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ABSTRACT

The bristle of a rotating cleaning brush for air ducts was modelled using large
deformation elastic theory. The point collocation method with a trial solution
consisting of undetermined parameters was employed to discretize the resulting non-
linear problem. The main interest was in determining the value of the bristle tip contact

normal force N, the bristle tip contact angle £ and the torque 7' needed to rotate a

brush. The results obtained using the simple model were compared with the results

obtained from a laboratory test.

The simulated and experimental results show that the magnitude of the normal force
and the contact angle increase as a function of the rotation speed . Additionally, the
torque increases with the growth of the normal force. The results show further that air
drag increases the torque and somewhat decreases the contact force between a bristle
tip and the duct surface. However, with the normal properties of a brush, air drag only

slightly affects the deflections of the bristles at practical rotating speeds.

To facilitate possible brush design work the problem was also studied employing a
dimensionless formulation. The parameters that affect the magnitude of the normal

force and the contact angle are five dimensionless numbers.

Keywords: Duct; Bristle; Normal force; Contact angle; Torque; Air drag;

Dimensionless formulation
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NOMENCLATURE

=
>

X,y

Greek symbols

" DD »R

AN

o

Py

cross-sectional area of bristle
dimensionless multiplier
undetermined parameters

air drag coefficient

thickness of bristle

mass element of bristle
differential bristle length element
Young's modulus

flexural rigidity of bristle

length of bristle

Lagrangian interpolation functions

bending moment
first integrals of Lagrangian interpolation functions
second integrals of Lagrangian interpolation functions

rotation speed of bristle, degree of approximation, number of bristles
magnitude of normal force

cross-sectional normal force

air drag force per unit bristles length acting perpendicular to bristle

shearing force

radial distance from origin to s
radius of duct
Reynolds number= p,vd/u,

arc length coordinate of a generic point of bristle
interpolation points in interval 0 <s < L

torque
weight
coordinates of a generic point of bristle

directed angle from initial ray
bristle tip contact angle

angle between rod normal and rod velocity vector
inclination angle of bristle axis with x -axis

approximation of €
kinetic coefficient of friction

dynamic viscosity of air
kinematic viscosity of air
ratio s/L




Subscript
a

ad

b

bf

c

fit

N

Nu

]

Superscript

Brackets

()

dimensionless number= pAL*'w* /EI
dimensionless number= L/R

dimensionless number=

dimensionless number= ¢’ p,L’w’d | EI
dimensionless number= cp,wLd /u, = cwld/v,
density of air

density of bristle material

inclination angle of a ray to s with respect to x -axis, polar angle
angular speed of brush

air

air drag

bristle, bending

bearing friction

centrifugal

fitting polynomial function

air drag intensity normal to axis
normal and friction force

simulated value

dimensionless quantity
approximation of a quantity

function of Reynolds number







1 INTRODUCTION

Dust and other contaminants accumulate on the surfaces of an air handling system
during its construction and operation. Contaminated surfaces may increase energy
consumption, decrease the airflow rate and cause malfunctions in the air handling
system. Additionally, contamination into the supply air duct may cause problems for
the occupants of the building. Therefore, the air handling system has to be cleaned
regularly. In particular, those systems which convey high levels of dust or represent a

fire hazard have to be cleaned frequently.

Mechanical brushing is an efficient method for cleaning air ducts [1]. Mechanical
brushing systems consist of rotating brushes that detach particles from duct surfaces,
cleaning devices to guide and rotate the brush into the duct, a low-pressure fan to
convey the loosened particles from the duct, and a filter unit to remove particles as
they pass through the filter. The brushes are guided into the ducts with flexible rods
and normally rotate at speeds of n=300-1000rpm. The diameter of the brush is

oversized compared to the diameter of the duct - i.e. the bristle length L duct radius R
ratio is normally 1< L/R <1.3. The thickness of the bristles d varies between 0.3 mm
and 1.0 mm when fine, dry dust is removed. To date brushes have been designed using
empirical methods. However, theoretical modelling offers a useful tool in development

work for the use of brushes for different purposes.

The effect of varied parameters on the behaviour of rotating bristle was studied in
references [2] and [3]. The results showed that the diameter of the bristle and the
rotation speed strongly affect the magnitude of the bristle tip normal force N . With
regard to the contact angle 3, the bristle length duct radius ratio is the most important
parameter. Air drag somewhat affects thin bristle behaviour at the rotation speeds of
300—-1000 rpm that are used in practice. The rotation speed and the bristle length duct

radius ratio are typical parameters that professional cleaners use to optimise brushes.

Compared to references [2] and [3], this report contains some new features, namely a
dimensionless representation of the formulation and a description of an experimental

test arrangement and a comparison of the results using the test and also using the



computational model. To make the report reasonably self-contained, the main

assumptions and expressions from references [2] and [3] are repeated here.

Figure 1.1 (a) shows schematically the deformed shape of a typical rotating bristle in a
duct and the forces acting at the bristle tip. We assume here that the rotation centre O
situates at the geometric centre of a circular duct. The radius of the duct is denoted R
and the length of the bristle L. The independent variable for the bristle shape
description is taken to be the arc length s along the deformed bristle. Figure 1.1 (b)

shows in more detail a possible scenario at the bristle tip.

Op ,

R

oo
(o]
(a) UN N w /7 7/ /7 7 7 7
Fig. 1.1. (a) Deformed bristle and the contact forces at the bristle tip. (b) Bristle tip.

Of main interest is to determine the value of the unknown normal force N acting on
the bristle tip, the contact angle £ and torque 7" needed in terms of the parameters of
the problem, such as the angular speed of the brush @ and the ratio L/R etc. The
contact angle [ is defined as the angle between the duct surface normal and the
bristle axis tangent at the bristle tip (Figure 1.1). The larger the force uN, where u is
the friction coefficient, the better one would expect the cleaning efficiency to be. The
effective value of 4 may depend on £ . Quantities N and S are thus obviously of
importance in the cleaning process and it seems more or less clear that the larger the
normal force and the smaller the contact angle the better the cleaning efficiency. In any
case, this was one criterion used in looking at the results described in this report and in

reference [2]. However, it is recognised that other factors such as the sweeping speed,

the detailed geometric shape of the possibly worn bristle tip, the surface pressure, etc.



may also have influence on the cleaning efficiency. Theoretical and experimental work

is needed to clarify the roles of N and £ in the cleaning process.



2 MODELING

The bristle is modelled using large deformation elastic theory. Certain simplifying
assumptions are made. First, plane steady motion of an initially straight uniform bristle
is assumed. Second, zero size for the attaching frame is used. A correction for this
would not be difficult. Third, air drag on the bristle somewhat decreases the contact
force between a bristle tip and the duct surface [3]. However, air drag only slightly
affects the deflection of the bristle at rotation speeds of 300—1000 rpm. A correction
for air drag is taken into account and reference [3] describes in more detail the effect

of air drag on the deflection of the single bristle. Fourth, the effect of gravity on the

bristle is neglected. The order of the magnitude of the ratio (2g/ ®’R) between the

gravity of the bristle (mg ) and the resulting approximate centrifugal force (ma’ R/ 2)

is usually much below 0.2 with practical data. Fifth, the bristle is considered to obey
elastic rod theory so that the deformations are due to the bending moment only and the
deformations due to beam normal force and shearing force are neglected. This is well
justified considering the slenderness of the bristles. Sixth, the contact forces are
assumed to act at the central axis of the bristle tip which may lead to a small error (see

Figure 1 (b)).

Figure 2.1 (a) describes the setting in some detail. The study of the bristle behaviour is
performed in an xy -coordinate system with its origin at the rotation centre O and
rotating with the attaching frame. The x -axis is along the undeformed straight bristle
axis and the y-axis is 90 degrees in the clockwise direction according to the usual
convention of the strength of materials, e.g. reference [4]. In this frame the bristle is
assumed to be in a static state and the motion is taken into account in a well-known

manner via centrifugal forces.
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Fig. 2.1. (a) Large deflection of a deformed bristle and (b) a free-body diagram.

The exact differential equation of the deflection curve is [4]

M =-FEI 49 : (2.1)
ds

Here 6 is the inclination angle of the bristle axis with the x-axis, M the bending
moment in the bristle, and E/ the flexural rigidity of the bristle. Further, the shearing
force QO is connected to the bending moment by Q =dM/ds and thus with constant
El:

d’6
Figure 2.1 (b) shows the free-body diagram of an end part of the bristle. In addition to

the bending moment M and shearing force O, the rod normal force P at the generic

11



rod cross-section is shown. A differential rod length element ds' has mass dm = pAds'
where p is the density and A its cross-sectional area of the bristle. The centrifugal
force components acting on mass element dm in the x- and y -directions are
dma’x(s') anddma’y(s'), respectively. The notation s' is used for an arc length
coordinate referring to a generic point inside the end part of the bristle to differentiate
it from the arc length coordinates referring to a generic cross-sectional point. Air drag
is assumed to act perpendicular to the bristle axis. We thus neglect the possible axial
component of the drag. Denoting the intensity by ¢ [N/m], the force acting on ds' is
in magnitude q(s')ds'. The inclination angle ¢(L) at the bristle tip associated with the

contact normal force N is fixed here due to the fact that the line of the action of the
contact normal force N goes through the duct centre and thus here also through the

rotation centre O. Assuming Coulomb friction, we obtain the friction force uN acting

perpendicular to the contact normal force N . The equilibrium equation of the body in

Figure 2.1 (b) in the direction of Q is
O — Nsin[0(s) - ¢(L)]— uN cos|0(s)— #(L)]+ pdw? sin H(S)j- x(s')ds'

 pAer* cos ()] osXis— [ (s)coslols')— 0(s)]s'=0. 23)

The shearing force expression is thus
Q = QNH + Qc + ad (24)
with

Oy, = Nsinl@(s)—§(L)]+ uN cos[o(s) - ¢(L)]
= N[sin &(s)cos #(L) - cos O(s )sin ¢(L)]

+ ,uN[cos 0(s)cos ¢(L)+ sin Q(S)sin ¢(L)] , (2.5)

L

0, =—pAw’ sin H(S)'L[x(s')ds' + pA@’ cos H(S)J.y (s')ds', (2.6)

N

L

0. = [¢(s')eos[B(s") -~ 6(s s

s

12



—cos0(s)[ cos(s) g(s')ds'+ sin ()] sin (5 (s s’ @7

N N

For clarity of later exposition and discussion, we have separated the shearing force Q

into the contribution @, due to the normal contact force and friction, into the

contribution Q. due to the centrifugal forces and into the contribution Q,, due to the

air drag.

Substituting the shearing force expression (2.4) into (2.2) gives the governing field

equation
_ g die
O=0n+0:+ 0y =—El 3 (2.8)
or in more detail
Nlsin &(s)cos ¢(L)— cos (s )sin ¢(L)]+ uN[cos O(s)cos ¢(L)+ sin 8(s)sin #(L )]
— pA®’ sin 0(3)_[ x(s')ds' + pA@* cos H(S)jy (s')ds'
+c0s0(s)[ cosO(s") g(s") ds'+sin O(s)[ sin O(s') g (s') ds' = —EI j;f . (2.9)

N N

The boundary conditions are as follows. The bending moment must vanish at the bristle

tip. This gives a force type condition
M(L)=0, (2.10)

or taking (2.1) into account, the condition

do
a(L)_o. (2.11)

The geometrical conditions are the following. At the origin the bristle axis is at a

tangent to the x -axis:
6(0)=0. (2.12)

Further, the bristle tip with coordinates x(L) and y(L) is on the duct surface, i.e., its

distance from the origin is R:

13



x*(L)+y*(L)=R. (2.13)

The problem to be solved is described by the field Eq. (2.9) and the boundary
conditions (2.11) and (2.12). Additionally, there is the geometric constraint condition

(2.13). The corresponding unknowns to be determined are the function 6 = (9(s) and the

constant N .

Before proceeding, we have still to express x and y using €. From Figure 2.1 (a)

dx
cosfls)=—, 2.14
()= (2.14)
. dy
sinf(s)=—. 2.15
()= (2.15)
Integration gives

+(s) =

cos&(s')ds', (2.16)

S ey

jsm& . (2.17)

Using these in (2.9), we write

x(s')zfcose(s*)ds*, (2.18)

j sin O(s (2.19)

The additional notation s~ has been used in an effort to differentiate the two integration

variables from each other. Finally, at the bristle tip

x(L)= j.cos 0(s")ds", (2.20)

y(L)= jsin O(s'")ds' . (2.21)

From Figure 2.1 (a), we also have the relations

14



cosg(L)= % , (2.22)
sing(L) = % (2.23)

to be used in (2.9).

Air resistance is considered next in more detail. The standard form of magnitude of the

air drag per unit length for a cylinder with circular cross-section is [5]

1
I =ECD pvd, (2.24)

where C,, is the air drag coefficient, p, the density of air, v the speed of the cylinder
with respect to air and d the diameter of the cylinder. The drag coefficient depends on

the Reynolds number

Re =P (2.25)

H,
where g, is the viscosity of the air. The speed of a bristle point with respect to stagnant

air is o r(s'), where

r(s') =4/x’ (S') +y° (S') (2.26)
is the radial distance from the origin. The brush certainly sets the air around into motion
which is difficult to estimate. In an effort to take this into account we evaluate the speed
by

V=cw r(s'), (2.27)
where ¢ is a dimensionless multiplier (0 <c <1). If some experimental results are

available, ¢ can hopefully be made use of. According to [6], when the flow is inclined

to the axis of a cylinder, the air drag intensity normal to the axis can be evaluated from

g=qycos’y, (2.28)
where
y(s)=0(s') - 4(s") (229)

is here the angle between the rod normal and rod velocity vector. In more detail,

15



cos y(s') = cos O(s")cos ¢(s') + sin O(s')sin #(s') and

(2.30)

cosgls) =213,
)

mn¢@0=y6'. (2.31)

The air drag coefficient is evaluated by fitting a fourth degree polynomial function for a

circular cylinder from measured data [5] as a function of the Reynolds number in

logarithmic coordinates in the form logCp, = f (log Re). This gives

CD _ 101.005—0.614logRe+0.166(10gRe)270.037(]0gRe)3+0.04819(Re)4 ) (2.32)

The graph of (2.32) is shown in Figure 2.2. Expression (2.32) should not be used if the

Reynolds number exceeds 10* because of the non-smooth behaviour of C,, around this

point. In this application this limit was not exceeded.

100 100
N
AN
AN
AN
\\
\\
N\
N
10 N
~
C (Re) T
D ~
— \\
-\\“--- i
1

0.1 0.1 3 4

0.1 1 10 100 1-10 1-10

0.1 Re 10000

Fig. 2.2. Fitting a fourth degree polynomial function for circular cylinders as a function

of the Reynolds number in logarithmic coordinates.

16



It is quite clearly not possible to find an analytical closed form solution for the present
problem. The discrete version of the model which can be solved numerically is

presented next.

17



3 SOLUTION METHOD

3.1 Discrete formulation

The unknown function 6 = 19(S) to be determined is approximated by a trial solution
H(S) ~ g(s) = Zcisi =c,+es+c,8° +¢y8° +..+c, 8", (3.1)
i=0

where c¢,,c,,...,c, are undetermined parameters and the given basis functions are
simply powers of s. In the numerical applications we have selected n=6. Thus the
problem of determining the function @ = @(s) and the constant N is transformed to
the determination of the eight unknown constants c,, c,, ¢,, ¢;, ¢,, ¢5, ¢s, N. We
have to generate eight (or more) algebraic equations for this purpose. Three of the
equations come from the conditions (2.11), (2.12) and (2.13). The remaining five are
obtained from the field Eq. (2.9) by applying the point collocation method with five
collocation points situated uniformly at s, =0, s, =L/4, s,=L/2, s, =3L/4,
s; = L. The point collocation method is the simplest criterion for determining the
undetermined parameters in connection with the method of weighted residuals [7]. The
detailed final equations are developed and solved with the Mathcad program [8] given

in the Appendix. The code, with additional comments, is available on the Mathcad

web site [9].

The first and second derivates of & (s) needed in (2.9) and (2.11) are simply

% = Z:z'cis"_1 =c, +2c,5 +3c;8% +..., 3.2)
i=1
and
2 n
(;sf = Zi(i - I)CiSFZ =2c¢, +6c,s5 +.... (3.3)
i=2

The equivalents of formulas (2.16) and (2.17) would give here

f(s)z

Ccos §(s')ds', (3.4)

=



¥(s)= j.sin 6 (s')ds'. (3.5)

However, a closed form integration using (3.1) does not seem possible. We therefore

approximate the integrands first using Lagrangian interpolation [10]:

m

cos[HN(s')]z D L,(s")cos §(sj ) (3.6)

J=1

sinfd ()]~ 3, (s)sind(s). (3.7)

J=1

Here L, (s') are the Lagrangian interpolation functions and the coordinates s;. refer to

the interpolation points where the cosines and sines are evaluated:

cos[g(s;. )] ~ coslc0 +e8; +c, (sj )2 +c, (sj )3 J (3.8)

sin[g(s;. )] ~ sin[co +ey8; 40, (sj )2 +c, (sj )3 J (3.9)

Using (3.6) and (3.7), the integrals are easily evaluated as the Lagrangian interpolation

functions are polynomials. The results are

x(s)

> M (s)eosfds; )] (3.10)

Jj=1

7s)= 2 M, (s)sin[a (s, )] (3.11)

=1

~

where
M (s)=[L,(s")ds". (3.12)

In addition, to evaluate the centrifugal terms, we need the integrals

S m

[(s')ds” = [(s7)ds"— [ (') = 521w, 1), (9ol ] G.13)

0

f=}

[7()ds = [3()ds"~ [ 7(s) s’ = 3 [y, (1), ki ;) (3.14)

19



N, (s)=[ M (s)ds". (3.15)

0

In the numerical calculations we have taken m =4 and the interpolation points
uniformly so that s, =0, s, =L/3, s, =2L/3, s, =L in the interval 0<s<L. As
examples, functions L,, L, and M,, M, and N,, N, are shown in Figure 3.1 as

functions of & =s'/L or £ =s/L.

2 2 2 2
L4() \_/_) L, (€)
- 0 - 0 =
-1 | —1 |
0 0.5 1 0.5 1
(@) 0 : G 0 : !
0.6 0.6 0.6 0.6
041 ] 04 —
m 1(&) m (&)
02 ] 02 ]
(U l 0 l
0.5 1 0 0.5 1
() g (@@ 0 g 1
0.6 0.6 0.6 0.6
04— ] 041 ]
n 1(5_») n 2(‘2)
02 ] 02 ]
0.5 1 0 0.5 1
(e) 0 & 1 () 0 & 1

Fig. 3.1. Lagrangian interpolation functions (a) L, and (b) L, , their first integrals (c)
m, =M, /L and (d) m, =M, /L and their second integrals (e) n, = N,/L* and (f)

n,=N,/I* as functions of ¢.
In detail,
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L(s)=—s"+=s ——Ls+1, (3.16)

L(s)=—=s" - R (3.17)

M, (s)=—s+=5 —I—Ls +s, (3.18)

M,(s) 27 413 3+is2, (3.19)

s+ st — s”+—, (3.20)

27 15 3
N,(s)= 200 s —@S4+ZS3. (3.21)
The five discrete equations following from (2.9) using collocation are thus
]\Nf{sing(sk )@—cosg(sk )M} +,u]\7{cos§(sk )M+ sing(sk )M}
R R R R
- L - L
— pAw’*sinf (s, )Jf(s')ds’+ pAw’ cos (s, )J)N/(s')ds'
cosd (s, )I cosd(s')g(s')ds'+sin A (s, )J. sin @ (s') g(s")ds'
4’0
= —EIF(S,( ), k=1..5. (3.22)

Further, we have to apply in detail (3.1), (3.3), (3.10), (3.11) and (3.13), (3.14). In

addition, evaluation of the terms due to ¢(s") is rather complex, as is described below.

The resulting equations are strongly nonlinear in the coefficients c, .

Discretization of the boundary conditions is simple. Condition (2.12) leads to
6(0)=c, =0. (3.23)

Condition (2.11) leads to

21



%(L)zcl +2¢,L+3¢,L* +...=0. (3.24)

These are both linear. Finally, (2.13) gives

VEI(L)+ 7 (L) =R, (3.25)

where (3.10) and (3.11) have to be applied again with s = L.

3.2 Solution details

The resulting non-linear algebraic system consisting of the eight Egs. (3.22), (3.23),
(3.24) and (3.25) was solved by the Mathcad program. The program needs an initial
guess for the unknown to proceed. The initial values were taken to be, ¢, =0,
¢, =0.5/L, ¢, = —O.25/L2 , c;=Cc,=cs=c,=0 and N =0. (Parameter ¢, was not
actually included in the code as its value is determined in advance by (3.23).) The non-
zero values were estimated making some use of Egs. (2.11) and (2.21). The final
program gave apparently convergent solutions in all of the cases studied. However, with

higher rotation speeds some updating of the constants from the results with lower

speeds were needed.

With regard to the integrals in Eq. (3.22), the terms due to centrifugal forces have been
evaluated "directly", as is explained above. However, the terms from air drag are so

complicated that a direct approach is out of the question. Thus q(s') is updated

iteratively according to the current achieved shape (c,,c,,....,c,) of the bristle. The

integrands cos@ (s)g(s') and sin 0 (s')g(s') are then represented by the Lagrangian
interpolation functions and integrated analytically. This is an "indirect" approach, which
could also actually be used for the centrifugal forces. On average about three iterations

were needed to achieve practically converged results.

In references [2, 11] a somewhat similar problem — the famous Elastica problem
described in reference [4] — with a known analytical solution is studied using the
calculation model. The results of this preliminary calculation using the discrete method

may be viewed as surprisingly accurate taking into account the seemingly rather crude

22



approximation. Thus we may have some confidence in using the discrete formulation to

approximate the rotating bristle in the duct.
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4 DIMENSIONLESS FORMULATION

4.1 Manipulations

To simplify the study of the dependencies between the various quantities we employ
here a dimensionless formulation. The final purpose of this presentation is to make the
eventual future design process as systematic as possible. As is mentioned in [7]: "This
is an extremely useful organizational tool of the analyst. In connection with numerical
calculations it removes all unnecessary symbols, leaving the basic problem in its

simplest form."

Using the dimensionless coordinate

§=%, £eloy], (4.1)
we obtain

di)_1d()  d*()_ 1 d*() 4.2)
ds Ld&  ds?  L* dE '

1

()ds = L] ()&, f(-)ds = L[ (Mg (4.3)

g

@ Sy [~

Dependent variable & is already dimensionless. We denote 8 (&)= 6(s(¢)). We also

denote

=2, y3=2 (4.4)

X
L L

Egs. (2.2), (2.11), (2.12) and (2.13) become first

Q+E[%3Z§:O, 0<&<l, (4.5)
%%(1): 0, (4.6)
6(0)=0, (4.7)

Lyx*(1)+3*(1) =R (4.8)

and after some arrangement
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2n 2
d(9+L—Q:O, 0<&<l, (4.9)

dé*  EI

do .\

E@)_o, (4.10)
6(0)=0, (4.11)

(4.12)

VE()+77(1) =

It is seen that functions such as x(&)= x(s(&))/L depend in a complicated manner on

~| =

function &(£). For instance as

x(5)= [cos0(s')ds'

0

¢
=L[cosd(£)d&", (4.13)
we obtain
¢
%(&)=[cosO(&)de". (4.14)

Thus, in the following, to avoid very complicated expressions, we do not show in detail
some of the dependencies of say ¥ and 7 on 0 .

The term (2.5):

Oy, = Nlsin 8(s)cos ¢(L)— cos &(s)sin p(L )]
+ pN|[cos O(s)cos ¢ + sin (s )sin (L )]
= N[sin 0(&)cosg(1)—cos@(&)sin ¢_(1)]

+/1N[cos9_(§)cos¢7(l)+ sin§(§)sin¢7(l)]. (4.15)

The term (2.6):

Q. =-pAw’ sin 6’(5).[ x(s')ds'+ pA@? cos H(S)jy (s')ds'

N
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=— pAw’ sing(ﬁ)szf(f')d§'+ pA®’ cos?(ff)ﬁjf(f')dﬁ'
f N

=— pAL’w*sin (5)} X(&)dE' + pALl*w* cosO (g)j y(£)dé. (4.16)
g s

The term (2.7):

L L

Q,, =cos Q(S)J- cos&(s') g(s')ds' + sin e(s)j sin 0(s") g(s") ds'

=cos0(¢)L[cosd(£)g(£)de +sin 0 (£)L [sin 6 (£)7 (&) de', (4.17)
9 s

where we have denoted g(&')= ¢(s(£')) demands some more detailed considerations.

From (2.24), (2.27), (2.28),
5)=3 Cop, 0 r(s]*d cos* 1) (4.18)

and dependence in the drag coefficient is of the form

p.cor(s)d

C, =C,(Re)=C,( ) (4.19)

a

We have used here the notation ( ) to emphasize the dependency and to avoid

possible confusion with mere multiplication.

Denoting 7 = r/L, 7(£') = y(s(£')), we obtain

puco LF(£)

a

d
g(&)=Lc, 9,20 F(£)d cos? 7(&)

2

cp,0Ld 7(5,»72 (5')cosz }7(5). (4.20)

:%czpaa)szdCD<

a

Substituting this in (4.17) gives

. -

cp,oLd _

0. = 1 st e 6), P e s ishas
¢ a |
+ %cz paa)zﬁd{sm 9(&)[sind (&) Cp (P Z’ Ld o) (@)eos’ 7(2)de | 421
¢ a N
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We next define a dimensionless normal force

2 2
N:%N:ﬁELWN. (4.22)
T

Multiplying the shearing force contributions by the factor L’ / EI and substituting the

results in (4.9) gives the final dimensionless field equation

355 + Nlsin(§)eos (1)~ cosd(¢)sin g ()] + i cosB(£)cos (1) + sin B (¢)sin g (1)

_ pALl'e?

sind(@)]x(e)ag -+ 2L cosol)] sle)as

lczpaa)zLSd_ T cp,0Ld
+§T cos@(‘f)!cos@(f)CD(ﬂ—ar(

s'>>72<a>cos27<§'>da]

Lelp@?l’d| .~ b oLd_
_,_EC'O"E—I mnH(ﬁ)!smH(ﬁ')CD(Cp“lu—ar(

ENF(&)cos? 7(5)d§} =0.(4.23)

For a circular cross-section with diameter d

am (4.24)
4"’ 64 '
and
4 2 4 2 2 2 2
pAL © :16’0La; _16| L) AL (4.25)
El Ed d) E

Observing the governing dimensionless formulation consisting of the field Eq. (4.23)
and of the conditions (4.10), (4.11), (4.12) shows that solution & (5), N depends on

five dimensionless numbers:

4 2

- PA;@ , (4.26)

7, = %, (4.27)

7, =4, (4.28)
cpw’l’d

g, =L =8 4.29

s Zl (4.29)
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_cp,old  cold
H, v,

(4.30)

s

Knowledge of these dependencies is made use of in representation of numerical results

next.

4.2 Dimensionless results

Figures 4.1-4.3 present the magnitude of the dimensionless normal force N and the
contact angle S as a function of the dimensionless numbers 7, = pAL4a)2/EI ,

7,=L/R and 7,=pu.

In Figure 4.1 the magnitude of the dimensionless normal force and the contact angle

are shown as functions of the dimensionless number 7, .
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Fig. 4.1. (a) The dimensionless normal force N [-] and (b) contact angle B [°] as

functions of 7, .

The normal force increases roughly linearly when 7, changes from 0 to 500 which
covers the normally used range in rotating brush duct cleaning. The centrifugal forces
grow quadratically with the angular speed @. Thus one could initially expect N to
grow linearly with 7, = pAL'®” /EI as seems to be the case in Figure 4.1 (a).
However, as 7, is higher than 4000, which is an unrealistic 7, value, the magnitude

of the normal force only increases slowly. This is probably explainable by the
changing shape of the bristle so that the centrifugal force components have "changing
lines of actions" when the rotation speed increases. As is to be expected, the magnitude

of the normal force and the contact angle increase when parameter 7z, grows.
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Figure 4.2 presents the magnitude of the dimensionless normal force and the contact

angle as functions of the dimensionless number 7, .
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Fig. 4.2. (a) The dimensionless normal force N [-] and (b) contact angle £ [°] as

functions of r,.

Both the magnitude of the normal force and the contact angle increase roughly

quadratically as a function of 7, = L/R. With higher values of 7, the bristle "has to

bend more to fit in the duct" so the results seem to be intuitively correct. The

magnitude of the normal force and the contact angle increase when parameter r,

grows. The values of 7, 15.4, 34.6 and 61.5 correspond to the rotation speeds of 500,

750 and 1000 rpm with the parameters values presented in Chapter 6.1 (except

Young's modulus value £ =2 GPa).

Figure 4.3 presents the magnitude of the dimensionless normal force and the contact

angle as functions of 7, .
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Fig. 4.3. (a) The dimensionless normal force N [-] and (b) contact angle B [°] as

functions of ;.

The growth of the dimensionless number 7, = x acts in an opposite manner to 7, and
7, to the magnitude of the normal force and the contact angle. The decrease of the
normal force with increasing 7, seems plausible as the friction force has a direction
with "large bending influence". To achieve high normal contact force, 7, should be

low.

In practice, dimensionless numbers 7, and 7, are the parameters that professional

cleaners can use to optimise the duct cleaning brush. In rotating brush duct cleaning

the common range of 7, and 7, are 0<z,<100 and 1<x,<l1.3, respectively. The
manufactures of the brushes can affect 7z, by selecting a suitable material property for

the bristle. According to reference [3], air drag does not affect thin bristle behaviour
strongly at practical rotation speeds and, therefore, dependencies on the dimensionless

numbers 7, and 7, are not considered in this report.
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S LABORATORY TEST

5.1 Experimental arrangement

A rotating brush was tested in the Laboratory for Heating Ventilating and Air-
Conditioning at Helsinki University of Technology. A round duct with a diameter
2R =0.315mwas prepared from a metal sheet plate with a width of 0.2 m. The
diameter 2L of the tested brush was 0.35m and the bristles were nylon
(d =1x107 m). The bristles were connected on a spiral frame made of metal wire.
The number of bristles » was approximately 1000. The brush was centralized at the
centre of the duct with the shaft of an electric motor (0.55 kW). In addition, certain
tests were performed with just a single pair of bristles. Figure 5.1 presents some details

of the instrumentation of the laboratory test.

Force transdugers 2 and 34

N\

Force transducer 4

Fig. 5.1. Experimental arrangement in the laboratory.

Measurements were obtained using force transducers 1, 2, 3 and 4. The range of
transducers 1 and 4 were 0—118 N and for transducers 2 and 3 0-29 N. The

transducers were located as indicated in Figures 5.1 and 5.2. The purposes of
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transducers 1 and 4 were to determine the torque (twisting moment) from the contact
friction and the output torque from the electric motor, respectively. The purpose of
transducers 2 and 3 was to additionally measure the "opening force" in the seam of the
duct frame at the left-hand side. The output torque 7 from the motor is considered to

be balanced in general by the torque 7}, due to the bearing friction (some possible air
drag acting on the shaft is included), by the torque 7,; due to the air drag from the
brush (or from a bristle pair) and by the torque 7, due to the contact friction of the
brush (or of a bristle pair) with the duct surface; thus in general 7'=T7,; +T,, +T,. The

motor output torque is obtained from
T=Pb, (5.1

where P (positive when transducer 4 is in tension) is the force measured by transducer

4 and b =0.227 mis the horizontal distance between the centroid of the motor shaft

and transducer 4 (Figure 5.2). Torque 7,, for a given rotation speed is obtained by
rotating the motor alone, so then 7., =7 . When the brush rotates with contact, the
total output torque 7'=7,; +T, +T,. Assuming T,; is known for a given rotation
speed, we can then determine 7,, +7, =7 —T,; from the experiment. Further, 7, can

be obtained using transducer 1 as is described below from Eq. (5.15), so finally we can

determine 7, from
Tad:(T_be)4_(Tp)la (52)

where the meaning of the notations is obvious.

To have some estimate of the effect of air drag without the inclusion of contact forces,
torque due to air drag was measured separately by rotating the brush in "air", meaning
that the duct was removed. In addition, the brush was rotated without contact in a duct

with a diameter of 0.365 m. Here 7' =T7,; +T,, and we can determine 7,, assuming

again T, is known for a given rotation speed. However, this torque

Ty=T-T, (5.3)
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is naturally not the same as the torque 7, obtained by (5.2) with a brush in contact

with the duct. Reference [3] presents the effect of the air drag on the torque by using
Egs. (5.1)—(5.3).

Further, experiments were performed using single pairs of bristles without trying to
employ the transducers as the forces involved would be too small for proper
measurements. Instead, bristle deflections were recorded by taking photos with a
digital camera from the rotating brush at speeds of 0—1200 rpm. Additional tests with
only the duct frame were conducted to check certain assumptions used in the free-body
diagrams. These tests are explained in Chapter 5.3. Preliminary laboratory tests with a
rotating brush were performed earlier in the Laboratory for Mechanics of Materials at
Helsinki University of Technology [12]. The experience obtained from these tests was

useful for setting up the present laboratory arrangement.

Figure 5.2 presents some further details of the dimensions of the instrumentation in the

laboratory test.

Duct

¥ Electric motor

Force transducers 2 and 3

SECTION A-A

Force transducers 2 and 3

Force transducer 4

A
v

(a) Force transducer 1 (b)

Fig. 5.2. (a) Instrumentation of the laboratory test. (b) Detail of the transducers
installed in the seam of the duct frame on the left-hand side. Length units are given in

mm.

Two free-body diagrams of the duct frame used in the analysis of the measurement
results are shown in Figure 5.3. The frame is viewed in a similar way as is done in

Figure 5.2, that is from the opposite direction of the motor. The rotation direction of
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the motor and the brush shown in the diagrams is referred to here and in the following

as being in the counterclockwise direction.

a ~R a ~R
(a) > ) e
Fig. 5.3. (a) Free-body diagram of the frame. (b) Free-body diagram of the upper part

of the frame.

5.2 Solution details

We represent the contact forces by "equivalent" uniform line loadings p and up per

unit length ([p]= N/m), where

nN
- 5.4
P=o (5.4)

and where 7 is the total number of bristles. Thus, the differential force components

acting on an arc length
ds = Rd¢ (5.5)

are pds and upds. We consider first the free-body diagram in Figure 5.3 (a). Force B

represents the force read from transducer 1 and is positive if acting on the frame in the
direction shown. Forces 4 and C are from the supporting plates of the frame. It is
assumed that the plates are very flexible compared to the rigidity of the frame and thus
the possible shearing forces and bending moments in the plates are neglected in the

free-body-diagram. The equilibrium equations from the free-body diagram are

> A4=0, (5.6)

T B+C=0, (5.7)
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0°)  —B.a+C-R+T, =0, (5.8)
where

2z 2z

T, = [ upRdg-R = jyﬂdeqﬁ = nNR. (5.9)
0 y  27R

It can be seen for symmetry reasons without actual calculations that the contributions

from pds and wpds cancel in (5.6) and (5.7). The solution of (5.6), (5.7) and (5.18) is

A=0, (5.10)
B:&NR:M, (5.11)
a+R £+1

R

C=-B. (5.12)
Thus, we obtain
[ZHJ B

N = —. (5.13)
no U

This could be used to evaluate the tip normal force N if 4 were known in advance.

However, this is usually not the case.

Without needing to draw a new free-body-diagram we can see that the torque required

to resist the contact friction from the motor is also

T =T—-(T,+T,)=unNR. (5.14)

al

The last form - also appearing in (5.9) - gives a formula for evaluating 7, from the

simulation. Alternatively, using the measured value for B and formulas (5.9) and

(5.13):
T, =B(a+R). (5.15)

We next consider the free-body-diagram in Figure 5.3 (b) used for including the
opening force E given by the sum of the forces in transducers 2 and 3 and assumed to

be positive when acting on the frame in the direction shown. One of the assumptions
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used is that the bending moments in the frame at the horizontal cuts are small and are

neglected here. The equilibrium equations are

- D+F+F, =0, (5.16)
0 ~-E-G+F, =0, (5.17)
0')  E.a—G-R+1T =0, (5.18)
2 I
where
F. :—jprd¢-sin¢=—jyﬂRsin¢d¢:_ﬂ”N, (5.19)
0 y  27R T
f * nN nN
F =|pRdg-sing=|——Rsingdgp=—, 5.20
y£p¢¢£m #dp=— (5.20)
Lr 2L g (5.21)
2w T |

Some symmetries have been made use of when evaluating (5.19) and (5.20) so that
certain terms are cancelled out. We can only determine the sum D + F', however, we
are not interested in this and we will not make any use of (5.16). Egs. (5.17) and (5.18)

are, after some modifications, using matrix notation for clarity,

Lll —IR}[QZ"N{— Zg/z}' (5.22)

The solution, for example, using Cramer’s rule is

5 nNR(—1+'gj nN[l—/;j
T T
E=t Y R , (5.23)
a —+1
R
5 —nNR[C;+/;j nN(1+‘2‘j
Tt T
G="2= R . (5.24)
a —+1

Together with (5.11) and (5.23) we have the set

36



The equations are linear in N and 4N so we write them first as

a B
,UN—[EWLI);,
(o )E
V4 2 R n

Replacing uN in Eq. (5.28) with (5.27) and after some manipulation

N=[%+1 £+E Z,
R 2 n

B 1

l[l: = .
§+E7z l+£7z
2 2 B

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

Thus we now have, in theory, formulas for obtaining both the bristle contact normal

force and the coefficient of friction using the measured data. The calculations performed

above are based on assuming the rotation direction of the brush to be counterclockwise.

If the rotation direction is changed, the friction force elements gpds act in the opposite

directions in the new free-body-diagrams corresponding to Figures 5.3 (a) and 5.3 (b).

The end results are that (5.11) changes to the opposite value (we denote the quantities

now with a dash)

g N
|

and (5.22) changes to

M

The new opening force becomes

(5.31)

(5.32)
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nN'(l-i-gj
E=—2" 2/ (5.33)

Thus the presence of friction should be seen as a dependence of the opening force on

the rotation direction. The counterparts of Egs. (5.27) and (5.28) become

BV
_ﬂva:(ﬁﬁj_, (5.34)
R n
T 2 R n
We obtain
N'= (ﬂ+ 1)(5+ E’)f, (5.36)
R 2 n
pe— -8 1 (5.37)

g+E'7r l+£7r
2 2 B

According to (5.23) E changes its sign from positive to negative at

p=2~064. (5.38)

V4
However, E' according to (5.33) is positive. The results from Eqgs. (5.29) and (5.30) as
well as Egs. (5.36) and (5.37) are described in Chapter 6.

5.3 Additional test

To gain some confidence in the assumptions used in connection with the free-body
diagrams, two simple additional tests were performed on the frame without a brush. In
case 1 a small body weighing W=4.91 N was set at the top of the duct frame and in case
2 at the bottom of the frame. The corresponding free-body diagrams are shown in

Figures 5.4 (a) and (b) and Figures 5.4 (¢) and (d), respectively.
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A
—

Jf r

(© (d)

Fig. 5.4. (a) Free-body diagram of the frame. (b) Free-body diagram of the upper part of
the frame (case 1). (c) Free-body diagram of the frame. (d) Free-body diagram of the
upper part of the frame (case 2).

In case 1 we obtain the equilibrium equations (Figure 5.4 (a) and (b))

S 4=0, (5.39)
T B+C-w=0, (5.40)
0°) _B.a+C-R=0, (5.41)
and

- D+F=0, (5.42)
Y —E-G-w=0, (5.43)
o) E-a-G-R=0. (5.44)
These give
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B=——, (5.45)
a
1+—
R
E=- ud . (5.46)
a
1+—
R

In case 2, Egs. (5.39)—(5.41) are still valid but W disappears from Eq. (5.43). Thus, the

solution is

B= , (5.47)
a
1+—
R

E=0. (5.48)

Table 5.1 presents a comparison of the calculated and measured results with

a=0.1675 m and R=0.1575 m.

Table 5.1. Results of the check on the free-body assumptions

Force Casel Case 2

Calculated (N) Measured (N) Diff. (%) Calculated (N) Measured (N) Diff. (%)

B 2.377% 2.256 5.1 2.377°¢ 2.531 6.5
E -2.377° -2.590 9.0 04 0.02943 -

TEq. (5.45), ° Eq. (5.46),  Eq. (5.47), “ Eq. (5.48)

The measured results in this additional test may be viewed as being rather close to the
theoretical values obtained using the same assumptions employed above in the cases
that included the brush. Thus, these results give certain confidence in the validity of the
assumptions and also a rough idea of the errors included. Further, the weight
(W=4.91 N) corresponds roughly to the mean value of measured B (~0—10 N) and E
(—=1-8 N) in Figure 6.7.
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6 RESULTS

6.1 Simulation details

In all the calculations described below the bristle cross section was taken to be circular
and the length L =0.175m, diameter d =1x10~ m, cross-sectional moment of

inertia [ = 7rd4/64 =4.909%x107"* m*, density p, =1140 kg/m3 , friction coefficient
=, =0.7, kinematic viscosity of air v, =1.528x107° mz/s, bristle length duct

radius ratio ¢ =7z,=L/R=1.111 (R=0.1575m) and Young's modulus

E =2.8GPa, where the latter corresponds roughly to the data for nylon [13]. The
friction coefficient value was estimated from the results of the present laboratory tests
(Figure 6.10). The effect of air drag was studied by using the reduced air speed
coefficient value ¢ =0 (no air drag) and ¢ =1 ("full" air drag). The simulations were

performed for a brush where the number of bristles was n =1000.

6.2 Rotating bristle calculations

6.2.1 Deflection of rotating bristle

Figure 6.1 shows the deflection of a bristle with the rotation speed of 0 rpm, 500 rpm,
1000 rpm and 2000 rpm in a duct.
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Fig. 6.1. Deflected form of the bristle [m] (a) bristle rotation speed n=0 rpm, (b)
n=500 rpm, (c) n=1000 rpm and (d) »=2000 rpm in a duct. The units of the quantities

in the figures are [d]=m, [E]=Pa, [{]=—, [u]=—, [@]=rad/s, [=°, [F]=°, [N]=N, [x]=m,

[yJ=m.

The deflected shape of the bristle changes with the rotation speed of the bristle. In a
stationary situation the bristle is deformed rather symmetrically with respect to its
ends. As the rotation speed of the bristle increases the deformation seems to
concentrate near the rotation centre. Reference [2, Figure 4.2] presents the results of

the deflected shape of the bristle calculated by using the friction coefficient value

u=0.5.
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6.2.2 Dependence on the rotation speed of the bristle

Figure 6.2 presents the magnitude of the simulated normal force N, and the contact

angle S, as a function of the rotation speed of a bristle in the duct.
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Fig. 6.2. (a) The magnitude of simulated normal force N, [N] and (b) contact angle

B, [°] as functions of the rotation speed » [rpm] in the duct.

Initially, the magnitude of the normal force N, increases roughly quadratically in the

interval of 0-3000 rpm, which corresponds to the value 7, = 0—-550. However, when
n 1is higher than the unrealistic values of 8000 rpm (this corresponds approximately to
the value 7, =4000), the magnitude of the normal force was found to only increase
slowly. The contact angle /. increases most strongly roughly in the same rotation
speed range as the magnitude of the normal force. The contact angle has its maximum
value approximately at the rotation speed of 10000 rpm. However, the comparison
between the results of the model and the experimental data limits at speeds of
200-1200 rpm (Figure 6.7), which corresponds roughly to the practical rotating speed

in mechanical brushing.

6.2.3 Dependence on air drag

Figure 6.3 shows the deflection of a bristle without (¢ = 0) and with air drag (¢ =1) as

functions of the rotation speed of a bristle in the duct.
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Fig. 6.3. Deflected form of the bristle [m] (a) The bristle rotates at the speed of
1000 rpm without air drag and (b) with air drag. (c) The bristle rotates at the speed of
2000 rpm without air drag and (d) with air drag in a duct.

Air drag only slightly affects the deflection of the single bristle at rotation speeds of
1000 rpm and 2000 rpm. As is to be expected, the deformation of the bristle due to air
drag is more concentrated near the rotation centre as it can be observed at the rotation

speed of 2000 rpm.

Figure 6.4 presents the magnitude of simulated normal force N, and the contact angle

B, without and with air drag as functions of the rotation speed of a bristle in the duct.
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Fig. 6.4. (a) The magnitude of simulated normal force N, [N] and (b) contact angle

B, [°] without and with air drag as functions of the rotation speed » [rpm] in the duct.

Air drag decreases both the magnitude of normal force and the contact angle. Due to
air drag, the magnitude of the normal force decreases 10% and 23% at the rotation
speeds of 1000 rpm and 2000 rpm, respectively. Without air drag the contact angle
increases in the range of 0-3000 rpm. As expected, the contact angle decreases due to

air drag when rotation speed increases.

The bending moment in a bristle at the origin evaluated from the deformed shape is

—EId6(0)/ds . Taking into account the sign conventions used, the torque from the

brush (number of the bristles 7 ) evaluated from this is thus [3]

do
T, = nEJa(o). (6.1)
The torque from a brush due to air drag is evaluated from [3]
L
T, = nJ.q(s')r(s')cos y(s')ds' . (6.2)
0

The integral was calculated by approximating the integrand by Lagrangian

interpolation with four interpolation points s, =0, s, = L/3, s, =2L/3 and s, = L.

Figure 6.5 presents the magnitude of the simulated torques 7}, (Eq. (6.1)) and the

torque 7., from a brush due to friction (5.14) and air drag (Eq. (6.2)) from

T

pads

= unNR + njq(s')r(s')cos }/(s')ds' (6.3)

as functions of the rotation speed of the brush in the duct.
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Fig. 6.5. (a) The magnitude of simulated torque 7, [Nm] without and with air drag as

functions of the rotation speed n [rpm]. (b) The magnitude of simulated torque T,

[Nm] without and with air drag as functions of the rotation speed » [rpm].

The torques T, and T, increase roughly quadratically in the interval of 0-3000 rpm

and are roughly the same magnitude (with ¢ =1) when the rotation speed is below
1000 rpm (difference below 13%). After this, the difference increases quickly as a
function of the rotation speed of the bristle. Without discretization errors the torques

T,, and T

pads

should be in theory equal here. The values of 7, are probably much

ads

more reliable as they are integrated quantities. 7, gives a local result, which is

sensitive to small changes in the value of the parameter c,. Reference [3] presents in
more detail the dependence on air drag.
6.3 Results of laboratory test

6.3.1 Deflection of bristle

Figure 6.6 shows the deflection of the bristle pair and the brush with the rotation
speeds of 0 rpm, 500 rpm and 1000 rpm (clockwise direction) in the duct.
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Fig. 6.6. Deflected form of the bristle (a) bristle rotation speed »n=0rpm, (c)
n=500 rpm and (e) »=1000 rpm in the duct with contact. Deflected form of the brush
(b) brush rotation speed #n=0 rpm, (d) »=500 rpm and (f) »=1000 rpm in the duct with

contact.

The deflection of the bristle pair is quite similar to that obtained by the simulation with
n=0rpm and n =1000rpm. At a rotation speed of n =500 rpm the bristle pair was
found not to remain in the plane assumed in the simulation and therefore the deflection
of the bristle pair seen in the photograph is low compared to that obtained by the

simulation. The deflections of bristles of the brush are difficult to estimate accurately
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because the bristles were connected asymmetrically on a spiral frame made of metal

wire (Figure 6.6 (b)).

Figures 6.7 (a) and (b) give the measurement results for force P (transducer 4),

Figures (c) and (d) for force B (transducer 1) and Figures (e) and (f) for force E

(transducers 2 and 3) as functions of the rotation speed, when the brush is in contact

with the duct.
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Fig. 6.7. The magnitude of forces P [N], B [N] and £ [N] as functions of the rotation

speed n [rpm].

The behaviour of force E with respect to rotation direction is qualitatively in

accordance with the theory. From Eq. (5.23), the friction coefficient has to be higher
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than 0.64 if £ becomes negative when the brush is rotated in the counterclockwise
direction (Figure 6.8 (e)). For low magnitudes of n, there is quite a large difference in
the magnitudes of force B with respect to the rotation direction; in theory the

magnitudes should be equal.

With regard to the figures presenting experimental results in general we may note the
following. The counterclockwise rotation direction is again considered positive with
respect to the rotation speed n. No values are given when the magnitude of n is
under 200 rpm as the measured data may be considered rather unreliable with the
corresponding small forces. The oscillations in the data are mainly due to the
unavoidable vibration generated in the test system. For most quantities presented here
the magnitudes should in theory be equal for a given magnitude of n in the
counterclockwise and clockwise directions. In practice, the brush has some directional
bias due to its construction (see Figure 6.6 (b)). Further, the bristle tips wear out on

contact and may also show directional asymmetry, etc.

6.3.2 Magnitude of normal force

Figure 6.8 presents the bristle tip normal force N evaluated from measured data by

Egs. (5.29) and (5.36) as well as the simulated results N without and with air drag as

functions of the rotation speed.
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Fig. 6.8. The measured N [N] and simulated normal force N, [N] without and with

air drag as functions of the rotation speed n [rpm].

The increment of the experimental and simulated values are roughly of the same order

with ¢=0 (no air drag) at rotation speeds of 500—1000 rpm. There is quite a
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difference in the experimental results with respect to the rotation direction and it is
difficult to judge which results are more reliable. It may be noticed that already the
seeming well-controlled cases with results in Table 5.1 showed errors between the
calculated and the measured values. Additionally, the possible deviations of the
bristles from the plane (see Figure 5.1) assumed in the simulation may explain the

somewhat lower values obtained in the experiment.
6.3.3 Magnitude of torque
Figures 6.9 (a) and (b) present torque 7, due to friction from the brush obtained from

the measuring results (Eq. (5.15)) and from the simulation, 7, (Eq. (5.14)) evaluated

as functions of rotation speed.
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Fig. 6.9. The measured torque 7, [Nm] and simulated torque 7, [Nm] without and

with air drag (included through N') as functions of the rotation speed » [rpm].

The magnitude of the torque 7, from measured data and simulated values 7, differ.

However, the "slopes" of measured and simulated curves with ¢ =0 seem to be rather
close to each other. The possible explanations for the difference between the calculated

and the measured values are the same as in the previous Chapter (6.3.2).

6.3.4 Friction coefficient

Figure 6.10 presents friction coefficient x evaluated by Eqgs. (5.30) and (5.37) as

functions of the rotation speed.
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Fig. 6.10. The friction coefficient x [—] as function of the rotation speed n [rpm].

The reason for low values for g obtained for low rotation speeds in the clockwise
direction may be arise from the inconsistent behaviour of force B, which was
discussed in connection with Figure 6.7. In any case, the average values (roughly 0.7
and 0.65) are clearly higher than those (roughly 0.5) obtained for nylon in [14] with a
different test arrangement. Because of the high friction coefficient, the tips of the
bristle pair were worn rapidly when the rotation speed was higher than 2000 rpm.

Based on the results in Figure 6.10, we have used the value x# = 0.7 in the simulations.

Furthermore, the maximum rotation speed achieved was approximately 1200 rpm with
an electrical motor that has a power of 0.25 kW [12] and also with a motor that has a
power of 0.55 kW. When friction between the bristle tip and the duct surface was
decreased artificially with a mixture of water and a detergent, the rotation speed of the

brush achieved a value of 2500 rpm.

6.4 Summary of the results

Table 6.1 summarizes the dependence of the normal force N and the contact angle f
as a function of the dimensionless numbers 7,, 7, and =x,. The values of
7, = pAL'@* [EI =154, 7, =L/R=1.1 and 7, = #1=0.5 were used for the rest of

the quantities, except for the parameters in question which were varied to observe their
effect on the results. The percentage changes are referred to the values obtained by the
lower values of the three parameters. Reference [2] presents the dependence of the

normal force and the contact angle on n, R, d, E, L/R and u.
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Table 6.1. Dependence of normal force and contact angle on various parameters

Dimensionless Normal force N Contact angle S

number (range) influence  difference [%] influence  difference [%]
7, = pAL'w* [EI + 4+ 916 + 40
(7,=0-500)

7,=L/R + 45 +++ 145
(7,=1.05-1.3)

Ty= U -— -67 - -21
(7,=0.1-0.9)

—/+= negative/positive dependence (5%< difference <50%)
— —/+ +=strong negative/positive dependence (50%< difference <100%)
— — —/+ + +=very strong negative/positive dependence (difference >100%)

Table 6.2 summarizes the results for the normal force N and torque 7 at rotation

speeds of 500 rpm and 1000 rpm obtained from the simulation (7, from Eq. (5.14))

and the experimental test (N from Egs. (5.29) and (5.36) and 7, from Eq. (5.15)),

respectively.

Table 6.2. Magnitude of simulated and measured normal force and torque

Simulated and experimental

Normal force N [N]

Torque T [Nm]

results (c=0) (c=1) (c=0) (c=1)
Simulation

Rotation speed n = 500 rpm 0.0197 0.0191 2.184 2.119
Rotation speed n =1000 rpm 0.0328 0.0295 3.623 3.248
Experimental test

Counterclockwise direction

Rotation speed n =500 rpm* 0.0168 0.669
Rotation speed 7 =1000 rpm " 0.0280 2.095
Clockwise direction

Rotation speed 7 =500 rpm * 0.0082 -0.758
Rotation speed 7 = 1000 rpm ° 0.0190 -2.521

* mean value of n = 400 — 600 rpm

® mean value of 7 = 900 —1100 rpm
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7 DISCUSSION

The authors assumed that the normal force N and the contact angle £ were the most
important parameters associated with a bristle in removing dust on the duct surface. As
is mentioned in Chapter 1, theoretical and experimental work is needed to clarify the
roles of N and £ in the cleaning process. Figure 7.1 presents a possible schematic

experimental arrangement for a laboratory test to determine the cleaning efficiency of

a bristle with a given N and £ [15].

1 °° N

/] AN

/| N 4

/] N\ . v

/ N .

1 olo N ﬁ/

VAV AN /S S/
+— +—
(a) \4 (b) \Y%

Fig. 7.1. (a) Experimental arrangement to determine the cleaning efficiency of a

bristle. (b) Bristle tip.

The experimental arrangement consists of a long spring with an adjustable upper end
position to fix the contact force N, a bristle holder tube suspended to the spring,
bearings with low friction to guide the movement of the bristle holder up and down,
and a moving surface. In the test, the bristle tip contacts to the surface which moves at
the speed of v. The bristle tip contact angle is adjusted by changing the free length of
the bristle between the end of the holder and the surface. The cleaning efficiency is
evaluated following in the bristle tip track on the surface. To make sure that the test

can be repeated, the surface should be artificially contaminated.
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It is obvious that without a centralizing device the rotation centre of the brush cannot
situate exactly at the centre of the duct. Some eccentricity is needed for the contact
forces of the brush to produce an upwards directed resultant to give equilibrium with
gravity. If the rotation centre of the brush remains roughly stationary, each brush
obtains a periodic motion in the rotating coordinate system. To study this with
reasonable accuracy would demand a much greater effort than has been employed in
this article. It should be further mentioned that taking the gravity of an individual
bristle into account, even in the case of no eccentricity, leads in fact to a periodic
response as the direction of the gravity in the rotating coordinate system depends on

the orientation of the coordinate system.

The approximation used in the simulation of the rotating bristle problem is rather
crude. Higher order Lagrangian interpolation functions could be used. However, it is
well-known that these start to behave badly at the ends of the interval, therefore it
appears to be unwise to go higher than n=4 [16]. An alternative to the use of
Lagrangian interpolation is just to employ, say, Simpson's integration rule in a double
fashion. Then the number of integration points can be selected to be as large as is
required without any danger of ill-behaviour. This alternative is described in [11]. It
was found that with practical data the results obtained by using the present approach
and by the approach using Simpson's rule were rather close. Here we have tried to
keep the formulation as close as possible to an analytical approach and have relied on

the Lagrange interpolation method.
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8 CONCLUSION

An improved simple model was used to evaluate the magnitude of the normal force N
and the contact angle [ of the rotating bristle tip on the duct surface. The
dimensionless formulation was employed to simplify the dependencies between the
various parameters and to make the brush cleaning design process as systematic as
possible. The magnitude of the dimensionless normal force N increases roughly
linearly with the dimensionless number 7, at a practical rotation speed. With higher
dimensionless number values of 7, the bristle "has to bend more to fit in the duct" and

the contact angle increases. Increasing the dimensionless number 7, decreases the

dimensionless normal force. The experimental results obtained in general give some
confidence in the validity of the proposed simulation model to the extent that it can be
used in analysing and comparing different brush designs. In conclusion, the developed
simple simulation model combined with such programs as Mathcad software seems to

be a useful tool in cleaning brush design work.
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APPENDIX

The discrete field equation at the collocation point s, (Eq. (3.22)):
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The boundary condition at the bristle tip (Eq. (3.24)):
g(Cl1,C2,C3,C4,C5,C6) :=Cl1 + 2.C2L + 3'C3'L2 + 4'C4‘L3 + S'CS‘L4 + 6‘C6~L5

The geometrical condition at the bristle tip with coordinates x(L) and y(L) on the duct
surface (Eq. (3.25)):

- 2
3 2 2 3
h(C1,C2,C3,C4,C5,C6) = _?IL-(QL — 2Ll 222‘L ‘L_S‘L)<cos(c1-0+ 20+ C30% + cadt + C50° + co0f) .
L
3.2 (9~L2 -20LL+ 12»L2) L) L\ L\ L\ L\ L\
+—L . ————cos Cl( + C2( +C3( + C4[ + CS( + C(r(
8 3 3) 3) 3) 3) ) 3)
2 2 2 3 4
+;3,L2.MW{CL(LL\m(&\ e +C5(2'L\ +C6(_L\}
8 3 3) 3) 3 ) 3) 3 ) 3 )
(9L—12LL+4L) ( )
-—-cos CI-L+ C2L + C3L —+ C4L + CSL + C6L
L 8 L3 .
[ (9~L3—24-L~L2+22-L2-L—8-L3) P 3 4 5 6 T
B sinlcro+ 20+ c30% + cad® + c56° + co09) .
8 E
bl ed) o o oW el o H et
8 3 ) 3) 3) 3) 3) 3)
2 3 4
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8 3 3) 3 ) 3 ) 3) 3 ) 3 )
(9L—12LL+4L) ( )
8 -—3-sm CI-L+ C2L +C3L + C4—L + C5L + C6L
L L -

Discrete equations by collocation with four collocation points and by Lagrangian

interpolation with seven subintervals within a Mathcad solve block:

Giver
Eq. (3.22), s1=0: f(C1,C2,C3,C4,C5,C6,N,0) = (
{ gk
C1,C2,C3,C4,C5,C6,N, 0
Eq. (3.22), s9=L/4: 4)
{ )
C1,C2,C3,C4,C5,C6,N, =0
Eq. (3.22), s3=L/2: 2)

3L
C1,C2,C3,C4,C5,C6,N,— ' =0

Eq. (3.22), s4=3L/4: 4 )
Eq. (3.22), s5=L: f(C1,€2,C3,C4,C5,C6,N,L) = ¢
Eq. (3.24): g(C1,C2,C3,C4,C5,C6) = C
Eq. (3.25): h(C1,C2,C3,C4,C5,C6) = R

The solution is found by following the Find command in the Mathcad program:
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c1)

C2

c3

C4 | :=Find(C1,C2,C3,C4,C5,C6,N)
cs

C6

N

The full Mathcad code for the bristle of a rotating cleaning brush described above is

presented on the Civil and Mechanical Engineering web site [9].
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