (6.33) and (6.34)
remain unchanged, but the constraint (6.35) becomes passive if (6.34) and (6.43)
are satisfied. In other words, (6.43) guarantees the edge-smoothness without (6.35).
The latter constraint in (6.39) now becomes

σω > m(σk − σd) (6.44)

This constraint is of little importance whenm is zero or negative as desired. Finally,
all the active diffusion-coefficient constraints, relevant in the nonlinear level of k−ω
modelling, are collected together as follows:

σω − σk + σd > 0 (6.45)

σk − σd > 0 (6.46)

σk > 1 (6.47)

These constraints are illustrated in Fig. 6.2 for the case σk = 1.1.
It was assumed above that Cµ follows a power function fm near the edge.

Whether this is the case in reality or not depends, of course, on the details of the
constitutive model. In the case of the Wallin-Johansson EARSM [4] used here, the
dependency between Cµ and S is not that simple. However, at smaller values of
S, say, when S < 1.5, Cµ is almost constant according to Fig. 6.1. At larger val-
ues of S, Cµ is approximately proportional to S−p with p ≈ 1. If p = 1 exactly,
then also m = 1 and the exponents of U , k, and ω would become zero. However,
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Figure 6.2: Constrained (σω, σd)-space when σk = 1.1, see Eqs. (6.45) – (6.47).

the numerical experiment in the anomalous case, which will be discussed below,
show behaviour similar to the case when the exponents are nonzero but the velocity
exponent is smaller than one. This is what may happen if 0 < m < 1 as already
discussed. Values of p slightly different from unity may lead to this kind of situation
depending on the diffusion-coefficient values. In reality, Cµ of the present EARSM
does not exactly follow any power function, but the power function seems to be a
sufficiently good approximation for this kind of qualitative analysis.

To learn more about the edge behaviour, numerical studies of a zero pressure-
gradient boundary layer are made with three different models: Kok’s original lin-
ear k − ω TNT model [130], Kok’s model combined with the EARSM, and a
generic model (EARSM) having diffusion coefficients σk = 1.1, σω = 0.8, and
σd = 0.74, which produce nu = 2(1 −m). Kok’s model is designed to satisfy the
constraints (6.33) – (6.35) and (6.39), but not the constraint (6.47) as it is a linear
Boussinesq model. More specifically, it features σk = 2/3, and σω = σd = 1/2,
and thus nu = 1 −m. As seen in Fig. 6.3, it produces an anomalous hook-shaped
solution for U on the edge when combined with the EARSM. This is because it
predicts S to rapidly increase and thus Cµ to drop near the edge as if m > 0. Kok’s
original linear model gives a sharp edged solution as its nu = 1. The generic model
gives a healthy solution with nu = 2(1 − m) and m ≈ 0. It turns out that the
hook-like solution follows fairly well a power solution with nu = 0.7 or, which
is equivalent, m = 0.3, although Cµ seems not to follow the 0.3-power function,
according to the numerical result. It even does not go to zero on the edge as the
assumed power-form. It must be kept in mind that the numerical solution for Cµ is,
of course, extremely sensitive to the numerical details, since S has a singularity on
the edge. However, the point here is that Cµ makes a sudden dive near the edge
because ω vanishes more rapidly than the velocity gradient, and thus S becomes
very high.

It can be concluded that the above theory based on the solution (6.40) is at least
qualitatively valid, although Cµ does not necessarily follow any power function
according to the present EARSM. The present theory is valid when a simple scalar-
diffusivity gradient model is used for the diffusive terms. Possibilities to extend
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Figure 6.3: Left: numerical solutions of a boundary layer (symbols), and analytical solutions (6.40)
of the idealized edge problem (curves) using different models: Kok’s original model with constant
Cµ where nu = 1 (squares and dotted curve), Kok’s model combined with the EARSM where
nu = 1 − m and m ≈ 0.3 (triangles and solid curve), and a generic model with the EARSM where
nu = 2(1 − m) and m ≈ 0 (circles and dashed curve). Right: computed Cµ distributions and a
3/10-power curve.

the analysis for higher-order modelling of diffusive terms will be studied in future
work.

The numerical solutions shown in Fig. 6.3 are obtained by solving the self-
similar equilibrium outer boundary-layer equations, see Section 4.1. The results
have been verified by computing also full Navier-Stokes solutions which feature
the same phenomena. This verifies also the analysis based on the simplified system
of ordinary differential equations (6.27).

6.3 Review of the Existing k − ω Models

Some existing k−ω models of the form (6.2) – (6.3) are reviewed in this section, and
possibilities to extend them to the EASRM level are studied as well. The coefficients
of the models to be discussed are summarized in Table 6.1.

6.3.1 Wilcox’s Models and the Free-Stream Sensitivity

Wilcox’s k − ω model from 1988 [60] is widely known with its pros and cons.
Wilcox showed that this model can be solved down to the wall without any near-wall
modifications. This model also performs quite well in boundary layers retarded by
adverse pressure gradient. On the other hand, it suffers from anomalous solutions
near the edges of turbulent regions, which is discussed below in detail. It should
be remembered, however, that this model is an important step in the evolution of
the k − ω models because the later models developed, e.g. by Menter, Abid et
al., and by Kok are based on Wilcox’s work. Wilcox has developed also a new
version of this model [28], but its edge-behaviour is not significantly different from
its predecessor. This new version (1998 model) includes a new function fβ∗ which
controls the dissipation of k. This function depends on the product of the gradients
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Table 6.1: The coefficients of some k − ω models, see Eqs. (6.2) – (6.3).

Cω1 Cω2 σk σω σd

Wilcox 1988 0.556 0.833 0.5 0.5 0.0
Wilcox 1998 0.52 0.8 0.5 0.5 0.0
Menter BSL Set 1 (inner) 0.553 0.833 0.5 0.5 0.0
Menter BSL Set 2 (outer) 0.44 0.92 1.0 0.856 1.712
Menter SST Set 1 (inner) 0.553 0.833 0.85 0.5 0.0
Menter SST Set 2 (outer) 0.44 0.92 1.0 0.856 1.712
Abid et al. 0.547 0.83 0.714 0.5 0.0
Abid et al. mod. by Gatski 0.561 0.83 0.714 0.454 0.0
Kok 0.556 0.833 0.667 0.5 0.5
Peng (high-Re asymptote) 0.42 0.833 1.25 0.741 0.75

of k and ω as follows

fβ∗ =
1 + 680χ2

1 + 400χ2
where χ = max

(
1

ω3

∂k

∂xk

∂ω

∂xk

; 0

)
(6.48)

Neither of Wilcox’s model versions is suitable to be combined with the EARSM,
except if only fully turbulent internal flows are to be computed. This is because they
both have σk = 0.5. As was shown in the previous section, σk must be larger than
one if the EARSM is employed as a constitutive model. Although the analysis is
not valid for Wilcox’s models, numerical tests have shown that the velocity profile
gets a similar hook shape, as seen in Fig. 6.3, and Fig. 6.10.

As mentioned above, Wilcox’s 1988 model is known to suffer from anomalous
sensitivity to the free-stream boundary value of ω. This will hereafter be referred
to simply as free-stream sensitivity. In non-disturbed laminar flow, ω tends to de-
crease, because its transport equation essentially reduces to a convection-destruction
equation in such situations. This is because the productive term becomes negligibly
small owing to the lack of mean-velocity gradient. Also diffusion is negligible if
Re is not small. Thus, in external flow problems, ω will not keep its given far-field
value. Instead, it may typically be orders of magnitude lower than desired near the
turbulent parts of the flowfield. However, this model is designed to give proper so-
lutions for boundary-layers as well as for free shear-layers when ω is relatively large
at the edge of the turbulent layer. Smaller values lead to excessive eddy viscosity
that extends far outside the turbulent layer. This, in turn, leads to overestimation
of the boundary-layer thickness and the friction drag, and the spreading rate of free
shear-layers. The free shear-layers are even more sensitive than the boundary layers
to the free-stream value ωf . This anomaly was first observed by Menter [64]. Ow-
ing to this free-stream sensitivity, the use of this model should be limited to fully
turbulent internal flow problems. Wilcox’s new model version [28] is designed to
give the desired solutions at the limit ωf → 0, thus it is better suited to external
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flow problems. However, otherwise it shares the edge behaviour with the 1988
model featuring high νT across the edge. In practice, this implies that its solutions
are as sensitive to ωf as those of the 1988 model if too high values of ωf are spec-
ified. Therefore, it must be ensured that ωf is really sufficiently small through all
the edges of turbulent parts of the flowfield.

To understand the free-stream sensitivity, it is instructive to look again at the
simplified edge problem (6.27). The special features are now that the cross term
is not present, and that the diffusion coefficients σk = σω = σ. In this particu-
lar situation, the power solutions (6.28) – (6.30) are not valid, since the convective
speed (6.32) would increase unboundedly. No general analytical solution has been
found in this case. However, there is a simple analytical solution to a special case
where the ratio of the external boundary values kf/ωf equals the ratio of the values
on the turbulent side k0/ω0, thus producing the same eddy viscosity on both sides.
In this particular case, the eddy viscosity will be constant through the problem do-
main and hence the problem becomes linear. The solution for k and ω is simply

k(y) = k0e
�

y/(σνT ) + kf (6.49)

ω(y) = ω0e
�

y/(σνT ) + ωf (6.50)

νT = k0/ω0 = kf/ωf (6.51)

The higher values are given for kf and ωf , the deeper the free-stream influence
penetrates, but in this case, it has no effect in νT since it remains constant anyway.
Fig. 6.4 illustrates this situation by showing the analytical solutions (6.49) – (6.51)
with an arbitrarily chosen convective velocity V. In practical problems, νT will
not be constant, of course. When νTf 6= νT0 is specified for this model problem,
the eddy viscosity still tends to be constant near the edges of the domain. There
will somewhere be a relatively narrow zone where νT changes from its inner value
to the outer one, see numerical solutions plotted in Fig. 6.5. In such a zone, the
problem is locally nonlinear and no analytical solution was found in that region.
Now, the location of the zone where the eddy viscosity changes is highly dependent
on the free-stream boundary values of ω and k, as seen in Fig. 6.5. Hence, for large
free-stream values, the eddy viscosity drops down close to the source of turbulence
(η = 0) and for small values, typical in external flow problems, the high eddy-
viscosity values extend far into the laminar region. Fig. 6.6 shows for comparison
the analytical and numerical solutions for a model with σk = 0.6 and σω = 0.9,
which allow the power solutions (6.29) – (6.30).

6.3.2 Menter’s Models

Menter’s k−ω SST model [3] is nowadays one of the most popular turbulence mod-
els in aeronautical CFD-work as well as in other areas of aerodynamics. It is capable
of predicting adverse pressure-gradient boundary layers and flow separation fairly
accurately in comparison with most of the other two-equation models. Furthermore,
it is reasonably simple in formulation and, similarly to Wilcox’s model, it does not
involve any near-wall modifications. Menter eliminated the poor edge behaviour of
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Figure 6.4: Analytical solutions (6.49) – (6.51) for the idealized edge problem (6.27) when σk =
σω = 0.5 in the special case of constant eddy viscosity. Different curves correspond to different kf

and ωf values.
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Figure 6.5: Numerical solutions for the idealized edge problem (6.27) when σk = σω = 0.5 with
νTf = 10−4νT0. Different curves correspond to different kf and ωf values and η = y/δ0.
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Figure 6.6: Numerical solutions for the idealized edge problem (6.27) when σk = 0.6 and σω = 0.9
and νTf = 10−4νT0. Different curves correspond to different kf and ωf values and η = y/δ0. The
analytical solution is shown as circles.
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Wilcox’s model by combining it (the 1988 version) with the Jones-Launder k − ε
model [132] in such a way that the latter is effective around the edges of boundary
layers and also in free turbulent flows. This is achieved by transforming the k − ε
model into the k − ω form and switching between the two models using a specific
blending function. The resulting model version that employs constant Cµ is known
as the BSL k−ω model. The final version, known as the k−ω SST model, is actu-
ally a step forward from the classical Boussinesq modelling, because the coefficient
Cµ is not constant but depends on the second strain-rate invariant IIS = SikSkj, as

Cµ =
β∗a1

max (a1; β∗
√

2IIS)
(6.52)

To be exact, the original form of the SST model uses IIΩ = ΩikΩkj instead of IIS ,
but these two are almost identical in simple shear flows.

The scale-determining model is of the form of Eqs. (6.2) – (6.3). Two differ-
ent sets of model coefficients are combined by means of a mixing function F1 so
that set-1 values are used in the inner part of boundary layers and set-2 values else-
where. The coefficients change smoothly in the outer boundary layer. The mixing
is formally written as




Cω1

Cω2

σk

σω

σd




= F1




Cω11

Cω21

σk1

σω1

σd1




+ (1 − F1)




Cω12

Cω22

σk2

σω2

σd2




(6.53)

where F1 is the mixing function described below. The coefficient values are given
in Table 6.1. These values apply if ω is defined as ω ≡ ε/k. Note that Menter
defined ω as ω ≡ ε/(β∗k) similarly as Wilcox, and β∗ = 0.09. This influences only
Cω2 which is denoted by β in Wilcox’s and Menter’s formulations, and β = β∗Cω2.
The mixing function F1 is defined as

F1 = tanh (Γ4) with Γ = min [max (Γ1; Γ2); Γ3] (6.54)

where

Γ1 =

√
k

ωd
(6.55)

Γ2 =
500β∗ν

ωd2
(6.56)

Γ3 =
2k

d2 max [(∇k · ∇ω)/ω; 10−20]
(6.57)

It is quite an obvious idea to furnish the BSL k − ω model with the EARSM as
a constitutive model instead of Eq. (6.52). This has been done, see e.g. Refs. [44,
63, 74, 133], and the resulting model behaves much like the SST, but there are also
some differences. One salient difference is that a somewhat too low friction co-
efficient is predicted for a simple flat-plate boundary layer. This is illustrated in
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Figure 6.7: Left: skin friction distribution over a flat-plate boundary layer up to Reδ2
≈ 15, 000.

Right: velocity profiles at Reδ2
≈ 7, 300. Computations with the standard BSL k − ω model and

the same model with EARSM as the constitutive model.

Fig. 6.7 (left), where the friction coefficients computed using the BSL k− ω model
as such and equipped with the EARSM as the constitutive model are compared
with the experimental data by Wieghardt [134] (taken from the proceedings of the
1968 AFOSR-IFP-Stanford Conference [48]), Winter and Gaudet [135], and Kle-
banoff [136]. Another fault of the BSL-EARSM combination in the same elemen-
tary flow is that the velocity profile in the defect layer has a qualitatively wrong
shape. There is a shallow pit in the profile, visible in Fig. 6.7, the second derivative
of U with respect to y having a locally wrong sign.

Menter’s original k − ω models have some weaknesses as well, which may
have significant influence in high-lift aerodynamic problems. The EARSM ver-
sion has shown to have inherited these weaknesses. One of these is that the outer
edges of turbulent regions are predicted as unphysically sharp. In practical simu-
lations, the grid resolution is typically not quite good near the edges and thus, the
numerical damping smoothens the edge (as is the case in Fig. 6.7). This fact, how-
ever, makes it very difficult to obtain grid-converged results, and also numerical
problems are likely to take place on the limit of grid convergence. This anomaly
is at least partially associated with the fact that these models predict clearly too
low spreading rates for planar far-wake and mixing layer flows. This is shown in
Fig. 6.8, where a computed wake velocity profile is compared with the measure-
ments of Thomas [80], Fabris [81], Antonia and Browne [82, 83] and Weygandt
and Mehta [84]. Also a mixing layer profile is compared with the data measured
by Liepmann and Laufer [99], Castro and Bradshaw [100], and by Wygnanski and
Fiedler [98], in Fig. 6.8. These elementary flows play an important role in multi-
element aerofoil problems.

The BSL model does not satisfy the constraint (6.46), and hence (6.28) – (6.30)
do not satisfy the BSL-model equations on the edge regions. This may be somewhat
surprising because it can be easily shown that the Jones-Launder k− ε model [132]
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Figure 6.8: Velocity profiles of plane far wake (left) and plane mixing layer according to the standard
BSL k − ω model as such and equipped with EARSM as the constitutive model.

satisfies Cazalbou’s constraints, and the outer form of the BSL model (active when
F1 = 0) is derived by transforming this k− ε model into the k−ω formulation. So,
why does the BSL model not satisfy the corresponding constraints derived for the
k−ω models? The reason for this difference is that Menter dropped one term from
the ω-equation. This term arises from the exact transformation from the k− ε form
to the k − ω, and it reads

ω

k

∂

∂xj

[
(σε − σk)νT

∂k

∂xj

]
(6.58)

Fig. 6.9 shows the velocity-defect distributions near the outer edge of a flat-plate
boundary layer solved using Menter’s original BSL k − ω model, and a variant
with the outer coefficients employed down to the logarithmic layer, and the Jones-
Launder k−εmodel. The only mathematical difference between the last two models
is that the last one includes the term (6.58) when transformed into the k − ω form.
Thus, Fig. 6.9 demonstrates the influence of the ignored term (6.58). The inclusion
of this term makes the edge somewhat smoother, but it is still nearly sharp. As
shown in Section 6.2.4, the analytical solutions will feature smooth edges if the
exponent of the analytical velocity solution is larger than one. The edge solution for
velocity in the case of the k − ε models is

U(y) = Uof
σkσε/(2σε−σk) (6.59)

see Cazalbou et al. [129]. For the Jones-Launder model the exponent is only 1.2,
which explains why it predicts an almost sharp edge profile. When the term (6.58)
is dropped from this model (after transforming it into the k − ω form) the edge
becomes almost like a junction of two straight lines.

In the case of the k − ω models, the formation of unphysically sharp edges is
associated with the high value of σd2 (in Menter’s models σd2 = 2σω2 = 1.712, and
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Figure 6.9: Velocity-defect profiles through the outermost part of a ZPG boundary layer according
to Menter’s original k − ω BSL model (solid line), a variant with the outer coefficients employed
throughout the boundary layer (dashed line), and the Jones-Launder k − ε model (dotted line).
Symbols represent experimental data by Wieghardt (squares) and by Klebanoff (circles).

σk2 = 1). Now, the condition for the edge not to be sharp is

σkσω > σω − σk + σd (6.60)

This is seriously violated in this case since the left-hand side equals to 0.856 and the
right-hand side is 1.568. Thus, it is clear that σd must be reduced quite a lot from
Menter’s value.

6.3.3 Abid-Rumsey-Gatski Model

Abid, Rumsey, and Gatski [137] combined the Gatski-Speziale EARSM [35] with
a k − ω model that is essentially the Wilcox 1988 model [60]. In comparison with
Wilcox’s original model, they elevated the value of σk from 0.5 to 0.714, see Ta-
ble 6.1. This model was later slightly modified by Gatski [46, 138], see Table 6.1.
The value of σk is still too low to satisfy the constraint (6.47). Note that these
models employ a so-called equilibrium eddy viscosity in the model for turbulent
transport (diffusion). In other words, a constant Cµ = 0.088 is used in those terms.
The hook-shaped edge profile is avoided this way. If the Cµ given by the EARSM
is used in these terms, the hook anomaly will arise. This has been verified by nu-
merical computations where the Wallin-Johansson EARSM was used instead of the
Gatski-Speziale EARSM, see Fig. 6.10. It is felt that using the variable Cµ in mod-
elling all the diffusive terms is generally a better choice. This is also recommended
by Wallin and Johansson [4]. Therefore, the model by Abid et al. will not be
adopted for further studies in this work.

More recently, Rumsey and Gatski [45] again modified the model by changing
σk back to 0.5 and by multiplying the dissipation term of the k-equation by a func-
tion fβ∗ , see (6.48), adopted from Wilcox’s 1998 model [28]. These modifications
make the model essentially similar to Wilcox’s 1998 model.
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Figure 6.10: Velocity-defect profiles through the outer part of a ZPG boundary layer computed
with different k − ω models combined with the EARSM. The models are: Wilcox 1988 (solid line),
Kok (dashed line), and Abid et al. with constant (dotted line) and variable (dash-dotted line) Cµ

employed in the diffusivity of k and ω. Symbols represent experimental data by Wieghardt (squares)
and by Klebanoff (circles).

6.3.4 Kok’s Model

Kok [130] designed a k − ω model that satisfies the constraints (6.33) – (6.33) dis-
cussed in Section 6.2 and shares the near-wall behaviour of Wilcox’s and Menter’s
models using only one set of model coefficients. It should be mentioned that σd is
nonzero only when ∇k · ∇ω ≥ 0. Kok selected the diffusion coefficients, for some
reason, such that the mean-velocity exponent in (6.28) becomes equal to one, which
leads to solutions with unphysically sharp edges. This is seen in Fig. 6.3. As also
shown in Fig. 6.3, this model cannot be combined with the EARSM because of the
emergence of anomalous hook-shaped edge solutions, see Fig. 6.10.

6.3.5 Peng’s Low-Reynolds-Number k − ω Model

The models with low-Reynolds-number modifications are not of primary interest in
this study. However, the high-Reynolds-number asymptote of Peng’s model [139]
differs from all other k − ω models. Therefore, it will be briefly discussed, too.
The diffusion coefficients of this model have values quite different from Wilcox’s
models. Most importantly, σk = 1.25, which satisfies the constraint (6.47). It
satisfies also the other constraints (6.45) and (6.46). Thus, its edge behaviour should
be good also when combined with the EARSM. Peng’s model coefficients cannot
be used near the walls without the near-wall modifications, but they could possibly
be suitable as outer coefficients employed near the outer edges of boundary layers
and in free turbulent flows. However, since this model is not designed for typical
aerodynamical problems, it is not considered as such.
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6.4 Recalibration of the Model Coefficients and the
Mixing Function

6.4.1 Calibration Strategy

Calibration of the model coefficients and the mixing function is described step by
step in this Section. The final form of the model resulting from these development
steps is summarized in Section 6.6.

The shortcomings of the BSL k − ω model and its extension that uses EARSM
as the constitutive model (BSL-EARSM) have been discussed and demonstrated in
Section 6.3.2. These are largely related to the behaviour of the BSL model near the
edges of turbulent regions. Therefore, this problem will be tackled first.

It was concluded in Section 6.3.2 that σd2 must be given a much smaller value
than 1.712. Unfortunately, lowering σd2, without changing any other coefficients,
makes the boundary layers spread too rapidly. A value as low as 0.4 is needed to
predict the far-wake flow properly. With this value, the boundary-layer thickness
would become seriously overpredicted. One way to overcome this contradiction is
to change the mixing function in such a way that the change of the model coeffi-
cients from the inner (set 1) to the outer (set 2) values takes place further away from
the wall. It is probably the best practice to design the mixing function in such a way
that the change of the coefficients occurs closer to the boundary-layer edge than in
the BSL model, and to calibrate both coefficient sets to obey the constraints (6.45) –
(6.47). The inner coefficients should also provide acceptably good edge behaviour
because in some circumstances, the mixing function might behave unexpectedly
and activate the inner coefficients on the edge. Added robustness is achieved this
way. Choosing this approach means that a value of about 0.4 should be assigned to
σd2, and σd1 should be about 1.0 according to preliminary numerical tests. The outer
coefficients will be first looked for, and the modifications to the mixing function will
be considered after that in Section 6.4.3.

6.4.2 Free Shear Layers

Background

Before proceeding with the boundary-layer problem, the outer coefficients must be
calibrated so that the selected elementary free shear flows, the far wake and the
mixing layer, will be predicted with sufficient accuracy. These coefficients also
become active on the edges of the boundary layers, hence they must be calibrated
before attempting to optimize the inner coefficients for the boundary layer. It is
already anticipated that σk2 and σd2 should be about 1.1 and 0.4, respectively. On the
other hand, Cω12 should be selected from the lower end of its permitted range (6.18),
and Cω22 from near the upper extreme of (6.9) in order to keep ω relatively small,
and thus to allow rapid spreading of free turbulent layers owing to a sufficiently high
rate of turbulent mixing of momentum. Numerical experiments showed that the
values of the BSL model, 0.44 and 0.92 forCω12 andCω22, respectively, are suitable.
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These values correspond to the most commonly used k − ε values Cε1 = 1.44 and
Cε1 = 1.92. Further numerical tests suggest that 1.0 is a suitable value for σω2 when
the focus is in the planar far wake and mixing layer flows.

Far wake

Mean-velocity and Reynolds-stress profiles of the far-wake flow are shown in Fig. 6.11
as functions of the similarity coordinate

η =
y

D

√
2D

cd(x− x0)
(6.61)

where D is the diameter of the wake-generating cylinder, cd is its drag coefficient,
x is the distance between the cylinder and the measurement station, and x0 is the
location of a virtual origin of the self-similar system. The results computed with the
new coefficients are compared with the BSL-EARSM results and with experimental
data. The new outer coefficients provide a velocity profile that fares well through the
somewhat scattered measurement data. Five sets of measured mean-velocity data
are shown: Townsend 1949 [79], Thomas 1973 [80], Fabris 1979 [81], Antonia and
Browne 1986 [82, 83], and Weygandt and Mehta 1995 [84]. The drag coefficients
are estimated on the basis of the reported cylinder Reynolds number UD/ν and
are of the order of one. One source of uncertainty is the virtual origin x0. The
smaller x/D is, the more significant this uncertainty becomes. Thomas made his
measurements at x/D = 160, Fabris used larger distances, x/D = 200 and 400,
and Townsend had even larger x/D ranging from 500 up to 950. Townsend used
x0/D = 90, while Fabris selected for both his own and for Thomas’ measurements
quite a different value of −40. Unlike the other cases, Weygandt and Mehta have
studied the wake of a flat plate. Unfortunately, they did not report the velocity
profile in [84]. Instead, the data is taken from [28].

The Reynolds shear-stress comparisons are based on the measurement by Town-
send [79] measured at stations ranging from x/D = 500 to 800, and by Fabris [81]
measured at x/D = 400. The normal stresses are compared with the data by Fabris
and by Antonia and Browne. The shear stress must naturally be rather well pre-
dicted because the mean velocity is. A comparison with the measurements, indeed,
shows fair agreement, although the model predicts somewhat higher values in the
outer part of the flow. Also the experimental results of Townsend and Fabris dis-
agree with each other near the region of the maximum shear stress. The computed
normal stresses and thus the turbulent energy are, however, significantly higher than
measured. Although not shown here, the measurements by Townsend support the
normal-stress data by Fabris and by Antonia and Browne, except that Townsend
measured even lower u′u′-values than Fabris. The differences in computed and
measured normal stresses, and the fact that the model-predicted Cµ is close to 0.09
throughout the flow, reveal a flaw in the model — it predicts too high k and ω but
still roughly correct νT ∼ k/ω in this case. Nevertheless, the mean velocity and the
shear stress are much better modelled with the new outer coefficients than with the
BSL values.
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It was studied whether the above-observed discrepancy could be cured by in-
troducing a small addition to β∗ in the dissipation term of the k-equation when
fmix = 0. This was done without changing β∗ in the definition of turbulent time
scale. The idea behind this is to make both k and ω smaller for free flows without
changing much the eddy viscosity and consequently the shear stress. The latest ver-
sion of Wilcox’s k − ω model [28] includes the same kind of feature. Now, it was
found that β∗ could be increased by only about 10% without spoiling the boundary-
layer predictions in this case, while in Wilcox’s model it is increased by as much as
70%. In connection with this modification, Cω12 had then to be lowered to a value
of 0.4 in order to maintain sufficient level of eddy viscosity in the wake and mixing
layer flows. Still, with this modification the improvement was less than modest.
While the shear stress dropped only a tiny amount as desired, the turbulent energy
did not decrease more than about 10% in this case — roughly the same percent-
age as β∗ was increased. This idea was abandoned as it gave no significant benefit
despite adding one more coefficient to the calibration process.

After all, it must be remembered that the self-similar wake solution is somewhat
inaccurate probably owing to the linearization of the convective terms in the deriva-
tion of the self-similar equations. Therefore, it is not sensible to stubbornly require
that the self-similar solution must accurately match with the measurements.

Mixing layer

Fig. 6.12 compares the computed velocity and stress profiles of the self-similar pla-
nar mixing layer with experimental data. This particular mixing layer is a shear
layer between a still fluid and a uniform stream of velocity U1. The similarity co-
ordinate is simply η = y/(x − x0). Measurements are by Liepmann and Laufer
1947 [99], by Wygnanski and Fiedler 1970 [98], and by Castro and Bradshaw
1976 [100]. The velocity profile measured by Wygnanski and Fiedler shows a
clearly higher spreading rate than the other two profiles. The reason for this is
not completely clear. See Section 3.5 for more discussion on this topic.

The different spreading rate of the measured mixing layers means that the ex-
perimental reference data is not as reliable as desired. This has been pointed out
by other authors as well, e.g. [10, 11]. Nevertheless, the new model calibration
yielded a velocity profile that agrees clearly better with all experiments than the
BSL-EARSM on the high-speed side, although it still is somewhat too sharp-edged
there. However, on the low-speed side, the new model agrees better with the data by
Wygnanski and Fiedler while the BSL-EARSM results are supported by the other
measurements there. The stress profiles show even more clearly than the mean-
velocity profile that the models give significantly too asymmetric results. Exces-
sive asymmetry seems to be a common shortcoming of the majority of turbulence
models that is not easily avoided, see Section 3.5. Also, the new model gives some-
what too high shear stress in the middle and on the low-speed side, and excessive
anisotropy of the normal components. The BSL model gives too little turbulent
energy throughout the flow, although it happens to predict the stress components
reasonably well on the low-speed side. The above-discussed trial to use an elevated
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dissipation rate did not remove the observed discrepancies of the new model. In ad-
dition to this, some other attempts were made to find such a calibration that would
give less asymmetric results without spoiling the wake-flow results. However, no
such values were found.

6.4.3 Mixing Function

As proposed in Section 6.4.1, Menter’s mixing function F1 is modified to push the
mixing towards the boundary-layer edge. This can be achieved by using the same
kind of parameters Γ1, Γ2, and Γ3 as in the BSL model. Only some coefficients have
to be changed. Most importantly, Γ3 has to be multiplied by a factor of, say ten to
allow the hyperbolic tangent function to remain at unity almost up to the edge. Now,
Γ3 reads

Γ3 =
20k

max [d2(∇k · ∇ω)/ω; 200k∞]
(6.62)

where d is the distance to the nearest wall point. The lower limit of the denominator
is made proportional to the free-stream value of k. In fully turbulent internal flows,
this limiter is of no significance, and any small value may be used. The other pa-
rameters, Γ1 and Γ2 are adopted from the BSL model as such. However, the final
value

Γ = min [max (Γ1; Γ2); Γ3] (6.63)

is multiplied by a factor of 1.5 to obtain the desired behaviour, see Fig. 6.13. Hence,
the final form of the mixing function is given by

fmix = tanh (1.5Γ4) (6.64)

The use of max- and min-functions may produce locally non-smooth behaviour.
In Fig. 6.13, this is more salient with the new form, but Menter’s form has been
observed to give similar non-smoothnesses in many situations. According to the
experience with Menter’s models, these non-smoothnesses of the mixing function
have no harmful effects on the physical quantities. Although not shown here, it
was checked that the mixing function behaves properly also in cases with a nonzero
pressure gradient.

6.4.4 Zero Pressure-Gradient Boundary Layer

Given a mixing function with the desired behaviour, we now look for suitable values
for the inner coefficients that fulfil the edge constraints (6.45) – (6.47) and give
accurate prediction for the ZPG boundary layer. First, it must be remembered that
the cross term must not be included in the near-wall region. Therefore, σd1 will be
nonzero only when ∇k · ∇ω > 0. The diffusion coefficient σk1 must be increased
to, say 1.1 in order to satisfy the constraint (6.47). It was also observed that this
change removed the unphysical pit from the velocity profile in the defect layer, see
Figs. 6.7 and 6.14. At this point, it was checked that the k − ω model’s ability
to fairly accurately model the APG boundary layers is still maintained with the
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Figure 6.11: Velocity and Reynolds stress profiles of the planar far wake according to the k − ω
EARSM model with the new outer coefficients compared with the BSL k − ω EARSM model and
experimental data.
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Figure 6.12: Velocity and Reynolds stress profiles of plane mixing layer according to the k − ω
EARSM model with the new outer coefficients compared with the BSL k − ω EARSM model and
experimental data.
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Figure 6.13: Behaviour of the mixing functions through a ZPG boundary layer. The solid line
represents the new mixing function (6.64), and the dashed line is Menter’s F1.

elevated value of σk1. It was seen that equilibrium boundary layers with strong
adverse pressure gradients, βT = 8 and βT = 20 can be predicted with the new
coefficients at about the same accuracy as with the BSL-EARSM, except near the
outer boundary, where the new model provides a significant improvement. This will
be discussed in more detail in Section 6.4.8.

The other diffusion coefficient σω has to be kept close to 0.5 in order to maintain
the favourable feature of the k− ω models that they can be solved down to the wall
without any near-wall modifications. Extensive numerical experimenting with the
ZPG boundary layer and with the fully developed channel flow, discussed in the
next section, showed that the following values are close to optimum:

σk1 = 1.1 σω1 = 0.53 Cω21 = 0.83

and

σd1 =

{
1.0 if ∇k · ∇ω > 0
0 else

(6.65)

while Cω11 is solved from (6.25) using κ = 0.42 and constant Cµ = 0.09. This
gives Cω11 = 0.518. The selected inner diffusion coefficients satisfy the con-
straints (6.45) – (6.47) as well as the outer values.

Experiments were also conducted in which the variable Cµ was used in (6.25)
to determine the value of Cω11. Furthermore, the factor σd/ω of the cross term
was replaced by the form σdνT /k which includes the variable Cµ. Numerous tests
with both self-similar and two-dimensional flows showed no consistent improve-
ment owing to these modifications. Therefore, it was decided to retain the simpler
form with no additional Cµ dependencies.

The results for the ZPG boundary layer are shown in Figs. 6.14 and 6.15. The
new model gives clearly a smoother edge for the boundary layer and removes the
pit anomaly from the velocity profile. However, the new model seems to give even a
slightly too diffuse outer edge according to the left-hand plot where the y-coordinate
is scaled by Clauser’s delta ∆ = δ1Ue/uτ . Moreover, this is seen as a somewhat
too full velocity profile, when y is scaled by the boundary-layer thickness. These
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Figure 6.14: Velocity-defect profiles through a ZPG boundary layer according to the new k − ω
EARSM model, and with the BSL model furnished with the EARSM. On the left-hand side, the
y-coordinate is scaled by Clauser’s delta ∆ = Ueδ1/uτ , and on the right-hand side by the boundary-
layer thickness. The symbols represent experimental data by Klebanoff (circles) and by Wieghardt
(squares).

results are from one-dimensional computation on the limit Re → ∞ in which self-
similarity is assumed. The results are verified in Section 7.1 by a two-dimensional
computation which does not show such a discrepancy. It is, thus, likely that this
difference is connected to the simplifications made in the derivation of the self-
similar equations.

6.4.5 Fully-Developed Channel Flow

The fully-developed channel flow was computed at several Reynolds numbers to en-
sure that the logarithmic velocity profile and the skin-friction coefficient are com-
puted with sufficient accuracy. This could not be checked from the self-similar
boundary-layer results because both the wall- and the defect layers cannot be solved
mutually on the self-similar limit owing to the different scaling of these regions. The
logarithmic law is used as a boundary condition in the defect-layer computations.

Fig. 6.16 compares the computed velocity profiles with the log-law

U+ =
1

κ
ln y+ +B (6.66)

at Reynolds numbers: 104, 105, 106, and 107. The coefficient values κ = 0.41
and B = 5.0 are adopted. Especially the new model is in very good agreement
with (6.66), but also the BSL-EARSM gives velocity profiles that are well within
the uncertainty of the log-law coefficients. Noticeably, the new model predicts a
somewhat stronger wake with Coles’ wake-strength parameter Π ≈ 0.1 than the
BSL-EARSM, which predicts Π ≈ 0.0. Dean [110] suggests a value of 0.14 for Π,
but this is based on very scattered data.
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Figure 6.15: Shear-stress profiles through a ZPG boundary layer according to the new k−ω EARSM
model, and with the BSL model furnished with the EARSM. The circles represent experimental data
by Klebanoff.

The skin-friction coefficient is shown in Fig. 6.17 as a function of the bulk
Reynolds number Ubh/ν ranging from 104 to 107. The computed values are in
good agreement with Dean’s implicit friction formula [110]

√
2

cf
=

1

κ
ln

(
Reb

2
√

2/cf

)
+ 3.2 (6.67)

Fig. 6.17 also shows good agreement between the new model and the BSL-EARSM,
although they predict a remarkably different friction coefficient for the flat-plate
boundary layer, which will be shown in Section 7.1. This means that the reason why
the BSL-EARSM underpredicts the boundary-layer skin friction is not in the wall
layer but in the defect layer. This flaw is probably connected to the “pit anomaly”
that was removed by increasing the value of σk1.

6.4.6 Free-Stream Sensitivity

The influence of the free-stream values of k and ω on the solution is studied in the
case of the far-wake flow. Menter has shown that Wilcox’s k − ω model suffers
from anomalous sensitivity to the free-stream value of ω [64]. This was discussed
in Section 6.3.1. Fig. 6.18 demonstrates this for the present wake problem. If
a small value is specified for ωe, then νT will not decrease towards the edge but
maintain a high value of the order of its maximum value inside the wake far up
to the laminar flow. On the other hand, if too large a value is given to ωe, it will
affect νT throughout the turbulent zone. The low end of the ω-range approaches an
asymptotic solution. In principle, the sensitivity can be avoided by always using
a sufficiently small boundary value for ω to obtain the asymptotic solution. The
asymptotic solution of this model, however, does not agree with the measurements,
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Figure 6.16: Fully developed channel flow. The velocity profiles at four Reynolds numbers 104,
105, 106, and 107 computed with the new model (left) and with the BSL-EARSM (right) compared
with the log law with κ = 0.41 and B = 5.0.

Figure 6.17: Fully developed channel flow. The computed skin-friction coefficient compared with
Dean’s formula (6.67). Circles stand for the new model and squares for the BSL-EARSM.
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Figure 6.18: Free-stream sensitivity of Wilcox’s 1988 k − ω model. Influence of the free-stream
value of ω on the wake flow. Nondimensional ke is kept at a constant value of 1.11 × 10−7 and ωe

is varied from 2 × 10−7 to 2 × 10−1.
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neither in the wake flow, as seen in Fig. 6.18, nor in the boundary layers. The
asymptotic solutions are also very different from those shown in Refs. [28,60,140].
As discussed in Section 6.3.1, the behaviour of the eddy viscosity, seen in Fig. 6.18,
can be traced back to the fact that the diffusion coefficients σk and σω have values
equal to each other. This choice, when σd = 0, makes k and ω decrease at the same
rate when the edge is approached. Therefore, νT will be large on the edge, unless a
very high value, related to ke, is given for ωe. It is much more convenient to have
νT go to zero towards the edge. This can be achieved by choosing the diffusion
coefficients so that they satisfy the constraints (6.45) – (6.47).

The plots in Figs. 6.19 – 6.21 show how the wake solutions of the new model
depend on the free-stream values. Fig. 6.19 shows k, ω, and νT distributions com-
puted by varying ωe from 10−7 up to 0.1 and keeping ke at a constant value of
1.11× 10−7. The highest value of ωe is about 10% of its maximum value inside the
wake. This seems to be too high a boundary value in this case as the boundary is
placed at η = 1, just next to the wake edge. The next smaller value, 0.01, makes
only a small difference compared with the rest of the results with still smaller values
of ωe. When ωe is made very small, the eddy viscosity jumps up outside the wake.
This, however, has no influence on the solution inside the turbulent region. Thus,
the solution is insensitive to the choice of ωe provided that it is small enough, say a
couple of decades smaller than ω inside the turbulent region. The velocity profiles,
although not shown here, are equal to each other except for the highest values of
ωe in a way quite similar to k and ω. Fig. 6.20 shows that the same applies to the
free-stream value of k. Here, ωe is kept as constant 10−3, and ke is varied from
1.11×10−7 to 0.111. Again, the choice of ke does not affect the solution if it is kept
as 10−4 or smaller. With values higher than this, ke starts affecting the solution like
ωe. Now, however, the eddy viscosity becomes extremely high outside the edge and
this probably first begins to influence the solution inside the wake. Fig. 6.21 shows
a third survey in which νT is kept as 10−5 and ωe is again varied from 10−7 to 0.1.
No further observations are made, and this just supports the conclusion that the only
requirement for the free-stream values is that too high values should not be given. It
may also be convenient to set a smaller value for ke than for ωe in order to keep νT

small in the surrounding laminar flow. The theory of Section 6.2.4 assumes exactly
zero values outside the edge and thus it makes sense that we must not use too high
free-stream values if we wish to obtain a solution that approximately follows the
theory near the edge. The numerical solutions with small ke and ωe, indeed, seem
to behave much like the theory predicts.

In the self-similar wake flow, the external boundary condition was specified
very near the edge of the wake. In this situation, the values at the edge of the wake
are, indeed, approximately the same as those given at the external boundary. This
is seldom the case in practical aerodynamics. It is a common practice, especially
in high-lift aerodynamics, to extend the computational domain far away from the
interesting parts of the flowfield. In such a domain, the values of k and ω may
have much smaller values on the edges of turbulent regions than on the edge of the
domain. This is because their transport equations reduce to convection-destruction
equations in undisturbed laminar flow. Hence, k and ω are likely to have relatively
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Figure 6.19: Influence of the free-stream values of k and ω on the wake-flow solution using the new
model. Nondimensional ke is kept at a constant value of 1.11× 10−7 and ωe is varied from 10−7 to
10−1.
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Figure 6.20: Influence of the free-stream values of k and ω on the wake-flow solution using the new
model. Nondimensional ωe is kept as 10−3 and ke is varied from 1.11× 10−8 to 1.11× 10−2.
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Figure 6.21: Influence of the free-stream values of k and ω on the wake-flow solution using the new
model. Nondimensional νT is kept as 10−5 and ωe is varied from 10−7 to 10−1.
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low values on the edges of turbulent regions compared to their values specified at
the far-field boundaries.

To ensure that the inner coefficients provide similar behaviour on the free-stream
edges, the wake flow is computed using them, too. Fig. 6.22 shows the case where
ke is kept constant corresponding to Fig. 6.19. Now, the wake spreads much more
slowly, because the inner coefficients are not calibrated for this kind of flow. Never-
theless, the edge behaviour is seen to remain similar, or even less sensitive, as with
the outer coefficients.

The role of the variableCµ in the edge behaviour was discussed in Section 6.2.4.
It was concluded that a nearly constant or slightly increasing trend over the edge is
desirable. At this point, it was checked whether this is really achieved with the
new model. All the numerical computations of the wake, mixing layer, and all
self-similar boundary layers with different pressure gradients show either slightly
increasing or constant Cµ on the edge. As expected, healthy smooth edges were
predicted in all cases.
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Figure 6.22: Influence of the free-stream value of ω in the wake-flow solution when the inner model
coefficients of the new model are used. Nondimensional ke is kept at a constant value of 1.11×10−7

and ωe is varied from 2 × 10−7 to 2 × 10−1.
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6.4.7 Wall-Boundary Conditions

The usual no-slip condition (k = 0 on the wall) should be given for k on wall
boundaries. The wall-boundary condition for ω is not that obvious because theoret-
ically ω has a singularity on a solid wall. As very recently suggested by Gullman-
Strand [141], ω can be split into two as

ω = ω̃ + ωw = ω̃ +
6ν

βy2
(6.68)

where ωw is the general near-wall analytical solution valid in the viscous sublayer.
Substitution of this into the ω-model equation yields a new form in which ω̃ is the
variable to be solved. A zero value is given for ω̃ as a wall-boundary condition.
This is an interesting technique and it certainly deserves more attention. However,
studies of this method will be left for future work. At this stage, the method de-
veloped in Ref. [109] is employed. This is based on Wilcox’s rough-wall boundary
condition method [28, 60, 140]

ωw =
u2

τ

ν
SR (6.69)

where SR is a nondimensional function defined as

SR =

{
[50/max (k+

s ; k+
smin)]2 for k+

s < 25
100/k+

s for k+
s ≥ 25

(6.70)

and k+
s is the inner-scaled sand-roughness height ksuτ/ν, so that rough walls can

be simulated if the equivalent sand roughness can be estimated. For smooth walls,
k+

s min becomes active. It is known from experiments that the surface roughness
does not influence the flow if k+

s is less than, say 4. The computed wall shear stress
is, however, quite sensitive to the choice of k+

smin [109, 142]. The optimal value is
a function of the grid spacing next to the wall. It has been found in Ref. [109] that
the grid sensitivity can be largely eliminated if k+

smin is defined as the following
function of y+

1 , the inner-scaled thickness of the first control volume

k+
smin = min

[
2.4(y+

1 )0.85; 8
]

(6.71)

The upper limit is to avoid excessive values in the case of flow separation. Eq. (6.71)
was optimized for the k − ω SST model, but it turned out that it works as well with
the new model. This is shown in Fig. 6.23, which displays the variation in the
skin-friction coefficient as a function of y+

1 in fully developed channel flows at two
Reynolds numbers: 106 and 2 × 104. The variation remains reasonably small up to
y+

1 as high as 4 or 5, especially at the higher Reynolds number.
A wall-function approach is an alternative to solving the equations through the

viscous wall layer. Although the wall-function approach is not considered in this
study, except in the self-similar boundary-layer computations, it is worth mention-
ing that this kind of wall treatment seems to have gained some fresh attention dur-
ing the last few years. The traditional simple logarithmic wall-function approach is
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Figure 6.23: Influence of the near-wall grid spacing on the computed skin-friction coefficient of
fully developed channel flows at Re = 106 (solid line), and at Re = 2 × 104 (dashed line).

known to suffer from severe limitations since the logarithmic law is valid only over
a limited range of situations. New, more flexible wall-function approaches have
been proposed by Grotjans and Menter [143], by Rautaheimo and Siikonen [144],
at least. Schatz and Thiele are currently working on further improvements and
extensions of such techniques [131]. These methods attempt to combine the two
traditional methods, i.e. the use of the log-law wall functions and the solution down
to the wall, in a flexible and user-friendly way.

6.4.8 Equilibrium Boundary Layers under Pressure Gradients

So far, boundary-layer results have been shown only for the ZPG case. Next, the
performance of the new model is investigated in equilibrium boundary layers with
different non-zero pressure gradients. First, the mean-velocity profiles of six cases
with βT ranging from -0.35 to about 20 are shown together with experimental data.
The k − ω results are compared also with the results computed using the standard
k−εmodel [145]. The significantly different behaviour of the k−ε and k−ω models
is investigated. After this, the strongest adverse pressure-gradient case (βT = 20)
is studied in more detail. The first case is a favourable pressure-gradient boundary
layer measured by Herring and Norbury with βT ≈ −0.35 [146]. Next, two mild
adverse pressure-gradient

boundary layers are computed: βT ≈ 0.9 by Bradshaw [49], and βT ≈ 1.8
by Clauser [47]. Three boundary layers subjected to pressure gradients ranging
from moderate to strong are finally computed. These are: βT ≈ 5 by Bradshaw
and Ferris [147] (white symbols) and by Clauser [47] (black symbols), βT ≈ 8
by Clauser [47], and βT ≈ 20 by Skåre and Krogstad [50]. All this data, except
that of Skåre and Krogstad, is taken from the proceedings of the 1968 AFOSR-IFP-
Stanford Conference [48].

All the predicted velocity profiles involving k − ω modelling agree fairly well
with the measured data in all cases except when βT ≈ 5. In this case, there is a
disagreement also between the experimental profiles measured by Bradshaw [147]
and by Clauser [47]. The role of the constitutive model is not as important here
as in the non-equilibrium situations usually occurring in practical flow problems.
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Figure 6.24: Velocity-defect profiles of six equilibrium boundary layers with different pressure
gradients. Different symbols are used to separate measurements at different locations in the same
experiment. In the case with βT ≈ 5, white symbols represent experimental data by Bradshaw and
Ferris [147], and black symbols represent Clauser’s measurements [47].
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Therefore, the original linear BSL model is no worse in this case than the BSL-
EARSM version. The velocity profiles computed using the new model and the BSL-
EARSM are relatively similar to each other except near the edges. As expected, the
velocity profiles computed employing the new model are in clearly better agreement
with the measurement data on the edge regions. The differences between the results
would become much larger in favour of the new model if the y-coordinate were
scaled by the boundary layer thickness δ instead of ∆.

In contrast to all the k−ω results, the standard k−ε model is in strong disagree-
ment with the experimental data, especially at higher values of βT . It gives too low
a velocity defect near the wall. The velocity profiles are not only excessively full,
but the overpredicted scaling velocity uτ further increases the error. This is typ-
ically seen as overestimated skin friction and delayed separation in practical flow
simulations. This shortcoming of the k− ε models has been known for quite a long
time. Wilcox critisized the k − ε models for this reason in 1988 [60], and Rodi and
Scheuerer [59] proposed already in 1986 that this problem is associated with the
overestimation of the turbulent length-scale in the wall layer. This, indeed, is the
reason. It is known from the experiments [50, 148] that the mixing length

lmix =

√
νT

|dU/dy| (6.72)

shows linear growth lmix/δ = κly/δ in the wall layer. The experiments show that
the slope κl increases rapidly with βT from 0.41 in ZPG boundary layer at least
up to 0.78 in the APG case of Skåre and Krogstad with βT = 20. It should be
noted that the von Kármán constant of the logarithmic velocity profile, however,
does not depend on the pressure gradient as first observed by Perry et al. [149].
Rodi and Scheuerer stated that “the length-scale gradient is virtually independent of
the pressure gradient over a wide range”. This is in contrast with the experimental
findings by Glowacki and Chi, and by Skåre and Krogstad. However, this does not
invalidate the finding of Rodi and Scheuerer that the k− ε model overestimates the
length-scale slope in the wall layer. The usual length scale defined as lT = k3/2/ε
differs from the classical definition of the mixing length (6.72), but these two are
linearly proportional to each other in the logarithmic layer. The mixing-length slope
in the wall layer is plotted in Fig. 6.25 as a function of βT .

Fig. 6.25 shows that the k − ε model strongly overestimates the mixing-length
slope in the wall layer while the k − ω models are engaged with much less se-
vere overestimation. The experimental data is based on the measurements by Brad-
shaw [150], East and Sawyer [151], and Skåre and Krogstad [50], and it is taken
from [50]. Menter’s BSL and SST models are also included in the comparison. The
BSL model is in the best agreement with the experimental data. The new model
as well as the SST model are slightly more in error in this sense. It was studied
whether this difference comes from the constitutive model or from the coefficient
σk1 that takes the values 0.5, 0.85, and 1.1 in the BSL, SST, and the new models,
respectively. It turned out that σk1 is purely responsible of this difference while the
constitutive model has virtually no effect in this case as the boundary layers are in
equilibrium. One could now conclude that the value 1.1 selected for σk1 is too large.
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Figure 6.25: The log-layer slope of the turbulent length-scale or the mixing-length as a function of
the nondimensional pressure-gradient parameter βT . Measurements by Bradshaw (circles), East and
Sawyer (squares), and Skåre and Krogstad (triangle). All measurement data is taken from [50].

However, the velocity profiles computed with the new model are in good agreement
with the experiments. In addition, the SST model, which has quite a high σk1, has a
good record of reasonably accurate predictions of retarding and separating bound-
ary layers over the years. Furthermore, some two-dimensional computations with
the new model showed that there is no need to reduce σk1, see Chapter 7. It must
also be remembered that the ZPG boundary-layer profile will become concave in
the defect layer as with the BSL-EARSM combination if σk1 is reduced much be-
low 1. This concave shape is somewhat similar to typical velocity profiles of APG
boundary layers. Thus, it may be that a model that follows the experimental values
of the mixing-length slope very well will show some features typical for the APG
boundary layers already in the ZPG case. In this regard, it would be better to accept
somewhat overestimated mixing-lenght slopes, especially as this overestimation is
several times smaller than that of the k − ε model.

The overestimation of the length scale obviously leads to excessive shear stress
in the wall layer and this, in turn, leads to overestimated skin friction and too full
a velocity profile. It is interesting to see that this difference in the k − ε and the
k−ω models is restricted to the wall layer. Somewhat surprisingly, both the models
overestimate the shear stress in the defect layer. This is shown by Fig. 6.26, which
illustrates the maximum shear stress as a function of βT . This maximum occurs in
the defect layer. Experiments show a linear increase with βT , i.e.

−u
′v′max

u2
τ

− 1 ≈ 0.75βT (6.73)

In contrast to this, both the k − ε and the k − ω models predict similar growth that
has a slope of about 1. This is also seen in the shear-stress plot of Fig. 6.27 where
βT = 20.

The consistently overestimated maximum shear stresses raise a question whether
the simplifying assumptions invoked in the derivation of the self-similar equations
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Figure 6.26: The maximum shear stress as a function of the nondimensional pressure-gradient pa-
rameter βT . The dash-dotted line is a line fitted to the measured data as −u′v′max/u2

τ−1 = 0.75βT .
Measurements by Bradshaw (circles), East and Sawyer (squares), and Skåre and Krogstad (triangle).
All measurement data is taken from [50]. Legends as in Fig. 6.25.

employed here could be responsible for this discrepancy. It must be kept in mind
that the results shown here are numerical solutions to a simplified set of equations
derived by applying certain equilibrium assumptions, see Section 4.1.3. Therefore,
it may be necessary to verify that the simplifications of the equations do not cause
errors comparable with the modelling errors. In this particular case, it is consid-
ered that the most significant simplification is that the rate of streamwise change
of the normal-stress component ∂u′u′/∂x has been omitted from the momentum
equation. The influence of this is not studied in this work but, according to Skåre
and Krogstad, the contribution of this term to the shear-stress profile is only of the
order of 3% of the peak value. Thus, it can be assumed that this simplification is
not responsible for the difference between the computed and measured shear-stress
profiles. Instead, the reasons are very likely in the turbulence models.

The k − ε model used for comparisons above is a standard linear Boussinesq
model. Using higher-order constitutive models, like EARSMs, or models with only
a scalar nonlinearity, like the SST, does not resolve the overestimation of the wall-
layer length-scale. Such constitutive models typically give some improvements in
predicting non-equilibrium flows, but a k − ε model furnished with a higher-order
constitutive model will still suffer from overestimated turbulent mixing near the
wall. This has been shown by Hellsten in Ref. [63], where separating APG flows
were computed using linear k−ε and k−ω models, SST k−ω, and EARSM based
on the k− ε and k− ω models. The linear models failed completely while the SST
and the EARSM k − ω models gave satisfactory results. The k − ε EARSM model
was much better than the linear one, but very importantly, near the wall it failed
almost similarly to the linear k− ε model. In one of the cases, it completely refused
to predict separation.

The strongest pressure-gradient case by Skåre and Krogstad is studied next in
more detail. Fig. 6.27 shows the velocity profile in the logarithmic scale to study
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the wall layer (top left). The difference between the experiments and all the compu-
tations when y/δ → 0 is owing to the fact that the viscous sublayer is not included
in the computations. The logarithmic boundary conditions are given at a very small
value of y/δ. This is possible, because Re → ∞ is assumed, which implies van-
ishing thickness of the viscous sublayer. The velocity profiles plotted in log-scale
reveal that the k−ω models underestimate the slope of the logarithmic profile 1/κ.
According to the BSL k−ω model κ = 0.66 and the new model gives κ = 0.8 while
the measurements follow the slope of κ = 0.41 familiar from the ZPG boundary lay-
ers. The k − ε model shows an even much higher value of κ = 1.9. This shows
that neither the existing k − ω models nor the new one is ideal for APG boundary
layers, although they are by far superior to the k − ε models. It is probably dif-
ficult to improve further the accuracy of the k − ω modelling for APG boundary
layers without deteriorating the accuracy in other kinds of flow situations. Further
improvements might require a completely different approach, such as starting the
development from some other scale variable than ω. Such efforts are beyond the
scope of this study, but research on this is currently active at ONERA [131].

Fig. 6.27 (top right) shows the mixing-length distributions through the layer.
Although the new model overpredicts the slope in the wall layer as well as the other
k−ω models, its agreement with the measurements is overwhelming in comparison
with the other models in the outer parts. In this regard, it is somewhat surprising
that it overestimates the shear stress as well as the normal stresses, also shown in
Fig. 6.27. Nevertheless, the new model predicts also the stress components some-
what more accurately than the other models in the comparison, especially near the
outer edge. The linear models, the BSL k− ω and the standard k− ε, are of course
incapable of predicting the normal stresses properly, because they just assume an
isotropic distribution of energy on the normal stresses u′

iu
′
j = 2k/3 when i = j. It

is also interesting to see that, unlike the other models in the comparison, the new
model gives the mixing length with at least a qualitatively correct trend when the
outer edge is approached. The experimental data [50, 152] suggests that the mixing
length increases towards the edge, when the shear goes to zero. The new model
does the same as the length scale lT =

√
k/ω ∼ f−2/3 if Cµ is assumed to be con-

stant around the edge. The other models predict a decreasing mixing length when
the edge is approached. This is still other evidence that exploitation of the edge
analysis of Section 6.2.4 in the development has been beneficial.

6.5 Alternative Operational Scale Variables

6.5.1 Generalized Formulation for the Scale-Determining Model

As discussed in Section 2.5, the choice of the second scale variable φ = kmεn

strongly affects the resulting model. New terms proportional to products of gradi-
ents of φ and k will appear, when a given model of the form (2.49) written for some
variable, say φ1, is transformed for another variable φ2 with different values of m
and n. If the equation (2.49) is extended by adding new terms of such form, the
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Figure 6.27: The APG boundary layer with βT = 20 studied experimentally by Skåre and Krogstad.
Velocity-defect profiles in logarithmic scale (top left), the mixing-length distributions (top right), and
the turbulent stresses −u′v′, u′u′, v′v′, and w′w′.



130 Scale-Determining Model

model will then allow different choices of φ. Transformations from one variable to
another will merely change the values of the model coefficients rather than bring in
new terms.

It might be useful to set up the newly developed k − ω model in a generalized
form so that arbitrary operational variables can be studied. Usually a turbulence
model is operated in the form it has been developed, but sometimes it may be use-
ful to transform the model for some other operational variable. For instance Kok
developed his model in the k−ω form [130], but the model is operated in the k−τ -
form [153] (τ ∼ 1/ω). Using a generalized formulation, the given model can be
transformed for any new operational variable in principle. Therefore, this method
could be exploited in studying the choice of an alternative operational variable for
an existing model. This will be systematically attempted in Section 6.5.3. Further-
more, it might be possible to study the effect of the choice of the original second
scale variable, i.e. ω in this case, in a systematic way. This is because the gen-
eralized model coefficients can be derived as functions of the operational variable
parameters m,n, the model coefficients, and the m,n-parameters of the original
variable. In principle, this makes it possible to perturb the definition of the original
variable by small increments around its m and n values. It would be interesting
to see if the choice of the original second scale variable could be optimized this
way. For example, most of the k − ω models predict the wall shear-stress and the
logarithmic velocity profile better than the other scale-determining models with-
out any near-wall corrections. The question arises: could this be made even better
by changing m and n slightly from their ω-values and recalibrating the obtained
model? Such studies are, however, beyond the limits of this study and are left for
the future.

The generalized second-scale determining model can be derived by first express-
ing the selected original variable as ω̃ = km̃εñ and transforming it for arbitrary
operational variable φ = kmεn. The tilde-notation is used in order to emphasize
that the ω̃ is not necessarily the usual ω, but for instance a new variable obtained by
perturbing the definition of ω̃ = km̃εñ around the ω-exponents m = −1 and n = 1
as proposed above. It must be noted that non-integer values can well be applied
because the final m and n of the operational variable can be chosen as integers. In
this study, the new model, or more generally, any k−ω model of the form given by
Eqs. (6.2) – (6.3) is selected as the baseline model. The necessary algebra is carried
out in Appendix A, and the resulting equation is

Dφ
Dt
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φ

k
(Cφ1P − Cφ2ε) +

∂

∂xj

(
νφφ

∂φ

∂xj
+ νφk

φ

k

∂k

∂xj

)

+
(
C

(V )
φ3 ν + C

(T )
φ3 νT

) 1

k

∂k

∂xj

∂φ

∂xj
+
(
C

(V )
φ4 ν + C

(T )
φ4 νT

) φ

k2

∂k

∂xj

∂k

∂xj

+
(
C

(V )
φ5 ν + C

(T )
φ5 νT

) 1

φ

∂φ

∂xj

∂φ

∂xj
(6.74)



Alternative Operational Scale Variables 131

where

νφφ = νω̃ νφk = m′(νω̃ − νk)/n
′

Cφ1 = (Cω̃1
−m′)/n′ Cφ2 = (Cω̃2

−m′)/n′

C
(V )
φ3 = 2m′ C

(V )
φ4 = m′(m′ − 1)/n′

C
(V )
φ5 = n′ − 1 C

(T )
φ3 = 2m′σω̃ +m′(σk − σω̃)/n′ + σd

C
(T )
φ4 = m′(m′σω̃ − σk + σd)/n

′ C
(T )
φ5 = (n′ − 1)σω̃

(6.75)
The auxiliary parameters m′ and n′ are defined as

m′ = (m̃n−mñ)/n and n′ = ñ/n where n 6= 0 (6.76)

The scalar-diffusivity gradient diffusion model is employed in (6.74). The diffusiv-
ities are given by

νk = ν + σkνT (6.77)

νω̃ = ν + σω̃νT (6.78)

where the molecular diffusion is included. The molecular viscosity is also kept in
the additional gradient terms for the sake of completeness.

6.5.2 Some Numerical Aspects

The mathematical properties of the source terms should be understood in order to
avoid numerically troublesome formulations. The mathematical nature of each term
must also be known when the numerical algorithms are to be selected. This can be
studied by analysing the generalized model formulation (6.74). It can be simplified
by omitting the viscosity in the gradient terms. Furthermore, the production of k
can be approximated as

P = −u′ku′l
∂Uk

∂xl
≈ νT

(
∂Uk

∂xl
+
∂Ul

∂xk

)
∂Uk

∂xl
= 2νTS : ∇U (6.79)

Note that S is here the dimensional strain-rate tensor

S =
1

2

(
∂Uk

∂xl
+
∂Ul

∂xk

)
(6.80)

After these simplifications Eq. 6.74 can be formally written as

Dφ
Dt

− ∂

∂xj

(
νφφ

∂φ

∂xj
+ νφk

φ

k

∂k

∂xj

)
=

5∑

l=1

Cφlφ
αlkβlTl (6.81)

Here, each source term is expressed as a product of a coefficient Cφl, powers of φ
and k, and an inner product of gradients of either mean velocity or φ or k (note,
that T2 = 1). Expressions of these factors are given in Table 6.2 as functions of the
background model coefficients, and the exponents m̃, ñ, m, and n.
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Table 6.2: Source term factors in Eq. (6.81). Note that m′ = (m̃n − mñ)/n and n′ = ñ/n.

l αl βl Tl Cφl

1 1 − 1/n 1 +m/n S : ∇U 2Cµ(Cω̃1 −m′)/n′

2 1 + 1/n −1 −m/n 1 −(Cω̃2 −m′)/n′

3 −1/n 1 +m/n ∇k · ∇φ Cµ {m′[(2 − 1/n′)σω̃ + σk/n
′] + σd}

4 −1 + 1/n m/n ∇k · ∇k Cµm
′(m′σω̃ − σk + σd)/n

′

5 1 + 1/n 2 +m/n ∇φ · ∇φ Cµ(n′ − 1)σω̃

To make it easier to study the behaviour of the source terms, the gradient terms
must be considered frozen. With this assumption, the behaviour of each term de-
pends on the sign of the product CφlTl and on the signs of αl and βl and also on their
relative magnitude. If CφlTl < 0, the term is dissipative, but for positive values of
the factor CφlTl it becomes productive. Terms with both αl and the coefficient Cφl

having a negative value may potentially behave in an unfavourable manner depend-
ing somewhat on the value of βl and also on the behaviour of the gradient factor.

The above can be understood by studying a simple model equation

dφ
dt

= λφα (6.82)

If α = 1, the equation is linear and its solution is simply φ(t) = Ceλt, i.e. exponen-
tial growth or decay depending on the sign of λ. C is a constant determined by the
initial condition. For all other values of α, the equation is nonlinear and at least a
following solution exists that does not satisfy an arbitrary initial condition

φ(t) = [(1 − α)λt]1/(1−α) with α 6= 1 (6.83)

representing either algebraic growth or decay as long as φ is real-valued. For in-
stance if α = 2, the solution is simply φ(t) = −1/(λt). On the other hand, if
α = −1 the solution will be complex-valued if λ < 0 (negative exponent and neg-
ative coefficient). The source terms of Eq. (6.81) can be studied similarly, although
it must be remembered that, of course, the real problem is much more complicated
than (6.82) including, e.g. diffusion and variable factors kβl and the gradient prod-
ucts.

By inspecting the values of α and the sign of CφlTl of Eq. (6.81) we can check
that none of the terms involve both negative exponent and negative coefficient. If
the third or the fifth term of (6.81) are of this form, the negative exponent can
be eliminated by transforming the partial derivative ∂φ/∂xj for another variable
ψ = kpφq using the formula

∂φ

∂xj
=

1

qkpφq−1

∂ψ

∂xj
− pφ

qk

∂k

∂xj
(6.84)

It will also be found whether a term is dissipative or productive. This is useful in-
formation not only in selecting the operational variable but also when the numerical
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solution procedure is designed. This is because of the broadly known fact that im-
plicit treatment is best suited for dissipative terms and explicit methods for terms
that make the solution to grow exponentially. This becomes clear when (6.82) with
α = 1 is discretized using the explicit Euler scheme as

φn+1 = (1 + λ∆t)φn (6.85)

and the implicit Euler scheme as

φn+1 =
φn

1 − λ∆t
(6.86)

The former has a severe stability limit in dissipative cases (λ < 0) while the latter
has a similar limit in the productive cases, but is unconditionally stable in dissipative
cases.

Let us study the case of α = −1 and λ > 0 as an example of a situation when
the solution grows algebraically. Now the explicit Euler scheme gives

φn+1 = φn +
λ∆t

φn
(6.87)

which has no stability limit but is singular when φ → 0. The implicit scheme
provides

φn+1 =
1

2

(
φn ±

√
(φn)2 + 4λ∆t

)
(6.88)

This is also unconditionally stable and non-singular for all values of φ. These kinds
of terms are probably acceptable in the real problem provided that βl > −αl to
ensure that the term vanishes at the limit when both k and φ approach zero. It is
assumed that the implicit treatment is a better choice for these kinds of terms. For
the real problem, the implicit method cannot be derived similarly as (6.86) or (6.88).
Instead, it is derived by means of approximating the source term at the time level of
n+ 1 using a linearized Taylor polynomial expansion.

As an example, the ω model equation (6.3) is analysed. The production term is
approximated to the leading order as 2Cω1CµS : ∇U. This does not depend on ω
itself at all. See also Table 6.2. This kind of source term makes the solution grow
only algebraically if the other variables are thought to be frozen. An algebraically
growing solution is probably easier to manage with any numerical solution method
than the exponential growth. The cross term also supports algebraic growth (pro-
vided that its gradient factor does not grow very rapidly). This is because it is
proportional to the inverse of ω and it is always non-negative. The sink term in turn
is −Cω2ω

2 which supports algebraic decay. Hence, there are no ill-behaving source
terms or even any terms supporting exponential growth. This may partially explain
why k−ω models are usually reported to be numerically better behaving than some
alternative models, for instance the low-Reynolds-number k − ε models.

6.5.3 Constraints in the Operational Scale-Variable Space

The newly calibrated second-scale model has not necessarily to be formulated using
ω as an operational variable, although ω has been one of the most popular choices in
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aerodynamics following the work of Wilcox [60] and Menter [3]. The use of ω has
some advantages. For example, the source term of the usual ω model equation has a
form favourable for numerical solution. It also easily allows the modelling of sand-
roughness on walls [60, 154]. On the other hand, the use of ω has been criticized,
mainly because of its singular near-wall behaviour. Theoretically, ω ∼ 1/y2 when
y → 0 and thus the wall-boundary condition, in principle, should approach infinity
and the gradient of ω is very high near the wall. This anomaly can be overcome by
means of careful numerical implementation of the wall-boundary condition, see e.g.
Ref. [109]. On the other hand, splitting ω into two parts has been recently proposed
by Gullman-Strand [141], see Section 6.4.7. This way, the ω variable to be solved
will go to zero on the wall. However, it may be interesting to look for some other
operational variable with a zero value at the wall as an alternative to ω.

The possibilities to find a good alternative for ω with a zero wall-value are stud-
ied in this section. Such an operational variable should have a decaying solution
in laminar free stream so that the free-stream boundary condition approaches zero.
Otherwise, it would be very difficult to specify the free-stream boundary value since
the solution would grow along the free flow. A number of other requirements can be
posed concerning the form of source terms appearing in the model equation trans-
formed for the new variable. There should be no singular source terms or terms
supporting ill-behaved solutions. Such terms may cause instabilities in the numeri-
cal solution procedure.

The choice of the operational variable is here studied with the aid of the general-
ized scale variable φ = kmεn and its model equation (6.74). This way, the selection
of m and n can be studied systematically. The above-mentioned requirements can
be expressed as constraints in the m,n-space.

It is proposed that an ideal operational form of a scale-determining model should
fulfil the following requirements:

1. Non-growing solution in free stream i.e. boundary condition φ∞ → 0 allowed

2. Wall-boundary condition → 0 is desirable

3. All source terms non-singular on walls and in free-stream conditions

4. Source terms with a negative exponent of φ should never have a negative
coefficient

5. Growth rate from the wall preferably not steeper than that of k (k ∼ y2 when
y → 0)

These requirements can be expressed as formal constraints in them,n-space. These
constraints are derived in the following.

The first requirement will be satisfied if Cφ2 ≥ 0. This is the case when

Cω̃2 −m′

n′
≥ 0 (6.89)
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Table 6.3: Exponents γl of (6.91) and their non-negativity conditions for each term.

Term γl γl ≥ 0 when

Extra diffusion m− 1 m ≥ 1
1 m+ 1 m ≥ −1
2 m− 1 m ≥ 1
3 1 Always non-singular
4 2 −m m ≥ 0
5 m− 1 m ≤ 2 and n 6= 1
All m ≥ 1 and m ≤ 2 if n 6= 1

which, after substituting m′ and n′, yields the constraint

m ≥ m̃− Cω̃2

ñ
n (6.90)

The second requirement implies that m > 0. Note, that ω and ε do not satisfy this
requirement.

In order to find the limits of singularities in them,n-space, we have to transform
all the source terms into the form

Cφlk
γlεδlTl (6.91)

The exponent of k must be non-negative for all terms in order to avoid singularities
at no-slip walls, where k → 0 and ε remains non-zero. Also the extra diffusion term
may go singular. The exponents of k and their non-negativity conditions are given
for each term in Table 6.3. It is concluded that m must be at least 1 and it may not
exceed the value of 2 except if n = 1.

The fourth requirement is probably not critical for the production term even
when the exponent of φ is negative, i.e. when 0 < n < 1. This is because the pro-
duction term is typically non-negative and may get negative values only locally in
some circumstances. This requirement can always be satisfied for the gradient terms
3, 4, and 5 by means of yet another transformation of φ using the formula (6.84).
Thus, this condition needs to be satisfied only for the sink term (term 2). Its co-
efficient is required always to be negative (requirement 1), thus the exponent of φ,
which is 1 + 1/n, must be positive. This is the case when n > 0 or n ≤ −1.

The last requirement is to prevent the second derivative of φ from becoming too
high next to the wall. This is because the grid convergence may slow down in the
near-wall region if the second derivative of φ gets considerably larger values than
that of k. It is known that k ∼ y2 when the wall is approached. Therefore, the
corresponding exponent of φ should not be much larger than 2. This, however, is
not a strict constraint but merely a hint of not choosing m much higher than one.

The above-derived constraints deny certain regions of the m,n-space. This is
illustrated in Fig. 6.28. Most of the suggested scale-determining variables found
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Table 6.4: A few possible operational variables suggested in the literature.

Variable φ m n notes

ε 0 1 εw 6= 0
ω −1 1 ωw 6= 0, very steep gradient when y → 0
ϕ −1/2 1 ϕw 6= 0, steep gradient when y → 0
ω2 (or ζ) −2 2 ω2

w 6= 0, very steep gradient when y → 0
τ 1 −1 τ∞ → 0 not allowed
g 1/2 −1/2 g∞ → 0 not allowed
σ 1/2 −1 g∞ → 0 not allowed
l 3/2 −1 l∞ → 0 not allowed
R 2 −1 high 2nd derivative when y → 0
kl 5/2 −1 high 2nd derivative when y → 0

in the literature are also shown in Fig. 6.28 a. These variables are also given and
commented on in Table 6.4. All of them are found to violate some of the constraints
suggested here. For instance, singularities appear in many proposed models, even
in the most popular k − ε models. These singularities are usually removed by
means of wall-damping functions that go to zero when the wall is approached. In
this work, however, it is one of the principal requirements that no wall-damping
functions are included in the model. On the other hand, some models e.g. k− τ and
k− l formulations give growing solutions in a free stream. This makes it difficult to
specify free-stream boundary conditions. For instance, in order to avoid the growing
free-stream solution, Kok and Spekreijse [153] redefined τ as τ = 1/(ω + ω0) with
ω0 being a fixed finite free-stream value. In this work, the variables with growing
free-stream solutions are not accepted so that such tricks can be avoided.

It must be remembered that the constraints derived here are only for the trans-
formations of the k − ω models of the form of (6.2) – (6.3) considered in this
study. Moreover, the requirements set for the ideal operational form are really strin-
gent ones, indeed, and not absolute requirements that any model must obey. In
other words, the observation that most of the proposed second scale variables do
not satisfy the given constraints, should not be understood as criticism towards the
numerous proposed models employing such variables.

Because most of the displayed variables are not suitable for this study, a new
candidate as an alternative operational variable is suggested here. This is kε called
here α. Also R = k2ε−1 appears promising, because it also fulfils the given con-
ditions, except the last of them; its second derivative gets higher values than that
of k near the wall, because it is proportional to k2. R has been chosen as a scale
variable in some proposed models, e.g. [155]. These two variables are displayed in
Fig. 6.28 b.

Numerical experiments, however, showed that the generalized form (6.74) with
an arbitrary choice of m and n cannot be easily solved numerically. Unresolvable
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Figure 6.28: Constrained m, n-space with: a) most of the scale-determining variables suggested in
the literature, and b) proposed candidates to be studied: α = kε, and R = k2/ε. The lines bordering
the allowed regions also belong to these regions except the line n = 0. For example, 1 ≤ m ≤ 2 is
allowed when n > 0.

troubles arose even with the selected variables α = kε and R = k2/ε which were
anticipated to be numerically well-behaving. The reason for these numerical dif-
ficulties is not known at present. The extra diffusion term was considered as one
possible reason, but the elimination of it by trying equal values for σk and σω did
not solve the problem. Perhaps the gradient products in some of the cross terms
trigger numerical instabilities near the walls. Attention was also paid to the numer-
ical treatment of these terms, but without much success. Finally, the attempts to
find an alternative operational variable were stopped after considerable efforts. An
important reason for this was that Gullman-Strand proposed at the same time to re-
place the traditional ω by a wall-vanishing variable ω̃ (6.68) [141]. The use of this
decomposition of ω removes the wall singularity and leads to a much simpler equa-
tion than (6.74). Because the ω-formulation has practically no other weaknesses
than the wall-singularity, it is considered that there is probably no need to continue
the efforts to find alternative operational forms. Within this study, the final oper-
ational form of the new model will be its original k − ω form. If it is considered
important in the future to remove the wall-singularity, the model can be transformed
as proposed by Gullman-Strand [141].
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6.6 Summary of the Model

6.6.1 The Scale-Determining Model

The transport equations for k and ω of the new k − ω model are written as

Dk
Dt

= P − ε+
∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
(6.92)

Dω
Dt

=
ω

k
(Cω1P − Cω2ε) +

∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
(6.93)

+
σd

ω
max

(
∂k

∂xj

∂ω

∂xj

; 0

)

Note, that the cross term is only included when the inner product of the gradients of
k and ω is positive. The model coefficients vary in space as
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Cω12

Cω22

σk2

σω2

σd2




(6.94)

where fmix is a new mixing function (replacing Menter’s F1) and is described below.
The coefficient values of the new model are as follows:

Cω1 Cω2 σk σω σd

Set 1 0.518 0.83 1.1 0.53 1.0
Set 2 0.44 0.92 1.1 1.0 0.4

The values of Cω11, Cω21, and σω1 are related through the log-layer relation

Cω11 = Cω21 −
κ2σω1√
β∗

(6.95)

with β∗ = 0.09 and κ = 0.42. Note that the BSL model uses κ = 0.41 here.
The mixing function fmix is slightly modified from Menter’s corresponding

function F1 but is based on the same ideas. The mixing function is equal to one
almost up to the edge of boundary layers and is zero in the free turbulent flows and
in laminar regions. Wall distance is needed also in this model. The ratio of turbulent
length-scale and wall distance d is used as the first measure just as in the BSL model

Γ1 =

√
k

ωd
(6.96)

as well as the viscous measure

Γ2 =
500β∗ν

ωd2
(6.97)
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and maximum of Γ1 and Γ2 is again taken. Following Menter, even a third measure
is exploited. This is based on the length-scale of the cross term ∇k · ∇ω/ω and the
wall distance, and it is used as an upper bound for the maximum of Γ1 and Γ2. In
the present model, the mixing is designed to occur clearly closer to the boundary-
layer edge than in Menter’s model. This is achieved by multiplying Menter’s Γ3 by
a factor of ten. Also a different lower limit for the cross term is introduced. Hence,
the redefinition for Γ3 now reads

Γ3 =
20k

max [d2(∇k · ∇ω)/ω; 200k∞]
(6.98)

with k∞ being the user-specified free-stream value of k. In fully turbulent internal
flows this limiter is of no significance, thus any small value may be used. Finally,
the mixing function is defined as

fmix = tanh (CmixΓ
4) with Γ = min [max (Γ1; Γ2); Γ3] (6.99)

where for the new model, Cmix = 1.5 is selected while Menter’s model has Cmix =
1.0. The larger coefficient is chosen to maintain fmix = 1 almost up to the outer
edge.

As concluded in Section 6.4.6, the far-field boundary conditions can be quite
arbitrarily chosen as long as not too large values are given for either ke or ωe. It is
recommendable, although not absolutely necessary, to specify ke and ωe such that
νTe is small in comparison with the νT values inside the turbulent regions.

The wall-boundary condition for k is the usual no-slip condition (k = 0 on the
wall), and the following equations define the recommended wall value for ω:

ωw = β∗
u2

τ

ν
SR (6.100)

where SR is defined as

SR =

{
[50/max (k+

s ; k+
smin)]2 for k+

s < 25
100/k+

s for k+
s ≥ 25

(6.101)

with ks specified for rough walls, and for smooth walls

k+
smin = min

[
2.4(y+

1 )0.85; 8
]

(6.102)

becomes active.

The new model rewritten for the traditionally defined ω

The new model can as well be rewritten using the traditionally defined ω-variable
that is ω ≡ ε/(β∗k). This makes it more convenient to implement the model into
CFD software where Menter’s model, or any other k − ω model based on this defi-
nition, is already available. In fact, the implementation task is very straightforward
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if Menter’s model is used as a starting point. Now, the transport equations take the
form familiar from Menter’s BSL model (6.92)

Dk
Dt

= P − β∗kω +
∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
(6.103)

Dω
Dt

= γ
ω

k
P − βω2 +

∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
(6.104)

+
σd

ω
max

(
∂k

∂xj

∂ω

∂xj

; 0

)

The constant β∗ has the standard value 0.09. Again, the cross term is only included
when the inner product of the gradients of k and ω is positive. The model coeffi-
cients vary in space according to (6.94), where Cω1 and Cω2 must be replaced by γ
and β, respectively. The coefficient values are the following:

γ β σk σω σd

Set 1 0.518 0.0747 1.1 0.53 1.0
Set 2 0.44 0.0828 1.1 1.0 0.4

Eq. (6.95) becomes

γ1 =
β1

β∗
− κ2σω1√

β∗
(6.105)

with β∗ = 0.09 and κ = 0.42. The arguments of the mixing function fmix are

Γ1 =

√
k

β∗ωd
(6.106)

as well as the viscous measure

Γ2 =
500ν

ωd2
(6.107)

and

Γ3 =
20k

max [d2(∇k · ∇ω)/ω; 200k∞]
(6.108)

Finally, the mixing function is defined as

fmix = tanh (CmixΓ
4) with Γ = min [max (Γ1; Γ2); Γ3] (6.109)

with Cmix = 1.5. The wall-boundary value becomes

ωw =
u2

τ

ν
SR (6.110)

and the definition of SR remains unchanged, see Eqs. (6.101) and (6.71).
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6.6.2 The Constitutive Model

The proposed k − ω model is designed to be used with the EARSM developed by
Wallin and Johansson [4] as the constitutive model. The model is written for the
Reynolds-stress anisotropy tensor defined as

aij =
uiuj − 2/3 kδij

k
(6.111)

The formulation of the algebraic Reynolds stress model is not repeated here, only
its explicit solution is given. The anisotropy tensor is expressed using the following
tensor polynomial:

aij = β1Sij (6.112)

+ β3

(
Ω∗

ikΩ
∗

kj −
1

3
IIΩδij

)
+ β4

(
SikΩ

∗

kj − Ω∗

ikSkj

)

+ β6

(
SikΩ

∗

klΩ
∗

lj + Ω∗

ikΩ
∗

klSlj −
2

3
IV δij

)

+ β9

(
Ω∗

ikSklΩ
∗

lmΩ∗

mj − Ω∗

ikΩ
∗

klSlmΩ∗

mj

)

The nondimensional strain-rate and vorticity tensors are defined by

Sij =
1

2
τ

(
∂Ui

∂xj

+
∂Uj

∂xi

)
(6.113)

Ω∗

ij =
1

2
τ

(
∂Ui

∂xj
− ∂Uj

∂xi

)
− τ

A0
Ω

(r)
ij (6.114)

The last term, which depends on Ω
(r)
ij , is an optional part which may be beneficial if

the streamline-curvature effects on turbulence are considered important. The model
can, however, be operated also without adding this so-called vorticity modification
due to curvature. This quantity is calculated from

Ω
(r)
ij = −εijk

II2
Sδkm + 12IIISSkm + 6IISSklSlm

2II3
S − 12III2

S

SprṠrqεpqm (6.115)

The reader is advised to consult Ref. [5] to understand this method. The time-scale
τ is taken as the maximum of turbulent and viscous time-scales as follows:

τ = max

(
1

β∗ω
;Cτ

√
ν

β∗kω

)
(6.116)

with Cτ = 6.0 and β∗ = 0.09. The β coefficients in (6.112) are functions of the
invariants IIS = SklSlk, IIΩ = Ω∗

klΩ
∗

lk, IIIS = SklSlmSmk, and IV = SklΩ
∗

lmΩ∗

mk as
follows:

β1 = −N(2N 2 − 7IIΩ)/Q β3 = −12IV/(NQ)
β4 = −2(N2 − 2IIΩ)/Q β6 = −6N/Q β9 = 6/Q

(6.117)
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where the denominator Q reads

Q =
5

6
(N2 − 2IIΩ)(2N2 − IIΩ) (6.118)

In two-dimensional mean flows, only two independent invariants, IIS and IIΩ, exist
and only the first and third terms remain in (6.112):

β1 = −6

5

N

N2 − 2IIΩ
and β4 = −6

5

1

N2 − 2IIΩ
(6.119)

The function N is solved from a cubic equation in two-dimensional mean flows
(see Ref. [4]). In three-dimensional cases, the corresponding equation is of the
sixth order and no explicit solution can be found for it. The solution of the cubic
equation Nc can be used also for three-dimensional cases as the first approximation.
It is given by

Nc =





A′
3/3 + (P1 +

√
P2)

1/3 + sign(P1 −
√
P2)|P1 −

√
P2|1/3 for P2 ≥ 0

A′

3/3 + 2(P 2
1 − P2)

1/6 cos

(
1
3
arccos

(
P1√

P 2

1
−P2

))
for P2 < 0

(6.120)
where

P1 =

(
A

′2
3

27
+

9

20
IIS − 2

3
IIΩ

)
A′

3 (6.121)

P2 = P 2
1 −

(
A

′2
3

9
+

9

10
IIS +

2

3
IIΩ

)3

(6.122)

Even better approximation for N in three-dimensional mean flows is obtained by
perturbing the invariants IV and V around the two-dimensional solution as proposed
by Wallin and Johansson [4]. This results in the following formula for N

N ≈ Nc +
162

[
IV 2 +

(
V − 1

2
IISIIΩ

)
N2

c

]

20N4
c

(
Nc − 1

2
A′

3

)
− IIΩ(10N3

c + 15A′
3N

2
c ) + 10A′

3II
2
Ω

(6.123)

which is employed in the FINFLO solver for three-dimensional mean flows. In two-
dimensional mean flows IV = 0 and V = IISIIΩ/2 hence the second term is zero
and N = Nc. Finally A′

3 is defined by

A′

3 =
9

5
+

9

4
CDiff max (1 + β

(eq)
1 IIS; 0)) (6.124)

here 9/5 is the original value of A3, see Table 5.2. The purpose of the additive term
in A′

3 is to model the ignored diffusion of the anisotropy, see Ref. [4]. The new
parameter β(eq)

1 is defined as

β
(eq)
1 = −6

5

N (eq)

(N (eq))2 − 2IIΩ
(6.125)

where

N (eq) = A3 + A4 =
81

20
and CDiff = 2.2 (6.126)
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To facilitate practical implementation in general CFD solvers, the Reynolds-
stress tensor is expressed using an effective eddy viscosity formulation including a
corrective extra-anisotropy tensor

u′iu
′
j = −νT

(
∂Ui

∂xj

+
∂Uj

∂xi

)
+

2

3
kδij + a

(ex)
ij k (6.127)

in which the effective eddy viscosity is defined as

νT = Cµkτ and Cµ = −1

2
(β1 + IIΩβ6) (6.128)

and

a
(ex)
ij = aij − (β1 + IIΩβ6)Sij (6.129)
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∗
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7 Validation for Two-Dimensional
Flows

7.1 Full Navier-Stokes Computation of Flat Plate
Boundary Layer

The ZPG boundary layer of a flat plate was studied in Section 6.4.4 at the self-
similar limit. It is verified in this section that a real developing ZPG boundary layer
can be computed accurately enough using the new model. The boundary layer is
computed up toRex = 1.1×107 orReδ2 ≈ 1.5×104. All the k−ω models tested in
this study predict the transition to occur almost immediately after the leading edge.
The computational grid over the plate consists of 128 × 96 control volumes in the
streamwise and transverse directions, respectively. The inner-scaled thickness of
the first cells above the wall (y+

1 ) is typically about 0.8. The grid resolution is found
to be sufficient, except that in case of the BSL models, the sharp edge is smeared out
to some extent due to the numerical damping. This is why the BSL models seem
to give a smoother edge than in the self-similar computations where much better
resolution was used on the edge region.

Fig. 7.1 shows the computed skin-friction distributions as functions of Rex. The
new model is shown to give a higher friction coefficient than the BSL-EARSM —
about equal to that obtained by the original linear BSL model. These curves agree
well with the experimental data by Wieghardt [134] (taken from [48]), and by Win-
ter and Gaudet [135]. At small Reynolds numbers, the computed friction is a bit
lower than measured. Fig. 7.1 shows also the velocity profiles at Rex = 4.2 × 106.
The agreement with the measurements is now better than according to the self-
similar computations shown in Fig. 6.14. This is probably owing to the simpli-
fications made in the derivation of the self-similar equations, such as the log-law
boundary condition, or because the Reynolds number in the measurement, Rex =
4.2×106, may be insufficient to properly reach the limit of self-similarity. It should
be remembered that in the derivation of the self-similar equations, Reδ2 → ∞ is as-
sumed. Nevertheless, the new model gives significantly better results than the BSL-
EARSM. Also the momentum thicknesses δ2 and the shape parameter H12 = δ1/δ2,
where δ1 is the displacement thickness, agree well with the measurements and with
the original linear BSL model.
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Figure 7.1: Skin friction cf (upper left), momentum thickness δ2 (upper right), and shape parameter
H12 (lower left) distributions over a flat-plate boundary layer up to Reδ2

≈ 15, 000 (Rex = 10.9×
106). Lower right: velocity profiles at Reδ2

≈ 7, 300 (Rex = 4.2 × 106). Computations with the
new k − ω EARSM, with the BSL-EARSM, and with the standard BSL model.

7.2 Developing Wake behind a Flat Plate

The self-similar far wake was used as one of the building-block flows in the model
development process. In practical aerodynamics, the far wake is seldom as impor-
tant as different developing wakes. Wakes of streamlined objects reach the self-
similar state usually quite far away from the trailing edge. Furthermore, in practi-
cal problems, such as the interaction problem of the slat wake and the main-wing
boundary layer, the wake interacts with a curved flowfield of varying pressure. The
effects of such more complex phenomena are beyond the scope of this study. In-
stead, the models’ abilities to predict a developing wake of a thin flat plate at zero
angle will be assessed from the trailing edge up to the far wake clearly beyond the
point where the self-similarity is reached. The experimental results of Pot [86] indi-
cated that in this case, the wake reaches self-similarity as far away from the trailing
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edge as x/δ2 ≈ 350. Here, δ2 is the momentum thickness of the wake defined as

δ2 =

∫
∞

−∞

U

U∞

(
1 − U

U∞

)
dy (7.1)

This is constant in the wake, and equals the trailing-edge momentum thickness ob-
tained by adding the momentum thicknesses of the boundary layers on both plate
surfaces at the trailing edge. In this case, the wake is computed up to x/δ2 ≈ 600.
The computed maximum velocity defect and the half-width are compared with the
experimental values in Fig. 7.2. The maximum velocity defect is plotted as its
squared inverse [U∞/(U∞ − U)]2. This quantity increases linearly in the self-
similar region, hence, this way the self-similar region is easier to detect from the
curves. Similarly, the half width b is plotted as (b/δ2)

2, because it also shows a lin-
ear growth in the self-similar region. The half width b is defined as such a value of
the y-coordinate where the mean velocity-defect equals half of its maximum value
that occurs in the symmetry plane.

The wake is generated by a flat plate on which the boundary layer develops up
to Rex = 3 × 106 which equals Reδ2 ≈ 5000. The plate-length is set to unity and
the whole domain is 3 units long and 0.4 units in height. The computational grid
consists of 256×256 control volumes in the streamwise and plate normal directions,
respectively. The subvolume over the plate consists of 96 × 256 control volumes
whereas 160×256 volumes are left for the wake behind the trailing edge. Symmetry
about the x-axis is exploited by placing a symmetry boundary condition on the
symmetry plane, and only computing the flow above it. The grid convergence study
was performed by comparing the new model results obtained with the finest 256 ×
256 grid and grids of 128× 128 and 64× 64 control volumes. Although not shown
here, the results obtained with the two finest grid levels are practically identical,
thus the results are believed to be grid-independent — at least those obtained with
the new model.

Fig. 7.2 shows that the new model follows the measurements clearly better
than the BSL models. This was expected because the self-similar computations
indicated that the BSL models predict by far too low a spreading rate for the far
wake. Now, this is seen as too high a maximum velocity defect and as wrong
slopes of the half-width curves in the self-similar region. In the intermediate re-
gion, 25 < x/δ2 < 350, the wake spreads more slowly than in the final self-similar
far wake where x/δ2 > 350, see Ramaprian et al. [85]. In this region, all the tested
models overestimate the spreading rate to some extent. It is interesting to observe
that unlike the new model, the BSL models seem to predict almost the same rate
of spreading in both the intermediate and the far-wake regions. This is in contrast
with the experiments. The new model also predicts the wake to reach the far-wake
phase at roughly the correct distance from the trailing edge. These observations are
encouraging, since they indicate that the new model predicts the wake development
more correctly than the BSL models, at least in a qualitative sense.
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Figure 7.2: The squared inverse of the maximum velocity defect (left) and the squared half-width
of the wake behind the flat plate as functions of the distance x/δ2 from the trailing edge. Circles
represent the experimental values measured by Pot [86].

7.3 Separating Adverse Pressure-Gradient
Boundary Layer on an Axisymmetric Body

Equilibrium APG boundary layers were studied in Section 6.4.8. Such equilibrium
boundary layers can be set up in a laboratory, and the equilibrium is a very beneficial
state of affairs in research work. In practical engineering problems, however, the
APG boundary layers are extremely seldom in equilibrium. The boundary layers
on the upper surfaces of wing elements are typically subjected to pressure gradients
that produce increasing βT values. These kinds of situations often lead to separation.
Since the physics involved in the high-lift aerofoil problems is quite complex —
even in single-element cases — the studies of separating APG boundary layers are
started from a simpler, more idealized flow problem. The decelerating boundary-
layer flow past a cylinder is a suitable case for this purpose. Driver studied this flow
experimentally [52], and it has been frequently used in turbulence-model validation,
see e.g. [3, 65, 156, 157]. This case was also used as one of the flows in Ref. [63] to
study the effect of the constitutive and the scale-determining models in separating
APG boundary-layer problems. The results computed with the k − ε models and
with the k − ω SST model in [63] are not repeated here. Only the results computed
with the new model, with the BSL-EARSM, and with the original linear BSL model
are shown.

The cylinder axis is oriented in the streamwise direction, and the test-section
walls are diverged in order to decelerate the flow. Driver considered two cases,
one without separation (B) and another with separation (C). Only case C is studied
here. The inflow Reynolds number based on the cylinder diameter D is 2.8 × 105,
and about 4,000 based on the inlet momentum thickness δ2. The inflow boundary
conditions have been obtained from the result of a separate computation of a zero
pressure-gradient boundary layer on the same cylinder. The outer edge is modelled
as an inviscid slip-wall contoured according to the streamlines plotted by Driver.



Separating Adverse Pressure-Gradient Boundary Layer on an Axisymmetric Body 149

Flow direction, x

Cylinder

Inflow
Outflow

Recirculation

Outer wall

Figure 7.3: A schematic illustration of Driver’s decelerating boundary layer.

Figure 7.4: Pressure coefficient Cp (left), and skin-friction coefficient 104 × cf (right) along the
cylinder surface in Driver’s decelerating boundary layer.

This slip wall had to be placed quite close to the outer edge of the boundary layer
because no streamline information was available further away. The influence of
this fact could not be studied, unfortunately. The computational grid consisted of
160×96 control volumes in the axial and radial directions, respectively. The grid in-
dependency was studied in [63] by repeating the SST computation using a 320×192
grid (not shown here). Virtually unchanged results were obtained, except that the
edge of the boundary layer became slightly sharper. This seemed to have only local
influence on the solution. It should be noted here that it was not properly under-
stood by the author at the time when Ref. 63 was published that this model tends
to predict sharp edges and therefore the grid convergence is slow. Nevertheless, at
least the results of the new model are believed to be sufficiently grid-independent.

The pressure and skin-friction distributions are plotted in Fig. 7.4. One can
immediately observe that the original BSL model underestimates the pressure loss
more significantly than the EARSM-based models. Hence, it can be assumed that
the role of the constitutive model is important in this flow. This has been shown
by Menter in the case of the SST-model [3], and later by Hellsten in [63] using
also EARSM-based models. All the k − ω models predict the flow separation at
almost the same location, which is only slightly upstream from the measured sep-
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Figure 7.5: Velocity U/Ue (upper) and Reynolds shear-stress −u′v′/(2U2
e ) (lower) profiles in

Driver’s decelerating axisymmetric boundary layer at five stations: x/D = -0.091, 0.363, 1.088,
1.633, and 2.177. Note the shifted origin of each station. Legends as in Fig. 7.4.
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aration line. The new model predicts a slightly longer separation bubble than the
BSL models, and is thus in slightly better agreement with the measurements. This
is seen in the pressure distribution as well, which is closer to the measurements
than that of the BSL-EARSM. It was shown in [63] that the k − ε models do not
predict separation at all, regardless of the employed constitutive model, Boussinesq
or EARSM. Nevertheless, the EARSM-based k − ε predicted a significantly larger
pressure loss than the linear Boussinesq k − ε model. This is yet further evidence
that the most significant difference between the k − ε and k − ω models in APG
flows takes place near the wall.

The velocity and Reynolds shear-stress profiles around the separation bubble
are plotted in Fig. 7.5 at five stations: x/D = -0.091, 0.363, 1.088, 1.633, and
2.177. The velocity profiles show that the BSL model underestimates the extent
of separation. The reversed flow is restricted into an extremely thin region near the
wall. The BSL-EARSM also underestimates the extent of separation, and it predicts
the flow to reattach and to recover somewhat too early. This was observed already
in Ref. [63]. The new model is seen to perform somewhat better in this regard,
although it still slightly underpredicts the backflow and the flow retardation over
the bubble. The accuracy of the new model in this particular case is very similar
to that of the SST model, see [3, 63]. The shear-stress curves in Fig. 7.5 just show
how the linear BSL model overestimates the shear stress indicating the importance
of the advanced constitutive modelling in this kind of flow.

7.4 Asymmetric Plane Diffuser Flow

The asymmetric plane diffuser flow experimentally studied by Buice and Eaton
[57,58,158], and also by Obi et al. [56], is considered next to assess the model in a
challenging flow with massive separation. The situation is schematically illustrated
in Fig. 7.6. The Reynolds number, based on the inflow centre line velocity Ucl and
the inlet channel height H , is 20,000. The expansion ratio is 4.7. The inlet plane-
channel flow is turbulent and fully developed. The x-coordinate initiates from the
beginning of the ramp, and the ramp ends at x/H = 21. The flow separates from
the ramp at roughly x/H ≈ 7 and reattaches at about x/H ≈ 29. After the reat-
tachment, a new boundary layer develops, and eventually, the flow recovers from
the separation and distortion caused by the diffuser ramp. This flow was one of the
test cases in the 8th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence
Modelling [74]. For this workshop, several contributors computed the diffuser flow
with many different types of turbulence models.

The present computations were performed employing a grid with 240× 96 con-
trol volumes in the streamwise and cross-channel directions, respectively. The suf-
ficient grid-independency was confirmed by repeating some of the computations
using a double-resolution grid with 480 × 192 control volumes. The results ob-
tained with the double-resolution grid were almost identical to those obtained with
the basic grid.

Fig. 7.7 shows the distributions of the pressure coefficient Cp and the skin-
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friction coefficient cf along the inclined wall. In this case, the scaling factor of
Cp and cf is ρU2

b /2, where Ub is the bulk velocity, i.e. the mass-flow rate divided
by the density and the cross-sectional area of the upstream channel. The velocity
profiles at x/H-locations 5.98, 13.56, 20.32, and 30.42 are plotted in Fig. 7.8. The
results computed with the new model, with the BSL-EARSM, and with the original
linear BSL model are shown. The pressure distributions indicate that the new model
predicts higher pressure loss than the BSL-EARSM combination, while the linear
BSL predicts the lowest pressure loss. The pressure distribution indicates that the
new model would be in best agreement with the measurements, but the other results
reveal that this is not the case. The higher pressure loss is owing to the larger re-
circulation region with stronger backflow. It turns out, however, that the new model
predicts a too large and strong recirculation. In fact, the BSL-EARSM is in better
agreement with the measurements in this case. An inspection of the cf -distribution
reveals that the new model as well as the BSL-EARSM predict a too early separa-
tion, and the new model predicts also delayed reattachment and a too high reversed
wall shear stress. This is seen also in the velocity profiles, which also show some-
what too strong backflow and excessive asymmetry according to the new model.
Both EARSM-based models give, however, more realistic velocity profiles than the
linear BSL model. It should be mentioned here that the k − ω SST variant gives
rather similar results to the BSL-EARSM in this case, see Refs. [63, 74].

Predicting the correct separation location is very difficult in this case. Failure to
do so easily spoils the results downstream. The new model and the BSL-EARSM, as
well as the SST model, although not shown here, all predict far too early separation
in this case but none of these models show such behaviour in Driver’s flow. This
has been discussed by Apsley and Leschziner in the case of the SST model [66].
They suggest as one possible reason that there might be a tiny separation bubble
just around the ramp upper-corner. Such a small bubble would produce coher-
ent structures which appear as a periodic flapping motion. Such motion, in turn,
greatly increases the shear stress levels behind the bubble, and consequently the
flow may remain attached much further downstream. Such a separation bubble is
not predicted by the models studied here. On the other hand, Apsley and Leschziner
show that the nonlinear low-Reynolds-number model developed by Craft, Launder
and Suga [159] predicts such a bubble and also the correct location of the massive
separation. LES further enforces this assumption [160], but unfortunately no mea-
surements have been made close enough to the beginning of the ramp. It may be
questionable to further assess the accuracy of the results downstream of the separa-
tion as the EARSM-based models (as well as the SST) fail in predicting the correct
separation location.

It has already been shown that the linear eddy-viscosity models perform badly
in this case [63, 66, 74]. Thus, probably the only new conclusion that can be made
here is that the new model predicts larger and stronger recirculation than the BSL-
EARSM. On the other hand, flow past the NACA-4412 aerofoil at a high angle of
attack involves a relatively large separation region, and as will be shown in Sec-
tion 7.5.3, the new model predicts the velocity profiles with a better accuracy than
the BSL-EARSM (but the results are probably grid-dependent in that case). One
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Figure 7.6: A schematic illustration of the asymmetric plane diffuser. Flow enters from the left.

Figure 7.7: Pressure coefficient Cp (left) and skin-friction coefficient 104 × cf (right) along the
inclined wall of the asymmetric plane diffuser.

Figure 7.8: Velocity profiles U/Ub in the asymmetric plane diffuser. Inflow channel on the left.
Streamwise stations x/H =5.98, 13.56, 20.32, and 30.42, and the diffuser ramp begins at x/H = 0.
Legends as in Fig. 7.7.
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difference between these cases is that the aerofoil case involves separation from a
surface with almost constant radius of curvature, while in this case, the ramp wall
begins with an almost sharp bend. However, a proper validation for flows with mas-
sive separation would require investigation of several suitable flow problems. It is
considered that it is more important in high-lift aerodynamics to be able to predict
the onset of separation more accurately than massively separated flows. Driver’s
flow, discussed in Section 7.3, indicated that the new model seems to have potential
to predict the onset of separation with quite good accuracy. The Aerospatiale A
aerofoil flow that will be discussed in Section 7.5.2 also supports this conclusion.
However, flows with massive separation are of great technical interest in general,
and will be given more attention in future work.

7.5 High-Lift Aerofoil Flows

7.5.1 General Remarks

Finally, attention is turned towards high-lift aerofoil flows, the main purpose for
which the model is designed. Only three aerofoils are studied and each of them at
only one angle of attack. This can by no means be considered a proper validation
campaign, but more comprehensive validation is beyond the scope of this study.
This preliminary validation should merely be considered as a feasibility study of
the new model.

The three cases are selected to reflect somewhat different flows past two-dimen-
sional aerofoil sections near maximum lift. The first case is the single-element
Aerospatiale A aerofoil at an angle of attack of 13.3◦ [161]. In this case, the flow
on the upper surface separates near the trailing edge. The recirculation region is
small, and the separation can be classified as mild. The second case is also a single-
element aerofoil NACA-4412 at 13.87◦. This situation differs from the first one in
the extent of separation. Now, there is a substantial region of backflow with a rather
strong displacement effect. This is computationally a very hard case, since the
models tend to predict time-dependent results as the grid is refined. Unfortunately,
the grid convergence was not achieved in this case. The final case is the NHLP 2D
three-element aerofoil at 20.18◦. This is a take-off configuration with a moderate
flap deflection of 20◦. No flow separation occurs in this case. The main focus is in
the prediction of the confluent wakes and boundary layers.

7.5.2 Single-Element Aerospatiale A Aerofoil near
Maximum Lift

The first high-lift flow to be studied is flow past the Aerospatiale A aerofoil at
α = 13.3◦. The chord Reynolds number is 2 × 106. This flow has been used previ-
ously for validating CFD methods and turbulence models in European projects EU-
ROVAL [162] and ECARP [163]. The experiments were performed in two different
wind tunnels at ONERA, F1 [164] and F2 [165]. The lift and drag coefficients and
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Table 7.1: Computed and measured lift and drag coefficients of the Aerospatiale A aerofoil at
α = 13.3◦.

Turbulence model cl cd

New k − ω EARSM 1.55 0.0201
BSL k − ω EARSM 1.57 0.0196
k − ω BSL 1.64 0.0190
k − ω SST 1.60 0.0191
Experiment 1.56 0.0210

distributions of the surface-pressure and skin-friction coefficients were measured in
the F1-experiments. These were measured also in the F2-experiments in addition to
the velocity and Reynolds-stress profiles through the upper-surface boundary layer
at certain locations. Unfortunately, the flow situations in these two experiments
were significantly different, although the measurements were performed in nom-
inally similar conditions. The lift and drag forces measured in F1 and F2 differ
from each other clearly. In F1, cl = 1.55 − 1.575 and cd = 0.0208 − 0.0212 while
in F2, cl = 1.49 − 1.515 and cd = 0.0308 [161], see also [113]. Furthermore, a
comparison of the friction-coefficient distributions measured in these two experi-
ments reveals that the upper-surface boundary layer separated clearly earlier in the
F2 than in the F1 experiment. It is also stated by Gendre that the mean flow turns
three-dimensional in the F2 wind tunnel at around α = 13◦ [161]. It seems likely
that this indeed occurred in the F2 experiment making the flow separate earlier and
rendering the recirculation stronger in the spanwise position where the measure-
ments were taken. This is unfortunate, since the velocity and the Reynolds-stress
profiles were not measured in the F1 experiment, which much better simulates a
two-dimensional aerofoil flow in a free stream just as the computations.

A C-grid of 512 × 128 control volumes in the streamwise and near-normal di-
rections was used. The computations with the BSL-EARSM, BSL and the SST
models were repeated with a coarser grid of 256 × 64 control volumes. The results
showed that the effect of the truncation error in the lift coefficient is only about
1% already with the 256 × 64 grid. However, the drag coefficients predicted using
these two grids differed about 10%. This is the reason why the finer grid results
are used for comparisons. The boundary layers were tripped in the computations at
x/c = 0.12 on the upper surface and x/c = 0.3 on the lower surface, just as in the
experiments [161].

The above-discussed differences between the experimental flow situations in the
F1 and F2 wind tunnels mean that the computed results should be compared only
with the F1 data. However, a rough comparison of the velocity and shear-stress
profiles with the F2 data is shown at two stations, x/c = 0.90 and x/c = 0.99,
in Fig. 7.9. It is, however, very important to keep in mind that this comparison
gives no real indication of the predictive realism of the models since the flow in
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Figure 7.9: Velocity profiles (top) and shear-stress profiles (bottom) on the upper surface of the
Aerospatiale A aerofoil at two locations x/c = 0.90 (left) and x/c = 0.99 (right).

the F2 experiment significantly differs from that being simulated computationally.
The models can be assessed by comparing the computed lift and drag coefficients
with those measured in the F1 wind tunnel. Also the pressure and skin-friction
coefficient distributions can be compared with the F1 measurements.

The integrated force coefficients are given in Table 7.1. Both EARSM-based
models give the lift coefficient within the experimental uncertainty. The SST-predic-
ted lift is also quite close to the measured value, while the original linear BSL
model gives about a 5% too high lift coefficient. All the studied models seem to
give a slightly too low drag coefficient, and as the effect of the truncation error is
to increase the computed drag, the ideal grid-independent drag predictions would
probably be a few percent lower than the values presented in Table 7.1.

The pressure-coefficient curves are shown in Fig. 7.10. Also a close-up view
near the trailing edge is shown in order to clearly see the pressure plateau originating
from the flow separation. The pressure plateau near the trailing edge is strongly
coupled with the suction peak near the leading edge. None of the computed pressure
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Figure 7.10: Surface-pressure distribution on the Aerospatiale A aerofoil. A close-up view of the
trailing-edge region is shown on the right-hand side.

curves follow the measured distribution perfectly near the trailing edge, but the
EARSM-based models show the closest agreement with the measurements. This is
also true around the suction peak near the leading edge. Finally, the skin-friction
coefficient on the upper surface is shown in Fig. 7.11, which shows that all the
models predict the flow separation to occur at approximately the correct location.
It should be mentioned here that this is not the case with many other models. It
has been shown in, e.g. [163] that most of the widely-used engineering turbulence
models, such as most of the different k − ε model variants, are inadequate for this
kind of flow problems.

An a-priori estimation of the curvature effects on turbulence was made by eval-
uating ω(r)

3 using (5.10) from the flowfield computed with the standard EARSM and
the new k−ω model. The obtained values of |τω(r)

3 /A0| were negligibly small, typ-
ically about 1% of the actual vorticity |Ω12| throughout the boundary layers. Thus,
it was concluded that the curvature-correction method discussed in Chapter 5 is not
necessary in this case.

7.5.3 Single-Element Aerofoil NACA 4412 near Maximum Lift

The NACA 4412 aerofoil is considered next as an example of a two-dimensional
single-element high-lift aerofoil flow with a larger extent of flow separation than
the Aerospatiale A case. The experiments were performed by Coles and Wadcock
[166]. This flow case was also used for the basic validation of the original k − ω
BSL and SST models by Menter [3, 65]. Later, Rudnik assessed several models
in this case [167]. Only the SST model and Wilcox’s k − ω model gave accurate
results in Rudnik’s work. He used a 480 × 128 C-grid, and his results agreed well
with the measurements and with Menter’s results. Also, the BSL-EARSM among
some other models have already been studied earlier using this flow [63].

The lift and drag coefficients are next studied, and the velocity profiles are com-
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Figure 7.11: Surface-friction coefficient distribution on the Aerospatiale A aerofoil.

pared with measurements at five sections on the upper surface. These sections are
located at x/c = 0.675, 0.786, 0.842, 0.897, and 0.953 and the velocity profiles
are shown in Fig. 7.12. The angle of attack is α = 13.87◦, and the chord-Reynolds
number is 1.52×106. The transition was not specified, and all the tested models gen-
erated the transition very near the leading edge stagnation point. In the experiments,
the boundary layer was tripped at x/c = 0.023 and 0.1 on the upper and lower sur-
faces, respectively. However, computations with these transition locations tended
to predict a laminar separation bubble before the upper trip, see also Refs. [3, 65].
This fact indicates that, in the experiments, a natural transition probably occurred
before the trip. Some uncertainty is always involved in high-lift aerofoil test cases.
This comes not only from the possibly uncertain transition location, but also the
wind-tunnel wall effects are error sources for the angle of attack and the measured
force coefficients. The experimentalists usually attempt to eliminate these errors
using certain wind-tunnel corrections, but some uncertainty always remains.

The computations refused to converge to a steady-state solution using the pseudo-
time integration. Approximately steady solutions could only be obtained using very
time-consuming time-accurate simulations. Three different grids were used for
computations with the new model as an attempt to eliminate the grid-dependency
from the results. The grids were of O-type and had 160×48, 320×96, and 640×192
control volumes around the airfoil and in the near-normal direction, respectively.
Unfortunately, the grid-dependency could not be eliminated, and this must be re-
membered when the results are studied. The aerodynamic force coefficients ob-
tained using all three grids and the new model are shown in Table 7.2. Usually,
the grid-dependency of the drag coefficient is clearly stronger than that of the lift
coefficient. In this case, however, just the opposite seems to happen. The drag co-
efficient changes by about 5% when the grid is refined from the standard 320 × 96
level up to the fine 640×192 level, whereas the lift increases by 7%. The reason for
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Table 7.2: Grid-dependency of the lift and drag coefficients of the NACA 4412 aerofoil at α =
13.87◦ computed with the new model.

Grid cl cd

Coarse 160 × 48 1.41 0.047
Standard 320 × 96 1.56 0.037
Fine 640 × 192 1.67 0.039
Experiment 1.67 –

Table 7.3: Lift and drag coefficients of the NACA 4412 aerofoil at α = 13.87◦. Computations are
performed using the finest grid.

Turbulence model cl cd

New k − ω EARSM 1.67 0.039
BSL k − ω EARSM 1.58 0.036
k − ω BSL 1.71 0.031
k − ω SST 1.61 0.035
Experiment 1.67 –

this unusual behaviour is not really known, but possibly the relatively large extent
of separation influences the grid convergence. When the grid is refined, more and
more time-dependent motion is resolved. This motion increases the mixing of mo-
mentum and part of the shear stress might become both resolved and modelled in
the recirculation region. If this happens, the extent of recirculation may be reduced
and thus the lift might increase. However, neither a comprehensive grid-refinement
study nor an in-depth analysis on the role of the resolved time-dependent motion
have been made. Thus, these comments are merely speculative thoughts.

The separated flow is dominated by coherent structures very different from those
appearing in the attached boundary layers, and the turbulence models designed for
boundary layers often have serious difficulties in modelling the effects of such mo-
tion correctly. This has already been discussed in Section 3.2.2. In practice, this is
seen as unsteady solutions, since the turbulence model cannot produce sufficiently
high shear stress in the separated flow.

The lift and drag coefficients computed with the fine grid and the measured
lift coefficient are given in Table 7.3. The lift coefficient predicted by the new
model is very close to the experimentally measured value, but it is really not known
how close this is to an ideal grid-independent result. Rudnik obtained a lift coef-
ficient of 1.67 using the k − ω SST model [167]. This contrasts with the present
SST results but the reason for this difference is unknown. Rudnik used a C-grid of
480 × 128 cells. In this case, the BSL-EARSM gave somewhat too low lift. As ex-
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Figure 7.12: Velocity profiles U/Uδ on the upper surface of the NACA 4412 aerofoil at 13.87◦

angle of attack. Streamwise stations x/c =0.675, 0.786, 0.842, 0.897, 0.953.

pected, the standard linear BSL gave the highest lift coefficient. Figure 7.12 shows
how the BSL-EARSM predicted too retarded velocity profiles. The new model and
also the SST model gave velocity profiles that agree quite well with the measure-
ments. Menter has published results obtained with the SST model in slightly closer
agreement with the experiments than the present results. He utilized a 241×61 grid
that was much coarser than the one used in this study [3] — this might be a possible
explanation for this slight difference.

7.5.4 Three-Element Aerofoil NHLP 2D

Most of the real-life high-lift aerodynamics deals with multi-element wing sections.
This means added complexity in comparison with the single-element problems. Not
only are the geometry and the grid generation more complex in multi-element cases,
but they also involve more complex flow details. The confluent and possibly merg-
ing boundary layers, wakes, and mixing layers become important. The main goal
in this study is to develop a turbulence model that is more suitable for these kinds
of problems than the existing models. Therefore, such a flow problem is selected
as the final test case, although the focus of this study is in the basic development.
The computations presented in this section are not claimed to form a complete vali-
dation for multi-element aerofoil problems. Instead, this is merely a feasibility test
for the new model in order to make sure that it can generally be applied to these
kinds of problems, as desired. A more complete validation is beyond the scope of
this study, but such validation will be carried out as part of the HiAer project task 3
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by the other project partners.
The NHLP 2D three-element take-off configuration has been selected for this

purpose, see Fig. 3.1 in Chapter 3. The reason for this choice was simply that, as
far as the author knows, this case is the only multi-element aerofoil test case with
proper measurement data that is freely available. As this is a take-off configuration
with the slat angle of 25◦ and flap angle of only 20◦, there is no substantial flow
separation, and this makes it somewhat easier for the turbulence model to yield
accurate results. The focus is kept on the wake/boundary-layer interaction process,
pressure distributions, and on the integrated lift and drag coefficients. The model’s
ability to predict the separation of boundary layers without wake-interaction has
already been assessed using the single-element cases. The angle of attack is 20.18◦

in this case, and the chord-Reynolds number and the free-stream Mach number are
3.52 × 106 and 0.197, respectively.

The measurements were performed in the early 1970s by the former British
Aerospace Company (BAC). The results are reported by Moir [41]. The experi-
mental results include the lift and drag coefficients, pressure distributions along the
surfaces of each element, and total-pressure coefficient distributions through the
boundary layer and confluent wakes at four stations on the main wing and flap up-
per surfaces. This flow case has been previously studied computationally at least
by Rumsey et al. [168], by Rudnik [167], and recently Wild studied CFD-based
aerofoil optimization using, e.g. this case [169].

Rumsey et al. computed this flow using the Spalart-Allmaras one-equation
model, Menter’s k − ω SST, and k − ω EARSM models. This particular k − ω
EARSM model is discussed in Section 6.3.3. They obtained quite similar results
with all three models. The lift and drag coefficients as well as the pressure distribu-
tions agreed well with the measurements up to the angle of attack of the maximum
lift. Beyond this angle, all the models kept on predicting still increasing lift and
quite low drag. In other words, all the models predicted a too high stall angle
and maximum lift coefficient. They also failed in predicting the stall mechanism
correctly. The computations showed reasonably soft stall while the experiments
indicated a more abrupt leading-edge stall. The interactions between the wakes
and boundary layers were not very accurately captured at the high angle of attack,
α = 20.18 deg. As Rumsey et al. discussed, it is not clear whether the discrep-
ancies come from the turbulence modelling or from the fact that the computations
simulate the aerofoil in a free flow while the experiments are obviously conducted
in a confined wind tunnel. Moreover, it is known that the boundary-layer transition
from laminar to turbulent flow plays a very important role in these kinds of flow
situations. There is only very limited information about the transition locations in
the experiments.

Rudnik studied the performance of three linear two-equation models for a few
single-element aerofoil cases and completed his study by computing the present
three-element case at α = 20.18◦ using a slightly modified version of Wilcox’s
1988 k−ω model [167]. This modification is merely that the value of the coefficient
β was lowered from 0.075 to 0.071. Rudnik’s grid consisted of 177,000 control
volumes, thus it has quite a high resolution covering most of the important regions.
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Table 7.4: Grid-dependency of the lift and drag coefficients of the NHLP-2D aerofoil computed
with the new model.

cl cd

Fine grid 4.06 0.057
Medium grid 4.03 0.061
Coarse grid 3.94 0.083

However, the high-resolution region did not extend sufficiently far away from the
upper surfaces of the main wing and the flap to fully cover the region occupied by
the slat wake. Therefore, the numerical error spoiled the outer slat wake results in
the rear part of the aerofoil. It should be mentioned that the grid used by Rumsey et
al. does not suffer from such a discrepancy.

Wild recently studied the aerofoil design optimization problem using, e.g. this
case [169]. He utilized a grid of only 77,000 control volumes, but this grid was more
efficiently organized than Rudnik’s grid. Despite this, it probably also suffers from
the same problem as Rudnik’s grid, and thus the total-pressure profiles are proba-
bly contamined by numerical error, especially around the slat wake in the rearmost
sections. Wild used and reported transition locations for each element obtained by
means of a boundary-layer stability calculations using the en method in DLR. This
information, although its reliability is not fully known, is highly useful for all cur-
rent and future CFD studies of this case. These transition locations were also used
in this study. Wild showed a comparison of the lift and drag polars computed with
free transitions and with the transitions specified according to the en-prediction.
This comparison indicated that the results obtained with the en-predicted transition
locations are in clearly better agreement with the measurements. Especially, the
angle of stall was reduced to an almost correct value while it was overestimated by
more than two degrees by the free-transition computations. Wild used the Spalart-
Allmaras one-equation model and Wilcox’s 1988 k − ω model just as Rudnik.

The present computations were made using a relatively fine grid that consists
of 364,608 cells in 17 blocks. The grid convergence is studied by comparing the
aerodynamic force coefficients computed with the fine grid and with medium and
coarse grids, see Table 7.4. The medium grid was obtained from the fine grid by
omitting every second grid line in both directions. The coarse grid, in turn, was
obtained similarly from the medium grid. Also, the total-pressure profiles computed
using these three grids are compared. These profiles are shown in Fig. 7.13. The
grid convergence study was made using the new model only. Both comparisons
indicate that the fine-grid results are not fully grid-independent but, nevertheless,
reasonably grid-converged. Only the fine-grid results are used for turbulence model
comparisons. All the fine-grid computations refused to converge to a stationary
result using the pseudo-time integration. Stationary solutions were obtained by
means of time-accurate simulations.

The computed and measured lift and drag coefficients are shown in Table 7.5,
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Figure 7.13: Grid-convergence study using the new k − ω EARSM model. Distributions of the
total-pressure coefficient through the upper surface boundary layers of the main wing and the flap
and the confluent wakes at four stations: main wing at 35% of the stowed chord c (upper left), just
behind the main-wing trailing-edge starting from the flap upper surface (upper right), flap mid-chord
(lower left), and just behind the flap trailing edge (lower right).
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Table 7.5: Comparison of the lift and drag coefficients of the NHLP-2D aerofoil computed with
different turbulence models.

cl cd

New k − ω EARSM 4.06 0.057
BSL k − ω EARSM 4.05 0.056
SST k − ω 4.09 0.055
Rumsey [168] (k − ω EARSM) 4.08 0.068
Rudnik [167] (k − ω) 4.01 0.071
Experiment, uncorr. 4.11 0.055
Experiment, corr. 4.11 0.068

which also includes the k − ω EARSM results by Rumsey et al. and Rudnik’s re-
sults. The lift coefficients were predicted within the experimental uncertainty with
all three models. In general, the differences between the models are insignificant.
This can also be seen in Fig. 7.14, which shows the surface-pressure coefficient
distributions. The curves are practically indistinguishable. The predicted drag co-
efficients are quite clearly lower than the experimental wind-tunnel corrected value.
Incidentally, the predicted values agree very well with the measured uncorrected
drag coefficient. Rudnik’s computation provided a slightly lower lift coefficient and
a clearly higher drag that agrees with the measurement. It is reasonable to assume
that the grid used by Rudnik caused more numerical dissipation than the present
grid. If this is true, it means that an asymptotic numerical result in which the nu-
merical errors approach zero would predict an even lower drag coefficient than the
present computations. However, even this does not mean that the models are fully
responsible of the underpredicted drag. Uncertain transition locations and the fact
that the computations simulate a free-stream situation instead of the confined ex-
perimental situation are, indeed, significant factors causing differences between the
computed and measured drag. As stated earlier, predicting the drag of a high-lift
configuration is an extremely difficult task. The sensitivity of the predicted drag
coefficient to the circulation correction on the free-stream boundaries, described in
Section 4.2.2, is a good example of the difficulties involved [113].

The total-pressure coefficient profiles through the upper surface boundary lay-
ers of the main wing and the flap and through the confluent wakes are shown in
Fig. 7.15. Also the k−ω EARMS results by Rumsey et al. and linear k−ω results
by Rudnik are included for comparison. In this case, the interactions between the
wakes and boundary layers are weak and do not influence the aerodynamic forces.
At a slightly higher angle of attack, the interactions probably become more impor-
tant. The present results give, however, some impression about the ability of the
new model to predict the merger of the wakes and boundary layers. The first plot in
Fig. 7.15 is over the main wing at a location of 35% of the stowed chord. Here, the
predicted wake is too symmetric in comparison with the experiment, which means
that the turbulence is underestimated on the inner side of the wake. This is probably
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Figure 7.14: Computed and measured pressure-coefficient distributions along the aerofoil surfaces.

owing to two reasons. First, the turbulent stresses generated in the slat cove are
probably not correctly convected downstream in the computations. This is a conse-
quence of the weak equilibrium assumption and could only be avoided by using dif-
ferential RSM. The second possible reason is the effect of the wake curvature, which
is destabilizing on the inner side of the wake. The use of the curvature-corrected
EARSM (CC-EARSM) discussed in Chapter 5 could probably be a partial remedy
to this problem. However, computations employing the CC-EARSM are left for the
future owing to some implementation problems encountered in complex geome-
tries, see Section 5.3.2. Also RSM computations will be tried in the future. At the
main-wing trailing edge, the wake is predicted to be slightly further away from the
wing surface in comparison with the measurement data. This may be owing to the
above-discussed underestimated turbulence on the inner side of the wake. The fact
that the new model predicts a more rapidly spreading wake than the BSL-EARSM
or the SST model can be seen at this station. The merger of the wake and the bound-
ary layer has already begun at this station according to the measurements. The new
model predicts this better than the BSL-EARSM and the SST models. This is even
more clearly seen at the next stations, i.e. at the flap midchord and at the trailing
edge of the flap.

In general, the computed results are in a better agreement with the measure-
ments than the earlier computations [167–169]. The new model seems to predict
the evolution of the wakes and the merger processes quite accurately, except that
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Figure 7.15: Turbulence model comparison. Also Rumsey’s k − ω EARSM results as well as
Rudnik’s k −ω results are shown. Distributions of the total-pressure coefficient at the same stations
as in Fig. 7.13.
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the slat wake asymmetry is not correctly captured. This issue will be studied by
means of RSM and CC-EARSM computations in the future. Computing this aero-
foil at a number of angles of attack up to the stall angle would be a more stringent
test for the new model. Such a test would indicate whether the model can predict
the stall angle and the corresponding aerodynamic forces correctly. Unfortunately,
such results are very sensitive to the transition locations, and it would be very diffi-
cult to distinguish the influences of the turbulence model and the transition settings.
The further validation process of the new model to be performed within the HiAer
project will probably involve such computations.
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8 Conclusions

In this study, a new two-equation turbulence model was developed for computa-
tional aerodynamics purposes, especially for high-lift aerodynamics applications.
The new model employs the explicit algebraic Reynolds stress model (EARSM)
developed by Wallin and Johansson [4] as the constitutive relation between the tur-
bulent stress tensor and the mean-velocity gradient. The new scale-determining
model is based on the k − ω formulation. The model equations are of similar form
to Menter’s k − ω models [3], but the model is completely recalibrated.

The development of constitutive modelling was also contributed by this study.
The proposed techniques to extend the EARSM method for significantly curved
flows were critically discussed and assessed. One of the proposed methods, which
is based on a curvilinear coordinate system following the acceleration vector, was
shown to behave singularly even in very simple curved flows. Methods based on
the strain-rate tensor were shown to behave much better.

The main focus of this study was on the development of the new scale-determin-
ing model to be used with the EARSM as the constitutive model. This new k − ω
model was especially designed for the requirements typical in high-lift aerodynam-
ics. In the model development, particular attention was paid to the model’s sensi-
tivity to pressure gradients, to the behaviour near the edges between turbulent and
laminar flow, and to the calibration of the model coefficients for flow phenomena
relevant to high-lift aerodynamics. The model development was based on both theo-
retical studies and numerical experimenting. New values for the model coefficients
were found leading to significant improvements in comparison with Menter’s mod-
els and other previously proposed k − ω models.

A theoretical analysis concerning the model behaviour near the edges of tur-
bulent regions valid for linear two-equation models [129, 130] was extended for
nonlinear models such as EARSMs. This analysis is a very useful theoretical tool
providing understanding of anomalies occurring with many k − ω models near the
edges of turbulent flows. Many existing k − ω models produce unphysically sharp
or even hook-shaped velocity profiles around the edges when combined with a non-
linear constitutive model. The proposed theory explains these anomalies and it pro-
vides constraints for the diffusion coefficients to avoid such unphysical solutions.
These constraints were very useful in the calibration process. In general, the the-
oretical analysis provided new information about the conditions under which the
k − ω scale-determining models and nonlinear constitutive models can be success-
fully combined. Existing k − ω models were reviewed in the light of this infor-
mation, and it was shown that most of the existing models are not suitable to be
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combined with any nonlinear constitutive model.
The final model calibration was carried out by means of a large number of nu-

merical computations of selected elementary flows. These were equilibrium bound-
ary layers under zero, adverse, and also favourable pressure gradients, plane chan-
nel flow, and planar far wake and mixing layer. The elementary flow problems were
formulated in a self-similar form in order to facilitate quick numerical solution and
thus a large number of computations needed in the calibration process. Also, more
realistic two-dimensional flows were computed already during the calibration pro-
cess. The proposed new model is believed to be applicable to a wider range of
flows than most of the other k − ω models. This is owing to two reasons. Firstly,
the EARSM constitutive model has a wider range of applicability than the linear
Boussinesq relation, which is used in most of the other k − ω models. Secondly, a
relatively wide base of different flows was used in the calibration.

After the calibration was finished, it was systematically studied if a more suit-
able operational second scale variable could be found for the new model. For this
purpose, the model was transformed into a general φ-form, where φ ∼ kmεn. Ac-
cording to this study, two candidate variables were selected for numerical experi-
ments. However, ω itself was chosen owing to the numerical problems associated
with the proposed alternative operational variables. Although this survey did not
lead to a new formulation for the present model, it, however, provided tools for fu-
ture work. For instance, the definition of the second scale variable could possibly
be optimized by introducing small perturbations to some existing scale variable.

Finally, the new model was preliminarily assessed and validated using a set of
realistic flow problems, including high-lift aerofoil flows. The new model showed
relatively good behaviour in the considered test cases. Improvements over the ref-
erence models [3] were achieved especially near the edges of turbulent regions and
also in predicting flows with mild separation. Computation of an asymmetric dif-
fuser flow with massive separation indicated that the model may be less reliable in
massively separated flows as in the other test flows. A three-element aerofoil at a
high angle of attack was studied as the final validation case. The new model pre-
dicted the evolution of the wakes and the merger process of the wakes and boundary
layers somewhat more accurately than the reference models. However, the model
as well as the reference models predicted a too symmetric slat wake.

The proposed new k − ω EARSM model is a promising model to be employed
in practical CFD work in aerodynamic design and analysis. It is easy to implement,
particularly in the CFD packages already equipped with Menter’s k − ω model.
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A Transformation of the ω Model
Equation into the Generalized
φ-Form

Let us take the following length-scale-determining model equation as a starting
point

Dω̃
Dt

=
ω̃

k
(Cω̃1

P − Cω̃2
ε) +

∂

∂xj

(
νω̃
∂ω̃

∂xj

)
+
νd

k

∂k

∂xj

∂ω̃

∂xj

(A.1)

The generalized second-scale-determining model can be derived by first expressing
the selected original variable as ω̃ = km̃εñ and transforming it for arbitrary oper-
ational variable φ = kmεn. The tilde-notation is used in order to emphasize that
the ω̃ is not necessarily the usual ω, but an arbitrary, yet undefined variable. For
instance, the definition of ω̃ = km̃εñ can be varied by perturbing m̃ and ñ around
the ω-exponents m = −1 and n = 1. It must be noted that non-integer values can
well be applied because the final m and n of the operational variable can be chosen
as integers. In this study, a k − ω model of the from (6.2) – (6.3) is selected as the
baseline model

Let us now define φ = kmεn and ω̃ = km̃εñ, with n 6= 0 and ñ 6= 0. Then

ε = (k−mφ)1/n = k−m/nφ1/n (A.2)

εñ = k−mñ/nφñ/n (A.3)

ω̃ = km̃k−mñ/nφñ/n = km̃−mñ/nφñ/n = k(m̃n−mñ)/nφñ/n (A.4)

νk = ν + σkνT (A.5)

νω̃ = ν + σω̃νT (A.6)

νd = σdνT (A.7)

Thus

ω̃ = km′

φn′

where m′ =
m̃n−mñ

n
and n′ =

ñ

n
(A.8)

by substituting this into (A.1) we obtain the general φ-formulation term by term as
follows.

The left hand side:

Dω̃
Dt

= n′km′

φn′−1 Dφ
Dt

+m′km′−1φn′ Dk
Dt

(A.9)
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The production and destruction terms can be written as

ω̃

k
(Cω̃1

P − Cω̃2
ε) = km′−1φn′

[(Cω̃1
−m′)P − (Cω̃2

−m′)ε]

+m′km′−1φn′

(P − ε) (A.10)

The transformation of the partial derivative of ω̃ with respect to the spatial coordi-
nates has the same form as (A.9), thus it can be applied. The diffusive term of (A.1)
involves second-order differentation and therefore splits up into several terms as

∂

∂xj

(
νω̃
∂ω̃

∂xj

)
= n′km′

φn′−1 ∂

∂xj
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+km′

φn′

[
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(
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k2

(
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∂xj

)2
]

+km′

φn′
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kφ

∂k

∂xj

∂φ

∂xj

]
(A.11)

These can be rewritten as

∂

∂xj

(
νω̃
∂ω̃

∂xj

)
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φn′−1 ∂

∂xj
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]
(A.12)

Finally, the cross term must be transformed:

νd

k

∂k

∂xj

∂ω̃

∂xj
= n′km′−1φn′−1νd

∂k

∂xj

∂φ

∂xj
+m′km′−2φn′

νd

(
∂k

∂xj

)2

(A.13)

Now, the underlined terms form the k-equation multiplied by the factor m′km′−1φn′

and they can thus be subtracted away. Next, all the terms are divided by n′km′

φn′−1

and the terms are combined yielding

Dφ
Dt

=
φ

k

[(
Cω̃1

−m′

n′

)
P −

(
Cω̃2

−m′

n′

)
ε

]
+

∂

∂xj

(
νω̃

∂φ

∂xj

)

+
φ

k

∂

∂xj

[
m′

n′
(νω̃ − νk)

∂k

∂xj

]
+
[
2m′

νω̃

k
+
νd

k

] ∂k
∂xj

∂φ

∂xj

+

[
m′

n′
(m′ − 1)

φ

k2
νω̃ +

m′

n′

φ

k2
νd

](
∂k

∂xj

)2

+(n′ − 1)
νω̃

φ

(
∂φ

∂xj

)2

(A.14)



187

The term proportional to diffusion of k can be split into a more convenient form

φ

k

∂

∂xj

[
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(A.15)

After substituting this, the equation becomes
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This can be expressed in a more compact way by introducing some new notation
for the coefficients:

Dφ
Dt
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φ
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where

Cφ1 =
Cω̃1

−m′

n′
(A.18)

Cφ2 =
Cω̃2

−m′

n′
(A.19)

C
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φ3 = 2m′ (A.20)
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C
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C
(T )
φ5 = (n′ − 1)σω̃ (A.25)

νφφ = νω̃ (A.26)

νφk =
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(A.28)
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The auxiliary parameters m′ and n′ are defined as

m′ =
m̃n−mñ

n
and n′ =

ñ

n
where n 6= 0 (A.29)
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