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Abstract

A subset S = {s1; : : : ; sk} of an abelian group G is called an St-set of size k if all sums of t
di2erent elements in S are distinct. A function with applications in coding theory, v
(k) denotes
the order of the smallest cyclic group in which an S2-set of size k exists. A lower bound for
v
(k) is given in this study, and exact values of v
(k) are obtained for k6 15. For the related
problem in which all sums of any two, not necessarily distinct, elements in S are required to be
di2erent, values of the corresponding function v�(k) for each k6 14 are given.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

This work considers packing problems in cyclic groups. A subset S of an abelian
group where |S|= k is an St-set of size k if all sums of t di2erent elements in S are
distinct in the group. For the group operations, we use additive notation throughout
the paper. See [6,7] for open problems in additive number theory related to St-sets and
similar con?gurations.
Two central functions in the study of St-sets are v(k) and v
(k), which give the

order of the smallest abelian group and cyclic group, respectively, in which an S2-set
of size k exists. Since cyclic groups are abelian, clearly v(k)6 v
(k).
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One motivation for studying v(k), v
(k), and St-sets is that they have applications
in coding theory [3,5,6]. A constant weight error-correcting code is a set of binary
vectors of length k and weight w such that the Hamming distance between any two
vectors is at least d. Given k, w, and d, the maximum size of such a code is denoted
by A(k; d; w). In [5, Theorem 16] it is shown that A(k; 6; w)¿

(
k
w

)
=v(k).

In this paper we consider v
(k), which is called vZ(k) in [5]. In [6], values of v
(k)
and corresponding S2-sets are presented for k6 10. The (computer-aided) methods for
obtaining these results are, however, not discussed in [6]. We present an exhaustive
search method for determining v
(k) and ?nding corresponding S2-sets. We determine
v
(k) for k6 15.
With a slight modi?cation, our method allows us to also consider v�(k), the order

of the smallest cyclic group in which there exists a k-subset such that the sums of any
two elements of the subset, not necessarily di2erent, are distinct. The values of v�(k)
and corresponding sets are given for k6 10 and k=12 in [6]. In [12], constructions are
developed to determine lower bounds for the maximum cardinality of such a subset in
a given cyclic group Zn; also, the maximum cardinality is determined by a computer
search for n6 134, whereby v�(k) is determined for k6 12. Using our method we
determine v�(k) and the corresponding subsets for k6 14.
Some theoretical results on v
(k) and v�(k) are presented in Section 2, and a com-

putational method for ?nding their values is discussed in Section 3. The search results
are documented in Section 4. We list the values of v
(k) for k6 15 and v�(k) for
k6 14 along with the corresponding k-element sets.

2. Theoretical results

In this section, we review some lower bounds for v�(k) and present a lower bound
for v
(k). These bounds can be used to limit the scope of the computer search.
An (n; k; �)-di2erence set is a k-subset of a group of order n such that the list of

non-zero di2erences contains each non-zero group element exactly � times. When the
group is cyclic, we have a cyclic di2erence set [9]. The problems we are considering
are closely connected to the theory of di2erence sets with �=1, since x1+x2=x3+x4 ⇔
x1−x4=x3−x2. When, in calculating v�(k), we allow taking sums of equal elements, the
relation is straightforward and the theory of cyclic di2erence sets is directly applicable.
By a simple volume argument, we know that v�(k)¿ k(k − 1)+1: from a k-subset,
k(k − 1) di2erences can be formed, none of which is zero and no two of which may
be equal. When k − 1 is a prime power, a cyclic di2erence set construction by Singer
shows that the bound is sharp [11]. The series of values of k that are not settled by
this result is thus 7; 11; 13; 15; 16; : : :. Also, when k is a prime power, another cyclic
di2erence set construction by Bose [2] shows that v�(k)6 k2 − 1. In [6] it is shown
that v�(7) = 48, and our calculations show that the bound by Bose is sharp also for
k = 11 and 13.
We next present a volume argument for v
(k). In that case some values of di2erences

may occur more than once, since if x3 − x2 = x2 − x1, then the right-hand side of
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x1 + x3 = x2 + x2 is not the sum of two distinct elements, and thus does not contradict
the assumption of distinct sums of pairs. Our idea for adapting the volume argument
for v
(k) involves ?nding upper bounds for the number of di2erence values that may
occur more than once.
Let S = {s1; : : : ; sk} be a set with distinct sums of pairs in a cyclic group Zn. For

each d �= 0 in Zn, we construct the undirected graph Gd by taking as the edge set
E(Gd) the set of those pairs of elements in S whose di2erence equals ±d, and as the
vertex set V (Gd) the endpoints of the edges.
Following the usual convention, let Pi denote a path of length i, and Ci a cycle of

length i.

Lemma 1. Every non-empty graph Gd is isomorphic to P1, P2, or C3.

Proof. By de?nition, each vertex of Gd has degree at least one. Each vertex of Gd
has degree at most two: no vertex s can be adjacent to a vertex other than s + d or
s− d. Every pair of edges {si1 ; si2}, {si3 ; si4} in Gd, ordered so that si1 − si2 = si3 − si4 ,
must have a common endpoint, or si1 + si4 = si2 + si3 will contradict the assumption of
distinct sums of pairs. Since every vertex has degree at least one, and every pair of
edges must have an endpoint in common, the graph must be connected. A connected
graph with highest degree at most two can only be a path or a cycle. Paths of more
than two edges and cycles with more than three edges contain a pair of edges without
a common endpoint. Hence, if Gd is non-empty, it must be isomorphic to P1, P2,
or C3.

Let p be the number of graphs Gd isomorphic to P2, and c the number of graphs
Gd isomorphic to C3.

Lemma 2. p+ 3c6 2k.

Proof. The vertices that correspond to a given element of S can have degree two in
at most two graphs Gd. Otherwise, among the (at least three) graphs there would have
to be two graphs, say Gd and Gd′ , where d �= −d′. Then {s− d′; s− d; s+ d; s+ d′}
would be a set of four distinct elements in S, and the assumption of distinct sums of
pairs would be contradicted by (s− d′) + (s+ d′) = (s− d) + (s+ d). From this, and
noting that the graphs Gd isomorphic to P2 have one vertex of degree two whereas
those isomorphic to C3 have three, the lemma follows.

Theorem 3. v
(k)¿ k(k − 3).

Proof. Let us calculate an upper bound for the total number of times the di2erent
values may occur as the di2erence of two elements of S. The di2erence value d
occurs once if d �= −d and Gd is isomorphic to P1; twice if either Gd is isomorphic to
P1 and d=−d, which is possible for at most one value in Zn, or if Gd is isomorphic
to P2; and three times if Gd is isomorphic to C3. The number of di2erence values that
occur at least once is then at most n− 1, the number of di2erence values occurring at
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least twice is at most 1 + p + c, and the number of di2erence values occurring three
times is c. The total, then, is at most n+ p + 2c. From a k-element subset, k(k − 1)
di2erences can be formed; thus k(k − 1)6 n+ p+ 2c= n− c+ p+ 3c6 n+ 2k (by
Lemma 2), and the theorem follows.

This bound has the same asymptotic behavior as a similar bound in [6, Lemma 6],
but it is slightly stronger.

3. Computer search

3.1. A backtrack algorithm

The natural way to approach this problem is to consider backtrack algorithms. In a
backtrack search, there are two main ways of pruning the search tree. First, a search
branch may be pruned as soon as it is clear that a con?guration cannot lead to a
desired solution, and, second, of search branches leading to equivalent con?gurations
one may prune all but one.
Before the search, we ?x n, the order of the cyclic group. For equivalence of sets,

we use the following de?nition, which is used in [1] for di2erence sets. Two sets
S1; S2 ⊆ Zn are equivalent if S2 = S1a + b := {sa + b | s∈ S1}, where b is any group
element and a is co-prime with n. For the purposes of canonicity testing, Zn is to be
interpreted as a ring, i.e., addition and multiplication are carried out modulo n. It is
not diLcult to see that if all sums of pairs in S1 are di2erent, then this also holds
for all sums of pairs in S2. Hence, only one set in each equivalence class needs to
be considered in the search. Since a given set may have as many as n�(n) di2erent
equivalent sets, where � is the Euler totient function, a considerable speedup may be
achieved if equivalence testing can be carried out fast.
All one-element sets are clearly equivalent, so we may start from {0}. Throughout

the search, we only need examine the search branches that correspond to the set S ′ if
no set equivalent to S ′ has been considered earlier in the search. Since the algorithm
searches all possible sets in lexicographical order, this is the case precisely when S ′

is the lexicographically ?rst member of its equivalence class. Such a set is called the
canonical representative of its equivalence class. Pruning the search when sums of
pairs occur more than once or when S ′ is not in canonical form we get the following
algorithm. At line 2, if a bound such as Theorem 3 shows that no S2-set with |S|+ 1
elements can exist, one may stop the search.

function recsearch(S; p)
if |S|¿maxk then
larger distinct-sum set found; store; maxk ← |S|

end if
for i = p to n− 1 do
S ′ ← S ∪ {i}
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if sums of pairs occur at most once then
if S ′ is a canonical representative then

recsearch(S ′; i + 1)
end if

end if
end for
return

function search
maxk ← 1
recsearch({0}; 1)
return

Our backtrack search method with isomorph pruning is an orderly algorithm [10].
Any set S with at least two elements that is in canonical form may be reached in the
search from another set in canonical form. Thus, the algorithm searches all sets with
distinct sums of pairs that are in canonical form.
The implementation of the two tests in lines 7 and 8 of our algorithm is crucial for

its performance. These will be discussed in the following subsections.

3.2. Testing occurrences of sums

In order to check whether an element c can be added to S without violating the
distinct sums condition, we need to calculate the new sums that are possible to obtain
after adding the element c to the set S and verify that none of them are obtainable
from the elements of S prior to adding c to the set. When calculating v
(k), we restrict
ourselves to sums of two distinct elements; in that case the new sums are obtained by
adding c to each element of S. In calculating v�(k) we also have sums of two identical
elements, and we need to take also the additional new sum c + c into account.
As for testing occurrences of sums, we obtained the best performance with bitmask

representations. These were also used recently in a search for Golomb rulers [4], another
similar problem in additive number theory.
In the bitmask representation, the search set S is represented as a bit sequence that

contains n bits. The ith bit is 1 if and only if i∈ S (the 0th bit is leftmost). Similarly,
the set of sums that can be composed from the elements in S is represented as a v-bit
sequence with 1s in the corresponding positions.
The crucial point of this representation is that if S is represented as a bit sequence

s, the set S + c is represented as s o c, where o denotes right rotation by c bits,
allowing us to calculate very quickly the new sums introduced by adding the element
c to the set S.
Assume that all sums of pairs in S are di2erent on line 6 of our algorithm. Let s

be the bit sequence representing S and u the sequence representing the sums that can
be composed from the elements of S. To perform the test in line 7, it is enough to
calculate

(so i) AND u; (1)
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where the AND operation is carried out bitwise. This can be done very fast. If the
value of (1) is 0, then the test is passed. In calculating v�(k), the new sums are most
conveniently calculated by substituting the bitmap s′, corresponding to the set S ′, for
s in (1).
Another bene?t of the bitmask representation is that it can be used to compare the

lexicographical ordering of two sets very eLciently, also when several machine words
are used for their representation in the actual implementation.

3.3. Testing canonicity

The eLciency of our algorithm very much depends on eLcient testing of canonicity
of S ′ in line 8. The most straightforward, but also the most time-consuming way to
do this is to compute all n�(n) equivalent sets corresponding to the allowable �(n)
di2erent values of a and n di2erent values of b, ?nd the lexicographically ?rst one
of them and compare it to S ′. To speedup this direct approach, we may use some
additional information that we have about the canonical representative.
We know that 0 is always in the canonical representative of any non-empty set.

For any set with at least two elements, the second smallest element in the canonical
representative is c =minx1 ;x2∈S′ gcd (x2 − x1; n). It is therefore suLcient to only check
such choices of a and b that f(x)= (ax+ b)mod n maps a pair (x1; x2) in S ′ to (0; c).
The canonicity test is then performed by ?nding all such choices of a and b, applying
the corresponding mapping to S ′, and checking whether the result lexicographically
precedes S ′. In this manner it is only necessary to compare O(k2) sets. Of course, if
one of the mappings gives a set that lexicographically precedes S ′, we may stop testing
right away—we already know that S ′ is not in canonical form.

4. Computational results

We implemented the algorithm described in Section 3 in C. For best possible per-
formance, canonicity testing was not performed on all levels in the search tree. For
example, with k =12, the test should be done with at most about 7 (depending some-
what on the value of n) elements in S ′.
Generally, the program ?nds the maximum subset with distinct sums fairly quickly.

Verifying that no larger subset with distinct sums exists takes signi?cantly longer. To
determine the value of v
(k), and analogously v�(k), we have to calculate a lower
bound for v
(k) (e.g., from Theorem 3), and run our algorithm for all consecutive
values of n starting from the lower bound until we ?nd a packing that gives the value
of v
(k). This holds only for the modular versions of packing and covering problems,
whereas, for example, the Golomb ruler problem can be solved in a more direct way
(see [6, Lemma 4] and the comments thereafter).
We used the program to compute v
(k) for k6 15. Our new results on v
(k) for

116 k6 15 improve on the bounds given for v(k) in [3, Table 5]. Our results on v
(k)
for 116 k6 15 are thus also the best-known upper bounds on v(k). The results are
presented in Table 1. We similarly calculated the values of v�(k) and the corresponding
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Table 1
Values of v
(k) and the corresponding sets for k6 15

k v
(k) The corresponding sets

1 1 {0}
2 2 {0; 1}
3 3 {0; 1; 2}
4 6 {0; 1; 2; 4}
5 11 {0; 1; 2; 4; 7}
6 19 {0; 1; 2; 4; 7; 12}
7 28 {0; 1; 2; 4; 8; 15; 20},

{0; 1; 2; 5; 9; 17; 23}
8 40 {0; 1; 5; 7; 9; 20; 23; 35}
9 56 {0; 1; 2; 4; 7; 13; 24; 32; 42}
10 72 {0; 1; 2; 4; 7; 13; 23; 31; 39; 59}
11 96 {0; 1; 2; 4; 10; 16; 30; 37; 50; 55; 74},

{0; 1; 2; 4; 11; 21; 40; 52; 70; 75; 83},
{0; 1; 2; 4; 13; 26; 34; 40; 50; 55; 78},
{0; 1; 2; 4; 16; 22; 27; 35; 52; 59; 69}

12 114 {0; 1; 4; 14; 22; 34; 39; 66; 68; 77; 92; 108}
13 147 {0; 1; 2; 4; 7; 29; 40; 54; 75; 88; 107; 131; 139}
14 178 {0; 1; 2; 4; 16; 51; 80; 98; 105; 111; 137; 142; 159; 170}
15 183 {0; 1; 2; 14; 18; 21; 27; 52; 81; 86; 91; 128; 139; 161; 169}

Table 2
Values of v�(k) and corresponding sets for k6 15

k v�(k) Lexicographically ?rst set

1 1 {0}
2 3 {0; 1}
3 7 {0; 1; 3}
4 13 {0; 1; 3; 9}
5 21 {0; 1; 4; 14; 16}
6 31 {0; 1; 3; 8; 12; 18}
7 48 {0; 1; 3; 15; 20; 38; 42}
8 57 {0; 1; 3; 13; 32; 36; 43; 52}
9 73 {0; 1; 3; 7; 15; 31; 36; 54; 63}
10 91 {0; 1; 3; 9; 27; 49; 56; 61; 77; 81}
11 120 {0; 1; 3; 20; 31; 35; 45; 53; 58; 74; 114}
12 133 {0; 1; 3; 12; 20; 34; 38; 81; 88; 94; 104; 109}
13 168 {0; 1; 3; 11; 30; 34; 46; 83; 103; 108; 121; 147; 162}
14 183 {0; 1; 3; 16; 23; 28; 42; 76; 82; 86; 119; 137; 154; 175}

lexicographically ?rst maximum sets for k6 14. Our results are summarized in Table
2. The value of v�(13) is new. The k-element subsets given in Tables 1 and 2 are
unique up to equivalence, with the exceptions of v
(7) and v
(11), for which the
lexicographically ?rst k-subsets of each equivalence class is given.
The maximum subsets of cyclic groups of small order may be obtained electronically

from the WWW page 〈http://www.tcs.hut.?/∼haha/Zn/〉.

http://http://www.tcs.hut.fi/~haha/Zn/
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The computations were run in a heterogeneous, non-dedicated network of PCs, using
the autoson distributed batch system [8]. For determining v
(15), Theorem 3 gives us
the lower bound v
(15)¿ 180. For each 1806 n6 182 an exhaustive search shows
that v
(15) �= n, as Zn contains no 15-element subset. Each of these searches takes an
estimated two to three days on a 1:4 GHz AMD Athlon PC. It takes 15 min to ?nd
the 15-element subset of Z183 listed in Table 1, which shows that v
(15)6 183, and
by combining these results we get v
(15) = 183.
Verifying that the values given in Tables 1 and 2 are upper bounds of v
(k) and v�(k)

is straightforward. Verifying that they are minimal is much harder. However, for v
(k),
two independent implementations gave the same results for k6 13. Additionally, our
computations con?rm the computational results in [12] and the computational results
on v
(k) and v�(k) in [5].
While for most values of k the best-known upper bound for v(k) is derived from

a subset in a cyclic group, for k ∈{6; 7; 9} the bounds in [3] show that for those
values v(k)¡v
(k). Exhaustively searching abelian groups of small order for maximum
subsets with distinct sums of pairs would be a natural way to continue this research.
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