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On Line Spectral Frequencies
W. Bastiaan Kleijn, Fellow, IEEE, Tom Bäckström, and Paavo Alku

Abstract—The commonly used line spectral frequencies
form the roots of symmetric and antisymmetric polynomials
constructed from a linear predictor. In this letter, we provide
a new, simpler proof that the symmetric and antisymmetric
polynomials can be regarded as optimal constrained predictors
that correspond to predicting from the low-pass and high-pass
filtered signal, respectively.

Index Terms—Linear prediction, line spectral frequency, line
spectral pair.

I. INTRODUCTION

L INEAR prediction is ubiquitous in speech coding (e.g.,
[1]). In linear-prediction-based speech coders, the pre-

dictor is generally encoded as side-information and interpolated
between updates. It has been found that the line spectral fre-
quency (LSF) [2] representation of the predictor is particularly
well suited for quantization (e.g., [3]) and interpolation (e.g.,
[3], [4]). From a theoretical viewpoint, this can be motivated
by the fact that the sensitivity matrix relating the LSF-domain
squared quantization error to the perceptually relevant log
spectrum is diagonal [5], [6]. Furthermore, the minimum-phase
property of the quantized predictor is easily guaranteed [7].

Despite the extensive use of the LSFs, insight in their be-
havior and meaning is less developed than that of other pre-
dictor representations, although some physical interpretations
have been provided [7], [8]. The goal of this letter is to provide
additional understanding of the LSFs by showing that they can
be determined from particular optimal constrained predictors.

We show that, for even predictor order, the LSFs can be
interpreted as the roots of two particular predictor polyno-
mials. These polynomials (and corresponding predictors) are
symmetric, which is consistent with the LSFs being on the
unit circle. The predictors are optimal constrained predictors
that correspond to prediction of the original signal from a
particular high-pass and a particular low-pass filtered signal,
respectively. The predictor polynomials are identical to the LSF
polynomials of the unconstrained predictor (the symmetric
and antisymmetric components of the unconstrained predictor
polynomial), if the trivial roots of these LSF polynomials at

1 and 1 are removed. This basic equivalence is outlined in
Fig. 1. The nature of the constraints indicates that the sequence
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of interlaced roots of the symmetric and antisymmetric poly-
nomials will generally start (at the low-frequency end) with
a root of the symmetric polynomial. The new interpretation
also has an interesting link to fast computational methods for
predictors that exploit symmetric polynomials [9]. We note that
the constrained predictors are similar to those discussed in [10]
and [11]. The present proof is different and more compact than
that in [12].

We continue this letter in Section II with the decomposition of
the conventional linear prediction polynomial into a symmetric
and an antisymmetric LSF polynomial. In Section III, we show
that the same symmetric and antisymmetric polynomials are ob-
tained for certain constrained predictors. We discuss the signif-
icance of these results in Section IV.

We will, where that does not lead to confusion, refer to the
prediction-residual filter as “the predictor.” The notation
indicates a vector of dimension, and is the transform
of the corresponding sequence. Subscriptsand denote, re-
spectively, symmetry and antisymmetry of a vector or sequence.
Superscripts and indicate low-pass and high-pass filtering
by and , respectively.

II. CONVENTIONAL LINEAR PREDICTION

Let us consider a stationary signal with a covari-
ance matrix . The optimal order- linear predictor

for this signal can be determined
from the extended normal equations

(1)

where , and is the
prediction-residual variance. The elements of the vector
correspond to the coefficients of theth-order prediction-error
filter, often referred to as the inverse filter.

A conceptually simple method for solving (1) is to solve first

(2)

for . We then have and
.

Next, we define the symmetric polynomial and the antisym-
metric polynomial of the LSF decomposition using a vector
notation. Let the superscriptdenote the sequence-reversal op-
eration, i.e., . (The vector

corresponds to the so-called backward predictor.) We
can form -dimensional symmetric and antisym-
metric components of as follows:

(3)
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Fig. 1. Block diagram outlining the equivalence shown in this letter for even predictor order. The top diagram shows the conventional method for obtaining
the LSFs based on a decomposition of the predictor polynomial into symmetric and antisymmetric polynomials. The bottom diagram shows a method based on
prediction from particular high-pass and low-pass filtered signals that renders the symmetric and antisymmetric polynomials as predictor polynomials (ignoring
the trivial roots).

The polynomials and are the symmetric
and antisymmetric polynomials, respectively, of the LSF de-
composition (usually denoted as and , respectively),
except for the scaling factor . Given the (anti)symmetry, it

is easy to see from (2) that and obey

(4)

where is a constant.

III. CONSTRAINED LINEAR PREDICTION

We define a predictor that
predicts a signal sample of a first signal, , from a set of
samples of a second signal that is
obtained by low-pass filtering with ,
i.e., . The prediction error is

(5)

Similarly, we define a predictor
that predicts from samples of the signal obtained
by high-pass filtering with . The extended
normal equations defining these predictors are

(6)

where and are the unnormalized prediction
error filters and the matrices and are the
Toeplitz matrices

(7)

The matrices correspond to a transform where the first
row yields the original sample to be predicted, and the
following rows yield samples of filtered by .

We define the constrained predictors
and that corre-

spond to the optimal prediction of the unfiltered signal from,
respectively, high-pass and low-pass filtered samples. Note that

the constrained predictors and have the orig-
inal signal samples as input: defining
(note that, in general, is not unity), the prediction error
can be written as

(8)

By multiplying (6) by the inverse of (the right-hand side
can be found with simple forward elimination), it is seen that
the predictors satisfy

(9)

The same equation can be obtained by minimization of the pre-
diction error subject to a constraint on the structure of .
The predictor is symmetric for

even since is Toeplitz and symmetric and since the
right-hand side of (9) is symmetric. Furthermore, is
antisymmetric for odd, since the right-hand side of (9) is an-
tisymmetric. Similarly, must be symmetric for odd
and even. The symmetries and antisymmetries can be exploited
to reduce computational effort.

Defining a -dimensional symmetric component
of the vector and a -dimensional

antisymmetric component of as in (3), it
follows from (9) that, for even

(10)

where and are constants. (We recall that superscripts
and indicate low-pass and high-pass filtering, whereas sub-
scripts and indicate symmetry and antisymmetry.) We rec-
ognize that (10) and (4) are identical and that, therefore, for even

(11)

This implies that and (the transforms
corresponding to and ) are identical except for
their scaling.
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Next, let us consider odd values of. In this case, we have
. The antisymmetric component of

is obtained by subtraction

(12)

For odd we then obtain

(13)

However, for odd there is no equation equivalent to (11) for
the symmetric case (i.e., for ).

We now summarize our results. For anyand with proper
scaling, the antisymmetric components of the conventional and
constrained predictors are equal. Furthermore, for even values
of and with proper scaling, the symmetric component of the
conventional and constrained predictors are also equal. Some
implications of these results are discussed in Section IV.

IV. DISCUSSION

We saw that, for even, the constrained predictor
has the same -dimensional symmetric component as the
unconstrained predictor , ignoring a scaling. Similarly,
again for even, the constrained predictor has the same

-dimensional antisymmetric component as the uncon-
strained predictor , except for a scaling. It then follows
that

(14)

since both and are symmetric. This results in
, rendering the well-

known fact that has a trivial root at and that
has a trivial root at .

Let us restate these findings. We have found that the sym-
metric polynomial is the optimal predictor

that is constrained to predict from the low-pass fil-
tered signal (except for a scaling). This predictor generally re-
tains a low-pass character. Furthermore, we have found that the
symmetric polynomial is the optimal
predictor that is constrained to predict from the
high-pass filtered signal (except for a scaling). This predictor

generally retains a high-pass character. Whenis odd, which is
less relevant in practice, we find similarly that

equals (except for a scaling), but no equiva-
lent result for exists.

A structure similar to the one given in (4) is used in
the Levinson recursive computation of the predictor. In the
Levinson algorithm, the forward and backward predictors of
(3) are multiplied by factors so as to render the right-hand side
of (4) of the form [13]. Moreover, the symmetric
version of (9) has appeared earlier in the context of a split
Levinson–Durbin recursion [9]. This algorithm takes advantage
of both the symmetry and recursion properties of to
lower the computational requirements for finding an optimal
predictor (its numerical properties make it less attractive [14]).
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