
Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Information Processing Science
Espoo 2004 TKO-A41/04

Using Static Program Analysis to

Compile Fast Cache Simulators

Vesa Hirvisalo

Dissertation for the degree of Doctor of Science in Technology to be presented
with due permission of the Department of Computer Science and Engineering
for public examination and debate in Auditorium T2 at Helsinki University of
Technology (Espoo, Finland) on the 26th of March, 2004, at 12 noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Information Processing Science

Distribution:
Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory of Information Processing Science
P.O. Box 5400
FIN-02015 HUT
Espoo
Finland

Copyright c© 2004 Vesa Hirvisalo

ISBN: 951-22-6994-5
ISSN: 1239-6885

Otamedia Oy
Espoo 2004

i

Abstract

This thesis presents a generic approach towards compiling fast execution-driven
simulators, and applies this to cache simulationof programs. The resulting cache
simulation method reduces the time needed for cache performance evaluations
without losing the accuracy of the results.

Fast cache simulators are needed in the performance analysis of software
systems. To properly understand the cache behavior caused by a program,
simulations must be performed with a sufficient number of inputs. Traditional
simulationof memory operations of a program can be orders of magnitude slower
than the execution of the program. This leads to simulation times that are often
infeasible in software development.

The approach of this thesis is based on using static cache analysis to guide
partial evaluation and slicing of simulators. Because of redundancy in memory
access patterns of typical programs, an execution-driven cache simulator pro-
gram can be partially evaluated during its compilation. Program slicing can be
used to remove the computations that have no effect on the simulation result.

The static cache analysis presented in this thesis is generic. The analysis
is designed especially for programs that use dynamic addressing. The thesis
assumes an address analysis that gives the cache analysis static information
about cache aliases and cache conflicts between accessed memory lines.

To determine the memory references that always cause cache hits or cache
misses, the thesis describes both must and may analyses of cache states. The
cache state analysis is built by using abstract interpretation. Based on the use
of abstract interpretation, the soundness of the analysis is proved.

The potential performance of the method was experimentally evaluated. The
thesis describes both a tool set implementing the cache analysis method and
experiments done with the tool set. The experiments indicate that a simple
implementation is capable of significantly speeding up the simulations.

Keywords: static analysis, program analysis, performance analysis, cache sim-
ulation, program slicing.

ii

iii

Preface

This research is a result of my personal interest on performance issues and
compilers. All kinds of gadgets with performance as their main attribute have
always fascinated me. A doctoral dissertation is an important milestone, but
my path has not been the shortest nor the fastest.

Because of my interest in performance, I began my university studies in
physics. While being a freshman, I was introduced into computers by another
freshman, Esko Nuutila, who has been my colleague and a close personal friend
ever since. Thanks to him, my work with computers started as a hobby.

Long before my university studies, I was aware that there existed computers,
that is, machines able to do some computations. However, I was not aware that
there existed universal computers able to do any computations. I was amazed
to learn about the machines that can modify their own programming by running
compilers. So, research on performance and compilers was a choice for me.

The research that lead to this thesis was inspired by David Parnas and
Alexander Ran, who taught my way into embedded software. Since then, many
others have guided me in my research. These include Connie U. Smith and Mur-
ray Woodside from the software performance community and the many members
of the compiler and embedded systems groups from Chalmers University, Lund
University, and Saarland University.

In addition to research work, I have done a wide range of practical work
with embedded systems. Especially, I want to thank Hamish Kellock and Jari
Ihattula for the opportunity to learn so much. I also want to thank Mikko
Reinikainen and Juha Tukkinen for their support and Niklas Holsti for his en-
couragement during the last steps of this work.

Thiswork hasbeen funded by Helsinki University of Technology, the Academy
of Finland, and the National Technology Agency of Finland. It has been su-
pervised by Professor Eljas Soisalon-Soininen, whom I thank for believing in a
man with a different topic.

I thank Johan Lilius and Reinhold Heckmann for their valuable comments
as reviewers of this thesis and Ruth Vilmi for helping me with the English
language. Last but not least, I thank my colleagues at Helsinki University of
Technology for their friendship and my family for their love during my years of
study.

Otaniemi, February 2004
Vesa Hirvisalo

iv

Contents

1 Introduction 1

1.1 Problem . 2
1.2 Goals . 3

1.3 Methodology . 3

1.4 Contributions . 4

1.5 Outline of the thesis . 5

2 Background 7

2.1 Programs and references . 7

2.2 Program compilation . 8
2.3 Allocation . 9

2.4 Memory hardware . 10

2.5 Program execution . 12

2.6 Cache misses . 13
2.7 Real-time systems . 14

2.8 Software performance engineering 15

2.9 Dynamic memory analysis . 16

2.10 Static program analysis . 16
2.11 Execution time analysis . 17

2.12 Conclusions . 18

3 Combined program analysis 21

3.1 A programming language . 21

3.2 Execution semantics . 22

3.3 Dynamic analysis . 23
3.4 Static analysis . 26

3.5 Combined analysis . 29

3.6 Conclusions . 34

v

vi CONTENTS

4 Dynamic cache analysis 37
4.1 A programming language . 37
4.2 Cache semantics . 38
4.3 Analysis augmentation . 41

4.4 Conclusions . 44

5 Static cache analysis 45
5.1 Address analysis interface . 45
5.2 Cache state analysis . 47
5.3 Conclusions . 53

6 Program specialization 55
6.1 Partial evaluation . 56
6.2 Partially evaluated instrumentation 56
6.3 Program structure . 58
6.4 Program slicing . 59
6.5 Sliced instrumentation . 60

6.6 Conclusions . 66

7 Experiments 69
7.1 Experimental method . 69
7.2 Tools . 71
7.3 Experimental setting . 77
7.4 Static workload . 79

7.5 Static experiments . 81
7.6 Dynamic workload . 82
7.7 Dynamic experiments . 82
7.8 Conclusions . 83

8 Related work 85

8.1 Cache miss equations . 86
8.2 Stack deletion . 87
8.3 Trace stripping . 89
8.4 Spatial blocking . 90
8.5 Parallel simulation . 91
8.6 Static filtering . 92
8.7 Cache constraints . 92
8.8 Structural analysis . 93

8.9 Graph coloring . 94
8.10 Static cache simulation . 95
8.11 Abstract interpretation . 95

CONTENTS vii

8.12 Conclusions . 96

9 Discussion 99
9.1 Method . 101
9.2 Evaluation . 102
9.3 Applicability . 104
9.4 Contribution . 105
9.5 Future work . 106

Bibliography 109

viii

NOTATION ix

Notation

× set multiplication
· multiplication
∨ logical or
∧ logical and

2{...} power set
→ function
S
= similar to
⇒ implication or derivation
x̂ abstract counterpart of x
x∩ x for must analysis
x∪ x for may analysis
x+ augmentation for x
xA x with augmentation
::= generative grammar rule
| optional rule or a condition

[x]
l

program element x labeled l
[[P]] semantics of program P
[[P]]〈I〉 output from input
∪ union
∪{. . .} union of elements of the set {. . .}
t least upper bound
t{. . .} least upper bound of elements of the set {. . .}
⊆ subset
v partial order
⊥ least element
> greatest element
� nil pointer value or empty cache line
∅ an empty set
ε a program element
π a path (sequence of program elements)

A cache associativity
abs abstraction function
addr address of location
as abstract semantics
aug augmentation (a piece of instrumentation)
augx x-specialized augmentation

x NOTATION

B line length
c a constant or a set state
C set of set states
CFG control flow graph
conc concretization function
cs collecting semantics
Das domain of abstract semantics
Dcs domain of collecting semantics
e expression
E set of edges
f a cache set
F cache sets
Fs static resolution
fin instrumentation finalization
g analysis function
gC partially evaluated analysis function
G graph
h age of updated cache line
I input
I+ instrumentation input
init instrumentation initialization
J join function
kC cache conflicts
kS cache aliases
l memory location
L set of memory locations
LB basic block length
LL loop length
linm(x) concrete lines for x in state m
line(x) memory line of x
lineaddr(t) number of memory line
locs(x) concrete locations for x
m execution state
mA augmented execution state
mf a final execution state
mo an initial execution state
m+ instrumentation state
M set of execution states
M A set of augmented execution states
N number of cache sets
NB number of basic blocks

xi

No total number of references
Nr number of resolved references
NR number of reference instructions
NX number of natural loops
NY number of subroutine calls
op operation
O output
O+ instrumentation output
p program point
P a program
P A instrumented program
Px specialization x of a program
Qf the update queue of cache set f
r a cache line
R set of cache lines
Rd speed-up coefficient
rji a cache line (set j, age i)
s the state of a cache set
S the set of all cache set states
t a memory line
T set of memory lines
To original execution time
Tr reduced execution time
UC cache state update function
US set state update function
var a variable (register)
V set of vertices or storage cells
VV vector of variables
VC vector of constants
Y slicing criterion
Z the set of integers

xii

Chapter 1

Introduction

This thesis discusses how static program analysis can be used to compile fast
cache simulators from programs whose cache behavior is to be analyzed. It
discusses both static and dynamic program analysis and presents a framework
for combining the two while applying the framework to the cache performance
evaluation of programs. We call the framework combined program analysis.

Dynamic program analysis is a straightforward approach to program anal-
ysis. It is performed by simply executing a subject program with instrumen-
tations that collect the analysis data. Dynamic program analysis is known by
several names because of its wide applicability, e.g., execution-based testers and
execution-driven simulators are often dynamic program analyzers.

Static program analysis is a sophisticated approach to program analysis.
In static analysis, we try to understand the run-time behavior of a program
without executing it with a specific input. Static analysis is usually motivated
by its ability to simultaneously give results for a set of inputs, often for all inputs
of a program. Static analysis is also known by other names; for example, flow
analyzers included in compilers are static program analyzers.

For some analysis tasks, static analysis methods are fast, but not sufficiently
accurate. On the other hand, dynamic analysis methods are accurate, but slow
for some tasks. Our approach combines the benefits of both kinds of analysis,
while our framework builds combined simulators by using program specializa-
tion. The specialization is based on abstract interpretation, partial evaluation,
and program slicing.

As an application of the framework, we present a combined analysis method
for the cache performance evaluation of programs. The method is especially
suitable for programs using dynamic memory addressing. Such cache perfor-
mance evaluation is a demanding program analysis task, and thus a good test

1

2 CHAPTER 1. INTRODUCTION

of the applicability of our approach.

1.1 Problem

This thesis addresses two problems: we study the problem of using static pro-
gram analysis to compile fast dynamic program analyzers, which we study in
general terms, and the problem of cache performance analysis of programs that
use dynamic memory addressing, which we study in more specific terms.

Both dynamic analysis and static analysis have their benefits and their prob-
lems. From the point of view of this work, the main problem of static analysis
is its approximative nature, which results from considering several inputs at
the same time. Instead of giving an accurate answer, static analysis typically
gives an upper bound or a lower bound. Different inputs can yield significantly
different analysis results. Thus, the bounds can be loose and the analysis too
inaccurate for practical purposes.

In dynamic analysis, we use a specific input and the analysis result is accu-
rate. On the other hand, the analysis result is valid only for the single input.
To understand the behavior of a program thoroughly, the analysis must be per-
formed for several inputs. The time needed for such a study can be infeasible
for practical purposes.

Instead of studying the problem purely on an abstract level, we concentrate
on a practical application: cache performance analysis of programs. The perfor-
mance of computers owesmuch to the use of cache memories. The speed of main
memories has not developed as rapidly as the speed of processors. This perfor-
mance imbalance is eased by cache memories, which hold frequently needed data
so they are rapidly accessible.

Cache memory has become the performance bottleneck for many applica-
tions. Therefore, the number of lines (or instructions) executed and the related
complexity measures do not have the importance that they used to have. It
is important to know the number of cache misses occurring and the reason for
those misses.

The crucial role of cache memories makes it hard to understand the per-
formance of programs. The steps executed and the related memory references
can be seen from the program code. However, cache misses and the related
execution stalls cannot be seen. Computer aided engineering tools are needed
to detect and locate them. Such methods and tools that help in designing data
structures and the related memory layout are needed.

The traditional cache analysis method is simulation. Simulation is a flexible
and accurate method, but sometimes it is slow. Simulation of memory oper-
ations of a program can be orders of magnitude slower than execution of the

1.2. GOALS 3

program [156]. Furthermore, to properly understand the memory behavior of
the program, simulation must be performed with a sufficient number of inputs.
This leads to simulation times that are often infeasible in software development.

Recently, static cache analysis methods have been developed (see, for exam-
ple, [120, 166] for a list of methods). For the programs that often use dynamic
memory addressing, cache performance is related to the input for the software.
Therefore, the number of the memory references potentially causing both cache
hits and cache misses can be large compared to the number of memory refer-
ences that can be guaranteed to cause only misses. This makes performance
bottlenecks hard to locate.

1.2 Goals

In the study of combining dynamic analysis and static analysis, our goal has
been to formulate a framework that gives a basis and guidelines for designing
combined analyzers. We have not aimed at developing an automated method
that produces combined analyzers.

Instead, we have tried to make the framework generic and flexible. The
framework should have wide applicability to various analysis tasks. On the
other hand, this goal of generality forces us to leave many details unspecified.

In the study of cache performance evaluation of programs, we have tried
to give a detailed method for solving one problem. Our goal has not been to
develop an ultimate solution to the problem. We have aimed at a solution that
shows the potential of our approach.

We have concentrated on programs using dynamic addressing. For such
programs, static analysis alone is often not accurate enough. On the other
hand, simulation is often slow.

1.3 Methodology

This thesis is an engineering thesis that presents basic research into program
analysis. It uses the tools of computer science and engineering to solve a problem
within the discipline. It addresses a practical engineering problem (compiling
fast cache simulators), which it approaches as a special case of a generic problem
(combined program analysis).

The research presented is based on several research methods. The thesis
proposes an abstract framework as a solution to the generic problem that is
built on top of a set of methods previously presented in the literature of the
discipline. Correctness of the abstract framework is analytically proved.

Starting from the abstract framework, the thesis builds an analysis method

4 CHAPTER 1. INTRODUCTION

that is a solution to the practical engineering problem, i.e., compiling fast cache
simulators. The correctness of the proposed method is analytically proved.
As a specialized research method, abstract interpretation [118] is used in the
analytical work. Our use of this is explained in detail in Section 3.4.

The research included constructive work. A prototype tool for compiling
cache simulators was implemented on the basis of the theory presented in this
thesis. The validity of the implementation was experimentally tested. Using the
implemented tool, the performance of the proposed analysis method was exper-
imentally analyzed. The experimentation followed a well-established method-
ology of experimental performance analysis [81]. Our experimental method is
explained in detail in Section 7.1.

1.4 Contributions

Although most of this thesis focuses on cache performance analysis of programs,
it makes contributions having applicability in general. The main contributions
of this thesis are:

1. It presents and analyzes a program analysis framework that uses static
analysis to compile fast dynamic analyzers. The framework is applicable
for analyses that are based on augmenting a subject program with instru-
mentation code. The framework applies partial evaluation and program
slicing to speed up dynamic analyzers.

2. It presents a static cache analysismethod that makes it possible to analyze
programs that use dynamic memory addressing. The method is based on
abstract interpretation.

3. It presents an account of how partial evaluation can be used to speed up
dynamic cache performance analysis. The partial evaluation presented is
based on a modified instrumentation scheme and uses data from static
cache analysis.

4. It presents an account of how program slicing can be used to speed up
dynamic cache performance analysis. The presented method is based on
dependence graphs describing relationships inside instrumentation code.

The first contribution describes the generic framework. Together with con-
tributions 2–4, it forms a concrete method for cache performance analysis of
programs [74, 76]. The new method significantly reduces the time needed in
cache performance simulations without loss of accuracy from the results.

This thesis also makes some secondary contributions:

1.5. OUTLINE OF THE THESIS 5

5. It describes a tool prototype that uses static analysis to speed up cache
simulations. The tool prototype demonstrates one way of implementing
our method of cache performance analysis of programs.

6. It describes experiments that evaluate performance of the method for cache
performance analysis of programs. The experiments use the related tool
prototype.

1.5 Outline of the thesis

The structure of this thesis is as follows: The next chapter (Chapter 2) views the
background of the thesis, it discusses problems in cache analysis and summarizes
the difficulty of analyzing execution of software on specific hardware.

Chapter 3 describes the framework for combined program analysis. The
framework described has generic applicability in program analysis, while not
being limited to cache performance analysis. The framework is therefore de-
scribed in an abstract way.

The next three chapters (Chapters 4–6) describe how the abstract framework
can be realized to analyze cache performance. Each of the three chapters dis-
cusses a part of the cache analysis method: Chapter 4 discusses dynamic cache
analysis, Chapter 5 static cache analysis, and Chapter 6 program specialization.

Chapter 7 discusses our experimentation with the method. It describes a
tool that implements the cache analysis method and presents the results of
experiments that were performed with that tool.

Cache analysis is one of the main issues in program performance analysis. As
it has been studied intensively, there are now a number of methods developed
for cache performance analysis of programs. In Chapter 8, we review the work
that is related to this thesis.

Chapter 9 concludes the thesis with a discussion of the contributions of this
thesis and an attempt to relate these contributions to a wider perspective of
program analysis and software performance engineering.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

The main motivation of this chapter is to remind the reader about the com-
plexity of the relation between high-level source code and program execution.
Understanding program behavior is a demanding task without proper tools –
especially when hardware-related issues are considered. Designing such tools is
also complicated.

There are several ways of analyzing programs, and many topics are related
to program analysis. These include programming languages, compiler construc-
tion, operating systems, memory systems, and performance analysis. All these
topics have been intensively studied and presented in the literature. To make
the rest of this thesis more understandable, we will now discuss some of the
related topics.

Our overview begins with a description of how human-readable programs
are transformed into machine-executable images, and how suchprogram images
are executed in the hardware. Our hardware description concentrates on the
memory subsystem. After that, we discuss how the memory operations affect
the performance of a program. Finally, we describe how the run-time behavior
can be analyzed and connected to the original program code.

2.1 Programs and references

A program can be a sequential program or a concurrent program [10]. A sequen-
tial program is a program whose outcome for a given input is determined by
executing the instructions of the program in their explicit order, i.e., by follow-
ing the explicit sequentiality and the explicit jumps in the program code. For
a concurrent program and an input, there is no such single order to determine

7

8 CHAPTER 2. BACKGROUND

the outcome.
The execution of a program can be a serial execution or a parallel execution.

Instructions are executed one after the other in a serial execution. In a parallel
execution, there can be multiple instructions executing at one time. There is no
need to execute sequential programs strictly according to the execution order
implied by the source code. In fact, pipelined and superscalar processors use
parallel execution for sequential programs [9, 42, 86, 138].

A static read or write in a program is a reference. An execution of the read
or write at runtime is an access. Because of loops and other structures present
in programs, a single reference can access several different memory locations
at runtime. We say that a program has static addressing if each reference
of the program accesses always the same memory location whose address is
known before execution of the program. Otherwise, we say that the program
has dynamic addressing.

A reference trace is a list of references in the program code. An access trace

is the list of the addresses of data accessed by an execution of the program.
Reference traces are static. Access traces of program executions are usually
dependent on the input given for the program.

There are two kinds of accesses: instruction fetches and data accesses. For
each instruction executed, the instruction itself must be fetched from the mem-
ory. During the execution of an instruction, the data for the operation is ac-
cessed according to the addressing modes of the arguments. Typically, most of
the arguments of an instruction do not refer to memory, but to a small set of
internal registers of the processor.

A trace consisting solely of instruction fetches is the control trace of a pro-
gram execution. A trace consisting solely of memory data accesses is the data

trace of a program execution. Merged together in the proper order, the control
trace and the data trace of a program execution are equal to its access trace.
The operation of a typical cache memory can be simulated by using a trace;
execution of the program itself is often not needed.

In this thesis, we study memory behavior related to the data trace of pro-
grams. We consider only sequential programs that are serially executed.

2.2 Program compilation

A program must be compiled, linked, and loaded before it can be executed
[140]. Programs are typically written in a high level language. In a compilation
of a program [5, 11, 162], the program is translated into binary machine code.
Compilation is typically done in several phases, which are grouped into two
major phases: an analysis phase and a synthesis phase.

2.3. ALLOCATION 9

The analysis phase is done by the front end of a compiler, which typically
translates a source program into an intermediate language, which is usually
machine independent and has simple syntax and clear semantics.

The synthesis phase is done by the back end of a compiler, which translates
the intermediate representation into machine code. Because of the simplicity
of the intermediate language, this is easier than a direct translation from the
source language to the machine code.

A compiler does many transformations that alter the memory usage of a
compiled program, e.g., register allocation [20] and common subexpression elim-
ination [34]. Thus, subject program operations that seem to access memory ac-
tually do not access memory, and there are memory accesses that are not visible
in the original program. After a compilation, we have the memory reference
operations that will be executed during run time.

Linking a program means joining its compilation units together to form an
executable program [109]. Linking is usually separate from compilation. Thus,
analyzing inter-unit dependencies during compilation is difficult. All program
units typically use the same cache memory. Therefore, the accuracy of a cache
analysis can be improved if inter-unit analysis is done.

Loading a program means creating a readily executable image of the program
into the memory of a computer [98]. Often, loading is not merely copying; a
program can be transformed during loading. This limits the possibilities of
analysis during compilation and linking.

Many systems resolve at loading-time the addresses where program text and
data will reside. For cache analysis this is important. Cache analysis cannot be
performed without any address data. However, as we will see in Chapter 5, it
can be performed by using partial address data. There exist compilers that are
aware of run-time cache alignments, and perform optimizations that are basedon
cache structure (see, for example, [25, 35, 93, 115, 127, 132, 161]). Further, real-
time systems are often designed to be easier to analyze than common-purpose
systems.

2.3 Allocation

Compiled programs usually refer to memory in three ways: static references,
stack references, and heap references [5, 154]. These references typically access
separate memory areas, memory allocation in those memory areas being done
by using different mechanisms. From the view point of cache analysis, allocation
mechanisms are important, because they decide addresses that will be used as
the basis of cache analyses.

A static reference refers to the same address during the whole execution.

10 CHAPTER 2. BACKGROUND

Typically all references to program text and global variables are static. Access
addresses of static references are based on symbolic (relocatable) addresses given
by the compiler. The run-time addresses are typically assigned by the loader.
If the loading mechanism is known, run-time addresses can be resolved from a
linked program, i.e., they can be resolved statically.

A stack reference refers to memory by using the stack pointer or the frame

pointer as the base address. The stack pointer points to the top of the control
stack of the program execution. The frame pointer points to the frame of the
current program component (e.g., subroutine activation record containing local
variables). If recursion and dynamically addressed structures in the stack are
not allowed, then the possible access addresses of stack references are limited,
and can be resolved statically.

A heap reference refers to memory by using an address given by the heap
allocator [164] or garbage collector [163] as the base address. Heap references
are truly dynamic, i.e., they cannot be statically resolved. However, a heap
allocator (and a garbage collector) can have rules that they obey. For example,
rules can align allocated heap objects to cache lines of the underlying hardware
[24, 61, 121, 132]. Such rules give partial address information that can be used
in cache analysis. The analysis that we will present in Chapter 5 assumes such
support.

2.4 Memory hardware

Fast memories are significantly smaller than slow ones [69]. Because of this, the
memory of computers has become layered. A typical memory hierarchy with
four layers is illustrated in Figure 2.1. The topmost layer is the set of registers of
the processor. Programs refer to data in registers by using the register address
space. Data in other layers are referred to by using the virtual address space of
the processor1.

Virtual address [41] space makes multitasking simple [147]. Before any da-
tum in memory is accessed, its virtual address is translated to a physical address.
The address translation to physical addresses is process specific.

Virtual address spaces are usually paged, i.e., they consist of pages of equal
size. There is a translation that maps virtual pages onto physical pages. The
mapping is usually stored on the page table of an operating system. A page table
is large and accessing it is slow. Therefore, the most frequently used entries of
a page table are stored in a small intra-processor cache, which is called the
Translation Lookaside Buffer (TLB) [30, 152].

1There are processors without a proper virtual address space, e.g., the Atmel AVR family
[13], and processors, whose registers are in the virtual address space, e.g., Digital PDP-10 [18].

2.4. MEMORY HARDWARE 11

Processor’s registers

cache memory

random access main memory page table

TLB

disk memory

10−1kbytes

1k−1Mbytes

1M−1Gbytes

>1Gbytes

Figure 2.1: Typical layers of memory and their typical sizes.

A physical address needs not uniquely identify the actual location of the
addressed datum. In addition to a main memory, there is often cache memory.
Cache memory can have several layers. In this thesis, we assume that there is
only one layer of cache memory.

Cache memories [128] consist of blocks called cache lines, which store fre-
quently used blocks of memory. Cache lines are organized into cache sets of
equal size. A memory line is an aligned block in memory that is of the size of a
cache line. Each memory line (and thus also each memory address) is uniquely
mapped to a set that can hold its contents. The data transfer between main
memory and cache memory consists of reading and writing blocks, which can
be parts of cache lines.2

Associativity describes a mapping between two layers. It indicates the num-
ber of cache lines that are stored in a single set. A cache is called fully associative,
if it has only one set. Thus, any of the cache lines can hold any of the memory
lines. A cache is called direct mapped if the size of its sets is one line, i.e., each
memory line has only one cache line to store it.

If a cache is neither fully associative nor direct mapped, it is called set-

associative. An example of a set-associative cache is given in Figure 2.2. Its set
size is two, i.e., the cache consists of sets each having two lines. Thus, each of
the memory lines has only two cache lines where it can be stored. Typically, set
size is 1–16 lines3.

The fetch policy is the algorithm for deciding when to fetch from a lower
level of memory and what is to be fetched. Often, caches work on demand, i.e.,
they do not pre-fetch memory lines.

Let memory lines 1, 2, and 3 in Figure 2.2 be fetched into the cache in
succession. First, memory line 1 is stored in either of the cache lines. Then,

2There are exceptions to this basic organization (e.g., [84]).
3Exceptions exists, for example, ARM9 processors can have 64-way associative caches [53].

12 CHAPTER 2. BACKGROUND

an upper-layer set

the corresponding blocks at lower layer

A B

1 2 3 4

Figure 2.2: An example of associativity when set size is two.

memory line 2 is stored to the one that remains free. As memory line 3 is
referred to, either memory line 1 or 2 must be replaced.

The write policy is the algorithm that decides on storing data down to
the memory. The typical choices are write-through and write-back. In write-

through, modified lines are immediately written to the memory. In write-back,
modified lines are written to the memory when they need to be replaced.

The replacement policy is the algorithm for deciding which line will be re-
placed in the cache when a new line is fetched from the memory. The LRU
method is a common choice [128].

The LRU method (Least Recently Used) replaces the least recently used line
in the cache [17, 107]. The LRU method can be implemented by maintaining
a data structure, which represents memory lines in their temporal order of last
reference. If the LRU method is used in the example, then line 1 is substituted
for line 3 at the last step.

2.5 Program execution

Application programs are rarely executed on an empty machine4. Usually, there
is an operating system that provides the application programs with an interface
to the hardware resources [148, 109]. The operating system alsomanages the use
of hardware resources. It allocates hardware resources to application programs.
Since there may be conflicting requests for hardware resources, the operating
system must do the allocation in a fair and efficient way.

Operating systems usually allow multitasking, which means that several pro-
grams can be at some intermediate point of their execution simultaneously. Each
such program execution forms a process that has its own flow of control, pro-
gram text (executable code) and data that reside in the memory. The processor

4Small real-time systems are exceptions to this. They run without supporting software.

2.6. CACHE MISSES 13

is shared by the processes. The operating system controls this processor sharing
by allowing each process to execute a slice of time before switching to another
process.

When a process switch happens, the execution context is also switched. The
state of the execution is saved so that it can be restored and the execution
continued. Thus, application programs can be written without any knowledge
of these suspensions.

The state is saved only to the extent that enables functionally correct con-
tinuation of the execution. This includes, for example, program counter and
register contents. However, cache contents are typically not saved and restored.
Thus, other processes that interrupt the execution can change the contents of
the cache. Further, the code of the operating system, run-time system of the
compiler, dynamic libraries etc. can affect the cache.

Programs typically execute in a local manner, i.e., there is a limited set of
memory locations that are frequently referred to. The set is called the working

set of the program [40]. A cold cache does not contain this set. If a program is
executed for a while, the cache warms up to contain the working set. The time
slices that an operating system gives to processes are usually adjusted so that
the cache has enough time to warm up.

In cache behavior study, two areas of research are separated [16]: intrinsic
cache behavior study studies cache behavior of individual processes, while ex-

trinsic cache behavior study studies inter-process effects on caches. The study
of this thesis is intrinsic.

2.6 Cache misses

Cache memories [128] improve memory access times. They reduce the number
of cycles a processor is waiting for data; in the best case, the processor can
continue its operation without any stall. Current first level caches can give
access to data over an order of magnitude faster than main memory [125].

Before accessing the main memory, the computer hardware checks whether
the addressed datum is stored in a cache line. The requested address is compared
with all the addresses of the memory lines in the cache set of the requested
address. If the datum is in cache, then a hit occurs. Otherwise, a miss occurs
and a memory line in the cache is replaced by a new one.

Cache misses affect program performance, because accessing main memory
is much slower than accessing cache. As a result of this development, the tra-
ditional metrics used in designing software performance do not apply. Cache
memory has become the bottleneck for many applications. Therefore, the num-
ber of lines (or instructions) executed and the related complexity measures do

14 CHAPTER 2. BACKGROUND

not have the importance that they used to have. It is important to know the
number of cache misses occurring, and the reason for those cache misses.

The crucial role of cache memories makes it hard to understand the per-
formance of programs. The steps executed and the related memory references
can be seen from the program code. However, cache misses and the related
execution stalls cannot be seen. Computer aided engineering tools are needed
to detect and locate references slowing down execution.

The misses can be categorized into three [69]:

• Compulsory misses, the first access to a line always causes a miss.

• Capacity misses occur when the cache is too small to hold all of the lines
needed during an execution of a program.

• Conflict misses occur when the cache has sufficient space, but the organi-
zation of the cache does not allow the data to be kept in the cache5.

For a programmer, it is important to know the pieces of the source code that
cause the cache misses. Programs can be redesigned to have a smaller working
set to avoid capacity misses. Conflict misses can be avoided by modifying the
layout of data. There exists a number of studies on cache performance design
that are based on understanding the cache behavior of a program (see, for
example, [12, 19, 28, 27, 29, 31, 52, 55, 94, 112, 124, 126, 133, 134, 157]).

2.7 Real-time systems

A real-time system is a computer-based system in which the timing of a com-
puted result is important [102]. Typical real-time systems are various control
mechanisms, multimedia systems, and communication systems. The control ac-
tions, data transfer etc. must happen in time, otherwise such systems will not
operate correctly.

Real-time systems are usually divided into soft and hard real-time systems.
In hard real-time systems, a failure to meet timing requirements can be fatal,
i.e., severe damage can result. In soft real-time systems, an occasional failure to
meet timing requirements does not have permanent negative effects. Typically,
the quality of the service provided is reduced, but the service is useful. This
thesis is more focused on soft real-time systems than hard real-time systems.

Real-time systemsare often embedded systems, and vice versa. An embedded
system is a dedicated computer system that is a component of another system.
Embedded systems – and thus, also real-time systems – are very common. A
typical mobile phone has two embedded processors [26]. A Mercedes-Benz S

5These misses are also called collision or interference misses

2.8. SOFTWARE PERFORMANCE ENGINEERING 15

automobile has 48 processors [60]. It has been estimated that 98%–99% of the
total number of processors produced are in embedded systems [64].

Contrary to the impression that seems common, typical real-time systems
are not fast. In real-time systems, predictability of timing behavior is more im-
portant than speed. However, speed requirements for real-time systems are in-
creasing (for example, fast speed is required by multimedia applications). In the
development of real-time systems, software and hardware are often co-designed.
Design decisions are made so that performance analysis (including timing anal-
ysis) of the systems are easy. This means that the software is carefully written
for the specific hardware.

In hard real-time systems, no software or hardware features that hamper
the predictability of timing behavior are included. In the past, this has meant
that processors with pipelines and cache memories have not been used in hard
real-time systems. The rapid development of program analysis has changed this
scene. Currently, there are complex hard real-time systems that use processors
with modern architecture, e.g., the Airbus A380 airplane has such embedded
systems [46]. Also, complex software structures are used in modern real-time
systems [72].

2.8 Software performance engineering

Software performance engineering is a methodology for developing software sys-
tems to meet performance objectives [144]. It provides software development
processes with various methods and tools that give analyses and guidelines.
Such methods and tools cover the software development from early develop-
ment throughout the whole lifetime of the software.

As such, software alone has no performance that can be stated. An under-
standing of the underlying hardware and the workload of the software is always
needed. Consequently, the analyses needed in software performance engineering
are difficult.

Because of the difficulty of analyzing performance of software systems, ap-
proximate models are often used. There exists a number of modeling techniques
and related software performance engineering methods (see [62, 81, 111, 146] for
examples).

Software performance work is often based on designing program code at var-
ious levels (from the statement level to the architectural level). When memory
is the hardware bottleneck, it is important to design data structures and their
layout in the memory. In this task, program analysis tools play a central role.

At least, the memory behavior of critical program parts should be designed
and tested. In our experience [72], the performance critical structures are often

16 CHAPTER 2. BACKGROUND

only a small part of a software. Thus, they can be closely studied. In addition
to locating the origins of cache misses, we must understand their cause and type
(compulsory, conflict, or capacity) to make changes that improve performance.

2.9 Dynamic memory analysis

Because of the complexity of the memory hardware, interactions of memory ref-
erences are complex. We must understand the accesses that the references make
to understand their interactions. Typical hardware does not support analysis
of memory operations [78]. Therefore, the memory operations of such programs
are often simulated.

The most common memory simulations are trace-driven simulations [156].
A trace-driven simulation has two main phases. In the first phase, an access
trace is collected. Because hardware support for cache tracing is rare [78], the
collection is typically completed by augmenting the subject program with trace
emitting code. In the second phase, a memory simulation is executed using the
trace of the first phase as the input. Between these two main phases, there can
be a trace reduction phase that makes the trace easier to handle.

Trace-driven simulations are especially suitable for hardware performance
studies. In such studies, the trace, once collected, can be used several times; it
serves as a benchmark for hardware. In a software analysis, the input is varied
and a different trace is usually generated for each simulation. Therefore, it is
practical to use on-the-fly (execution-driven) simulation in software performance
studies. In such simulations, the trace is consumed as it is produced [56].

The major problem in trace-driven simulation studies is the size of traces
[129, 156]. The traces resulting from program executions can be huge. To
understand thoroughly the memory behavior of a program, the program must
be executed with several inputs and several traces must be generated. Thus,
very long simulation times can be needed because of the huge amount of data
to be analyzed.

2.10 Static program analysis

In static program analysis [118], run-time behavior of a program is analyzed
without executing it with a specific input. Static program analysis is usually
motivated by its ability to simultaneously give results for a set of inputs (often
for all inputs of a program). Because the behavior of a program can be different
for different inputs, static analysis is usually approximative. Instead of giving
precise results, static analysis usually gives upper and lower bounds for possible
values.

2.11. EXECUTION TIME ANALYSIS 17

Static program analyses often do not result in a single value. Typically, they
attach analysis information to the program’s structure. For example, first-order
program analyses attach state information to program structure, e.g., values
bounding possible program states are attached before and after each statement
in a program.

There are several ways to approach the problem of statically analyzing pro-
grams. Typical approaches [118] are the equational approach, the constraint-
based approach, and abstract interpretation. Selecting the approach means se-
lecting the way that we use to present our analysis problem and its solution,
i.e., the resulting analysis.

In the equational approach, we use two classes of equations to describe an
analysis. One class of equations relates the information before an operation to
the information after an operation. The other class of equations relates the
information of an operation to the information of another operation. In the
constraint-based approach, inclusions (often inequations) are used instead of
equational relations.

Abstract interpretation is a semantic-based approach to program analysis.
To some extent it is independent of the specification style, i.e., it works on a
level different from the equational approach or constraint-based approaches. It
can be considered as a general methodology that can be used to derive analyses.
This thesis will use parts of the theory of abstract interpretation. We will review
them in Section 3.4.

Implementation of a program analysis is a separate issue. There are several
ways to implement an analysis. Selecting the implementation means select-
ing the way that we are going to compute the solution for a specific analysis
task. Implementation techniques include worklist algorithms [89], round-robin
algorithms [85], structural analysis [139], graph-based algorithms [79], and path
algebras [22].

2.11 Execution time analysis

Execution time analysis is important in real-time systems. There are several
ways to analyze the execution time of a system. These include static program
analysis, performance models, and evolutionary testing. The selection of the
analysis method should be based on the system properties and the analysis
information needed. Hard real-time systems require execution time guarantees,
i.e., analysis of worst-case and best-case execution times (WCET and BCET
analysis). In soft real-time systems, average-case analysis can be more useful.

Static program analysis is useful in WCET and BCET analysis, because it
can give guarantees of performance that are based on the software itself. Three

18 CHAPTER 2. BACKGROUND

different ways of computing timing bounds are usually applied: tree-based tech-
niques, path-based techniques, and implicit path enumeration techniques. In
tree-based techniques [122], the timing bound is calculated using bottom-up
traversal of the program. Path based techniques [149] search for the execu-
tion path that gives the bounding execution time. Implicit path enumeration
techniques [99] use algebraic or logical constraints to describe timing behavior.
Static cache analysis (including the one presented in this thesis) can be used as
a component of such methods.

Performance modeling is useful for both hard and soft real-time systems.
Compared to static analysis, using performance modeling is demanding; usually
a lot of expertise and effort is needed to reliably model systems. In perfor-
mance modeling, description of system performance is constructed. Typical
performance models are based on abstract descriptions of the system structure.
To describe timing performance, timing information is attached to the abstract
structure. Examples of software performance models are sequence charts [145]
and task graphs [14]. In addition to the software, the input and the under-
lying hardware must be modeled. The combined models can be solved using
analytical techniques or simulation.

Statically analyzing or modeling timing behavior of some systems can be
infeasible. Evolutionary testing [116] uses search-based methods to analyze the
timing behavior of programs. Evolutionary testing is based on simulating or
executing the subject program with a number of inputs. The approach is sensi-
tive to the size of the search space, which is exponential in the number of input
variables to a program. Search heuristics are often based on the observation
that all input variables are not important to performance. Various methods
have been used to improve the search of test cases, e.g., program slicing [65].
The simulation methods (including the one in this thesis) can be used as a basis
for evolutionary testing.

2.12 Conclusions

The relationship between the source code of a program and its behavior during
execution is complex. This complexity is not only caused by the semantics of
the source language. From the performance point of view, the features of the
underlying hardware significantly increase the complexity.

Analyzing this complex relationship is made difficult by all the things that
happen before the hardware actually executes the software. These include – but
are not limited to – the actions that are done by the compiler, the linker, and
the loader. Further, during the execution several factors affect the performance,
e.g., memory management and process management of the operating system.

2.12. CONCLUSIONS 19

In theory, measuring can give accurate information about the execution be-
havior of a program, but in practice, it is increasingly difficult to do so, because
of the increasing complexity of hardware and software. Software emulation tools
often do not contain all the peripheral hardware components that affect perfor-
mance. On the other hard, hardware tools often do not contain all the probes
that would be needed for a proper understanding of the behavior of a program.

When predictability of performance is a must (e.g., in hard real-time sys-
tems), analysis is usually made easier. This is typically achieved by using such
software and hardware that the current analysis methods are capable of ana-
lyzing. Thus, developing analysis methods will increase the number of software
and hardware features that can be used in such systems.

20 CHAPTER 2. BACKGROUND

Chapter 3

Combined program analysis

In program analysis, we find out the execution behavior of programs. For exam-
ple, we might be interested in whether a program uses uninitialized variables in
its computation. Such use can lead to errors, because of the unknown (and pos-
sibly erratic) values contained in the variables. Other uses include – but are not
limited to – performance evaluation, optimizations, debugging, maintenance,
and testing.

Program analysis can be performed dynamically, i.e., by executing the pro-
gram. It can also be performed statically, i.e., without an execution of the
program with a specific input. A specific input is used in dynamic analysis,
but static analysis considers a set of inputs. Often all inputs of a program are
considered at the same time. Results of a dynamic analysis are accurate, but
are valid only for the single input. Results of a static analysis are valid for all
the inputs considered, but usually are approximative.

In the following, we consider both dynamic and static analysis. We define
a simple (but generic) programming language and present a dynamic analysis
approach and a static analysis approach for the language in a semantics-based
manner. Then, we present the combined analysis, which uses dynamic analysis
to improve the results of static analysis and static analysis to speed up dynamic
analysis.

3.1 A programming language

We use a simple programming language in describing our framework. We do not
define the formal semantics of the language. The main motivation for the lan-
guage is to illustrate the concepts presented. The language is designed to make

21

22 CHAPTER 3. COMBINED PROGRAM ANALYSIS

instrumentation easy. Despite this, our approach is generic in its nature. Pro-
grams written in complex languages can be instrumented – including programs
in machine languages [95].

A program in our language is a statement P that can contain a finite number
of substatements. The syntax (and informal semantics) of the language is the
following:

P ::= P1P2 statement concatenation

| (op)
l

operation computing value for flag l

| [op]l operation altering memory state

| [skip]l do nothing
| whilel P1 do P2 end loop while flag l is not zero
| ifl P1 then P2 else P3 end if flag l is zero P3 is executed else P2

The syntax given is an abstract one. We use labels to identify program
elements, e.g., [skip]5 is the program element labeled with 5. Condition testing
in if and while statements is based on labeled flags. The statement setting the
flag must have the same label as the if statement or the while statement, e.g.:

if2 [output a]1 (a < b)2 [output b]3 then

[m = a]4

else

[m = b]5

end

The statements between if and then are executed before the flag is tested.
The flag of the if2 statement is set by (a < b)2, because it has the same label
as the if2 statement. Thus, the code fragment outputs both a and b, and then,
assigns the smaller of them to m.

In the language, operations (statements with op) are the only statements
that can change the state of the memory or perform I/O. Other statements
affect the flow of control, i.e., the program counter.

3.2 Execution semantics

We define execution semantics using a notion of the execution state of a pro-
gram on an abstract level. A program begins in some starting state, and each
execution step transforms the current state into a new state. Informally, a state
consists of data structures, remaining input data, and emitted output data. We
consider all of them as values that are held in memory cells.

3.3. DYNAMIC ANALYSIS 23

Definition 3.1 (execution state). We define the execution state of a program
as a function m : V → Z, where V is the set of memory cells and Z is the set
of integers. We denote the set of all execution states by M.

Execution of a program element εp at point p of a program P can cause
a change of state by altering the value of some memory cell vi ∈ V , i.e., εp

computes a new value for m(vi). We call the pair (vi,m(vi)) the computed value

(at εp).
The state of an execution at a specific point depends on the initial state and

the program elements executed so far. If the program terminates, it reaches
the final state mf corresponding to its initial state mo. Alternatively, we can
consider program P to have computed some output O from its input I. We
denote that computation by [[P]]〈I〉 = O, i.e., [[P]] is the function computed by
program P (possibly a partial function).

Our framework is based on program transformations. These transformations
are program instrumentation, partial evaluation, and program slicing, which are
described in the following sections. The transformations must preserve some se-
mantics of the transformed program. Therefore, we define a concept of program
similarity.

Definition 3.2 (program similarity). Let programs A and B share a set of
program elements. We say that programs A and B are similar if for any input
(for which A and B terminate) the sequence of computed values at the shared
program elements in the execution of A is the same as the sequence of computed
values at the shared program elements in the execution of B.

The above concept of program similarity is a simplified form of the one used
in [15]. In the following, we base the correctness of our program slicing on their
work.

3.3 Dynamic analysis

In dynamic program analysis, we consider the state of a program execution or
values that can be computed from the state. To do the analysis, we augment
a subject program with instrumentation code that implements our analysis. In
this thesis, we will use the word augmentation to mean a single addition of code
and the word instrumentation to mean the measuring system that results from
all the augmentations.

We do not want to affect the original computation of a subject program.
Therefore, we use an instrumentation state that is separated from the original
execution state of the subject program. Informally, an instrumentation state

24 CHAPTER 3. COMBINED PROGRAM ANALYSIS

contains values of memory cells that are not shared by the original subject
program, remaining input for the instrumentation code, and output emitted by
the instrumentation code.

Definition 3.3 (augmented execution state). We define the execution state
of an instrumentation as a function m+ : V + → Z, where V + is a set of memory
cells so that V + and V are disjoint. We denote the augmented execution state

of the whole program by mA = m ∪ m+ and the set of all augmented execution
states by M A.

In addition to the original program elements, an instrumented program con-
tains program elements implementing the instrumentation. We denote such an
instrumented program by P A and the function computed by the instrumented
program by:

[[P A]]〈I, I+〉 = 〈O,O+〉

where I+ is the input for the instrumentation (analysis input) and O+ the
output from the instrumentation (analysis output).

Definition 3.4 (probes). Augmentations εop and εof are called probes if

• an original program element εo is replaced by the sequence of program
elements εopεoεof,

• any execution of εop and εof always terminate, and

• for any v ∈ V , m(v) is not changed by execution of εop or εof.

Thus, we want probes not to affect the state of the original subject program
or its flow of control. (In the definition, εop is the augmentation preceding the
element εo and εof is the augmentation following it.)

Theorem 3.5 (correctness of probes). Let P A be given the initial state
mA

o = mo ∪ m+
o whenever P is given the initial state mo (i.e., m+

o contains the
initial values for the memory cells for the instrumentation). If a program P is
instrumented with probes, then the instrumented program P A is similar to the
original program.

Proof. The shared program elements are the program elements of P , because
P A is constructed by inserting code to P .

The initial state mo corresponds to an input I. Let mi be an execution state
resulting from an execution of a program element ε in the program execution
computing [[P]]〈I〉 and {ε1, . . . , εn} the program elements whose execution can

3.3. DYNAMIC ANALYSIS 25

immediately follow the execution of ε.
Assume that in execution of [[P A]]〈I, I+〉 there is execution of ε that results

state mA
j , and assume that mA

j ∩ mi = mi. If any original program element εf

will follow in execution of P A, then it must be one of {ε1, . . . , εn}. Let mA
k be

the state before the execution of εf . Then, mA
k ∩ mi = mi must hold, because

augmentation code does not change the original memory cells of P .
The original program elementsuse only cells v ∈ V . Initially, mA

o ∩mo = mo.
Thus (by induction), the sequences of computed values at original program el-
ements in the executions are the same. 2

We illustrate this by a simple example that finds out uses of uninitialized
variables. In Chapters 4–6, we describe a demanding application of our frame-
work (i.e., the cache analysis).

Example 3.6. Consider the program on left in Figure 3.1. The program uses
variables a and b to compute an arithmetic function. We build a dynamic
analyzer that checks that uninitialized variables have not been used. The in-
strumented code is on the right. Operator | is the bitwise-or.

The instrumentation state consists of the instrumentation variables ua, ub,
and e. Variables ua and ub indicate whether variables a and b are uninitialized,
respectively (0 for an initialized variable, 1 for an uninitialized variable). The
variable e indicates whether a use of an uninitialized variable has occurred (0
for no such error, 1 for such an error).

The instrumentation is simple. Each statement εi assigning variable x is
followed by augmentation [ux = 0]if . The augmentation indicates that x has

[input ua, ub, e]P p

[input a]1 [input a]1 [ua = 0]1f

if2 (a > 0)2 then if2 [e = e | ua]2p (a > 0)2 then

[input b]3 [input b]3 [ub = 0]3f

else[skip]4end else[skip]4end
while5 (a > 0)5 do while5 [e = e | ua]5p (a > 0)5 do

[a = a - 10]6 [e = e | ua]
6p [a = a - 10]6 [ua= 0]6f

end end
[b = a + b]7 [e = e | ua | ub]

7p [b = a + b]7 [ub = 0]7f

[output b]8 [e = e | ub]
8p [output b]8

[output e]P f

Figure 3.1: A subject program (left) and the same program with an instrumen-
tation (right).

26 CHAPTER 3. COMBINED PROGRAM ANALYSIS

been initialized. Each statement εi using variable x is preceded by augmentation
[e = e | ux]ip. The augmentation checks that x has been initialized before the
use.

Statement labeled Pp initializes the instrumentation state, i.e., has there
been errors prior to the execution, and have the variables been initialized prior
to the execution. Statement labeled Pf outputs the analysis result.

3.4 Static analysis

In static analysis, we estimate the execution state of a program without actu-
ally executing the program. Our static analysis follows the concept of abstract
interpretation presented by [36].

In abstract interpretation, the analysis task is described using collecting
semantics, which maps each program point to the set of concrete states that are
possible at the point. The analysis task is solved usingan abstract state, which is
a safe approximation of possible concrete states. Thus, abstract interpretation is
executing the program using imprecise (but computable) abstract states instead
of the precise (and often statically uncomputable) collecting semantics.

Let Mo be the set of all possible initial states of a program P . The collecting
semantics cs : P 7→ Dcs maps the program points p to sets of states:

cs(p) =
⋃

i∈Mo

∪{[π]conc(i) | π is a path to p}

where [π]conc describes the state change corresponding to the execution of
the path π.

In an analysis, sets of states are described by elements of a new (simpler)
abstract domain Das. The meaning of each element of the abstract domain is
defined by a concretization function conc : Das → Dcs, and the reverse relation
by abstraction function abs : Dcs → Das.

The abstract semantics as : P 7→ Das maps the program points to the
abstract domain:

as(p) =
⊔

{[π]as(abs(Mo)) | π is a path to p}

where
⊔

is the least upper bound operator on Das and [π]as describes the
abstract state change corresponding to the execution of the path π.

Figure 3.2 illustrates this process. The meaning of a program function f
(concrete domain) is described by an abstract function f̂ (abstract domain).
The set of possible concrete states can be statically approximated by f (x) ⊆

3.4. STATIC ANALYSIS 27

x

6

abs

x̂ -
f̂

f̂(x̂)

?

conc

s

⋃

|

-
f

f (x)

Figure 3.2: Abstract interpretation.

conc(f̂ (abs(x))), where x is the set of initial concrete states and conc and abs are
the concretization function and the abstraction function between the domains.

With abstract interpretation, we can show soundness of our static analysis.
Abstract interpretation is based on lattice theory and Galois connections [118].
In the following, we define some basic concepts, and then state our notion of
soundness.1

Definition 3.7 (lattice). A join semi-lattice D = (D,t) is a non-empty set,
D, with a join operation, t, which is idempotent, commutative and associative.

Idempotency means that xtx = x, commutativity means that xty = ytx,
and associativity means that (xty)t z = xt (yt z). The join operation implies
a partial ordering, which we denote by v. Thus, a subset of a lattice has an
upper bound d0 if d v d0 for all members d of the subset.

Definition 3.8 (complete lattice). A complete lattice is a lattice, where all
subsets of D have a least upper bound d0, i.e., d0 v d whenever d is another
upper bound of the subset.

A complete lattice has a least element ⊥, which is the unit of the join op-
eration. For implementing an analysis, it is useful that all ascending chains in
the property space eventually stabilize. Chains are sequences (ln)n∈N that are
totally ordered subsets of D. They eventually stabilize if and only if ∃n0 ∈ N :
∀n ∈ N : n ≥ n0 ⇒ ln = ln0

.
Usually, lattices are the key concept in any static program analysis technique.

Because of the properties of a lattice structure, we can use a bound that describes

1We will base our definitions on a join operation, ascending chains, and Galois injection
properties. Other ways exist, but the approach is useful for our development.

28 CHAPTER 3. COMBINED PROGRAM ANALYSIS

the possible program states instead of listing them.

Definition 3.9 (monotony). A function f : D1 → D2 is monotone if ∀l, l′ ∈
D1 : l v1 l′ ⇒ f (l) v2 f (l′), where v1 is the ordering in D1 and v2 is the
ordering in D2.

Definition 3.10 (adjointness). Abstraction abs and concretization conc

are strongly adjoint if ∀x ∈ Dcs : x ⊆ conc(abs(x)) and ∀x ∈ Das : x =
abs(conc(x)).

If abstraction and concretization are monotone and strongly adjoint, then
they form a Galois injection between the lattices of abstract and concrete do-
mains. This means that we can safely use a bound in the abstract domain to
describe possible program states in the concrete domain.

Definition 3.11 (consistency). Functions f : Dcs → Dcs and f̂ : Das → Das

are locally consistent if ∀x ∈ Dcs : f (x) ⊆ conc(f̂ (abs(x))).

Local consistency means that our abstract interpretation of a single step in
a program is sound: the concrete states given by collecting semantics of the step
is a subset of the concretized abstract state given by abstract semantics of the
step. Using a Galois injection, we can consider a whole program by means of
abstract interpretation.

Theorem 3.12 (soundness of abstract interpretation). If an abstract
interpretation satisfies the following conditions, then the set of concrete states
given by collecting semantics is a subset of the concretized abstract state given
by abstract semantics.

• (Dcs,⊆,∪,⊥cs) and (Das,v,t,⊥as) are complete join semi-lattices;

• abs and conc are monotone and strongly adjoint; and

• the abstract operation f̂ is locally consistent with the concrete operation
f .

Proof can be found in, e.g., [36].

The meaning of concrete program functions f (x) can be described by ab-

stract functions f̂(x̂). The result is a safe approximation; we do not miss any
concrete semantics of a program, but can include some false ones.

Using static analysis, we can find out that some of the values needed or
yielded by some program element ε are constants. The program specializations
that we use are based on this.

3.5. COMBINED ANALYSIS 29

Example 3.13. We consider again Example 3.6, but we use static analysis for
the same analysis task and assume analysis input ua = 1, ub = 1, and e = 0.
Using static analysis, we can solve some values needed in our analysis (values
on the left in Figure 3.3). For such a simple program, the uses of uninitialized
variables can be seen by looking at the program code, but computational meth-
ods exist for such tasks, e.g., a derivation of algorithms for computing reaching
definitions [5].

[input a]1 ua = 0 ub = 1 e = 0
if2(a > 0)2then ua = 0 ub = 1 e = 0

[input b]3 ua = 0 ub = 0 e = 0
else[skip]4end ua = 0 ub = 0 ∨ 1 e = 0
while(a > 0)5do ua = 0 ub = 0 ∨ 1 e = 0

[a = a - 10]6 ua = 0 ub = 0 ∨ 1 e = 0
end ua = 0 ub = 0 ∨ 1 e = 0
[b = a + b]7 ua = 0 ub = 0 e = 0 ∨ 1
[output b]8 ua = 0 ub = 0 e = 0 ∨ 1

Figure 3.3: A static analysis of a program.

Statement 1 defines a value for a, therefore ua = 0 after that. Statement 3
defines a value for b, therefore ub = 0 after that. Because statement 3 is inside
an if statement, ub can also be 1, until statement 7 unambiguously defines a
value for variable b.

A use of an uninitialized variable can happen in statement 7, because ub

can be 1. Therefore e can be 0 or 1 after that point. Our static solution is
approximate (e can be 0 or 1); obviously the analysis result is dependent on the
input for the program.

3.5 Combined analysis

Our combined analysis has three phases: a compilation phase, an execution
phase, and a summary phase. In the compilation phase, a subject program is
statically analyzed and a dynamic analyzer is built. In the execution phase,
the dynamic analyzer is executed (typically with several inputs). In the sum-
mary phase, the analysis information of the compilation phase and the analysis
information of the execution phase are combined.

The execution phase follows the typical procedures of simulation studies,
which can be found in a suitable text book (e.g., [96]). The summary phase
simply merges the static and dynamic analysis results. As the compilation

30 CHAPTER 3. COMBINED PROGRAM ANALYSIS

phase is special, we will describe it in detail.
The compilation phase consists of three program transformation steps: pro-

gram instrumentation, partial evaluation, and program slicing. The first step
creates a straightforward dynamic analyzer and the last two are program spe-
cializations, which make it faster and more compact. The two specialization
steps need static analysis information.

Step 1: Instrumentation

The first phase is an instrumentation that creates dynamic program analyzers.
Let P be the original subject program and O its output corresponding to input
I, i.e., the program computes:

[[P]]〈I〉 = O

The corresponding instrumented program computes:

[[P A]]〈I, I+〉 = 〈O,O+〉

where I+ is the input for the instrumentation and O+ is the analysis result
measured by the probes.

Corollary 3.14 (correctness of step 1). Directly from Theorem 3.5 follows
that if P is transformed into P A by adding probes, then P A is similar to P .

This shows only the correctness of our framework. The correctness of the
instrumentation itself must be separately shown for each application.

Step 2: Partial Evaluation

Partial evaluation is a program transformation that is given a subject program
with part of its input data. It constructs a new program that, when given the
remaining input, will yield the same result that the original subject program
would have produced given full input.

Consider the program P A computing [[P A]]〈I, I+〉 = 〈O,O+〉. Let peval de-
note the partial evaluator, then

([[peval]]〈P A, I+〉 = P A
I+) ⇒ ([[P A]]〈I, I+〉 = [[P A

I+]]〈I〉)

for all I. Thus, we fix the analysis initialization (input) and evaluate stati-
cally part of the analysis.

3.5. COMBINED ANALYSIS 31

Our partial evaluation is based on static analysis of the original program P .
The static analysis is performed for the same task as the preceding instrumen-
tation for the dynamic analysis (which produced P A from P). Static analysis
can give us static values of both the original program and its instrumentation.

Let an augmentation compute a function g(v0, v1, . . . , vn) = g(V), where the
argument vector V = v0, v1, . . . , vn is a subset of some program state. Based on
static analysis, we can know that some of the arguments in an argument vector
are constants. Therefore, we can substitute g(V) for g(VV || VC), where VC

contains the constant arguments and VV the variable arguments. The operator
|| denotes merging two argument vectors into one argument vector (in the correct
order).

Because of the constant values, the function g can be partially evaluated re-
sulting in a simpler function gC. In the best case, VV is empty: no computations
are needed at run time.

Now we can formulate a (rather trivial) condition for correctness of our
partial evaluation. At this point, we do not explain how such a program trans-
formation could be performed. We will discusspartial evaluation in more detail
in Chapter 6.

Theorem 3.15 (correctness of step 2). An original analyzer is similar to
the partially evaluated analyzer, if for all original instrumentations g and the
corresponding partially evaluated instrumentations gC:

∀ VV ∈ M A
g : gC(VV) = g(VV || VC) ∧ VC is constant in M A

g

where VV is a variable argument vector, VC is a constant argument vector,
and M A

g are the possible augmented program states at the point preceding g.

Proof. Let mA
i be a state before execution of g, and mA

i+1 the state after its
execution. Let mC

i be the state before execution of gC, and mC
i+1 the state after

its execution. If mC
i = mA

i then mC
i+1 = mA

i+1, because g and gC compute the
same value. 2

Essentially, Theorem 3.15 demands that the argument vector VC describes
the same substate in all states m ∈ M A

g , i.e., VC truly is a constant. In such a
situation, g and gC must compute the same result.

If we assume that the instrumentation input I+ is constant, then we can
apply this also to the input statements of the instrumentation. In this way, we
will get an analyzer that is specialized for a fixed instrumentation input.

Example 3.16. Consider our previous examples. If we use the static informa-

32 CHAPTER 3. COMBINED PROGRAM ANALYSIS

tion of Example 3.13, then we can partially evaluate the dynamic analyzer of
Example 3.6 into the one in Figure 3.4.

[ua = 1]P p1 [ub = 1]P p2 [e = 0]P p3

[input a]1 [ua = 0]1f

if2 [e = 0]2p (a > 0)2 then

[input b]3 [ub = 0]3f

else[skip]4end
while 5 [e = 0]5p (a > 0)5 do

[e = 0]6p [a = a - 10]6 [ua = 0]6f

end

[e = ub]
7p [b = a + b]7 [ub = 0]7f

[output b]8

[output e]P f

Figure 3.4: A partially evaluated analyzer.

The analyzer does not read any analysis input. Instead, it has initializing
assignments indicating that all variables are uninitialized and no uses of unini-
tialized variables have happened (statements Pp1, Pp2, and Pp3).

Several computations of new values have been replaced by assignments of
constants, because their values are statically known. These are statements 2p,
5p, and 6p. For them, we know that e = 0 and ua = 0, thus (e | ua) = 0.

Statement 7p is simplified, because we know that e = 0 and ua = 0, thus
(e | ua | ub) = ub. Nothing remains from statement 8p, because we know that
ub = 0, thus (e | ub) = e. The resulting dynamic analyzer is faster than the
analyzer of Example 3.6, because we have used static information to speed it
up.

Step 3: Slicing

As described in the preceding, a partially evaluated analyzer computes both the
original output and the analysis output:

[[P A
I+]]〈I〉 = 〈O,O+〉

We do not need the original output. Further, we do not need the program
elements that do not affect our analysis result.

We use program slicing to implement a program transformation that yields
programs P A

I+Y
computing only the analysis output. Let slicer be the transfor-

mation, then for all I:

3.5. COMBINED ANALYSIS 33

([[slicer]]〈P A
I+, Y 〉 = P A

I+Y) ⇒ ([[P A
I+Y]]〈I〉

O
+

= [[P A
I+]]〈I〉 ∧ [[P A

I+Y]]〈I〉
O
= Ø)

where Y is called the slicing criterion,
O+

= denotes equality of analysis output

and
O
= denotes equality of original output.

Now we can formulate a condition for correctness of our program slicing. In
our framework of dynamic analysis, the issue of program slicing is much more
complicated than partial evaluation. As for partial evaluation, we do not explain
here how such a program transformation could be performed in practice. We
return to the matter in Chapter 6, where we discuss it in more detail.

Theorem 3.17 (correctness of step 3). If all input statements and the
analysis data output statements are used as the slicing criterion, then a sliced
dynamic analyzer consumes the same input and yields the same analysis output
as the original dynamic analyzer.

Proof. The principal property of slicing is producing similar programs at the
slicing criterion. A proof for this can be found, e.g., in [15].

Example 3.18. Consider our previous example. If we use all the original input
statements (i.e., statements 1 and 3) and the analysis output statements (i.e.,
statement Pf) as the slicing criterion, then we can slice the dynamic analysis
program into the following:

[ub = 1]P p2

[input a]1

if2 (a > 0)2 then

[input b]3 [ub = 0]3f

else[skip]4end
[e = ub]

7p

[output e]P f

Statement 7p assignse its final value. Other assignments to e are useless. There-
fore, statements 6p, 5p, 2p, and Pp3 have been removed. Statement 7p uses only
the values of ub that reach it. Therefore, statements 7f , 6f , 1f , and Pp1 have
been removed.

The analyzer program does not need to produce output other than analysis
output. Therefore, statement 8 producing the output of the original program
has been removed. Statements 7, 6, and 5 compute only the output value. Thus,
they too have been removed. Note that the analyzer program has to read the
same input as the program of Example 3.6, therefore statement 1 has not been

34 CHAPTER 3. COMBINED PROGRAM ANALYSIS

removed.
A significant part of the original program has been sliced away; especially

the loop that can take a long time to execute. The program could be further
improved by using ub instead of e in statement Pf, thus, also 7p could be re-
moved2.

3.6 Conclusions

In this chapter, we described a framework for program analysis. The framework
combines dynamic program analysis and static program analysis: it uses dy-
namic analysis to improve results of static analysis and static analysis to speed
up dynamic analysis.

We use two kinds of program specialization in speeding up dynamic analysis:
partial evaluation and program slicing. They supplement each other. Consid-
ering the flow of control in a program, partial evaluation and program slicing
work in opposite directions. In our example of partial evaluation, we stepped
forward while partially evaluating statements, and looked backward for values
of our variables. In our example of program slicing, we stepped backward while
slicing statements, and looked forward for possible uses of computed values.

Our framework is an abstract one. This leaves several options available in
implementinga specific analysisby using combined analysis. The augmentations
needed in dynamic analysis depend on the analysis to be performed. The same is
true for the static analysis suggested. Abstract interpretation gives a theoretical
framework for static analysis. Several implementations are possible within the
framework, e.g., the work-list algorithm [118].

Alternatives exist also for implementing partial evaluation and program slic-
ing. For example, simple methods like constant folding or complex methods like
polyvariant specialization can be used in partial evaluation [82]. In program slic-
ing, there are methods that are based on data-flow equations, information-flow
relations, and dependence graphs [153].

In the next three chapters, we apply our framework to a demanding real-
world problem: cache performance evaluation of programs. In the application,
we will give the reader a more concrete picture, how steps of our abstract frame-
work can be realized to solve an analysis problem.

As the example in this chapter indicated, program specialization can be ap-
plied both to the subject program and to its augmentations. This can lead
to significant performance improvements in dynamic analysis. However, the
performance of the method is dependent on the subject program. On one ex-
treme, nothing can be evaluated or sliced away during the program specializa-

2Compilers do such transformations, see [5].

3.6. CONCLUSIONS 35

tion. Thus, no data result from the compilation phase, and all is left to the
simulation phase.

On the other extreme, all simulation steps can be evaluated statically and
the whole input program sliced away during the compilation phase (except the
part related to reading the original input and outputting the result). Thus, full
data result from the compilation phase, and an empty simulation phase follows.

For the extreme cases, our method is of no value. According to our expe-
rience, such cases are very rare in practice, i.e., our method is useful in most
practical cases. We will discuss this further in Chapter 7 in which our experi-
mentation with our cache performance analysis method is presented.

36 CHAPTER 3. COMBINED PROGRAM ANALYSIS

Chapter 4

Dynamic cache analysis

In the previous chapter, we described a combined program analysis framework.
In the following, we describe how combined program analysis can be applied to
cache performance analysis. This chapter describes a dynamic cache analysis
method (it could also be called an execution-driven cache simulation method).
The two subsequent chapters describe how the dynamic analysis can be im-
proved.

We start our description by defining a less general version of the program-
ming language of the previous chapter. The version defines a simple load/store-
mechanism for accessing memory. After defining the language, we define cache
semantics in a generic way. The cache semantics describe what happens in a
cache memory when a program is executed. The semantics are defined in more
detail than is needed in this chapter because the next chapter is based on the
semantics.

Our method of program analysis is based on augmenting programs with
instrumentation code. The rest of this chapter describes the augmentations that
are needed in our cache analysis. We define the augmentations at an abstract
level to allow freedom for implementation.

4.1 A programming language

In the previous chapter, our description of the programming language did not
consider the memory in any detail. Now, we assume that the memory is divided
into two parts: registers (including flags) and a heap containing heap cells.
Further, we assume that the data in the registers (excluding flags) and cells of
the heap can contain pointers to heap cells in addition to plain data.

37

38 CHAPTER 4. DYNAMIC CACHE ANALYSIS

In our modified language, a program is a statement P , which can contain a
finite number of substatements. We use variable names (var) to specify registers,
literals to denote constants (num), and expressions. The syntax (and informal
semantics) of the language is the following.

e ::= var | num | op(e1, . . . , en) expression
P ::= P1P2 statement concatenation

| (e)
l

expression setting flag l

| [var = e]l assignment

| [var1 = *var2]
l load

| [*var1 = var2]
l store

| [skip]l do nothing
| whilel P1 do P2 end loop while flag l is not zero
| ifl P1 then P2 else P3 end if flag l is zero P3 is executed else P2

Note that the heap can be accessed only by the load and store statements.
Other statements use only registers, which cannot be cached. Thus, only load
and store statements affect the state of the cache memory. In the following, we
do not separate reading and writing, and assume LRU replacement policy.

4.2 Cache semantics

We define concrete semanticsusing a notion of the execution state of a program.
We denote a program execution state by m and the set of all states by M . In this
chapter, we give a detailed formulation only for states describing the contents
of a data cache. We follow [47] in our formulation of concrete cache semantics.

The cache contains recently used memory cells. To identify the cells, we
assign them locations (i.e., memory addresses).

Definition 4.1 (location). A location uniquely identifies a memory cell. Lo-
cations describe the pointer values that point to memory cells. We denote a
location by l and the set of all locations by L.

We consider a memory T consisting of memory lines ti ∈ T of the size B.
The memory line that a location l ∈ L belongs to depends on its address addr(l),
and is determined by function line : L → T :

line(l) = taddr(l)divB

Let F = 〈f1, . . . , fN 〉 be the sets of an A-way set associative cache, and
Ri = 〈ri1, . . . , riA〉 the lines of the set fi. The cache set that a memory line

4.2. CACHE SEMANTICS 39

ti ∈ T belongs to depends on its line address lineaddr(ti) = i, and is determined
by function set : T → F :

set(t) = flineaddr(t)modN+1

Figure 4.1 illustrates these address calculations. The total size of the cache
is N ·A ·B. Memory can be seen to consist of blocks of the size N ·B containing
a line per each cache set. Locations are contained in the lines. The cache
associativity A does not affect this address calculation.

line0 line1 lineNlineN line0

N x B bytes of memory

ti ti+1

cache set f1 cache set f2 cache set f3

line0line0

locations in a line

locations

A x B bytes of cache

lineA lineA

ti+N−1

Figure 4.1: Mapping of cache sets and memory lines.

The capacity of a cache set is smaller than the number of memory lines
belonging to it: only a fraction of its memory lines can be stored. Further, lines
of a cache set can be empty, which we denote by �. No duplicates are stored in
a cache set. Thus, we define the state of a cache set by the following function.

Definition 4.2 (set state). A set state is a function s : R → T ∪ {�}, where

∀ra, rb ∈ R : s(ra) = s(rb) ⇒ s(ra) = s(rb) = � ∨ ra = rb

S denotes the set of all set states.

Note that each memory line belongs to a set (not to a specific cache line).
We will use LRU replacement of cache lines, and order the cache lines of a set
accordingly, i.e.:

∀ra, rb ∈ R : a > b ⇒ b is more recently referred to (younger) than a

For any memory line t ∈ T in cache, the index i of its cache line ri ∈ R is

40 CHAPTER 4. DYNAMIC CACHE ANALYSIS

its age. Age is > for any memory line that is not in cache. Further, > > A and
> +1 = 1 +> = >. The age of any location is the age of the memory line that
holds it.

The state of a cache consists of the states of its sets. Memory lines belong
to a unique set; they are not shared among sets. Thus, we define:

Definition 4.3 (cache state). A cache state is a function: c : F → S, where

∀fy ∈ F : ∀rx ∈ R : c(fy)(rx) 6= � ⇒ set((c(fy)(rx)) = fy

We denote the set of all cache states by C. Memory operations of a program
change the state of the cache. By describing the state changes we can define the
cache semantics.

Definition 4.4 (set update). The set update function US : S × T → S de-
scribes the change of the state of a set. If the accessed memory line t is already
in cache at line rh, i.e., its age is h, then

US(s, t) = [r1 → t, ri → s(ri−1), rj → s(rj)]

where i ∈ [2, . . . , h] and j ∈ [h + 1, . . . ,A]. Otherwise,

US(s, t) = [r1 → t, ri → s(ri−1)]

where i ∈ [2, . . . ,A].

The memory line that is referred to becomes the youngest. In the first case,
the memory lines newer than h are shifted one step older. In the second case,
all lines in the set are shifted and the least recently used line will disappear.

Example 4.5. Let the state of a cache set be [4, 3, 2, 1], i.e., 4 is the most
recently referred to memory line, and 1 is the least recently referred to memory
line. If memory line 2 is referred to (i.e., h = 3) then the new set state is [2, 4, 3,
1]. If a memory line that is not already in cache is referred to, say memory line
5, then the new set state is [5, 4, 3, 2]. Thus, memory line 1 has been replaced
by memory line 5 in the cache.

Definition 4.6 (cache update). The cache update function UC : C ×T → C
describes the change of the state of the cache:

UC(c, t) = c[set(t) → US(c(set(t)), t)]

4.3. ANALYSIS AUGMENTATION 41

The semantics define the LRU replacement policy that works on demand.

Example 4.7 Consider the following program:

[y = *b]1

[x = *a]2

if3 (gt(x, y))
3
then

[x = *c]4else [skip] 5 end

if6 (gt(x, y))
6
then

[y = *a]7

else

[y = *d]
8

end

Let associativity of a cache be two. The program uses four memory locations
pointed by registers a, b, c, and d. Assume that they point to different memory
lines T = {ta, tb, tc, td} belonging to a single cache set R = {r1, r2}. At the pro-
gram point before statement 6, the possible concrete states are {(r1, ta), (r2 , tb)}
and {(r1, tc), (r2, ta)}. (In the first state, ta is the most recently referred to mem-
ory line and tb is the other memory line cached.) Thus, statement 7 will always
hit, and statement 8 will always miss. For a simple program, as the one above,
such an analysis is computable. For many practical programs, such an analysis
is not computable.

4.3 Analysis augmentation

The cache semantics of the previous section gives an abstract specification for
analysis augmentations. However, it leaves the augmentations undefined. In-
stead of explicitly writing augmentations with our programming language, we
define an abstract algorithm for cache analysis and define the points of a subject
program that are instrumented. Thus, any actual implementation that conforms
with the abstract algorithm is valid.

The abstract augmentation uses a mapping incache and a set of replacement
queues Qf , where f ∈ [1, . . . ,N]. For each cached line t, incache(t) is 1.
Otherwise incache (t) is 0. For each cache set f , Qf is the replacement queue
of the set. The replacement queues represent the total order needed by LRU
management; they are last-in-first-out queues. For each cache set, the head of
its replacement queue is the least recently used cache line.

42 CHAPTER 4. DYNAMIC CACHE ANALYSIS

Definition 4.8. Analysis augmentation aug(l) for memory reference l is:

(1) t = line(l, B)
(2) f = set(t, N)
(3) if not incache(t) then
(4) set not incache(remove head(Qf))
(5) set incache(t)
(6) else
(7) remove(Qf , t)
(8) end
(9) insert tail(Qf , t)

In the augmentation, B is the line size, N is the number of cache sets, line
returns the memory line referred to, set returns the cache set of the line, re-
move_head removes the head of a queue and returns it, insert_tail inserts
a cache line to the tail of a queue, and remove removes a cache line from the
inside of a queue.

Definition 4.9. Cache analysis instrumentation is the following:

1. A program P is replaced by a program initPfin, where init is a list of
input statements that initialize data structures of aug (including those de-
scribing the parameters of the cache) and fin is a list of output statements
that print measurement data.

2. Each statement [var1 = *var2] is replaced by aug(var2)[var1 = *var2].

3. Each statement [*var1 = var2] is replaced by aug(var1)[*var1 = var2].

Theorem 4.10 (exclusion of side-effects). The augmentation (Definitions
4.8 and 4.9) does not affect the original computation of the program.

Proof. The augmentations are probes. First, the augmentations are of the
form Po ⇒ PopPoPof, where Pop = init and Pof is fin for augmentation 1,
and Pop is empty and Pof = aug for augmentations 2 and 3. Second, the cells
of the data used by init, fin, and aug are separate from cells of the original
program. 2

Theorem 4.11 (correctness). The augmentation (Definitions 4.8 and 4.9)
computes the cache update UC (Definition 4.6.) if incache is initially consistent
with cache contents.

Proof. The augmentation handles each cache set separately. Thus, it computes
the cache update UC correctly if it computes the set update US correctly.

4.3. ANALYSIS AUGMENTATION 43

1. Assume that the line is already in cache. Mapping incache will be con-
sistent with the queues also after the execution of aug, because lines 1–3,
7, and 9 will be executed, and they do not change incache. At line 9, the
line is moved to the tail of the queue. Thus,

US(s, t) = [r1 → t, ri → s(ri−1), rj → s(rj)]

will hold after the execution of aug.

2. Otherwise, the line t is not in cache. Lines 1–5 and 9 are executed, be-
cause incache(t) is 0. After the execution, incache(t) is 1 (line 5) and t
is at the tail of the queue (line 9). The head of the queue is removed and
incache consistently updated (line 4). Thus,

US(s, t) = [r1 → t, ri → s(ri−1)]

will hold after the execution of aug.

The augmentation computes the cache update, because conditions of Defi-
nition 4.3 hold. 2

Example 4.12 Consider again the program of Example 4.7.

init

aug(b)[y = *b]1

aug(a)[x = *a]2

if3 (gt(x, y))
3
then

aug(c)[x = *c]4 else [skip]5 end

if6 (gt(x, y))
6
then

aug(a)[y = *a]7

else

aug(d)[y = *d]
8

end

fin

The statements accessingmemory have been augmented with preceding code
aug. The whole program has been augmented with preceding code init and
following code fin. This instrumentation simulates cache hit and misses. Com-
putation of the original program remains the same.

44 CHAPTER 4. DYNAMIC CACHE ANALYSIS

4.4 Conclusions

In this chapter, we described how a dynamic cache analyzer can be built. We
did not give an explicit implementation. Instead, we described the analyzer on
an abstract level. In defining cache states, we followed [47] in our formulation.

The initialization init will input at least the cache parameters N , A, and B.
For many applications, the cache can be assumed to be cold when the simulation
starts. For sucha purpose, an implementation of our augmentation must be able
to handle queues that contain elements describing � (i.e., an empty cache line).

Sometimes it can be useful to begin a simulation with a warm cache. For
such a purpose, the initialization init must input the contents of the cache and
set the replacement queues correspondingly.

The finalization fin will typically output some metrics describing cache hits
and cache misses. An implementation of our abstract augmentation must collect
such information to data structures of the instrumentation. To point out reasons
for hits and misses, line number information etc. is typically needed.

Thus, in addition to input and output of the original subject program, an
instrumented program has input and output that is specific for the instrumen-
tation. The transformation described in this chapter will modify a program
computing [[P]]〈I〉 = O into a program computing [[P A]]〈I, I+〉 = 〈O,O+〉 as
described in step 1 of our abstract framework.

Typically, the individual augmentations themselves do not output anything.
Such output would make a cache simulator very slow. Even with a fast imple-
mentation of our augmentation, an execution-driven simulator is several times
slower than the original program. In Chapter 6, we discuss how a fast analyzer
can be compiled.

Chapter 5

Static cache analysis

Our compilation phase consists of three steps: instrumentation, partial evalu-
ation, and slicing. The last two steps are static program transformations that
need static information of program behavior.

In the previous chapter, a program instrumentation for dynamic cache anal-
ysis was described. This chapter describes, how a similar analysis can be per-
formed statically. We divide our static cache analysis into two parts: address
analysis and cache state analysis. We describe the state analysis in detail. For
the address analysis, we give only an interface description.

We use abstract interpretation to derive abstract cache states from the con-
crete cache states of Section 4.2. Each abstract cache state describes a set of
concrete cache states. To determine references that always hit and references
that always miss, we describe both must and may analysis of abstract cache
states.

5.1 Address analysis interface

The use of dynamic addressing makes cache analysis difficult. Because of the
dynamic addressing,we do not know the absolute memory addresses of data cells
statically. At a reference, we cannot tell the memory line (absolute address) that
is accessed or its cache set.

However, knowing the concrete locations (absolute addresses) and cache sets
is not necessary in our analysis. It is sufficient to know about the cache conflicts
and the cache aliases statically. We use abstract locations to describe cache
conflicts and cache aliases.

45

46 CHAPTER 5. STATIC CACHE ANALYSIS

Definition 5.1 (abstract location). An abstract location l̂ is a symbolic data
item that is pointed by a non-empty subset of variables of a program. We denote
the set of abstract locations by L̂.

Each abstract location l̂ can describe a set of concrete locations, which we
denote by locs(l̂). Locations are stored on memory lines. In program state

m ∈ M , we denote the concrete memory line of l̂ by linm(l̂).
We use two kinds of rules: conflict and alias rules. The alias rule states the

abstract locations that belong to the same cache line. The conflict rule states
the abstract locations that can replace each other in the cache.

Statically, we do not know how the abstract locations are placed in the
concrete memory. We can get lower and upper bounds for abstract locations
that are cache conflicts or cache aliases. We define must and may rules (and
sets) respectively.

Definition 5.2 (abstract cache alias). Two abstract locations l̂1, l̂2 are must

cache aliases, if and only if

∀l1 ∈ locs(l̂1), l2 ∈ locs(l̂2) : line(l1) = line(l2)

where line(l) means memory line address of l (see Section 4.2). They are
may cache aliases, if and only if

∃l1 ∈ locs(l̂1), l2 ∈ locs(l̂2) : line(l1) = line(l2)

Locations that are cache aliases cannot replace each other in a cache. Other
locations sharing a common cache set compete over the cache space available in
the set.

Definition 5.3 (abstract cache conflict). Two abstract locations l̂1, l̂2 are
in a must cache conflict, if and only if they are not may cache aliases and

∀l1 ∈ locs(l̂1), l2 ∈ locs(l̂2) : set(line(l1)) = set(line(l2))

They are in a may cache conflict, if and only if they are not must cache
aliases and

∃l1 ∈ locs(l̂1), l2 ∈ locs(l̂2) : set(line(l1)) = set(line(l2))

The set of abstract locations in must and may cache alias with l̂ are denoted
k∩S (l̂) and k∪S (l̂), respectively. The set of abstract locations in must and may

5.2. CACHE STATE ANALYSIS 47

conflicts with l̂ are denoted k∩C (l̂) and k∪C (l̂), respectively.

5.2 Cache state analysis

In our static cache analysis, we use abstract cache states instead of the concrete
cache states defined in Chapter 4. Each abstract cache state describes a set
of concrete cache states. Our abstract cache states are mappings of abstract
locations to ages (in the sense of a LRU ordering).

Definition 5.4 (abstract cache state). An abstract cache state ĉ maps
abstract locations to cache set positions ĉ : L̂ → {1, . . . ,A,>}. Ĉ denotes the
set of all abstract cache states.

Static analysis is approximative. Without running a program with a specific
input we cannot tell the cache states. Instead, we can compute bounds for pos-
sible cache states at a given program point. In must analysis, we determine a set
of abstract locations that definitely are cached. In may analysis, we determine
a set of abstract locations that can be cached.

We will use the same notation for both analyses. In the cases where the
analyses need to be handled differently, we mark our symbols for must analysis
with ∩ and may analysis with ∪. Otherwise we use the generic symbols.

In both analyses, we have a unique least element ⊥Ĉ . In must analysis, it

consists of minimum ages ({l̂ → 1 | l̂ ∈ L̂}). In may analysis, it consists of

maximum ages ({l̂ → > | l̂ ∈ L̂}).
The meaning of abstract cache states is given by a concretization function

concĈ : Ĉ → 2C.

Definition 5.5 (cache concretization). For must analysis conc Ĉ is:

conc∩
Ĉ
(ĉ) = {c | c ∈ C ∧ ∀m ∈ M : (∀l̂ ∈ L̂,1 ≤ j ≤ N,1 ≤ i ≤ A :

c(fj)(rji) = linm(l̂) ⇒ ĉ(l̂) ≥ i)}

For may analysis concĈ is:

conc∪
Ĉ
(ĉ) = {c | c ∈ C ∧ ∀m ∈ M : (∀l̂ ∈ L̂,1 ≤ j ≤ N,1 ≤ i ≤ A :

c(fj)(rji) = linm(l̂) ⇒ ĉ(l̂) ≤ i)}

The definition means that in must analysis the abstract age ĉ(l̂) is a maxi-
mumlimit for concrete ages i. In may analysis it is a minimumlimit for concrete
ages i. Note that > > A and ĉ(l̂) can be >.

48 CHAPTER 5. STATIC CACHE ANALYSIS

The function absC : 2C → Ĉ gives the abstract state that describes a set of
concrete states.

Definition 5.6 (cache abstraction). For must analysis absC is:

abs∩C (X) = {l̂ → n | ∀m ∈ M, l̂ ∈ L̂, c ∈ X : (∃i, j : c(fj)(rji) = linm(l̂))∧

n = max{i | ∀i, j : c(fj)(rji) = linm(l̂)}}
⋃

{l̂ → > | ∃m ∈ M, l̂ ∈ L̂, c ∈ X : (6 ∃i, j : c(fj)(rji) = linm(l̂))}

where 1 ≤ i ≤ A,1 ≤ j ≤ N . For may analysis absC is:

abs∪C (X) = {l̂ → n | ∃m ∈ M, l̂ ∈ L̂, c ∈ X : (∃i, j : c(fj)(rji) = linm(l̂))∧

n = min{i | ∀i, j : c(fj)(rji) = linm(l̂)}}
⋃

{l̂ → > | ∀m ∈ M, l̂ ∈ L̂, c ∈ X : (6 ∃i, j : c(fj)(rji) = linm(l̂))}

The definition means that for each concrete location we have some abstract
location that is mapped to a bound. In must analysis, the bound is the maximum
age (> if not cached in some concrete state). In may analysis, the bound is the
minimum age (> if not cached in all concrete states).

Although we use the same representation for must and may analysis, their
semantics are different because of the different concretization and abstraction
functions. For example, in may analysis, > means“a cache miss will happen”,
but, in must analysis, it means“we do not know anything”.

Abstract cache states are different at different points of a source program.
By applying the update function, we get the abstract cache state at the point
after a statement, if we know the abstract cache state at the point before the
statement.

Definition 5.7 (abstract update). The abstract cache state update is given
by function UĈ : Ĉ × L̂ → Ĉ. For must analysis it is:

U∩
Ĉ
(ĉ, l̂) =

{l̂i → 1, if l̂i ∈ k∩S (l̂)

l̂i → ĉ(l̂i) + 1, else if l̂i ∈ k∪C (l̂) ∧ ĉ(l̂i) < ĉ(l̂) ∧ ĉ(l̂i) < A

l̂i → >, else if l̂i ∈ k∪C (l̂) ∧ ĉ(l̂i) = A ∧ ĉ(l̂) > A

l̂i → ĉ(l̂i)} otherwise

For may analysis it is:

U∪
Ĉ
(ĉ, l̂) =

{l̂i → 1, if l̂i ∈ k∪S (l̂)

l̂i → ĉ(l̂i) + 1, else if l̂i ∈ k∩C (l̂) ∧ ĉ(l̂i) < ĉ(l̂) ∧ ĉ(l̂i) < A

l̂i → >, else if l̂i ∈ k∩C (l̂) ∧ ĉ(l̂i) = A ∧ ĉ(l̂) > A

l̂i → ĉ(l̂i)} otherwise

5.2. CACHE STATE ANALYSIS 49

To get the maximumages in must analysis,we mark as most recent (i.e., age
1) only the locations that definitely share the line referred to, and shift them to
older only if they may be affected. To get the minimum ages in may analysis,
we mark as most recent all locations that may share the line referred to, and
shift them to older if they definitely are affected. We compare the ages, because
accesses can increase the ages of only the locations that are younger in the cache
than the location that is referred to.

In concrete cache semantics, having a cache update function was sufficient.
In the abstract cache semantics, we must be able to handle the joining of abstract
cache states, because branches of control can join in a program.

Definition 5.8 (abstract join). The abstract cache states are joined by func-
tion JĈ : Ĉ × Ĉ → Ĉ. For must analysis it is:

J∩
Ĉ
(ĉ1, ĉ2) =

{

{l̂i →>, if ĉ1(l̂i) = > ∨ ĉ2(l̂i) = >

l̂i → max(ĉ1 (l̂i), ĉ2(l̂i))} otherwise

For may analysis it is:

J∪
Ĉ
(ĉ1, ĉ2) =

{l̂i →>, if ĉ1(l̂i) = > ∧ ĉ2(l̂i) = >

l̂i → ĉ1(l̂i), if ĉ1(l̂i) 6= > ∧ ĉ2(l̂i) = >

l̂i → ĉ2(l̂i), if ĉ1(l̂i) = > ∧ ĉ2(l̂i) 6= >

l̂i → min(ĉ1(l̂i), ĉ2(l̂i))} otherwise

The join operation induces a partial ordering vĈ for our abstract domain1:

∀ĉ1, ĉ2 ∈ Ĉ : ĉ1 vĈ ĉ2 ⇔ JĈ(ĉ1, ĉ2) = ĉ2

To prove the soundness of our analysis, we must prove the properties listed
in Chapter 3. First, we prove properties of the domains. Then, we show the
Galois injection. Finally, we prove the update functions. The proofs for the
update functions in particular describe the thinking behind our analysis.

Proposition 5.9 (lattice properties). (2C ,⊆,∪,∅) and (Ĉ,vĈ, JĈ ,⊥Ĉ) are
complete join semi-lattices, and the ascending chain condition holds.

Proof. For (2C ,⊆,∪,∅) the proposition holds, because it is based on a power
set. For (Ĉ ,vĈ, JĈ,⊥Ĉ) the issue is more complicated.

1Note that because J
Ĉ

is different for must and may analyses, the least element and the

ordering are also different. However, for simplicity, we use the same notation for both cases,
whenever possible.

50 CHAPTER 5. STATIC CACHE ANALYSIS

1. The join operation is idempotent. This holds for both must and may

analysis, because max and min are idempotent.

2. The join operation is commutative. For must analysis, this results from
the commutativity of max operation and disjunction. For may analysis,
this results from the commutativity of min operation and conjunction,
and the symmetry of lines 2 and 3 in the definition of J∪

Ĉ
.

3. The join operation is associative. For must analysis, this results from the
associativity of max operation and disjunction. For may analysis, this
results from the associativity of min operation and conjunction, and from
the observation that lines 2 and 3 in the definition of J∪

Ĉ
cannot result >.

4. There is a unit, because ∀ĉ ∈ Ĉ : JĈ(⊥Ĉ , ĉ) = ĉ for both must and may

analysis.

5. All ascending chains eventually stabilize, because cache associativity is
finite and the number of abstract locations is finite. 2

Proposition 5.10 (monotony). The abstraction is monotone, i.e.:

∀ĉ1 vĈ ĉ2 ∈ Ĉ : concĈ (ĉ1) ⊆ concĈ(ĉ2) and
∀C1,C2 ⊆ 2C : C1 ⊆ C2 ⇒ absC (C1) vĈ absC (C2)

Proof. Consider concretization functions. In must analysis, a greater or equal
abstract state means that all age limits must be greater or equal (see Definition
5.8 that implies the ordering). In Definition 5.5, the greater the age limit i is,
the more concrete states are included. Similarly in may analysis, a greater or
equal abstract state means that all age limits must be less or equal, and the less
the age limit is, the more concrete states are included. Therefore concretization
functions are monotone.

Consider abstraction functions. The set C2 includes all concrete states that
the set C1 includes. Therefore in must analysis, the age limit for C2 cannot be
less than for C1, because maximum is selected. In may analysis, the age limit
for C2 cannot be greater than for C1. Based on the join functions (Definition
5.8), absC(C1) vĈ absC(C2) for both cases. Therefore, abstraction functions
are monotone. 2

Proposition 5.11 (adjointness). The abstraction is strongly adjoint, i.e.:

∀C ′ ⊆ 2C : C ′ ⊆ concĈ(absC (C ′)) and

∀ĉ ∈ Ĉ : ĉ = absC(concĈ (ĉ))

5.2. CACHE STATE ANALYSIS 51

Proof. Consider the first part of the proposition and must analysis. Let l̂ be
any abstract location. ĉ(l̂) will be the maximum of ages of its concrete locations
in C ′. If C ′ 6⊆ concĈ (absC(C ′)), then C ′ would hold a state, where age of a

concrete location of l̂ is greater than the maximum. This is a contradiction.
The same contradiction arises for may analysis with minimums. Thus, the first
part of the proposition holds.

Consider the second part of the proposition and must analysis. conc Ĉ(ĉ)

will hold all those concrete cache states, for which ages are less than ĉ(l̂) for

any abstract location l̂. On the other hand, concĈ (ĉ) is the maximum for these
ages. The same is true with may analysis and minimums. Thus, the second
part of the proposition holds. 2

Proposition 5.12 (local consistency of must analysis). The concrete and
abstract update function are locally consistent, i.e.:

∀m ∈ M,c ∈ conc∩
Ĉ
(ĉ), l̂ ∈ L̂ : UC(c, linm(l̂)) ∈ conc∩

Ĉ
(U∩

Ĉ
(ĉ, l̂))

Proof. Let l̂ be an abstract location. Consider the possible cache states before
a reference. Definition 5.6 implies that ĉ(l̂) will be greater than or equal to
the age of any concrete location, for which c ∈ conc∩

Ĉ
(ĉ) holds. On the other

hand, consider the possible cache states after a reference, and the memory line
holding the location. Definition 5.5 tells us that all cache states where age of
the memory line is less than or equal to ĉ(l̂) are included.

Thus, to prove the proposition, we must show that the new age of any
memory line is less or equal than the new age limits for all abstract locations
that may have a concrete location on it.

Consider a memory line t of a location l. UC(c, t) will modify only the cache
set that t belongs to (Definition 4.5). Three things can happen:

1. The memory line t holds several locations. Line 1 of U∩
Ĉ

sets age to 1 only

for those abstract locations that must share the line (i.e., some abstract
locations may remain too old, but this is safe).

2. In the same set as t, there can be other memory lines that are younger
than A. Ages of the locations on those lines are increased by one. Line 2
of U∩

Ĉ
increases ages of all abstract locations that may share the set (i.e.,

some abstract locations may become too old, but this is safe).

3. The line t is not cached. Thus, the least recently used line is removed.
Line of 3 U∩

Ĉ
removes (sets their age >) all the abstract locations that are

marked least recently used (age is A) and may share the set. (i.e., some
abstract locations still in cache may be marked >, but this is safe).

52 CHAPTER 5. STATIC CACHE ANALYSIS

The ages of other locations will remain the same. Because U∩
Ĉ

does not

change the limits for other cases (line 4 of U∩
Ĉ
), these age limits are also correct.

Thus, if c ∈ conc∩
Ĉ

(ĉ) then UC(c, t) will be in the set of updated states. 2

Considering may analysis is similar to must analysis.

Proposition 5.13 (local consistency of may analysis). The concrete and
abstract update function are locally consistent, i.e.:

∀m ∈ M,c ∈ conc∪
Ĉ
(ĉ), l̂ ∈ L̂ : UC(c, linm(l̂)) ∈ conc∪

Ĉ
(U∪

Ĉ
(ĉ, l̂))

Proof. To prove the proposition, we must showthat the new age of any memory
line is greater than or equal to the new age limits for all abstract locations that
may have a concrete location on it.

Consider a memory line t of a location l. UC(c, t) will modify only the cache
set that t belongs to (Definition 4.5). Three things can happen:

1. The memory line t holds several locations. Line 1 of U∪
Ĉ

sets age to 1 for
all those abstract locations that may share the line.

2. In the same set as t, there can be other memory lines that are younger
than A. Ages of the locations on those lines are increased by one. Line 2
of U∪

Ĉ
increases ages of only those abstract locations that must share the

set.

3. The line t is not cached. Thus, the least recently used line is removed.
Line 3 U∪

Ĉ
removes (sets their age >) only those the abstract locations

that are marked least recently used (age is A) and must share the set.

The ages of other locations will remain the same. Because U∪
Ĉ

does not

change the limits for other cases (line 4), these age limits are also correct. Thus,
if c ∈ conc∪

Ĉ
(ĉ) then UC(c, t) will be in the set of updated states. 2

Now finally, it is simple to prove the soundness.

Theorem 5.14 (soundness). The must and may analyses (Definitions 5.4–
5.8) are sound.

Proof. Because Propositions 5.9–5.13 hold, the analyses fulfill the conditions
given by Theorem 3.12, and thus are sound. 2

5.3. CONCLUSIONS 53

Example 5.15. Consider again Examples 4.7 and 4.12.

[y = *b]
1

[x = *a]2

if3 (gt(x, y))3 then

[x = *c]4else [skip] 5 end

if6 (gt(x, y))6 then

[y = *a]
7

else

[y = *d]8

end

Consider the state of the cache before statement 6. In our must analysis
(with L̂ = {â, b̂, ĉ, d̂}), the abstract state is {(â,2), (b̂,>), (ĉ,>), (d̂,>)}, i.e., the
location pointed by a must be in the cache: its maximum age is 2. In our may

analysis, the abstract state is {(â,1), (b̂,2), (ĉ,1), (d̂,>)}, i.e., three locations
may be cached. Thus, we know that the memory reference a at statement 7 is
always a hit and the memory reference d at statement 8 is always a miss.

5.3 Conclusions

In this chapter, we described a static cache performance analysis. The anal-
ysis is based on abstract interpretation. Instead of concrete values, abstract
interpretation uses abstract values (i.e., descriptions of values), which are safe
approximations of possible concrete values.

Crucial for our analysis is that we do not try to understand the whole exe-
cution state of the subject program. We concentrate only on the abstract cache
state. We do not solve the concrete locations that the cache contains.

We described two analyses: a must analysis and a may analysis. The must

analysis describes the locations that definitely are in the cache. Using the anal-
ysis, we can detect references that must always hit. The may analysis describes
the locations that can be in the cache. Using the analysis, we can detect refer-
ences that must always miss. If a reference is to an abstract location that is not
in the must set (must age is >) and is in the may set (may age is not >), then
we cannot classify it.

Accuracy of the static analysis described is dependent on the address data
that we get. For the unclassified references, we need dynamic analysis. In the
next chapter, we describe how static cache behavior information can be used to
build cache simulators that solve the remaining references.

54 CHAPTER 5. STATIC CACHE ANALYSIS

Chapter 6

Program specialization

This is the last chapter describing our three-step method for cache analysis. In
the previous chapters, we described how a subject program can be instrumented
to form a dynamic cache analyzer, and how the cache behavior of a subject
program can be statically analyzed. In this chapter, we describe how a dynamic
cache analyzer can be made fast and compact by using program specializations.
We will use the word augmentation to mean a single addition of code and the
word instrumentation to mean the measuring system that results from all the
augmentations.

We use two program specializations. First, we partially evaluate the dynamic
analyzer. Second, we slice the resulting dynamic analyzer. Both steps are based
on the static analysis of the previous chapter. In the first step, we propagate
static information forward in the dynamic analyzer. In the second step, we
propagate the static information backward in the dynamic analyzer.

Partial evaluation and program slicing can be used to solve a number of
problems. They are generic methods. In a broad sense, partial evaluation can
be applied to a program if we know enough of its task in advance. Program
slicing can be applied to a program, if we know that some values in a program
are not needed.

There are two applications for program specialization in speeding up cache
analysis. We can apply the program specializations to the original subject pro-
gram code and its instrumentation. In the following, we give an overall descrip-
tion of how the code of a subject program can be specialized. We will handle
the specialization of the instrumentation in detail.

The structure of this chapter is as follows: We start by describing partial
evaluation in general. After the generic description, we apply a simple par-
tial evaluation to the augmentations described in Section 4.3 to yield faster

55

56 CHAPTER 6. PROGRAM SPECIALIZATION

code. Then, we discuss program structure representations and program slicing
in general. After that, we apply a specialized form of program slicing to the
augmentations.

6.1 Partial evaluation

Partial evaluation [82] is a program transformation that is given a subject pro-
gram P with part of its input data, I1. It constructs a new program PI1

that,
when given the remaining input I2, will yield the same result that P would have
produced given both inputs. Let peval denote the partial evaluator, then for all
I1 and I2:

([[peval]]〈P, I1〉 = PI1
) ⇒ ([[P]]〈I1, I2〉 = [[PI1

]]〈I2〉)

Partial evaluation is a generic method. Other forms of partial evaluation can
be defined in addition to the one above.

The theoretical basis for partial evaluation was formulated by Kleene [91],
but obviously not with the intention of improving programs. Lombardi [103] was
probably the first to use the name. The theory was later refined by Futamura
[54] and Ershov [45]. There has been advanced methods for various versions of
partial evaluation, e.g., polyvariant specialization [23] and arity raising [113].

Our application of partial evaluation is simple compared to advanced partial
evaluation methods. It is performed during compilation of a source program.
Such partial evaluation is usually based on binding-time analysis [83], which
divides program elements of P into two categories: static and dynamic. Static
program elements are evaluated during the partial evaluation and the dynamic
elements remain to be executed later.

Optimizing compilers typically apply simple forms of partial evaluation.
Typical partial evaluations performed by compilers are constant folding and
jump optimizations. Constant folding evaluates program elements yielding con-
stant results during compilation. Jump optimizations compute jump addresses
at compile-time.

6.2 Partially evaluated instrumentation

The static cache analysis of the previous chapter can be used as binding-time
analysis for our analysis instrumentation. Using the static cache analysis, we
can classify memory references into three classes:

6.2. PARTIALLY EVALUATED INSTRUMENTATION 57

• those that always hit,

• those that always miss, and

• those that we cannot decide about.

Consider our analysis augmentation from Section 4.3. Our analysis input con-
tains the values N and B. If we specialize our program for an input, then we can
replace the variables with the values that they are given. Therefore, we use a
faster operation lineB (l) instead of line(l, B), and a faster operation setN (l)
instead of set(l, N). We denote the improved augmentation by augany.

(1) t = lineB(l)
(2) f = setN (t)
(3) if not incache(t) then
(4) set not incache(remove head(Qf))
(5) set incache(t)
(6) else
(7) remove(Qf , t)
(8) end
(9) insert tail(Qf , t)

Because of static cache analysis, we may statically know the value of the con-
dition on line 3. Thus, we use the following augmentation augmiss at miss
references.

(1) t = lineB(l)
(2) f = setN (t)
(4) set not incache(remove head(Qf))
(5) set incache(t)
(9) insert tail(Qf , t)

At hit references, we use the following augmentation aughit:

(1) t = lineB(l)
(2) f = setN (t)
(7) remove(Qf , t)
(9) insert tail(Qf , t)

Definition 6.1 (partial evaluation). A cache analyzer (Definition 4.8) is
partially evaluated by replacing each augmentation aug for:

• aughit if the reference always hits.

• augmiss if the reference always misses.

• augany otherwise.
Augmentation init is replaced by augmentation initNAB that initializes the
cache state, i.e., it assigns initial values to incache and the replacement queues.

58 CHAPTER 6. PROGRAM SPECIALIZATION

Theorem 6.2 (correctness). The partially evaluated analyzer yields the same
analysis result as the original, if the analysis input for the original and the
initialization of the partially evaluated analyzer are equivalent.

Proof. Based on Theorem 3.15, the whole program must compute the same re-
sult for the remaining input, if each partially evaluated augmentation computes
the same function as the original. augmiss and aughit compute the same func-
tion as the original augmentation, if the classification of references is correct.
Theorem 5.14 tells us that references classified as hits always hit and references
classified as misses always miss. As augany works for both hits and misses, our
classification is correct. 2

6.3 Program structure

In static program analysis, various graphs are often used to describe program
structure. We use two structure descriptions: control flow graphs and depen-
dence graphs. Control flow graphs describe how program parts relate to each
other, when their execution order is considered. Dependence graphs describe
how program parts relate to each other, when their computation is considered.

A directed graph G = (V,E) consists of a set of vertices V and a set of edges
E, where E ⊆ V × V . We say that v is the source of the edge (v,w) ∈ E and
w is target, and mark that v → w. Further, we call w an immediate successor
of v and v an immediate predecessor of w.

A path is a non-empty sequence of vertices v1, ..., vn so that

∀ 1 ≤ i < n : vi, vi+1 ∈ V ∧ (vi, vi+1) ∈ E.

Vertex w is a successor of v and v predecessor of w, if there is a path starting
from v and ending to w.

Definition 6.3 (control flow graph). A control flow graph is a quadruple
CFG = (V,E,S,T), where V is a set of vertices, E is a set of edges, S ∈ V
is an entry vertex with no predecessors, and T ∈ V is an exit vertex with no
successors.

In our analysis, we restrict our attention to control flow graphs, in which

6.4. PROGRAM SLICING 59

• any vertex has at most two immediate successors,

• any vertex is a successor of the entry vertex and

• the exit vertex is a predecessor from any vertex.

If a vertex has two immediate successors, we call one of the edges the true-

branch (denoted by
true→) and we call the other the false-branch (denoted by

false

→).

A control flow graph is formed in the following way. For each operation a in
a subject program, there is a vertex va in its control flow graph. If operation
a can be immediately followed by operation b in an execution, then there is an
edge from va to vb. Thus, a control flow graph describes all possible flows of
control in a program.

Definition 6.4 (postdominance) Vertex w of a control flow graph postdomi-

nates an other vertex v of the control flow graph, if and only if all paths from
v to the end of the control flow graph (i.e., T) go through w.

Let L be true or false. Vertex w postdominates the L-branch of vertex u,
if and only if

(u
L
→ w) ∈ E

∨

(∃v ∈ V : ∃(u
L
→ v) ∈ E ∧ w postdominates v)

Definition 6.5 (control dependence). Let v,w ∈ V . Vertex w is directly
L-control dependent on v (written v →L

c w), if and only if w postdominates the
L-branch of v and w does not postdominate v.

Definition 6.6 (data dependence).Vertex w is directly data dependent on v
(written v →f w), if and only if vertex v assigns to value x, vertex w uses x,
and there is a path from v to w that does not include any assignments to x.

The program dependence graph consists of vertices of the control flow graph,
control dependence edges, and data dependence edges.

6.4 Program slicing

Program slicing is an operation that identifies semantically meaningful decom-
positions of programs. Slicing is performed by using a subset Y of program
elements as a base. The subset Y is called the slicing criterion.

Program slicing is a generic method. It was originally proposed by [159].
We use the slicing approach that is based on dependence graphs [80]. Usually,
two kinds of slices are identified:

60 CHAPTER 6. PROGRAM SPECIALIZATION

• A backward slice of a program P with set of program elements Y consists
of all program elements that might affect the values computed by Y .

• A forward slice of program P with set of program elements Y consists of
all program elements that might be affected by the values computed by
members of Y .

In our analysis, we compute a backward slice. The slicing criterion consists of
input statements of the original program and output statements of the analysis
instrumentation.

Let P be a program computing two values:

[[P]]〈I〉 = 〈O1,O2〉

We use slicing to implement a program transformation that yields a program
computing only O1 from I. Let slicer be the transformation:

([[slicer]]〈P,Y 〉 = PY) ⇒ ([[PY]]〈I〉
O1
= [[P]]〈I〉 ∧ [[PY]]〈I〉

O2
= Ø)

where
O1
= denotes equality of output O1 and

O2
= denotes equality of output

O2. The slicing criterion Y lists the program elements that read I and produce
O1.

Program slicing is performed by analyzing relations between program ele-
ments. Program elements do computations by using values to define new ones
or to control program flow. If a value or flow of control is not used, then the
elements defining the value or controlling the flow can be deleted.

Optimizing compilers typically apply simple forms of program slicing, e.g.,
dead code elimination. Dead code elimination removes program elements that
compute unused values. Analyzing control dependencies caused by jumps and
especially subroutine calls is more complex. Compilers rarely do such an anal-
ysis.

6.5 Sliced instrumentation

In our analysis, the slicing criterion consists of input statements of the original
program and output statements of the analysis instrumentation. In this section,
we consider only the instrumentation code, and therefore, only analysis output.

The augmentations in Section 6.2 do not contain any explicit output oper-
ations. However, for our analysis purposes, the analysis output is dependent
on the cache contents, which are described by the mapping incache in our aug-
mentation. Therefore, the operations modifying the contents of incache are the
slicing criterion for our instrumentation. These operations are set not incache

6.5. SLICED INSTRUMENTATION 61

(on line 4) and set incache (line 5).
Other operations in an augmentation are needed only if our slicing crite-

rion is directly or indirectly dependent on set not incache or set incache. The
dependence arcs inside an augmentation are illustrated below. Augmentation
line numbers are in parentheses, and the members of the slicing criterion are
encircled by double lines.

(2) set

(3) incache

(4) set_not_incache (4) remove_head

(5) set_incache

(7) remove

(9) insert_tail

(1) line

The cache set computation (line 2) has always a path of data dependence
arcs to set not incache (line 4). The branching (line 3) has always control
dependence arcs to the same operation. The cache set computation (line 2)
has data dependence arc from cache line computation (line 1). Thus, those
operations cannot be sliced if set not incache (line 4) is present.

However, operations remove (line 7) and insert tail (line 9) have no such
dependencies in a single augmentation. Only the state of the replacement queue
Qf is dependent on remove and insert tail. The state of the queue is observed by
remove head (line 4), which has data dependence arc to set not incache. Thus,
remove and insert tail can have path of data dependence arcs to some following
set not incache operations.

Consider a partially evaluated cache simulator. Each hit reference has the
augmentation aughit. The instrumentation removes a cache line from the re-
placement queue. If we know that a reference is always a hit, then it must be
preceded by a reference that places the cache line in the replacement queue Qf .
Thus, we have a pair of the form:

insert tail(Qf , t)
...
remove(Qf , t)

Actually, because of the following hit, there is no need to insert the cache
line in the replacement queue. We know that the inserted line will never reach

62 CHAPTER 6. PROGRAM SPECIALIZATION

the head of the queue. Thus in such a situation, no remove head operation has
data dependence arc from the insertion and removal. Thus, the insertion and
the related removal can be sliced away.

Compared to ordinary slicing, this is more complicated. Instead of slicing
single operations (i.e., nodes in the flow graph), we are slicing several opera-
tions as a group. We cannot slice only insertions, because removals would have
nothing to remove. On the other hand, we cannot slice only removals, because
replacement queues would contain duplicates of the same line at erroneous po-
sitions.

Therefore, we must define their dependencies, and act accordingly. For clar-
ity in the following text, we use the word observer to denote the operation
remove head, the word insertion to denote the operation insert tail, and the
word removal to denote the operation remove.

Definition 6.7 (queue head dependence) An insertion of line t to queue
Qset(t) has dependence arc to an observer that may observe queue Qset(t) , if

• there is a path from the insertion to the observer that may have no inser-
tions of line t to queue Qset(t) , and

• cache line t can be at the head of Qset(t) at the point preceding the ob-
server.

The subject program code does not address cache lines. Instead, it uses abstract
locations l̂, from which lines are computed at run time (by operation line in our
augmentation). Cache line t can be at the head of Qset(t) , if the cache age of

the corresponding abstract location l̂ can be A, i.e., ĉ∩(l̂) ≤ A ≤ ĉ∪(l̂).

Definition 6.8 (queue tail dependence) An insertion of line t has depen-
dence arcs from and to a removal that must remove line t, if there is a path
from the insertion to the removal and the path has no insertions or removals of
t. Such dependent insertions and removals form a group.

Our static cache analysis is not based on exact address data. Instead, we
know only the conflicts and cache aliases between the addresses. This may yield
aliasing, i.e., two or more operations that statically seem to use separate incache

flags (and replacement queues) are actually using the same flag (and the same
replacement queue).

Slicing a group of insertions and removals causes a pending insertion. The
line to be inserted ismarked incache, but is not yet inserted in the corresponding
replacement queue. Because of aliasing, we can have several insertions pending.
Consider the following example:

6.5. SLICED INSTRUMENTATION 63

augany(a)
...
augany(b)
...
aughit(a)
...
aughit(b)

Assume that the insertion at augany(a) is pended until aughit(a) and the
insertion at augany(b) is pended until aughit(b). If a and b are cache aliases,
then the memory line of a and b is inserted twice in the replacement queue,
because aughit does not check the cache state.

Because of such aliasing, we modify our augmentation to use a counter of
pending insertions instead of a simple flag.

Definition 6.9 (insertion counter) In our augmentations, incache is a table
of counters that is used in the following way:

• set incache(t) increments incache(t) by two if it is zero and by one other-
wise.

• set not incache(t) sets incache(t) to zero.

• insert tail(Qset(t) , t) decrements incache (t) by one, and inserts t only if
incache (t) is initially two.

• remove (Qset(t) , t) increments incache(t) by one, and removes t only if in-

cache (t) is initially one.
Initially incache (t) is zero for all t not in cache, and one for all t in cache.

Without slicing, our augmentations work as previously (i.e., any incache

counter is 0 or 1 between the augmentations). If the instrumentation of a pro-
gram is sliced, then incache can contain counter values greater than 1 between
augmentations.

Theorem 6.10 (correctness of insertion counter) The augmentation of
Definition 6.9 computes the same result as the augmentation of Definition 6.1.

Proof. We assume an invariant that between augmentations, incache (t) = 0 if
t is not in cache, and incache (t) = 1 if t is in cache. We must consider all our
three augmentations.

aughit According to our invariant, incache (t) = 1 before the removal (line 7).
Thus, the removal will happen, and incache(t) = 2 before the insertion.
Because of that, the insertion will happen, and incache(t) = 1 after the

64 CHAPTER 6. PROGRAM SPECIALIZATION

augmentation.

augmiss We must consider two lines: t and the line that will be removed. Ac-
cording to our invariant, incache(t) = 0 before set incache. Thus, it will
be set to 2 and the insertion will happen. According to our invariant, in-

cache of the line to be removed is one. After set not incache it will be zero.
Therefore, the invariant will hold for both lines after the augmentation.

augany If incache(t) = 0, the augmentation works like augmiss , otherwise it
works like aughit . 2

Now, we are finally ready to define our slicing, and prove that it yields
simulators that correctly simulate caches. Let P be a simulator, and PY the
corresponding sliced simulator.

Definition 6.10 (sliced instrumentation). A group of insertions and re-
movals is deleted from the simulator if there are no dependencies to the members
of the group from the outside of the group.

Theorem 6.11 (correctness of slicing). If and only if incache(t) = 0 in a
simulation by P , incache (t) = 0 at the corresponding step in the simulation by
PY .

Proof. The contents of incache depend on lines returned by remove head (at
line 4). To show the theorem, we must show that remove head results in the
same line in execution of PY as in execution of P . We assume the following
invariants:

1. pending(t) = incache (t)−1 if incache (t) > 0 and pending (t) = 0 otherwise,

2. a memory line t is in its queue Qset(t) , if and only if incache (t) = 1, and

3. the ordering of any Qset(t) in the execution of PY is a subset of its ordering
at the corresponding step in execution of the P ,

where pending(t) is the number of pending insertions of line t. Consider each
augmentation:

augmiss If remove head (line 4) in execution of P results t, then in execution
of PY the line t must be in Qset(t) , because there must be an insertion
(Definition 6.7 and Theorem 5.14) and the insertion cannot be pending
(Definition 6.8 and Theorem 5.14). Because of invariant 3, t must be the
head of Qset(t) in execution of PY . Therefore, remove head in execution
of PY results t.

6.5. SLICED INSTRUMENTATION 65

If insert tail (line 9) is deleted, then there is one more insertion pending
after execution of the augmentation. The line t is not inserted in its queue.

If insert tail (line 9) is not deleted, then the insertion of t will be done,
if there are no insertions pending. Because insertion is done at the tail
in both P and PY , invariant 3 will hold. If there are insertions pending,
then no insertion will be done.

Thus, all invariants hold also after execution of the augmentation.

aughit If remove (line 7) is deleted, then there is one less insertion pending after
execution of the augmentation. Because of the deletion, incrementation
of incache (t) is also deleted.

If remove(t) (line 7) is not deleted, then the removal of t will be done, if
there are no insertions pending. If there are insertions pending, then no
removal will be done.

Deletion of the insertion causes the same effects as in augmiss . Thus, all
invariants hold also after execution of the augmentation.

augany If incache(t) = 0, the augmentation works like augmiss , otherwise it
works like aughit. 2

Example 6.12 Consider again the program of Example 4.12.

initNAB

augmiss(b)[y = *b]1

augmiss(a)[x = *a]
2

if3 (gt(x, y))3 then

augmiss(c)[x = *c]4 else [skip]5 end

if6 (gt(x, y))6 then

aughit(a)[y = *a]7

else

augmiss(d)[y = *d]8

end

fin

The augmentationshave been replaced by faster ones. Note that the example
is artificial. In a typical program, most of the references of the program are hits.

66 CHAPTER 6. PROGRAM SPECIALIZATION

Example 6.13. Consider a miss followed by two hits. The instrumentation
code resulting after partial evaluation is shown below on the left. Because of
the first hit, the insert tail operation of the miss and the remove operation of
the first hit can be removed. Further, because of the second hit, the insert tail

operation of the first hit and the remove operation of the second hit can be
removed. The resulting code is on the right.

(1) t = lineB (l) t = lineB(l)
(2) f = setN (t) f = setN(t)
(4) set not incache(remove head(Qf)) set not incache(remove head(Qf))
(5) set incache(t) set incache(t)
(9) insert tail(Qf , t)

... ...
(7) remove(Qf , t)
(9) insert tail(Qf , t)

...
(7) remove(Qf , t)
(9) insert tail(Qf , t) insert tail(Qf , t)

Nothing remains from the augmentation of the first hit. The cache line is
marked to be in the cache from the beginning of the sequence, but inserted in
its replacement queue at the end.

6.6 Conclusions

The program specializations described in this chapter affect a cache simulator in
three ways: they reduce the number of steps to be executed, simplify the code
by removing branching, and reduce the size of the code. Partial evaluation does
not significantly reduce the number of steps, but it does reduce the size of the
code and its complexity.

The effect of slicing may seem like a minor one. It affects a special case:
unconditional hits. However, hits and sequences of hits are common in programs
[40]. Programmers tend to write code that uses memory in a local manner. The
structure of cache memories takes advantage of this. After an access to a specific
cache set, there may be a number of other accesses. But, when the cache set
is accessed again, the access is typically a hit – and it is followed by hits. Our
slicing handles such chains of hits very efficiently: except for the first and the
last in the chain, all augmentations are removed. Furthermore, augmentations
for the first and the last are simplified.

In addition to the instrumentation, slicing can be applied to the source pro-
gram. In our cache analysis, the original computation of the source program is

6.6. CONCLUSIONS 67

needed only to produce address data for the analysis. The rest of the computa-
tion can be removed. Further computations may become unnecessary because
address data of many hit references are not needed.

68 CHAPTER 6. PROGRAM SPECIALIZATION

Chapter 7

Experiments

Based on the method described in Chapters 3–6, we implemented a set of tools
that were designed as a prototype for practical engineering work. We experi-
mented with the tools to find out, whether partial evaluation and slicing that are
guided by static cache analysis form a potential method to compile fast cache
simulators. We discovered from our experiments that the method is sufficient to
yield significant speed-up of simulations. In the following, we describe our tool
and our experiments that were solely based on must analysis of abstract cache
states.

We begin our description with two introductory sections. First, we describe
the performance analysismethod that we have used in our experiments. Second,
we describe the tool set and give an example how the tool set has been applied
in practice.

After the introductory section, we describe the experimental analysis that
we did. We did two kinds of performance experiments, which we call static and
dynamic experiments. We discuss the experimental setting and results of the
experiments in separate sections.

7.1 Experimental method

In computer science and engineering, performance analysis has wide applica-
bility. Most performance problems are unique. The metrics, workload, and
evaluation techniques used for one problem generally cannot be used for the
next problem. However, there are steps typically common to all performance
analyses, and a variety of techniques that can be used during those steps [81].
We used the following steps in our analysis:

69

70 CHAPTER 7. EXPERIMENTS

1. Defining the system under study and stating the goals of the study. What
constitutes a system is usually defined by delineating system boundaries.
A clear goal is needed not only to guide the study, but also in presenting
the results: we must know the question in order to understand and judge
the answer.

2. Each system provides a set of services; it has input and output. Usually
the performance of a system depends on its input, and it gets feedback by
giving output. To analyze the performance of a system, we must identify

the services and the related inputs and outputs.

3. To state, compare, and discuss performance we need to select metrics.
Typically, metrics are numeric indicators of performance. However, in
general, they can be any indicators related to the speed, the size, the
accuracy, the availability etc. of the system.

4. Many things affect the performance of a system. In performance analysis,
they are called parameters of the system. Typically, parameters are di-
vided into system parameters and workload parameters. The parameters
to be varied are called factors.

5. An evaluation technique is needed for finding out the performance of a
system. Typically, three broad categories of techniques are identified:
mathematical analysis, simulation, and measuring.

6. For an evaluation, a workload must be selected. Workload is the input
given to a system. There are many types of workloads, e.g., real work-
loads, synthetic workloads, and artificial workloads. Some workloads are
based on analyzing and modeling a real workload, e.g., a random workload
generator that is based on a probabilistic workload model.

7. Evaluation of the performance must be carried out. If a simulation or a
measuring technique is selected, experiments must be designed and run.

8. Finally, the gathered data must be interpreted, conclusions drawn, and
results presented.

Performance analyses are often performed in an iterative manner. The steps
above are repeated until the analysis of a system provides the information
needed. Such an iterative process typically starts with an initial analysis having
generic goals and ends with an final analysis having specific goals.

7.2. TOOLS 71

7.2 Tools

Based on the method described in Chapters 3–6, a set of tools were designed
and implemented as a prototype for practical engineering work. The tool set is
called MSE (Memory Simulation Environment) [73].1 It is designed for studying
memory behavior of programs.

Using MSE, a subject program is compiled and instrumented to form a
simulator with the run-time components of MSE. The size of the tool set is
approximately 24600 lines of source code. MSE was designed and implemented
by the author as a part of this research.

MSE is designed for general studies of memory behavior. Instead of con-
sidering some specific hardware, MSE uses an abstract machine, which we call
SM (Simple Machine). SM is a register machine with a simple instruction set.
The main feature of SM is that its memory system can be parameterized to
conform with various memory configurations. In the context of cache analysis,
only instructions addressing the memory are significant. SM is representative
for a set of machines using the load/store architecture.

We used six tools of MSE in our experiments: SMC (Simple Machine Com-
piler), ISC (Instruction Simulator Compiler), MTC (Memory Trace Coder),
MSC (Memory Simulation Coder), MSS (Memory Stack Simulator), and MEA
(Memory Event Analyzer).

MSE is designed to be used with the GNU C/C++ programming environ-
ment. The components of the GNU environment that are needed to use MSE
are: CCCP (GNU C-Compatible Compiler Preprocessor), GCC (GNU C/C++
Compiler), and ld (GNU linker).

Programs whose memory behavior is to be simulated are written in ANSI
C [88]. SMC does not implement full ANSI C; some complicated language
constructs2 are omitted because we have not needed such constructs in our
studies of program memory behavior.

In our experiments, we used MSE in two configurations: in the first, MSE
implements a traditional memory simulator, while in the second, MSE imple-
ments a memory simulator based on the method described in Chapters 3–6. The
first configuration is given in Figure 7.1 and the second in Figure 7.2.

The first two phases are common to both configurations. The user source
code is processed with CCCP to handle macros, especially file inclusion. This
results in a single file in which all textual macro substitutions are done. After
this, the preprocessed file is given to SMC, which translates the file into SM
code.

In the traditional approach, the SM code is given to MTC, which inserts

1An earlier version of MSE was called DBE [70].
2The omitted constructs consist mostly of some complex type specification features.

72 CHAPTER 7. EXPERIMENTS

MEA

MSS

MTC

GNU cpp

macro−free ANSI C

instrumented

simulator
program

linker

relocable
binary

instrumented

results

ANSI C source

simple machine

code code

description
instrumentation

description
machine

program
User

ISC

GNU

SMC

compilation

Figure 7.1: Trace-based simulation using MSE.

trace generating statements into the code, and compiles it into an execution-
driven trace generator. ISC compiles this instrumented code to the relocatable
binary code of the host machine. The compiled code is linked with MSS and
MEA to form an executable simulation program that uses the instrumentation
of Chapter 4.

During execution of the simulation program the instrumentation embedded
in the user code generates an implicit memory access trace. The trace is fed
to MSS, which simulates memory operations according to memory parameters
that it is given. The simulation results in a sequence of memory events, which
describe data transfers between different layers of memory, i.e., cache misses.

The memory event sequence is fed to MEA, which produces measurement
results according to measurement requests that it is given. Measurement results
are typically numeric values, e.g., they indicate how many cache misses occurred
during a simulation.

In the combined analysis approach, the SM code is given to MSC, which
constructs a memory simulator. The operation of MSC is guided by a machine
description, which describes the memory configuration of SM. The resulting
code is given to ISC, which compiles the code to relocatable binary code. Using
ld, the code is linked with MEA to form an executable simulation program.

Based on the method described in Chapters 3–6, MSC omits simulation at
references, the effects of which are statically known, and uses simplified simula-

7.2. TOOLS 73

MEA

machine
description

User
program

GNU cpp

macro−free ANSI C

simulator
program

linker

results

ANSI C source

simple machine

code code

memory simulator
ISCSMC

GNU

MSC

compilation

simulator
compiled

Figure 7.2: Combined simulation using MSE.

tion at references, the effects of which are partially known.
MSC does not implement the may analysis described in Chapter 5, because

the must analysis alone is sufficient to yield significant speed up of simulation.
Without the may analysis, cache misses cannot be statically found. Thus, the
tool uses only the augany and aughit augmentations. Further, MSC sliced only
the instrumentation code in our experiments. The subject program code was
not sliced.

MSEuses the address analysisdescribed in [72] to support the cache analysis.
The analysis is a must cache alias analysis that is based on the value equivalence
algorithm of [6]. To handle global analysis, MSC uses fix point iteration [118].

We give an example that demonstrates the use of MSE in a design process.
The example is based on an actual case, where an earlier version of MSE was
used by the author, and whose results have been published in [76].

Example 7.1. We describe the designof a memory layout scheme for a program
that computes the full transitive closure of a binary relation in an environment
that hasa two-level memory. Transitive closure computation is a basic computa-
tional task. It is required, for instance, in the reachability analysis of transition
networks representing distributed and parallel systems and in evaluating recur-
sive database queries.

Consider a directed graph G = (V,A), where V is the set of vertices and
A ⊆ V ×V is the set of arcs. The transitive closure of G is a graph G+ = (V,A+)

74 CHAPTER 7. EXPERIMENTS

such that for all v,w ∈ V there is an arc (v,w) ∈ A+ if and only if there is a
non-null path from v to w in G. The successor set of a vertex v is the set
Succ(v) = {w | (v,w) ∈ A+}. A strong component of G is a maximal subset
C ⊆ V such that for each v,w ∈ C there is a path from v to w (and vice versa).
A topological order of the vertex set V of a graph G = (V,A) is any total order
≤ of V such that v ≤ w if arc (v,w) ∈ A.

The program is based on the algorithm comp tc [119], which was designed
for operation in a homogeneous memory. Processing large amounts of data is
characteristic to transitive closure algorithms. If the memory consists of layers
of different speed, then the data transfer between the memory layers is typically
the performance bottleneck of the computation. The amount of data transferred
depends on the memory layout. Thus, a layout that is suitable for comp tc is
needed.

The algorithm comp tc is given in Figure 7.3. comp tc uses Tarjan’s algo-
rithm [151] to detect the strong components of a graph. The algorithm uses two
stacks: nstack to store vertices and cstack to store components. To construct
the successor set of a strong component C, comp tc uses the components ad-
jacent from C. These components are collected during a depth-first traversal
of the input graph (lines 6–11 in Figure 7.3). comp tc scans the components,
and for a component X checks whether X already is in Succ(C). If it is not,
then X and Succ(X) are added into Succ(C) (lines 16–19 in Figure 7.3). The
component itself is constructed at lines 20–24 in Figure 7.3.

Based on the algorithm, a program designed for operation in a two-level
memory was written [76]. The program is over 1000 lines of C code. An abstract
description of the program is given in Figure 7.4. Because of the complexity and
the number of memory references, it is practically impossible to understand the
memory behavior of the actual program without automated tools. MSE is a
useful tool for such tasks.

Despite the complexity, some overall observations and design decisions can
be explained using the abstract program in Figure 7.4. Simulations with MSE
reveal that traversing the input graph by recursion (line 6 in Figure 7.3) causes
a significant proportion of the memory transfers. Therefore, instead of using
recursion and local variables, the program uses a separate control stack to store
depth-first-search paths and the adjacent vertices. When a vertex v is entered,
all arcs leaving v are stored on top of the control stack (line 4 in Figure 7.4). If
a suitable stack structure and alignment is used, MSE can statically guarantee
that most of the related memory references are hits.

When this memory bottleneck is solved, simulations reveal an other memory
bottleneck that is caused by accessing vertices and components in two different
stacks (e.g., lines 4 & 10 and 17 & 21 in Figure 7.3). Storing the vertices
and components in a single work stack (lines 2 and 11 in Figure 7.4) localizes

7.2. TOOLS 75

(1) procedure comp tc(v);
(2) begin
(3) root(v) := v; C(v) := Nil;
(4) push(v,nstack);
(5) hsaved(v) := height(cstack);
(6) for each vertex w such that (v,w) ∈ E do begin
(7) if w is not already visited then comp tc(w);
(8) if C(w) = Nil then root(v) := min(root(v), root(w))
(9) else if (v,w) is not a forward edge then
(10) push(C(w), cstack);
(11) end;
(12) if root(v) = v then begin
(13) create a new component C;
(14) if top(nstack) = v then Succ(C) := ∅
(15) else Succ(C) := {C};
(16) while height(cstack) 6= hsaved(v) do begin
(17) X := pop(cstack);
(18) if X 6∈ Succ(C) then Succ(C) := Succ(C) ∪ {X} ∪ Succ(X);
(19) end;
(20) repeat
(21) w := pop(nstack);
(22) C(w) := C;
(23) insert w into component C;
(24) until w = v
(25) end
(26) end;
(27) begin /* Main program */
(28) nstack := ∅; cstack := ∅;
(29) for each vertex v ∈ V do
(30) if v is not already visited then comp tc(v)
(31) end.

Figure 7.3: Algorithm comp tc (adapted from [119]).

76 CHAPTER 7. EXPERIMENTS

(1) procedure visit(vertex v)
(2) push v onto the work stack;
(3) Root(v) := v;
(4) fetch all arcs leaving v to buffer (push them onto the control stack);
(5) for each arc (v,w) on the control stack do begin
(6) if w is not visited then visit(w);
(7) if w is not already a member of a component then
(8) if Root(w) < Root(v) in the depth-first order then
(9) Root(v) := Root(w)
(10) else if arc (v,w) is not a forward arc then
(11) push the component containing w onto the work stack;
(12) end;
(13) if Root(v) = v then begin
(14) create a new component C;
(15) for all items on the work stack between the top and vertex v do
(16) if item is a vertex then move it into component C;
(17) Succ(C) := if component C is cyclic then {C} else {};
(18) sort the components that were above vertex v in the work stack
(19) into a topological order and remove duplicates;
(20) for each remaining component X in topological order do begin
(21) pop X from the work stack;
(22) if X 6∈ Succ(C) then Succ(C) := Succ(C) ∪ Succ(X) ∪ {X}
(23) end
(24) end
(25) end;
(26) for each vertex v of the graph do /* main program */
(27) if v is not visited then visit(v)

Figure 7.4: A variant of comp tc for hierarchic memories (adapted from [76]).

the memory references. A further improvement can be achieved by storing the
components in a topological order. This process of analyses and improvements
is continued towards the details of the program.

The result is a program that efficiently uses a two-level memory to support
its computation. During each step of the design process, static analysis could
be used both to guide and to speed up the simulationsneeded in understanding
the memory behavior.

7.3. EXPERIMENTAL SETTING 77

7.3 Experimental setting

In our performance analysis of the cache analysis method, we used the perfor-
mance analysismethod described in the first section. The following enumerated
items correspond to the enumerated items of the first section.

1. It is clear that the performance of our method depends on the nature of
the memory references in the subject program to be analyzed. The more
statically resolvable the memory behavior of the subject program is, the
better opportunity we have to partially evaluate and slice the correspond-
ing simulator.

The goal of this experimental study is to find out the simulation speed-up
yielded by our implementation, when the proportion of statically classifi-
able3 memory references is assumed known. In addition to this goal, we
are interested in finding out the parameters that affect the performance
of our method.

Our primary goal is not to find out statistically confirmed bounds for per-
formance. Rather, we are interested to know, whether partial evaluation
and slicing that are guided by static analysis form a potential method to
compile fast cache simulators.

There are some studies addressing static resolvability of data cache be-
havior (e.g., [90, 105, 160]), but to our knowledge, there are no previous
experimental studies that address a slicing problem similar to this study.

In our experiments, we compared the performance of MTC-based simu-
lation to the performance of MSC-based simulation. Thus, we had two
systems under study. The first consists of MTC and MSS. The second is
MSC.

The systems were studied as a part of MSE version 1.2/IN running on a
Linux PC with doubleprocessor 450MHz PentiumII and 256Mb of DRAM
memory. We used GCC version 3.2, ld version 2.13.90, and Linux kernel
version 2.4.18.

2. The systems under study have two phases: static compilation anddynamic
memory simulation. The static service of MTC is instrumentation of SM
code. Its static input is abstract machine code, and its static output is
the same code augmented with instrumentation code. MSS works only
during the dynamic phase. The dynamic service given by MTC and MSS

3We say that we can statically classify a memory reference, if we know statically that it
always hits or always misses.

78 CHAPTER 7. EXPERIMENTS

is memory simulation. Its input is the input of the subject program, and
its output is the sequence of memory events resulting from the simulation.

The static service of MSC is the generation of a memory simulator. Its
static input is abstract machine code and its static output is a memory
simulator. The dynamic service, input, and output of MSC is the same as
for MTC and MSS.

3. To analyze speed-up, we used the speed-up coefficient Rd as the metric.
The speed-upcoefficient is Rd = To/Tr, where To is the elapsed time for an
execution of an MTC-compiled simulator and Tr is the elapsed time for the
corresponding execution of the MSC-compiled simulator. The time was
read from a clock of the PC by using system call gettimeofday, which
yielded microsecond precision. The time was measured from the point
immediately after MSE runtime system initialization actions to the point
immediately before MSE runtime system termination actions.

To analyze the static performance, we used static resolution as the met-
ric. Static resolution Fs = Nr /No, where No is the number of memory
references analyzed and Nr is the number of memory references statically
classified (i.e., the behavior is known). All memory references of the sub-
ject programs were analyzed and measured, except the ones related to
MSE runtime system set-up and shut-down (MSE subject programs usu-
ally include code controlling the simulations).

4. There are many parameters affecting the performance of combined cache
analysis. Static workloads, i.e., subroutines of the subject programs, were
characterized by their average basic block length LB = NR/NB and average
loop length LL = NR/(NX +NY +1), where NR is the number of reference
instructions, NB is the number of basic blocks, NX is the number of
natural loops, and NY is the number of subroutine calls.

The most important cache parameter affecting the performance seems to
be the cache associativity A. Therefore, we used it as a factor.

5. We decided to use measuring as the evaluation technique. We measured
the instrumentation of the programs (static experiments), and execution
of the instrumented programs (dynamic experiments). Static experiments
were performed by instrumenting each subject program with MTC and
MSC. Dynamic experiments were performed by randomly selecting input
points, and comparing execution times of simulators generated with MTC
to simulators generated with MSC.

6. In the static experiments, we generated the workload for MTC and MSC

7.4. STATIC WORKLOAD 79

by using SMC as an input generator. SMC was given selected programs
to be compiled.

In the dynamic experiments, we generated the workload by using random
number generators of MSE.

The workload selection and generation is a complex issue; we discuss it in
more detail in separate sections.

7.4 Static workload

Selecting a workload for experiments that study combined program analysis
presents a difficult problem. The reason for this is that combined program
analysis uses programs as its input: It is not easy to automatically generate or
manually select a representative set of programs.

The workload selection is further complicated by the fact that programs
need input. We cannot measure the efficiency of program transformations, such
as our instrumentation, without running the transformed programs. To get
comprehensive results, we need a number of inputsper workload program. Thus,
we can only consider programs that can be provided with a sufficient set of
inputs.

A model of programs would be needed for automatic generation of workload
programs, i.e., making an artificial workload. To our knowledge, no sufficient
model exists for the generation of input programs for such experiments. It is
hard to design such a model, because programs are typically very complex, but
not random.

There are some real workloads that are designed as comprehensive represen-
tatives of typical programs. Many benchmarks are designed to measure CPU
performance instead of memory performance, e.g., the Whetstone benchmark
[37], the Linpackbenchmark [43], the Dhrystone benchmark [158], and Lawrence
Livermore Loops [110]. Some benchmarks are more generic. For example, the
SPEC benchmarks [150] are designed for measuring the computational capacity
of computer systems, while the TPC benchmarks [155] for measuring transaction
systems.

However, such comprehensive benchmarks are not needed in this study. Our
primary goal is not to measure properties of typical programs (e.g., the pro-
portion of statically classifiable memory references). The goal of this study is
to find out the simulation speed-up yielded by our implementation, when the
proportion of statically classifiable memory references is assumed known. The
workload must be representative for typical programs only in this sense.

In our experimental setting, simulation speed-ups result solely from partial
evaluation and slicing of instrumentation code. Considering this, the essential

80 CHAPTER 7. EXPERIMENTS

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10

’dispatch’
’database’

’control’

Figure 7.5: Properties of analyzed subroutines: horizontal axis is block length
LB and vertical axis is loop length LL.

property is the distribution of the instrumentation code among the subject pro-
gram code that drives the simulation. The memory references of the subject
program are instrumented. We get biased results, if we use a workload that has
an unnatural distribution of memory references. Thus, we think that we can
accept a workload consisting of real programs that have a natural distribution
memory references.

We ended up selecting three different applications as our static workload.
The applications are small, but not artificial, i.e., they are programs that com-
pute real results.

• Dispatch: A message dispatcher, which receives messages, decodes them,
and routes them further. The decoding and routing is implemented hard
coded. Addresses of most memory references are dynamically computed.

• Database: A relational database application, whose index is implemented
as an unbalanced binary tree. Addresses of most memory references are
dynamically computed.

• Control: A control application that operates like a device driver. Ad-
dresses of most memory references are static.

The programs are coded in C and consist of subroutines (C functions) and
related data structures. The characteristics of subroutines are plotted in Figure
7.5. Each subroutine is a point in the LB,LL-space (block length, loop length).
According to our input characterization, the workload includes subroutines hav-
ing different characteristics.

7.5. STATIC EXPERIMENTS 81

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12

’dispatch’
’database’

’control’

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14

’dispatch’
’database’

’control’

Figure 7.6: Static resolution Fs (vertical axis) of each subroutine compared
with block length LB (horizontal axis, left) and loop length LL (horizontal axis,
right).

We cannot state that our workload comprehensively represents all other
programs in every respect. However, we think that the workload is suitable for
the goal of this study.

7.5 Static experiments

In our static experiments, we gave our workload programs to SMC, which trans-
lated them to SM code. For each subroutine we measured static resolution Fs

with cache associativity A = 16. The results are in Figure 7.6. Each subroutine
is a point in a two dimensional space.

The left side of Figure 7.6 shows how Fs (vertical axis) depends on block
length LB (horizontal axis). The right side of Figure 7.6 shows how static
resolution Fs (vertical axis) depends on loop length LL (horizontal axis). The
figures showsignificant variance in static resolution Fs. This supports our choice
of workload.

We repeated the same measurement altering cache associativity in the range
from 1 to 16. We summed the counts No and Nr for each program, and plotted
the resulting Fs = Nr/No as a function of the associativity.

Figure 7.7 shows how static resolution Fs (vertical axis) depends on the
associativity A (only in the range 1–8). The performance depends both on the
subject program and on the cache associativity.

82 CHAPTER 7. EXPERIMENTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

’database’
’control’

’dispatch’

Figure 7.7: Static resolution Fs (vertical axis) as a function of associativity A
(horizontal axis).

7.6 Dynamic workload

Dynamic workload was generated separately for each of the programs in our
static workload:

• Database: x insertions and x queries were made to the database. Keys
for both the insertions and the queries were drawn from a random uniform
distribution.

• Dispatch: x messages were sent to the dispatcher. The type of each
message was drawn from a random uniform distribution.

• Control: x control commands were send to the controller. Type and
parameters for the commands were drawn from a random uniform distri-
bution.

A pseudo-random number generator of MSE was used get random numbers.
The generator is a simple linear congruential generator [96].

7.7 Dynamic experiments

The static workload programs were compiled by MTC and MSC, and simulators
corresponding to each static workload program were built. The experiments
were repeated for cache associativities ranging from 1 to 16.

Dynamic experiments were performed by randomly selecting 30 input points.
At each input point, we executed a two-phased analysis: validation and mea-
surement.

7.8. CONCLUSIONS 83

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 1 2 3 4 5 6 7 8

’database’
’control’

’dispatch’

Figure 7.8: Speed-up coefficient Rd (vertical axis) as function of cache associa-
tivity A (horizontal axis).

First, for each subject program, an interleaved simulation was run with both
systems (MTC-generated and MSC-generated). The validity was checked by
comparing similarity of the incache tables step-by-step.

Second, we run separate simulationswith MTC-generated and MSC-generated
simulators, and compared the simulation times. We repeated the measurements
until 95% statistical confidence was reached [108].

The results are in Figure 7.8. The figure shows how the speed-up coefficient
Rd depends on cache associativity (only in the range 1–8). For all three pro-
grams, the effect is similar to the static experiments. This indicates that the
performance is mostly dependent on the static phase of our method.

7.8 Conclusions

We performed two kinds of experiments, which we call static and dynamic ex-
periments. In both experiments, we used two tools: one that built traditional
simulators and one that built specialized simulators. In static experiments, we
measured and compared the simulators. In dynamic experiments, we measured
and compared their execution.

The performance of the method depends mostly on the target program and
associativity of the cache. Our static cache analysis could classify 15% to 70% of
the memory references. The performance of the static analysis depended on the
dynamism of the addressing and on the interleaving of the memory references.
Accesses of Database are more local than accesses of Dispatcher. They both
use dynamic addressing, but Control uses static addressing. The actual (i.e.,

84 CHAPTER 7. EXPERIMENTS

simulated) cache hit ratio for all the applications was typically around 90%.
The goal of this study was to find out the simulation speed-up yielded by our

implementation, when the proportion of statically classifiablememory references
is assumed known. While the proportion of classifiable memory references varied
from 15% to 70% in the static experiments, the specialized simulators were 25%
to 180% faster than the original simulators in the dynamic experiments.

The speed-up is mostly caused by slicing. The direct effect of partial evalu-
ation is minor, but it makes the slicing possible by removing branching in the
instrumentations.

In addition to our measurement results, it is important to note the things
that were not measured. These included:

• We did not measure the time consumed in the static analysis and pro-
gram transformations. This time is typically negligible, because several
simulations can use the same simulator.

• We did not measure the speed-up caused by using an integrated simulator
instead of a traditional separate simulator. The speed-upcan be significant
(see [97] for an evaluation).

• We did not measure the speed-up caused by slicing the input program.
Based on our experience, such speed-up depends heavily on the workload,
but can be significant.

• Our experiments were solely based on must analysis of abstract cache
state. Further, we did no interprocedural analysis. Including both may
and interprocedural analysis of cache states could improve the perfor-
mance.

The program analysis and program specializations described in Chapters 5–
6 may seem complicated. The code implementing the corresponding program
analysis and program specializations in MSC is only 460 lines of C++ code.
This is a small fraction of a practical memory analysis system – the size of the
whole MSE environment is approximately 24600 lines of source code. The price
of statically speeding up memory simulations is not high.

Chapter 8

Related work

There has been a variety of approaches for fast cache performance analysis of
programs. Also, the goals that have motivated these approaches have varied.
There has been work trying to guarantee performance bounds (especially worst-
case execution time), work trying to support hardware designs, work trying to
estimate average-case performance etc. Some approaches are very specific, e.g.,
concentrating only on direct-mapped data caches or programs without loops.
Some approaches have a much broader scope, e.g., they analyze realistic com-
binations of data caches, instruction caches, and instruction pipelines.

The traditional cache performance analysis method is trace-based simula-
tion [156], which involves simulating every memory access for all executions
(i.e., inputs) considered representative. The methods proposed for fast cache
performance analysis can roughly be placed in three major categories: analytic
methods, dynamic methods, and static methods.

Analytic methods are based on modeling the hardware and the software in a
way resulting in a model that can be solvedby mathematical analysis. Typically,
such methods are very different from ours (e.g., [3]). Therefore, we present here
(Section 8.1) only one line of research, because it resembles our work in some
respects. It is based on specific loop models, which makes analytical solving
possible.

Dynamic methods are simulation methods that speed up analysis by reduc-
ing the number of accesses simulated. They are often called trace compaction

or trace filtering methods, because they are implemented as compactors or fil-
ters between the trace generating program and the memory simulator. There
are dynamic methods that are based on sampling [4], redundancy [63], spatial
analysis [4], and temporal analysis [142]. Three methods that have affected our
research are stack deletion, trace stripping, and spatial blocking. We will review

85

86 CHAPTER 8. RELATED WORK

these in Sections 8.2–8.4.
Some simulation methods have concentrated on speeding up the trace con-

sumption instead of manipulating the trace. The methods are based on using
several processors to share the load of simulation. In the control of the parallel
execution, both cache analysis specific methods and generic parallel simulation
methods have been applied. We will review such methods in Section 8.5.

Most of the modern cache performance analysis methods are static. Static
methods speed up analysis by simultaneously simulating memory behavior for
all inputs considered significant. Many of the static analysismethods are WCET
methods (worst-case execution time analysis methods). Thus, their motivation
is typically different from ours.

WCET analysis is often done for fairly simple microcontrollers and programs
that are not data intensive [44]. Therefore, static WCET analysis is often con-
centrated on pipeline analysis or instruction cache analysis. Pipeline analysis
differs significantly from cache analysis. The state space is smaller, but rather
difficult anomalies can occur (e.g., out-of-order execution). Pipeline analysis
can be handled by more local analysis than cache analysis.

Instruction cache analysis is similar to data cache analysis. Some methods
have been applied both to data cache analysis and instruction cache analysis.
Instruction cache analysis is less difficult than data cache analysis, because the
address data is usually static and addresses are often accessed in a sequence.
Many data cache analysis methods also assume static address data.

There are several approaches to static cache analysis. Some approaches em-
bed cache analysis into WCET calculation, but most perform separate cache
behavior analysis. The cache behavior analysis is performed by studying rela-
tionships of memory references or by using an explicit cache state concept. We
review the methods that have affected our work in Sections 8.7–8.11. In Section
8.6, we shortly describe our previous research on the topic.

8.1 Cache miss equations

Using cache miss equations is an analytic method designed to understand cache
behavior of programs and identify their memory bottlenecks. The method is
based on loop models, which make the cache behavior analytically solvable.
The methods are applicable for deep loop nests, which are typical for scientific
code. A typical loop model for cache miss equation assumes that the loops must
be perfectly nested, have linear bounds, and memory references must have linear
indices with constant steps. Further, only a limited form of branching is allowed
inside the loops.

The restrictions make memory references very regular. A nested loop exe-

8.2. STACK DELETION 87

k
i

j

iteration i,j,k

of (0,1,1)

of (0,1,1)

temporal reuse

spatial reuse

Figure 8.1: Iteration space formed by the loop nest for i=1,N;k=1,N;j=1,N

do Z(i,j)+= X(i,k)*Y(k,j). Temporal and spatial reuse vector are shown as
arrows. Adapted from [57].

cution spans a multidimensional iteration space, where each point describes a
single iteration point (see Figure 8.1). Memory reference patterns can be de-
scribed by using reuse vectors [167]. Reuse vectors describe repeated accesses
to the same memory (or cache) line.

Ghosh, Martonosi, and Malik [57] assume a uniprocessor with one-level
direct-mapped cache. They classify reuse as temporal if the same location is
accessed and spatial if the same line is accessed. Based on the reuse vectors
they write two kinds of cache miss equations that describe cache misses. Cold

miss equations identify cache misses caused by first uses of lines and replacement

miss equations identify cache misses caused by reuses of lines.
Cache miss equations describe program cache behavior qualitatively. Solving

the cache miss equations yields quantitative results. Ehrhart polynomials are
suggested as a solution method by [58]. The method is highly accurate, but ap-
plicable only to a restricted class of loops that cause regular patterns of memory
accesses typical for some scientific applications. In more recent work [59], they
describe how cache miss equations can be used for compiler optimizations.

8.2 Stack deletion

Stack deletion [141] is a compaction method of traces for the simulationof stack-
based memory management algorithms, such as the LRU (see Section 2.5). The
idea is to remove those accesses that refer to memory locations that are near the
top of the stack of the management algorithm. Thus, probable hits are removed
from the trace and probable misses are left in the trace. If the cache miss ratio
is low, then the degree of compaction achieved is high.

Ignoring an access of a memory location near the top of the stack does not
directly cause any error in the simulation. However, the order of memory lines

88 CHAPTER 8. RELATED WORK

original trace

T a, b, c, c, c, c, b, b, b, d, d, a, b, c, a

time-independent compaction
T2 a, b, c, b, d, a, b, c, d, c, b, c, a

T3 a, b, c, d, a, b, c, d, b, a
T4 a, b, c, d, a, c, d, a

time-dependent compaction

T2 (a 1), (b 1), (c 1), (b 4), (d 3), (a 2), (b 1), (c 1), (d 1), (c 1), (b 1), (c 1), (a 1)
T3 (a 1), (b 1), (c 1), (d 7), (a 2), (b 1), (c 1), (d 1), (b 2), (a 2)

Figure 8.2: Examples of stack deletion (adapted from [141]).

in the stack of the management algorithm can be different from that with the
original trace. Later on, this can cause an error in the simulation, but typically
the probability of the error is low [142].

Smith presented two stack deletion methods: one for time-dependent man-
agement algorithms and one for time-independent management algorithms. In
an access trace, both methods delete the accesses that are hits to levels 1, . . . , k−
1, where k is the deletion parameter (the minimum size of the simulated cache).

In the first method, the compacted trace consists of the remaining accesses.
In the second method, the compacted trace consists of a two-tuple for each
access that remains after deletion. A two-tuple is composed of the address ac-
cessed and the increment of the time counter needed in time-dependent memory-
management algorithms [33, 40].

Figure 8.2 gives examples of stack deletion. Tk denotes the reduced trace
of deletion parameter k. The number of misses observed in time-independent
processing of the original trace T for memory sizes of 1, 2, 3, and 4 is (12, 10,
8, 4), and similarly for T2, T3, and T4 we obtain (13, 10, 8, 4), (10, 10, 9, 4),
and (8, 8, 5, 4).

Smith states that for LRU the simulation error is bound by F (C −k +2) ≤
Fk(C) ≤ F (C + k − 2), where C is the cache size, k the deletion parameter, F
the number of misses for the original trace with cache, and Fk is the number
of misses for a compacted trace. This theoretical bound is very loose. In his
measurements, he reported significantly smaller errors (typically 1%–5%).

The stack deletion method has weaknesses. In many situations, it is too
slow. During the trace compaction, the stack must be maintained. This makes
the compaction as slow as many memory simulators. Thus, stack deletion is
worth while doing only if the compacted trace is to be used several times.

8.3. TRACE STRIPPING 89

8.3 Trace stripping

Puzak proposed a method called trace stripping [129], which performs temporal
filtering of traces. The method uses a direct-mapped cache, which is called a
cache filter. The cache filter is given an input trace. The accesses, which cause
misses in the cache filter, are written to an output trace. Thus, the accesses not
causing misses are filtered.

Let the cache filter have 2f direct-mapped sets and G be a cache, which has
2g, g ≥ f sets and the same line size as the cache filter. If G is given the output
trace of the cache filter, then the same number of cache misses is generated as
if G was given the original input trace of the cache filter. The method is not
efficient for full-associative caches, because the filter would consist of a single
line.

Trace stripping is illustrated in Figure 8.3, in whichwe use the samegraphical
representation as in Section 2.4. On the left, there is a secondary-layer memory
having 8 lines and an associative cache having 2 sets of the size 2. On the right,
the same 8-line secondary memory has a 1-way (direct-mapped) cache. It can
be used as a cache filter for the left-hand-side cache, because both have the same
number of sets. In both caches, set a is for lines 1, 3, 5, 7 and set b for 2, 4, 6,
8.

Let an original trace be (3, 6, 3, 1, 6, 3). If the trace is given to both of the
caches, the following actions happen:

2-way cache 1-way filter cache
3: miss, read to a1 3: miss, read to a1
6: miss, read to b1 6: miss, read to b1
3: hit 3: hit
1: miss, read to a2 1: miss, read to a1
6: hit 6: hit
3: hit 3: miss, read to a1

Thus, the cache filter yields four misses: 3, 6, 1, and 3. The bigger cache
yields three misses: 3, 6, and 1. If the bigger cache is given the filtered trace,

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

a1 a2 b1 b2 a1 b1

Figure 8.3: A memory with a 2-way cache (left) and a cache filter for it (right).

90 CHAPTER 8. RELATED WORK

i.e., cache miss sequence of the filter (3, 6, 1, 3), then exactly the same misses
happen.

3: miss, read to a1
6: miss, read to a1
1: miss, read to a2
3: hit

The compaction achieved by trace stripping is significant. Typically, a pro-
gram trace is compacted over 90%. Puzak suggested that the method could
also be used to filter traces with line sizes different from the one to be used in
simulations. Such a method can increase the compaction, but also cause errors
in simulations [38].

8.4 Spatial blocking

The previous compression methods are based solely on temporal analysis of a
trace. Agarwal and Huffman have presented a method that also applies spatial
analysis. They call their spatial trace compaction spatial blocking [4]. Spatial
blocking is designed to be applied to traces that are already temporally filtered.
Their temporal filtering is based on trace stripping.

The spatial blocking method is based on statistics. It assumes that all the
memory references in a spatial neighborhood have similar properties. It uses a
representative reference from each spatial neighborhood to predict the perfor-
mance of the entire neighborhood. In mathematics, this method of sampling is
called stratified sampling.

Consider a large population of data over which some mean parameter is
desired. Assume that the population can be divided into strata within which
the value of the parameter of interest is more nearly constant than it is in the
population as a whole. Stratified sampling draws small unrelated samples from
each of the strata separately to estimate the value of the given parameter. Such
sampling is statistically superior to taking a single sample of the same size from
the entire population.

Consider a population P in which the mean value m of some parameter M is
desired. Let the population have s strata. Within each stratum the value of M
can vary. Let the size of ith stratum be Ni, the sum being the total population
size N (i.e., the trace length).

An estimate of m, called m∗, is obtained by taking the weighted average of
the selected representative items, called mi’s, from each stratum. Then

m∗ = (N1

N
m1 + N2

N
m2 + . . . + Ns

N
ms)

8.5. PARALLEL SIMULATION 91

If the variance of M in stratum i is σ2
i , then the variance of m∗ is approxi-

mately given by

Var(m∗) = (
N2

1

N2 σ2
1 +

N2
2

N2 σ2
2 + . . . +

N2
s

N2 σ2
s)

assuming that the strata are uncorrelated and the variance of M in each
stratum is small compared to the variance in the whole population.

If the variances within the strata are the same and the strata are of the same
size, then Var(m∗) = σ2/s, which is typically negligible.

For program traces, the strata size varies and the strata are correlated. How-
ever, typical programs do not refer memory in a random manner. The memory
references are usually local and regular. Agarwal and Huffman made some ex-
periments with their method. They report miss-rate-errors about 10% for traces
compacted over a magnitude.

8.5 Parallel simulation

Parallel cache simulation methods use several processors to speed up cache sim-
ulations. A parallel simulation method needs a mechanism that shares the
simulation load among the processors. Such methods can be cache simulation
specific or generic.

Set partitioning and time partitioning [68] are based on the organization of
typical caches. In set partitioning, a trace is seen as a composition of inde-
pendent subtraces. Each subtrace contains references that map onto one single
set of the simulated cache. For each subtrace, there exists a processor that
runs a separate simulator processing the subtrace. The method works best for
set-associative caches. For directed mapped caches the subtasks are too small,
while for full associative caches there is no parallelism.

In time partitioning, a trace is seen as a sequence of subtraces. The process-
ing of a trace T is iterative. First, the trace T is cut into n parts, which we
denote Ti (1 ≤ i ≤ n). Each resulting subtrace is processed by a separate simu-
lator. In the first iteration, only the first subtrace T1 can be simulated correctly,
because the initial cache state is known only for it. At subsequent steps, each
Ti (2 ≤ i ≤ n) is resimulated using the final state of Ti−1 as the initial. Because
of the stability of typical caches, the iteration terminates quickly. According to
[68], time partitioning is statistically faster for typical caches than set partition-
ing. However, the method is not suitable for execution-driven simulations.

Parallel discrete-event simulation methods are generic methods that can be
applied to cache simulation. In such an approach, each cache line is seen as an

92 CHAPTER 8. RELATED WORK

object and the cache is seen as communication and synchronization mechanism
for the objects. Memory accesses are the events that cause message passing in
the system. Lin et al. have applied the Chandy-Misra simulation method to
solve the problem [77]. Some parallel simulation methods have applied program
slicing to improve performance [39, 131].

8.6 Static filtering

Static filtering is a method for speeding up trace-based memory simulations.
Dynamic filtering compacts the trace after it has been generated, but static
filtering modifies the trace generation to yield more compact traces. Such a
static method speeds up both the generation and consumption of a trace, as
dynamic methods speed up only the latter. The method yields a smaller degree
of compaction than dynamic methods, but it can be combined with them.

Static filtering is based on compile-time data flow analysis, which analyzes
redundancies in the memory reference patterns of programs. If the memory
behavior caused by a pattern can be caused by a smaller pattern, then a program
is instrumented to emit the reduced pattern to its memory traces instead of the
complete one.

In my licentiate’s thesis [72], I proposed the approach and presented a
method and a naive implementation, by which 30%–70% reduction of trace
size was achieved. The filtering method consists of a variant of traditional flow
analysis of programs and a related instrumentation scheme. This method finds
static and induced chains of computed values, which are used as addresses for
memory accesses.

The method does not perform an explicit cache state analysis. It analyzes
the cache behavior of the references in a program by using a temporal and spatial
locality window. As manyother filtering methods, the method is approximative.
The approximation can cause an error in a memory simulation that is based on
the compacted trace.

8.7 Cache constraints

Cache constraints are equations or in-equations that describe the cache behavior
of a program. They state how cache hits (or misses) depend on execution
counts of program elements. Cache constraints form a generic framework for
program cache performance analysis. For automated applications, a method
for constructing cache constraints and a method for solving the constraints is
needed.

8.8. STRUCTURAL ANALYSIS 93

Li, Malik, and Wolfe [99] use cache conflict graphs to construct cache con-
straints. They assume a direct-mapped cache and study instruction caches. A
cache conflict graph is constructed for every cache line. The conflict graph de-
scribes how fragments of basic blocks can replace each other in the cache during
the execution of a program.

Each conflict graph has a start node (s), an end node (e), and a node Bi,j

for every fragment j of every basic block Bi that is mapped to the line that the
conflict graph models. A directed edge Bk,l → Bm,n is drawn if there exists
a path from Bk,l to Bm,n without passing through any other fragment on the
same cache line.

The start node represents the start of a program and the end node represents
the end of a program. Entering a fragment node in the graph implies a cache
miss. At each node Bi,j, the sum of control flow going into the node must be
equal to the sum of control flow leaving the node, and it must also be equal to
the execution count of the block itself. This results in a set of constraints:

xi =
∑

p(u.v, i.j) =
∑

p(i.j, u.v)

where p stands for count, i.j the fragment itself, u.v is any node (including
s and e), and xi is execution count of the block. Counts of the form p(i.j, i.j)
represent cache hits, for which the graphs yield constraints like:

p(i.j, i.j) ≤ xhit
i.j ≤ p(s, i.j) + p(i.j, i.j)

Together with some simpler constraints derived from the control flow graph,
these form a constraint system that implicitly describes the cache behavior.

Li, Malik, and Wolfe [99] use integer linear programming (ILP) to solve
constraint systems. To get a WCET bound, they use an ILP solver with the
goal of maximizing a cost function consisting of execution times of program
fragments. The method hasbeen further developed to incorporate more complex
cases [100, 104, 120].

8.8 Structural analysis

Structural analysis methods are based on the syntax structure of a source pro-
gram. In such methods, analysis information is passed bottom-up or top-down
in the syntax tree to yield the desired analysis result.

Lim et al. [101] use a bottom-up structural method for cache performance
analysis. The bottom-up analysis uses partial state descriptions. They assume
a direct-mapped cache and static address data. For each syntax structure ci

94 CHAPTER 8. RELATED WORK

and each cache line lj, they compute the first and last known cache content.
For simple statements accessing memory, the partial state description con-

tains the locations accessed. For compound statements, the partial state descrip-
tion is constructed from the state descriptions of their component statement.
For example, for the statement

s → if (e) then s1 else s2

the construction is

cs = {ce ⊕ c1} ∪ {ce ⊕ c2}

where ⊕ is a concatenation operator that simulates operation of the cache
and cx is state description of structure x. Basedon the partial state information,
some cache misses and hits can be determined. In their method, the cache
analysis is embedded into a bottom-up WCET calculation. The method adds
cache analysis to the timing schema approach of Park and Shaw [123].

Kim, Min, and Ha [90] extend the analysis by using a version of the pigeon-
hole principle to get bounds on data cache performance. The pigeon-hole prin-
ciple states that if there are fewer containers than items to be contained, then
there must be more than one item in some container. In loops, they determine
the maximum number of accesses by single memory references and the maxi-
mum number of distinct locations accessed. The method is limited in its ability
to detect both temporal and spatial locality.

8.9 Graph coloring

Graph coloring is a technique that ensures that adjacent nodes in a graph have
different colors. Based on register interference graphs, the method has been
used in compilers to perform register allocation [32].

Rawat [130] uses a graph coloring technique to analyze data cache perfor-
mance. Based on the variables contained, cache lines are defined live ranges,
which are represented by cache nodes. Conflicting accesses to the same line
cause splitting of the nodes. Node splitting represents cache misses.

The applicability is limited: the method considers only local scalar variables
within a single function. Further, the method is applicable only to direct mapped
cache memories.

8.10. STATIC CACHE SIMULATION 95

8.10 Static cache simulation

Static cache simulation is a group of methods for cache performance analysis.
The methods are based on computing static abstract cache states at program
points and using additional program flow information to yield classification of
memory references. Abstract cache states are constructed by straightforward
iterative flow analysis methods. At each point, the cache state gives a loose
bound for possible cache contents. This bound is tightened by using various
flow analysis methods.

Mueller and Whalley [117] describe a data flow analysis method for the
prediction of instruction cache behavior. They base their method on control-flow
partitioning. They use reaching-state and control-flow information to classify
references more accurately.

The original method has been further developed in many ways. The vari-
ants include methods for WCET analysis for processor with pipelines and data
caches. A typical memory reference classification is:

• Always miss. The referred to location is never in cache.

• Always hit. The referred to location is always in cache.

• First miss. The referred to location is not cache for the first access, but
is for rest of them.

• First hit. The referred to location is in cache for the first access, but not
for rest of them.

[66] presents a variant for data cache analysis that handles dynamic address-
ing and yields may and must analysis of cache behavior. The analysis uses
data-flow techniques to determine the bounded range of addresses for each data
reference.

8.11 Abstract interpretation

Abstract cache state interpretation is the cache analysis method used in this
thesis. It is based on the generic theory of abstract interpretation. In addition
to the data cache analysis for dynamic references (presented in this thesis), the
method has been used for a number of performance analysis problems.

In [7, 47, 50] Alt, Ferdinand, Martin, and Wilhelm present the general ap-
proach for using abstract interpretation for cache state analysis. Variants of
this basic method include better data cache analysis, pipeline analysis, and
more precise modeling of program structure, especially loops and interproce-
dural analysis [49, 67]. To implement their analyses, they use a generic static
analysis tool called PAG [8].

96 CHAPTER 8. RELATED WORK

They have considered complex real-life processors such as PowerPC 750/755
and SuperSPARC I [137]. In [48], Ferdinand et al. describe analysis of the
ColdFire MCF 5307 processor that has a pipeline and a unified instruction and
data cache. In their work, they have also considered scheduling issues in the
presence of cache memory [87, 136].

There are two major differences between their work and ours. First, they
consider WCET analysis while we consider bottleneck analysis. Thus, their
focus is on giving tight WCET bounds for all possible inputs. Our focus is on
understanding program behavior for representative set of inputs. Second, they
consider programs with static memory addressing while we consider programs
with dynamic memory addressing.

8.12 Conclusions

Cache memories are one of the main components affecting the performance of
computers. Therefore, methods for cache performance evaluation have been in-
tensively studied. A wide spectrum of methods have been developed by varying
communities. Some methods are hardware-oriented while others are software-
oriented. Thus, the methods differ in their applicability.

All static cache analysis methods are based on the observation that run-
time behavior of a program can be more dependent on the static program text
than its input. For such programs, cache behavior can be resolved to an extent
that makes static analysis methods practical. The methods are not useful for
programs having dynamic behavior. Thus, all static analysis methods have
explicit or implicit restriction on programs that can be analyzed. However,
compared to an approach like cache miss equations, the static methods are far
more generic.

Some static cache analysismethods are built ad hoc, but there exists methods
that have a unified and firm theoretical basis. Such a basis makes modeling of
complex systems reasonable. Abstract interpretation especially seems like a
competitive approach. The most complex static cache analysis tasks completed
so far have been performed by applying abstract interpretation.

Simulation methods that do trace compaction or speed up trace generation
are based on address trace redundancy that is typical for programs. Figure 8.4
illustrates this. In the figure, traces are plotted in two-dimensional space. Each
point is a memory reference.

On the left side of the figure is a trace where accesses are almost randomly
and uniformly scattered in the address space. Such a trace has very little redun-
dancy and cannot be compacted. Also, data caches are not useful for programs
having such a trace.

8.12. CONCLUSIONS 97

-
0 1 2 3

addr/MB

?

0

5

10

15

20

access ×105

-
0 1 2 3

addr/MB

?

0

5

10

15

20

access ×105

Figure 8.4: Example traces plotted in two-dimensional space: A random-like
trace (left) and a typical program trace (right). Horizontal dimension is the
address referred to and vertical dimension is the number of the reference.

On the right side of Figure 8.4 is a typical program data trace. A number of
regularities appear in the trace. Some addresses are accessed more often than
others. Accesses are both temporally and spatially local, which can be seen as
various formations in the figure, e.g., lines. All the methods try to benefit from
such patterns.

Most of the compaction methods presented in the literature are designed for
trace-driven simulation. Typically, they are not so well suited for execution-
driven simulation. Parallel simulation method that speed up trace consumption
differ in this respect. They are orthogonal to the approach presented in this
thesis.

98 CHAPTER 8. RELATED WORK

Chapter 9

Discussion

Because of the complexity of memory hardware, interactions between memory
references are complex. We must understand the accesses that the references
make to understand their interactions. Typical hardware does not support anal-
ysis of memory operations [78]. Thus, simulation has often been the choice for
performance studies and the basis for related tools giving detailed information
(e.g., [106]).

Trace-driven simulations [156] are common. A trace-driven simulation has
two main phases. In the first phase, an access trace is collected. Because hard-
ware support for cache tracing is rare [78], the collection is typically performed
by instrumenting the subject program with trace-emitting code. In the second
phase, a memory simulation is executed using the trace of the first phase as the
input.

The major problem in trace-driven simulation studies is the size of traces
[129, 156]. The traces resulting from program executions can be huge. To
understand thoroughly the memory behavior of a program, the program must
be executed with several inputs and several traces must be generated. Thus,
very long simulation times can be needed because of the huge quantity of data
to be analyzed.

To make the size and processing time of traces feasible, a trace compaction
phase can be added between the two main phases [156]. Compaction is espe-
cially suitable for hardware performance studies. In such studies, the trace once
collected can be used several times; it serves as a benchmark for hardware [92].

In a software performance study, the input is varied and a different trace
is usually generated for each simulation. Rapid prototyping with various de-
signs improving the performance of the software are needed [144]. Therefore,
execution-driven (on-the-fly) simulation is practical in software performance

99

100 CHAPTER 9. DISCUSSION

studies; the trace is consumed as it is produced.
Cache analysis can be performed statically, i.e., without executing the pro-

gram or simulating its execution with an input. Recently developed static cache
analysis methods have their roots in compiler technology, which has used static
analysis for optimization for decades [118].

Methods using static cache analysishave given a new tool for revealing cache-
related performance-bottlenecks of programs. Static analysis is performed with-
out executing the program, thus the results are applicable for all inputs. Static
analysis can yield upper and lower bounds of cache misses and also execution
times. Such absolute guarantees are very useful in the design of hard real-time
system [49]. Further, static analysis methods can pin-point reasons for bad
cache behavior.

Static analysis is a fast method, but in some cases, its approximative nature
is a problem. Typical static analysis divides memory references of a program
into three classes: those who always miss, those who always hit, and those
about which we cannot decide. (With auxiliary information, we can get a more
detailed classification, e.g., first-hit and first-miss classifications by conceptual
unrolling of loops.) For applications using dynamic memory addressing, the
bounds that we get can be too loose (the example in Figure 9.1 illustrates this).

The use of dynamic memory addressing makes programming easier. In the
past, dynamic memory addressing has not been used in hard real-time systems
with cache memory, because there have not been sufficient analysis methods to
guarantee their performance. In soft real-time systems, such absolute guarantees
are not needed.

Dynamic memory addressing is difficult for static analysis, because typical

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

best case

worst case

hit hit

miss

miss

actual

static addressing dynamic addressing

90%

1%

5%

93%

Figure 9.1: Using dynamic addressing instead of static addressingmakes bounds
loose. If 1% of accesses are known to be misses that cost 40 cycles each and 90%
are known to be hits that cost 3 cycles each, the upper bound of performance
is almost double compared to the lower bound.

9.1. METHOD 101

cache memories have parallel architecture. Instead of a single memory unit,
cache memories are composed of a number of small memories, which execute in
parallel. This set-associative organization causes conflict misses, – but, on the
other hand, – it makes cache memory very fast, because the signal paths in the
hardware are small.

With typical dynamic memory addressing, we cannot statically compute the
cache set (or sets) that a reference accesses during execution. Therefore, our
understandingof the micro-level parallelism in hardware is typically incomplete.

Our approach solves the problem by using a static method that can analyze
programs using dynamic addressing, and supplementing the input-independent
static analysis with input-dependent dynamic analysis. Static analysis can be
used to give absolute guarantees of memory behavior, but it typically cannot
give full memory behavior description for any input. Dynamic analysis gives
full memory behavior description for a single input, but it cannot give abso-
lute guarantees. We believe that the combination makes program performance
analysis and design easier.

In the following, we discuss our research in more detail. First, we summarize
the abstract framework, the related cache analysis method, and their evaluation.
Then, we discuss the applicability of our work and its position in performance
analysis. Finally, we discuss possible future work.

9.1 Method

In this thesis, we presented an abstract framework for combining static analysis
and dynamic analysis, and applied the framework to cache performance analysis
of programs. Our approach is based on three simple observations that we have
made:

• Memory simulators typically spend most of their time in processing hits,
i.e., practically running idle. Those hits could be statically handled, and
thus not simulated at all.

• From the cache simulation point of view, the actual task of the subject
program is irrelevant. Simulation can be made faster by removing the
parts of the computation that do not affect the simulation result.

• In software performance analysis, a trace is not as useful as in hardware
performance analysis. By joining trace collection and consumption, we
can apply the improving transformations to the whole simulator.

Our combined analysis has three phases: a compilation phase, an execution
phase, and a summary phase. In the compilation phase, a subject program is
statically analyzed and a dynamic analyzer is built. In the execution phase,

102 CHAPTER 9. DISCUSSION

the dynamic analyzer is executed. The first phase gives the results of the static
analysis, i.e., common for all inputs. During the second phase, each simulation
gives results specific to its input. In the summary phase, the analysis information
of the compilation phase and the analysis information of the execution phase
are combined.

This thesis is focused on the compilation phase. The compilation phase
consists of three steps:

1. Based on a memory model, each reference in the subject program is aug-
mented with a piece of code that simulates its memory behavior. The
result is an integrated memory simulator. It produces both the output of
the original subject program andsimulationoutput describing the memory
behavior of the original subject program.

2. The integrated simulator is statically analyzed. This includes address
analysis, i.e., analyzing cache aliasing and cache conflicts of memory refer-
ences. Based on the address analysis, cache behavior of memory references
is solved.

3. The integrated simulator is partially evaluated and sliced. All those mem-
ory simulation operations that can be found independent of the input
to the simulator are evaluated. All instructions that are not needed in
computing the simulation output are removed. The result is a simulator,
which uses inputs of the original subject program, but produces only the
simulation output describing the memory behavior of the original subject
program.

Our static cache analysis approximates concrete cache states. The concrete
state of a cache consists of the states of its sets. The state of the whole cache
(consisting of several cache sets) is approximated by an abstract cache state.

In must analysis of cache states, abstract locations are mapped to their
maximum cache age. In may analysis of cache states, abstract locations are
mapped to their minimum cache age. Memory references that always hit are
found by must analysis and memory references that always miss are found by
may analysis.

The partial evaluation is based on using specialized augmentation variants.
The program slicing is based on deleting groups of operations that have no effect
on the simulation result.

9.2 Evaluation

We proved the correctness of both the abstract framework and its application
to cache performance evaluation. We used analytical methods in proving the

9.2. EVALUATION 103

correctness. We selected abstract interpretation as the basis of our static anal-
ysis, because it supports semantics-based proofs of various properties of static
analysis methods.

Our experience with abstract interpretation is positive. Working with the
mechanisms of abstract interpretation helps to avoid pitfalls of static program
analysis. Other approaches to static program analysis exist, but we are satisfied
with abstract interpretation.

In the early phases of this research, we used a window concept [71] instead of
abstract cache states and equational analysis instead of abstract interpretation.
While using such methods, the development of static program analysis was error
prone.

We selected partial evaluation and program slicing as our speed-up mech-
anisms, because they are generic methods. Other speed-up mechanisms exist.
Compiler literature includes a long list of various optimizations (actually, they
are code improving transformations). They can be applied to simulators. Many
of them were applied in our experimentation, because we used an optimizing
compiler as a part of our system.1

Our method is a safe one. Simulation is fast, but no information is lost.
In the early phases of this research, we experimented with information-loosing
methods because they seemed to give much better performance than safe ones.
Our experiments with information-loosing methods did not pay off. Perfor-
mance gain was unsatisfying compared to the number of problems caused. With
information-loosing methods, correctness proofs are difficult. Furthermore, val-
idating an implementation is even harder.

We implemented a tool to show that our approach is practical. The tool uses
fixed-point iteration to implement static analysis and stack simulation [107]
to implement dynamic analysis. Other implementation techniques exist, but
our selection was sufficient to demonstrate a practical implementation. The
correctness of our implementation was experimentally validated.

The tool described in this thesis is a research tool. It is not suitable for
analyzing large production software-systems or for other industrial use. It lacks
a proper user interface and cannot be integrated into a software-development
environment with its present facilities. However, it is sufficient for research
purposes.

To show the potential of our method, we experimentally evaluated its perfor-
mance by applying our tool. The experimental work is not sufficient to properly
state the performance of the method. For such a purpose, the presented perfor-
mance analysis is too narrow. Further, our implementation was based only on
must analysis of cache states. Including may analysis should improve perfor-

1To analyze the effect of our method, we used the same optimizations for both the tradi-
tional and the specialized simulators in our experiments.

104 CHAPTER 9. DISCUSSION

mance. However, our experimentation shows that the method has the potential
to significantly improve the performance of cache simulators.

9.3 Applicability

The growth of performance mismatchof memory speed and processor speed, and
the development of layered memory architectures have caused many profound
changes in program design [143]. For data intensive applications, the number
of processing steps is no longer the most important measure of performance.
Instead, limiting the number of data accesses and especially scheduling and
localizing them has become more important [2, 61, 167].

Understanding memory performance is difficult. The steps executed and the
related memory references can be seen from the code of a program. However,
cache misses and the related execution stalls cannot be seen. Therefore, there
is a need for automated tools aiding software and algorithm designers.

Our analysis is safe. It introduces no error in the simulation. However,
this does not guarantee that a practical analysis has no errors. Errors are
characteristic to simulation studies. In a simulation study, a model is evaluated
[96]. Typically, a significant error is caused by using a model, which usually is
an abstract simplification and approximative. Thus, the problem in simulation
studies is often the verification and validation [135] of the simulation model and
its implementation, not the accuracy of the solution technique.

If accuracy is wanted, a direct evaluation technique should be used, i.e., the
system should be measured or emulated. Emulation is a choice if the system has
not yet been built, otherwise measuring will be very hard or impossible. When
a memory emulation is performed, real and accurate traces should be used.

Because of the complexity of real systems, understanding their behavior by
using direct methods is typically much more laborious than by using simulations
[81]. Furthermore, a simulation model can be generic and the results can be
applicable for a range of real systems, as direct methods are specific only to the
particular system studied.

This thesis presented a method for speeding up LRU-based cache simulation
and a related tool implementation, which was built for analyzing cache perfor-
mance of an abstract machine. The analysis does not separate data reading and
data writing. The effect of data writing with various write policies is an espe-
cially important concern in writing programs for high-speed applications [128].
Our method and implementation has been sufficient for our algorithm research
(e.g., [76]).

Analysis of real-life hardware is needed for practical software development.
Already, there exist static analysis tools [1] that are based on static address

9.4. CONTRIBUTION 105

data. Such tools can give WCET bounds many times tighter than tools without
static microarchitecture modeling.

9.4 Contribution

The contributions of this thesis show that, if we use simulation for program cache
behavior analysis, it is possible and reasonable to apply program specializations
that speed up the simulation.

The contributions of this thesis are related to software performance engineer-
ing. Consider a typical iterative software performance development process that
is illustrated in Figure 9.2. Analyzing performance is only a part of the whole
process [75, 144]. Applying an evaluation technique such as the cache analysis
method described in this thesis is only one part of a performance analysis (as
already seen in Chapter 7).

verify and validate create design

gather data

report results

Alternatives?

define assessments

Accept performance

analyze performance

complete design

modify design

revise design goal

Figure 9.2: A typical software performance engineering process (according to
[144]).

On the other hand, static analysis and simulation are generic evaluation
methods. The abstract framework presented in this thesis can be used to design
other program analyses, including as those not related to performance analysis.
The static cache analysis can be used for other purposes than speeding up
simulations. An example of such are intelligent memory systems [114, 165].

106 CHAPTER 9. DISCUSSION

The use of a specialized cache performance analysis method may seem prob-
lematic. However in our experience [72], the performance critical structures are
often only a small fraction of a software. Thus, they can be closely studied.
In addition to locating the origins of cache misses, we must understand what
causes them in order to make changes that improve performance.

Software performance work is often based on designingprogram code at var-
ious levels (from the statement level to the architectural level). When memory
is the hardware bottleneck, it is important to design data structures and their
layout in the memory. Bad design can cause performance to drop an order of
magnitude [21].

9.5 Future work

This thesis is a part of ongoing research. Several directions for future research
exist. These include address analysis, analysis of parallel execution, program-
ming language design, and parallel simulation.

We havealso considered applyingour approach to pipeline simulations. How-
ever, according to our initial studies on the subject, there are a number of things
that make such an analysis harder. Small details in pipeline implementation or
changes in cache state can cause large changes in pipeline operation [51]. There-
fore, pipeline analyses must be more detailed than cache analysis.

The theory presented in this thesis is based on traditional serial simulation.
The approach can be used to speed up parallel simulation. A parallel simulation
could be significantly faster. The current formulation can be used with simple
parallel techniques (set partitioning and time partitioning). However, further
research is needed to combine our approach with simulation methods that use
advanced synchronization methods.

Static cache performance analysis is a demanding task. The analysis is even
more demanding, when dynamic addressing in references is allowed. One of the
key elements in our approach has been the division of the problem. We have
divided static cache analysis into two parts: address analysis and cache state
analysis.

The difficult part of static cache performance analysis is predicting cache
misses. Cache misses cause the execution stalls. In such an analysis, it is
important to understand conflicts and cache states in a may-not sense. An
advanced static address analysis is needed. With present address analyses, the
performance of our static cache analysis (without simulation to support it) is
not sufficient for practical purposes.

Our static analysis works nicely, when we compile fast cache simulators.
In speeding up cache analysis, understanding cache hits is important. If we

9.5. FUTURE WORK 107

statically predict a miss, we can speed up the simulation only slightly, because
the change of the cache state is significant. If we statically predict a hit, we can
significantly speed up the simulation, because the change of the cache state is
modest.

In analyzing cache hits, it is important to understand cache aliases and cache
states in a must sense. Our experiments demonstrated that significant speed-
up could be achieved with simple address analysis, if the cache is not direct
mapped. For direct mapped caches, better address analysis is needed.

The task of developing address analysis could be eased by design of program-
ming languages and the related libraries. Typical programming languages and
libraries do not support data layout design. Typical allocators are given no in-
struction, where they should allocate memory. Explicit data layout instructions
could help both the designer tuning the performance of a software and the tool
analyzing the performance of the software.

Typical static cache analysis methods, including our method, assume serial
execution. This severely restricts the mechanismsdetermining how a system can
be scheduled. Allowing flexible scheduling would greatly increase the number
of software systems that can be analyzed. Currently, parallel execution is a
challenge – probably the biggest challenge – for cache analysis.

108

Bibliography

[1] AbsInt Angewandte Informatik GmbH. aiT Worst-Case Execution Time Predictor.
http://www.absint.com/ (product information).

[2] A. Agarwal, J. Hennessy, and M. Horowitz. Cache Performance of Operating Systems
and Multiprogramming. ACM Transactions on Computer Systems, 6(4):393–431, May

1988.

[3] A. Agarwal, M. Horowitz, and J. Hennessy. An Analytical Cache Model. ACM Trans-
actions on Computer Systems, 7(2):184–215, May 1989.

[4] A. Agarwal and M. Huffman. Blocking: Exploiting Spatial Locality for Trace Com-
paction. In Proceedings of the ACM SIGMETRICS Conference on the Measurement
and Modeling of Computer Systems, Performance Evaluation Review, 18(1), pages 48–
57, May 1990.

[5] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and Tools.

Addison-Wesley, 1986.

[6] B. Alpern, M.N. Wegman, and F.K. Zadeck. Detecting Equalities of Variables in Pro-

grams. In Proceedings of theACM Symposium on Principles of Programming Languages
(POPL), pages 1–11, January 1988.

[7] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache Behavior Prediction by
Abstract Interpretation. In Proceedings of the Static Analysis Symposium (SAS), pages
52–66. Springer-Verlag, Lecture Notes in Computer Science 1145, 1996.

[8] M. Alt and F. Martin. Generation of Efficient Interprocedural Analyzers with PAG. In
Proceedings of the Static Analysis Symposium (SAS), Springer-Verlag, Lecture Notes

in Computer Science 983, Springer Verlag, pages 33–50, September 1995.

[9] D. Anderson and T. Shanley. PentiumProcessor System Architecture. Mindshare Press,

1993.

[10] G.R. Andrews. Concurrent Programming, Principles and Practice. Addison-Wesley,

1991.

[11] W.A. Appel. Modern Compiler Implementation in C. Cambridge University Press,

1998.

[12] L. Arge, M.A. Bender, E.D. Demaine, B. Holland-Minkley, and J.I. Munro. Cache-
Oblivious Priority Queue and Graph Algorithm Applications. In Proceedings of the
ACM Symposium on Theory of Computing, pages 268–276, 2002.

[13] Atmel Corporation. AVR Enhanced RISC Microcontroller Data Book, 1997.

109

110 BIBLIOGRAPHY

[14] F. Baccelli , A. Jean-Marie, and Z. Liu. A Survey on Solution Methods for Task Graph
Models. In Proceedings of the QMIPS-Workshop on Formalism, Principles and State-

of-the-art, 1993.

[15] T. Ball and S. Horowitz. Slicing Programs with Arbitrary Control-flow. In Proceedings

of the International Workshop on Automated and Algorithmic Debugging, pages 206–
222, May 1993. Springer-Verlag, Lecture Notes in Computer Science 749.

[16] S. Basumallick and K. Nilsen. Cache Issues in Real-Time Systems. In Proceedings
of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Real-Time
Systems (LCT-RTS), June 1994.

[17] L.A. Belady. A Study of Replacement Algorithms for a Virtual-Storage Computer. IBM

Systems Journal, 5(2):78–101, 1966.

[18] C. Bell, J. Mudge, and J. McNamara. Computer Engineering: A DECView of Hardware

Systems Design. Digital Press, 1978.

[19] M.A. Bender, E.D. Demaine, and M. Farach-Colton. Cache-Oblivious B-Trees. In
Proceedings of the IEEE Symposium on Foundations of Computer Science, pages 339–
409, 2000.

[20] M.E. Benitez. Register Allocation and Phase Interactions in Retargetable Optimizing
Compilers. PhD Dissertation, University of Virginia, April 1994.

[21] J. Black, C. Martel, and H. Qi. Graph and hashing algorithms for modern architectures:

design and performance. In Proceedings of the Workshop on Algorithm Engineering
(WAE), pages 37–48, Saarbr̈ucken, Germany, 1998.

[22] J. Blieberger. Data-Flow Frameworks for Worst-Case Execution Time Analysis. Real-
Time Systems, 22(3):183–227, 2002.

[23] M.A. Bulyonkov. Polyvariant Mixed Computation for Analyzer Programs. Acta Infor-
matica, (21):473–484, 1984.

[24] B. Calder, K. Chandra, S. John, and T. Austin. Cache-Conscious Data Placement. In
Proceedings of the ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS), pages 139–149, San Jose,
USA, October 1998.

[25] D. Callahan, S. Carr, and K. Kennedy. Improving Register Allocation for Subscripted
Variables. In Proceedings of the ACMSIGPLANConference on ProgrammingLanguage
Design and Implementation (PLDI), pages 53–65, 1990.

[26] A. Chandrakasan and R. Brodersen. Low power digital CMOS design. Kluwer, 1995.

[27] S. Chatterjee, V.V. Jain, A.R. Lebeck, S. Mundhra, and M. Thottethodi. Nonlinear Ar-
ray Layouts for Hierarchical Memory Systems. In Proceedings of the ACM International

Conference on Supercomputing, pages 444–453, 1999.

[28] S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M. Thottethodi. Recursive Array Layouts

and Fast Parallel Matrix Multiplication. In Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, pages 222–231, 1999.

[29] S. Chatterjee and S. Sen. Cache-Efficient Matrix Transposition. In Proceedings of the
IEEE International Symposium on High Performance Computer Architecture (HPCA),
pages 195–205, Toulouse, France, January 2000.

[30] J. Chen, A. Borg, and N.P. Jouppi. A Simulation Based Study of TLB Performance. In

Proceedings of the International Symposium on Computer Architecture (ISCA), pages
114–123, May 1991.

BIBLIOGRAPHY 111

[31] T.M. Chilimbi, M.D. Hill, and J.R. Larus. Cache-Conscious Structure Layout. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 1–12, May 1999.

[32] F. Chow and J.L. Hennessy. Register Allocation by Priority-Based Coloring. ACM
SIGPLAN Notices, 19(6):222–232, 1984.

[33] W.W. Chu and H. Opderbeck. The Page Fault Frequency Replacement Algorithm. In
Proceedings of the Fall Joint Computing Conference, 1972.

[34] J. Cocke. Global Common Subexpression Elimination. In Proceedings of the ACM
SIGPLAN Symposium on Compiler Optimization, pages 20–24, July 1970.

[35] S. Coleman and K.S. McKinley. Tile Size Selection Using Cache Organization and Data
Layout. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 279–290, June 1995.

[36] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proceedings
of the ACM Symposium on Principles of Programming Languages (POPL), pages 238–

252, Los Angeles, USA, 1977.

[37] H.J. Curnow and B.A. Wichmann. A Synthetic Benchmark. The Computer Journal,
1(19):43–49, 1975.

[38] S. Das and E.E. Johnson. Accuracy of Filtered Traces. In Proceedings of the Inter-
national Conference on Computers and Communications, pages 82–86. IEEE, April
1995.

[39] E. Deelman, R. Bagrodia, R. Sakellariou, and V. Adve. Improving Lookahead in Parallel
Discrete Event Simulations of Large-Scale Applications using Compiler Analysis. In

Proceedings of the Workshop on Parallel and Distributed Simulation (PADS), 2001.

[40] P. J. Denning. The Working Set Model for Program Behaviour. Communication of the
ACM, 11(5):323–333, 1968.

[41] P. J. Denning. Virtual Memory. ACM Computing Surveys, 2(3):158–189, September
1970.

[42] R.B.K. Dewar and M. Smosna. Microprocessors: A Programmer’s View. McGraw-Hill,
1990.

[43] J.J. Dongorra. Performance of Various Computers Using Standard Linear Equations
Software in FORTRAN Environment. Computer Architecture News, 5(11), 1983.

[44] J. Engblom. Processor Pipelines and Static Worst-Case Execution Time Analysis.

Acta Universitatis Upsaliensis, Uppsala Dissertations from the Faculty of Science and
Technology 36, 2002.

[45] A.P. Ershov. Mixed Computation: Potential applications and problems for study. The-
oretical Computer Science, (18):41–67, 1982.

[46] TNI Europe. TNI-Valiosys’ DO-178B Software Design Tool Suite Selected by Airbus

for the A380. Press release, April 2002.

[47] C. Ferdinand. Cache Behavior Prediction for Real-Time Systems. Pirrot Verlag, Uni-

versity of Saarland, Saarbruecken, 1997. Doctoral Dissertation.

[48] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and Precise WCET Determination for a Real-Life

Processor. In Proceedings of the ACM International Workshop on Embedded Software
(EMSOFT), October 2001. Springer-Verlag, Lecture Notes in Computer Science 2211.

112 BIBLIOGRAPHY

[49] C. Ferdinand, D. Kästner, M. Langenbach, F. Martin, M. Schmidt, J. Schneider,
H. Theiling, S. Thesing, and R. Wilhelm. Run-Time Guarantees for Real-Time Systems

- The USES Approach. In Proceedings of Informatik ’99 – Arbeitstagung Programmier-
sprachen, Paderborn, Germany, 1999.

[50] C. Ferdinand, F. Martin, and R. Wilhelm. Applying Compiler Techniques to Cache
Behavior Prediction. In Proceedings of the ACM SIGPLAN Workshop on Languages,
Compilers, and Tools for Real-Time Systems (LCT-RTS), pages 37–46, Las Vegas,

USA, June 1997.

[51] M.J. Flynn. Computer Architecture, Pipelined and Parallel Processor Design. Jones

and Bartlett Publishers, 1995.

[52] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-Oblivious Algo-
rithms. In Proceedings of the Symposium on Foundations of Computer Science (FOCS),
pages 285–297, 1999.

[53] S. Furber. ARM System-on-Chip Architecture. Addison-Wesley, 2000.

[54] Y. Futamura. Partial evaluation of computation process – an approach to a compiler-
compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

[55] K.S. Gatlin and L. Carter. Memory Hierarchy Considerations for Fast Transpose and
Bitreversals. InProceedings of the IEEE International Symposium on High Performance

Computer Architecture (HPCA), pages 33–44, January 1999.

[56] A. Gefflaut and P. Joubert. SPAM: a Multiprocessor Execution-Driven Simulation
Kernel. International Journal in Computer Simulation, 6(1):69–88, 1996.

[57] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equations: An Analytical Rep-
resentation of Cache Misses. In Proceedings of the ACM International Conference on
Supercomputing, July 1997.

[58] S. Ghosh, M. Martonosi, and S. Malik. Precise Miss Analysis for Program Transforma-
tions with Caches of Arbitrary Associativity. In Proceedings of the ACM International

Conference on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), October 1998.

[59] S. Ghosh, M. Martonosi, and S. Malik. Automated Cache Optimizations using CME
Driven Diagnosis. In Proceedings of the ACM International Conference on Supercom-
puting, Santa Fe, USA, 2000.

[60] A. Grote. Im Schatten des Komforts. c’tMagazin für Computertechnologie, April 1997.

[61] D. Grunwald, B. Zorn, and R. Henderson. Improving the Cache Locality of Memory
Allocation. In Proceedings of the ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI), volume 28(6) of ACM SIGPLAN Notices,
pages 177–186, June 1993.

[62] N.J. Gunther. The Practical Performance Analyst. iUniverse, 2000.

[63] J. Ha and E.E. Johnson. PDATS: Lossless Address Trace Compression for Reducing
File Size and Access Time. In Proceedings of the IEEE International Conference on
Computers and Communications. IEEE, April 1994.

[64] T.R. Halfhill. Embedded Market Breaks New Ground. Microprocessor Report, January
2000.

[65] M. Harman, L. Hierons, A. Baresel, and H. Sthamer. Improving Evolutionary Testing by

Flag Removal. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO), 2002.

BIBLIOGRAPHY 113

[66] C.A. Healy, R.D. Arnold, F. Mueller, D.B. Whalley, and M.G. Harmon. Bound-
ing Pipeline and Instruction Cache Performance. IEEE Transactions on Computers,

48(1):53–70, January 1999.

[67] R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The Influence of Processor
Architecture on the Design and Results of WCET Tools. Proceedings of the IEEE

Symposium on Real-Time System (RTSS), 91(7):1038–1054, July 2003. Special Issue
on Real-Time Systems.

[68] P. Heidelberg and H. Stone. Parallel Trace-Driven Simulation by Time Partitioning. In
Proceedings of the Winter Simulation Conference, 1990.

[69] J.L. Hennessy, D.A. Patterson, and D. Golberg. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 2002.

[70] V. Hirvisalo. DBE – A Tool for Trace Driven Memory Simulation. In Tool Descrip-
tions of International Conference on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS), pages 5–7, St.Malo, France, June 1997.

[71] V. Hirvisalo. Compile-timeCompaction of Traces for Memory Simulation. Licentiate’s
Thesis, Helsinki University of Technology, Laboratory of Information Processing Science,
1998.

[72] V. Hirvisalo. Experience in Performance Analysis of Large Real-Time Systems. In
Proceedings of the Workshop on Software and Performance (WOSP98), pages 88–92,

Santa Fe, USA, October 1998.

[73] V. Hirvisalo. A Tool Prototype for Memory Performance Simulation. Helsinki Univer-

sity of Technology, Laboratory of Information Processing Science, Otaniemi, Finland,
2001. Technical report Pet-41-GEN.

[74] V. Hirvisalo. Combining Static Analysis and Simulation to Speed up Cache Performance
Evaluation of Programs. In Presentations of the Tenth Nordic Workshop on Program-
ming and Software DevelopmentTools and Techniques, Copenhagen, Denmark, August
2002.

[75] V. Hirvisalo and E. Nuutila. Information Needs in Performance Analysis of Telecommu-
nication Software - a Case Study. In Proceedings of the ARES International Workshop

on Development and Evolution of Software Architectures for Product Families, Las
Navas del Marques, Avila, Spain, November 1996.

[76] V. Hirvisalo, E. Nuutila, and E. Soisalon-Soininen. Transitive Closure Algorithm
MEMTC and its Performance Analysis. Discrete Applied Mathematics, 110(1):77–84,
May 2001.

[77] M. Holliday. Techniques for Cache and Memory Simulation using Address Reference
Traces. International Journal in Computer Simulation, 1:129–151, 1991.

[78] M. Horowitz, M. Martonosi, T.C. Mowry, and M.D. Smith. Informing Memory Opera-
tions: Providing Memory Performance Feedback in Modern Processors. In Proceedings
of the International Symposium on Computer Architecture (ISCA), pages 260–270, May

1996.

[79] S. Horwitz, A. Demers, and T. Teitelbaum. An Efficient General Iterative Algorithm

for Dataflow Analysis. Acta Informatica, (24):679–694, 1987.

[80] S. Horwitz and T. Reps. The Use of Program Dependence Graphs in Software Engi-

neering. In Proceedings of the International Conference on Software Engineering, pages
392–411, Melbourne, Australia, May 1992.

114 BIBLIOGRAPHY

[81] R. Jain. The Art of Computer Systems Performance Analysis: Technique for exper-
imental design, measurement, simulation and modeling. John Wiley and Sons, Inc,

1991.

[82] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

[83] N.D. Jones, P. Sestoft, and H. Sondergaard. An Experiment in Partial Evaluation: The
Generation of a Compiler Generator. In J.-P. Jouannaud, editor, RewritingTechniques
and Applications, Lecture Notes in Computer Science 202, pages 124–140. Springer-

Verlag, 1985.

[84] N.P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small

Fully-Associative Cache and Prefetch Buffers. In Proceedings of the International Sym-
posium on Computer Architecture (ISCA), pages 364–373, June 1990.

[85] B.J. Kam and J.D.. Ullman. Global Data Flow Analysis and Iterative Algorithms.

Journal of the ACM, 23(1):158–171, 1976.

[86] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice Hall, 1992.

[87] D. Kästner and S. Thesing. Cache Sensitive Pre-Runtime Scheduling. In Proceedings
of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded
Systems (LCTES), pages 131–145, 1999.

[88] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall,
1988.

[89] G. Kildall. A Unified Approach to Global Program Optimization. In Proceedings of the
ACM Symposium on Principles of Programming Languages (POPL), pages 194–206,
1973.

[90] S-K. Kim, S.L. Min, and R. Ha. Efficient Worst Case Timing Analysis for Data
Caching. In Proceedings of the IEEE Real-Time Technology and Applications Sym-
posium (RTAS), pages 230–240, Bookline, USA, June 1996.

[91] S.K. Kleene. Introduction to Metamathematics. North-Holland, 1952.

[92] S. Laha, J.H. Patel, and K.I. Ravishankar. Accurate Low-CostMethods for Performance
Evaluation of Cache Memory Systems. IEEE Transactions on Computers, 37(11):1325–
1336, 1988.

[93] M.S. Lam, E.E. Rothberg, and E.W. Wolf. The Cache Performance and Optimization
of Blocked Algorithms. In Proceedings of the ACMInternational Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS), pages
63–74, April 1991.

[94] A. LaMarca and R.E. Ladner. The Influence of Caches on the Performance of Sorting.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 370–379,

January 1997.

[95] J.R. Larus and E. Schnarr. EEL: Machine-independent executable editing. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 291–300, La Jolla, USA, June 1995.

[96] A.M. Law and W.D. Kelton. Simulation, Modeling and Analysis. McGraw-Hill, 1991.

[97] A.R. Lebeck and D.A. Wood. Active Memory: A New Abstraction for Memory-System
Simulation. In Proceedings of the ACM SIGMETRICSConference on the Measurement
and Modeling of Computer Systems, pages 220–231, 1995.

[98] J.R. Levine. Linkers and Loaders. Morgan Kaufmann, 2000.

BIBLIOGRAPHY 115

[99] Y.-T.S. Li, S. Malik, and A. Wolfe. Efficient Microarchitecture Modeling and Path Anal-
ysis for Real-Time Software. In Proceedings of the IEEE Real-TimeSystemsSymposium

(RTSS), pages 298–307, 1999.

[100] Y.-T.S. Li, S. Malik, and A. Wolfe. Performance Estimation of Embedded Software with
Instruction Cache Modeling. ACM Transactions on Design Automation of Electronic

Systems, 4(3):257–279, July 1999.

[101] S-S. Lim, S.L. Min, M. Lee, C. Park, H. Shin, and C.S. Kim. An Accurate Instruction
Cache Analysis Technique for Real-Time Systems. In Proceedings of the Workshop on

Architectures for Real-Time Applications, 1994.

[102] J.W.S. Liu. Real-Time Systems. Prentice Hall, 2000.

[103] L.A. Lombardi. Incremental Computation. In Advances in Computers, volume 8, pages
247–333. Academic Press, 1967.

[104] T. Lundqvist and P. Stenstr̈om. An Integrated Path and Timing Analysis Method
Based on Cycle-Level Symbolic Execution. Journal of Real-Time Systems, pages 183–
207, November 1999.

[105] T. Lundqvist and P. Stenstr̈om. Empirical Bounds on Data Caching in High-
Performance Real-Time Systems. Chalmers University of Technology, Department of
Computer Engineering, 1999. Technical report 99-4.

[106] M. Martonosi, A. Gupta, and T. Anderson. MemSpy: Analyzing Memory System
Bottlenecks in Programs. In Proceedings of the ACM SIGMETRICSConference on the
Measurement and Modeling of Computer Systems, pages 1–12, 1992.

[107] R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L. Traiger. Evaluation Techniques for Storage
Hierarchies. IBM Systems Journal, 9(2):78–117, 1970.

[108] C. McGeoch. Analyzing Algorithms by Simulation. Computing Surveys, 24(2):195–212,
June 1992.

[109] M.K. McKusick, K. Bostic, M.J. Karels, and J.S. Quarterman. The Design and Imple-
mentation of the 4.4BSD UNIX Operation System. Addison-Wesley, 1996.

[110] F.H. McMahon. Livermore FORTRAN Kernels: A Computer Test of the Numerical
Performance. Technical report, Lawrence Livermore National Laboratories, California,
USA, 1986.

[111] D.A. Menasce. Capacity Planning and Performance Modeling. Prentice Hall, 1994.

[112] N. Mitchell, L. Carter, and J. Ferrante. Localizing Non-affine Array References. In
Proceedings of the International Conference on Parallel Architectures and Compilation

Techniques (PACT), 1999.

[113] T. Mogensen. Partially Static Structures in a Self-Applicable Partial Evaluator. In

D. Bjorner, A.P. Ershov, and N.D. Jones, editors, Partial Evaluation and Mixed Com-
putation, pages 325–347. North-Holland, 1988.

[114] C.A. Moritz, M.I. Frank, and S. Amarasinghe. FlexCache: A Framework for Flexible

Compiler Generated Data Caching. In Proceedings of the Workshop on Intelligent
Memory Systems. Springer-Verlag, November 2000.

[115] S.S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

[116] F. Mueller and J. Wegener. A Comparison of Static Analysis and Evolutionary Testing

for the Verification of Timing Constraints. In Proceedings of the IEEE Real-Time
Technology and Applications Symposium (RTAS), pages 179–188, June 1998.

116 BIBLIOGRAPHY

[117] F. Mueller and D.B. Whalley. Efficient On-the-fly Analysis of Program Behavior and
Static Cache Simulation. In Proceedings of the Static Analysis Symposium (SAS), 1994.

[118] F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer-

Verlag, 1999.

[119] E. Nuutila. An Efficient Transitive Closure Algorithm for Cyclic Digraphs. Information
Processing Letters, 52:207–213, 1994.

[120] G. Ottosson and M. Sjödin. Worst-Case Execution Time Analysis for Modern Hard-
ware Architectures. In Proceedings of the ACM SIGPLAN Workshop on Languages,

Compilers, and Tools for Real-Time Systems (LCT-RTS), June 1997.

[121] P.R. Panda, N.D. Dutt, and A. Nicolau. Memory Data Organization for Improved
Cache Performance in EmbeddedProcessor Applications. ACMTransactions on Design
Automation of Electronic Systems, 2(4), October 1997.

[122] C.Y. Park and A.C. Shaw. Experiments with a Program Timing Tool Based on a Source-
Level Timing Schema. In Proceedings of the IEEE Real-Time Systems Symposium

(RTSS), pages 72–81, December 1990.

[123] C.Y. Park and A.C. Shaw. Experiments with a Program Timing Tool Based on a
Source-Level Timing Schema. IEEE Computer, 24(5):48–57, May 1991.

[124] N. Park, D. Kang, K. Bondalapati, and V.K. Prasanna. Dynamic Data Layouts for
Cache-conscious Factorization of DFT. In Proceedings of the International Parallel and

Distributed Processing Symposium, pages 693–702, May 2000.

[125] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A Case for Intelligent RAM. IEEE Micro, 17(2):34–44,
April 1997.

[126] M. Penner and K. Prasanna. Cache-Friendly Implementations of Transitive Closure. In

Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT), Barcelona, Spain, September 2001.

[127] K. Pettis and R.C. Hansen. Profile Guided Code Positioning. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI), pages 16–27, 1990.

[128] S.A. Przybylski. Cache and Memory Hierarchy Design. Morgan Kaufmann Publishers,
Inc., Palo Alto, 1990.

[129] T.R. Puzak. Analysis of Cache Replacement Algorithms. University of Massachusetts,
Department of Electrical and Computer Engineering, 1985. PhD thesis.

[130] J. Rawat. Static Analysis of Cache Performance for Real-Time Programming, 1993.

Master thesis TR93-19, Iowa State University of Science and Technology.

[131] S.K. Reinhardt, M.D. Hill, J.R. Larus, A.R. Lebeck, J.C. Lewis, and D.A. Wood. The
Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers. In Proceedings of
the ACM SIGMETRICS Conference on the Measurement and Modeling of Computer
Systems, 1993.

[132] G. Rivera and C.-W. Tseng. Data Transformations for Eliminating Conflict Misses. In

Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 38–49, May 1998.

[133] P. Sanders. Accessing Multiple Sequences Through Set Associative Caches. In Pro-
ceedings of the International Colloquium on Automata, Languages and Programming

(ICALP), Lecture Notes in Computer Science 1644, pages 655–664, Prague, Czech
Republic, December 1999. Springer-Verlag.

BIBLIOGRAPHY 117

[134] P. Sanders. Fast Priority Queues for Cached Memory. In Proceedings of the Workshop
on Algorithm Engineering and Experimentation, Lecture Notes in Computer Science

1619, pages 312–327, 1999.

[135] R.G. Sargent. A Tutorial on Validation and Verification of Simulation Models. In
Proceedings of the Winter Simulation Conference, ACM SIGPLAN Notices, pages 33–
39, 1988.

[136] J. Schneider. Combined Schedulability and WCET Analysis for Real-Time Operating

Systems. Shaker Verlag, University of Saarland, Saarbruecken, 2003. Doctoral Disser-
tation.

[137] J. Schneider and C. Ferdinand. Pipeline Behavior Prediction for Superscalar Processors.
Technical Report A/02/99, Universität des Saarlandes, 1999.

[138] T. Shanley. PowerPC 601 System Architecture. Mindshare Press, 1994.

[139] M. Sharir. Structural Analysis: A New Approach to Flow Analysis in Optimizing

Compilers. Computer Languages, (5):141–153, 1980.

[140] A. Silberschatz, J. L. Peterson, and P. Galvin. Operating System Concepts. Addison-
Wesley, 1991.

[141] A.J. Smith. Two Methods for the Efficient Analysis of Memory Address Trace Data.
IEEE Transaction on Software Engineering, SE-3(1), 1977.

[142] A.J. Smith. Cache Memories. ACM Computing Surveys, 14:473–530, September 1982.

[143] C.U. Smith. Applying synthesis principles to create responsive software systems. IEEE
Transaction on Software Engineering, SE-14(10), October 1988.

[144] C.U. Smith. Performance Engineering of Software Systems. Addison-Wesley, 1990.

[145] C.U. Smith and L.G. Williams. Performance Engineering Models of CORBA-based
Distributed-Object Systems. In Proceedings of the Computer Measurement Group Con-

ference, pages 886–898, 1998.

[146] C.U. Smith and L.G. Williams. Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley, 2002.

[147] W. Stallings. Computer Organization and Architecture - Designing for Performance.
Prentice Hall, 1996.

[148] W. Stallings. Operating Systems. Prentice Hall, 2002.

[149] F. Stappert and P. Altenbernd. Complete Worst-Case Execution Time Analysis of
Straight-Line Hard Real-Time Programs. Journal of System Architecture, 46(4):339–
355, 2000.

[150] System Performance Evaluation Cooperative. SPEC Benchmark Suite Release 1.0.
SPEC Newsletter, 2(2):3–4, 1990.

[151] R.E. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal of
Computing, 1(2):146–160, June 1972.

[152] P.J. Teller. Translation-Lookaside Buffer Consistency. IEEE Computer, 23(6):26–36,
1990.

[153] F. Tip. A Survey of Program Slicing Techniques. Journal of programming languages,

3(3):121–189, September 1995.

[154] M. Tofte and J.-P. Talpin. Region-based Memory Management. Information and Com-
putation, 132(2):109–176, February 1997.

118 BIBLIOGRAPHY

[155] Transaction Processing Performance Council. TCP Benchmark A, Proposed Standard
5E. Technical report, ITOM International Co., California, USA, 1986.

[156] R.A. Uhlig and T.N. Mudge. Trace-driven Memory Simulations: A Survey. ACM
Computing Surveys, 29(2):128–170, June 1997.

[157] J.S. Vitter and M.H. Nodine. Large-Scale Sorting in Uniform Memory Hierarchies.

Journal of Parallel and Distributed Computing, 17(1–2):107–114, January and February
1993.

[158] R. Weicker. Dhrystone. Siemens, 1984.

[159] M. Weiser. Program Slicing: Formal, Psychological and Practical Investigations of an
Automatic Program Abstraction Method. The University of Michigan, Ann Arbor, USA,
1979. PhD thesis.

[160] R.T. White, F. Mueller, C.A. Healy, D.B. Whalley, and M.G. Harmon. Timing Analysis
for Data Caches and Set-Associative Caches. In Proceedings of the IEEE Real-Time

Technology and Applications Symposium (RTAS), pages 192–202, June 1997.

[161] D. Whitfield and M.L. Soffa. An Approach to Ordering Optimizing Transformations. In

Proceedings of the ACM Symposium on Principles and Practice of Parallel Program-
ming, pages 137–146, March 1990.

[162] R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

[163] P.R. Wilson. Uniprocessor Garbage Collection Techniques. In Proceedings of the Inter-
national Workshop on Memory Management, pages 1–42. Lecture Notes in Computer
Science 637, Springer-Verlag, 1992.

[164] P.R. Wilson, M.S. Johnstone, M. Neely, and D. Boles. Dynamic Storage Allocation: A
Survey and Critical Review. In Proceedings of the International Workshop on Memory

Management, pages 1–116. Lecture Notes in Computer Science 986, Springer-Verlag,
1995.

[165] E. Witchel, S. Larsen, C.S. Ananian, and K. Asanovic. Direct Addressed Caches for
Reduced Power Consumption. In Proceedings of the International Symposium on Mi-
croarchitecture (MICRO), December 2001.

[166] F. Wolf and R. Ernst. Data Flow Based Cache Prediction Using Local Simulation.
In Proceedings of the IEEE High Level Design Validation and Test Workshop, pages

155–160, November 2000.

[167] M.E. Wolf and M.S. Lam. A Data Locality Optimizing Algorithm. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), volume 26(6), pages 30–44, 1991.

