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ABSTRACT

In this work warped linear prediction(WLP) is ap-
plied to a model-based method to detect impulsive dis-
turbances in audio signals. According to simulations per-
formed on artificially corrupted audio signals the adoption
of negative values for the warping factor favors the click
detection scheme. As a consequence, for equal levels of
missing (false) detection the WLP-based scheme yields
consistently lower percentage of false (missing) detection
than the conventional method.

1. INTRODUCTION

Frequency warping techniques have been applied success-
fully to several audio applications [1, 2]. In this work,
WLP is applied to a model-based method of audio de-
clicking (impulsive noise removal) and its performance is
confronted against the conventional method.

In one of the most popular model-based methods for
audio de-clicking, short-time signal frames of the uncor-
rupted audio signal are modeled as autoregressive (AR)
processes, and linear prediction is used to detect the cor-
rupting clicks in the signal [3, 4]. The modeling perfor-
mance plays an important role on the detection scheme,
and thus it is worth investigating possible benefits of us-
ing WLP for this task.

According to simulations carried out in this work, the
use of WLP in the model-based click detection is advan-
tageous. Its main benefit is the possibility to improve the
prediction gain, which has a close connection with the
click detection performance. Simulations on real musi-
cal signals artificially corrupted show that the percentage
of missing detection can be reduced when a suitable value
for the warping factor is adopted.

This paper is organized as follows. In Section 2, the
basic principles of the AR-based technique for impulsive
noise detection are reviewed. In Section 3, the basic con-
cepts of frequency warping and WLP are addressed, and
the performance of the WLP-based click detection scheme
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is evaluated for several values of the warping factor. Ex-
periments and results are described in Section 4. Conclu-
sions are drawn in Section 5.

2. MODEL-BASED AUDIO DE-CLICKING

Impulsive disturbances or clicks can be described as local-
ized discontinuities of short duration (typically less than
1 ms) that randomly corrupt an underlying signal [4].

Digital signal processing techniques for de-clicking
purposes can be in general separated in two stages: de-
tection of clicks and signal reconstruction. Usually, both
the detection and the reconstruction stages employ model-
based approaches within block-processing schemes.

2.1. Audio Modeling

Consider a sequence containingN samples of the cor-
rupted signal, modeled asy(k) = x(k)+d(k), whered(k)
is the noise sequence, andx(k) is the uncorrupted signal,
which is modeled as apth-order AR process defined by

x(k) =

pX
n=1

a(n)x(k � n) + e(k); k = p; � � � ; N � 1;

(1)
wherea(n) are the model parameters ande(k) is the ex-
citation signal or the prediction error sequence.

The model parameters can be estimated by minimiz-
ing the prediction error energy, for instance, through either
the covariance or autocorrelation methods. As the param-
eter estimation is performed over the corrupted signal, a
biased estimate is inevitable.

2.2. Detection Stage

The basic steps of the detection stage consist of estimating
the model parameters, inverse filtering of the noisy signal,
and applying a selection criterion over the excitation se-
quence to detect the corrupting clicks.

The excitation signal obtained from a corrupted signal
block can be written as

e(k) = ex(k) + d(k)�

pX
j=1

d(k � j)a(j); (2)
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whereex(k) is the excitation term associated with the un-
corrupted signal, andd(k) is the impulsive noise sequence
itself. However, the last term indicates that the clicks are
also spread in the excitation signal. For the click detec-
tion purpose, the lower the variance ofex(k) and the less
prominent the spreading term, the better the click detec-
tion performance.

One possible criterion to detect the clicks as well as
to determine their location in time [3, 4] consists of con-
sidering corrupted all those samples in the signal that cor-
respond to excitation samples whose magnitude exceeds
a given threshold�. The value of the threshold can be
obtained as� = K �̂ex , where�̂ex is an estimate of the
excitation standard-deviation andK is a gain factor. The
value of �̂ex can be estimated from the noisy excitation
sequence by applying a median estimator [3]. The value
of K is settled empirically to control the tradeoff between
percentage of false and missing detection. Its value is not
changed along the block-processing scheme.

The performance of threshold-based methods for click
detection purposes can be improved by other means, for
instance, the inclusion of a matched filtering procedure af-
ter the inverse filtering, the use of two-sided and extended
linear prediction formulations [3], and the adoption of a
double-threshold detection scheme [5].

2.3. Reconstruction Stage

The last step of the de-clicking process consists of replac-
ing the corrupted samples by others that resemble the au-
dio behavior in the neighborhood of the disturbances.

In this work, the Least Squares AR-based interpola-
tor [4] was used. It estimates the new samples by mini-
mizing the prediction error energy with respect to the cor-
rupted samples. The method is well suited for interpola-
tion of moderate gaps (up to 100 samples at 44100 Hz) in
the audio signal. In this sense, some level of false alarm in
the click detection is not very harmful and can be tolerated
if it yields short gaps, since one can count on the recon-
struction stage to recover the signal. It is more important
to aim at a low missing detection rate.

3. WLP-BASED CLICK DETECTION

3.1. Warped Linear Prediction

Parametric representations of signals such as the linear
prediction coefficients can be carried out in a warped fre-
quency domain. The WLP uses the bilinear conformal
mapping [6]. In this case, the unit delays of the analysis
FIR filter are replaced by first-order allpass filters. The
modified delay element is defined as

~z�1 = D(z) =
z�1 � �

1� �z�1
; j�j < 1; (3)

where� is the warping factor. The group delay ofD(z)
varies as a function of frequency. Therefore, it is possible
to attain a non-uniform frequency resolution by properly
setting the value of�. Within this structure, the choice
of positive values of� leads to an increased resolution

Table 1. Prediction gainGp for different values of�.

� -0.8 -0.4 0.0 0.4 0.8
Gp 35.51 27.49 22.37 17.30 11.04

at low frequencies whereas negative values of� yield an
increased resolution at high frequencies.

The description of the algorithms to compute the WLP
coefficients as well as the implementation of the analysis
(WFIR) and synthesis (WIIR) filters can be found in [7].
Furthermore, the use of frequency warping filtering tech-
niques are computationally more demanding than the stan-
dard ones. However, an extra cost is not critical for audio
restoration applications, since real-time processing is usu-
ally not required.

3.2. WLP-based Click Detection

In the WLP-based detection scheme the conventional esti-
mation of the AR model parameters is replaced by a WLP
estimator, and the inverse filtering procedure is carried
out using a WFIR structure to obtain an excitation with
temporal resolution equal to that of the analyzed signal.
The effects of this scheme on the prediction gain and the
spreading of clicks are investigated next.

3.2.1. Prediction Gain

There are many ways to assess the modeling performance
of a linear prediction scheme. For click detection purposes
the goal of the inverse filtering is to produce a high con-
trast between the prediction error of the corrupted samples
and that of the uncorrupted samples. Therefore, instead
of employing a spectral flatness measure over the excita-
tion, it is better to evaluate the modeling performance via
the relative improvement in the noise-to-signal ratio due
to the inverse filtering. If the spreading term in (2) is not
considered, this can be measured via the prediction gain,
defined by

Gp = 10 log
10

 PN

n=1 jx(n)j
2PN

n=1 jex(n)j
2

!
; (4)

wherex(i) is the uncorrupted signal andex(i) its corre-
sponding excitation within a given signal block.

In order to evaluate how the WLP can favor the detec-
tion scheme under a real situation, a meanGp was com-
puted as a function of the warping factor� for a 5 s seg-
ment of orchestral music artificially corrupted by clicks.
This signal was sampled at 44.1 kHz and segmented in
215 frames of 1024 samples. For each frame,40th-order
WLP prediction filters were estimated for values of� sam-
pled from -0.8 to 0.8 in steps of 0.4. As the location of the
clicks was known beforehand, the corrupted samples were
discarded from theGp computation.

The obtained result of the meanGp over 215 frames is
shown in Table 1, from where it can be verified that, on the
average, the prediction gain tends to decrease as� is in-
creased. Note that the model parameters used to compute
ex(i) in Eq. 4 were estimated from noisy data. Therefore,
although not explicitly shown in Eq. 4, the values ofGp

are influenced by the presence of clicks in the signal.



According to Table 1, the more close to -1 the value
of � is set the higher the prediction becomes. However, a
high value ofGp does not necessarily mean a better signal
modeling performance. It can simply reflect how well the
signal energy is reduced after the inverse filtering [7] (p.
94).

The previously described behavior lays on the fact that
the excitation produced by the WFIR inverse filter does
not have a flat power spectrum. Actually, the excitation
spectrum has a tilt given by the squared magnitude of
W (z) =

p
(1� �2)=(1� �z�1) [6, 7]. Therefore, when

negative values of� are adopted the spectrum assumes a
highpass filter characteristic, whereas a lowpass filter pro-
file is obtained for positive values of�.

The spectral tilt observed in the excitation can be cor-
rected by prefiltering the signal throughW�1(z). How-
ever, such a correction serves nothing to threshold-based
click detection. On the contrary, it is desirable to detect
clicks through an excitation which has its high-frequency
components emphasized. This holds true when employing
negative values of�.

3.2.2. Spreading of Clicks

As seen in Section 2.2, the spreading of clicks is deter-
mined by the impulse response of the inverse filter. In the
WLP-based scheme, the inverse filter is WFIR with infi-
nite impulse response, since its internal elements,D(z),
are first-order recursive allpass filters. It can be shown [8]
that the energy carried by the impulse response ofD(z)
is more concentrated in its initial samples whenj�j ap-
proaches 0. Thus, it is plausible to expect longer impulse
responses for the WFIR filter, and consequently more pro-
nounced spreading effects, whenj�j is set close to 1.

The spread of the clicks affects mainly the determi-
nation of its length when running a threshold-based de-
tection scheme. However, the beginning of the clicks is
still well defined, since WLP implies a one-sided forward
prediction. Therefore, an effective way to overcome the
pronounced spreading of the clicks is to 1) compute an ad-
ditional excitation by inverse filtering a time-reversed ver-
sion of signal frame; 2) obtain two sets containing the in-
dices associated with the corrupted samples, one for each
excitation; 3) and then, take only those indices that are
common to both sets. This strategy corresponds to es-
timating the beginning of the clicks through the forward
inverse-filtered signal and the end point using the back-
ward inverse-filtered signal.

4. EXPERIMENTS AND RESULTS

The signals addressed in this work are real musical ex-
tracts which were artificially corrupted by impulsive noise
to allow the use of objective measures, e.g., the missing
detection percentage (MDP) and false detection percent-
age (FDP).

Usually, both the MDP and FDP vary strongly accord-
ing to the values of the parameters employed in the click
detection algorithm. Additionally, the quality of the signal
reconstruction is not considered in the previous measures.
The WLP is only applied to the detection stage as the main
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Fig. 1. MDP and FDP in the WLP-based click detection
as a function of the warping factor measured for S1. Plots
(a) and (b) illustrate the effect of the prefiltering whereas
plots (c) and (d) illustrate the effect of the TRF.

intention here is to evaluate its effects on the detection per-
formance.

Two test signals S1 and S2 (monaural, 44.1 kHz, 16
bits, duration about 10 s) containing excerpts of orches-
tral music are used in the simulations. The impulsive noise
sequences are taken as the difference between other orig-
inally corrupted signals and their restored versions. The
percentage of corrupted samples in S1 and S2 are approx-
imately 0.6% and 5%, respectively.

The evaluation strategy consists of first setting the pa-
rameters of the detection method in order to produce a
satisfactory restored result. In this initial calibration pro-
cedure the value of� was set to zero, which is equivalent
to employing conventional linear prediction. The model
order, the threshold gain, and the frame length (see Sec-
tion 2) were set top = 40, K = 5, andN = 1024, re-
spectively. At this stage, the time-reversed filtering (TRF)
(see Section 3.2.2) was not used. The interpolation algo-
rithm employed in the reconstruction stage was the Least
Squares AR-based, as described in [4].

Now, to assess the effect of the WLP on the click de-
tection performance the values ofK andp are frozen, and
the value of� is varied from�0:9 to 0:9 in steps of0:1.
For the sake of clarity, the consequences of including or
not the prefiltering,W�1(z), and the TRF resources over
the MDP and FDP rates are depicted separately in Fig. 1.
It can be verified that, for negative values of�, the lack
of prefiltering yields a reduction in MDP whereas FDP is
increased. On the contrary, the employment of the TRF
produces a small increase in MDP followed by a reduc-
tion in FDP.

Additional simulations also showed that the MDP and
FDP measures are not sensitive to the choice of the model
order, at least within the range between 10 and 80. Similar
behavior was observed for S2, although the overall per-
formance is worse than that of S1, due to its much higher
percentage of corrupted samples.

According to the plots shown in Fig. 1, it is impossi-
ble to choose an optimal solution for� which minimizes
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Fig. 2. Percentage of (a) missing and (b) false detection
as functions of the threshold gain.

both the MDP and the FDP. However, considering that it
is preferable to compromise the minimization of FDP in
favor of MDP, the best option is to set a negative� for the
WLP and exclude the prefiltering stage.

A good strategy to confront the performance of the
click detection using conventional linear prediction,� =
0, against WLP with� = �0:7, but without prefiltering, is
to fix all other parameters and vary the threshold gain,K,
which has direct impact on both missing and false detec-
tion percentage. The results obtained when evaluating the
signal S1 are shown in Fig. 2. As an example, to achieve
MDP below 1% when employing� = 0, it is necessary
to setK � 4:2, which implies a FDP of about 14%. On
the other hand, the same requirement is satisfied when us-
ing � = �0:7 by settingK = 6, and in this case, the
attained FDP is 3.4%. If the detection stage includes the
TRF scheme, the use of� = �0:7 is still advantageous
since it yields lower levels of false alarm in spite of higher
MDP. When adjustingK to achieve a MDP below 2% for
both� = 0:0 and� = �0:7 the resulting FDP are 7.2%
and 1.8%, respectively. It can be concluded then that the
use of WLP with� = �0:7 yields as low MDP as the case
with � = 0:0, but achieves a lower level of FDP.

It is worth noticing that the possibility to lower the
MDP and the FDP surely reflects a better performance of
the detection scheme. However, its relation with the per-
ceptual quality of the restored signals can be highly non-
linear. For instance, reducing an already small MDP only
produces subtle improvements which may be hard to per-
ceive. According to informal listening tests, the percep-
tual improvement attained by using WLP with negative�

in the click detection stage can be perceived at some spe-
cific passages, e.g., during thecrescendoin S2. Audio
samples are available at URL:
http://www.acoustics.hut.fi/publications/papers/dsp2002-declick/

5. CONCLUSIONS

This paper proposed the use of warped linear prediction in
a model-based click detection method. It was found that
by properly setting the warping factor,�, the spectrum
of the excitation is emphasized at higher frequencies fa-
voring the threshold-based click detection. The desirable
increase in the prediction gain can be attained by reducing
the value of� at the cost of a more pronounced spread-
ing of clicks. To overcome the latter, an additional inverse
filtering using a time-reversed version of the signal frame
was proposed. Simulations were performed on real musi-

cal signals, artificially corrupted by impulsive noise. The
results show that the missing detection decreases when the
value of� is decreased, although the opposite behavior
is observed for the percentage of false detection. A case
study confronting the performance of detection scheme
using WLP (� = �0:7) against the conventional linear
prediction (� = 0) showed that, in the former case, it is
possible to achieve equal levels of missing but at a lower
percentage of false detection and vice-versa. Finally, it is
interesting to notice that the use of WLP in audio applica-
tions is usually intended to perform signal analysis based
on auditory modeling, which can be achieved via WLP by
adopting a positive value for� [9, 2]. However, this is not
the case for the click detection scheme presented in this
paper, which shows that signal modeling with� < 0 is
better suited for detection of short clicks.
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