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[P3] P. A. A. Esquef, V. V¨alimäki, K. Roth, and I. Kauppinen, “Interpolation of
Long Gaps in Audio Signals Using the Warped Burg’s Method,” inProc.
6th Int. Conf. Digital Audio Effects (DAFx-03), London, UK, Sept. 2003,
pp. 18–23.

[P4] P. A. A. Esquef, “Interpolation of Long Gaps in Audio Signals Using Line
Spectrum Pair Polynomials,” Tech. Rep. 72, Lab. of Acoustics and Audio
Signal Processing, Helsinki University of Technology, Feb. 2004, (Submit-
ted to IEEE Trans. Speech and Audio Processing, May 2003.).
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Chapter 1

Introduction

1.1 A Brief History of the Recording Technology

The first reproducible recording of human voice was made in 1877 on a tin-
foil cylinder phonograph devised by Thomas A. Edison. Since then, much ef-
fort has been expended to find better ways to record and reproduce sounds. By
the mid-twenties, the first electric recordings appeared and gradually took over
purely acoustic recordings. The development of electronic computers—from the
transistorized generation in the mid-fifties to the micro-processed generation in
the early seventies, in conjunction with the ability to record data into magnetic
or optical media—culminated in the standardization of compact disc format in
1980. Nowadays, digital technology has been applied to several audio applica-
tions. For example, it can be used to improve the quality of modern and old
recording/reproduction techniques but also, in a somewhat opposite direction, to
trade sound quality for less storage space and less taxing transmission capacity re-
quirements. For a comprehensive time-line and description of the most prominent
events regarding the recording technology history see [1] and [2].

1.2 Traditional Audio Restoration

Audio restoration basically aims at improving the sound of old recordings. The
primary goal is to reduce spurious noise artefacts, which are usually introduced
by the recording/playback mechanisms, while preserving, as much as possible,
the original recorded sound.

The first step in a typical audio restoration procedure consists of transferring
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the sound from old matrices to a digital form. This task involves practical matters
such as locating the original matrices or the best sounding copies; finding the best
way or equipment to play back a given matrix; and dealing with the usual lack of
standardization associated with obsolescent recording/playback systems.

Sound transferring from old media to more modern ones, for instance from 78
RPM to LP disks, was a common practice even before the digital audio era. The
idea was to benefit from the improved features of more advanced recording sys-
tems. Among other matters, these features relate to a larger data storage capacity,
longer life-time, easier handling and care, easier replication of the material, and
greater accessibility to a wider public. Even in the analog era, attempts have been
made to improve the sonic quality of old recordings within the sound transferring
process. The same issues were in question, perhaps in a more exacerbated way,
when digital media came about.

As highlighted earlier, audio restoration goes beyond merely digitizing analog
audio. Thanks to the progressive increases in the computational power of digi-
tal processors, more sophisticated and powerful processing of digitized data has
became feasible in practice. Nowadays, audio restoration is accomplished by de-
vising DSP algorithms devoted to reducing or suppressing from the recorded ma-
terial spurious noises and disturbances introduced by the old recording/playback
systems.

The most commonly found types of degradation associated with old record-
ings can be roughly classified into localized and global disturbances [3]. For ex-
ample, short impulsive noises (clicks, crackles, and pops) as well as low-frequency
long pulses (thumps) belong to the former class while continuous background
disturbances or interferences such as broadband noise (hiss), buzz, and hum are
usually classified as global disturbances. Other examples of audio degradations
include non-linear distortions, e.g., clipping, surface noise, and slow or fast fre-
quency modulations, wow or flutter respectively.

A review of the main techniques available for treating localized disturbances,
such as long pulses and clicks is given in Chapter 3. Methods and algorithms for
dealing with other types of degradations can be found elsewhere [3].

As audio-related DSP techniques evolve, it may be possible to overcome the
intrinsic limitations of old recording systems. As a result, the sonic quality of the
restored audio material could be improved beyond that of the original matrices.
It is already possible, for example, to artificially extend the bandwidth of a given
audio signal based on the observable band-limited one [4], [5], [6], [7].

2



1.3 Towards Sound Objects and Content

Currently available audio restoration tools allow automating some tasks, e.g., click
removal, that would be tiresome if carried out manually. However, attaining sat-
isfactory restoration results is still quite dependent on wise choices of processing
parameters. Moreover, the actual restoration methods lacka priori knowledge
on the contents of the signal to be restored. For example, noise-like events, such
as a whip sound or a drum brushing, may be mistakenly treated as click or hiss,
respectively. Therefore, the need of a reasonable personal judgment on the final
sonic quality of a restored sound becomes crucial.

It seems reasonable to believe that, in the future, audio restoration techniques
can benefit from incorporating extra information into the sound being processed.
For example, knowledge about the contents of the signal and the mechanisms
of sound production and perception could be taken into account in the restora-
tion procedures. To the author’s knowledge, attempts in this direction have been
restricted to the use of psychoacoustic criteria embedded in de-hissing methods
only [8], [9], [10], [11], [12], [13].

Recently, much research has focused on finding ways to represent audio sig-
nals in a structured organization through high-level constituent sound objects [14],
[15], [16], [17]. In the future, one can foresee the possibility of carrying out au-
dio restoration in an object-based framework. A rather idealized goal in this case
would be first to analyze the audio content from the sound of old recordings to
obtain control data for appropriate sound synthesis models and then, to generate
completely new and noiseless audio signals, based on these models. Of course,
realizing audio restoration via resynthesis is a rather formidable challenge from
the engineering point of view. It entails interdisciplinary research areas such as
Computational Auditory Scene Analysis (CASA) [18], [19], automatic transcrip-
tion of music [20], [21], [22], object-based audio coding [23], [24], [25], and
sound synthesis [26], [27], [28], [29], [30], [31], [32]. Apart from technical mat-
ters, from the subjective point of view, performing audio restoration through an
object-based sound resynthesis may raise questions regarding the preservation of
artistic integrity in the reconstructed signals. However, one should bear in mind
that audio restoration is of a non-substitutive character. Thus, whatever results an
object-based approach may offer in the future, it will constitute just another way
of listening to old recordings.
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1.4 Scope of this Thesis

This thesis deals with audio signal processing and its applications to restoration of
old recordings. All sound manipulations presented here take place in the digital
domain, after transferring and digitizing the audio from analog sources. Two dis-
tinct modeling approaches are used in this thesis: conventional signal modeling
and sound source modeling techniques. Within the former category, the proposi-
tions are restricted to methods for suppression of localized disturbances in audio
signals, such as long pulses and clicks. As regards the latter approach, the work is
limited to analysis and synthesis of tones from plucked string instruments. Within
this scenario, propositions for bandwidth extension of guitar tones in connection
with signal de-hissing are presented.

1.5 Contents of this thesis
The work in the first four publications deals with signal modeling techniques for
audio restoration and concentrates on the detection and suppression of localized
disturbances in audio signals, such as impulsive noise and low-frequency pulses.
In this context the proposed algorithms include: an efficient algorithm for suppres-
sion of low-frequency pulses in audio signals; a model-based scheme for impul-
sive noise detection that uses frequency-warped linear prediction; and two meth-
ods for reconstruction of audio signals in long fragments of degraded samples.

The remaining publications elaborate on the application of SSM techniques to
audio restoration and on the problems involved in such a framework. A case study
featuring bandwidth extension of guitar tones is presented. Moreover, the prob-
lems associated with the calibration of the sound source models from noisy mea-
surements are outlined. In dealing with this matter, frequency-selective model-
based spectral analysis tools are proposed as a robust means to extract the desired
model parameters from noisy sources.

1.6 Structure of this Thesis
In addition to the introduction, Chapter 2 reviews basic concepts that permeate the
contents of this thesis. Chapter 3 provides a brief overview of standard techniques
used for treating the most commonly found types of degradations associated with
old recordings. Moreover, it relates prior works in the field with the contributions
offered in this thesis. Such contributions are summarized in Chapter 4. Finally,
conclusions and future directions are given in Chapter 5. The publications related
to this thesis are included as annexes.
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Chapter 2

Basic Concepts and Tools

This chapter briefly reviews some concepts and tools that are used throughout the
publications included in this manuscript. It covers issues related to AR modeling,
frequency-warping, and digital waveguide synthesis.

2.1 AR and ARMA Modeling

The resonant nature associated with most of the sound vibrations makes AR and
ARMA processes suitable tools to model short fragments of audio signals. In fact,
AR and ARMA models find use in several audio applications, such as speech and
audio coding, sound synthesis, and spectral analysis.

2.1.1 Basic Definitions

An ������
 �� process���� can be generated by filtering white noise����
through a causal linear shift-invariant and stable filter with transfer function [33]

���� �
����

����
�

��

��� ���
��

	 

��

��� ���
��

� (2.1)

Considering a flat power spectrum for the input, i.e.,����� � ��
� , the resulting

output���� has a generalized power spectrum function given by

����� � ��
�

�������	����

�������	����

 (2.2)
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where the symbol� stands for complex-conjugate. For real-valued filter coeffi-
cients,����� has�� poles and�� zeros. The power spectrum associated with an
������
 �� process, which is attained by evaluating����� for � � ���, is then
given by

����
��� � ��

�

���������

���������
� (2.3)

In the time domain, an������
 �� process���� relates to excitation����
through the following difference equation

���� 


��
���

������ �� �

��
���

������ ��� (2.4)

An AR process is a particular case of an ARMA process when� � �. Thus, the
generator filter assumes the form

���� �
��

	 

��

��� ���
��


 (2.5)

which is usually referred to as the transfer function of an all-pole filter.

2.1.2 Parameter Estimation of AR and ARMA Processes

Estimation of AR and ARMA models is a well researched topic with a vast liter-
ature available [34], [33]. A compact review regarding the estimation of AR and
ARMA models can be found in sections 1 and 2 of [P6]. AR model estimation
consists of a linear optimization problem in which a certain cost function is min-
imized w.r.t. the AR model parameters. Different definitions of the cost function
lead to different solutions. For example, the popular autocorrelation and covari-
ance methods use the sum of the squared magnitude of the modeling error as cost
functions. The difference lies in the time range over which the error is consid-
ered [33]. Other approaches, such as Burg’s method, explore the modularity of
lattice structures to provide a solution for the model parameters in an iterative
form [35], [36]. If the stability of the models is a crucial issue to the application
at hand, then the autocorrelation and Burg’s methods are suitable choices, since
they guarantee stable AR estimates.

Parameter estimation of ARMA processes is a more involved task. The dif-
ficulty arises from solving the normal equations which are no longer linear in
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the ARMA coefficients. Thus, the usual solutions rely on non-linear and itera-
tive optimization procedures, e.g., Prony’s method [33] and the Steiglitz-McBride
iteration [37]. One drawback of these methods is that the estimated models can-
not be guaranteed to be minimum-phase, thus raising obstacles to inverse filtering
problems. In addition, and especially for high-order models, the model estimates
may become unstable.

2.2 Frequency Warping

The Fourier transform is one of the most common ways to transform a signal
from its time-domain representation into a frequency-domain representation. In
this case, the frequency-resolution of the resulting spectrum is uniform along the
frequency axis. Frequency warping techniques are primarily concerned with the
design of transformations in which non-uniform frequency-resolutions can be at-
tained. Typically, a frequency mapping operator is involved in this task.

In this thesis, frequency warping is restricted to a conformal bilinear mapping.
This choice is convenient, since it implies substituting the unit delays��� with
first-order allpass filters���� in the filter structures and definitions used [38].
The allpass filter works as a frequency-dependent delay element and its transfer
function is defined by


��� � ���� �
��� � 


	� 
���
� (2.6)

While ��� has a linear phase response, the phase response of���� can be
made non-linear by adjusting the warping factor
. Indeed, the mapping from the
uniform to the warped frequency scale is governed by the phase response of����,
which is given by [38]


� � �� 
 � ������

�
�
 ������

	� 
 ������

�

 (2.7)

where� � ������ and�� is the sampling frequency. Figure 2.1 shows the attained
mapping for several values of
. For positive values of
, the resolution at low
frequencies is increased whereas negative values of
 yield a higher resolution at
high frequencies. Suitable values of
 can be chosen depending on the application
at hand. For instance, in [39] Smith and Abel provide a closed-form formula that,
for a given sampling rate, provides the optimum value of
 that best approximates
the frequency resolution of the Bark scale.
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Figure 2.1: Frequency mapping for several values of
.

As regards filtering on a frequency-warped scale, it is possible to realize fre-
quency-warped versions of FIR and IIR filters in either the direct-form or lattice
structure implementations [40], [41]. Moreover, frequency-warped linear predic-
tion and AR modeling estimation can be formulated similarly to standard meth-
ods, such as the autocorrelation and Burg’s methods [38], [41]. For a comprehen-
sive view on frequency-warping techniques and its applications to audio signal
processing see [42] and [43].

2.3 Digital Waveguide Synthesis

Digital waveguides are an efficient means to implement physics-based sound syn-
thesis of musical instruments. For a lossy vibrating string, the direct implementa-
tion of the discretized solution of its wave equation leads to a structure composed
of distributed delays and loss elements [29]. The key idea behind the computa-
tional savings associated with DWG lies in lumping these delay and loss elements
into single components. For a comprehensive review on the topic see [29]. The
resulting DWG structure can be seen as an extended version of the Karplus-Strong
algorithm [44], [45], [46].

Digital waveguide filters account mainly for modeling the resonator part of
a musical instrument. Modeling of the remaining functional parts, such as the
excitation mechanism and the radiator system (instrument body), and their inter-
actions should also be considered in the synthesizer design [45], [46], [47]. It
should be pointed out that implementing accurate parametric models for the radi-
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ator element may be computationally expensive [47]. A highly efficient means to
overcome this drawback is to resort to the commuted DWG synthesis [48], [49].
Its basic principle consists of commuting the resonator and radiator parts, which
are assumed to be LTI systems, and gathering the excitation and the radiator parts
into a wavetable.

2.3.1 String Model

A simple and efficient model of an isolated vibrating string is illustrated in Fig. 2.2.
The model’s transfer function is given by

���� �
� ���

�	
����
�

	

	� ����� �����
�����

 (2.8)

where���� and� ��� are, respectively, the integer and fractional parts of the delay-
line associated with the length of the string�, and��
����� is the transfer function
of a loss filter, which governs the frequency dependent losses of the harmonic
modes.

The length of the string is given by� � ��� ���, where ��� is an estimate of
the fundamental frequency of the tone and�� is the adopted sampling rate. In
general,� is a real number and can be decomposed into� � �� 
 Æ, with �� �
���, where operator��� stands forthe greatest integer less than or equal to. The
fractional part, which is specified byÆ, can be implemented through fractional
delay filters [50]. For instance, the Lagrange interpolator [50] is a straightforward
choice for the fractional delay filter. In such a case, a closed-form formula for
computing the filter coefficients exists for given specifications of filter order and
delay.

The loss filter��
����� is usually of lowpass characteristic. In addition, its
magnitude response must be less than unity to guarantee the stability of����. A
suitable choice for the loss filter is

��
����� � �
	 
 �

	 
 ����

 (2.9)

where� � � � 	 and�	 � � � �. The parameters� and� of this one-pole filter
are associated, respectively, with perceptual features such as the overall decay
time and the brightness of the tone. Optimum design in a weighted LS sense of
one-pole filters, for a given set of specifications for the decay time of the partial
modes, is proposed in [51], [52], [53]. Design of higher-order IIR loss filters is
presented in [54].
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Figure 2.2: Block diagram of a simple one-polarization string model.

2.3.2 Model Calibration

As for the decay time specifications, they can be derived analytically from the
physical model [55]. Alternatively, they can be obtained via STFT-based analysis
of recorded tones [51], [52], [56]. Other means include non-linear optimization
methods [57], [58] and parametric techniques [59], [60], [61].

STFT-based methods assume exponentially decaying partial envelopes. How-
ever, due to differences between the transversal (horizontal and vertical) polariza-
tions of vibration, partial envelopes may exhibit amplitude beating and two-stage
decay [62]. See [63] and [53] for examples of methods for estimating the fre-
quency difference between partial modes from the extracted partial envelopes.
Notwithstanding, accurate decay time estimation of partial modes via envelope
fitting can be prevented by the presence of multi-modal partials and corrupting
background noise in the recorded tone. In publication [P5], an SSM-based method
for extending the bandwidth of a guitar tone whose high frequencies have been
lost due to aggressive de-hissing is offered. In this case, as the high-frequency
partials were either immersed in noise or absent, the calibration of the waveguide
model was carried out with the aid of a similar fullband and clean guitar tone.
However, in publications [P6] and [P7] the authors address the estimation of the
decay time of partial modes under noisy conditions. Moreover, they demonstrate
the effectiveness of the FZ-ARMA modeling [64] in accomplishing this task.

Naturally, the string model depicted in Fig. 2.2 is rather simplified. In order
to attain more realistic sonic results, string models should account for other fea-
tures related to the vibrating string phenomenon. Among them, one can mention:
dispersion in stiff strings [45], [65], [66], [67], [68]; vertical and horizontal polar-
izations of vibration [46], [53], [69], [70]; sympathetic string coupling [45], [46];
and non-linear effects [71], [72]. Usually, the more sophisticated the synthesis
model, the less computationally efficient it is. In this regard, psychoacoustics can
help to achieve an optimum balance between computational cost and sound qual-
ity. For example, one may enable or disable parts of a synthesizer model according
to the salience of the perceptual attributes of the tone to be synthesized [73].
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Chapter 3

Overview of Digital Audio
Restoration

Digital audio restoration takes place after the sound transfer process from analog
sources to digital domain. Thumps, pops, clicks, crackles, and hiss are common
onomatopoeias used to characterize the sound produced by spurious noises that
usually corrupt old recordings. The following sections review standard proce-
dures for reducing these noises and follow the order of precedence in which the
problems are usually tackled.

3.1 De-thumping

Thumps are produced by long pulses of low-frequency content that additively
corrupt an audio signal. These pulses are related to the mechanical response of the
playback mechanisms to an abnormal excitation, e.g., the response of the stylus-
arm apparatus to large discontinuities in the groove walls of a disk. Examples of
long pulses are depicted in Fig. 3.1.

Apart from crude techniques, such as highpass filtering of the signal, a few
methods, with various degrees of sophistication, exist for treating long pulses.
The template matching method introduced by Vaseghi [74], [75] figures among
one of the first propositions. The basic assumption behind this method is that
long pulses are identical in shape varying only in amplitude. Thus, given a tem-
plate of the corrupting pulse, one can locate other pulse occurrences through high
values of the cross-correlation coefficient, measured between the template and
the corrupted signal. Then, noise suppression is carried out by subtracting an
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Figure 3.1: Examples of long pulses: (a) a single pulse and (b) superimposed
pulses.

amplitude-scaled template from degraded portions of the signal, after an adequate
time synchronization.

The high-amplitude click that usually appears at the beginning of a long pulse
is to be removed by a de-clicking algorithm (to be discussed in Section 3.2). Fig-
ure 3.2 shows a block diagram that illustrates the functional stages of the template-
matching de-thumping method. The main limitation of the template matching
method is the lack of robustness in detecting and suppressing pulses whose shape
varies over time or pulses that are superimposed [3].

A model-based approach to long pulse removal has been proposed in [76]. In
this method the corrupted audio signal is modeled as a mixture of two distinct
AR processes. Thus, signal restoration is accomplished by separating these two
processes. High-order AR models are used to fit the underlying audio signal. As
for the pulse, low-order AR models are employed and the initial click is incorpo-
rated as part of the pulse. This is done by setting a high-variance model excitation
during the click portion. The main drawback of the AR-separation approach is
its high computational cost. The method has been further developed into a more
efficient implementation that utilizes Kalman filtering techniques [77].

In [78], Esquefet al. have proposed an algorithm for long pulse removal based
upon non-linear and polynomial smoothing filters. Extensions of this prelimi-
nary work were reported later in publication [P1]. In the proposed pulse removal
method, a first estimate of the pulse’s waveform is obtained through a modified
version of a filtering technique called two-pass split-window (TPSW) [79], [80].
The key purpose in this filtering scheme is to mitigate the spurious effects of the
initial high-amplitude click on the pulse estimate. Moreover, the authors point out
the need and also offer two propositions to vary the length of the TPSW filter over
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Figure 3.2: Processing stages of the template-matching method for de-thumping.
Adapted from [75].

time, in order to cope with typical waveform evolutions of long pulses.
The final pulse estimate, which is to be suppressed from the corrupted sig-

nal, results from a piecewise polynomial fitting scheme applied to the TPSW-
based pulse estimate. The polynomial fitting technique, which is meant to further
smooth the pulse estimate, resembles Savitzky-Golay smoothing filters [81], [82].
For appropriate values of processing parameters, the restoration performance of
both the TPSW- and the AR-based pulse removal methods are comparable. How-
ever, the computational complexity of the TPSW-based algorithm is two orders of
magnitude lower than that of the AR-separation method.

3.2 De-clicking

Impulsive-like disturbances contaminating audio signals are heard as clicks. Such
disturbances are usually caused by small-scale imperfections on the groove walls
of a disk. Among other causes, these imperfections can be due to the intrinsic
porosity of the disk material, solid particles adhering to the groove walls, or the
presence of superficial scratches on the disk surface [83].

Systems for click removal were attempted even in the analog domain [84],
[85], [86], [87]. Intriguingly, some of the rationales used in these ancient systems,
such as a two-stage task procedure, viz. click detection and signal reconstruction,
have been similarly employed later in digital approaches to audio de-clicking.

In model-based approaches for audio de-clicking, short frames of the under-
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Figure 3.3: Model-based de-clicking method. Adapted from [75].

lying audio signal���� are modeled as���-order AR processes. Moreover, the
degradation mechanism assumes the additive form

 ��� � ���� 
 !���"���
 (3.1)

where the term!���"��� corresponds to the noise component, with!��� being a
binary sequence that indicates the presence of noise (!��� � 	).

The goal of click detection algorithms is to estimate the sequence!��� that
minimizes the percentage of both miss detection and false alarm of clicks. In the
AR-based click detection scheme proposed in [74] and [88], the magnitude of the
AR model excitation, which is obtained via inverse filtering, is compared against
an adaptive threshold. Samples of the excitation with magnitude values exceeding
that of the threshold reflect corrupted samples in the signal. Further improvements
in click detection performance can be achieved by using matched filtering [74],
two-sided linear prediction [89], and more elaborated thresholding schemes [90].

Noise suppression is attained by replacing the corrupted samples with others
that resemble the underlying signal. This task can be satisfactorily accomplished
through AR-based interpolation methods [91], [74], [92]. Figure 3.3 depicts a
block diagram with the functional stages of a model-based de-clicking scheme.

Audio de-clicking can be also carried out within a statistical Bayesian frame-
work [93], [76], [94], [95], [3]. In the Bayesian approach, models are used for
both the underlying signal and the noise processes. Moreover, click detection and
suppression are accomplished within a single processing stage. Other means for
audio de-clicking include neural-network algorithms [96] and model-based adap-
tive filtering techniques [97], [98].
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In publication [P2], the authors have investigated the use of frequency-warped
linear prediction within a model-based click detection scheme. The results ob-
tained show that focusing the modeling efforts on high frequencies, i.e., by em-
ploying negative values for the warping factor, favors the click detection perfor-
mance.

Various kinds of approaches have been used to tackle the reconstruction of
discrete-time signals across gaps of missing samples. Among the available tech-
niques one can mention: bandlimited reconstruction [99], [100]; sinusoidal mod-
eling interpolation [101]; waveform substitution [102], [103]; AR-based interpo-
lation [91], [74], [92]; and multirate signal reconstruction [104], [105], [106].

In AR-based schemes, the signal reconstruction is attained through the mini-
mization of the variance of the model excitation w.r.t. the unknown samples. Due
to constraints related to the non-stationarity of audio signals, AR-based interpola-
tion methods are usually suitable for reconstructing relatively short-duration (up
to about 20 ms) portions of audio signals. Interpolation across longer gaps may
lead to poor signal reconstruction, which is characterized by excessive evenness
and decaying power of the signal toward the middle of the gap. The simplest way
to circumvent these shortcomings is to increase the order of the AR model. Other
solutions include: interpolators that use AR models augmented with cosine basis
functions [3]; interpolators with constant excitation energy [107], [108]; interpo-
lators based on random sampling [109], [110]; and interpolators that employ two
different AR models, one to model the segment that immediately precedes a gap
and another for the fragment that succeeds the gap [111], [112].

In publication [P3] the authors compare the performance (computational cost
versus perceptual quality) of the interpolation scheme proposed in [112] against
a modified version of it that employs frequency-warped AR models. Carrying
out AR model estimation and signal reconstruction in a frequency-warped scale is
computationally more expensive than when done in the conventional way. How-
ever, in the warped case, the warping factor can be tuned to focus the modeling
efforts on the more perceptually prominent low-frequency resonance modes of the
signal. As a consequence, better models in the perceptual sense can be attained.
Simulation results show that, at a given cost level and for low-order models, the
warped-based scheme performs better than the conventional scheme. The percep-
tual quality of the reconstructed signals was measured with the perceptual audio
quality measure (PAQM) [113]. Briefly, the PAQM is an objective distortion mea-
sure that takes into account psychoacoustic phenomena. The PAQM represents
a dissimilarity index that is obtained by comparing the inner-ear representations
of a reference and a processed signal. Additional discussion on the usage of the
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PAQM in the context of audio restoration can be found in section 6.4 of [P1].
Publication [P4] also addresses the interpolation of audio signals over long

gaps of missing samples. This time, however, instead of using frequency-warped
AR models, the author investigates the use of modified AR models within the
interpolation scheme of [112]. The modification consists of first estimating an AR
model, for instance, using Burg’s method, and then straightforwardly constructing
a modified AR model via a weighted sum of its corresponding line spectrum pair
polynomials. The weight parameter controls the pole location of the modified
model. Moreover, it can be tuned to place the poles close to or on the unit circle.
This resource is shown to improve the performance of the interpolation scheme.
The quality of the processed signals was assessed using the PAQM [113].

3.3 De-hissing

Signal contamination with additive broadband noise is perceived as hiss. The
noise component is usually due to thermic measurement noise, circuitry noise,
and intrinsic characteristics of the storage medium. For example, 78 RPM disks
and analog tape recordings are usually associated with hiss noise. For the lat-
ter medium, however, the noise characteristics are more stationary than the for-
mer [114].

Audio and speech de-hissing has been approached through several means. Per-
haps the most common is via short-time spectral attenuation (STSA) methods,
which have their origin in speech de-noising [115], [116], [117]. The basic as-
sumption behind STSA methods is that the corrupting noise is a zero-mean white
Gaussian process uncorrelated to the underlying signal. In practice, due to the
non-stationarity of general audio signals, STSA methods employ a block-based
overlap-and-add processing scheme. Moreover, the transformations from time
into frequency and vice versa are carried out through the discrete Fourier trans-
form.

In STSA methods, noise reduction is accomplished by subtracting an estimate
of the power spectrum of the noise realization from the observed power spectrum
of the corrupted signal. This strategy is known as the power spectrum subtraction
suppression rule. Other related suppression rules include the magnitude spectral
subtraction [116] and Wiener filtering [74]. All these suppression rules can be for-
mulated in terms of a time-varying filter that attenuates the magnitude spectrum of
the noisy signal differently, according to the current SNR measured at a given fre-
quency bin. For comparisons among different suppression rules see [118], [114].
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Figure 3.4: STSA-based hiss reduction system. Adapted from [119].

Figure 3.4 illustrates the typical processing stages of STSA de-hissing methods.
A typical side-effect of STSA methods is the presence of random tonal noise

in the processed signals. Also known as musical noise, this phenomenon orig-
inates from the random characteristic of the power spectrum of single noise re-
alizations [118]. Thus, at random frequency values, the power of some noise
components may lie above the estimated noise power spectrum. These compo-
nents are not suppressed and, as a result, one hears brief tonal bursts with random
frequencies popping up in the signal along time.

There exist several means to reduce the musical noise phenomenon. Perhaps
the simplest consists in overestimating the noise power spectrum. In this case,
musical noise reduction is a trade-off for the loss of valuable signal content, espe-
cially on the high-frequency range. Other ways to reduce musical noise involve:
spectral averaging over successive frames [116]; applying heuristic rules to the
spectral attenuation factor [120], [75]; leaving a minimum noise floor to mask the
musical noise components [121], [122], [3]. Recently, some interest in incorpo-
rating psychoacoustic-related phenomena into the suppression rules used in STSA
methods has been aroused [8], [9], [10], [11], [12], [123], [13].

The suppression rule proposed by Ephraim and Malah [124], [125], [126],
[127] is known to be effective in reducing the musical noise residual. The EMSR
corresponds to the optimum (in the minimum mean square error sense) short-time
amplitude estimator of a sinusoid buried in additive noise. Moreover, the EMSR
can be formulated in terms of thea posterioriand thea priori SNRs associated
with a given frequency bin. In practice, thea priori SNR is estimated from previ-
ously processed frames via a decision-directed approach. Simpler alternatives to
the EMSR have been also proposed in [128] and [119].

Still within the class of non-parametric de-hissing techniques, the wavelet-
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based shrinkage has received a lot of attention in the pertinent literature [129],
[130], [131], [132], [133], [134]. In this method the noisy signal is mapped into
a multi-resolution time-frequency representation via a discrete wavelet transform.
In such representation, the underlying signal is supposed to be coded by a few
high-amplitude coefficients. Conversely, the noise process is represented by a
large number of low-level coefficients. Thus, de-noising is accomplished simply
by discarding these coefficients before transforming the signal back to the original
domain.

In addition to non-parametric techniques, more sophisticated model-based ap-
proaches have been proposed for audio de-hissing. For example, AR modeling
of degraded speech and audio signals has been tackled in [135]. Statistical-based
techniques that employ AR and ARMA modeling have also been developed for
joint treatment of broadband and impulsive noise [76], [95], [136], [97]. Adaptive
filtering schemes for audio de-hissing are presented in [74], [75], and [97]. Hy-
brid methods that combine either different non-parametric schemes [137] or mix
non-parametric and parametric strategies [138] can also be found in the relevant
literature.
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Chapter 4

Contributions of this Thesis

4.1 [P1]

Summary

In this paper an efficient algorithm for long pulse removal is presented. The
method uses a modified version of a non-linear filtering scheme called two-pass
split-window, which has been borrowed from sonar signal processing. The key
idea is to perform a simple moving-average filtering over a given segment cor-
rupted by a long pulse. However, the filtering element used is a square window
with a gap in the middle. If a square window were used, the pulse estimate would
be biased due to the presence of the high-amplitude click that drives the pulse.
By employing a split-window, the bias is eliminated at the click location, but re-
mains around the click occurrence. The second pass aims at correcting this lateral
bias. After the TPSW filtering stage the pulse estimate is further smoothed out by
means of a piecewise polynomial fitting scheme.

The pulse estimation method is two orders of magnitude less expensive com-
putationally than the method based on separation of AR processes and performs
comparably to the latter. Moreover, the calibration of the processing parameters
can be easily and intuitively carried out through a graphic user interface.

Author’s Contribution

The author initiated the ideas presented and was responsible for all the simula-
tions carried out in this work. He wrote the greater part of the text and prepared
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companion webpage. The co-authors contributed section 1.4 and the appendix as
well as helpful comments and suggestions on the manuscript.

4.2 [P2]

Summary

This paper investigates the use of frequency-warped linear prediction for click
detection in audio signals. The results show that using warped linear prediction,
while focusing the resolution on higher frequencies, favors the click detection
task. According to the experimental results, the change in the frequency resolu-
tion per sedoes not play a major role in improving the click detection perfor-
mance. The benefit comes from a spectral tilt that appears in the prediction error
when using warped linear prediction. When the warping factor is tuned to increase
resolution at high frequencies, the spectral tilt assumes a highpass filter charac-
teristic, facilitating the click detection. Although the spectral tilt could be easily
compensated for, doing so is not desirable in this case. A side-effect of using
warped linear prediction for click detection is a more accentuated click spread in
the excitation. To overcome this problem a scheme for click detection that uses
the backward and forward prediction errors is proposed in the paper. Objective
measures taken over de-clicked signals reveal that employing warped linear pre-
diction for click detection can offer a better balance between miss detection and
false alarm of clicks.

Author’s Contribution

The author proposed the research, carried out all the experiments reported in the
paper, wrote most of the text of the manuscript, and prepared companion webpage.
The co-authors contributed valuable discussions on the subject as well as pertinent
comments and suggestions on the manuscript, which they also proofread.

4.3 [P3]

Summary

In this paper, a model-based scheme for interpolation of audio signals over exten-
sive portions of degraded samples is presented. The proposed algorithm carries
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out the interpolation by means of a model-based signal extrapolation scheme that
uses frequency-warped AR models, computed via a frequency-warped version of
Burg’s method. The warped-based interpolation scheme is about 1.7 times more
costly than the conventional procedure. However, at the same cost levels and for
low-order models, the results indicate that using frequency warping to focus mod-
eling on the low-frequency range favors the interpolation task, in that the energy
of the interpolated signal is better preserved across the gaps. The performance of
the two interpolation methods was compared via PAQM and SNR measures.

Author’s Contribution

Given the collaborative character of this work, the author’s contributions to the
proposed idea and its development were comparable to those of the co-authors.
With the exception of sections 3.1 and 3.2, the author wrote most of the manuscript
and conducted all the experiments reported. The co-authors also implemented the
frequency-warped version of Burg’s method, contributed some of the figures, as
well as provided suggestions and comments on the text readability. They proof-
read the manuscript as well.

4.4 [P4]

Summary

This paper addresses the reconstruction of audio signals over long fragments of
missing samples through AR-based interpolation schemes. In particular, the novel
interpolation scheme uses modified versions of conventionally estimated AR mod-
els that are computed via a weighted sum of their corresponding line spectrum
pair (LSP) polynomials. A single weighting factor can be tuned to place the poles
of the model close to or on the unit circle. Performance comparisons using the
PAQM show that, for a given low-order model, using the WLSP-modified AR
models within the interpolation method yields reconstructed signals with higher
perceptual quality than that of the signals reconstructed via the conventional in-
terpolation scheme.
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Author’s Contribution

The author was responsible for the research conducted and the results reported.
The author also designed the companion webpage.

4.5 [P5]

Summary

This paper discusses the use of sound source modeling (SSM) techniques for en-
hancement and restoration of guitar tones. Contrary to traditional signal mod-
eling techniques, which aim at modeling signal waveforms, SSM techniques at-
tempt to model the physical phenomena behind the sound production. Thus, SSM
techniques should be placed within the framework of structured audio and object-
based processing. The authors outline the challenges and limitations of SSM tech-
niques as regards practical applications to audio enhancement. As a case study,
they present an SSM-based method for bandwidth extension of lowpass filtered
guitar tones. Moreover, the proposed bandwidth extension scheme is applied to
strongly de-hissed guitar tones as a means to recover the lost high-frequency con-
tent.

Author’s Contribution

The author composed the article and was responsible for the experiments and
results reported as well as for the elaboration of the companion webpage. The
co-authors participated through fruitful discussions on the ideas that permeate the
paper and provided comments and suggestions to improve the text readability.

4.6 [P6]

Summary

This paper addresses the analysis and modeling of resonant systems by means of
a frequency-selective model-based approach, called frequency-zooming ARMA
modeling. Similar to other subband analysis methods presented in the litera-
ture [59], [139], [140], [141], in the FZ-ARMA analysis technique a certain sub-
band of interest is selected from the signal spectrum and an ARMA model is fitted
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to the corresponding decimated subband signal. The subband model can be used
to estimate the frequencies and decay times of the resonance modes present in
the subband. Other applications comprise modeling of signals immersed in noise,
modeling and equalization of room impulse responses, as well as modeling and
synthesis of musical instrument sounds.

Author’s Contribution

The author was responsible for the text and experimental results shown in sections
3.2, 3.3, 3.4, and 4.3. In addition to contributing to the overall polishing of the pa-
per, the author prepared the companion webpage and the sound examples offered
therein.

4.7 [P7]

Summary

This paper investigates the use of a frequency-selective spectral analysis tech-
nique, called FZ-ARMA modeling, for analysis of noisy guitar tones. Frequency
zooming is first employed to isolate a given partial of the tone. Then, an ARMA
model is fitted to the corresponding complex-valued subband signal. From the
poles of the ARMA model one obtains the frequencies and decay times of the res-
onance modes that compose the partial. The authors show that FZ-ARMA anal-
ysis is particularly suitable when estimating modal parameters of partials whose
amplitude envelope exhibits two-stage decay and beating. Moreover, comparisons
with the ESPRIT method were provided. They revealed that, under noisy condi-
tions, using ARMA models to approximate the subband signals offers a more ro-
bust means to estimate the decay time of the resonance modes present in a given
partial. As a case study, a noisy guitar tone was first analyzed through the FZ-
ARMA modeling scheme. Then, based on the set of extracted modal parameters,
a DWG filter was designed.

Author’s Contribution

The author wrote the article and was responsible for the experiments and results
reported. The co-authors contributed extensive discussions on the matters related
to the topic and provided invaluable comments and suggestions to improve the
readability of the manuscript.
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Chapter 5

Conclusions

5.1 Summary

This thesis addressed digital audio restoration through both signal modeling tech-
niques and sound source modeling methods. Within the former category, novel
methods for restoration of audio signals degraded by localized defects, such as
long low-frequency pulses, clicks, and crackles, were proposed. More specifi-
cally, an efficient algorithm for long pulse removal was presented in [P1] and a
frequency-warped AR-based method for click detection was introduced in [P2].
The task of signal reconstruction over long portions of missing samples was in-
vestigated in [P3] and [P4].

As regards realizing audio restoration within the SSM framework, a general
discussion on the related advantages and drawbacks was provided in [P5]. In ad-
dition, case studies that feature SSM-based bandwidth extension and de-hissing
of single guitar tones were presented. Analysis and modeling of resonant sys-
tems based on subband AR and ARMA modeling were covered in [P6], where
a technique called FZ-ARMA modeling was described. The FZ-ARMA model-
ing scheme finds applications in various tasks related to audio signal processing,
e.g., modeling and equalization of room impulse responses as well as modeling of
musical instrument sounds. In [P7], the FZ-ARMA analysis technique was em-
ployed to calibrate a DWG model of a vibrating string based on an observed noisy
measurement of a plucked guitar tone.
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5.2 Future Directions

Most of the audio restoration tools that are currently available offer a certain de-
gree of automatism for some de-noising tasks. Nonetheless, the importance of
a discerning judgment on the attained sonic improvements cannot be neglected.
The state-of-the-art restoration methods do not yet take into account aspects re-
lated to the content of the signals to be restored. Thus, it is up to an expert listener
to decide whether impulse-like and hiss-like events should be preserved, as being
part of the original signal, or are to be removed as undesired noises.

It is the opinion of the author that digital audio restoration techniques can
benefit from the inclusion of high-level content information in their formulation.
Such high-level information may comprise features such as the genre of the au-
dio program being processed and the types of generative sources involved in the
sound production. In this context, the work that has been carried out in the field of
CASA, automatic transcription of music, object-based audio coding, and sound
synthesis is of significant importance. Other relevant factors concern the char-
acteristics of the environment in which the sound has been produced as well as
psychoacoustic properties of the human auditory system. To some extent, the
latter have already been incorporated into algorithms devoted to audio de-hissing.

Taking into account high-level information on the audio content may poten-
tially bring several advantages to audio restoration methods. However, as pointed
out in [P5], such strategy implies working in an object-based audio represen-
tation, which is less general than processing approaches based on conventional
signal modeling techniques. Nevertheless,a priori knowledge on the audio con-
tent could be used to guide the choice of more appropriate processing parameters
within a certain restoration procedure. Moreover, it could also help to select more
adequate restoration algorithms, depending on the type of audio program at hand.
A further and more involved step would be embedding high-level content infor-
mation within a model-based framework for audio restoration.
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[42] A. Härmä, “Audio Coding with Warped Predictive Methods,” Licentiate
thesis, Helsinki University of Technology, Espoo, Finland, 1998, URL:
http://www.acoustics.hut.fi/�aqi/papers/LT.ps.gz.
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[56] C. Erkut, V. Välimäki, M. Karjalainen, and M. Laurson, “Extraction of
Physical and Expressive Parameters for Model-Based Sound Synthesis of
the Classical Guitar,” Presented at the 108th Convention of the AES, Paris,
France, Feb. 2000, Preprint 5114, URL:
http://lib.hut.fi/Diss/2002/isbn9512261901/.

[57] A. W. Y. Su and S.-F. Liang, “A New Automatic IIR Analysis/Synthesis
Technique for Plucked-String Instruments,”IEEE Trans. Speech and Audio
Processing, vol. 9, no. 7, pp. 747–754, Oct. 2001.
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[72] T. Tolonen, V. Välimäki, and M. Karjalainen, “Modeling of Tension Mod-
ulation Nonlinearity in Plucked Strings,”IEEE Trans. Speech and Audio
Processing, vol. 8, no. 3, pp. 300–310, May 2000.
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