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A Time Domain Interpretation for the LSP
Decomposition

Tom Bäckström*, Paavo Alku, Tuomas Paatero and Bastiaan Kleijn

Abstract—The Line Spectrum Pair (LSP) decomposition is a widely used
method in speech coding. In this article, we will show that the LSP polyno-
mials, whose trivial zeros have been removed, are equivalent to two optimal
(in the mean square sense) predictors in which a sample is predicted from
linear combinations of its previous averaged and differentiated values.

Keywords—Line Spectrum Pairs, Linear Prediction, symmetric polyno-
mials

I. I NTRODUCTION

LINE Spectrum Pairs (LSP) were introduced in [1] as a
method to represent LP (Linear Prediction) parameters. In

LSP computation, a linear predictive analysis filterA(z) is de-
composed into both a symmetric and an antisymmetric polyno-
mial. These polynomials are called the LSP polynomials. It can
be shown that the roots of these polynomials, the LSPs, are in-
terlaced on the unit circle, ifA(z) is minimum phase [2]. More-
over, it has been found that LSPs behave well when interpolated
[3],[4]. These properties have made the LSP decomposition an
attractive method to quantize LP information and it is currently
used in various speech coders (e.g., [5],[6]). In addition, it is
well known that LSPs have an close relation to the split Levin-
son type algorithms [7].

In spite of the fact that LSPs are so widely applied especially
in speech coding, it is disconcerting to notice that the motivation
behind this decomposition is rather artificial. LSPs have been
explained from the point of view of acoustic tube models as fol-
lows. Given ap’th order predictor in the lattice form, it is possi-
ble to obtain a symmetric and an antisymmetric LSP polynomial
by augmenting an extra stage with its reflection coefficient equal
to +1 and−1, respectively [2],[8]. This is equivalent to setting
the corresponding acoustic tube model either completely closed
or completely open at the(p+1)’th stage. A similar explanation
was presented in [9], where it was shown that LSPs are the pole
and zero frequencies of the glottal driving-point impedance of a
discrete matched-impedance vocal tract model.

In the present paper, we will show that the LSP decomposi-
tion can be interpreted as an optimal time domain prediction,
which is a reformulation of the conventional LP analysis. Our
study shows that the LSP polynomials are optimal solutions (in
the mean square error sense) to two problems of linear predic-
tion, in which a sample is predicted from linear combinations of
its previous averaged and differentiated values. The work is a
sequel to our prior studies on reformulations of linear prediction
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in order to express speech information in a compressed form
(e.g., [10],[11]).

II. BACKGROUND

A. Linear Prediction

The conventional LP predictor for signalx(n) as given by
[12] is

A(z) = 1 +
p∑

i=1

aiz
−i. (1)

The optimal coefficientsai (1 ≤ i ≤ p) of this predictor are
calculated as follows. The residual (prediction error)e(n) is

e(n) = x(n) +
p∑

i=1

aix(n− i). (2)

The extreme point of the expected value of the squared error
E[e2(n)] is found by settingE

[
∂e2(n)/∂aj

]
= 0 (1 ≤ j ≤ p),

which yields the Yule-Walker equations [12]:

p∑
i=1

aiR(i− j) = −R(j), 1 ≤ j ≤ p, (3)

where signalx(n) is assumed stationary in the wide sense and
the autocorrelationR(i) for x(n) is estimated as

R(i) =
L−1−i∑

n=0

w(n)x(n)w(n + i)x(n + i), ∀ i ∈ N, (4)

wherew(n) is a smooth window of lengthL.

B. The LSP Decomposition

A polynomialAs(z) of orderp is said to be symmetric if

As(z) = z−pAs(z−1). (5)

and polynomialAa(z) is antisymmetric if

Aa(z) = −z−pAa(z−1). (6)

For a polynomialA(z) of orderp, the symmetric and anti-
symmetric LSP polynomials are constructed as follows [2]:

P (z) = A(z) + z−(p+1)A
(
z−1

)
Q(z) = A(z)− z−(p+1)A

(
z−1

)
.

(7)

The polynomialA(z) can be easily reconstructed fromP (z) and
Q(z) by

A(z) =
1
2

[P (z) + Q(z)] , (8)
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which holds for any polynomialA(z).
PolynomialsP (z) andQ(z) have trivial zeros atz = ±1 [13].

Canceling the trivial zeros yields symmetric polynomialsRP (z)
andRQ(z) of even order:

RP (z) =
P (z)

1 + z−1
, RQ(z) =

Q(z)
1− z−1

, p even (9)

RP (z) = P (z) , RQ(z) =
Q(z)

1− z−2
, p odd.

In the sequel, an appropriate subscript will be used to denote
which polynomial was used when creatingRP (z) or RQ(z).
For example, polynomialRP (z) computed from the LSP de-
composition of a polynomialB(z) would be denotedRP,B(z).

III. L INEAR PREDICTION USING AVERAGED AND

DIFFERENTIATED VALUES

In this section, two time domain signal transformations will
be introduced. In Section IV, it will be shown that formulating
linear prediction using these two transformations corresponds to
the computation of the LSP decomposition.

A. Time Domain Transformations

We will firstly introduce two time domain signal transforma-
tions

x̂+(n) =
1
2

[x(n) + x(n + 1)] (10)

x̂−(n) =
1
2

[x(n)− x(n + 1)] . (11)

Note that these transformations are not causal. However, this
does not impose problems because the transformations will be
combined with linear prediction and, consequently, only de-
layed samples ofx+(n) andx−(n) are needed.

The transformation̂x+(n) is described in figure 1. It corre-
sponds to an averaging filter yielding the average value of two
consecutive values ofx(n). The dual transform̂x−(n) corre-
sponds to a differentiating filter.

B. Optimal Predictors Using the Transformed Signals

Next, we will predictx(n) from the p previous values of
x̂+(n) (and x̂−(n)) by formulating an optimal predictor. To
determine the predictor, we need the expression for the residual,
which we define for̂x+(n) as

eh+(n) = x(n) +
p∑

i=1

h+
i x̂+(n− i)

= x(n) +
p∑

i=1

h+
i

2
[x(n− i) + x(n− i + 1)] . (12)

and for the dual case as

eh−(n) = x(n) +
p∑

i=1

h−i
2

[x(n− i)− x(n− i + 1)] . (13)

 x(n) x(n−4)
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 1/2[x(n−1)+x(n)]

Fig. 1

SELECTION OF DATA SAMPLES TO BE USED IN LINEAR PREDICTION OF

SAMPLE x(n) (BLACK SQUARE) WITH p = 4: CONVENTIONAL LP

ANALYSIS (SOLID LINES AND CIRCLES) AND THE PROPOSED PREDICTION

(DASHED LINES AND DIAMONDS) CORRESPONDING TO THE AVERAGING

OPERATION (EQ. 10) USED IN THE LSP DECOMPOSITION.

The expected value of the squared errorE
[
e2
h+(n)

]
is mini-

mized for eachh+
i by partial differentiation:

E

[
∂e2

h+(n)
∂h+

j

]
= 0 ∀n, 1 ≤ j ≤ p

p∑
i=1

h+
i [2R(i− j) + R(i− j + 1) + R(i− j − 1)]

= −2 [R(j) + R(j − 1)] , 1 ≤ j ≤ p. (14)

These are the Yule-Walker equations corresponding to the trans-
formation equation given in Eq. 10. The corresponding Yule-
Walker equation for the transformation equation determined in
Eq. 11 can similarly be shown to be

p∑
i=1

h−i [2R(i− j)−R(i− j + 1)−R(i− j − 1)]

= −2 [R(j)−R(j − 1)] , 1 ≤ j ≤ p. (15)

When Eqs. 14 and 15 are written in matrix form, the resulting
matrices are symmetric and Toeplitz.

C. Transfer Functions of the Optimal Predictors

The transfer functions of the optimal predictors can be readily
obtained from Eqs. 12 and 13 by the Z-transform, which yields

H+(z) =
p∑

i=0

z−i

2
(
h+

i + h+
i+1

)
H−(z) =

p∑
i=0

z−i

2
(
h−i − h−i+1

)
,

(16)

where we have introduced artificial variablesh+
0 = 2, h−0 = 2,

h+
p+1 = 0 andh−p+1 = 0.
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IV. T IME DOMAIN INTERPRETATION OF THELSP
DECOMPOSITION

A. Problem Formulation

Our objective is to show that the predictors constructed upon
the two transformations given in Eqs. 10 and 11 are equal to the
line spectrum polynomialsRP (z) andRQ(z) (Eq. 9). Figure 2
illustrates the setting.

LP LSP

x(n) −→ A(z) −→
{

RQ(z)
RP (z)

time domain
transformation

optimal
predictor Z-transform

x(n) −→
{

x̂+(n)
x̂−(n)

−→
{

h+
i

h−i
−→

{
H+(z)
H−(z)

Fig. 2

ILLUSTRATION OF THE PROBLEM SETTING.

We thus need to show that polynomialsRP (z) andRQ(z) are
equivalent toH+(z) andH−(z) (not necessarily respectively).

The complete proof is somewhat laborious and some details
have been moved to appendices. The proof is structured as fol-
lows: Firstly, create criteria for symmetry of the transfer func-
tions in Eq. 16. Secondly, it is shown that solutions to the Yule-
Walker equations (Eqs. 14 and 15) satisfy the symmetry criteria
and lastly, we prove that the symmetric (or antisymmetric) part
of a linear predictor corresponds to the acquired transfer func-
tion.

B. Symmetry Criteria for the Optimal Predictors

It is evident that for arbitraryh+
i andh−i polynomialsH+(z)

andH−(z) are generally neither symmetric nor antisymmetric.
However, we will set criteria for coefficientsh+

i andh−i that
are necessary and sufficient to yield symmetric or antisymmetric
polynomialsH+(z) andH−(z).

PolynomialH+(z) (Eq. 16) is symmetric if, and only if, co-
efficients ofzi andzp−i are equal (0 ≤ i ≤ p). In other words,

h+
i − h+

p−i+1 = −
(
h+

i+1 − h+
p−i

)
, 1 ≤ i ≤ p . (17)

Since the left hand side of Eq. 17 equals 2 fori = 0 (see Eq.
16), it follows that

h+
i = 2(−1)i + h+

p−i+1 , 1 ≤ i ≤ p , p even. (18)

By substitutingi = p in the expression above, we obtain

h+
p = 2(−1)p + h+

1 ,

implying (by substitution of2 + h+
1 = h+

p ):

2 + h+
1 = 2(−1)p + h+

1 ⇒ 1 = (−1)p,

which is a contradiction ifp is odd. Therefore, Eq. 18 holds for
p even only.

In the antisymmetric case, sign on the right hand side of Eq.
17 are changed and following a similar process as above, the
final relation (corresponding to Eq. 18) is

h+
i = 2(−1)i − h+

p−i+1 , 1 ≤ i ≤ p, (19)

which holds forp odd only.
Further, by applying reasoning similar to that above, criteria

for symmetry of the dual polynomialH−(z), for both p even
and odd, can be shown to be

h−i = 2− h−p−i+1 , 1 ≤ i ≤ p. (20)

However,H−(z) cannot be antisymmetric. This can easily be
seen by deriving a necessary criterion for antisymmetry, similar
to that above. In that case insertingi = p results in a contradic-
tion.

It can readily be shown that these criteria of symmetry hold
for h±i solving Eq. 14 and 15, respectively. See appendix II-A
for details.

C. Correspondence of the Optimal PredictorH+(z) and the
LSP Decomposition

Continuing, we show that polynomialH+(z) is in fact, equal
to polynomialRP (z) or polynomialRQ(z), for p even or odd,
respectively.

Let us define an arbitrary polynomialB(z) = b0 +∑p
i=1 biz

−i. The symmetric LSP polynomial ofB(z) is thus
PB(z) = B(z) + z−(p+1)B

(
z−1

)
.

BecauseB(z) was arbitrary, suchB(z) can be chosen that its
symmetric LSP polynomialRP,B(z) is equal to the symmetric
LSP polynomialRP,H+(z) computed for polynomialH+(z),
that is,RP,H+(z) := RP,B(z). Thus only the symmetric part
of polynomialB(z) has been restricted, and the antisymmetric
part remains free.

Using Eq. 9 and from Appendix I-A Eq. 31 we can write(
1 + z−1

)
H+(z) = B(z) + z−p−1B(z−1), (21)

wherep is even andH+(z) is thus symmetric.
For the two sides to be equal, all coefficients of common order

of z−i must be equal:

z0 : 1 + h+
1 /2 = b0

z−i : h+
i +

(
h+

i−1 + h+
i+1

)
/2 = bi + bp−i+1, (22)

where1 ≤ i ≤ p + 1, h+
0 = 2, h+

p+1 = 0 and bi = 0 for
i /∈ [0, p].

Substituting into Eq. 14 yields

p∑
i=1

2R(i− j) (bi + bp−i+1)

−2R(1− j) + 2R(−j)(b0 − 1) + 2R(p + 1− j)b0

= −2 [R(j) + R(j − 1)] . (23)

Canceling common terms on both sides, and dividing byb0 we
have

p∑
i=1

2R(i− j)̂bi +
p∑

i=1

2R(p− i− j + 1)̂bi

= −2 [R(j) + R(p + 1− j)] , 1 ≤ j ≤ p, (24)
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wherêbi = bi/b0.
Comparing Eqs. 3 and 24 we see that if the coefficientsb̂i

solve the Yule-Walker equations (Eq. 3) then they will also solve
Eq. 24. The goal in proving the correspondence between the
symmetric LSP decomposition (computed from an LP predictor
A(z) ) andH(z)+, is thus completed. That is, forp even it holds
that

H+(z) = RP,A(z). (25)

However, there is an infinite number of other sets of parame-
ters b̂i that solve Eq. 24 as well. The reason is that only the
symmetric part ofB(z) has been constrained and the antisym-
metric part is undefined. Thus, any antisymmetric part and the
specified symmetric part ofB(z) will solve Eq. 24. There is an
infinite number of antisymmetric polynomials, and thus there is
an infinite number of solutions to Eq. 24.

In the case ofp odd we have

H+(z)
1− z−1

:= RQ,B(z)(
1 + z−1

)
H+(z) = B(z)− z−i−1B(z−1). (26)

The relation between coefficients is then

z0 : 1 + h+
1 /2 = b0

z−i : h+
i +

(
h+

i−1 + h+
i+1

)
/2 = bi − bp−i+1, (27)

which yields, by insertion into the Yule-Walker equation (Eq.
14):

p∑
i=1

2R(i− j)̂bi −
p∑

i=1

2R(p− i− j + 1)̂bi

= −2 [R(j)−R(p + 1− j)] , 1 ≤ j ≤ p. (28)

With the same motivation as forp even, equation above will hold
if the coefficientŝbi obey the Yule-Walker equations of LP (Eq.
3).

D. Correspondence of the Optimal PredictorH−(z) and the
LSP Decomposition

With an analogous proof as in Section IV-C, it can be shown
that polynomialH−(z) is equivalent to the LSP decomposition
of an LP predictor in the sense that

H−(z) = RQ,B(z), p even (29)

H−(z)
1 + z−1

= RQ,B(z), p odd. (30)

For p even,H+(z) is equivalent to the symmetric LSP poly-
nomialRP,B(z) andH−(z) to the antisymmetric LSP polyno-
mialRQ,B(z). In the proof of equivalence of these polynomials,
extraordinary care was taken to restrict only either the symmet-
ric or antisymmetric part of polynomialB(z). Hence, it is pos-
sible to show that with the constant term scaled to unity for both
polynomials and with the trivial zeros included, the sum (as in
Eq. 8) ofH+(z) andH−(z) is equal to the LP polynomial1. �

1 We can readily show that the symmetric LSP decomposition of a polynomial
can be defined separately from the antisymmetric LSP, by insertion of Eq. 8 into
Eq. 7. The symmetric or antisymmetric LSP decomposition (Eq. 7) of Eq. 8 will
always return only the symmetric or the antisymmetric polynomial, respectively.
The two can therefore always be separated, and can always be defined separately.

E. Summary

Properties of polynomialsH+(z) andH−(z) provided that
their coefficients solve the corresponding Yule-Walker equations
(Eqs. 14 and 15), are listed in Tables I and II.

p even p odd
H+(z) symmetric antisymmetric
H−(z) symmetric symmetric

TABLE I

PROPERTIES OF POLYNOMIALSH+(z) AND H−(z) WITH THE TRIVIAL

ZEROS INCLUDED.

transfer function LSP polynomial
p even p odd

H+(z) RP (z) RQ(z)
H−(z) RQ(z) RQ(z)

TABLE II

CORRESPONDENCE OF POLYNOMIALSH+(z) AND H−(z) TO LSP

POLYNOMIALS WITH THE TRIVIAL ZEROS REMOVED.

V. PROPERTIES

The time domain signal transformation that yieldsx̂+(n) (Eq.
10), is an averaging filter, as shown in Figure 1. This filter is a
low-pass filter; it has linear phase and its 3 dB cutoff-point is
at half the Nyquist frequency (see Fig. 3). This means that the
data, from which the optimal predictor is generated, is empha-
sized in the low end of the frequency range. There is thus a trend
for the corresponding Line Spectral Frequencies (LSFs) to lie at
low frequencies.
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Fig. 3

MAGNITUDE RESPONSE OF THE AVERAGING TRANSFORM

CORRESPONDING TÔx+(n).

The dual transformation (Eq. 11) is a differentiating opera-
tor, and as such, a high-pass filter. Its frequency response is the
mirror image (i.e., shifted byπ) that of x̂+(n)’s frequency re-
sponse in Figure 3. The LSFs thus have a tendency to lie at high
frequencies.

The averaging and differentiation affect the magnitude re-
sponses of the corresponding LSP filters as shown in Figure
4 (wherep = 10). The magnitude response corresponding to
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the averaging operation (solid line), shows that each of the five
line frequencies are farther to the left than those corresponding
to the differentiation operation (dashed line). Furthermore, the
spectrum of the LSP filter corresponding to the averaging filter
decays at high frequencies, whereas the spectrum corresponding
to the differentiating filter is almost horizontal.
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Fig. 4

ILLUSTRATION OF HIGH- AND LOW-END EMPHASIS OF THE AVERAGING

AND DIFFERENTIATING FILTERS. THE SOLID LINE DEPICTS THE

SYMMETRIC LSP POLYNOMIAL (OPTIMAL PREDICTION OBTAINED USING

AVERAGING FILTERING) OF A SUSTAINED VOWEL [A :] (MALE VOICE), AND

THE DASHED LINE THE CORRESPONDING ANTISYMMETRICLSP

POLYNOMIAL (DIFFERENTIATING FILTER). POLYNOMIAL ORDER FOR BOTH

FILTERS ISp = 10, AND THE TRIVIAL ZEROS HAVE BEEN REMOVED FROM

BOTH POLYNOMIALS.

Since the polynomialRP (z) is calculated from the high-pass
filtered signalx−(n), the spectrum ofRP (z) fits the spectrum
of x−(n). Similarly, the spectra ofRQ(z) andx−(n) fit as well.
This phenomenon is illustrated in Fig. 5.

A curious lack of symmetry can be noted in the results. Per-
haps contrary to what one could expect,H−(z) is symmetric for
bothp even and odd. Indeed,H−(z) is equivalent toH+(z) for
p odd. Thus, forp odd, there is no emphasizing of low or high
frequencies, as claimed above forp even. This feature can be
explained intuitively by the fact that for an antisymmetric poly-
nomial with an odd number of terms, the center term is zero.
PolynomialP (z) in Eq. 7 has an odd number of terms whenp
is odd. Therefore, forp odd, we have one less degree of free-
dom, and consequently only one of the two polynomialsRP (z)
andRQ(z) can be equivalent with our time domain formulation.

VI. CONCLUSIONS

We have shown that the polynomialsRP (z) andRQ(z) of the
LSP decomposition, can be interpreted in the time domain as
results of optimal linear predictions, where the signal to be pre-
dicted is formed using averaging and differentiating operators.
In other words, transfer functions of the proposed predictors
(Eq. 16) optimized by solving the corresponding Yule-Walker
equations (Eqs. 14 and 15) are equal to the LSP polynomials
with their trivial roots removed (Eq. 9).

REFERENCES

[1] F. Itakura, “Line spectrum representation of linear predictive coefficients
of speech signals,”J. Acoust. Soc. Amer., vol. 57, suppl. 1, pp. 35, 1975.

[2] F. K. Soong and B.-H. Juang, “Line spectrum pair (LSP) and speech
data compression,” inProc. IEEE Acoustics, Speech, and Signal Proc.
ICASSP’84, San Diego, CA, March 1984, vol. 1, pp. 1.10.1–1.10.4.

[3] B. S. Atal, R. V. Cox, and P. Kroon, “Spectral quantization and interpola-
tion for CELP coders,” inProc. IEEE Acoustics, Speech, and Signal Proc.
ICASSP’89, 1989, vol. 1, pp. 69–72.

[4] K. K. Paliwal and W. B. Kleijn, “Quantization of LPC parameters,” in
Speech Coding and Synthesis, W. B. Kleijn and K. K. Paliwal, Eds., pp.
433–466. Elsevier, Amsterdam, 1995.

[5] −, Digital cellular telecommunications system (Phase 2); Enhanced full
rate (EFR) speech transcoding, GSM 06.60 version 4.0.0, ETSI, August
1997.

[6] −, Recommendation G.729-Coding of speech at 8 kbit/s using conjugate-
structure algebraic-code-excited linear-prediction (CS-ACELP), ITU-T,
March 1996.

[7] P. Delsarte and Y. V. Genin, “The split Levinson algorithm,”IEEE Trans.
Acoust. Speech Sig. Proc., vol. ASSP-34, no. 3, pp. 470–478, 1986.

[8] B. M. G. Cheetham, “Adaptive LSP filter,”Electronics Letters, vol. 23,
no. 2, pp. 89–90, 1987.

[9] M. Hasegawa-Johnson, “Line spectral frequencies are poles and zeros of
the glottal driving-point impedance of a discrete matched-impedance vocal
tract model,”J. Acoust. Soc. Amer., vol. 108, pp. 457–460, July 2000.

[10] S. Varho and P. Alku, “Separated linear prediction - a new all-pole mod-
eling technique for speech analysis,”Speech Commun., vol. 24, pp. 111–
121, 1998.

[11] P. Alku and S. Varho, “A new linear predictive method for compression of
speech signals,” inProc. International Conference on Spoken Language
Processing (ICSLP), Sydney, Australia, 1998, vol. 6, pp. 2563–2566.

[12] J. Makhoul, “Linear prediction: A tutorial review,”Proc. IEEE, vol. 63,
no. 5, pp. 561–580, April 1975.

[13] J. Rothweiler, “On polynomial reduction in the computation of LSP fre-
quencies,” IEEE Trans. Speech Audio Proc., vol. 7, no. 5, pp. 592–594,
1999.

APPENDICES

I. M ATHEMATICAL PRELIMINARIES

A. Symmetry properties of LSP decompositions

For a symmetric polynomialAs(z), for both p even andp
odd, the following equations hold true (using Eqs. 5 and 7):

PAs(z)
1 + z−1

=
As(z) + z−(p+1)As

(
z−1

)
1 + z−1

=
As(z) + z−1As(z)

1 + z−1
= As(z), (31)

and similarly (using Eqs. 6 and 7)

QAs(z)
1− z−1

=
As(z)− z−1As(z)

1− z−1
= As(z), (32)

wherePAs(z) andQAs(z) are the LSP polynomials defined in
Eq. 7. Further, for an antisymmetric polynomialAa(z) we have

PAa(z)
1− z−1

= Aa(z) and
QAa(z)
1 + z−1

= Aa(z). (33)

Notice that Eqs. 31–33 are valid for any symmetric or antisym-
metric polynomial.

B. Trivial identities

Beginning with the trivial identity

0 = 4(−1)i − 2(−1)i − 2(−1)i ∀ i

= 4(−1)i + 2(−1)i−1 + 2(−1)i+1. (34)

Using Eq. 34, we will now write an equation resembling Eq. 14
(with 1 ≤ j ≤ p)

0 =
p∑

i=1

R(i− j)
[
4(−1)i + 2(−1)i−1 + 2(−1)i+1

]
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=
p∑

i=1

2(−1)i
[
2R(i− j)

+R(i− j + 1) + R(i− j − 1)
]

(35)

+2R(j − 1)− 2(−1)pR(p− j + 1)
+2R(j) + 2(−1)p+1R(p− j).

Similarly, with 1 ≤ j ≤ p:

0 = 4(−1)i+1 − 2(−1)i+1 − 2(−1)i+1

=
p∑

i=1

2(−1)i+1
[
2R(i− j)

+R(i− j + 1) + R(i− j − 1)
]

(36)

+2R(j − 1)− 2(−1)p+1R(p− j + 1)
+2R(j) + 2(−1)p+2R(p− j).

Further, with1 ≤ j ≤ p:

0 = 4− 2− 2 =
p∑

i=1

R(i− j)(4− 2− 2)

=
p∑

i=1

2
[
2R(i− j)

−R(i− j + 1)−R(i− j − 1)
]

(37)

−2R(1− j) + 2R(p− j + 1)
+2R(j)− 2R(p− j).

Each of these equations (Eqs. 35, 36 and 37) holds true for
anyR(n) andp.

II. SYMMETRY OF OPTIMAL PREDICTORS

A. Symmetry of the Optimal PredictorH+(z)

We will show that polynomialH(z)+ is symmetric or anti-
symmetric for any set of coefficients that obeys the correspond-
ing Yule-Walker equations (Eq. 14). By substitution ofp−j+1
for all j in Eq. 14 we obtain

p∑
i=1

h+
i

[
2R(p− j − i + 1) + R(p− j − i + 2)

+R(p− j − i)
]

= −2 [R(p− j + 1) + R(p− j)] . (38)

Further, inverting indexing ofi by substitution ofp − i + 1 for
all i, and the following results:

p∑
i=1

h+
p−i+1

[
2R(i− j) + R(i− j + 1)

+R(i− j − 1)
]

= −2 [R(p− j + 1) + R(p− j)] . (39)

The expression in Eq. 35 is equal to zero, whereby it can be
added to the left hand side in the equation above and merge the
summations, which yields (forp even)

p∑
i=1

{[
h+

p−i+1 + 2(−1)i
]

· [2R(i− j) + R(i− j + 1) + R(i− j − 1)]

}
= −2 [R(j) + 2R(j − 1)] , 1 ≤ j ≤ p. (40)

The equation above is of an identical form as the Yule-Walker
equations (Eq. 14), except for the coefficienth+

p−i+1 + 2(−1)i.
We have shown that if Eq. 14 holds, then the above equation
will also hold. Therefore, forp even, the following holds:h+

i =
h+

p−i+1 +2(−1)i. This is the symmetry criterion forp even (Eq.
18) and polynomialH+(z) is therefore symmetric forp even.

A similar proof forp odd exists, which shows thatH+(z) is
antisymmetric. In the proof, Eq. 36 must be added to Eq. 39
similarly as in the case ofp even.

B. Symmetry of the Optimal PredictorH−(z)

For polynomialH−(z), we have (adapting from Eq. 39)

p∑
i=1

h−p−i+1

[
2R(i− j)−R(i− j + 1)

−R(i− j − 1)
]

= −2 [R(p− j + 1)−R(p− j)] , (41)

where1 ≤ j ≤ p. By subtraction of Eq. 37 we have

p∑
i=1

{[
2− h−p−i+1

]
· [2R(i− j)−R(i− j + 1)−R(i− j − 1)]

}
= −2 [2R(j)− 2R(1− j)] , 1 ≤ j ≤ p. (42)

Which (comparing to Eq. 15) implies thath−i = 2 − h−p−i+1,
and hence,H−(z) is always symmetric.
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FREQUENCY DOMAIN VISUALIZATION OF THE EQUIVAILENCE BETWEEN

DIFFERENT COMPUTATIONS OFLSP POLYNOMIALS (FOR NOTATIONS, SEE

FIG. 2). AN EXAMPLE CALCULATED FROM A MALE VOWEL [A :] WITH

p = 10. (A) THE POLYNOMIALS RP (z) AND RQ(z) AND CONVENTIONAL

LP TOGETHER WITH THEFFT-SPECTRUM OF THE ORIGINAL SIGNALx(n).

(B) THE POLYNOMIAL H−(z) TOGETHER WITH THEFFT-SPECTRUM OF

THE HIGH-PASS FILTERED SIGNALx−(n). (C) THE POLYNOMIAL H+(z)

TOGETHER WITH THEFFT-SPECTRUM OF THE LOW-PASS FILTERED SIGNAL

x+(n). SIGNAL LEVELS HAVE BEEN ADJUSTED FOR VISUAL CLARITY.
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