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Abstract

A v-player whist tournament Wh(v) is a schedule of games, each involving two players op-
posing two others. Every round, the players are partitioned into games, with at most one player
left over. Each player partners every other player exactly once and opposes every other player
exactly twice during the tournament. Directed whist tournaments DWh(v), and triplewhist tourna-
ments TWh(v), are Wh(v) with certain additional requirements. In this work the nonisomorphic
Wh(v), DWh(v), and TWh(v) are enumerated for v6 12. We  nd an apparently new Wh(9)
and establish that there exists no DWh(12)—and thereby no (12; 4; 1)-RPMD—nor a TWh(12).
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A v-player whist tournament Wh(v) is a schedule of games, where in each round
the v players are partitioned into games of four players each with at most one player
left over. All pairs of players must play in the same game exactly three times during
the tournament. Additionally, the order of the players in a game is relevant: a whist
game is a game of four ordered players (c1; c2; c3; c4). It is convenient to interpret the
tuple as listing, in order, the player sitting on the north, east, south, and west side of
the playing table. The unordered pairs {c1; c3} and {c2; c4} are partners. In a Wh(v), of
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the three times a pair of players plays in the same game, the players must be partners
exactly once.
A directed whist tournament DWh(v) is a Wh(v) with the additional condition that

for any pair of players p1 and p2, the player p2 must play once as p1’s left-hand oppo-
nent and once as p1’s right-hand opponent. We say that each whist game (c1; c2; c3; c4)
contains the ordered pairs of players (c1; c2), (c2; c3), (c3; c4) and (c4; c1). These or-
dered pairs de ne the left-hand opponent relation in the game; the inverse relation is
the right-hand opponent relation. Each of the v(v − 1) ordered pairs of players must
occur exactly once in a directed whist tournament. The existence of a DWh(v) is equiv-
alent to the existence of a (v; 4; 1)-RPMD, a resolvable perfect Mendelsohn design with
block size four [6].
In a triplewhist tournament TWh(v) in each game (c1; c2; c3; c4) the unordered pairs

{c1; c2} and {c3; c4} are opponents of the  rst kind, and the unordered pairs {c1; c4} and
{c2; c3} are opponents of the second kind. A TWh(v) is a Wh(v) with the additional
requirement that each player opposes every other player once as an opponent of the
 rst kind and once as an opponent of the second kind.
In this work we determine all nonisomorphic Wh(v), DWh(v), and TWh(v) for

v6 12. In particular, we  nd an apparently new Wh(9), and we show that the two
Wh(12) found by Finizio [8] are the only Wh(12) and that neither a DWh(12) nor a
TWh(12) exists.
The paper is outlined as follows. In Section 2 various concepts related to whist tour-

naments are introduced and earlier results are surveyed. A method for  nding whist
tournaments from resolved (v; 4; 3)-designs is discussed in Section 3. An approach for
isomorph rejection by mapping tournaments into graphs and using the graph automor-
phism program nauty is considered in Section 4. The complete classi cation results
for v6 12 are presented in Section 5, and the paper is concluded in Section 6.

2. Preliminaries and previous results

We call the following relations partnership relations: unordered pairs of partners,
opponents of the  rst kind, opponents of the second kind, and ordered pairs of players
and their left-hand opponents.
Let the permutation �∈ S4 permute the positions in a whist game: �((c1; c2; c3; c4))=

(c�(1); c�(2); c�(3); c�(4)). Those permutations � that preserve the partnership relations
form a group: for a whist game it is the dihedral group generated by the permutations
(1; 2; 3; 4) and (1; 3), for a directed whist game it is the cyclic group generated by the
permutation (1; 2; 3; 4), and for a triplewhist game it is the Vierergruppe generated by
(1; 2) (3; 4) and (1; 4) (2; 3). These groups partition the set of whist games with four
given players into orbits of games with identical partnership relations.
We consider two Wh(v), two DWh(v), or two TWh(v) isomorphic, if there is a

bijection from the players of the  rst tournament to the players of the second tour-
nament that induces a bijection from the rounds and games of the  rst tournament to
the rounds and games (to be exact: between the orbits of the games under the groups
mentioned above) of the second tournament. Such a mapping from a tournament onto
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itself is an automorphism. The group of all automorphisms is the full automorphism
group of a tournament.
Note that the set of nonisomorphic DWh(v) or the set of nonisomorphic TWh(v)

cannot be treated as a subset of the set of nonisomorphic Wh(v), as there may be
several DWh(v) or TWh(v) with the same pairs of partners in each game, and hence
the same underlying Wh(v). A similar situation occurs elsewhere in design theory, for
example, in directing triple systems [7].
Some whist tournaments may be conveniently described in terms of orbits of rounds

under a group. For a group G with operator ?, let the orbit of s under G be G(s) =
{g(s): g∈G}, where g(s)=g?s for s∈G, g(∞)=∞, g({s1; : : : ; sk})={g(si): 16i6k},
and g((s1; : : : ; sk)) = (g(s1); : : : ; g(sk)).
A Z-cyclic Wh(v), DWh(v), or TWh(v) is a Wh(v), DWh(v), or TWh(v) that can

be described as the orbit of the initial round of the tournament under a cyclic group.
When v ≡ 0mod 4, the players are labeled with ∞; 0; 1; : : : ; v−2 and the group is taken
to be Zv−1. Traditionally ∞ is paired with i−1 in round i. Similarly when v ≡ 1mod 4,
the players are labeled with 0; 1; : : : ; v − 1, and the group is Zv. Traditionally player
i− 1 sits out, that is, does not play, in round i. The terms cyclic and 1-rotational may
be used for tournaments with an automorphism group acting cyclically on all players
and all but one player, respectively.
For surveys of earlier results on whist tournaments, see [2,3]. We give just a brief

overview of the central existence results for the three types of whist tournaments dis-
cussed here.
In the 1970s Baker [4], H. Hanani, and R. M. Wilson showed that a Wh(v) exists

for all v¿ 4 with v ≡ 0mod 4. In [1] Anderson gives an account of that result and
shows that a Wh(v) also exists for all v¿ 5 with v ≡ 1mod 4. Finizio determined
all Z-cyclic Wh(v) for v6 21 by computer in [8]. Of particular interest for us is that
there are two nonisomorphic Z-cyclic Wh(12) tournaments.
Since the existence of a DWh(n) is equivalent to that of a (v; 4; 1)-RPMD, from

[5,17] we know that a DWh(v) exists for all v ≡ 1mod 4, DWh(4) and DWh(8) do
not exist, and a DWh(v) exists for all v ≥ 12 with v ≡ 0mod 4 except possibly for 49
values. In this paper, the value of 12 will be removed from this list of values; there
is no DWh(12), and hence no (12; 4; 1)-RPMD.
A TWh(v) does not exist when v = 5 or 9. In [11] Lu and Zhu show that a

TWh(v) exists for all v¿ 12 with v ≡ 0 or 1mod 4 except possibly for v∈{12; 56} ∪
{13; 17; 45; 57; 65; 69; 77; 85; 93; 117; 129; 133; 153}. Ge and Zhu [9] reduce this list by
 nding a TWh(133), and we prove nonexistence of a TWh(12) in this paper.

3. Whist tournaments from resolved designs

A (v; k; �)-design is a set system (X;B) where |X| = v and B is a collection of
k-subsets—called blocks—of X such that every pair of elements of X occurs in exactly
� blocks.
A (v; k; �)-design is resolvable if the blocks can be partitioned into parallel classes

such that the blocks in each parallel class are disjoint and their union is X. The
corresponding partitioning is called a resolution of the design.
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A (v; k; �)-design is near resolvable if the blocks can be partitioned such that the
blocks in each partition are disjoint and their union contains all elements of X save
one. We call the corresponding partitioning a near resolution of the design.
Disregarding momentarily the order of players in each game, the rounds and games in

any Wh(v), DWh(v), or TWh(v) must be the parallel classes and blocks of a resolution
(when v ≡ 0mod 4) or a near resolution (when v ≡ 1mod 4) of a (v; 4; 3)-design. For
v=4, 5, 8 and 9 there is a unique resolvable or near resolvable design. For v=4; 5 this
is trivial; for v=8 see [12]; for v=9 we inspected the 11 nonisomorphic (v; 4; 3)-designs
by hand. Moreover, recent results by Morales and Velarde [14] show that there are  ve
nonisomorphic resolvable (12; 4; 3)-designs. All these designs have a unique resolution
or near resolution.
In order to construct whist tournaments of various types, we take a resolution or

near resolution of a (v; 4; 3)-design and impose the additional partnership relations in
a computer search.
To  nd all Wh(v) with a given underlying resolvable or near resolvable design,

we  nd all ways of replacing each block {c1; c2; c3; c4} in the design by a parti-
tion of the players into two partnerships {{c1; c3}; {c2; c4}} such that the resulting
set system satis es the criteria for a Wh(v), that is, each pair of players occurs
once in the set system as partners. For a DWh(v) we similarly  nd all ways of
replacing each block {c1; c2; c3; c4} with a set of ordered pairs of players and their
left-hand opponents {(c1; c2); (c2; c3); (c3; c4); (c4; c1)}. For a TWh(v) we replace each
block {c1; c2; c3; c4} with an ordered triple of distinct partitions of the three players
({{c1; c3}; {c2; c4}}; {{c1; c2}; {c3; c4}}; {{c1; c4}; {c2; c3}}), where the  rst, second, and
third partition represent pairs of partners, opponents of the  rst kind, and opponents of
the second kind, respectively.
We transform the problem of searching for such set systems into instances of the

satis ability problem by generating constraints based on the blocks of the resolved
designs (for a similar approach for other types of designs, see [7]). This is done by
taking each nonisomorphic resolution or near resolution of a (v; 4; 3)-design, v6 12,
in turn, introducing for each pair of players x¡y and block b the boolean variables
pxyb, lxyb, rxyb, o1xyb, and o

2
xyb to represent whether x is, respectively, the partner,

left-hand opponent, right-hand opponent, opponent of the  rst kind or opponent of the
second kind of y in the game that corresponds to block b. With those de nitions it
is straightforward to formulate logic programs—in our case, essentially instances of
the satis ability problem—whose solutions represent partnership relations in a whist
tournament with the given underlying (v; 4; 3)-design. We then use Smodels [16] to
determine all solutions to the logic programs by exhaustive search. Then we convert
the solutions back to set systems.

4. Distinguishing nonisomorphic tournaments

In order to eliminate isomorphic solutions we map the whist tournaments of various
types, expressed as set systems, to graphs and examine them with nauty [13]. From
a given whist tournament, we construct the graph G = (V; E). In V we will have one
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1 tournament 9 rounds 72 pairs 144 midpoints 9 players18 games

Fig. 1. A DWh(9) as a graph.

vertex for each set, tuple, and element in the set system. For each u; v∈V , we have
the edge {u; v}∈E exactly when v∈ u in the set system. When u is a tuple and v is
the cth element of u, we color the edge {u; v} with color c, while the other edges
remain uncolored. The automorphism group of G, restricted to act on the players only,
is the automorphism group of the set system. As a technical note, if we only allow
coloring of the vertices, the equivalent of coloring an edge can be done by splitting
the edge in two and coloring the new vertex with the given color. By also coloring the
tournament vertex with a distinct color, one can assure that the automorphism group
of the graph maps vertices corresponding to players only within that class.
Fig. 1 illustrates the structure of the graph in the case of a DWh(9). The graph

has a total of 253 vertices, which correspond to the tournament, the 9 rounds, the 18
games, the 72 ordered pairs of players, the 144 midpoints on the edges from the pairs
to the players, and the 9 players. From the tournament there is an edge to each of
the round; from each round there is an edge to two games; from each game there is
an edge to four ordered pairs; and from each of the ordered pairs there is an edge to
two midpoints, from each of which there is an edge to a player. The two midpoints
adjacent to an ordered pair are colored with colors 1 and 2 (in Fig. 1, gray and white)
to represent whether the player adjacent to the midpoint is the  rst or the second player
of the ordered pair, respectively.
For every set system we form the corresponding graph and use nauty to deter-

mine its automorphism group and canonical labeling. Two set systems—and hence,
whist tournaments—are isomorphic, if the corresponding canonically labeled graphs
are identical. We only consider one tournament from each isomorphism class.
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Having determined the nonisomorphic Wh(v), DWh(v), and TWh(v) for some pa-
rameters along with their automorphisms, we used GAP [15] to investigate their auto-
morphism groups.

5. The results

The number of nonisomorphic Wh(v), DWh(v), and TWh(v) for v6 12 is displayed
in Table 1. As expected, we  nd no DWh(4), DWh(8), TWh(5) nor TWh(9). There
are no DWh(12) nor TWh(12) either.
The nonisomorphic Wh(v), DWh(v), and TWh(v) for v6 12 are listed in Table 2.

In Table 2, in the initial rounds of the DWh(9) with automorphism group Z3×Z3, the
notation ab is shorthand for (a; b), and Q8 is the quaternion group. Two DWh(v) or
TWh(v) are joined by a curly brace whenever they have the same underlying Wh(v);
for those v for which DWh(v) or TWh(v) exist, the Wh(v) are not explicitly listed, as
they can be obtained by interpreting the DWh(v) or TWh(v) as a Wh(v).
The full automorphism groups of the Wh(v) for v = 4; 5; 8; 12 are of order 24, 20,

56, and 11, respectively. The full automorphism groups of the two Wh(9) are of order
144 and 16, in the order the tournaments are listed in Table 2. The full automorphism
groups of the TWh(4), DWh(5), and TWh(8) are of order 12, 20 and 56, respectively.
The full automorphism groups of the four DWh(9) are of order 72, 72, 8 and 8, in
the order the tournaments are listed in Table 2.
When v = 4t + 1 is a prime power and � is a primitive element of the Galois

 eld Fv, then one can obtain a DWh(v) by calculating the orbit of the initial round
{(� i; � t+i ; � 2t+i ; � 3t+i): 06 i¡ t} under F+v , the additive group of Fv. This construc-
tion is attributed to Baker in [2]. The  rst DWh(9) in Table 2 is isomorphic to
F+9 ({(� 0; � 2; � 4; � 6); (� 1; � 3; � 5; � 7)}). Similarly, the second DWh(9) can be obtained
as F+9 ({(� 0; � 2; � 4; � 6); (� 7; � 5; � 3; � 1)}).
There are no DWh(12) nor TWh(12). There are exactly two Wh(12), both of

which are Z-cyclic. Recall that for v = 12 there are  ve nonisomorphic resolvable
(v; 4; 3)-designs; both Wh(12) have the same underlying resolved (12; 4; 3)-design.
Both for directed and triplewhist tournaments, it is possible to enlarge the sets of

indistinguishable designs. Two directed whist tournaments are said to be equivalent if
they are isomorphic, or if they are isomorphic after simultaneously exchanging posi-
tions 2 and 4 in each whist game in one DWh(v). Such a permutation preserves the
partner pairs, but exchanges the left-hand opponent relation and the right-hand opponent
relation; in a sense, this is a mirror image of the DWh(v). As triplewhist tournaments
may be viewed as a composition of three whist tournaments—one for partners, one for
opponents of the  rst kind, and one for opponents of the second kind—two triplewhist
tournaments are said to be equivalent if they are isomorphic or if they are isomorphic
after applying a  xed permutation to the last three players of each game of one of
the tournaments. This operation permutes the partnership relation,  rst-kind opponent
relation, and second-kind opponent relation, and gives a TWh(v). It is easily seen, for
example, that the two nonisomorphic DWh(5) and the two nonisomorphic TWh(8) in
Table 2 are equivalent.
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Table 1
The number of nonisomorphic Wh(v), DWh(v), and TWh(v) for v6 12

Wh(v) DWh(v) TWh(v)

4 1 0 1
5 1 2 0
8 1 0 2
9 2 4 0
12 2 0 0

Table 2
The nonisomorphic Wh(v), DWh(v), and TWh(v) for v6 12

TWh(4) Z3({(∞; 1; 0; 2)})

DWh(5)

{
Z5({(1; 2; 4; 3)})
Z5({(1; 3; 4; 2)})

TWh(8)

{
Z7({(∞; 1; 0; 3); (2; 4; 6; 5)})
Z7({(∞; 3; 0; 1); (2; 5; 6; 4)})

{
Z3 × Z3({(10; 01; 20; 02); (11; 21; 22; 12)})
Z3 × Z3({(10; 01; 20; 02); (12; 22; 21; 11)})

DWh(9) 


Z8({(∞; 1; 0; 3); (2; 6; 7; 5)})∪
Z8({(0; 2; 4; 6); (1; 3; 5; 7)})
Q8({(i; k;−j;−i); (j;−1;−k;∞)})∪
Q8({(1; i;−1;−i); (−k;−j; k; j)})

Wh(12)
Z11({(∞; 1; 0; 4); (2; 3; 6; 8); (5; 9; 7; 10)})
Z11({(∞; 1; 0; 7); (2; 3; 5; 10); (4; 8; 6; 9)})

6. Conclusions

This work completes the classi cation of whist tournaments, directed whist tourna-
ments, and triplewhist tournaments with up to 12 players. The main results are the
nonexistence proofs for DWh(12) and TWh(12), and the discovery of an apparently
previously unknown whist tournament for nine players. In the following, we use the
last result to develop a real-life tournament.
In duplicate bridge two players are said to play a deal in the same direction, if both

of them play north or south, or if both of them play east or west. The score a player
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Table 3
A bridge movement for nine individuals

Round Table 1 Table 2 A Out
N E S W N E S W

1 8 5 4 7 6 2 3 1 0
2 8 6 5 0 7 3 4 2 * 1
3 8 7 6 1 0 4 5 3 2
4 8 0 7 2 1 5 6 4 * 3
5 8 1 0 3 2 6 7 5 4
6 8 2 1 4 3 7 0 6 * 5
7 8 3 2 5 4 0 1 7 6
8 8 4 3 6 5 1 2 0 * 7
9 0 2 4 6 1 3 5 7 8

obtains in a given deal is compared to the scores of other players who play the deal in
the same direction. For fairness, it is desirable that all pairs of players are compared an
equal number of times, that is, that all pairs of players play the same number of deals
in the same direction. To balance the comparisons, the concept of arrow switching is
useful. When a table is arrow switched in a given round, that round is played with
a quarter-turn oPset with regard to the seating at that table. The player seated west
will play the north cards, the player seated north will play the east cards, etc. This
allows balancing the comparisons without unduly complicating the player movement—
an important consideration in practice.
The tournament in Table 3 is such a DWh(9) that when the second table is arrow

switched in the rounds marked in the A column, all pairs of players play the same
number of rounds in the same direction, and we have a perfectly balanced nine-player
individual bridge tournament. In the tournament in Table 3 rounds 2–8 can be obtained
from the previous round by adding 1mod 8 to each element less than eight.
Work is in progress to classify the near resolutions of (13; 4; 3)-designs and whist

tournaments for 13 players. We expect the number of resolutions of (16; 4; 3)-designs
to be so large that the approach adopted here is no longer feasible.
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