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ABSTRACT 

The bristle of a rotating cleaning brush for air ducts was modelled using large 

deformation elastic theory. The point collocation method with a trial solution 

consisting of undetermined parameters was employed to discretize the resulting non-

linear problem. The main interest was in determining the value of the bristle tip contact 

normal force , the bristle tip contact angle N β  and the torque T  needed to rotate a 

brush. The results obtained using the simple model were compared with the results 

obtained from a laboratory test. 

 

The simulated and experimental results show that the magnitude of the normal force 

and the contact angle increase as a function of the rotation speed . Additionally, the 

torque increases with the growth of the normal force. The results show further that air 

drag increases the torque and somewhat decreases the contact force between a bristle 

tip and the duct surface. However, with the normal properties of a brush, air drag only 

slightly affects the deflections of the bristles at practical rotating speeds. 

n

 

To facilitate possible brush design work the problem was also studied employing a 

dimensionless formulation. The parameters that affect the magnitude of the normal 

force and the contact angle are five dimensionless numbers. 

 

Keywords: Duct; Bristle; Normal force; Contact angle; Torque; Air drag; 

Dimensionless formulation

 1



2  



  

TABLE OF CONTENTS  

NOMENCLATURE.......................................................................................................4 

1. INTRODUCTION.....................................................................................................7 

2. MODELING............................................................................................................10 

3. SOLUTION METHOD...........................................................................................18 

3.1 Discrete formulation ........................................................................................18 
3.2 Solution details.................................................................................................22 

4. DIMENSIONLESS FORMULATION...................................................................24 

4.1 Manipulations...................................................................................................24 
4.2 Dimensionless results.......................................................................................28 

5. LABORATORY TEST...........................................................................................31 

5.1 Experimental arrangement ...............................................................................31 
5.2 Solution details.................................................................................................34 
5.3 Additional test ..................................................................................................38 

6. RESULTS................................................................................................................41 

6.1 Simulation details.............................................................................................41 
6.2 Rotating bristle calculations.............................................................................41 

6.2.1 Deflection of rotating bristle .....................................................................41 
6.2.2 Dependence on the rotation speed of the bristle .......................................43 
6.2.3 Dependence on air drag.............................................................................43 

6.3 Results of laboratory test..................................................................................46 
6.3.1 Deflection of bristle ..................................................................................46 
6.3.2 Magnitude of normal force .......................................................................49 
6.3.3 Magnitude of torque..................................................................................50 
6.3.4 Friction coefficient....................................................................................50 

6.4 Summary of the results.....................................................................................51 

7. DISCUSSION .........................................................................................................53 

8. CONCLUSION .......................................................................................................55 

ACKNOWLEDGEMENTS.........................................................................................56 

REFERENCES ............................................................................................................57 

APPENDIX..................................................................................................................59 

 

 3



 

 
NOMENCLATURE 
 
A   cross-sectional area of bristle 
c   dimensionless multiplier 

nccc  ,..., , 10  undetermined parameters 

DC  air drag coefficient 
d  thickness of bristle 
md  mass element of bristle 
sd  differential bristle length element 

E  Young's modulus 
EI   flexural rigidity of bristle 
L   length of bristle 

mLLL ,..., , 21   Lagrangian interpolation functions 
M  bending moment 

jMMM ,..., , 21  first integrals of Lagrangian interpolation functions 

jNNN ,..., , 21  second integrals of Lagrangian interpolation functions 
n  rotation speed of bristle, degree of approximation, number of bristles 
N  magnitude of normal force 
P  cross-sectional normal force 
q  air drag force per unit bristles length acting perpendicular to bristle 
Q  shearing force 
r   radial distance from origin to  s
R   radius of duct 
Re   Reynolds number aavd µρ=  
s   arc length coordinate of a generic point of bristle 

msss  ,..., , 21  interpolation points in interval Ls ≤≤0  
T  torque 
W  weight 

yx,   coordinates of a generic point of bristle 
 
Greek symbols 
α  directed angle from initial ray 
β  bristle tip contact angle 
γ   angle between rod normal and rod velocity vector 
θ  inclination angle of bristle axis with x -axis 
~θ  approximation of θ  
µ  kinetic coefficient of friction 

aµ  dynamic viscosity of air 

aν  kinematic viscosity of air 
ξ  ratio Ls  
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1π  dimensionless number EIAL 24ωρ=  

2π  dimensionless number RL=  

3π  dimensionless number µ=  

4π  dimensionless number EIdL 252 ωc aρ=  

5π  dimensionless number aa LdcLdac υωµωρ ==  

aρ  density of air 

bρ  density of bristle material 
φ  inclination angle of a ray to  with respect to s x -axis, polar angle 
ω  angular speed of brush 
 
Subscript 
a   air 
ad   air drag 
b   bristle, bending 
bf   bearing friction 
c   centrifugal 
fit   fitting polynomial function 
N   air drag intensity normal to axis 
Nµ   normal and friction force 
s   simulated value 
  
Superscript 
−   dimensionless quantity 
~  approximation of a quantity 
 
Brackets 
  

〉〈   function of Reynolds number 
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1 INTRODUCTION 

Dust and other contaminants accumulate on the surfaces of an air handling system 

during its construction and operation. Contaminated surfaces may increase energy 

consumption, decrease the airflow rate and cause malfunctions in the air handling 

system. Additionally, contamination into the supply air duct may cause problems for 

the occupants of the building. Therefore, the air handling system has to be cleaned 

regularly. In particular, those systems which convey high levels of dust or represent a 

fire hazard have to be cleaned frequently. 
 

Mechanical brushing is an efficient method for cleaning air ducts [1]. Mechanical 

brushing systems consist of rotating brushes that detach particles from duct surfaces, 

cleaning devices to guide and rotate the brush into the duct, a low-pressure fan to 

convey the loosened particles from the duct, and a filter unit to remove particles as 

they pass through the filter. The brushes are guided into the ducts with flexible rods 

and normally rotate at speeds of rpm 1000300 −=n . The diameter of the brush is 

oversized compared to the diameter of the duct - i.e. the bristle length  duct radius L R  

ratio is normally 3.1<< RL1 . The thickness of the bristles  varies between 0.3 mm 

and 1.0 mm when fine, dry dust is removed. To date brushes have been designed using 

empirical methods. However, theoretical modelling offers a useful tool in development 

work for the use of brushes for different purposes. 

d

 

The effect of varied parameters on the behaviour of rotating bristle was studied in 

references [2] and [3]. The results showed that the diameter of the bristle and the 

rotation speed strongly affect the magnitude of the bristle tip normal force . With 

regard to the contact angle 

N

β , the bristle length duct radius ratio is the most important 

parameter. Air drag somewhat affects thin bristle behaviour at the rotation speeds of 

300−1000 rpm that are used in practice. The rotation speed and the bristle length duct 

radius ratio are typical parameters that professional cleaners use to optimise brushes.  

 

Compared to references [2] and [3], this report contains some new features, namely a 

dimensionless representation of the formulation and a description of an experimental 

test arrangement and a comparison of the results using the test and also using the 
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computational model. To make the report reasonably self-contained, the main 

assumptions and expressions from references [2] and [3] are repeated here. 

 

Figure 1.1 (a) shows schematically the deformed shape of a typical rotating bristle in a 

duct and the forces acting at the bristle tip. We assume here that the rotation centre O 

situates at the geometric centre of a circular duct. The radius of the duct is denoted R  

and the length of the bristle . The independent variable for the bristle shape 

description is taken to be the arc length  along the deformed bristle. Figure 1.1 (b) 

shows in more detail a possible scenario at the bristle tip. 

L

s

   

(a) 

ω

N

Ixy
R

is

O

β

µN  (b) 

β

( ( ) ( ))x L , y L

Fig. 1.1. (a) Deformed bristle and the contact forces at the bristle tip. (b) Bristle tip. 

Of main interest is to determine the value of the unknown normal force  acting on 

the bristle tip, the contact angle 

N

β  and torque T  needed in terms of the parameters of 

the problem, such as the angular speed of the brush ω  and the ratio RL etc. The 

contact angle β  is defined as the angle between the duct surface normal and the 

bristle axis tangent at the bristle tip (Figure 1.1). The larger the force Nµ , where µ  is 

the friction coefficient, the better one would expect the cleaning efficiency to be. The 

effective value of µ  may depend on β . Quantities  and N β  are thus obviously of 

importance in the cleaning process and it seems more or less clear that the larger the 

normal force and the smaller the contact angle the better the cleaning efficiency. In any 

case, this was one criterion used in looking at the results described in this report and in 

reference [2]. However, it is recognised that other factors such as the sweeping speed, 

the detailed geometric shape of the possibly worn bristle tip, the surface pressure, etc. 
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may also have influence on the cleaning efficiency. Theoretical and experimental work 

is needed to clarify the roles of  and N β  in the cleaning process. 
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2 MODELING 

The bristle is modelled using large deformation elastic theory. Certain simplifying 

assumptions are made. First, plane steady motion of an initially straight uniform bristle 

is assumed. Second, zero size for the attaching frame is used. A correction for this 

would not be difficult. Third, air drag on the bristle somewhat decreases the contact 

force between a bristle tip and the duct surface [3]. However, air drag only slightly 

affects the deflection of the bristle at rotation speeds of 300−1000 rpm. A correction 

for air drag is taken into account and reference [3] describes in more detail the effect 

of air drag on the deflection of the single bristle. Fourth, the effect of gravity on the 

bristle is neglected. The order of the magnitude of the ratio ( Rg 22 ω ) between the 

gravity of the bristle ( mg ) and the resulting approximate centrifugal force ( 22 Rmω ) 

is usually much below 0.2 with practical data. Fifth, the bristle is considered to obey 

elastic rod theory so that the deformations are due to the bending moment only and the 

deformations due to beam normal force and shearing force are neglected. This is well 

justified considering the slenderness of the bristles. Sixth, the contact forces are 

assumed to act at the central axis of the bristle tip which may lead to a small error (see 

Figure 1 (b)).  

 

Figure 2.1 (a) describes the setting in some detail. The study of the bristle behaviour is 

performed in an xy -coordinate system with its origin at the rotation centre O and 

rotating with the attaching frame. The x -axis is along the undeformed straight bristle 

axis and the -axis is 90 degrees in the clockwise direction according to the usual 

convention of the strength of materials, e.g. reference [4]. In this frame the bristle is 

assumed to be in a static state and the motion is taken into account in a well-known 

manner via centrifugal forces.  

y
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Fig. 2.1. (a) Large deflection of a deformed bristle and (b) a free-body diagram. 

The exact differential equation of the deflection curve is [4] 

s
EIM

d
dθ

−= .          (2.1) 

Here θ  is the inclination angle of the bristle axis with the x -axis, M  the bending 

moment in the bristle, and EI  the flexural rigidity of the bristle. Further, the shearing 

force  is connected to the bending moment by Q sMQ dd=  and thus with constant 

EI : 

2

2

d
d

s
EIQ θ

−= .          (2.2) 

Figure 2.1 (b) shows the free-body diagram of an end part of the bristle. In addition to 

the bending moment M  and shearing force Q , the rod normal force P  at the generic 
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rod cross-section is shown. A differential rod length element 'd  has mass 's dd sAm ρ=  
where ρ  is the density and  its cross-sectional area of the bristle. The centrifugal 

force components acting on mass element  in the 

A

md x - and -directions are 

 and , respectively. The notation  is used for an arc length 

coordinate referring to a generic point inside the end part of the bristle to differentiate 

it from the arc length coordinates referring to a generic cross-sectional point. Air drag 

is assumed to act perpendicular to the bristle axis. We thus neglect the possible axial 

component of the drag. Denoting the intensity by [

y

( 'sx )d 2mω ( )'d 2 symω 's

q mN ], the force acting on '  is 

in magnitude ' . The inclination angle 

ds

( )d ' ssq ( )Lφ  at the bristle tip associated with the 

contact normal force  is fixed here due to the fact that the line of the action of the 

contact normal force  goes through the duct centre and thus here also through the 

rotation centre O. Assuming Coulomb friction, we obtain the friction force 

N

N

Nµ  acting 

perpendicular to the contact normal force . The equilibrium equation of the body in 

Figure 2.1 (b) in the direction of Q  is 

N

)[ ]+

θ

( )

s

c +

( )[ ]−− NL µφ

( ) ( ) 'ds' ∫∫ −
L

s

L

s

sy

adQ

( ) ( )[ ]

( )s

cos

( )∫
L

s

s (sx '− NQ θ

cos− Aωρ

Q +=

A 2ω

' ds

cos

( )'s

sin

2

Nµ

θρ

( )s ] 0=

( )[ ]LLsNQ θφθ +−

( )

= sinNµ cos

( ) ( )[ ]sLsN θφθ coscos −

( ) (

sin=

( ( )L ]sLsN θφθµ sin

' +

s'

cos

( ) ( )d'sxs
L

s
∫θ

( ) ([ − ss' θθ

+

cQ −= ω

= sQ 'ad

(sθ )
L

s
∫ (s' y )d 'ssin

cos

Aρ

]

Aρ

∫
L

q

( )− sLs 'dsinφθ    

( )[ ' −sq θθ .    (2.3) 

The shearing force expression is thus 

 Q           (2.4) Q

with 

( )sN φµ −  

) (Lφsin  

) )[ φsincos + ,      (2.5) 

cos22 s ω ,    (2.6) 

( ) )
s

d       
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( ) ( ) ( ) ( ) ( ) ( )∫∫ +=
L

s

L

s

ssqssssqss d ' 'sinsin'd ' 'coscos θθθθ ' .    (2.7) 

For clarity of later exposition and discussion, we have separated the shearing force Q  

into the contribution Q  due to the normal contact force and friction, into the 

contribution  due to the centrifugal forces and into the contribution  due to the 

air drag.  

Nµ

cQ adQ

 

Substituting the shearing force expression (2.4) into (2.2) gives the governing field 

equation 

2

2

adcNµ d
d

s
EIQQQQ θ

−=++≡         (2.8) 

or in more detail 

( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]LsLsNLsLsN φθφθµφθφθ sinsincoscossincoscossin ++−   

( ) ( ) ( ) ( ) 'ds' cos'd'sin 22 sysAssxsA
L

s

L

s
∫∫ +− θωρθωρ   

( ) ( ) ( ) ( ) ( ) ( ) 2

2

d
d'd ' 'sinsin'd ' 'coscos

s
EIssqssssqss

L

s

L

s

θθθθθ −=++ ∫∫ .   (2.9) 

The boundary conditions are as follows. The bending moment must vanish at the bristle 

tip. This gives a force type condition 

0)( =LM ,           (2.10) 

or taking (2.1) into account, the condition 

( ) 0
d
d

=L
s
θ .           (2.11) 

The geometrical conditions are the following. At the origin the bristle axis is at a 

tangent to the x -axis: 

( ) 00 =θ .           (2.12) 

Further, the bristle tip with coordinates ( )Lx  and ( )Ly  is on the duct surface, i.e., its 

distance from the origin is R : 
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( ) ( ) RLyLx =+ 22 .         (2.13) 

The problem to be solved is described by the field Eq. (2.9) and the boundary 

conditions (2.11) and (2.12). Additionally, there is the geometric constraint condition 

(2.13). The corresponding unknowns to be determined are the function ( )sθθ =  and the 

constant . N

 

Before proceeding, we have still to express x  and  using y θ . From Figure 2.1 (a) 

( )
s
xs

d
dcos =θ ,          (2.14) 

( )
s
ys

d
dsin =θ .          (2.15) 

Integration gives 

( ) ( )∫=
s

sssx
0

'd 'cosθ ,         (2.16) 

( ) ( )∫=
s

sssy
0

'd 'sinθ .          (2.17) 

Using these in (2.9), we write  

( ) ( )∫=
'

0

** d cos'
s

sssx θ ,         (2.18) 

( ) ( )∫=
'

0

** d sin'
s

sssy θ .         (2.19) 

The additional notation  has been used in an effort to differentiate the two integration 

variables from each other. Finally, at the bristle tip 

*s

( ) ( )∫=
L

ssLx
0

'd 'cosθ ,         (2.20) 

( ) ( )∫=
L

ssLy
0

'd 'sinθ .         (2.21) 

From Figure 2.1 (a), we also have the relations 
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( ) ( )
R
LxL =φcos ,          (2.22) 

( ) ( )
R
LyL =φsin           (2.23) 

to be used in (2.9). 

 

Air resistance is considered next in more detail. The standard form of magnitude of the 

air drag per unit length for a cylinder with circular cross-section is [5] 

dvCq aD
2

N 2
1 ρ= ,          (2.24) 

where  is the air drag coefficient, DC aρ  the density of air,  the speed of the cylinder 

with respect to air and  the diameter of the cylinder. The drag coefficient depends on 

the Reynolds number 

v

d

a

aRe
µ

ρ vd
= ,           (2.25) 

where aµ  is the viscosity of the air. The speed of a bristle point with respect to stagnant 

air is ( )'s rω , where 

( ) ( ) ( )''' 22 sysxsr +=          (2.26) 

is the radial distance from the origin. The brush certainly sets the air around into motion 

which is difficult to estimate. In an effort to take this into account we evaluate the speed 

by 

( )' srcv ω= ,           (2.27) 

where  is a dimensionless multiplier (c 10 ≤< c ). If some experimental results are 

available,  can hopefully be made use of. According to [6], when the flow is inclined 

to the axis of a cylinder, the air drag intensity normal to the axis can be evaluated from 

c

γ2
N cosqq = ,          (2.28) 

where  

( ) ( ) ( )''' sss φθγ −=            (2.29) 

is here the angle between the rod normal and rod velocity vector. In more detail, 
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( ) ( ) ( ) ( ) ( )'sin'sin'cos'cos'cos sssss φθφθγ +=  and 

( ) ( )
( )'

''cos
sr
sxs =φ ,          (2.30) 

( ) ( )
( )'

''sin
sr
sys =φ .          (2.31) 

The air drag coefficient is evaluated by fitting a fourth degree polynomial function for a 

circular cylinder from measured data [5] as a function of the Reynolds number in 

logarithmic coordinates in the form ( )RelogD fClog = . This gives 

( ) ( ) ( 432 Re04819.0Relog037.0Relog166.0Relog614.0005.1
D 10 +−+−=C ) .     (2.32) 

The graph of (2.32) is shown in Figure 2.2. Expression (2.32) should not be used if the 

Reynolds number exceeds 104 because of the non-smooth behaviour of  around this 

point. In this application this limit was not exceeded. 

DC

 

0.1 1 10 100 1 .103 1 .104
0.1

1

10

100100

0.1

C D Re( )

100000.1 Re  

Fig. 2.2. Fitting a fourth degree polynomial function for circular cylinders as a function 

of the Reynolds number in logarithmic coordinates. 
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It is quite clearly not possible to find an analytical closed form solution for the present 

problem. The discrete version of the model which can be solved numerically is 

presented next. 
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3 SOLUTION METHOD 

3.1 Discrete formulation 

The unknown function ( )sθθ =  to be determined is approximated by a trial solution 

( ) ( ) n
n

n

i

i
i scscscsccscss +++++==≈ ∑

=

...~ 3
3

2
2

0
10θθ ,    (3.1) 

where  are undetermined parameters and the given basis functions are 

simply powers of . In the numerical applications we have selected . Thus the 

problem of determining the function 

nccc ,...,, 10

s 6=n

( )sθθ =  and the constant  is transformed to 

the determination of the eight unknown constants , , , , , , , . We 

have to generate eight (or more) algebraic equations for this purpose. Three of the 

equations come from the conditions (2.11), (2.12) and (2.13). The remaining five are 

obtained from the field Eq. (2.9) by applying the point collocation method with five 

collocation points situated uniformly at 

N

4c0c 1c 2c 3c 5c c6 N

01 =s , 4L2s = , 2L3s = , 4L3=4s , 

. The point collocation method is the simplest criterion for determining the 

undetermined parameters in connection with the method of weighted residuals [7]. The 

detailed final equations are developed and solved with the Mathcad program [8] given 

in the Appendix. The code, with additional comments, is available on the Mathcad 

web site [9]. 

Ls =5

 

The first and second derivates of ( )sθ~  needed in (2.9) and (2.11) are simply 

...32
d

~d 2
3

1
21

1 +++== ∑
=

− scsccsic
s

n

i

i
i

θ
,       (3.2) 

and 

( ) ...621
d

~d
3

2
2

2
2

2

++=−= ∑
=

− sccscii
s

n

i

i
i

θ
.       (3.3) 

The equivalents of formulas (2.16) and (2.17) would give here 

( ) ( )∫=
s

sssx
0

d '~cos~ θ ' ,         (3.4) 
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( ) ( )∫=
s

sssy
0

'd '~sin~ θ .         (3.5) 

However, a closed form integration using (3.1) does not seem possible. We therefore 

approximate the integrands first using Lagrangian interpolation [10]: 

( )[ ] ( ) ( '

1

~cos''~cos j

m

j
j ssLs θθ ∑

=

≈ )

)

,        (3.6) 

( )[ ] ( ) ( '

1

~sin''~sin j

m

j
j ssLs θθ ∑

=

≈ .        (3.7) 

Here  are the Lagrangian interpolation functions and the coordinates  refer to 

the interpolation points where the cosines and sines are evaluated: 

( )'sL j
'
js

( )[ ] ( ) ( )[ ]...cos~cos 3'
3

2'
2

'
10

'
jjjj scscsccs +++≈θ ,      (3.8) 

( )[ ] ( ) ( )[ ]...sin~sin 3'
3

2'
2

'
10

'
jjjj scscsccs +++≈θ .      (3.9) 

Using (3.6) and (3.7), the integrals are easily evaluated as the Lagrangian interpolation 

functions are polynomials. The results are 

( ) ( ) ( )[ '

1

~cos~
j

m

j
j ssMsx θ∑

=

= ]

]

]

]

,        (3.10) 

( ) ( ) ( )[ '

1

~sin~
s

m

j
j ssMsy θ∑

=

= ,         (3.11) 

where 

( ) ( )∫=
s

jj s'sLsM
0

d ' .         (3.12) 

In addition, to evaluate the centrifugal terms, we need the integrals 

( ) ( ) ( ) ( ) ( )[ ] ( )[ '

100

~cosd '~d '~d '~
j

m

j
jj

sLL

s

ssNLNs'sxs'sxs'sx θ∑∫∫∫
=

−=−= ,   (3.13) 

( ) ( ) ( ) ( ) ( )[ ] ( )[ '

100

~sind '~d '~d '~
j

m

j
jj

sLL

s

ssNLNs'sys'sys'sy θ∑∫∫∫
=

−=−= ,   (3.14) 

where 
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( ) ( )∫=
s

jj s'sMsN
0

d ' .         (3.15) 

In the numerical calculations we have taken 4=m  and the interpolation points 

uniformly so that , 0'
1 =s 3'

2 Ls = , 32'
3 Ls =

2M

,  in the interval . As 

examples, functions ,  and ,  and ,  are shown in Figure 3.1 as 

functions of 

Ls ='
4

1N N

Ls ≤≤0

1L 2L 1M 2

Ls'=ξ  or Ls=ξ . 

 

(a) 

0 0.5 1

0

22

1−

L 1 ξ( )

10 ξ  (b)  

0 0.5 1

0

22

1−

L 2 ξ( )

10 ξ  

(c) 

0 0.5 1
0

0.2

0.4

0.60.6

0

m 1 ξ( )

10 ξ  (d) 

0 0.5 1
0

0.2

0.4

0.60.6

0

m 2 ξ( )

10 ξ  

(e) 

0 0.5 1
0

0.2

0.4

0.60.6

0

n 1 ξ( )

10 ξ  (f)  

0 0.5 1
0

0.2

0.4

0.60.6

0

n 2 ξ( )

10 ξ  

Fig. 3.1. Lagrangian interpolation functions (a)  and (b) , their first integrals (c) 1L 2L

LMm 11 =  and (d) LMm 22 =  and their second integrals (e) 2
11 LN=n  and (f) 

2
22 LNn =  as functions of ξ . 

In detail, 
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( ) 23
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L
sM +−= ,       (3.19) 

( )
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ss
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s
L

s
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sN +−+
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= ,      (3.20) 

( ) 34
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5
32 2

3
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15

40
27 s

L
s

L
s

L
sN +−= .       (3.21) 

The five discrete equations following from (2.9) using collocation are thus 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )




 ++



 −

R
Lys

R
LxsN

R
Lys

R
LxsN kkkk

~~sin
~~cos~~~cos

~~sin~ θθµθθ   

( ) ( ) ( ) ( ) 'd '~~cos'd'~~sin 22 ssysAssxsA
L

s
k

L

s
k

kk

∫∫ +− θωρθωρ   

( ) ( ) ( ) ( ) ( ) ( )∫∫ +
L

s
k

L

s
k

kk

ssqssssqss 'd ' '~sin~sin'd ' '~cos~cos θθθθ  

( ) 5,...,1, 
d

~d
2

2

=−= ks
s

EI k
θ

.         (3.22) 

Further, we have to apply in detail (3.1), (3.3), (3.10), (3.11) and (3.13), (3.14). In 

addition, evaluation of the terms due to ( )'sq  is rather complex, as is described below. 

The resulting equations are strongly nonlinear in the coefficients . ic

 

Discretization of the boundary conditions is simple. Condition (2.12) leads to 

( ) 00~
0 == cθ .          (3.23) 

Condition (2.11) leads to 
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( ) 0...32
d

~d 2
321 =+++= LcLccL

s
θ .       (3.24) 

These are both linear. Finally, (2.13) gives 

( ) ( ) RLyLx =+ 22 ~~ ,         (3.25) 

where (3.10) and (3.11) have to be applied again with Ls = . 

3.2 Solution details 

The resulting non-linear algebraic system consisting of the eight Eqs. (3.22), (3.23), 

(3.24) and (3.25) was solved by the Mathcad program. The program needs an initial 

guess for the unknown to proceed. The initial values were taken to be, c , 00 =

Lc 5.01 = , 2
2 25.0 Lc −= , 06543 ==== cccc  and 0=N . (Parameter  was not 

actually included in the code as its value is determined in advance by (3.23).) The non-

zero values were estimated making some use of Eqs. (2.11) and (2.21). The final 

program gave apparently convergent solutions in all of the cases studied. However, with 

higher rotation speeds some updating of the constants from the results with lower 

speeds were needed.  

0c

 

With regard to the integrals in Eq. (3.22), the terms due to centrifugal forces have been 

evaluated "directly", as is explained above. However, the terms from air drag are so 

complicated that a direct approach is out of the question. Thus q  is updated 

iteratively according to the current achieved shape ( c ) of the bristle. The 

integrands 

( )'s

ncc ,...,, 10

( ) ( )' '~cos sqsθ  and ( ) ( )' '~sin  are then represented by the Lagrangian 

interpolation functions and integrated analytically. This is an "indirect" approach, which 

could also actually be used for the centrifugal forces. On average about three iterations 

were needed to achieve practically converged results. 

sqsθ

 

In references [2, 11] a somewhat similar problem − the famous Elastica problem 

described in reference [4] − with a known analytical solution is studied using the 

calculation model. The results of this preliminary calculation using the discrete method 

may be viewed as surprisingly accurate taking into account the seemingly rather crude 
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approximation. Thus we may have some confidence in using the discrete formulation to 

approximate the rotating bristle in the duct. 
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4 DIMENSIONLESS FORMULATION 

4.1 Manipulations 

To simplify the study of the dependencies between the various quantities we employ 

here a dimensionless formulation. The final purpose of this presentation is to make the 

eventual future design process as systematic as possible. As is mentioned in [7]: "This 

is an extremely useful organizational tool of the analyst. In connection with numerical 

calculations it removes all unnecessary symbols, leaving the basic problem in its 

simplest form."  

 

Using the dimensionless coordinate  

[ 1,0, ∈= ξξ
L
s ],         (4.1) 

we obtain 

( ) ( ) ( ) ( )
2

2

22

2

d
d1

d
d,

d
d1

d
d

ξξ
⋅

=
⋅⋅

=
⋅

LsLs
,       (4.2) 

( ) ( ) ( ) ( )∫ ∫ ∫∫ ⋅=⋅⋅=⋅
1

0

1

0

dd,dd
ξ

ξξ
LL

s

LsLs .       (4.3) 

Dependent variable θ  is already dimensionless. We denote ( ) ( )( )ξθξθ s≡ . We also 

denote 

L
yy

L
xx == , .          (4.4) 

Eqs. (2.2), (2.11), (2.12) and (2.13) become first 

10,0
d
d1

2

2

2 <<=+ ξ
ξ
θ

L
EIQ ,        (4.5) 

( ) 01
d
d1

=
ξ
θ

L
,          (4.6) 

( ) 00 =θ ,           (4.7) 

( ) ( ) RyxL =+ 11 22          (4.8) 

and after some arrangement 
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10,0
d
d 2

2

2

<<=+ ξ
ξ
θ Q

EI
L

,        (4.9) 

( ) 01
d
d

=
ξ
θ

,           (4.10) 

( ) 00 =θ ,           (4.11) 

( ) ( )
L
Ryx =+ 11 22 .          (4.12) 

It is seen that functions such as ( ) ( )( ) Lsxx ξξ =  depend in a complicated manner on 

function ( )ξθ . For instance as  

( ) ( )∫=
s

sssx
0

'd 'cosθ     

( )∫=
ξ

ξξθ
0

'd 'cosL ,         (4.13) 

we obtain 

( ) ( )∫=
ξ

ξξθξ
0

'd 'cosx .         (4.14) 

Thus, in the following, to avoid very complicated expressions, we do not show in detail 

some of the dependencies of say x and y  on θ . 

The term (2.5): 

 ( ) ( ) ( ) ( )[ ]LsLsNQ φθφθ sincoscossinNµ −=  

( ) ( ) ( )[ ]LssN φθφθµ sinsincoscos ++   

( ) ( ) ( ) ( )[ ]1sincos1cossin φξθφξθ −= N  

( ) ( ) ( ) ( )[ ]1sinsin1coscos φξθφξθµ ++ N .       (4.15) 

The term (2.6): 

( ) ( ) ( ) ( ) 'd s' cos'd 'sin 22
c sysAssxsAQ

L

s

L

s
∫∫ +−= θωρθωρ    
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( ) ( ) ( ) ( )d ' cos'd 'sin 22
1

22 ξξξθωρξξξθωρ
ξ

∫∫ +−=
L

s

yLAxLA '   

( ) ( ) ( ) ( ) 'd ' cos'd 'sin 22
1

22 ξξξθωρξξξθωρ
ξ

∫∫ +−=
L

s

yALxAL .   (4.16) 

The term (2.7): 

( ) ( ) ( ) ( ) ( ) ( )∫∫ +=
L

s

L

s

ssqssssqssQ d ' 'sinsin'd ' 'coscosad θθθθ '  

( ) ( ) ( ) ( ) ( ) ( )∫∫ +=
L

s

qLqL 'd ' 'sinsin'd ' 'coscos
1

ξξξθξθξξξθξθ
ξ

,   (4.17) 

where we have denoted ( ) ( )( '' )ξξ sqq =  demands some more detailed considerations. 

From (2.24), (2.27), (2.28), 

( ) ( )[ ] ( )'cos ' 
2
1' 22 sdsrcCsq aD γωρ=        (4.18) 

and dependence in the drag coefficient is of the form 

( )
〉〈=〉〈=

a

a
DDD

dsrc
CCC

µ
ωρ  ' 

Re .       (4.19) 

We have used here the notation 〉〈  to emphasize the dependency and to avoid 

possible confusion with mere multiplication. 

 

Denoting Lrr = , ( ) ( )( '' )ξγξγ s= , we obtain 

( ) ( ) ( ) ( )'cos '
 '  

2
1' 22222 ξγξωρ

µ
ξωρ
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Cq a
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Substituting this in (4.17) gives  
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We next define a dimensionless normal force 

N
Ed
LN

EI
LN 4

22 64
π

== .         (4.22) 

Multiplying the shearing force contributions by the factor EIL2  and substituting the 

results in (4.9) gives the final dimensionless field equation 
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For a circular cross-section with diameter  d

64
,

4

42 dIdA ππ
==          (4.24) 

and 

E
L

d
L

Ed
L

EI
AL 222

2

2424

 1616 ωρωρωρ






== .      (4.25) 

Observing the governing dimensionless formulation consisting of the field Eq. (4.23) 

and of the conditions (4.10), (4.11), (4.12) shows that solution ( )ξθ , N  depends on 

five dimensionless numbers: 

EI
AL 24

1
ωρπ = ,          (4.26) 

R
L

=2π ,           (4.27) 

µπ =3 ,           (4.28) 

EI
dLc a

522

4
ωρ

π = ,          (4.29) 
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aa

a LdcLdc
υ

ω
µ
ωρ

π   
5 == .         (4.30) 

Knowledge of these dependencies is made use of in representation of numerical results 

next. 

4.2 Dimensionless results 

Figures 4.1−4.3 present the magnitude of the dimensionless normal force N  and the 

contact angle β  as a function of the dimensionless numbers EIAL 24
1 ωρπ = , 

2π = RL  and 3π = µ .  

 

In Figure 4.1 the magnitude of the dimensionless normal force and the contact angle 

are shown as functions of the dimensionless number 1π . 
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Fig. 4.1. (a) The dimensionless normal force N  [−] and (b) contact angle β  [°] as 

functions of 1π . 

The normal force increases roughly linearly when 1π  changes from 0 to 500 which 

covers the normally used range in rotating brush duct cleaning. The centrifugal forces 

grow quadratically with the angular speed ω . Thus one could initially expect N  to 

grow linearly with EIAL 24
1 ωρπ =  as seems to be the case in Figure 4.1 (a). 

However, as 1π  is higher than 4000, which is an unrealistic 1π  value, the magnitude 

of the normal force only increases slowly. This is probably explainable by the 

changing shape of the bristle so that the centrifugal force components have "changing 

lines of actions" when the rotation speed increases. As is to be expected, the magnitude 

of the normal force and the contact angle increase when parameter 2π  grows. 
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Figure 4.2 presents the magnitude of the dimensionless normal force and the contact 

angle as functions of the dimensionless number 2π . 
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Fig. 4.2. (a) The dimensionless normal force N  [−] and (b) contact angle β  [°] as 

functions of 2π . 

Both the magnitude of the normal force and the contact angle increase roughly 

quadratically as a function of RL=2π . With higher values of 2π  the bristle "has to 

bend more to fit in the duct" so the results seem to be intuitively correct. The 

magnitude of the normal force and the contact angle increase when parameter 1π  

grows. The values of 1π  15.4, 34.6 and 61.5 correspond to the rotation speeds of 500, 

750 and 1000 rpm with the parameters values presented in Chapter 6.1 (except 

Young's modulus value ). GPa 2=E

 

Figure 4.3 presents the magnitude of the dimensionless normal force and the contact 

angle as functions of 3π . 
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Fig. 4.3. (a) The dimensionless normal force N  [−] and (b) contact angle β  [°] as 

functions of 3π . 

The growth of the dimensionless number µπ =3  acts in an opposite manner to 1π  and 

2π  to the magnitude of the normal force and the contact angle. The decrease of the 

normal force with increasing 3π  seems plausible as the friction force has a direction 

with "large bending influence". To achieve high normal contact force, 3π  should be 

low. 

 

In practice, dimensionless numbers 1π  and 2π  are the parameters that professional 

cleaners can use to optimise the duct cleaning brush. In rotating brush duct cleaning 

the common range of 1π  and 2π  are 0< 1π <100 and 1< 2π <1.3, respectively. The 

manufactures of the brushes can affect 3π  by selecting a suitable material property for 

the bristle. According to reference [3], air drag does not affect thin bristle behaviour 

strongly at practical rotation speeds and, therefore, dependencies on the dimensionless 

numbers 4π  and 5π  are not considered in this report. 
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5 LABORATORY TEST  

5.1 Experimental arrangement  
 
A rotating brush was tested in the Laboratory for Heating Ventilating and Air-

Conditioning at Helsinki University of Technology. A round duct with a diameter 

was prepared from a metal sheet plate with a width of 0.2 m. The 

diameter  of the tested brush was 0.35 m and the bristles were nylon 

( m ). The bristles were connected on a spiral frame made of metal wire. 

The number of bristles  was approximately 1000. The brush was centralized at the 

centre of the duct with the shaft of an electric motor (0.55 kW). In addition, certain 

tests were performed with just a single pair of bristles. Figure 5.1 presents some details 

of the instrumentation of the laboratory test. 

m 315.02 =R

L2

 101 3−×=d

n

 

 

Force transducers 2 and 3 

Rotation speed transducer Force transducer 1 

Force transducer 4 

Fig. 5.1. Experimental arrangement in the laboratory. 

Measurements were obtained using force transducers 1, 2, 3 and 4. The range of 

transducers 1 and 4 were 0−118 N and for transducers 2 and 3 0−29 N. The 

transducers were located as indicated in Figures 5.1 and 5.2. The purposes of 
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transducers 1 and 4 were to determine the torque (twisting moment) from the contact 

friction and the output torque from the electric motor, respectively. The purpose of 

transducers 2 and 3 was to additionally measure the "opening force" in the seam of the 

duct frame at the left-hand side. The output torque T  from the motor is considered to 

be balanced in general by the torque T  due to the bearing friction (some possible air 

drag acting on the shaft is included), by the torque  due to the air drag from the 

brush (or from a bristle pair) and by the torque T  due to the contact friction of the 

brush (or of a bristle pair) with the duct surface; thus in general T

bf

adT

µ

µadbf TTT ++= . The 

motor output torque is obtained from  

PbT = ,            (5.1) 

where P  (positive when transducer 4 is in tension) is the force measured by transducer 

4 and b is the horizontal distance between the centroid of the motor shaft 

and transducer 4 (Figure 5.2). Torque T  for a given rotation speed is obtained by 

rotating the motor alone, so then T

m 227.0=

bf

T=bf

µT

. When the brush rotates with contact, the 

total output torque adbf TTT ++= . Assuming T  is known for a given rotation 

speed, we can then determine T

bf

bfTµTad T −=+  from the experiment. Further, T  can 

be obtained using transducer 1 as is described below from Eq. (5.15), so finally we can 

determine  from 

µ

adT

( ) ( )
1µ4bfad TTTT −−= ,         (5.2) 

where the meaning of the notations is obvious. 

 

To have some estimate of the effect of air drag without the inclusion of contact forces, 

torque due to air drag was measured separately by rotating the brush in "air", meaning 

that the duct was removed. In addition, the brush was rotated without contact in a duct 

with a diameter of 0.365 m. Here T adbf TT +=  and we can determine T  assuming 

again  is known for a given rotation speed. However, this torque  

ad

bfT

bfad TTT −=             (5.3) 
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is naturally not the same as the torque T  obtained by (5.2) with a brush in contact 

with the duct. Reference [3] presents the effect of the air drag on the torque by using 

Eqs. (5.1)−(5.3). 

ad

 

Further, experiments were performed using single pairs of bristles without trying to 

employ the transducers as the forces involved would be too small for proper 

measurements. Instead, bristle deflections were recorded by taking photos with a 

digital camera from the rotating brush at speeds of 0−1200 rpm. Additional tests with 

only the duct frame were conducted to check certain assumptions used in the free-body 

diagrams. These tests are explained in Chapter 5.3. Preliminary laboratory tests with a 

rotating brush were performed earlier in the Laboratory for Mechanics of Materials at 

Helsinki University of Technology [12]. The experience obtained from these tests was 

useful for setting up the present laboratory arrangement. 

 

Figure 5.2 presents some further details of the dimensions of the instrumentation in the 

laboratory test. 

 

(a)  (b) 

SECTION A-A

Force transducers 2 and 3

200
 

Fig. 5.2. (a) Instrumentation of the laboratory test. (b) Detail of the transducers 

installed in the seam of the duct frame on the left-hand side. Length units are given in 

mm. 

Two free-body diagrams of the duct frame used in the analysis of the measurement 

results are shown in Figure 5.3. The frame is viewed in a similar way as is done in 

Figure 5.2, that is from the opposite direction of the motor. The rotation direction of 
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the motor and the brush shown in the diagrams is referred to here and in the following 

as being in the counterclockwise direction. 

 

(a)  (b)  

Fig. 5.3. (a) Free-body diagram of the frame. (b) Free-body diagram of the upper part 

of the frame. 

5.2 Solution details 

We represent the contact forces by "equivalent" uniform line loadings p  and pµ  per 

unit length ( [ ] mN=p ), where 

R
nNp
π2

=            (5.4) 

and where  is the total number of bristles. Thus, the differential force components 

acting on an arc length 

n

φdd Rs =            (5.5) 

are  and spd spdµ . We consider first the free-body diagram in Figure 5.3 (a). Force B  

represents the force read from transducer 1 and is positive if acting on the frame in the 

direction shown. Forces  and  are from the supporting plates of the frame. It is 

assumed that the plates are very flexible compared to the rigidity of the frame and thus 

the possible shearing forces and bending moments in the plates are neglected in the 

free-body-diagram. The equilibrium equations from the free-body diagram are 

A C

→  ,          (5.6) 0=A

↑  ,          (5.7) 0=+ CB
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0  ,        (5.8) 0µ =+⋅+⋅− TRCaB

where  

.d
2

d
2

0

2
2

0
µ nNRR

R
nNRpRT µφ
π

µφµ
ππ

==⋅= ∫∫       (5.9) 

It can be seen for symmetry reasons without actual calculations that the contributions 

from  and spd spdµ  cancel in (5.6) and (5.7). The solution of (5.6), (5.7) and (5.18) is 

0=A ,           (5.10) 

1+
=

+
=

R
a

nN
Ra

nNRB µµ ,         (5.11) 

BC −= .           (5.12) 

Thus, we obtain 

µ
B

n
R
a

N






 +

=
1

.          (5.13) 

This could be used to evaluate the tip normal force  if N µ  were known in advance. 

However, this is usually not the case. 

 

Without needing to draw a new free-body-diagram we can see that the torque required 

to resist the contact friction from the motor is also 

( ) nNRTTTT µ=+−= bfadµ .         (5.14) 

The last form - also appearing in (5.9) - gives a formula for evaluating T  from the 

simulation. Alternatively, using the measured value for 

µ

B  and formulas (5.9) and 

(5.13): 

( RaBT +=µ ) .          (5.15) 

We next consider the free-body-diagram in Figure 5.3 (b) used for including the 

opening force E  given by the sum of the forces in transducers 2 and 3 and assumed to 

be positive when acting on the frame in the direction shown. One of the assumptions 
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used is that the bending moments in the frame at the horizontal cuts are small and are 

neglected here. The equilibrium equations are 

→  ,         (5.16) 0=++ xFFD

↑  ,         (5.17) 0=+−− yFGE

0  0
2
1

µ =+⋅−⋅ TRGaE ,        (5.18) 

where 

∫ ∫ −=−=⋅−=
π π

π
µφφ

π
µφφµ

0 0

d sin
2

sind nNR
R

nNpRFx ,    (5.19) 

∫ ∫ ==⋅=
π π

π
φφ

π
φφ

0 0

d sin
2

sind nNR
R

nNpRFy ,      (5.20) 

nNRT µ
2
1

2
1

µ = .          (5.21) 

Some symmetries have been made use of when evaluating (5.19) and (5.20) so that 

certain terms are cancelled out. We can only determine the sum FD + , however, we 

are not interested in this and we will not make any use of (5.16). Eqs. (5.17) and (5.18) 

are, after some modifications, using matrix notation for clarity, 









−

=















− 2

111
R

nN
G
E

Ra µ
π

.        (5.22) 

The solution, for example, using Cramer’s rule is 

( ) 1

2
1

2
1

1

+







 −

=
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 +−

==

R
a

nN

Ra

nNR

D
DE

µ
π

µ
π ,      (5.23) 

( ) 1

2
1

22

+







 +

=
+−







 +−

==

R
a

nN

Ra
R
anNR

D
DG

µ
π

µ
π .      (5.24) 

Together with (5.11) and (5.23) we have the set 
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B

R
a

Nn
=

+1

µ ,           (5.25) 

E

R
a

nN
=

+







 −

1

2
1 µ
π .          (5.26) 

The equations are linear in  and N Nµ  so we write them first as 
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 += 1µ ,          (5.27) 
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Replacing Nµ  in Eq. (5.28) with (5.27) and after some manipulation 
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Thus we now have, in theory, formulas for obtaining both the bristle contact normal 

force and the coefficient of friction using the measured data. The calculations performed 

above are based on assuming the rotation direction of the brush to be counterclockwise. 

If the rotation direction is changed, the friction force elements spdµ  act in the opposite 

directions in the new free-body-diagrams corresponding to Figures 5.3 (a) and 5.3 (b). 

The end results are that (5.11) changes to the opposite value (we denote the quantities 

now with a dash) 
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and (5.22) changes to 
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The new opening force becomes 
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Thus the presence of friction should be seen as a dependence of the opening force on 

the rotation direction. The counterparts of Eqs. (5.27) and (5.28) become 
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We obtain 
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According to (5.23) E  changes its sign from positive to negative at 

64.02
≈=

π
µ .          (5.38) 

However, 'E  according to (5.33) is positive. The results from Eqs. (5.29) and (5.30) as 

well as Eqs. (5.36) and (5.37) are described in Chapter 6. 

5.3 Additional test 

To gain some confidence in the assumptions used in connection with the free-body 

diagrams, two simple additional tests were performed on the frame without a brush. In 

case 1 a small body weighing W=4.91 N was set at the top of the duct frame and in case 

2 at the bottom of the frame. The corresponding free-body diagrams are shown in 

Figures 5.4 (a) and (b) and Figures 5.4 (c) and (d), respectively. 
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(a)  (b)  

(c)  (d)  
Fig. 5.4. (a) Free-body diagram of the frame. (b) Free-body diagram of the upper part of 

the frame (case 1). (c) Free-body diagram of the frame. (d) Free-body diagram of the 

upper part of the frame (case 2). 

 

In case 1 we obtain the equilibrium equations (Figure 5.4 (a) and (b)) 

→  ,          (5.39) 0=A

↑  ,         (5.40) 0=−+ WCB

0  ,         (5.41) 0=⋅+⋅− RCaB

and   

→  ,          (5.42) 0=+ FD

↑  0=−−− WGE ,         (5.43) 

0  0=⋅−⋅ RGaE .         (5.44) 

These give 
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In case 2, Eqs. (5.39)−(5.41) are still valid but W disappears from Eq. (5.43). Thus, the 

solution is 

R
a

WB
+

=
1

,           (5.47) 

0=E .           (5.48) 

Table 5.1 presents a comparison of the calculated and measured results with 

a=0.1675 m and R=0.1575 m. 

 

Table 5.1. Results of the check on the free-body assumptions  

Force Case 1 Case 2 

 Calculated (N) Measured (N) Diff. (%) Calculated (N) Measured (N) Diff. (%)

B 2.377 a 2.256 5.1 2.377 c 2.531 −6.5 

E −2.377 b −2.590 −9.0 0 d 0.02943  − 
a Eq. (5.45), b Eq. (5.46), c Eq. (5.47), d Eq. (5.48) 

 

The measured results in this additional test may be viewed as being rather close to the 

theoretical values obtained using the same assumptions employed above in the cases 

that included the brush. Thus, these results give certain confidence in the validity of the 

assumptions and also a rough idea of the errors included. Further, the weight 

(W=4.91 N) corresponds roughly to the mean value of measured B (~0−10 N) and E 

(−1−8 N) in Figure 6.7. 
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6 RESULTS  
 

6.1 Simulation details 

In all the calculations described below the bristle cross section was taken to be circular 

and the length , diameter , cross-sectional moment of 

inertia 

m 175.0=L m 101 3−×=d
4144 m −= dI π 10909.464 ×= , density 3mkg b 1140=ρ , friction coefficient 

7.03 == πµ , kinematic viscosity of air sm25−
a 10528.1 ×=ν , bristle length duct 

radius ratio 111.12 === RLπζ  ( m 1575.0=R ) and Young's modulus 

, where the latter corresponds roughly to the data for nylon [13]. The 

friction coefficient value was estimated from the results of the present laboratory tests 

(Figure 6.10). The effect of air drag was studied by using the reduced air speed 

coefficient value  (no air drag) and 

GPa 8.2=E

0=c 1=c  ("full" air drag). The simulations were 

performed for a brush where the number of bristles was 1000=n . 
 

6.2 Rotating bristle calculations 

6.2.1 Deflection of rotating bristle 

Figure 6.1 shows the deflection of a bristle with the rotation speed of 0 rpm, 500 rpm, 

1000 rpm and 2000 rpm in a duct. 
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Fig. 6.1. Deflected form of the bristle [m] (a) bristle rotation speed n=0 rpm, (b) 

n=500 rpm, (c) n=1000 rpm and (d) n=2000 rpm in a duct. The units of the quantities 

in the figures are [d]=m, [E]=Pa, [ζ]=−, [µ]=−, [ω]=rad/s, [θ]=°, [β]=°, [N]=N, [x]=m, 

[y]=m. 

The deflected shape of the bristle changes with the rotation speed of the bristle. In a 

stationary situation the bristle is deformed rather symmetrically with respect to its 

ends. As the rotation speed of the bristle increases the deformation seems to 

concentrate near the rotation centre. Reference [2, Figure 4.2] presents the results of 

the deflected shape of the bristle calculated by using the friction coefficient value 

5.0=µ . 
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6.2.2 Dependence on the rotation speed of the bristle 

Figure 6.2 presents the magnitude of the simulated normal force  and the contact 

angle 

sN

sβ  as a function of the rotation speed of a bristle in the duct. 
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Fig. 6.2. (a) The magnitude of simulated normal force  [N] and (b) contact angle sN

sβ  [°] as functions of the rotation speed n [rpm] in the duct. 

Initially, the magnitude of the normal force  increases roughly quadratically in the 

interval of 0−3000 rpm, which corresponds to the value 

sN

55001 −=π . However, when 

 is higher than the unrealistic values of 8000 rpm (this corresponds approximately to 

the value 

n

40001 =π ), the magnitude of the normal force was found to only increase 

slowly. The contact angle sβ  increases most strongly roughly in the same rotation 

speed range as the magnitude of the normal force. The contact angle has its maximum 

value approximately at the rotation speed of 10000 rpm. However, the comparison 

between the results of the model and the experimental data limits at speeds of 

200−1200 rpm (Figure 6.7), which corresponds roughly to the practical rotating speed 

in mechanical brushing. 

6.2.3 Dependence on air drag 

Figure 6.3 shows the deflection of a bristle without ( 0=c ) and with air drag ( 1=c ) as 

functions of the rotation speed of a bristle in the duct. 
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Fig. 6.3. Deflected form of the bristle [m] (a) The bristle rotates at the speed of 

1000 rpm without air drag and (b) with air drag. (c) The bristle rotates at the speed of 

2000 rpm without air drag and (d) with air drag in a duct. 

Air drag only slightly affects the deflection of the single bristle at rotation speeds of 

1000 rpm and 2000 rpm. As is to be expected, the deformation of the bristle due to air 

drag is more concentrated near the rotation centre as it can be observed at the rotation 

speed of 2000 rpm. 

 

Figure 6.4 presents the magnitude of simulated normal force  and the contact angle sN

sβ  without and with air drag as functions of the rotation speed of a bristle in the duct. 
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Fig. 6.4. (a) The magnitude of simulated normal force  [N] and (b) contact angle sN

sβ  [°] without and with air drag as functions of the rotation speed n [rpm] in the duct. 

Air drag decreases both the magnitude of normal force and the contact angle. Due to 

air drag, the magnitude of the normal force decreases 10% and 23% at the rotation 

speeds of 1000 rpm and 2000 rpm, respectively. Without air drag the contact angle 

increases in the range of 0−3000 rpm. As expected, the contact angle decreases due to 

air drag when rotation speed increases.  

 

The bending moment in a bristle at the origin evaluated from the deformed shape is 

( ) sEI d0dθ− . Taking into account the sign conventions used, the torque from the 

brush (number of the bristles ) evaluated from this is thus [3] n

( )0
d

~d
b s

nEIT θ
= .          (6.1) 

The torque from a brush due to air drag is evaluated from [3] 

( ) ( ) ( )∫=
L

sssrsqnT
0

ad 'd'cos'' γ .        (6.2) 

The integral was calculated by approximating the integrand by Lagrangian 

interpolation with four interpolation points 01 =s , 32 Ls = , 323 Ls =  and .  Ls =4

 

Figure 6.5 presents the magnitude of the simulated torques T  (Eq. (6.1)) and the 

torque T  from a brush due to friction (5.14) and air drag (Eq. (6.2)) from 

bs

µads

( ) ( ) ( )∫+=
L

sssrsqnnNRT
0

µads d'cos'' γµ '         (6.3) 

as functions of the rotation speed of the brush in the duct. 
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Fig. 6.5. (a) The magnitude of simulated torque T  [Nm] without and with air drag as 

functions of the rotation speed n [rpm]. (b) The magnitude of simulated torque T  

[Nm] without and with air drag as functions of the rotation speed n [rpm]. 

bs

µads

The torques T  and T  increase roughly quadratically in the interval of 0−3000 rpm 

and are roughly the same magnitude (with 

bs µads

1=c ) when the rotation speed is below 

1000 rpm (difference below 13%). After this, the difference increases quickly as a 

function of the rotation speed of the bristle. Without discretization errors the torques 

 and T  should be in theory equal here. The values of  are probably much 

more reliable as they are integrated quantities. T  gives a local result, which is 

sensitive to small changes in the value of the parameter . Reference [3] presents in 

more detail the dependence on air drag. 

bsT µads µadsT

bs

1c

6.3 Results of laboratory test 

6.3.1 Deflection of bristle 

Figure 6.6 shows the deflection of the bristle pair and the brush with the rotation 

speeds of 0 rpm, 500 rpm and 1000 rpm (clockwise direction) in the duct. 
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(a) (b)  

(c) (d)  

(e) (f)  

Fig. 6.6. Deflected form of the bristle (a) bristle rotation speed n=0 rpm, (c) 

n=500 rpm and (e) n=1000 rpm in the duct with contact. Deflected form of the brush 

(b) brush rotation speed n=0 rpm, (d) n=500 rpm and (f) n=1000 rpm in the duct with 

contact. 

The deflection of the bristle pair is quite similar to that obtained by the simulation with 

 and . At a rotation speed of rpm 0=n rpm 1000=n rpm 500=n  the bristle pair was 

found not to remain in the plane assumed in the simulation and therefore the deflection 

of the bristle pair seen in the photograph is low compared to that obtained by the 

simulation. The deflections of bristles of the brush are difficult to estimate accurately 
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because the bristles were connected asymmetrically on a spiral frame made of metal 

wire (Figure 6.6 (b)). 

 

Figures 6.7 (a) and (b) give the measurement results for force P  (transducer 4), 

Figures (c) and (d) for force B  (transducer 1) and Figures (e) and (f) for force  

(transducers 2 and 3) as functions of the rotation speed, when the brush is in contact 

with the duct. 
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Fig. 6.7. The magnitude of forces P [N], B [N] and E [N] as functions of the rotation 
speed n [rpm]. 

The behaviour of force E  with respect to rotation direction is qualitatively in 

accordance with the theory. From Eq. (5.23), the friction coefficient has to be higher 
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than 0.64 if E  becomes negative when the brush is rotated in the counterclockwise 

direction (Figure 6.8 (e)). For low magnitudes of , there is quite a large difference in 

the magnitudes of force 

n

B  with respect to the rotation direction; in theory the 

magnitudes should be equal.  

N

800
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With regard to the figures presenting experimental results in general we may note the 

following. The counterclockwise rotation direction is again considered positive with 

respect to the rotation speed  . No values are given when the magnitude of  is 

under 200 rpm as the measured data may be considered rather unreliable with the 

corresponding small forces. The oscillations in the data are mainly due to the 

unavoidable vibration generated in the test system. For most quantities presented here 

the magnitudes should in theory be equal for a given magnitude of  in the 

counterclockwise and clockwise directions. In practice, the brush has some directional 

bias due to its construction (see Figure 6.6 (b)). Further, the bristle tips wear out on 

contact and may also show directional asymmetry, etc. 

n n

n

6.3.2 Magnitude of normal force 

Figure 6.8 presents the bristle tip normal force  evaluated from measured data by 

Eqs. (5.29) and (5.36) as well as the simulated results  without and with air drag as 

functions of the rotation speed.  

sN
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Fig. 6.8. The measured  [N] and simulated normal force  [N] without and with 

air drag as functions of the rotation speed n [rpm]. 

N sN

The increment of the experimental and simulated values are roughly of the same order 

with  (no air drag) at rotation speeds of 500−1000 rpm. There is quite a 0=c
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difference in the experimental results with respect to the rotation direction and it is 

difficult to judge which results are more reliable. It may be noticed that already the 

seeming well-controlled cases with results in Table 5.1 showed errors between the 

calculated and the measured values. Additionally, the possible deviations of the 

bristles from the plane (see Figure 5.1) assumed in the simulation may explain the 

somewhat lower values obtained in the experiment. 

6.3.3 Magnitude of torque 

Figures 6.9 (a) and (b) present torque T  due to friction from the brush obtained from 

the measuring results (Eq. (5.15)) and from the simulation, T  (Eq. (5.14)) evaluated 

as functions of rotation speed. 
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Fig. 6.9. The measured torque T  [Nm] and simulated torque T  [Nm] without and 

with air drag (included through ) as functions of the rotation speed n [rpm].  

µ

N

µs

The magnitude of the torque T  from measured data and simulated values  differ. 

However, the "slopes" of measured and simulated curves with 

µ µsT

0=c  seem to be rather 

close to each other. The possible explanations for the difference between the calculated 

and the measured values are the same as in the previous Chapter (6.3.2). 

6.3.4 Friction coefficient 

Figure 6.10 presents friction coefficient µ  evaluated by Eqs. (5.30) and (5.37) as 

functions of the rotation speed. 
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Fig. 6.10. The friction coefficient µ  [−] as function of the rotation speed n [rpm].  

The reason for low values for µ  obtained for low rotation speeds in the clockwise 

direction may be arise from the inconsistent behaviour of force B , which was 

discussed in connection with Figure 6.7. In any case, the average values (roughly 0.7 

and 0.65) are clearly higher than those (roughly 0.5) obtained for nylon in [14] with a 

different test arrangement. Because of the high friction coefficient, the tips of the 

bristle pair were worn rapidly when the rotation speed was higher than 2000 rpm. 

Based on the results in Figure 6.10, we have used the value 7.0=µ  in the simulations. 

 

Furthermore, the maximum rotation speed achieved was approximately 1200 rpm with 

an electrical motor that has a power of 0.25 kW [12] and also with a motor that has a 

power of 0.55 kW. When friction between the bristle tip and the duct surface was 

decreased artificially with a mixture of water and a detergent, the rotation speed of the 

brush achieved a value of 2500 rpm. 

6.4 Summary of the results 
 
Table 6.1 summarizes the dependence of the normal force  and the contact angle N β  

as a function of the dimensionless numbers 1π , 2π  and 3π . The values of 

4.1524
1 == EIAL ωρπ , 1.12 == RLπ  and 5.03 == µπ  were used for the rest of 

the quantities, except for the parameters in question which were varied to observe their 

effect on the results. The percentage changes are referred to the values obtained by the 

lower values of the three parameters. Reference [2] presents the dependence of the 

normal force and the contact angle on , n R , , d E , RL  and µ . 
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Table 6.1. Dependence of normal force and contact angle on various parameters 

Normal force  N Contact angle β Dimensionless 
number (range) influence difference [%] influence difference [%] 

EIAL 24
1 ωρπ =  

( 1π =0−500) 
+ + + 916 + 40 

2π = RL  
( 2π =1.05−1.3) 

+  45 + + + 145 

3π = µ  
( 3π =0.1−0.9) 

− − −67 − −21 

−/+= negative/positive dependence (5%< difference ≤50%) 
− −/+ +=strong negative/positive dependence (50%< difference ≤100%) 
− − −/+ + +=very strong negative/positive dependence (difference >100%) 

 

Table 6.2 summarizes the results for the normal force  and torque N T  at rotation 

speeds of 500 rpm and 1000 rpm obtained from the simulation (T  from Eq. (5.14)) 

and the experimental test (  from Eqs. (5.29) and (5.36) and T  from Eq. (5.15)), 

respectively.  

µs

µN

 

Table 6.2. Magnitude of simulated and measured normal force and torque 

Simulated and experimental Normal force  [N] N Torque T  [Nm] 
results ( 0=c ) ( 1=c ) ( 0=c ) ( ) 1=c
Simulation     
Rotation speed  rpm 500=n 0.0197 0.0191 2.184 2.119 
Rotation speed  rpm 1000=n 0.0328 0.0295 3.623 3.248 
Experimental test     
Counterclockwise direction     
Rotation speed rpm 500=n a 0.0168 0.669 
Rotation speed rpm 1000=n  b 0.0280 2.095 
Clockwise direction     
Rotation speed rpm 500=n  a 0.0082 -0.758 
Rotation speed rpm 1000=n  b 0.0190 -2.521 
a mean value of  rpm 600400 −=n
b mean value of  rpm 1100900 −=n

52  



  

7 DISCUSSION 
 
The authors assumed that the normal force  and the contact angle N β  were the most 

important parameters associated with a bristle in removing dust on the duct surface. As 

is mentioned in Chapter 1, theoretical and experimental work is needed to clarify the 

roles of  and N β  in the cleaning process. Figure 7.1 presents a possible schematic 

experimental arrangement for a laboratory test to determine the cleaning efficiency of 

a bristle with a given  and N β  [15]. 

 

(a) v  (b) v

β

 

Fig. 7.1. (a) Experimental arrangement to determine the cleaning efficiency of a 

bristle. (b) Bristle tip. 

 

The experimental arrangement consists of a long spring with an adjustable upper end 

position to fix the contact force , a bristle holder tube suspended to the spring, 

bearings with low friction to guide the movement of the bristle holder up and down, 

and a moving surface. In the test, the bristle tip contacts to the surface which moves at 

the speed of . The bristle tip contact angle is adjusted by changing the free length of 

the bristle between the end of the holder and the surface. The cleaning efficiency is 

evaluated following in the bristle tip track on the surface. To make sure that the test 

can be repeated, the surface should be artificially contaminated. 

N

v
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It is obvious that without a centralizing device the rotation centre of the brush cannot 

situate exactly at the centre of the duct. Some eccentricity is needed for the contact 

forces of the brush to produce an upwards directed resultant to give equilibrium with 

gravity. If the rotation centre of the brush remains roughly stationary, each brush 

obtains a periodic motion in the rotating coordinate system. To study this with 

reasonable accuracy would demand a much greater effort than has been employed in 

this article. It should be further mentioned that taking the gravity of an individual 

bristle into account, even in the case of no eccentricity, leads in fact to a periodic 

response as the direction of the gravity in the rotating coordinate system depends on 

the orientation of the coordinate system.  

 

The approximation used in the simulation of the rotating bristle problem is rather 

crude. Higher order Lagrangian interpolation functions could be used. However, it is 

well-known that these start to behave badly at the ends of the interval, therefore it 

appears to be unwise to go higher than 4=n  [16]. An alternative to the use of 

Lagrangian interpolation is just to employ, say, Simpson's integration rule in a double 

fashion. Then the number of integration points can be selected to be as large as is 

required without any danger of ill-behaviour. This alternative is described in [11]. It 

was found that with practical data the results obtained by using the present approach 

and by the approach using Simpson's rule were rather close. Here we have tried to 

keep the formulation as close as possible to an analytical approach and have relied on 

the Lagrange interpolation method. 
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8 CONCLUSION 
 
An improved simple model was used to evaluate the magnitude of the normal force  

and the contact angle 

N

β  of the rotating bristle tip on the duct surface. The 

dimensionless formulation was employed to simplify the dependencies between the 

various parameters and to make the brush cleaning design process as systematic as 

possible. The magnitude of the dimensionless normal force N  increases roughly 

linearly with the dimensionless number 1π  at a practical rotation speed. With higher 

dimensionless number values of 2π  the bristle "has to bend more to fit in the duct" and 

the contact angle increases. Increasing the dimensionless number 3π  decreases the 

dimensionless normal force. The experimental results obtained in general give some 

confidence in the validity of the proposed simulation model to the extent that it can be 

used in analysing and comparing different brush designs. In conclusion, the developed 

simple simulation model combined with such programs as Mathcad software seems to 

be a useful tool in cleaning brush design work. 
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APPENDIX 
 
The discrete field equation at the collocation point , (Eq. (3.22)): s
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The boundary condition at the bristle tip (Eq. (3.24)): 

g C1 C2, C3, C4, C5, C6,( ) C1 2 C2⋅ L⋅+ 3 C3⋅ L2
⋅+ 4 C4⋅ L3

⋅+ 5 C5⋅ L4
⋅+ 6 C6⋅ L5

⋅+:=  

The geometrical condition at the bristle tip with coordinates ( )Lx  and ( )Ly  on the duct 

surface (Eq. (3.25)): 
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Discrete equations by collocation with four collocation points and by Lagrangian 

interpolation with seven subintervals within a Mathcad solve block: 

Given 
Eq. (3.22), s1=0:  f C1 C2, C3, C4, C5, C6, N, 0,( ) 0 

Eq. (3.22), s2=L/4:  
f C1 C2, C3, C4, C5, C6, N,

L
4

,





0
 

Eq. (3.22), s3=L/2:  
f C1 C2, C3, C4, C5, C6, N,

L
2

,





0
 

Eq. (3.22), s4=3L/4:  
f C1 C2, C3, C4, C5, C6, N,

3 L⋅
4

,





0
 

Eq. (3.22), s5=L:  f C1 C2, C3, C4, C5, C6, N, L,( ) 0 

Eq. (3.24):   g C1 C2, C3, C4, C5, C6,( ) 0 

Eq. (3.25):   h C1 C2, C3, C4, C5, C6,( ) R 

The solution is found by following the Find command in the Mathcad program:
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Find C1 C2, C3, C4, C5, C6, N,( ):=

 

The full Mathcad code for the bristle of a rotating cleaning brush described above is 

presented on the Civil and Mechanical Engineering web site [9]. 
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