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UNIVERSITE DE TECHNOLOGIE D’HELSINKI





JOSEPHSON EFFECTS AND TEXTURAL

DYNAMICS IN SUPERFLUID HELIUM THREE

Janne Viljas

Dissertation for the degree of Doctor of Science in Technology to be presented with due

permission of the Department of Engineering Physics and Mathematics for public examination

and debate in Auditorium F1 at Helsinki University of Technology (Espoo, Finland) on the 4th

of June, 2004, at 12 o’clock noon.

Helsinki University of Technology
Department of Engineering Physics and Mathematics
Low Temperature Laboratory

Teknillinen korkeakoulu
Teknillisen fysiikan ja matematiikan osasto
Kylmälaboratorio



Distribution:
Helsinki University of Technology
Low Temperature Laboratory
P.O. Box 2200
FIN-02015 HUT
Tel. +358-9-451-2968
Fax. +358-9-451-2969
E-mail: Janne.Viljas@hut.fi
This dissertation can be read at http://lib.hut.fi/Diss/

c© Janne Viljas

ISBN 951-22-7008-0
ISBN 951-22-7009-9 (pdf)

Otamedia Oy
Espoo 2004



HELSINKI UNIVERSITY OF TECHNOLOGY
P.O. BOX 1000, FIN-02015 HUT

http://www.hut.fi

ABSTRACT OF DOCTORAL DISSERTATION

Author

Name of the dissertation

Date of manuscript              Date of the dissertation

Monograph                                      Article dissertation (summary + original articles)

Department

Laboratory

Field of research

Opponent(s)

Supervisor

(Instructor)

Abstract

Keywords

UDC     Number of pages

ISBN (printed)           ISBN (pdf)

ISBN (others)           ISSN 

Publisher

Print distribution

The dissertation can be read at http://lib.hut.fi/Diss/

Janne Kalevi Viljas

JOSEPHSON EFFECTS AND TEXTURAL DYNAMICS IN SUPERFLUID HELIUM THREE

24.2.2004 4.6.2004

✔

Department of Engineering Physics and Mathematics

Low Temperature Laboratory

Theoretical low-temperature physics

Prof. James A. Sauls

Prof. Martti M. Salomaa

Prof. Erkki V. Thuneberg

As liquid helium three is cooled to temperatures below 1 mK, it becomes a superfluid. In this state it is able to support 
dissipationless mass supercurrents.  Analogously to what happens for superconducting metals,  when two volumes of the 
superfluid are brought into contact through a "weak link", phenomena known as Josephson effects arise.  These are 
associated with supercurrents which depend periodically on the  difference between the quantum-mechanical phases of the 
superfluid order parameters. However, the order parameter in helium three is far more complicated than that in 
conventional superconductors, and this gives rise to new features in the physics of weak links.

In this thesis we present theoretical and numerical considerations of the Josephson effects and dissipative currents in weak 
links of superfluid helium three, in particular its B phase. We use our results to analyze recent experiments.

In the case of small point contacts, we calculate the equilibrium current-phase relations, as well as the dissipative currents 
due to multiple Andreev reflections when the contact is biased by a pressure head. These calculations are made using 
quasiclassical theory. We take self-consistently into account the effects of microscopically rough surfaces on the order 
parameter, which is important for obtaining quantitatively correct results. For apertures whose sizes are on the order of the 
temperature-dependent coherence length, we compute current-phase relations using Ginzburg-Landau theory. In this case 
we also consider weak links involving the superfluid A phase. Using a hydrodynamical approach to the B phase, we also 
consider large arrays of apertures, where we introduce the new concept of "anisotextural" Josephson effect. This effect 
depends crucially on the presence of the spin-orbit degrees of freedom in the order parameter, and is not possible in 
conventional superconductors. We use this concept to interpret experiments made with array-type weak links, where 
so-called "pi-states" and unexpected dissipation effects were found.

superfluidity, Josephson effect, helium-3, texture, quasiclassical theory
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1 Introduction

This thesis consists of theoretical and numerical studies of the so-called
Josephson effects in weak links of superfluid 3He. The name for these phe-
nomena derives from B. D. Josephson, who first predicted their existence
in tunneling junctions between two superconductors in 1962 [1]. Since their
experimental discovery shortly thereafter, the superconductor Josephson ef-
fects have been extensively studied, and important applications for them
exist [2, 3]. By analogy, similar phenomena should also exist in the low-
temperature superfluid phases of liquid helium [4], as well as in Bose-Einstein
condensed dilute atomic gases [5]. In superfluid 3He they were first observed
in the late 1980’s in experiments by Avenel and Varoquaux in Paris [6–8],
whereas in superfluid 4He evidence of pure Josephson-like behavior was not
seen until very recently [9]. Around the initial experimental discovery of the
effects in 3He, a burst of theoretical calculations already appeared [10–18].
The calculations in this thesis, however, are mostly related to the interpreta-
tion of newer experiments made at Berkeley [19–22] and in Paris [23] which
revealed some unexpected phenomena. These are the so-called “π states”,
and certain features of the dissipative currents observed in the Berkeley ex-
periments. Effects rather similar to the π states are known to exist in su-
perconducting weak links between unconventional superconductors [24–26],
and in the presence of spin-active interfaces [27], for example. These are
also related to what are known as “π junctions” [28]. Soon after the Berke-
ley experiments, analogous theoretical ideas were applied to the case of 3He
as well [29]. In addition to generalizing the calculations of Ref. [29] some-
what, we have analyzed the Berkeley data on the π states and the dissipation
phenomena by using a more 3He-specific concept which we call an “aniso-
textural” effect. This is the central concept of this thesis. Other theoretical
work related to the same experiments have been presented in Refs. [30–34].

In contrast to their superconductor cousins, no practical applications for
the superfluid Josephson effects exist, although some progress has been made
in using them in superfluid gyroscopes [35, 36]. Nevertheless, in view of
basic science, the case of superfluid 3He provides a very interesting topic for
research, as also this thesis aims to demonstrate.

1.1 Superfluid 3He

The atoms in liquid 3He are neutral spin-1/2 fermions. At temperatures T
much lower than the Fermi temperature TF this many-body system becomes
a strongly degenerate quantum liquid with a well-defined Fermi surface. This
is known as a Fermi liquid [37]. At normal pressures the liquid never solidifies.
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Figure 1: Phase diagram of 3He in zero external magnetic field.

Instead, below a critical temperature Tc ≈ 1 mK the Fermi surface becomes
unstable, and the system undergoes a phase transition into a superfluid state
where the atoms form Cooper pairs, much like the conduction electrons in
superconducting metals do [38]. However, whereas in conventional supercon-
ductors the pairs have spin S = 0 and relative angular momentum L = 0
(singlet s wave) [3], in 3He they have S = 1 and L = 1 (triplet p wave). The
pairing state is described by the gap matrix

∆(k̂) =∆(k̂) · σiσy =
[

−∆x + i∆y ∆z

∆z ∆x + i∆y

]

, (1)

where σα with α = x, y, z are the Pauli matrices, ∆(k̂) is a complex-valued
spin vector, and k̂ parametrizes its angular dependence of positions on the
spherical Fermi surface [38]. The quantity |∆(k̂)| is called an energy gap,
and it is the minimum energy per particle needed for creating a quasiparticle
excitation at the position k̂. Since the angular part should correspond to
L = 1 pairs, ∆(k̂) may be represented in the form

∆µ(k̂) =
∑

i=x,y,z

Aµik̂i, µ = x, y, z. (2)

The matrix formed by the nine complex coefficients Aµi is usually referred
to as the order parameter of the superfluid state.
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In the absence of external magnetic fields, there are two stable bulk phases
in which the superfluid can exist: the A phase and the B phase, see Fig. 1.
The A phase corresponds to

Aµi = ∆Ad̂µ(m̂i + in̂i) (A phase), (3)

where d̂, m̂, n̂ are unit vectors, with m̂ ⊥ n̂. The vector l̂ = m̂× n̂ describes
the direction of the angular momentum of the pairs, while d̂ is in a direction
along which their spin vanishes. In this case ∆ may be diagonalized such that
the condensate only consists of equal amounts of Sz = ±1 (↑↑ and ↓↓) pairs.
The energy gap |∆(k̂)| is anisotropic, vanishing for k̂ ‖ l̂. The B phase, on
the other hand, has

Aµi = ∆Be
iϕRµi(n̂, θ) (B phase). (4)

Here R(n̂, θ) is a rotation matrix between the spin and orbital degrees of
freedom, where n̂ and θ are its rotation axis and angle, respectively. The B
phase contains all Sz = 0,±1 (↑↓ + ↓↑, ↑↑, and ↓↓) pairs in equal amounts,
and has an isotropic gap |∆(k̂)| = ∆B ≡ ∆. In this thesis I mostly concen-
trate on this phase, whose stability region covers most of the phase diagram
in the superfluid state at zero external magnetic field. Calculations involving
the A phase are reported only in publications [P3] and [P4].

Equations (3) and (4) are only valid in the unperturbed bulk liquid. Close
to solid surfaces collision processes lead to breaking of Cooper pairs and thus
to a suppression of the order parameter [39, 40]. Close to a planar wall the
B-phase order parameter is more generally of the form [P2]

∆(k̂, z) = eiϕR(n̂, θ)[∆‖(z)k̂x,∆‖(z)k̂y,∆⊥(z)k̂z]
T , (5)

where the z axis is chosen perpendicular to the wall. The components ∆‖

and ∆⊥ are shown in Fig. 2 for smooth (specular) and microscopically rough
(diffusive) surfaces. Often the gap-suppressing effect of the wall is neglected
to simplify calculations, but we have taken it self-consistently into account
in all of our numerical work.

1.2 Hydrostatic theory of the B phase

Physically, the superfluid state is manifested in the existence of supercurrents,
i.e., currents which can flow without viscosity. For example, a persistent
current may be established around a toroidal container, which does not decay
provided that the temperature T is kept below Tc. Since the 3He atoms
are neutral, the properties of superfluid 3He are in some respects similar to
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length (see below).

an extreme type-II superconductor where the magnetic screening length is
infinite [3]. In particular, the supercurrents can flow everywhere in the bulk
liquid and are not restricted to the boundaries of the sample. A simple,
phenomenological way to describe the superfluid is the so-called two-fluid
model [37]. In this model the fluid, with total mass density ρ, is divided into
two interpenetrating components which have their own separate dynamics.
These are the superfluid (with density ρs and velocity vs) which corresponds
to the Cooper-paired condensate, and the normal fluid (with density ρn and
velocity vn) consisting of thermal quasiparticle excitations. The total mass
densities satisfy ρ = ρs+ρn, and the current density is given by j = js+ jn =
ρsvs + ρnvn. For the B phase, ρs is isotropic.

In equilibrium, the normal fluid is at rest, and it is often sufficient to
consider the superfluid part alone. The superfluid velocity vs is given by the
gradient of the complex phase ϕ of the order parameter, such that

js = ρsvs

vs = (~/2m3)∇ϕ,
(6)

where ~ is Planck’s constant h divided by 2π andm3 is the mass of a 3He atom
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[38]. Due to triplet pairing, there can also exist so-called spin supercurrents
[41]. These are currents where the “↑↑ and ↓↓” parts of the condensate flow
in opposite directions, creating a magnetization current in the absence of
net mass transport. Analogously to Eqs. (6), the spin current jspα and spin
velocity vspα for spin projections α = x, y, z are obtained from

jspαi = ρspαβ,ijv
sp
βj

vspα = −(~/4m3)εαβγRβj∇Rγj,
(7)

where (as always below) summation over repeated indices is implied. The
“spin superfluid density” is of the form ρspαβ,ij = [ρsp1 δαβδij + ρsp2 RαiRβj +
ρsp3 RαjRβi] [42]. To leading order in the gradients, the kinetic energy of the
fluid (assuming vn = 0) may be written as

FG =
1

2

∫

d3r[ρsv
2
s + ρspαβ,ijv

sp
αiv

sp
βj]. (8)

One important thing to note here is that, in this order of approximation, the
mass and spin currents are decoupled.

This type of large-scale description of the superfluid in terms of the “soft
degrees of freedom” ϕ and R, assuming the amplitude of ∆ to be constant,
belongs to the field of hydrodynamic theory [38]. In publications [P1] and
[P2], we only consider it in the stationary limit where it reduces to the much
simpler theory of hydrostatics [43]. Regions where ∆ is locally suppressed
or where its bulk form is modified enter the hydrostatic theory only through
boundary conditions or phenomenological interaction terms for R. These
involve many coupling constants whose values may be calculated from lower-
level theories such as the quasiclassical theory [42]. In publication [P2], we
have used this method to calculate some of the surface-interaction parame-
ters. Two of them are b2 and b4 in the surface-dipole energy

FSD =

∫

d2r[b4(n̂ · ŝ)4 − b2(n̂ · ŝ)2], (9)

where ŝ is the surface normal. They are obtained as by-products of computing
the order parameters of Fig. 2 [43]. Previously they have been known in the
Ginzburg-Landau (GL) regime only, i.e., for T close to Tc. We also note the
form of the bulk dipole-dipole interaction

FD = 8gD∆
2

∫

d3r

(

1

4
+ cos θ

)2

. (10)

The minimum of this energy corresponds to θ = θL ≡ arccos(−1/4) ≈ 104◦,
which is the so-called “Leggett angle” [41]. We always assume θ = θL, unless
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otherwise stated. In this case the spin part of the theory reduces to an analy-
sis of the vector field n̂. Since different walls, for example, may favor different
orientations of n̂, the vector field generally forms complicated textures in the
experimental cell. In the absence of external magnetic fields FSD is usually
the only important surface interaction, and the texture is determined by a
competition between its minimum (where n̂ ‖ ŝ on all surfaces) and that
of FG (where n̂ is uniform). Similar textural phenomena are found in the
physics of liquid crystals.

1.3 Basic concepts of superfluid weak links

When the superfluid is forced into small restricted geometries with dimen-
sions approaching the temperature-dependent coherence length ξGL(T ), hy-
drodynamic theory begins to fail. A superfluid weak link is a constriction in
a wall between two volumes of superfluid, which is so small that the order
parameter is partially suppressed inside it. Thus at least one of the dimen-
sions of the constriction (in the plane of the wall) must be on the order of
ξGL = ~vF/(

√
10∆) ∼ (1 − T/Tc)

−1/2, or the zero-temperature coherence
length ξ0 = ~vF/(2πkBTc) ∼ 15 . . . 80 nm when T ¿ Tc . Here vF is the
Fermi velocity and kB is Boltzmann’s constant. If such a weak link is biased
by a difference φ = ϕr − ϕl of the order parameter phases ϕl,r on the left
(l) and right (r) sides, then most of the phase drop occurs within the short
distance inside the constriction. It is not possible to maintain an arbitrarily
large phase difference φ, since in small constrictions phase slips occur easily.
A phase slip is a process where the order parameter tends locally to zero,
at which point its complex phase is undetermined and thus the system may
“unwind” a multiple of 2π from φ. In larger flow channels this happens via
the motion of quantized vortices across the flow. The maximum supercur-
rent which may be driven through the weak link before such dissipative phase
slips occur is referred to as the critical current. The term Josephson junction

is usually reserved for superconductor weak links with tunneling barriers [2],
but is often used in the context of 3He as a synonym for weak link.

The coupling through the weak link leads to a change in the free energy
of the system. For the B phase in zero magnetic field this coupling energy
may be written in the form [P1, P2, P3]

FJ = FJ(φ, ψij), ψij = Rl
µiR

r
µj, i, j = x, y, z. (11)

As for conventional superconductors, FJ depends on the phase difference
φ [3]. However, in 3He it also depends on the spin-orbit rotation matrices Rl,r

in a way which is invariant with respect to global spin rotations. Thus, unlike

6



in hydrostatic theory, the weak link leads to a nonlinear coupling between
the phase and spin-orbit degrees of freedom, and hence between the mass
and spin Josephson currents through the weak link. The mass supercurrent
is given by

Js =
2m3

~
∂FJ
∂φ

(12)

and the spin supercurrent by [P2, P3]

Jspα = εαβγR
l
βiR

r
γj

∂FJ
∂(Rl

µiR
r
µj)

, α = x, y, z. (13)

The φ-dependences FJ(φ) and Js(φ) are generally referred to as the energy-
phase relation (EPR) and the current-phase relation (CPR). They are 2π-
periodic in φ and single-valued for small enough weak links. Publications
[P1], [P2], [P3] and [P4] concentrate on studying these functions in equilib-

rium. A nonequilibrium situation is obtained if the weak link is biased by
a pressure head P . This results in a relative shift between the chemical po-
tentials µl,r given by U = µl − µr = (m3/ρ)P . (The two sides are assumed
to be in good thermal contact. A temperature difference would give rise to
additional phenomena [44].) Consequently, φ evolves in time according to
the ac Josephson relation [3]

dφ

dt
= +

2U

~
. (14)

Thus for a constant bias φ(t) = ωJt, where ωJ = 2m3P/(ρ~) is the Joseph-
son frequency. Therefore the supercurrents Js and J

sp
α oscillate periodically,

with the period TJ = 2π/ωJ . However, in general also energy-dissipating dc
currents are generated, which have a finite average over TJ . The associated
current-pressure (I − P ) characteristics provide another useful way of char-
acterizing weak links. Below we describe two mechanisms for such currents.
One is the process of multiple Andreev reflections (MAR) and the other is
due to what we call an anisotextural Josephson effect [P2]. The latter follows
from the coupling of φ and ψij in geometries where the texture is not fixed.
The dissipative currents are the subject of papers [P5] and [P6].

1.4 Experiments with superfluid weak links

Experimental studies of Josephson effects in superfluids are usually based on
some variants of a “membrane-aperture oscillator” [45]. Mainly two kinds
of cell topologies have been used, as illustrated in Fig. 3. In both cases the

7
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Figure 3: Schematic representation of two types of “membrane-aperture os-
cillator”. In configuration (a) the two volumes of superfluid are only con-
nected via the weak link (×). In configuration (b) there is an additional flow
path in parallel with the weak link. The symbols are explained in the text.

cell consists of two volumes of superfluid connected by a weak link, where at
least one of the volumes has a flexible membrane which may be used to drive
and/or measure mass currents flowing through the weak link. The simply-
connected configuration (a), where two volumes of superfluid are connected
through the weak link but not otherwise, was already used in the earliest
attempts to find the Josephson phenomena [46]. It was also used in the ex-
periments done at Berkeley with whose interpretation this thesis is mostly
involved [20]. The doubly-connected configuration (b) was used in the ex-
periments of Refs. [6–9,23,35,36].

In configuration (a) the current-phase relation Js(φ) has been determined
as follows [45]. Let ρ be the density of the liquid and P the relative over-
pressure on the membrane side. Assuming the compressibility of the fluid
to be negligible, a displacement x(t) of the membrane of area Am causes a
current Jm = Amρẋ to flow, which must pass through the weak link so that
Js(t) = Jm. On the other hand, P (t) may be related to the stiffness k of the
membrane by equating forces kx = AmP , and to time evolution of the phase
difference φ(t) through the ac Josephson relation φ̇(t) = 2m3P/(ρ~). Thus
by measuring x(t) as the membrane is driven to larger-amplitude oscillations,
one obtains Js(t) by differentiation and φ(t) by integration, and then Js(φ)
by eliminating the time t. To describe the energy (or mass) storing property
of the membrane one often defines a hydrodynamic capacitance

C = A2
mρ

2/k, (15)

so that Jm = CṖ/ρ and the energy Fm = C(P/ρ)2/2 [45]. We also note
that Eq. (12) yields the differential dFJ = (~/2m3)Js(φ)dφ. Therefore, if

8



Js(φ) is single-valued (i.e., non-hysteretic), the energy of the weak link may
be obtained with

FJ(φ) =
~

2m3

∫ φ

0

Js(φ
′)dφ′ (16)

up to an integration constant. By writing dFJ = Lw(φ)Js(φ)dJs, the Joseph-
son coupling may be also described by the hydrodynamic inductance [45]

Lw(φ) = κ0/[2πJ
′
s(φ)], (17)

which is nonlinear in φ. For small φ the combination of C and Lw(φ) form
a linear LC circuit. This means that the system can undergo harmonic
oscillations around the minimum of FJ(φ) at φ = 0 with the plasma frequency
ωw = 1/

√

Lw(0)C [47]. In Ref. [20] it was found that when this oscillator was
slowly driven to larger-amplitude deviations from φ = 0, it could suddenly
become trapped in a state where similar stable oscillations seemed to occur
around φ = π. Thus FJ(φ) had a minimum also at this point, now known as
a π state. In these experiments, a weak link consisting of an array of parallel
apertures was used. Also measurements of the I − P characteristics under a
constant pressure bias have been made in the cell configuration (a) [19,22,48].
The above analysis neglected the dissipative currents, assuming them to be
small.

In configuration (b) there exists an additional flow channel in parallel
with the weak link, so that a closed superfluid loop may be drawn around a
path containing the weak link. In an inertial frame, the circulation κ around
the loop is quantized according to κ =

∮

vs · dr = κ0n, where κ0 = h/2m3

is the quantum of circulation in 3He and n is an integer [38]. If the loop is
put into rotation with the rotation field Ω (typically the angular frequency
of the Earth), then in the rotating frame vs → ṽs = vs − Ω × r and the
circulation becomes κ̃ = κ−2Ω ·Sloop, where Sloop is the directed area of the
loop. There exists an analogy here with a superconductor loop placed in a
magnetic field, where 2Ω plays the role of the field and κ that of magnetic
flux. This allows the junction to be phase-biased in a controllable way [9,23].
Suppose the loop has a total length l and an effective cross-sectional area Al.
The hydrodynamic inductance Ll of the flow path is then defined as

Ll = l/(ρsAl), (18)

such that the kinetic energy is Fl = LlJ
2
l /2, where Jl = Alρsvs and vs is the

superfluid velocity. Now if the membrane is driven to oscillation with a large
amplitude, then the current through the weak link may be neglected and
the system of the membrane and the parallel flow path forms a classical hy-
drodynamic oscillator (a “Helmholtz resonator”) with the natural frequency
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ωl = 1/
√
LlC. However, in general one must consider the weak link and

the flow path together as a parallel combination of two inductances, with
the total inductance L(φ) = Lw(φ)Ll/[Lw(φ) + Ll]. Defining the resonance
frequency ω = 1/

√
LC, one finds (ω/ωl)

2 − 1 = Ll/Lw(φ) and [23]

(2πLl/κ0)J
′
s(φ) = (ω/ωl)

2 − 1. (19)

Thus the derivative of Js(φ) is directly obtained by measuring the local φ-
dependent resonance frequency. The phase bias φ itself may be determined
as follows. If we define φ̃loop = 2π(κ̃/κ0) then we see that conservation of the
supercurrents requires

(2πLl/κ0)Js(φ) = φ̃loop − φ (20)

and a comparison of Eqs. (19) and (20) yields dφ = (ωl/ω)
2dφ̃loop. Now

noting that φ̃loop = φloop − (2π/κ0)2Ω · Sloop where φloop = 2π(κ/κ0), it is
seen that φ̃loop may be controlled by changing the flux 2Ω · Sloop by, for
example, re-orienting the cryostat. Measuring the resonance frequency ω for
several angles of the cryostat then yields φ by integration. This first yields
J ′
s(φ), and then Js(φ) by another integration [9, 23]. Using this method, π

states [J ′
s(π) > 0] have been observed also in a single aperture [23]. From

the above discussion it follows that configuration (b) may also be used as a
sensitive gyroscope, i.e., a sensor of rotation [35,36].

From a theorist’s point of view it is most convenient to make calculations
for very small holes in very thin membranes. However, there are several
practical difficulties which complicate the creation of small enough (∼ 10
nm) holes in most materials [49]. A thin membrane is also difficult to make
robust enough for it would be leak-proof when a pressure bias is applied
over it. This limits the I − P measurements to rather low biases. Even
if these difficulties may be overcome, the uncharged mass current can only
be measured by mechanical means (by observing the small displacements of
a membrane) which are sensitive to mechanical noise sources. This requires
that if the holes are to be small, then there must be many of them to obtain a
measurable current. This is the main reason for using arrays of apertures as
the weak links in most of the experiments done at Berkeley, and more recently
also in Paris and Bayreuth [50]. It has been experimentally demonstrated
that such an array may work coherently enough to be described as a single

weak link [51]. Yet, as shown in publications [P1], [P2] and [P6] of this thesis,
aperture arrays also bring about new kinds of phenomena in the form of the
so-called anisotextural effect.
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Figure 4: Two different quasiparticle trajectories through a pinhole aperture:
a direct and a scattered one. The quasiparticles travel on these classical
trajectories with the Fermi velocity vF .

2 Classical point contacts

Theoretically the simplest way to describe a 3He weak link is with the so-
called pinhole model of a short classical point contact [15, 52, 53]. The term
“pinhole” here refers to the thickness of the wall W and the diameter D of
the weak link being much smaller than the zero-temperature coherence length
ξ0 = ~vF/(2πkBTc), see Fig. 4. This allows spatial variations inside the hole,
and its feedback effects in the bulk to be neglected. “Classical” means that
D is still much larger than the Fermi wavelength λF so that quantization
of the transverse modes may be neglected. Superfluid 3He is naturally pure
so that the elastic mean free path ` À ξ0. If also W/D ¿ 1, then quasi-
particle motion through the contact is completely ballistic. For studies of
the pinhole model we use the theory of quasiclassical Green’s functions [42].
Adding some further simplifications, the model often makes analytical solu-
tions possible, and below we consider some of the basic results thus obtained.
Numerical calculations taking into account the gap-suppression effect of Fig.
2 are presented in publications [P2] and [P6].

2.1 Coupling energy

In publication [P2] we considered the derivation of the coupling energy of the
pinhole junction in equilibrium. Often FJ(φ) is simply integrated from Js(φ)
with Eq. (16). However, the unknown integration constant may depend on
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Rl,r, and therefore Eq. (16) does not necessarily give the relative energies
between different Rl,r-branches correctly. This is especially important when,
as in the anisotextural case to be discussed below, Rl,r may change as a
function of φ. In any case, it is theoretically interesting to derive the energy
of the junction independently of the currents.

The derivation is very similar to the quasiclassical handling of small im-
purities [42]. The coupling energy is defined as the free-energy difference
between an open and a closed pinhole, the role of the impurity being played
by the scattering potential used for doing the closing. Apart from constant
terms independent of φ and Rl,r, the energy is of the form [P2]

FJ = −π
2
S~vFN(0)kBT

∑

εm

∫

dΩk̂

4π
|k̂z|

×
〈

ln

{

Det4
1

2

[

ĝ(k̂,0l, εm)− ĝ(k̂,0l, εm)
]

}〉

,

(21)

where S is the area of the pinhole and N(0) = m∗2vF/(2π
2~3) is the normal-

state density of states, m∗ being the effective quasiparticle mass. The 4× 4
matrix ĝ(k̂,R, εm) is the quasiclassical Nambu-matrix propagator [42] close
to the open pinhole. It is in the Matsubara representation with the Mat-
subara energies εm = πkBT (2m + 1), m = 0,±1,±2, . . ., and we use the
normalization ĝĝ = −1̂. The position R = 0l denotes the one immediately
to the left of the junction, and the reflected direction k̂ may be chosen as
k̂ = −k̂. The symbolic average 〈· · · 〉 is over all trajectories hitting the pin-
hole in direction k̂. Equation (21) is valid for any superfluid system for which
the quasiclassical theory is valid, not only 3He. However, in publication [P2]
the energy was further simplified only in the case of a pinhole between two
volumes of 3He-B. It was shown that Eq. (21) is consistent with Eqs. (12)
and (13) when the mass supercurrent is calculated from

js(R) = 2m3vFN(0)πkBT
∑

εm

〈k̂Tr g(k̂,R, εm)〉k̂/2 (22)

and the spin supercurrent from

jspα (R) = ~vFN(0)πkBT
∑

εm

〈k̂Tr[σαg(k̂,R, εm)]〉k̂/2. (23)

Here 〈· · · 〉k̂ =
∫

(dΩk̂/4π)(· · · ) is a Fermi-surface average, and g is the
“upper-left” spin matrix of ĝ [42].

In publication [P2] we have also modeled the effect of a finite ratio W/D
by simple statistical distributions for the directions of quasiparticles which
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have scattered from the surface inside the contact (see Fig. 4). It was ex-
pected that this could lead to the presence of π states (minima of FJ at
φ = π) even for Rl = Rr, which is otherwise not possible for a single pin-
hole [29]. However, no significant qualitative differences to the W/D = 0
case were found.

2.2 Superfluid state in equilibrium

Let us now consider the equilibrium mass currents in a B-phase pinhole with
W/D = 0. Neglecting the suppression of the order parameter, we assume Eq.
(4) to be valid all the way to the wall on both (l and r) sides, and define the
unit vectors d̂l,r(k̂) = Rl,rk̂. If, for each k̂, we choose the spin quantization
axis parallel to d̂l × d̂r, the condensate may be divided into ↑↑ and ↓↓ parts
which behave much like two independent s-wave systems [29]. Their phase
differences over the contact are given by φk̂.σ = φ − σχk̂, where σ = ±1,
φ = ϕr − ϕl, and χk̂ = arccos(d̂l · d̂r). Inside the junction, there are bound
quasiparticle states whose energies depend on φ. As discussed in publication
[P5], they are

εk̂,σ(φ) = − Sign(k̂z sin(φk̂,σ/2))∆ cos(φk̂,σ/2), σ = ±1, (24)

where the z axis points from l to r. These states may be interpreted as
carrying the supercurrent over the contact via the process of Andreev reflec-
tion [54]. The expression for the particle supercurrent is [29]

I(φ) =
π

2
vF∆N(0)S

∑

σ=±1

〈

|k̂z| sin(φk̂σ
/2) tanh

(

∆cos(φk̂,σ/2)/2kBT
)〉

k̂
.

(25)
For suitably chosen matrices Rl 6= Rr a cancellation between the k̂-averaged
sin(φk̂,σ) components of the currents for σ = ±1 may lead to the formation
of π states [I ′(π) > 0] of the type suggested by Yip [29], and even an exactly
π periodic I(φ). Physically, Rl,r may be controlled with magnetic fields, for
example. These ideas have been further considered in Ref. [33].

When the suppression of the order parameter at solid surfaces (Fig. 2), is
taken into account, there will be some modifications to the bound states and
the current-phase relation, which can only be calculated numerically. This
we have done in publications [P2] and [P6]. Figure 5 shows the bound-state
peaks in the k̂-dependent density of states Nσ(k̂, ε) as a function of φ for
both the σ = ±1 spin bands inside the junction for a one k̂ direction and
temperature when −n̂l = n̂r = ẑ. For the case with no gap suppression, the
two spin-split states are simply given by Eq. (24). In the case of the diffusive
wall, the numerical diagonalization of the upper-left spin matrix gR(k̂, ε) of
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Figure 5: Bound quasiparticle states for −n̂l = n̂r = ẑ, k̂z = 0.93 and
T/Tc = 0.6, as represented by a gray-scale contour plot of the peaks in the
density of states. (The width of the peaks is proportional to the inverse
quasiparticle lifetime Γ, which appears as an imaginary part in energies —
see below. Here it is given a large arbitrary value for purposes of illustration.)
The left-hand figure corresponds to Eq. (24), and the right-hand one to the
case where suppression of the order parameter has been taken into account.
The states for σ = 1 (σ = −1) spin band are those shifted to the left (right)
from the middle.

the retarded Nambu matrix ĝR has been done for each energy separately
and Nσ(k̂, ε) = −N(0) Im gRσσ(k̂, ε) when the normalization ĝRĝR = −1̂ is
used [42]. It is seen that the spin-splitting remains qualitatively similar, but
the φ-dependence is not so steep, so that there in fact exist two bound states
at the same time for given k̂, φ and σ. Also, the splitting angle is now
energy-dependent.

2.3 Normal state with bias: Sharvin’s conductance

Next consider two volumes of normal fluid 3He which are connected by the
same pinhole as above, but now biased by a pressure head P , or chemical
potential difference U = (m3/ρ)P . The particle current I through the contact
is then linear in the pressure, like Ohm’s law, so that I = GNU , where

GN =
1

2
vFN(0)S. (26)

The constant GN is usually called Sharvin’s conductance [55]. The cur-
rent may be thought to arise from a ballistic “effusion” of the quasiparticles
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coming from the l and r equilibrium distributions (see Fig. 4) close to the
Fermi energy, which on one side is shifted upward by U [56]. The quantity
2vFSN(0)Uk̂z is the net flux of particles coming from direction k̂, and Eq.
(26) follows from an average over k̂z > 0. Another way to arrive at this result
is to use Landauer’s formula for the conductance of mesoscopic contacts [57].
The conductance of each transverse mode is 2/h such that the total con-
ductance is GN = (2/h)M , where M is the number of conducting modes.
Calculating M for the ballistic classical point contact yields M = Sk2

F/(4π),
where kF = 2π/λF = (m∗/~)vF , and thus Eq. (26) again follows.

2.4 Superfluid state with bias

Finally, when the pinhole in the superfluid state is biased by the chemical po-
tential difference U = (m3/ρ)P , the calculation becomes considerably more
difficult. In this case there will be a dissipative dc current due to the process
of multiple Andreev reflections (MAR), which has been thoroughly investi-
gated in both ballistic and diffusive superconductor junctions [58–63]. In
the case of superfluid 3He it seems to have been systematically considered in
publications [P5] and [P6] for the first time. The basic idea is that in a junc-
tion with non-tunnel conductivity also the superfluid part may contribute
to the time-averaged current, since the energy of the transported Cooper
pairs can be absorbed by the quasiparticles in the sub-gap bound states in-
side the contact, Fig. 5. For each Cooper pair, a quasiparticle performs one
back-and-forth Andreev reflection, during which it gains the energy 2U , and
this happens repeatedly. This process is illustrated schematically in Fig. 2
of paper [P5]. The only way for the quasiparticle to escape from the MAR
cycle is to gain enough energy to reach the gap edge after ∼ ∆/U reflec-
tions, or to scatter inelastically. Whereas in superconductors the dominating
inelastic process is quasiparticle-phonon scattering, for 3He the only impor-
tant process is quasiparticle-quasiparticle collisions. Inelastic processes are
important at very low biases, since then the scattering rate Γ restricts the
number of reflections to ∼ ∆/(~Γ), and thus limits the amount of current.
The number of successive reflections may still be very large, and the dc cur-
rents are typically orders of magnitude larger than in the normal state with
equal bias.

For a constant bias the total particle current may be expanded as [60]

I(P, t) = I0(P ) +
∞
∑

m=1

[ICm(P ) cos(mωJt) + ISm(P ) sin(mωJt)], (27)

where I0 is the dc current, while ICm and ISm are the amplitudes for oscillating
(super)current components. The calculation of these quantities requires the
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use of quasiclassical nonequilibrium (or Keldysh) formalism [42]. For this
task we use the parametrization of the Green functions with the so-called co-
herence functions, or Riccati amplitudes γR,A [64], which may be interpreted
as Andreev-reflection amplitudes [62]. If we write the particle current thus
obtained as

I(P, t) = GN〈|k̂z|I(k̂, t)〉k̂ (28)

and expand the TJ -periodic function I(k̂, t) in Fourier components I(k̂, t) =
∑∞

m=−∞ Im(k̂)e
imωJ t then, neglecting gap suppression [P5]

Im(k̂) =2Uδm0 + 2 cos(mχk̂)P
∫ ∞

−∞

dε tanh(ε/2kBT )

× (1− |γR(ε)|2)
∞
∑

l=0

l
∏

q=1

|γR(ε− qU)|2
l+2m
∏

p=l+1

γR(ε− pU).
(29)

Here γR(ε) = −∆/(εR + i
√

∆2 − (εR)2), εR = ε + i(~Γ/2), Γ(ε) is the relax-
ation rate due to quasiparticle collisions. (Their effect on ∆ is neglected.)
The quantity |γR(ε)|2 is an Andreev-reflection probability, which is close to
unity for |ε| < ∆, and the index l is the number of successive reflections.
Equation (29) generalizes the s-wave result of Ref. [62] for the p-wave case
of 3He-B. From this it follows, among other things, that the I0 current is
completely independent of Rl,r.

For small biases, U ¿ ∆, one may also describe the current in terms of
the occupation of the adiabatically moving bound states εk̂,σ(φ). The current
may then be written as

I(P, t) = 4πGN

∑

σ,δ=±1

〈

k̂z
dεδk̂,σ[φ(t)]

dφ
pδk̂,σ[φ(t)]

〉

k̂z>0

, (30)

with 〈· · · 〉k̂z>0 =
∫

k̂z>0
(dΩk̂/4π)(· · · ), δ = Sign(k̂z). The distribution func-

tion pk̂,σ[φ(t)] satisfies a kinetic equation of the form [62]

dpk̂,σ[φ(t)]

dt
= Γ(ε)

{

f(ε)− pk̂,σ[φ(t)]
}

, (31)

where f(ε) = (1−tanh(ε/2kBT ))/2 is the equilibrium Fermi distribution, and
ε = εk̂,σ[φ(t)]. The boundary conditions on this equation are set by thermal-
ization of the bound states at the gap edges [62]. In equilibrium pk̂,σ = f(ε)
and Eq. (30) reduces to Eq. (25). The kinetic-equation approach is further
discussed in publication [P6]. At least in principle, the gap-suppression ef-
fect of Fig. 2 may also be taken into account by replacing εk̂,σ(φ) with the
numerically evaluated bound-state energies, see Fig. 5.
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For U ¿ ~Γ Eq. (31) is not difficult to solve. The resulting I − P curve
is linear and given by

I0 = g(T )
∆

~Γ(0)
GNU, (32)

where the temperature factor g(T ) =
∫ 1

−1
tanh(∆x/2kBT )(x/

√
1− x2)dx.

At low temperature ∆/(~Γ) À 1 so that the slope of the I − P curve is
a lot steeper than in the normal state. In the experiments of Ref. [22] the
condition U ¿ ~Γ is well satisfied, and Eq. (32) indeed accounts for the
orders of magnitude of the observed currents [P5, P6]. However, Eq. (32) is
not enough to explain the experiments of Ref. [22], since there the dissipative
current is found to be nonlinear and to depend on the texture. Furthermore,
MAR is not the only conceivable model which gives a linear current of similar
magnitude [22,65].

In publication [P6] we also report of detailed numerical calculations of
the amplitudes in Eq. (27), where we take self-consistently into account the
gap-suppression effect at the walls. While ICm and ISm depend strongly on Rl,r

and whether or not the gap suppression is included, the independence of I0

on Rl,r is approximately true also in general. The overall behavior of I0(P )
is very similar to what is seen in experiments with single apertures [19],
although the apertures in question did not satisfy the requirements for a
pinhole. In the limit U ¿ ~Γ the current I0 is also still well described by
Eq. (32), where only the numerical value of g(T ) is slightly modified. Thus
even the gap-suppression effect cannot resolve the differences between the
experimental observations and the prediction of MAR theory for pinholes.
To explain them, we employ the concept of anisotextural Josephson effect,
explained below in Sec. 4.

In principle, the quasiparticle relaxation rate Γ(ε) could be calculated
from the collisional self energy [42]. However, we always estimate its magni-
tude from normal-state measurements which yield Γ−1 ∼ 1 µs(mK/T )2 [38].
Since the gap is suppressed close to the contact, we expect this to give a
reasonable estimate also in the superfluid state, at least at the low energies
which are involved when U ¿ ~Γ.

17



Rc

D

z

x

W

y

Rc
L

D

W

z

x

y

Figure 6: Calculations were made for a round aperture in 3D (left) and for
a 2D model of a long slit-like aperture (right).

3 Supercurrents in large apertures

In publications [P1], [P3] and [P4] we have reported results of extensive
Ginzburg-Landau (GL) simulations of stationary superflow in apertures with
dimensions on the order of the GL coherence length ξGL(T ) = ~vF/(

√
10∆).

These represent an extension of the two-dimensional (2D) calculations re-
ported already in Ref. [14]. However, we also carried out some fully three-
dimensional (3D) simulations — the geometries are shown in Fig. 6. In the
2D simulations we studied, in addition to B phase weak links (BB), also weak
links between two volumes of A phase (AA) and cases where there is A phase
on one side and B phase on the other (AB). In all the BB, AA, and AB junc-
tions the critical currents were mapped as functions of the wall thickness W
and the diameter or slit width D, and phase diagrams for different types of
solutions were constructed. We have always assumed all solid surfaces to be
diffusely scattering, which, in the GL region (T ≈ Tc), amounts to imposing
the boundary condition Aµi = 0 for µ, i = x, y, z at the surfaces. Up to some
cutoff around the aperture, all nine complex components Aµi were allowed
to vary freely in minimizing the GL energy functional [P3].

3.1 Calculations for the B phase

For publication [P1], we carried out a 3D simulation of a “round” aperture
(Fig. 6) and demonstrated that there exists a solution of the GL equations

18



0 1 2 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

η / πφ / π

m
as

s 
cu

rr
en

t

0 1 2 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

η / πφ / π

m
as

s 
cu

rr
en

t

Figure 7: Current-phase relations (in arbitrary units) for two junctions with
W/ξGL = 2 where n̂r = ẑ and n̂l is tilted from ẑ around the y axis by angle
η = 0.0, 0.2π, . . . , 0.8π. The upper panel is for D/ξGL = 4 and the lower one
for D/ξGL = 2. Hysteresis is present only in the former, where also stronger
π states exist. The range of φ for each η is from 0 to 2π, the leftmost curves
corresponding to η = 0. Here the slope of the CPR on the “π branch” for
η = 0 is negative, but a positive value is possible for larger D, as in [P1].

for the phase difference φ = π, where the current-phase relation (CPR) has
a positive slope: J ′

s(π) > 0. Thus this state was another example of a
metastable π state, of the type observed in Ref. [20]. The solution is similar
to the one inside a B-phase double-core vortex [66], so that the π state may
be thought to have formed through a phase slip by a half-quantum vortex.
Unlike the π states related to Eq. (25), this one could exist for parallel spin-
orbit rotation axes n̂l = n̂r [P1]. However, the calculation was restricted to
the parallel case only. The CPR was found to be strongly hysteretic and the
π branch was not even clearly a local minimum of the energy-phase relation
at φ = π. Thus the experimental accessibility of this π state remained
questionable.

For publication [P3] we made similar calculations with a 2D model of a
“slit-like” aperture, where the height L of the slit is much larger than the
width D — see Fig. 6. This time we could use any rotation matrices Rl,r

as boundary conditions. Also in this case the π branch was inaccessible for
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Figure 8: Example of a stable A-B phase boundary forW/ξGL = 4, D/ξGL =
20 at p = 33 bar. The A phase is on the left side and the B phase is on the
right side. The vector field, with components li = εijk Im(A∗

µjAµk)/2∆
2
A,

describes the anisotropy direction l̂ of the A phase [P3]. This tends to be
oriented parallel to the boundary, whose form approximates a circular arc.

n̂l = n̂r due to hysteresis. However, it was shown that the hysteresis could
be reduced by tilting the n̂l,r slightly from the parallel configuration. In this
way the π branch of [P1] could be made stable and accessible in principle, as
shown in Fig. 7. It was shown that the CPR’s tended to be hysteretic and
with strong π-branches for D/ξGL & 3 and non-hysteretic for D/ξGL . 3.
The value D/ξGL ≈ 3 roughly coincides with the critical separation π for
the destruction of superfluidity in a parallel-plate geometry with diffusive
surfaces [67]. Various boundary conditions using an external magnetic field
to control n̂l,r were also tested to show that similar π states should exist
also under experimentally achievable conditions. In [P3] we also calculated
Josephson spin currents in addition to the mass currents, and discussed their
connection to the π states.

3.2 The A phase and pinned A-B boundaries

In publication [P3] we also reported 2D calculations of CPR’s for the slit-
like weak links when the AA or AB phase combinations are present. In
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the latter case a phase boundary between the A and B phases is formed
inside the aperture [68]. However, this boundary is only stable under certain
conditions close to the A-B coexistence point, which, experimentally, is at
pressure p ≈ 21 bar in the GL regime (see Fig. 1). This stability was studied
numerically in publication [P4]. For a wide slit of width D the stability
condition may be written with the surface tension σAB and the difference
between bulk condensation energies ∆fAB = fA − fB as [69]

|∆fAB| <
σAB
D

. (33)

The A phase is stabilized relative to the B phase at high pressures by the so-
called strong-coupling effects [42]. We took these into account with the Sauls-
Serene corrections to the GL parameters [70], which give the coexistence
pressure (∆fAB = 0) at roughly p = 28.7 bar. Using the condition (33) we
evaluated σAB by increasing |fAB| with pressure until the interface became
unstable and “popped” out of the aperture. Figure 8 shows an example of a
bulging phase boundary at high pressure, where the A phase is more stable.
Equation (33) assumes the radius of curvature and σAB to be constants over
the boundary — the effect of the non-uniform l̂-field on these assumptions
was not studied in detail. However, the value σAB ≈ 0.93ξGLfB obtained in
this way is in agreement with direct calculations for a planar A-B interface
[71], and our method is closer to the way in which it has been measured in
experiments [69].

Experiments on the Josephson effects involving the A phase have not been
made so far, but our calculations give predictions for the kind of phenomena
to be expected. In particular, in both the AA and AB cases there exist many
solutions where the l̂ texture is different inside the aperture, and since l̂ is
coupled to the superflow, transitions between different l̂ configurations may
occur, which give hysteretic jumps in the CPR. It should be noted that the
A phase junction considered as a pinhole contact would not be as interesting,
since for antiparallel l̂’s on the two sides (−l̂l = l̂r = ẑ) the critical current
vanishes identically due to symmetry reasons. The same is true for large
apertures with continuous rotation symmetry around the z axis, like the
round aperture of Fig. 6, since the junction may continuously unwind the
phase difference φ by rotating the l̂ texture. Thus in general the phase
difference itself is not even well defined in the case of A phase. However, for
less symmetrical apertures where l̂ is fixed, a finite critical current is possible
even in the antiparallel case. For example, in the AA case with l̂l,r = ±ẑ on
the two sides of the slit of Fig. 6, the vector l̂ is approximately confined to
the xz plane everywhere, and φ is a well-defined quantity.
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4 The anisotextural effect

The coupling of the phase and spin-orbit degrees of freedom described by Eq.
(11) has significant consequences in restricted geometries where the n̂ texture
is not rigidly fixed [by FSD in Eq. (9), for example] and hence FJ(φ, ψij) is the
dominant n̂-dependent contribution to the total free energy. In such a case,
when the phase φ is swept slowly by applying a small pressure head across the
weak link, ψij will tend to follow the local equilibrium configuration which
depends on φ. This yields strongly non-sinusoidal current-phase relations
where it is possible to have J ′

s(φ) > 0, i.e., minima of FJ(φ), at both φ = 0
and φ = π simultaneously. The additional minima at φ = π are again called
π states [20]. We have called this way of obtaining π states the anisotextural
Josephson effect to clearly separate it from the usual isotextural case where
the n̂ texture is fixed. We note that here the term π state differs essentially
from the term “π junction” which also appears in the literature (sometimes
with the name π state) and refers to a sine-like Js(φ) which is phase-shifted
by π [28]. This, too, is possible in 3He-B, but it belongs to the isotextural
variety of phenomena.

In publications [P1], [P2] and [P6] we considered the Berkeley experiments
[20–22], where the weak link consisted of a 65×65 rectangular array of roughly
100 nm apertures in a 50 nm thick SiN membrane with a hole spacing of
3 µm. Since the macroscopic texture may be expected to play a role in the
behavior of the weak link, it is important to be aware of the geometrical
details of the experimental cell. This is shown in Fig. 16 of paper [P2]. The
anisotextural effect should be suppressed in a strong magnetic field, since
the field generally fixes the texture [P2]. This is one of the main predictions
of our theory which can be tested. In the experiments of Refs. [20–22] the
magnitudes of any stray fields were not well known, and we have assumed
them to be negligible.

4.1 Stationary model: π states

To demonstrate the anisotextural Josephson effect it is sufficient to consider
the following “tunneling” model for the coupling energy

FJ = −[αRl
µzR

r
µz + β(Rl

µxR
r
µx +Rl

µyR
r
µy)] cosφ, (34)

where the weak link is in a wall in the xy plane. This form is valid for
temperatures T ≈ Tc [P1]. In the case of an array-type weak link, φ and ψij
are assumed to be uniform over the array, such that Eq. (34) is still valid.
The two parameters α(T ) and β(T ) may be calculated from quasiclassical
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theory. They are plotted in Fig. 3 of publication [P2] for the Berkeley array,
assuming all of the holes to be pinholes in a microscopically rough wall.

The purest example of the anisotextural effect could be realized by placing
the weak link between two exactly spherical small containers, so that the n̂-
vectors on both sides are free to orient themselves in any direction. In this
case a local minimization of Eq. (34) for α < β leads to n̂l = n̂r for cosφ > 0,
and to n̂l,r = (∓x̂ + ŷ ∓

√
3ẑ)/
√
5 for cosφ < 0. These minima lead to the

following piecewise sinusoidal current-phase relation with a π state present

Js(φ) =

{

(2m3/~)(α + 2β) sinφ, for cosφ > 0

(2m3/~)(α− 2β) sinφ, for cosφ < 0.
(35)

The second simplest case is to have an aperture array in an infinite planar
wall with normal ẑ. Then the most natural configuration for n̂l,r is to be along
±ẑ, which corresponds to the minimum of the surface-dipole energy FSD. For
the weak link this yields two non-equivalent but degenerate configurations,
where the n̂′s are either parallel (n̂l = n̂r = ±ẑ) or antiparallel (−n̂l =
n̂r = ±ẑ). However, the actual φ-dependent texture close to the weak link
is determined by a competition between FJ , FG, and FSD, which poses a
complicated numerical problem. Thus, in order to analyze more realistic
geometries, we make several simplifying assumptions.

First, as seen in Fig. 16 of publication [P2] which describes the Berkeley
cell, it is a reasonably good assumption to take the texture on one side of
the weak link to be fixed by FSD — we choose n̂r = ẑ. On the other side
the texture is much more susceptible to perturbations, and the orienting
effect of FSD is small compared to that of FJ [P2]. Second, we estimate
the energies with simple models where the l-side texture is described only
by its angle η(r) with respect to ẑ, which depends on the radial distance
r from the weak link. A cutoff is chosen at r = R0 =

√

Stot/π where
Stot is the total area of the array. We also define η∞ = η(∞) and η0 =
η(R0). The purely parallel and antiparallel configurations are achieved by
η∞ = 0 and π, respectively. However, the existence of exactly two almost
degenerate textural configurations is true also in general, regardless the left-
side geometry. Thus we allow more general values η

(1,2)
∞ for the two almost

degenerate cases, which satisfy η
(2)
∞ = π − η

(1)
∞ when rotational symmetry

around the z axis is assumed. The total free energy F ≈ FJ + FG is now
estimated with

F [η] = FJ(η0, φ) +
K

2

∫

d3r|∇η|2, (36)

where K = (50/3)λG2, and λG2 is the gradient-energy parameter of Ref. [43].
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In equilibrium, this may be written as

F (η0, η∞, φ) = FJ(η0, φ) + γ(η0 − η∞)2, (37)

where γ(T ) = πKR0 and integration over the entire left half-space is as-
sumed. An estimate which better suits the geometry of Ref. [21] is obtained
by adding a factor ≈ 0.31 to γ [P2]. The anisotextural model now consists
of minimizing Eq. (37) with respect to η0 for given φ and η∞.

If γ À α, β then the texture is so rigid that there occurs no variation at
all when the phase is swept from 0 to 2π. In this limit, which is valid at
least very close to Tc, the Josephson effect reduces to the usual, isotextural
one. Toward lower temperatures α(T ), β(T ) ∼ (1− T/Tc)2 grow faster than
γ(T ) ∼ 1 − T/Tc. Thus at T ¿ Tc there will be some textural variation
and possibly formation of anisotextural π states. This is in agreement with
experimental findings [20]. The fact that two different sets of CPR’s (the “H”
and “L” states [21]) were measured is also well explained by the superfluid
choosing randomly between one of the two almost degenerate textural states
at different times of cooling below Tc.

The above analysis (or that of publication [P2]) only describes the quasi-
equilibrium states of the weak link for given φ, but neglects the way in which
the equilibrium states are reached. Thus it assumes a very slow variation of
φ and no real dynamics is involved. The problem of textural relaxation is a
very complicated one, and we have not attempted to incorporate it into the
model. However, as we argue below, the dynamics of the texture provides a
way to dissipate energy and therefore also a mechanism for the junction to
become trapped in one of the anisotextural π states.

4.2 Dynamical model: spin-wave radiation

The interest for studying the dynamics of the texture arose from the exper-
iments of Ref. [22], where the current-pressure (I − P ) curves of the same
Berkeley weak link array were measured in the regime U ¿ ~Γ. The observed
dissipative currents could not be due to multiple Andreev reflections alone,
since then the I − P curves should have been strictly linear and texture-
independent, as given by Eq. (32). Instead, different I − P curves were
measured for the H and L states, and in the H state they were strongly non-
linear. In publication [P6] we attempt to explain the texture-dependence and
the nonlinearity based on the anisotextural effect. The point here is that the
ability of the n̂ texture to move opens up another channel for the condensate
to dissipate energy, besides the MAR process. This channel is radiation by

spin waves.
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The starting point in the analysis is Leggett’s theory for spin dynam-
ics [41], which may also be augmented with dissipative processes, such as
Leggett-Takagi (LT) relaxation [72] and spin diffusion [41]. We only consider
the first of these here. To this end, the total spin polarization S is divided
into condensate and quasiparticle parts Sp and Sq, respectively, which satisfy
Sp = λ(T )S in equilibrium. LT relaxation refers to a decay of nonequilibrium
differences η = Sp − λS to zero on a time scale τLT ∼ Γ−1 via S-conserving
collision processes which redistribute the numbers of Cooper pairs and quasi-
particles. The set of dynamical equations including this process is [72]

Ṡ = γgS×B+R[d̂]

η̇ = γgη × (B− µ0γgF
a
0 χ

−1
0NS) + (1− λ)R[d̂]− η/τLT

˙̂
d = γgd̂× {B− µ0γgχ

−1[S+ λ−1(χ/χ0)η]}.
(38)

Here d̂(k̂) = R(n̂, θ)k̂, H = B/µ0 is the magnetic field, µ0 the vacuum
permeability, γg the gyromagnetic ratio, χ = χ0/[1 + F a

0 (χ0/χ0N)] and χ0

the spin susceptibilities with and without Fermi-liquid corrections, and χ0N

is the normal-state value of χ0. The quantity R[d̂] = −〈d̂× (δF/δd̂)〉k̂ is the

torque acting on d̂. The reactive terms in these equations may be derived
as the canonical equations for an effective Hamiltonian F [Sq,Sp, d̂] where
Sq and Sp are considered as independent variables which are canonically
conjugate to infinitesimal rotations in their respective spin spaces — see
Ref. [72]. Assuming B = 0, Sp||S, restricting to the hydrodynamic limit

ωJτLT ¿ 1, and considering only infinitesimal rotations d̂→ d̂+θ× d̂, Eqs.
(38) simplify into

θ̈ = µ0γ
2
gχ

−1[R(θ) + τxṘ(θ)], (39)

where R(θ) = −δF/δθ and τx = [(1− λ)χ/(λχ0)]τLT .
Oscillations of the rotation axis. — We now return to the model of Eq.

(36) used already in the stationary case, which provides the d̂-dependent
terms in the effective Hamiltonian. Using the relation εijkRjlRkm = Rinεnlm
and assuming θ = θL, it may be shown that small deviations ϑ = η − η∞ of
a nearly uniform n̂ may be related to the infinitesimal rotation angle |θ| by
|θ| =

√

5/2ϑ. Neglecting the LT relaxation term (i.e., taking τx = 0), the
bulk part of Eq. (39) becomes a simple wave equation

ϑ̈ = c2sw∇2ϑ, (40)

where csw =
√

2µ0γ2
gK/(5χ). We also linearize FJ ≈ −[E∞

J − Jspϑ0] cos(φ),

where ϑ0 = ϑ(R0) and the corresponding torque term yields the boundary
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Figure 9: Current-pressure curves computed from Eq. (42), where η∞ =
0.22π and γ is multiplied by 0.31. Other parameters are as in Ref. [21].

condition
2πR2

0Kϑ
′(R0) = Jsp cosφ. (41)

This describes conservation of the component of spin current which acts
to rotate n̂. If the junction is now biased with a pressure head P , then
φ evolves according to φ(t) = ωJt, where ωJ = 2m3P/(ρ~). The Josephson
spin current Jsp cosφ will then drive oscillations of the spin polarization close
to the junction. These oscillations radiate out as spin waves, as described
by the radially outward propagating solution of Eq. (40). This radiation
is associated with a phase shift between the oscillations of the driving spin
current Jsp cosφ(t) and of ϑ0(t), and thus the latter obtains a component
proportional to sinφ. As a result, the mass supercurrent Js ≈ (2m3/~)(E∞

J −
Jspϑ0) sinφ has a finite time average. If we also include the LT relaxation
term of Eq. (39), the time average is

Js,ave(P ) =
2m3

~
[Jsp(η∞)]2

4γ
Im

(

1

1 + qR0

)

, (42)

where q = −iωJ/(csw
√
1− iωJτx). In the low-bias regime of Ref. [22] the

effect of LT relaxation is negligibly small, and Eq. (42) reduces to the result
of paper [P6]. Some example curves for the Berkeley array are shown in
Fig. 9. Note that the linearization of FJ assumed small deviations ϑ and
thus α, β ¿ γ. This is valid only for T close to Tc, as is Eq. (34) itself.
Therefore, only weak anisotextural “π states” are involved here. However,
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some corrections can be expected if the crude model of Eq. (36) is generalized
to include more degrees of freedom.

The most important point to note in Eq. (42) is that it depends on the
textural configuration through the angle η∞ which determines the amplitude
Jsp that drives the oscillations. We suggest that this is why the H and L
states of the Berkeley experiment can have so different I − P curves. It
should be stressed that for this point it is essential to use one of the self-
consistent surface models, since Jsp depends sensitively on the relative values
of α and β [P6]. In view of Eq. (27), the result (42) corresponds to a finite
time-average of the IS1 sin(ωJt) term. Thus the total dc mass current through
the weak link should be written as

Jdc(P ) = J0(P ) + Js,ave(P ), (43)

where J0 is the texture-independent dc part of Eq. (32) due to multiple
Andreev reflections. The comparison of Eq. (43) to the Berkeley experiments,
which necessarily involves the use of K, η∞, and Γ as fitting parameters, is
done in publication [P6]. An order-of-magnitude agreement is achieved.

Oscillations of the rotation angle. — Above we took the angles θl,r in
R(n̂l,r, θl,r) to be fixed to θL = 104◦ which minimizes FD in Eq. (10), while
allowing the n̂ texture to bend. This relied on the assumption that in the
geometry of the Berkeley cell, it is energetically less costly to let n̂ bend than
to change θ: the former is associated with a relatively small cost in FSD, but
latter costs a considerable amount of FD. In general, one should consider the
variations of both n̂ and θ simultaneously. However, for simplicity we take
only one example of the opposite case, where n̂ is fixed but the angles θl,r

are allowed to vary. We choose the antiparallel configuration −n̂l = n̂r = ẑ.
In this case there is a spin current J spz (φ) = β

√

15/16 cosφ flowing though
the weak link. At low frequencies the resulting shifts of θl,r from θL are small
and restricted to distances closer to the contact than the dipole length ξD =
√

λG2/(gD∆2) ≈ 10 µm [43]. However, when the Josephson frequency ωJ
reaches the longitudinal resonance frequency Ω|| = 15µ0γ

2
g∆

2gD/χ, then the
deviations of θl,r will also begin to propagate. This may again be described
by starting from Eq. (39), where now F = FD + FG, and θ

l,r = θl,r(z, t). A
calculation similar to the one leading to Eq. (42) shows that there will be a
net current

Js,ave(P ) =
2m3

~
15

16
β2 1

2λG2Stot

Im
1

q
, (44)

where q2 = (15/2)(ξD)
−2[1− (ωJ/Ω||)

2/(1− iωJτx)]. Some of these curves are
plotted in Fig. 10 for parameters taken from the Berkeley experiments. The
current is very small for ωJ < Ω||, after which it peaks rapidly. These peaks
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Figure 10: Current peaks due to a resonance of the Josephson frequency ωJ
with the frequency Ω|| of the B-phase longitudinal mode. The solid lines
neglect LT relaxation, while in the dashed lines it is included.

should again be added on the background current J0(P ) of Eq. (43), whose
magnitude is comparable to the heights of the peaks themselves. In general,
small current peaks may also be expected at the “subharmonic” frequencies
ωJ = Ω‖/n, where n is a positive integer. These are due to the presence of
higher harmonics in Eq. (27), which have neglected here. The bias regime
needed to observe the peaks should be within the reach of experimental
techniques. However, this requires that the antiparallel configuration can be
rigidly maintained. Simultaneous oscillations of n̂ and θ may smooth the
peaks beyond practical observability.

Finally it should be noted how the LT relaxation effect played only a
minor role in both of the radiative effects which result in the dc currents of
Eqs. (42) and (44). We may thus conclude that radiation by wave motion
is a much more efficient way to dissipate energy in these systems than the
“diffusive” processes involving quasiparticle collisions.
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5 Conclusion

In this overview we have discussed a number of published articles which
represent original theoretical research on superfluid 3He. Although all of
the work concentrates on 3He weak links alone, the range of used methods
and problem types is relatively wide. Both analytical and heavily numeri-
cal calculations were carried out, whichever type of solution best suited the
particular problem at hand.

All of the research was inspired by a need to explain experimental re-
sults. In addition, several predictions for testing the theories and for thus
far unobserved phenomena have been presented. A large part of the work
concentrated on an analysis of the so-called π states. Three different mech-
anisms for them have been discussed here. (Also a fourth type of suggestion
has been made elsewhere [30, 31].) First, for small pinholes there exist π
states of the type suggested by Yip [29, 33], due to the higher-order super-
current harmonics in Eq. (25). Second, in larger apertures a solution of the
GL equations was found which also corresponds to a π state. Finally, in
array-type weak links a π state may occur when the textural configuration
changes on a macroscopic scale. We called this an “anisotextural” effect. We
analyzed the experiments of Refs. [20,21] in array-type weak links and inter-
preted the observed π states as arising from an effect of the latter type. The
“H” and “L” states seen in the experiments were interpreted as two different,
almost degenerate textural states. The anisotextural effect was later used to
analyze the results of Ref. [22] on the texture-dependent dissipative currents
in the same experimental cell.

Despite the reasonably good agreement between the anisotextural theory
and the Berkeley experiments, no “direct” observations of the anisotextural
effect have been made. Therefore, their existence in the Berkeley cell re-
mains open. Nevertheless, they are real effects, and should certainly exist
in properly designed geometries. One way of direct observation would be to
measure the spin-wave radiation from a pressure-biased weak link. The π
states observed for single apertures in the experiments reported in Ref. [23],
on the other hand, are probably due to one of the other two π-state mecha-
nisms (or some combination). However, in this case quantitative comparison
between theory and available experimental data has proved difficult. It will
be interesting to see if further experiments are able to confirm the predic-
tions which follow from our theoretical analysis. We also hope that our work
will inspire research to find similar effects in weak links of unconventional
superconductors, as well as in other Josephson-coupled systems where the
condensates have internal degrees of freedom.
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Abstracts of publications

[P1] The flow of superfluid 3He-B through a 65 x 65 array of nanometer-
size apertures has been measured recently by Backhaus et al. They
find in the current-phase relation a new branch, the so-called π state.
We study two limiting cases which show that the pi state arises from
the coupling of the phase degree of freedom to the spin-orbit rotation.
The π state exists in a single large aperture, but is difficult to observe
because of hysteresis. A better correspondence with experiments is ob-
tained by assuming a thin wall, where the Josephson coupling between
the two sides arises from a dense array of pinholes.

[P2] We theoretically study the dc Josephson effect between two volumes of
superfluid 3He-B. We first discuss how the calculation of the current-
phase relationships is divided into mesoscopic and macroscopic prob-
lems. We then analyze mass and spin currents and the symmetry of
weak links. In quantitative calculations the weak link is assumed to be a
pinhole, whose size is small in comparison to the coherence length. We
derive a quasiclassical expression for the coupling energy of a pinhole,
also allowing for scattering in the hole. Using a self-consistent order
parameter near a wall, we calculate the current-phase relationships in
several cases. In the isotextural case, the current-phase relations are
plotted assuming a constant spin-orbit texture. In the opposite aniso-
textural case the texture changes as a function of the phase difference.
For this we have to consider the stiffness of the macroscopic texture,
and we also calculate some surface interaction parameters. We ana-
lyze the experiments by Marchenkov et al., [Phys. Rev. Lett. 83,
3860 (1999)], although the assumptions of the pinhole model were not
quite satisfied there. We find that the observed π states and bistabil-
ity can hardly be explained with the isotextural pinhole model, but a
quantitative agreement is achieved with the anisotextural model.

[P3] A two-dimensional Ginzburg-Landau theory of weak links in a p-wave
superfluid is presented. First we consider the symmetry properties of
the energy functionals, and their relation to the conserved supercur-
rents which play an essential role in the weak link problem. In numeri-
cal studies, we use the A and B phases of superfluid 3He. The phases on
the two sides of the weak link can be chosen separately, and very gen-
eral soft degrees of freedom may be imposed as boundary conditions.
We study all four inequivalent combinations of A and B which are pos-
sible for a hole in a planar wall, including weak links with a pinned
A-B interface. In all cases, some illustrative current-phase relations
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(CPR’s) are calculated and the critical currents are mapped. Phase
diagrams covering the relevant phase space in zero magnetic field are
constructed. The numerical methods are also described in some detail.

[P4] We report on a Ginzburg-Landau calculation of the stability of a bound-
ary between A and B phases of superfluid 3He in a two-dimensional con-
striction. In the macroscopic limit the stability follows a well-known
relation, which depends on the surface tension σAB of the A-B bound-
ary. In the narrow-constriction limit the surface tension is not well
defined, but the interface is always stable, and a weak link between the
A and B phases is obtained.

[P5] Recent measurements of dissipative currents in pressure-biased weak
links of superfluid 3He-B are discussed. It is pointed out that the
theoretical understanding of their results is unsatisfactory. As one can-
didate model to explain them, we consider the process of multiple An-
dreev reflections (MAR). Connection of MAR to bound quasiparticle
states inside ballistic contacts is discussed. As an explicit example
we analyze the current in a short pressure-biased ballistic 3He-B con-
striction. It is shown that the dissipative part of the current does not
depend on the spin-orbit rotation matrices.

[P6] We calculate the current-pressure relation for pinholes connecting two
volumes of bulk superfluid 3He-B. The theory of multiple Andreev re-
flections, adapted from superconducting weak links, leads to a nonlinear
dependence of the dc current on pressure bias. In arrays of pinholes
one has to take into account oscillations of the texture at the Joseph-
son frequency. The associated radiation of spin waves from the junction
leads to an additional dissipative current at small biases, in quantitative
agreement with measurements.
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