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Abstract

We propose and demonstrate a novel method to improve the accuracy of measurements of group delays using the

conventional phase-shift technique. In particular, the method allows for accurate reconstruction of the actual group

delay when a high modulation frequency is employed to increase the timing resolution. The method is based on post-

processing of the measured data in a deconvolution operation with the instrument function of the measurement setup.

We present practical examples of it for both fiber Bragg gratings and narrow-band thin-film filters. � 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

The dispersion of various optical components
has become an important issue in assessing the
performance of optical networks. It can be quan-
tified by measuring the group delay of light
propagating through the optical system as a
function of the wavelength. Accurate measure-
ments of the group delay and the amplitude re-
sponse of optical components can be performed by
using interferometric methods [1,2] or by applying
various modulation-phase-shift techniques [3,4].
The phase-shift technique is the most common of

these due to its simplicity and robustness. Indeed,
it is also applied in several commercial dispersion
measurement systems. For certain components
such as chirped fiber Bragg gratings (FBGs), the
group delay often exhibits significant fluctuation
with the wavelength. This fluctuation which is re-
ferred to as group delay ripple is due to apodiza-
tion of the refractive index profile of the grating
and imperfections in the manufacturing process.
Variation in the group delay can also be observed
in narrow-band filters, which are used in for in-
stance multiplexers and add/drop components.
These filters typically have dispersion, which in-
creases towards the edges of the band. In optical
network systems, fluctuations in the group delay
causes power penalty and intersymbolic interfer-
ence [5–10], leading to degradation of the system
performance. When the phase-shift technique is
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utilized to characterize the group delay ripple, the
measured value of the amplitude of the ripple has
been observed to depend on the modulation fre-
quency [11–13]. Typically, a high modulation fre-
quency is applied in order to achieve good timing
resolution. Attempts have been made to modify
the standard phase-shift technique to make it less
sensitive to the value chosen for the modulation
frequency in the measurement [14].

In this paper, we first derive the instrument
function for a group delay measurement with the
phase-shift technique. This function is then used to
investigate the effects of the modulation frequency
on the measured group delay ripple of FBGs and
estimate the error induced by the technique. Fur-
thermore, a new method to increase the accuracy
of group delay measurements using the phase-shift
technique is presented. The method allows the
actual group delay of the component to be accu-
rately reconstructed and it is applicable to any
arbitrary group delay profile. Finally, we present
two applications of this method: first, we apply it
to reconstruct the amplitude of the dense group
delay ripple of FBGs and secondly, to reconstruct
the group delay of a narrow-band thin-film filter.

2. Phase-shift technique

Our experimental setup is based on a conven-
tional phase-shift technique and it is outlined in
Fig. 1. The light source is a narrow linewidth
wavelength-tunable laser (Photonetics TUNICS-
PRI) whose wavelength is monitored with a
wavemeter (HP 86120B). The laser is externally

modulated to produce a sinusoidally varying out-
put intensity at frequency xm. Polarization of the
light entering the modulator is tuned with a po-
larization controller. The optical signal is ampli-
fied with a fiber amplifier and divided into a
reference path and a path containing the device
under test (DUT). The two optical signals are
detected and electrically amplified before they are
displayed in two channels of a digital sampling
oscilloscope (Tektronix TDS820). The stored time
traces of the signals are transferred to a computer
for analysis of their phases and amplitudes. The
resolution of the setup depends primarily on the
resolution of the electrical phase measurement. In
general, the resolution of the group delay mea-
surement improves when a higher modulation
frequency is used. The devices conventionally uti-
lized for phase determination are vector voltmeters
or network analyzers, which typically have a phase
resolution of �0.1�. This allows a sub-picosecond
resolution to be achieved in the group delay mea-
surement. We have tested the stability and the
resolution of our setup using a fiber-optic beam
expander with a variable air gap as the DUT. The
results indicate that a group delay resolution of �1
ps can reliably be obtained with our experimental
setup.

The relation between the optical phase /ðxÞ
and the group delay is given by

sðxÞ ¼ d/ðxÞ=dx: ð1Þ

The optical phase shifts measured at the frequen-
cies of the two induced modulation sidebands ap-
plying the setup of Fig. 1 can be used to give an
approximate value for the group delay

Fig. 1. Experimental setup for group delay measurements using the phase-shift technique.

120 G. Genty et al. / Optics Communications 204 (2002) 119–126



sðxÞ � /þ � /�

2xm

¼ smeas; ð2Þ

where xm is the applied modulation frequency ap-
plied and /þ and /� are the optical phase shifts at
the frequencies x þ xm and x � xm, respectively.

The approximation gives accurate results when
the variation of the group delay with wavelength is
small, which is the case, e.g., for an optical fiber.
However, optical components such as fiber Bragg
gratings or thin-film filters can exhibit strong
fluctuations in the group delay with wavelength
within the bandwidth of the optical signal. Con-
sequently, the previous approximation is no longer
valid and a more accurate model is required.

3. Instrument function

Knowing the instrument function of the mea-
surement setup, the data collected could be post-
processed in a deconvolution operation to obtain
better accuracy. In order to find an expression for
the instrument function we integrate Eq. (1) over
themodulation bandwidth and identify the result to
be directly related to themeasured group delay smeas

as

1

2xm

Z xþxm

x�xm

sðxÞdx ¼ /þ � /�

2xm

¼ smeas: ð3Þ

By writing sðxÞ with the help of its Fourier
transform ~ssðuÞ as

sðxÞ ¼
Z 1

�1
~ssðuÞ 	 ejxu du; ð4Þ

we insert Eq. (4) into Eq. (3) and invert the order
of the two integrations to obtain a connection
between the actual and the measured values of the
group delay

smeas ¼
1

2xm

Z 1

�1

Z xþxm

x�xm

~ssðuÞ 	 ejux dx
� �

du: ð5Þ

The inner integral is easily evaluated and we can
write Eq. (5) in the form

smeas ¼
Z 1

�1
~ssðuÞ 	 sinðxmuÞ

xmu
	 ejxu du

¼ sðxÞ
 rectðx=2xmÞ; ð6Þ

where ‘rect’ and ‘
’ denote the rectangular func-
tion and the convolution operation, respectively.
This expression defines the measured group delay
as the convolution of the group delay of the
component and the instrument function of the
phase-shift technique. The instrument function can
be identified as a rectangular function of width
2xm.

4. Effect of modulation frequency on the measured

group delay ripple of fiber Bragg gratings

The effect of the modulation frequency on the
measurement result for arbitrarily shaped group
delay profiles can be investigated simply by in-
serting their Fourier transform into Eq. (6). For
components such as chirped FBGs, the variation
of the group delay with wavelength is periodic. In
the following we assume the functional form of the
dependence of the delay on frequency to be locally
sinusoidal of the form [15,16]:

sðxÞ ¼ A 	 sin x
p

� �
: ð7Þ

Here A represents the amplitude and p the period
of the group delay. When such a group delay is
analyzed using the phase-shift method the mea-
sured amplitude of the ripple as a function of the
modulation frequency is then [13]

Ameas ¼ A 	 sinc xm

p

� �
: ð8Þ

This expression can be directly derived from Eq.
(6), by relating the variable u to the period of the
ripple as u ¼ 1=p:

Eq. (8) shows that the amplitude of the mea-
sured sinusoidally varying group delay decreases
with the modulation frequency. A ratio between
the modulation frequency xm and the ripple period
p of more than 2 will induce an attenuation of the
measured amplitude of at least 50%. Furthermore,
the ripple cannot be distinguished if the modula-
tion frequency corresponds to a multiple of half
the ripple period. Moreover, as illustrated in Fig.
2, a phase shift of p in the measured ripple is ob-
served when the ratio of the modulation frequency
to the ripple period lies within ð2k � 1Þp and 2kp,
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where k is an integer number. On the other hand, if
the modulation frequency is small compared to the
ripple period, then the amplitude of the ripple is
close to the actual one.

To experimentally demonstrate the effect of the
modulation frequency, we characterized the re-
flectivity of a linearly chirped FBG. The band-
width of the grating is �2 nm and the measured
group delay indicates a nominal dispersion of )660
ps/nm. A portion of the measured group delay for
four different modulation frequencies by utilizing a
wavelength step of 1 pm (125 MHz) is shown in
Fig. 3. The wavelength step was chosen to be much
smaller than the ripple period in order to resolve

the small period variations of the group delay [16].
For clarity an arbitrary offset has been added to
each curve. In addition, the wavelength axis has
been converted into an optical frequency axis and
shifted from the center frequency.

The measured group delay can be decomposed
into a sum of sinusoidal ripples with different pe-
riods p. These periods can be obtained simply by
calculating the Fourier transform of the measured
profile. Indeed, peaks in the spectrum appear at
particular Fourier frequencies u ¼ 1=p. The Fou-
rier frequencies are calculated using fast Fourier-
transform algorithms. According to Fig. 2, a
Fourier component corresponding to a particular
period p is affected differently depending on the
value of xm. Thus, knowing the values of p, the
theoretical effects of using a higher modulation
frequency in the measurements can be investi-
gated. As an illustration, we first consider the
Fourier transform of the group delay measured at
xm ¼ 2p 	 250 MHz. Its normalized Fourier com-
ponents versus xmu ¼ xm=p are plotted as solid
line in the upper part of Fig. 4. For clarity an offset
of 1.2 has been added. From this plot, we can
easily extract the main period of the ripple
shown in Fig. 3. This main period corresponds to
the highest peak of the spectrum and can be
calculated as

Fig. 3. Traces of the group delay ripple of a fiber Bragg grating

for four different modulation frequencies.

Fig. 4. Fourier spectrum of the measured group delay at 250

MHz versus xm=p for two different values of xm. The area

delimited by the vertical dashed lines represents the region of

inversion and attenuation.

Fig. 2. Normalized amplitude of the measured ripple as a

function of xm=p.
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pr ¼
xm

xp
; ð9Þ

where pr is the main period of the ripple and xp the
position of the highest peak on the x-axis. By using
xm ¼ 2p 	 250 MHz and xp � 0:83, we achieved a
value of pr � 1:9 GHz. A rough estimation of this
main period can also be obtained directly from
Fig. 3.

The value of the quantity xm=p is smaller than
1.5 rad for most of the Fourier components.
Therefore, according to Fig. 2 the measured signal
has not been significantly altered by the measure-
ment except for the addition of noise. Conse-
quently, we can assimilate this measured group
delay to the actual group delay of the FBG. We
now investigate the effects of using a modulation
frequency of 1 GHz assuming that the Fourier
components of the signal measured at 250 MHz
can be considered as the actual group delay. For
this purpose, the Fourier components of the signal
measured at 250 MHz are replotted as dots in the
lower part of Fig. 4 versus the quantity xm=p with
xm equal to 2p 	 1 GHz. The largest components
fall in the region of inversion and attenuation de-
limited by dashed lines. According to Fig. 2, this
means that the amplitude of the measured ripple
using xm ¼ 2p 	 1 GHz is decreased and has an
opposite sign compared to the actual ripple am-
plitude, in agreement with the measurements
shown in Fig. 3. When using xm ¼ 2p 	 500 MHz
and xm ¼ 2p 	 750 MHz for the measurements, the
Fourier components of the signal are located be-
fore the first zero of the sinc-function and are at-
tenuated as can be observed in Fig. 3.

5. Reconstruction of the group delay

A straightforward way of reconstructing the
actual profile of the group delay is to perform
deconvolution of Eq. (6). This operation can be
conveniently done in the Fourier domain

sðxÞ ¼ I�1 smeasðuÞ
sincðxmuÞ

� �
x

; ð10Þ

where I�1 designates the inverse Fourier trans-
form. However, this operation has unpleasant

features: (a) division by zero for some particular
values of u; (b) amplification of the Fourier com-
ponents corresponding to the highest values of u,
which leads to an increase of noise in the recon-
structed profile.

Due to the convolution operation some of the
original information is definitively lost during the
measurements and, consequently, this information
cannot be retrieved. In particular, the distribution
of the Fourier components of the measured signal
relatively to the sinc-function will determine which
part of the information can be retrieved. If most of
the Fourier components are located before the first
zero of the sinc-function, the reconstructed profile
of the group delay will resemble the actual one.
This occurs when low modulation frequencies are
used or the group delay varies slowly with wave-
length. On the contrary, if the Fourier components
of the signal are located after the first zero of the
sinc-function the reconstruction is more difficult.

Nevertheless, if careful processing of the mea-
sured signal is done, a good estimation of the ac-
tual group delay can be obtained. In particular, a
numerical low-pass filter can be applied to the
measured signal to suppress the high frequency
components, which mainly correspond to noise.
The cut-off frequency of this filter depends on the
distribution of the Fourier component of the
measured group delay. A tradeoff should be made
to preserve most of the actual Fourier components
of the signal and to avoid amplification of noise
when dividing by the sinc term. The zero points of
the sinc-function must also be removed before
carrying out the division.

5.1. Fiber Bragg grating

We have applied the method described above to
reconstruct the actual profile of the group delay of
the FBG presented earlier. The measurement data
obtained for 1 GHz, which represent the worst
case since the Fourier components of the signal are
then located in the inversion and attenuation re-
gion of the sinc-function, were used. To avoid the
amplification of the noise when performing the
division by the sinc-function, a numerical low-pass
filter was applied. The normalized Fourier spec-
trum of the 1-GHz measurement and the cut-off
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frequency, xc, of the numerical low-pass filter are
shown in Fig. 5. The spectrum shown in Fig. 5 is
directly obtained from the measurement at 1 GHz
and, consequently, is distorted by the sinc-function
compared to the spectrum shown in the lower part
of Fig. 4.

The reconstructed profile from the data mea-
sured at 1 GHz is plotted as dots in Fig. 6 and it is
in good agreement with the actual group delay
marked with a solid line. The reconstruction
method allows to overcome the decrease and in-

version of sign induced on the ripple amplitude by
the use of high modulation frequencies. The
smoothness of the profile is caused by the low-pass
filtering operation.

5.2. Narrow-band filter

We have also investigated the effects of the
modulation frequency on the group delay of a
filter based on thin films through numerical sim-
ulations. A stack of k=4-thick layers forms the
mirrors and three k=2-layers form the cavities of
the filter. One example of the structure of the thin-
film stack can be presented as: [Glass ðHLÞ9 H 2L
ðHLÞ19 H 2L ðHLÞ19 H 2L ðHLÞ9 H Glass]. Here H
presents the film having a high refractive index
ðgH ¼ 2:1Þ and L presents the film having a low
refractive index ðgLÞ ¼ 1.43). The transmission and
group delay of the filter were calculated using a
matrix method [16]. The method gives a complex
reflectivity and transmissivity of the optical field
through the thin-film stack. The group delay and
the dispersion of the filter can then be calculated
from the phase of these complex coefficients. The
)3-dB bandwidth of the modeled bandpass filter is
�25 GHz. One half of the calculated symmetrical
group delay is depicted in Fig. 7 with a solid line.
The corresponding transmission spectrum is also
plotted in the same figure as a dashed line.

A simulation model of the phase-shift setup was
applied to obtain measurement results. The model
was built with the commercial simulation tool

Fig. 5. Fourier spectrum of the measured group delay at 1 GHz

versus xm=p. The vertical dashed line represents the cut-off

frequency of the filter applied. The cut-off frequency of the

numerical filter was chosen so that xc=p ¼ 2p.

Fig. 6. Reconstruction of the actual group delay of a fiber

Bragg grating using the data measured at 1 GHz. The measured

data and the actual profile are also plotted.

Fig. 7. Reconstruction of the group delay of a narrow-band

thin-film filter. The transmission spectrum of the filter is plotted

as a dashed line.
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GOLD [17]. The simulated setup was similar to the
one used for experimental measurements (see Fig.
1). The simulation program allows for a fast and
simple way of testing the effect of different pa-
rameters, such as modulation frequency, on the
measured value of the group delay. The simulation
was executed for a modulation frequency of 2 GHz
and a wavelength step of 125 MHz. The modula-
tion frequency was selected to match the modula-
tion frequency of commercially available
measurement systems. The measured group delay
obtained from the simulation program is shown in
Fig. 7 as a dotted line. A decrease in the measured
delay near the sharp peak is observed.

To reconstruct the group delay of the compo-
nent, the method described previously was used.
After the reconstruction the height of the peaks in
the original group delay was restored. However, the
reconstruction is not perfect near the edges of the
filter where the transmission of the component
starts to fall off. This is due to the fact that the
phase-shift technique does not measure exactly the
group delay if the transmission exhibits large vari-
ations within the bandwidth of the sinusoidally
modulated signal. The reconstruction of the group
delay for this type of a filter is more straightforward
since most of the Fourier components of the group
delay are located before the first zero and the in-
version region of the sinc-function for the selected
modulation frequency. Since the group delay values
were obtained through numerical simulations, it
was not necessary to low-pass filter the results.

6. Conclusions

In this paper, we have presented a novel method
capable of improving the accuracy of measure-
ments of group delays performed utilizing the
conventional phase-shift technique. Access to the
actual value of the group delay is obtained by
performing a deconvolution of the measured data
with the instrument function of the phase-shift
technique. Considerable improvement of the ac-
curacy may be achieved, especially, when high
modulation frequencies are employed in order to
attain good timing resolution. Furthermore, the
method is applicable to any arbitrary group delay

profile. Low-pass filtering of the measured data
may be necessary to improve the efficiency of the
method.

We have also demonstrated that the instrument
function can be used to explain the observed
modulation-frequency dependent effects on the
group delay. These effects include degradation of
the magnitude of the delay with high modulation
frequencies and inversion of the sign of the am-
plitude.

As an example, we have applied the method to
estimate the error emerging in group delay mea-
surements performed on a chirped FBG using the
phase-shift technique. The error can be evaluated
by calculating the ratio between the period of the
fluctuation of the ripple and the modulation fre-
quency. As a rule of thumb if the modulation
frequency is higher than one-third of the period of
the ripple, then the decrease in the measured am-
plitude of the ripple will be more than 50%. We
have also employed the method to reconstruct the
group delay of a chirped FBG exhibiting large
ripple. The amplitude of the ripple in the actual
delay was accurately reproduced.

Furthermore, we have investigated the effect of
the modulation frequency on the group delay of a
narrow-band filter through numerical simulations.
It was observed that the measured group delay at
the edges of the filter transmission spectrum was
reduced when a high modulation frequency was
used. By applying our method, the amplitude of
the original delay variation could also in this case
be accurately reproduced.
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