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Abstract

Various electromagnetic wave-guiding and resonating structures are
studied. The structures in question are rather complicated and thus, sig-
nificant part of the used analysis methods are numerical. Numerical field
computation is based on finite-difference method (FD) or on finite-difference
time-domain method (FDTD). When possible, analytical methods have been
used, often in conjunction with numerical computation. Most of the struc-
tures, if not all, find real-life applications. Thus, the focus has been much on
such issues as fluency of structure design and quickness of analysis.

Firstly, combline-filter structures are investigated. These components are
widely used in mobile communication devices, in radio-frequency and mi-
crowave regime, for example. A semianalytic analysis method, which is based
on multiconductor-transmission-line theory and 2-D numerical field compu-
tation via FD method, is found very efficient. Computationally costly 3-D
numerical field computation is avoided. This speeds up the design process of
combline filters.

Secondly, so-called hard-surface-waveguide components are analytically
studied. When approximating the longitudinally corrugated waveguide wall
with an ideal hard surface, one can concentrate on the effects caused by the
media inside the tube. First waveguide component is filled with uniaxial
anisotropic medium. For this structure, which can be used as a polarisation
transformer, analytical solutions are found for transmitted and reflected field,
and especially for the helicity of the transmitted field. Second waveguide
component is filled with gyrotropic medium, which is electrically controllable
ferrite in this case. This component can be used as a mode transformer, for
example, from TM to TE mode. Analytical solutions are found for reflected
and transmitted fields.

Finally, wave-guiding structures based on photonic-bandgap (PBG) ma-
terial are studied. This kind of periodically inhomogeneous material is also
known as photonic crystal (PhC), having the ability to inhibit the propa-
gation of electromagnetic wave inside the crystal. Carefully designed PBG
components may find several applications, for example, in the integrated op-
tics. In this thesis, the focus has been on PBG material based on triangular
lattice of air holes etched through dielectric background. Further, waveguide
bends have been of special interest, partly because they give a chance of re-
alising tight light-channel bends for integrated optics. Various issues related
to FDTD analysis and design of PBG structures are discussed. The impor-
tance of PBG-component optimisation is demonstrated. Promising results
are obtained for extremely tight bends, although radiation losses in real 3-D
structures are recognized as a problem. Some basic components, 60 and 120
degree waveguide bends, and a taper, have been designed.
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1 Introduction

It is known that the behaviour of electromagnetic fields is governed by Maxwell’s
equations

∇× E = −∂B

∂t
(1)

∇×H =
∂D

∂t
+ J (2)

∇ ·D = % (3)

∇ ·B = 0 (4)

where the electric field E, magnetic field H, electric flux density D, and magnetic
flux density B all depend on time and location. The field sources are current density
J and charge density %. The macroscopic model for the medium can be presented
by the so-called constitutive relations. If the medium does not couple the electric
and magnetic fields, e.g. via chirality [4], the constitutive relations are

D = ε · E (5)

B = µ ·H (6)

where ε is the permittivity and µ is the permeability. All the media within this thesis
are such that (5) and (6) are adequate. In some cases the medium is isotropic, i.e., the
dyadics ε and µ can be replaced by scalars ε and µ. In some cases material parameters
depend on frequency. In every studied case the medium is inhomogeneous, i.e., the
material parameters depend on the location in space.

Maxwell’s equations predict that electromagnetic waves exist. If inhomogeneous
material is somehow - naturally or artificially - regularly arranged, an EM wave can
be guided along a certain route. For example, an EM wave can travel along the
Earths curved surface, or along a curved plastic rod, or along a coiled TV cable
that lies around the floor. If a structure becomes fairly isolated from the outside
world, with certain frequencies the structure may become a resonator: in resonance
its ability to collect EM energy is remarkably increased. One natural resonator is
the Earth with its ionosphere, i.e., the resonator is between two well-conductive
spherical surfaces 1. On the other hand, one artificial resonator is a metal box.
Our current civilisation is highly based on artificial wave-guiding structures such
as power lines, coaxial cables, and optical fibers. Thus, obviously, research and
design of electromagnetic wave-guiding and resonating components has become an
important field in modern engineering.

Although nowadays numerical analysis of electromagnetic problems becomes
more and more powerful, due to the computer development, analytical treatment
and closed-form formulas have their important benefits. Closed-form formulas and
symbolic computation give a lot of information in a compact, human-readable form.
Analytical solutions can be used to check whether a numerical algorithm works or
not. If modelling a very complex system, e.g. a microwave circuit, brute-force nu-
merical field computation is probably ineffective. Known analytical solutions can be

1So-called Schumann resonances can be observed in the noise spectrum of the atmosphere. The
lowest observed frequency is about 8 Hz with Q value less than 10 [5, pp.272-274].

5



used with numerics so that the computation cost is remarkably reduced. Fundamen-
tal analytical solutions can be found from e.g. [5], [6], [7], and [8]. Each one of these
books discusses of electromagnetic theory, waveguides, and resonators. Dielectric
waveguides are considered in e.g. [9] and [10].

Numerical field computation has its benefits, too. Very complicated geometries,
having inhomogeneous medium, can be studied. A confirmed numerical algorithm
can be used to check whether an analytical solution works or not. There is also some
educational benefit. For example, if one is using a computer program in dynamic
electromagnetic field simulation with a graphical output, one is able to see physical
phenomena that can not be seen in reality (but that exist). This may grow the
intuitive comprehension of EM field behaviour. Sensibly utilised intuition may e.g.
help guessing a usable approximative solution or semianalytic model. One problem
with brute-force numerical computation is that it can produce a huge amount of data.
Picking up, processing, and storing the relevant information can be cumbersome.
Setting up a ”virtual measurement laboratory” can take a long time.

In this thesis the focus is on certain wave-guiding and resonating electromagnetic
structures. The studying methods are partly numerical and partly analytical. The
treatment in many cases could be classified as application oriented. In section 2 the
studied structures are introduced. After that, in section 3, EM structure modelling
issues are considered. Summary of publications is given in section 4.

2 On the structures under study

2.1 Combline-filter devices

Schematic Figure 1 illuminates a combline-filter structure. The filter operation is es-

block
ceramic z=0

open end
substrate

plate

short−circuited end

x

y

z=Lf

Figure 1: Schematic illustration of a combline filter. Three cylindrical conductors
are inside a conductive box, whose one end is left open (not metallised). Inside
the box the medium is inhomogeneous. At the short-circuited end z = 0, the inner
conductors are connected to the conductive box, i.e., to the outer conductor. By the
open end, input and output pads (microstrips) are shown. This structure resembles
a ceramic combline filter. In practice, εceramic >> εsubstrate.

sentially based on quasi-TEM-mode λ/4 resonances (standing waves in z-direction)
and thus, crucial physical parameters are the length of the conductors Lf and the
medium parameters ε and µ. Abbreviation TEM stands for transverse electromag-
netic, i.e., in this case field vectors are mainly in xy-plane. In the shown structure
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material is inhomogeneous, i.e., ε and µ are not constant. In practice though, tradi-
tionally µ has been µ0 = 4π · 10−7 Vs/Am.

Combline filters are often used in mobile communication devices. In a cellular
phone, a so-called duplexer component that is handling received and transmitted sig-
nal, can be realised using combline filters. Using high-permittivity material as the
medium surrounding the inner conductors, shrinks the wavelength, and thus makes
the filter component small 2. There exist low-loss high-permittivity ceramic mate-
rials. Thus, ceramic combline filters have been widely used in handsets. In short, a
ceramic filter can be roughly thought as a λ/4 long multiconductor-transmission-line
(MTL) resonator, whose one end has been short-circuited. In a real filter compo-
nent, combined with this MTL resonator structure, also some microstrip elements
are used, such as input/output pads and strip lines to control the filter response.
These elements lie on the substrate plate, which is situated under the ceramic block
(Figure 1). Often in a real duplexer component, the receiving and transmitting fil-
ter, both connected to the antenna, are situated side by side in the same ceramic
block. The receiving and transmitting filters have a bit different length, because
their pass bands must be centered at different frequencies.

In base-station use, the combline filters are often air-filled, and thus, their phys-
ical size and power-handling capacity is substantially higher compared to ceramic
filters. Also in these components, the pure combline structure is enhanced by some
additional parts. For example, tuning screws are used at the open end, to control
the fringing-field load capacitances, which affect the filter response.

Combline filters have been widely used in personal radio communication devices
(walkie-talkies, mobile phones). The frequency range of use has traditionally been
in the RF and lower microwave regime, i.e., within UHF where f = 300−3000 MHz
[11], [10]. Within this frequency range the quasi-TEM-mode conductor losses are
still acceptable, if good conductive material is used, such as silver or copper 3. If
the conductors are poor or the frequency is too high, loss power becomes too high.
In that case the quality factor Q of the resonator filter decreases, and in general, a
significant part of the inputted electrical power transforms to heat.

Considering this thesis, in paper [P1] combline-filter structures have been studied.
The basic assumption has been that the frequency is low enough in order to allow
only the propagation of quasi-TEM modes [12]. Thus, the used method has a better
chance to work, if the frequency range of analysis is below the cut-off frequencies of
the higher modes. For example, if the radii of the inner conductors shrink to zero,
the cut-off frequency of the first higher mode (TEz10) is

fc10 =
c0

2wf
√

εr

, (7)

where wf is the filter width in x-direction, c0 is the speed of light in vacuum, and
material is assumed homogeneous with relative permittivity εr. With nonzero radii of
the inner conductors, the filter box becomes effectively smaller, fortunately, causing
the higher mode fc to increase from the value given by (7). In paper [P1], the
numerical example was computed for a structure with wf = 5 mm, ceramic block
having εr = 82.3 and substrate εr = 3.5. Simply assuming the material entirely

2This is probably one of the reasons why the cellular phones are so small nowadays.
3It is known that TEM-mode conductor loss power depends on the factor

√
f/σ [5],[6].
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ceramic (thin substrate), from (7) one gets fc = 3.3 GHz. The message is that a
mode resembling TEz10 can not propagate in the example case within the frequency
range of analysis. With certain real ceramic-filter structures wf might get too high,
in which case the method, at least theoretically, becomes a bit suspicious. With
these kind of “wide structures”, the obtained filter response may lack some features
that should exist.

Assuming that only quasi-TEM modes propagate, a MTL model has been used.
Utilising MTL model requires solving the phase velocities vi for each quasi-TEM
mode, i = 1...n, where n is the number of inner conductors. Propagation factors
are βi = ω/vi. Also, the voltage eigenvectors V i and current eigenvectors I i on the
conductors must be solved, for each mode. The quantities vi, V i, and I i, i = 1...n,

can be solved, if the capacitance matrix C and inductance matrix L are known for

the MTL cross-sectional geometry. These matrices, C and L, have been computed
numerically via solving potential distributions by finite-difference method (see Sec-
tion 3.3). Paper [P1] also discusses computation of mode attenuation factors αi and
computation of MTL discontinuity fringing-field capacitances 4. By including αi’s
and some extra discontinuity capacitances into the circuit model, one could expect
to obtain a more accurate model. However, firstly, extraction of these parameters
requires additional numerical computation. Secondly, these parameters are not as

relevant as C and L. Thus in practice, with ceramic filters, it may be sensible to

limit the numerical parameter extraction to C and L computation.
Let us shortly concentrate on the filter structure shown in paper [P1], Figure 3,

and consider some principles how the filter response is determined. If neglecting
parasitic effects, such as the open-end capacitances, the lowest pass band is situ-
ated around the quasi-TEM-mode resonance frequencies. In this case there is two
cylindrical conductors symmetrically situated, i.e., the propagation modes are even
and odd. Even-mode voltages are similar to (1 1) V, and odd-mode voltages are
similar to (1 -1) V. The inhomogeneous medium causes that βeven 6= βodd. With the
ceramic filter considered here, βodd > βeven, because odd-mode field experiences a
higher effective permittivity, εodd > εeven. The pass band is around λ/4 resonances,
which are now

fodd =
c0

4Lf
√

εr,odd

, feven =
c0

4Lf
√

εr,even

. (8)

If the distance between the conductors is increased, or, if the contrast between the
medium permittivities is decreased, the effective permittivities εodd and εeven get
closer to each other. Thus, also β’s and resonances become closer to each other.

If the resonator is almost lossless and the connection to the outside world is weak,
the quality factor Q of the structure is high. Thus, the resonance peaks are narrow.
In this case, in the filter response |S21(f)|, there is no proper pass band. Instead of
a flat pass band, one observes twin peaks, caused by the two resonances. Increasing
the coupling to the outside world makes the peaks wider and flattens the pass band.
The coupling can be affected by the metal strips on the substrate (input-output

4The author has written C programs for αi computation and for solving a fringing-field capac-
itance network. Both programs are partly based on finite-difference method (FD). Computation
of fringing-field capacitances cf

ij requires 3-D FD. Thus, computing cf
ij can be relatively time-

consuming.
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pads). If keeping other dimensions constant, increasing the strip length makes the
coupling stronger. It is easy to understand, via a capacitance model, that making
the strips e.g. very short, dramatically drops the coupling.

Real ceramic-filter structures usually have more than two cylindrical conductors.
For example, with five conductors there is five quasi-TEM modes and thus, five
quasi-TEM resonances, which affect the filter response. In practice, the microstrip
configuration on the substrate causes that the structure is not uniform in z-direction.
To some extent, this can be taken into account by cascading MTL’s, each MTL
corresponding to a bit different cross-sectional geometry. Of course, the usability
of the MTL-based model is higher with highly-uniform structures (e.g. only two or
three MTL’s cascaded), and with low frequencies.

2.2 Hard-surface-waveguide components

In the microwave regime, roughly around f = 1 − 30 GHz, metal-tube waveguides
become suitable, especially when high electromagnetic power must be transferred.
Also, considering electromagnetic compatibility, these kind of closed structures are
convenient: metal-tube waveguides do not radiate power sidewards, and also, the
field is zero outside the tube walls 5. Of course, an open end of a metal tube can
radiate, i.e., act as an aperture antenna.

In some applications, such as reflector-antenna horn feeds, the inner flat metal
wall of the waveguide is replaced by a corrugated metal surface (Figure 2). For

hg

l

t

nwave propagation wave propagation

s
w g

conductor

transversal corrugation
longitudinal corrugation

Figure 2: Corrugated surface. Axes n, l, and t stand for normal, longitudinal, and
transversal directions, respectively.

example, with a transversely corrugated circular horn antenna it is possible to obtain
an aperture field of type E ∝ J0(Kρ)ux, where J0 is the Bessel function of first
kind, K is the transverse wavenumber, and the symbol ∝ denotes “proportional to”.
So - in ideal case the electric field lines are straight in the aperture (ux) and the
field strength is circularly symmetric (no ϕ dependency). Thus, in practice, very
low cross-polarisation in radiated field is obtained and also the radiation pattern is
circularly symmetric [13, pp.7 – 9].

A corrugated surface is made up of parallel grooves, separated by metal walls.
The boundary condition is applied at the surface that lies on the wall tops, i.e., at

5For comparison, if a dielectric slab is used as a non-radiating waveguide, the field does spread
outside the structure.
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n = 0. Let kn be the wavenumber in depth direction inside the groove. If the depth
of the grooves hg is such that knhg = π/2 and the corrugation is dense enough, the
boundary conditions for electric field are approximately [14]

Et = 0, En = 0 (transversal corrugation) (9)

∂Et

∂n
= 0,

∂En

∂n
= 0 (longitudinal corrugation) (10)

These approximations hold better the smaller the period wg + s is compared to
the wavelength λ. It has been defined so that transversal corrugation implies soft
surface (SS) and longitudinal corrugation implies hard surface (HS). The background
of these definitions is in acoustics 6.

The boundary condition depends on the electrical depth knhg of the grooves,
making the boundary frequency dependent. For example, with hard surface, for
transverse electric field inside the groove one can write

Et ∝ sin[kn(n + hg)]e
−jβl, (11)

assuming that wave propagates in +l-direction. Condition knhg = π/2 stands for
λ/4 resonance: at n = −hg Et = 0, and at n = 0 Et has its maximum i.e. ∂Et

∂n
= 0.

In order to decrease the physical groove depth, usually the groove is filled with
dielectric material having µ = µ0, ε = εg. Further, the higher the permittivity εg is,
the less kn =

√
ω2µ0εg − β2 depends on the propagation factor β in the waveguide.

In this thesis, circular hard-surface waveguides filled with different media have
been studied. In paper [P2] uniaxially anisotropic dielectric is used, and in papers
[P3] and [P4] electrically controllable ferrite is used. The λ/4 resonance condition
has been assumed, i.e., corrugation implies hard surface. Thus, for longitudinal
electric and magnetic field it holds:

El = 0, Hl = 0 on the HS boundary. (12)

This convenient boundary condition is appropriate, if the frequency f is such that
knhg ≈ π/2, and the corrugation is dense (wg + s << λ). If f is somewhat deviated
from the resonance, assumption El = 0 is still acceptable, but assumption Hl = 0 is
not, because boundary condition for Hl depends on the electrical depth knhg, i.e.,
in the groove

Hl ∝ cos[kn(n + hg)]e
−jβl. (13)

So - if f is out of the λ/4 resonance, condition (12) does not hold exactly. Never-
theless, pure TE and TM modes can still propagate [15, pp. 183 – 185], even if the
field has ϕ dependency. But, because the out-of-resonance boundary condition is
something like El ≈ 0, Hl 6= 0, TM and TE field can not have exactly same (ρ, ϕ)
dependency.

6In acoustics, on soft surface, the sound pressure p = 0. On hard surface the normal derivative
dp/dn = 0. Thus, associating p with electric field components Et and En, one can talk about
electromagnetic soft and hard surface. The condition for the longitudinal field component is not
as relevant, if considering power propagation along the surface.
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Using simple boundary condition (12) in the analysis, one can effectively concen-
trate on the effects of the medium inside the HS waveguide. Hard-surface waveguide
filled with anisotropic dielectric material was studied in [P2]. Anisotropic waveguide
section between isotropic sections can be used as a polarisation transformer. E.g,
the polarisation state of the field can be changed from linear close to circular. The
device operation is based on different propagation constants of TM and TE mode
fields, i.e., on the phase-shift difference (βTM − βTE)d, where d is the length of the
anisotropic waveguide. For example, if in the incident field TM and TE components
oscillate in the same phase, the field is linearly polarised. If after the anisotropic
section the phase-shift difference is 90◦, the TM and TE components oscillate so
that the resultant field is elliptically polarised. Obviously, the polarisation trans-
formation requires that the incident field is hybrid, i.e., containing TM and TE
part.

In papers [P3] and [P4] hard-surface waveguide filled with ferrite was studied.
Ferrite is electrically controllable gyrotropic medium, i.e., the medium properties
can be changed by electric current. For example, the ferrite rod can be put inside
a current coil. Gyrotropic waveguide section between isotropic sections works as a
mode converter, e.g., from TM to TE field. The orientation of the E and H fields
is changed as the wave propagates along the gyrotropic WG (waveguide). Mode
conversion results from the fact that instead of TM and TE, the eigenfields in the
gyrotropic waveguide are hybrid mode fields, named as plus and minus fields. With
nonzero gyrotropy parameter µg, β+ 6= β−. The phase-shift difference (β− − β+)d
causes the mode conversion.

2.3 PBG-waveguide components

Photonic-band-gap (PBG) material, or photonic crystal, is periodically inhomoge-
neous material, which prevents propagation of electromagnetic waves in the band-
gap frequency range (stop band). Thus, properly fabricated PBG material can be
used as frequency-selective reflective medium. Potential applications are highly effi-
cient optical lasers and sharp bends in optical waveguides, for example. No metal is
needed to obtain total reflection. In some cases this might make a component cheap
and lightweight. So, considering total reflection, purely dielectric material may be
sufficient, as long as the material is periodic, i.e., forming a regular lattice. Two
example lattices are shown in Figure 3. A physical implementation could be e.g. a
silicon plate having vertically etched holes.

The word “photonic” is a bit misleading, because PBG’s can be utilised in all
frequency ranges. Thus, quite often an abbreviation EBG (Electromagnetic Band
Gap) has been adopted. The frequency range of stop-band operation essentially
depends on the lattice constant a, the distance between the lattice elements. For
example, with optical frequencies the lattice constant has to be roughly around
0.1–1 µm, and with f ≈ 1 GHz a is around 3–30 cm. The exact frequency range
of PBG operation depends on many other physical parameters, too, such as media
parameters, lattice type, and lattice element geometry. In [16] so-called gap maps are
given for certain lattices. From a gap map one can see how the stop-band locations
and widths depend on certain lattice parameters, such as d/a or dielectric contrast.
Briefly, a PBG waveguide can be realised by making a linear lattice defect in the
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Figure 3: Examples of 2-D PBG lattices. 2-D refers to two-dimensional and means
that the structure is assumed uniform in z-direction. If frequency is within the band
gap, the wave can not propagate in the lattice in xy-plane.

PBG material. When the regular lattice consists of air holes, linear defect means
that holes are not processed along a line (Figure 4). If only one hole is missing, it is

z

field excitation
plane

observation
plane O1 O2y

x

y2

x1 x2

air hole a

d

y1

width   w
waveguide

Figure 4: Straight PBG waveguide with some notations. If the excitation field
distribution and frequency are properly chosen, the field starts to propagate from
the excitation plane, along the waveguide in x-direction, towards the observation
planes O1 and O2.

often called as a point defect. A point defect may act as a micro-cavity resonator,
for example.

Of course, a real PBG waveguide (PBG-WG) has a 3-D geometry. Figure 5
shows an example of a PBG-WG cross-section. The thickness of the PBG plate
affects on the amount of radiation losses and on the effective refraction index neff

seen by the wave (propagating now in x-direction). If the thickness grows, radiation
is reduced and also, neff becomes less dependent on the material above and below
the plate (SiO2). So, for example - the thicker the PBG plate is, the better a 2-D
computation model works (no z dependency).

Next, a short overview is presented about potential PBG applications. In mi-
crowave and millimeter wave regime patch antennas have become popular, because
they are relatively easy to manufacture and cheap. But because of the substrate
surface waves, which can be considered as a loss mechanism, the antenna radiation
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Figure 5: A cross-section of a PBG-WG. The waveguide is formed along the x-axis,
i.e., the field is meant to propagate in x-direction. With a proper excitation, the
field will be mostly concentrated in the PBG-plate region, especially in the Si region
in the middle, and the radiation losses will be minimised. To be exact, proper
excitation means correct positioning and profile of the excitation field, correct time
dependency, and correct polarisation. The shown material layering resembles a so-
called SOI structure (silicon-on-insulator).

efficiency is degraded. PBG substrate can inhibit the surface waves and thus, in-
crease the radiation efficiency [17]. Another possible application is with microstrip
filters. By drilling holes into the ground plane so that the holes are centered un-
der the strip, one can obtain filters having high rejection values and high cut-off
sharpness. High rejection level, e.g. S21 < −60 dB, requires a large number of hole
periods along the microstrip line. A compact solution is proposed in [18], where the
microstrip line snakes on the PBG ground plane, instead of forming a (long) straight
line.

In optical and infrared regime, spontaneous emission is degrading the perfor-
mance of semiconductor lasers and LEDs. Spontaneous emission, which is usually
unwanted radiative recombination of electrons and holes, can be inhibited if the
photons can not propagate away from their place of birth. Properly designed PBG
structure may stop the photons and increases the efficiency of semiconductor lasers
[19].

If considering high-rate and long-link optical communications, photonic-crystal
fibers (PCF) or photonic-bandgap fibers (PBGF) may have some useful features. In
these structures a lateral PBG is implemented by periodic cladding [20]. Because the
operation of these fibers is not based on total internal reflection, the core permittivity
can be smaller than the cladding permittivity. Further, because of the quasi-metal
boundary, a truly monomode optical fiber may be obtained, i.e., higher modes are
cut off in a similar way as in a metal-tube waveguide.

Traditional dielectric waveguides or fiber-optic cables rely on total internal re-
flection (TIR). However, if a bend in a light-guiding structure is too tight, TIR does
not work and consequently, light escapes from the guide. For example, making a
90◦ bend in a traditional dielectric waveguide, causes that only 30 % of the incident
power is transmitted through the bend [21]. Tight bends become necessary in e.g.
integrated optics: miniaturisation of optoelectronic components and circuits requires
that low-loss tight waveguide bends can be fabricated. Forming a waveguide in a
PBG lattice may be the solution. It is possible to have a 90◦ or even a 120◦ bend
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so that roughly 100 percent of the power is transmitted through the bend (paper
[P5]). However, these promising computed results for PBG bends are obtained in
2-D case. Taking also the third dimension into account, i.e. allowing finite PBG-slab
thickness, involves upward and downward radiation losses. These losses reduce the
transmission. Thus, one future challenge in PBG research is to find solutions to
diminish out-of-plane radiation losses.

In sum, one major advantage of PBG is that via radiation control, many com-
ponents can be made more efficient and less lossy. Second major advantage is that
novel components for e.g. optical circuits may be designed.

Let us consider here shortly the nature of a PBG waveguide (Figure 4). For
simplicity, assume first an ideal 2-D structure, where the geometry and the fields do
not depend on z at all. Two cases are discussed. First, f is within the band gap,
and then, f is out of the band gap.

1. If f is within the band-gap range, wave can not propagate in the lattice, which
is surrounding the waveguide. Thus, power can not radiate away from the
waveguide, i.e., the structure is rather closed. Radiation is inhibited, whatever
the field distribution (mode) is inside the waveguide. For comparison, it is well
known that in a conventional dielectric WG, the amount of radiation loss does
depend on the field distribution. Thus, the PBG-WG structure is similar to a
metal tube waveguide. For example, if frequency is too low, under the cut-off
frequency of the mode in question, power can not propagate along the PBG
waveguide 7.

2. From Figure 6 of paper [P5] it is seen, how strongly the reflectivity of a PBG
wall depends on the frequency. A 15 % frequency drop might change the PBG-
WG wall reflectivity from 100 % close to zero. Now - if f is no longer within
the band gap, the waveguide becomes“open”and power can radiate away. The
amount of radiation loss depends on the field distribution of the propagating
wave. Also, the type of the lattice matters. If f is relatively low, the WG
shown in Figure 4 resembles a dielectric slab WG, where lossless propagation
is possible with certain modes, at least with the lowest mode. Low-loss propa-
gation is possible in this case, because along the WG the effective permittivity
is higher than in the surrounding lattice. However, if the PBG-WG was based
on a linear defect in a lattice of dielectric rods in air, the WG structure would
be very lossy. Namely, in that case, the effective permittivity in the WG would
be less than in the lattice surrounding the WG 8.

If the PBG-WG structure, e.g. the one shown in Figure 4, is such that the PBG plate
has finite thickness in z-direction, there will be upward and downward radiation loss
(out-of-xy-plane loss), i.e., <{Sz} 6= 0, where Sz is the z-component of the Poynting
vector. So, a real 3-D waveguide, based on a simple 2-D lattice, is not ideally closed

7This holds for a WG having infinite length. In a finite-length WG power can propagate, even
if f is below cut-off frequency. The shorter the WG, or, the closer f is to the fcut−off , the better
the power propagates.

8To be exact, the effective permittivity of the lattice depends on the field polarisation and is
thus a dyadic (or matrix).
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even if f is within the band gap 9. In general, the thinner the plate is, or, the stronger
the z dependency of the propagating field is, the more there will be radiation loss
in z-direction (paper [P5]). It is also known that increasing the hole size, e.g. from
d/a = 0.5 to d/a = 0.7, increases the out-of-plane losses [22]. Further, it is easy to
believe that the etch depth of the holes has an effect, too. Incompletely etched holes
cause higher losses than holes etched all the way through the PBG plate [23].

Now - let us see an example case that illuminates the nature of a PBG-WG bend.
For simplicity, a 2-D geometry is assumed. A 60◦ bend is formed in a triangular
lattice of air holes (Figure 6). Background medium has εr = 12.11, relative hole size
is d/a = 0.76. Thus, the TEz band gap takes effect between fa/c = 0.235...0.37
[24], where c is the speed of light in vacuum. Inside this band, there is a chance
to have a non-radiating PBG-WG for TEz polarisation, i.e., a functional PBG-
WG bend. At the bend, there is a small extra hole (d/a = 0.5), whose position
is varied in the direction of the shown arrow. This variation will affect the bend
transmission spectrum, as shown in Figure 6 (right), where two power-flow spectra
are shown. It is seen that seemingly small change in the position of the extra hole can
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Figure 6: Left: 60◦ bend with a small extra hole (a zoomed view). The distance
of the extra hole from the bigger hole is varied. Distance is measured between the
circle centres. The shown two small circles are in distances 0.4a and 0.5a from the
bigger hole. Right: Power-flow spectra, computed just after the bend. Changing
the distance from 0.4a to 0.5a alters the spectrum of transmitted power.

clearly change the power-transmission spectrum. Considering PBG-WG fabrication
for optical regime, this result suggests that good quality manufacturing process is
required at central locations of the structure. Fortunately in practice, it seems to
be so that the hole locations can be set very accurately (paper [P6]). But if there is
error in the effective hole size, due to non-uniform vertical etch profile, for example,

9But of course, it should be possible to design a 3-D PBG-WG having negligible radiation loss.
However, this may require adopting PBG reflector in all directions. Thus, the structure may be
difficult to manufacture, compared to silicon plate with a hole pattern.
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that might affect on the power transmission 10.
At the fixed frequency fa/c = 0.2945, the bend seems to have some switch-

like behaviour. Transmitted power depends strongly on the position of the extra
hole. One may ask, what can cause this behaviour. Figure 7 may give the answer.
Two Hz-field snapshots are shown. The left one corresponds to extra-hole distance
0.4a, and the right one to 0.5a. In both cases, the excitation has been by the
left edge of the structure, and, in both cases, the input signal has been a long
modulated Gaussian pulse, with modulation frequency fa/c = 0.2945. Figure 7
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Figure 7: Hz-field snapshots. Extra-hole distance is 0.4a (left) and 0.5a (right).

suggests that the position of the extra hole determines, how much antisymmetric
mode is generated at the bend. However, antisymmetric mode can not propagate
at this frequency, i.e., the frequency is too low (cut-off condition for antisymmetric
mode). Thus, the more antisymmetric mode is generated, the less the bend transmits
power through. Finally, note that the shown power-flow spectra are normalised: they
have been obtained by dividing the transmitted power flow by the (band-limited)
power spectrum of the input signal. Hence, the filtering effect due to the structure
itself is obtained.

In this thesis the focus has been on dielectric PBG structures based on triangular
lattice of air holes. Further, usually TEz polarisation has been assumed, although
research has also been done with TMz polarisation. Originally, one reason for choos-
ing the triangular lattice was the possibility to have a band gap for TEz and TMz

polarisations within the same frequency range [16]. With this possibility, there is a
chance to obtain a light-polarisation-independent PBG component. Another reason
was that this kind of lattice suits well for optics and for the used fabrication process
(see paper [P6]). Namely, the work has been related to a project, where one objec-
tive has been to test fabrication of real PBG components for infrared regime. Also,
the promising and interesting nature of the PBG phenomenon has been a motivation
for the studies.

The work related to papers [P5] and [P6] involves quite much numerical com-
putation and handling data flow. In paper [P5] various issues related to simulation
arrangements and PBG-WG-component design are discussed. In practice, compo-
nent design involves optimisation. One optimisation cycle can be formally divided

10In a real 3-D PBG-WG, non-uniform vertical etch profile may also add radiation losses.
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to pre-processing, simulation, and post-processing. In this work, the simulation of
the electromagnetic fields has been done using a non-commercial FDTD program
STEPS 11. The pre-processing and the post-processing have been implemented by
various Matlab functions and scripts. The PBG-component research is further dis-
cussed in summary of papers [P5] and [P6].

3 General considerations about component struc-

ture modelling

Major part of the studies performed can be considered as application oriented: the
studies are related to component design and modelling issues. Thus, a crucial issue is
the effectiveness of a modelling method. For example, along an optimisation process,
it is convenient to obtain sensible modelling results as quickly as possible.

3.1 Transmission-line model

Figure 8 shows a section of transmission line (TL), having impedance Z and prop-
agation factor β. Theory of TL’s can be found in e.g. [5], [26], [27], [6], [7], and [8].

Z , β

Figure 8: Transmission line.

If the salient features of a physical electromagnetic structure can be modelled by
transmission lines, the modelling process can be very effective. The reason is that
by using TL theory less numerical computation is needed. For example, in paper
[P1], a complicated 3-D ceramic-filter structure is simulated using a circuit simulator
with TL model, thus, avoiding computationally costly 3-D field simulation.

Briefly, TL model is convenient with uniform wave-guiding structures, which
have a constant cross-sectional geometry. Using TL model requires solving the TL
parameters Z and β of the analysed propagation mode. With some geometries this
can be done analytically. For example, analytical solutions are known for rectangular
and circular waveguide, and for some TEM waveguides, e.g., coaxial cable and two-
wire line. But in general case, one has to use approximative formulas, or compute
the parameter values numerically.

Further, individual uniform waveguide sections, each having a different Z and
β, can be cascaded, and the chain of waveguides can be analysed using TL theory.
For example, if a circular waveguide has a perpendicular interface of an air-filled
and dielectric-filled sections, the reflection and transmission of a certain TM or TE
mode can be analytically solved.

11STEPS has been developed in the Electromagnetics laboratory by D.Sc. Kimmo Kärkkäinen.
The author has taken part in the developing process by testing the program extensively. STEPS
has been used by the author also with multimode resonator studies in microwave regime [25].
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In general, when using TL theory to study waveguide discontinuities, one has to
require that the field profile is same at the both sides of the interface, e.g., TE10

field of a rectangular waveguide. Namely, even if the geometry and dimensions
of individual waveguides can be modelled via Z and β, the physical consequences
of a geometrical discontinuity are not properly modelled by simply cascading two
transmission lines. For example, if in a circular waveguide a fundamental-mode
field is coming to an interface, where the tube diameter suddenly increases, new
modes are generated. Some of them propagate power, some of them are evanescent.
Anyway, these new modes caused by the discontinuity are not taken into account in
a simple TL model, where one assumes only one mode per waveguide.

Discontinuity in the cross-sectional geometry does not always destroy the idea of
using simple TL model. Often with quasi-TEM waveguides TL model gives usable
results. For example, with a structure consisting of two cascaded microstrip lines,
having strip widths w1 and w2, one can assume a quasi-TEM mode propagating at
both sides of the discontinuity, if f is not too high. Sensible results for reflection
and transmission are obtained, especially if discrete components are included at
the interface to model local field effects caused by the discontinuity. In the case
of an abrupt change in microstrip width, current compression can be modelled via
a series inductance and the fringing electric field via a parallel capacitance [28],
[29], [30]. Also with a dielectric-slab-waveguide discontinuity, simple TL model can
give usable results. Assume a structure consisting of two cascaded dielectric WG’s,
having widths w1 and w2. If the step discontinuity is small enough, and if at the
both sides monomode propagation can be assumed, the main effect of the step
is a change of impedance [10, pp. 189–191]. E.g., reflection coefficient is simply
(Z2 − Z1)/(Z2 + Z1), where the impedance values are solvable without numerical
field analysis for e.g. dielectric-slab WG’s.

Obviously, the TL model shown in Figure 8 suits only for a single-mode waveg-
uide. Many structures require a model for multimode propagation, such as the
waveguide components studied in [P1] and [P2].

3.2 Multimode waveguide and its TL model

In this thesis, many of the studied structures have the following nature:

• structure can be considered as a cascade of different waveguides

• in each waveguide there can be many modes propagating

A waveguide supporting multimode propagation can be modelled so that there is a
separate transmission line for each mode (Figure 9). These lines can be considered
separate, i.e., there is no coupling between them, if the waveguide modes are power
orthogonal 12.

12Modes are usually defined so that they are power orthogonal to each other. In practice, it may
occur that power-orthogonal modes of an ideal waveguide are not exactly power orthogonal in a non-
ideal waveguide. For example, in a non-ideal waveguide with surface resistance Rs =

√
ωµ/2σ 6= 0,

a TM mode may couple power to a TE mode, and vice versa. In a circular waveguide with a
rotationally symmetric mode (no ϕ dependency), this coupling is avoided [5, pp. 176–179].
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Figure 9: Transmission-line model for a multimode waveguide.

Sometimes using this kind of model requires a change of basis at the interfaces:
e.g., the field or circuit quantities from block A must be expressed using the eigen-
modes of the multimode waveguide section. Thus, there must be transformation
networks TA and TB to tell, how strongly e.g. a certain block A mode, incident to
the multimode section, is coupled to the different propagation modes. The shown
blocks A and B can be other multimode waveguides, or, circuit blocks consisting of
discrete electrical components. Obviously, using the model of Figure 9 requires that
the relevant propagation modes (i.e. the basis) are known. Often the WG structures
are such that, solving these modes has to be done via numerical field computation.
Further, the coupling coefficients of different modes must be known at the interfaces,
to construct the transformation networks TA and TB.

In paper [P1] ceramic combline filter is studied assuming that the structure
consists of cascaded multiconductor transmission lines. The relevant modes are
quasi-TEM modes. Solving these requires numerical field analysis. The simulation
of the filter is done in a circuit simulator, which has some built-in functions to model
an MTL. In this case, the transformation networks are controlled voltage and current
sources, because instead of fields, voltages and currents are simulated.

In paper [P2] anisotropic HS-WG section is situated between isotropic HS-WG’s
(blocks A and B). Each section is modelled using two transmission lines: there is a
separate line for TM and TE mode (Fig.3 in paper [P2]), because these modes can
propagate independently from each other. In this case, transformation networks are
not required, because in all the waveguide sections fields can be expressed using the
same TM-TE basis, and there is no coupling between TM and TE modes at the
interfaces.

In paper [P4] gyrotropic HS-WG section is situated between isotropic HS-WG’s.
In this case, a change of basis is needed, because the eigenmodes in an isotropic
HS-WG are TE and TM modes, but in a gyrotropic HS-WG the eigenmodes are
plus and minus waves, which are hybrid modes. Actually in the paper, the basis
change is embedded in the transmission and reflection coefficients (formulas (71),
(72), (86), and (87)). In this paper, the analysis of the interfaces is done by requiring
the continuity of the transverse fields, i.e., TL theory is not directly applied to get
the reflection and transmission of the cascaded waveguides.
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Finally, let us have a very simple example, assuming a symmetric MTL cross-
sectional geometry with two inner conductors. Assume block A having a sinusoidal
excitation such that the true conductor voltage phasors at the other MTL end, at
z = 0, are V1(0) and V2(0). Assume block B as an absorbing end, or that the line
is a bit lossy and very long, i.e., there is no reflection: the waves along the MTL
move only in +z-direction. Symmetric MTL geometry implies that the propagation
modes are even and odd. Thus, the true voltages along the line can be written as 13(

V1(z)
V2(z)

)
= Vm1

(
1
1

)
e−jβm1z + Vm2

(
1
−1

)
e−jβm2z (14)

At the interface z = 0, one gets:(
Vm1

Vm2

)
=

1

2

(
1 1
1 −1

) (
V1(0)
V2(0)

)
(15)

So, the amplitudes for the even and odd mode, Vm1 and Vm2, can be computed from
(15). If the excitation voltages correspond to even mode, Vm1 6= 0 and Vm2 = 0.
If the excitation is (2 0)T , Vm1 = Vm2 = 1, i.e., both even and odd mode start to
propagate along the MTL. With inhomogeneous medium, like in Figure 1, it holds
that βm1 6= βm2. In this case, there is coupling between the true conductor voltages.
Namely, at the points along the line, where the phase-shift difference (βm2−βm1)z is
an odd multiple of π, true voltage amplitudes are reversed to (0 2)T from the original
(2 0)T . Here, one may see a certain connection to the gyrotropic mode converter,
where the phase-shift difference (β−−β+)d causes mode conversion, and with certain
lengths d a total change from TM to TE is obtained (see paper [P3], formulas (14)
and (15) ). The more there is difference between the β’s of the eigenwaves, the
shorter distance is needed for total voltage reversal or total mode conversion.

3.3 On the computation of transmission-line parameters

In paper [P2] the needed TL parameters, i.e. the propagation factors and impedances
for TM and TE modes, are computed analytically. On the contrary, in paper [P1]
the TL parameters are computed numerically. The essential parameters are matrices

C and L, because using these one can solve the phase velocities vi, the voltage
eigenvectors V i, and currents I i, for quasi-TEM modes i = 1...n. Note that the

modes are solved assuming a lossless MTL, i.e., the conductance matrix G and the

resistance matrix R are assumed zero. Firstly, this kind of approach is practical,
because the frequency-dependent eigenvalue equation

(jωC + G) · (jωL + R) · I = γ2 I , γ = α + jβ, (16)

simplifies to

C · L · I =
β2

ω2
I =

1

v2
I , (17)

which is frequency-independent eigenvalue equation. Secondly, this approxima-
tive approach is justified. In ceramic filters, the ceramic medium has tan δ =

13For simplicity, voltage eigenvectors are not normalised to unity here.
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0.00005...0.0002, when frequency is around 1 GHz [31]. Imaginary part of the permit-
tivity is thus very small, of order 10−4 compared to the real part. Thus, ε is assumed

real, or G = 0, when solving the propagation modes. The dominant loss mechanism
is the conductor losses. When solving the mode velocities, voltages, and currents,

also these ohmic losses are neglected, i.e., R = 0. This approximation is justified,
because in a ceramic filter, r/ωl is of order 0.005, where r and l are self resistance
and inductance, respectively, of a cylindrical inner conductor (it has been assumed
here that f ∼ 1 GHz, σ ∼ 5 · 107 S/m, and conductor radius ∼ 0.5 mm). However,
slightly non-ideal conductors can be taken into account afterwards. This means that
the attenuation factors αi can be computed using the current distributions of the

lossless MTL. Finally - note that the capacitance and inductance matrices, C and

L, are per-unit-length (PUL) quantities. The unit for C is As/Vm=F/m and the

unit for L is Vs/Am=H/m.

3.3.1 Computing matrices C and L

On the inner conductors of an MTL, the per-unit-length (PUL) charges q, are related
to conductor voltages V via equation

q = C · V (18)

On the other hand, for an MTL filled with air, it holds

L = µ0ε0C
−1

0 , (19)

where C0 is the PUL capacitance matrix in case ε(x, y) = ε0, i.e., the medium is

homogeneous air. So usually, both C and L can be obtained via solving a capacitance
matrix 14. The procedure of capacitance computation utilises equation (18). Let
index k run from 1...n, where n is the number of inner conductors. For each k:

1. Set inner conductor voltages to V k. The outer conductor is in zero potential.

2. Using finite-difference method, solve 2-D static potential distribution φk(x, y).

3. From φk(x, y), the PUL charges on conductors, qk, are obtained by integrating
the normal electric flux density un ·Dk(x, y) = −εun · ∇φk(x, y) around each
conductor. un is the unit normal vector for the integration path pointing away
from the conductor. un and the integration path lie both in the plane that is
perpendicular to the MTL axis (z-axis). In the FD program rectangle-shaped
integration paths were used 15.

As a result, one gets vectors qk, which correspond to vectors V k. Using (18) as

qk = C · V k, k = 1...n, (20)

14However, if the medium inside the MTL is also inhomogeneously magnetic, µ = µ(x, y), induc-
tance matrix L can not be obtained via (19). Instead, separate 2-D magnetostatic problems have
to be solved.

15Further, many integration paths were used around each conductor to monitor, whether different
paths give the same value for the conductor charge (as it should be).
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one obtains enough conditions to calculate C.
Here it is described shortly, how to obtain a static potential distribution for

a MTL cross-sectional geometry, using 2-D FD method. In a region without free
charges, Maxwell equation (3) has to hold with % = 0, i.e., ∇ ·D = 0. From this,
using Gauss’s theorem and assuming a 2-D case with a region surrounded by curve
C, one gets ∮

C

ε∇φ(x, y) · undc = 0 (21)

From this, approximating normal derivatives on curve C as difference quotients, one
obtains an updating equation for potential (see Figure 10):

φ0 =
φ1 + φ3

4
+

ε1φ2 + ε2φ4

2(ε1 + ε2)
(22)

If the potential point to be updated is not at a material interface, in that case

φ0

φ2

φ4

φ1 φ3 ε
ε2

1

un ∆

C

Figure 10: Potential φ0 can be approximated using the surrounding values.

φ0 = (φ1 + φ2 + φ3 + φ4)/4, i.e., simple average value. Of course, potentials on
conductors (boundary conditions) are kept constant during updating process. Using
(22) iteratively, the discrete potential distribution converges to its final state 16. In
practice, convergence speed is increased in two ways. Firstly, the density of the
potential points is not constant during the iteration: iteration starts with lower
density (higher value of ∆). Secondly, a so-called relaxation parameter FR is used
[32, pp. 24 –29]. Instead of (22), the potential is updated using equation

φm+1
0 = φm

0 + FR

(
φm∑ − φm

0

)
, where φm∑ =

φm
1 + φm

3

4
+

ε1φ
m
2 + ε2φ

m
4

2(ε1 + ε2)
. (23)

If 2 > FR > 1, convergence can be speeded up in a stable way. A good value seems
to be between FR = 1.6...1.9.

16Final state: the conductor charges do not remarkably change anymore as the iteration proceeds.
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3.3.2 Solving the quasi-TEM modes

When C and L are known, the eigenvalue equation (see paper [P1])

C · L · I i =
β2

i

ω2
I i =

1

v2
i

I i , i = 1...n, (24)

can be solved to obtain eigenvectors I i and phase-velocities vi. Vectors I i can be
normalised e.g. to unity. Within this thesis the MTL structures are such that the

eigenvectors can be assumed real, i.e., I
∗
i = I i. C and L are real and symmetric. If

the eigenvalues are distinct, i.e., there is no degenerate modes, eigenvectors can be

chosen real [33, p.2092]. Define matrix T I so that it consists of column vectors I i,

i.e., T I = [I1 I2 ... In]. If T V consists of column vectors V i, one may require that

T
T

V · T I = I, (25)

where I is the unit matrix. This means that the modes are power orthogonal, i.e.,

V
T

i · Ij = 0 if i 6= j. The requirement (25) also forces that V
T

i · I i = 1, which causes
that the true time-average propagating power is equal to 1

2
<{

∑n
i=1 VmiI

∗
mi} 17. So

- if the norms of I i are chosen, the eigenvectors V i are automatically determined
through (25). This subject, decoupling the MTL equations, is extensively discussed
in [34], [26], and [33].

Finally, let us briefly discuss the accuracy of various numerically computed pa-
rameters and their effect on the frequency response. Assume an MTL having sym-
metrical cross-sectional geometry with three (n = 3) cylindrical conductors so that
the medium inside is inhomogeneous (like the MTL in Figure 1). The conduc-
tors are given indices 1,2, and 3, from left to right. Due to the symmetry of the
MTL, C11 = C33 and C23 = C12. Also, L11 = L33 and L23 = L12. It is realis-

tic to assume the following relative errors in the elements of the C and L matri-
ces: δC11/C11 = 0.01, δC22/C22 = 0.01, δC12/C12 = 0.02, δC13/C13 = 0.06, and,
δL11/L11 = 0.01, δL22/L22 = 0.01, δL12/L12 = 0.01, δL13/L13 = 0.02. These es-
timates are based on an earlier comparison: the results of the FD-method-based

C, L-computation routine have been compared to the results obtained with a com-
mercial BEM program (BEM = Boundary Element Method). Assuming the above-

mentioned accuracy in the elements of C and L matrices, the error in eigenvector
elements and in the phase velocities of the modes is around 1 %. However, in prac-
tice, the errors can be even smaller. To illuminate the reason for this, assume simply
an inhomogeneous two-conductor TL having distributed parameters C and L. Phase
velocity is 1/

√
CL = 1/

√
CC−1

0 µ0ε0. Now – C and C0 are computed numerically us-
ing the same FD-method routine. If both computed capacitance values are a bit too
high, the error in phase velocity can be very small. It is evident that the accuracy
in phase velocities is same as the accuracy of the quasi-TEM resonance frequencies.

17In an MTL, time-average true power flow is the real part of

P =
1
2
V

T
(z) · I∗(z) =

1
2
(

n∑
i=1

Vmie
−jβizV

T

i ) · (
n∑

i=1

Imie
−jβizIi)∗ =

1
2

n∑
i=1

VmiI
∗
miV

T

i · Ii

If now requiring V
T

i · Ii = 1, P = 1
2

∑n
i=1 VmiI

∗
mi.
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3.3.3 Attenuation factors due to conductor losses

If the conductors are non-ideal, electromagnetic wave is attenuated exponentially
as it propagates along the MTL. Electric field for the propagation mode i can be
written as

Ei(x, y, z) = Ei(x, y)e−jβize−αiz. (26)

Solving attenuation factor αi requires computing the per-unit-length loss power Pl,i

and the propagating power Pp,i, i.e.,

αi =
Pl,i

2Pp,i

. (27)

At the surface of a non-ideal conductor, the time-average power-flow density into
the conductor is

Sloss =
1

2
<{E×H∗} · (−un) =

1

2
<{−un × E ·H∗}, (28)

where un is the surface normal pointing away from the conductor. With very good
conductivity σ, the relation between the E and H, using wave impedance, becomes
−un × E =

√
µ0/(σ/jω) H. Thus, from (28) one gets

Sloss =
1

2
<

{√
ωµ0

σ

1 + j√
2

H2

}
=

1

2

√
ωµ0

2σ
H2 =

1

2
RsH

2, (29)

where Rs is the surface resistance and H is the magnetic field strength at the surface.
For a quasi-TEM mode i, the magnetic field is

Ht,i(x, y) = uz ×
Et,i,0(x, y)

ηi

= −uz ×
∇φi,0(x, y)

ηi

, (30)

where t stands for ’transverse’, φi,0(x, y) is the potential distribution in case of
homogeneous medium and ηi is the effective wave impedance of mode i. Using (30)
in (29), at a conductor surface one gets

Sloss,i =
Rs

2η2
i

∣∣∣∣dφi,0(x, y)

dn

∣∣∣∣2 . (31)

The total per-unit-length loss power of mode i, Pl,i, is obtained by integrating Sloss,i

over the circumference of each conductor. Thus

Pl,i =
Rs

2η2
i

n∑
j=0

∮
cj

∣∣∣∣dφi,0(x, y)

dn

∣∣∣∣2 dc, (32)

which is the same as formula (37) in paper [P1].
One way to compute the propagating power of mode i is to use circuit quantities:

Pp,i =
V

T

i · (Z
−1

c · V i)

2
, (33)
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where Zc is the characteristic impedance matrix, relating the voltages and currents

of a propagating wave. Zc depends on the MTL cross-sectional geometry and media.

Different useful formulas for Zc can be derived [34], for example

Zc =
1

ω
C
−1
· T I · β · T

−1

I = C
−1
· T I · Λ · T

−1

I , (34)

where Λ is a diagonal matrix so that Λ
2

has eigenvalues 1
v2

i
in its diagonal. So - using

(27), (32), and (33) one obtains the attenuation factors.

Loss power can be also obtained via resistance matrix R, which often gives usable
results quickly, because φi,0(x, y) distributions need not to be computed. The PUL
loss power of mode i can be approximated as (see paper [P1] for details)

Pl,i =
1

2
I

T

i ·R · I i, I i = Z
−1

c · V i (35)

From (27), (32), and (33), it is seen that all the quasi-TEM attenuation factors
depend on Rs ∝

√
f/σ. Thus, one can compute αi’s using e.g. f = 1 GHz and

σ = 6.17 · 107 S/m (silver) [35]. If the frequency of analysis is e.g. doubled, all the
αi’s should be multiplied by

√
2.

3.4 FDTD shortly

The dynamical behaviour of electromagnetic fields in space and time can be simu-
lated using FDTD (Finite-Difference Time-Domain), which essentially means solving
Maxwell’s equations approximately in discretised space and time coordinates. The
usual FDTD scheme assumes a so-called Yee’s cell [36], where the discrete space-
time points of electric field are shifted from the points of the magnetic field, i.e., the
E-grid is translated away from the H-grid by vector 1

2
(∆x, ∆y, ∆z, ∆t). FDTD is

a leap-frog algorithm: as the time-stepping propagates, electric and magnetic fields
are updated alternately. For example, for Ez component the “normal” updating
equation is

Ez(x, y, z, t + ∆t) = 2εz−σ∆t
2εz+σ∆t

Ez(x, y, z, t) (36)

+ 2∆t
(2εz+σ∆t)∆x

[
Hy(x + ∆x

2
, y, z, t + ∆t

2
)−Hy(x− ∆x

2
, y, z, t + ∆t

2
)
]

+ 2∆t
(2εz+σ∆t)∆y

[
Hx(x, y − ∆y

2
, z, t + ∆t

2
)−Hx(x, y + ∆y

2
, z, t + ∆t

2
)
]
,

where εz is permittivity in z-direction, σ is conductivity of the medium, ∆x and ∆y
are cell dimensions, and ∆t is the time-step length. For other field components equa-
tions are similar. The updating equations can be derived from Maxwell’s equations
by approximating time and spatial derivatives by difference quotients. For example,

∂
∂x

Hy(x, y, z, t + ∆t
2

) ≈
1

∆x

[
Hy(x + ∆x

2
, y, z, t + ∆t

2
)−Hy(x− ∆x

2
, y, z, t + ∆t

2
)
]
.

In addition to (36), many other kind of updating rules are also needed, like for
the absorbing boundary condition (ABC) [37], or for curved medium interfaces [38].
FDTD has been studied widely during the last ten years [39].
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3.5 Block-by-block circuit model or all at once?

If something can be modelled using circuit theory, i.e. by using transmission lines
and discrete components, the modelling can be really fast. The problem is that first,
one has to solve the circuit parameter values, such as the TL propagation constants,
characteristic impedances, and possibly some discrete component values e.g. for a
waveguide discontinuity. In practice, circuit simulation does not take time at all,
but parameter value extraction of a physical structure may take a long time.

Earlier it was already discussed that many of the studied structures can be
sensibly modelled by transmission lines. The investigated PBG structures are an
exception. Because they are complex and non-uniform, involving e.g. tapered bends,
very much different circuit parameter values should be computed 18. Parameters
should be frequency dependent. Also, if many modes can propagate, one should
know the TL parameters for different modes. Further, at discontinuities such as
bends or tapering sections, modes are coupled, i.e., it might be necessary to compute
the coupling parameters too. The fact that the bend operation is sensitive to the
hole positions, complicates the situation further. For these reasons, instead of the
parametric block-by-block approach, the PBG-WG components have been modelled
as the whole structure at once.

4 Summary of publications

[P1]: Application of multiconductor transmission-line theory
to combline filter design

Paper [P1] proposes an efficient design method for combline filters having inhomoge-
neous medium. The frequency is assumed small enough so that the filter operation
is mainly determined by quasi-TEM modes. It follows that the filter can be ap-
proximated as multiple multiconductor transmission lines (MTL) cascaded. Thus,
a circuit simulator can be used along the design process. Although numerical field

computation is needed to obtain the MTL-parameter values (matrices C and L),
the mean simulation time is short. The paper starts with a discussion of quasi-TEM
and MTL theory. Thereafter, computation of MTL parameters numerically is con-
sidered. Next, the filter design process using circuit simulator is discussed. Finally,

a numerical example is given. In the example, C and L are computed for two MTL

sections, which as cascaded form the combline-filter structure. As C and L matrices
have been computed, the voltages, currents, and the phase velocities of quasi-TEM
modes can be solved. Knowing the mode parameters, the system of cascaded MTL’s
(filter) is modelled using a circuit simulator. As a result, it is observed that a 3-D
FEM software and circuit simulator give about the same results for the frequency

18However, if the PBG component is simply a uniform monomode periodic waveguide, the essen-
tial parameters are the propagation factor β(f) and the attenuation factor α(f) of the lowest mode.
Approximations for these curves can be obtained e.g. via a single FDTD simulation and Fourier
transform of the fields at certain observation planes [40]. Dispersion curve β(f) is computed using
the phase difference between two observation planes, α(f) is obtained from the propagating-power
difference.
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response |S21(f)| of the filter. However, by using a circuit simulator assisted by nu-
merical capacitance computation, the response is obtained in e.g. 10 seconds, while
with 3-D FEM the needed time is 10 minutes.

[P2]: Fields in anisotropic hard-surface waveguide with
application to polarisation transformer

In paper [P2] electromagnetic fields inside a circular waveguide with axial corru-
gation are studied. The corrugation is assumed such that the boundary condition
is equal to a hard surface: at ρ = a, axial fields Hz = Ez = 0. The waveguide
is filled with uniaxial anisotropic material. The treatment is analytical, assuming
time-harmonic fields (∝ ejωt) and z dependency as e±jβz.

Decomposing fields to transverse and longitudinal parts, E = e + Ezuz and
H = h + Hzuz, and using these with Maxwell’s equations and with constitutive
relations, Helmholtz equations

[∇2
t + (ω2εtµt − βTM 2

)
εz

εt

]Ez = 0

[∇2
t + (ω2εtµt − βTE2

)
µz

µt

]Hz = 0

are obtained (for briefness, these were not shown in the article). Hard surface
does not couple Ez and Hz at all. Thus, the eigenfields in an anisotropic hard-
surface waveguide are TM and TE fields, for which it holds eTM ⊥ eTE, and which
are travelling with different propagation factors, βTM 6= βTE. The polarisation
transformation is based on this difference: as the total field e = eTM + eTE travels
along the anisotropic WG, the relative phase between eTM and eTE is changed.

The paper starts with the analysis of the propagation modes in an anisotropic
hard-surface waveguide (HS-WG). Knowing the mode propagation factors and impe-
dances, a transmission-line model can be used in the reflection-transmission analysis.
For a HS-WG chain structure of type isotropic-anisotropic-isotropic, the reflection
and transmission coefficients are obtained for TM and TE mode. Thus, for example,
transmitted longitudinal field amplitudes are Et

n = T TMEn and H t
n = T TEHn.

Using these with equations (7) and (8), one obtains the total transmitted field et =
et,TM + et,TE. Applying helicity vector p [41] as

p =
et × et∗

jet · et∗ ,

the polarisation state of the transmitted field is obtained. The paper is ended
with application examples. For example, a polarisation transformation from linear
to elliptical is considered. Power-transmission and helicity curves are shown for a
well-matched transformer and for a mismatched transformer. In the well-matched
case the power transmission is close to 100 % and linear polarisation is very closely
changed to circular polarisation. (Note that in the original article the curves have
been drawn incorrectly, see Errata.)
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[P3]: Mode transformer for hard-surface waveguides

In paper [P3] a circular hard-surface waveguide is filled with gyrotropic material, e.g.
magnetoplasma or ferrite. In the paper the focus is on ferrite filling. It is assumed
that the material is only slightly anisotropic and gyrotropic, i.e., µt ≈ µz and µg/µt ≈
0. Via analytical treatment, assuming time-harmonic fields, mode-transformation
effect is considered, for example, from TMz to TEz mode. The eigenwaves in the
gyrotropic waveguide are elliptically polarised hybrid-mode fields, which propagate
with slightly different propagation factors. This difference in propagation factors
causes the mode transformation, as the waves propagate through the gyrotropic
waveguide section.

The eigenfields and the corresponding propagation factors for the gyrotropic
HS-WG must be solved first. Assuming z dependency e−jβz and µg/µt small, de-
composing fields as E = e+Ezuz and H = h+Hzuz, and using these with Maxwell’s
equations and with constitutive relations, Helmholtz equations are obtained. Two
eigenfield solutions can be identified and named as plus and minus waves. These are
elliptically polarised hybrid-mode fields. Using the HS boundary condition, cut-off
wavenumbers are obtained. Thereafter, assuming µg/µt small, approximative values
for propagation factors β± are solved.

Next, in the gyrotropic section, the total longitudinal electric and magnetic fields
are written as a sum of the plus and minus waves. Assuming a good matching
at the isotropic-gyrotropic interface, a TM-TE transformer is considered. In this
simple reflectionless case, formulas (14) and (15) describe the mode transformation
along the gyrotropic section. At z = 0, amplitude of Ez 6= 0, and Hz = 0 in the
whole WG cross-section (TM). But at z = d = πµ

µgk
, Ez = 0, and amplitude of

Hz 6= 0 (TE). The incident Ez(ρ, ϕ) has thus been replaced by Hz(ρ, ϕ) so that
these fields have the same (ρ, ϕ) dependency. Thus, the field configuration before
the gyrotropic WG satisfies the PEC boundary condition, and after the gyrotropic
WG the field satisfies the PMC boundary condition. Because the relation between
the transverse fields e and h is changed, the gyrotropic HS-WG can be also seen as
an impedance transformer, i.e., as a matching element between two different kind
of circular waveguides. One application is a matching element between a metal-wall
waveguide and an open dielectric waveguide or antenna.

[P4]: Analysis of finite-length gyrotropic hard-surface
waveguide

In paper [P4] the authors continue with the research of gyrotropic hard-surface
waveguide. The effect of gyrotropy is taken into account exactly, i.e., no approxima-
tion of small gyrotropy or small anisotropy is made. Also, in the mode-transformer
structure, reflections are taken into account. Reflection and transmission formulas
are derived for a structure of type isotropic-gyrotropic-isotropic in a general case.
Mode-transformer examples are given.

As in the previous paper, also in this paper the analysis starts with the search
of the eigenfields and the corresponding propagation factors in a gyrotropic HS-
WG. It is already known from [P3] that the eigenfields are hybrid, i.e., Ez and Hz

are coupled. This is seen e.g. from Helmholtz equation (18) of the present paper.
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As the eigenmodes and propagation factors are known for isotropic and gyrotropic
HS-WG sections, one can start studying the interfaces isotropic-gyrotropic (IG) and
gyrotropic-isotropic (GI). So, in the isotropic WG the basis is TM and TE modes and
in the gyrotropic WG the basis is + and − waves. By requiring the continuity of the
transverse fields e and h at the interfaces, the reflection and transmission matrices

are obtained for the IG and GI interfaces. For example, by using the matrix T IG,
the transmitted + and − wave amplitudes are obtained, if the incident TM and TE
amplitudes are known.

Now, having the model for IG and GI interface, a model for a finite-length
gyrotropic WG (mode transformer) can be constructed. Using this, the transmission
and reflection of TM and TE modes will be obtained. The paper is ended with mode-
transformer examples. In the first example, a well-matched small-gyrotropy case is
considered. With properly chosen length of the ferrite-filled WG, the incident TM
mode is entirely transformed to TE. In the second example, the ferrite-filled section
is between two air-filled waveguides. The reflected power in this case is very high
in average, but still at some frequencies, the incident TM power is transformed
to transmitted TE power. Changing the bias magnetic flux density Bo shifts the
transmission spectrum. Hence, for example, one can tune the transmission peak to
the operation frequency range of the HS boundary.

[P5]: Studying 120◦ PBG waveguide bend using FDTD

Photonic-bandgap-waveguide (PBG-WG) structures are considered. The WG’s are
based entirely on linear dielectric media. Analysis is based on numerical field com-
putation by FDTD and post-processing of the field data. A 120◦ PBG-WG bend
is investigated as an example. Power-transmission results are given. Various issues
related to simulation arrangements and PBG-WG-component design are discussed.

After the introduction, the analysis method is discussed. Shortly, the method
resembles a “virtual measurement setup”. There must be a source i.e. a field exci-
tation, for which time and spatial dependency is properly chosen. The behaviour of
EM fields is governed by Maxwell’s equations, which are solved using FDTD. Also,
there must be observation surfaces, on which time-dependent fields are sampled and
stored to hard disk for post-processing. Post-processing involves interpolation and
Fourier transform of the fields, power-flow computation in time and frequency do-
mains, and computation of reflection and transmission spectra. At the end of the
analysis section, the method is shown to give reasonable results.

Next section describes results obtained for a 120◦ PBG-WG bend. Relative hole
size d/a = 0.76 is kept constant. Quasi-TEz polarisation has been assumed (electric
field effectively perpendicular to the axes of the air cylinders). The relevance of op-
timising the bend geometry is shown. It becomes clear that seemingly small changes
in the hole configuration can change component operation dramatically. Also, the
effect of finite PBG-plate thickness is shown: as can be expected, the radiation losses
drop the transmission level, and the decrease of the effective refraction index slightly
upshifts the spectrum in frequency.

Finally, design and optimisation issues are discussed. Optimisation requires ob-
taining reasonable modelling results in reasonable time. In the paper it is checked
how much the transmission spectrum depends on the time-window length and on
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the FDTD cell size. It is observed that usable results are obtained even with quite
modest time-window lengths and with a cell size ∆ = a/10, where a is the lattice
constant. This suggests that the method really suits for PBG-WG-structure optimi-
sation. However, it is also remarked that special slow-convergence regions may exist
in spectra, and that there may be structures with special frequencies, for which the
power flow can be very sensitive to the cell size, and to the relative hole size d/a.

[P6]: Fabrication of photonic crystal waveguide elements
on SOI

The paper reports on fabrication of photonic-crystal-waveguide elements on SOI
(silicon-on-insulator). As in the previous paper, the photonic crystals have a trian-
gular lattice structure with cylindrical air columns. The paper focuses on the fabri-
cation issues, problems encountered, and possible solutions. The test structures, 60◦

and 120◦ bends, and the taper, were designed using the modelling methods described
in paper [P5].

After the introduction, design and modelling issues are discussed. Thereafter,
the fabrication process is explained. Finally, fabrication results are reported. Top-
view figures of regular photonic crystals and waveguide elements are shown. Also,
sideview-profile figures are shown. From these, the etch profile can be examined.

The author wishes to make some clarifications about the modelling and design
process. The bends and the taper were designed with d/a = 0.76. The value 0.76
was chosen using fuzzy logic, keeping various things in mind. Firstly, d/a should
not be too high, because

• increasing hole diameter d tends to increase radiation losses

• high d/a value makes the walls between the holes thin. This may cause trouble
in fabrication. It was decided that wall thickness should be roughly ≥ 100 nm.

Secondly, d/a should not be too small.

• With too small d/a there is no band gap at all. d/a should be at least about
0.4 to have a TE band gap [16, p. 125], [24].

• Considering fabrication, too small d/a value is not practical.

• As d/a is increased, so is the band-gap width. Wider band gap makes the
PBG lattice a better reflector.

• With high d/a value there is potential for a common TE and TM band gap.

At the time when the d/a value was decided, wide band gap (stop band) was pre-
ferred. The minimisation of radiation losses was not considered crucial at that time.
After deciding that d/a = 0.76, the structures were designed. Design process in-
volved testing different hole configurations. The fuzzy goal was, for example, to
have a good power transmission for a bend so that the hole configuration is very
simple, i.e., as regular as possible. The bend components and the taper section
were designed to be compatible with each other. The components have maximum
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transmission at the same frequency and the components can be directly cascaded.
Finally, it should be understood that the optimum hole configuration depends on
d/a. Changing the d/a value, e.g. from 0.76 to 0.6, implies redesign of the hole
configuration.

As the discussion of the paper shows, the fabrication of real PBG-WG structures
for infrared regime is a demanding challenge. It has been assumed in the paper that
λ0 ≈ 1.5µm. In the paper, SEM (scanning electron microscopy) figures are shown.
For example, Figures 6 and 7 show sideview profiles of the air columns after silicon
etching. Etch profile is vertical and often quite smooth. Top-view Figure 8 shows the
designed waveguide elements after oxide and silicon etching. Hole positioning in the
fabrication process seems to be working well. Some unwanted variation in the hole
size has been caused by the so-called proximity effect. In general, the fabrication
results are promising, although some non-idealities are clearly apparent.

However, it should be remembered that seemingly small nonidealities in the
structure may have a strong effect on the device operation. For example, as was
seen in the example of paper [P5], perturbing the hole positions changed totally the
transmission spectrum of the 120◦ bend. A seemingly small perturbation may be
electromagnetically remarkable. Although this may make the fabrication of certain
components challenging, with e.g. sensor components this sensitivity is a benefit.
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