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Abstract. In electrical impedance tomography one tries to recover the spatial admittance
distribution inside a body from boundary measurements. In theoretical considerations it is usually
assumed that the boundary data consists of the Neumann-to-Dirichlet map; when conducting real-
world measurements, the obtainable data is a linear finite-dimensional operator mapping electrode
currents onto electrode potentials. In this paper it is shown that when using the complete electrode
model to handle electrode measurements, the corresponding current-to-voltage map can be seen as
a discrete approximation of the traditional Neumann-to-Dirichlet operator. This approximating link
is utilized further in the special case of constant background conductivity with inhomogeneities: It
is demonstrated how inclusions with strictly higher or lower conductivities can be characterized by
the limit behavior of the range of a boundary operator, determined through electrode measurements,
when the electrodes get infinitely small and cover all of the object boundary.
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1. Introduction. The problem of electrical impedance tomography is as follows:
Gather information about the admittance tensor σ in the elliptic equation

∇ · σ∇u = 0 in Ω

using measurements of current and potential on the boundary ∂Ω. In mathematical
analysis of this problem it is usually assumed that the obtainable data are all possible
pairs of Neumann and Dirichlet boundary values, i.e., the linear Neumann-to-Dirichlet
map. In particular, all uniqueness and reconstruction results have been formulated
using this so-called continuum model (CM)—for more details we refer to the review
paper [1]. However, when conducting real-life measurements with electrodes, one can
control only the net currents through certain surface patches and measure the corre-
sponding potentials on the electrodes, and so the real-life data consists, essentially, of
a finite-dimensional linear electrode current-to-electrode voltage operator.

In this work we model the electrode measurements with the complete electrode
model (CEM) [9], which has been shown to predict experimental data reasonably
well [9] and also give fairly good numerical reconstructions for both experimental and
simulated data [12], [11]. Our first goal is to show that the CEM forward problem can,
actually, be seen as a Galerkin approximation of the CM forward problem, meaning
that the forward solutions for both of these models can be obtained from the very
same variational formulation using different function spaces. As a consequence, the
forward solution of CEM, with correctly chosen electrode currents, may be considered
an approximation for the forward solution of CM corresponding to a given current
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distribution—or the other way around—with the correspondence getting better as the
electrodes get smaller and cover a larger portion of the object boundary. Section 2
considers these matters.

The second objective is to use the approximating link between the different for-
ward models to modify the factorization method for characterizing inclusions, intro-
duced and justified in [3] for electrical impedance tomography and, earlier, in [7] for
inverse scattering, to the framework of the CEM. To be more precise, in section 3 the
special case of constant background conductivity with inclusions of strictly higher or
lower conductivities is considered. It is demonstrated how the inhomogeneities can be
characterized by comparing the boundary values of a dipole-like singular solution and
the range of a boundary operator, obtained through electrode measurements, as the
electrodes grow in number, get infinitely small, and cover all of the object boundary.

2. Approximation properties of the CEM. In this section we aim to show
that the CEM can be seen as a finite element approximation of the CM of impedance
tomography. In the first subsection, we will introduce the different forward models
and consider some of their basic properties. The second subsection will explain how
one can approximate the forward solution of CM by the forward solution of CEM with
correctly chosen input currents. In the final subsection, we will survey the resemblance
between the current-to-potential boundary maps of CM and CEM.

2.1. Forward models. When performing mathematical analysis of the electri-
cal impedance tomography problem, it is traditionally assumed that one is able to use
any input current distribution from Sobolev space H−1/2 resulting in boundary po-
tentials of class H1/2. On the other hand, when conducting real-world measurements,
one can control only the net currents fed through a finite number of electrodes and
measure the corresponding electrode potentials. In particular, one does not know the
exact distribution of the current penetrating the object boundary.

2.1.1. Continuum forward model. Let Ω ⊂ R
n, n = 2, 3, with a smooth

boundary be our open bounded region of interest and let σ : Ω → C
n×n be the

corresponding admittance tensor. The forward problem of impedance tomography

with continuous boundary measurements is as follows: For f ∈ H
−1/2
0 (∂Ω) find u ∈

H1(Ω)/C that satisfies weakly

∇ · σ∇u = 0 in Ω, ν · σ∇u = f on ∂Ω,(2.1)

where ν is the outer unit normal on ∂Ω and

H
−1/2
0 (∂Ω) = {v ∈ H−1/2(∂Ω) | 〈v,1〉L2(∂Ω) = 0},

where 〈φ, ψ〉L2(∂Ω) =
∫
∂Ω

φψdS denotes the dual pairing of the spaces H−1/2(∂Ω)

and H1/2(∂Ω). In what follows, we also shall use this same notation for the L2 inner
product.

If it is assumed that the admittance tensor σ ∈ C
n×n satisfies

Re(σx · x) ≥ c|x|2, |σx · x| ≤ C|x|2, c, C > 0,(2.2)

for all x ∈ C
n almost everywhere in Ω, then forward problem (2.1) has a unique

solution that depends continuously on the boundary data.

Theorem 2.1. Let f ∈ H
−1/2
0 (∂Ω) and assume that inequalities (2.2) hold. Then

forward problem (2.1) has a unique solution u ∈ H1(Ω)/C, for which

||u||H1(Ω)/C
≤ C ||f ||H−1/2(∂Ω) .
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Proof. For proof we refer to [10].
Before we can go any further with our analysis, we need to introduce the trace

spaces on subsets of the boundary ∂Ω. Below we will list only the basic definitions;
for more information the reader should consult [4] and the references cited therein.
For Γ ⊂ ∂Ω we define

H1/2(Γ) = {v|Γ | v ∈ H1/2(∂Ω)}.

We denote the dual space of H1/2(Γ) by H̃−1/2(Γ), and note that H̃−1/2(Γ) can be
identified with

H
−1/2

Γ
(∂Ω) = {v ∈ H−1/2(∂Ω) | supp v ∈ Γ}.

In what follows, 〈·, ·〉L2(Γ) will denote either the dual pairing between H̃−1/2(Γ) and

H1/2(Γ) or the L2(Γ) inner product. Finally, H̃
−1/2
0 (Γ) is defined to be the subspace

of H̃−1/2(Γ) over which the dual evaluation with 1 ∈ H1/2(Γ) vanishes.
Let us consider briefly the following question. If we are trying to use some given

input current pattern f ∈ H
−1/2
0 (∂Ω) but we are only able to conduct current through

a part of the boundary Γ ⊂ ∂Ω how much does this imperfection affect the forward
solution? To begin with, we must choose how to restrict the current f onto the subset
Γ; using f |Γ is not usually an option since all the current that goes into the object
Ω must come out. Thus, in order to obtain reasonable currents on Γ, we define a

L2-orthogonal projection operator P1 : H
−1/2
0 (∂Ω) → H̃

−1/2
0 (Γ) ⊂ H

−1/2
0 (∂Ω), where

the inclusion is achieved through zero continuation, by

P1f = f |Γ +
1

|Γ| 〈f,1〉L2(∂Ω\Γ).(2.3)

Theorem 2.2. Assume that σ ∈ C
n×n satisfies (2.2), and let u0 be the solution

of (2.1) corresponding to a given current pattern f ∈ H
−1/2
0 (∂Ω). Further, let u be

the solution of problem (2.1) associated with the approximating input current P1f ∈
H

−1/2
0 (∂Ω). Then we have the estimate

∣∣∣∣u0 − u
∣∣∣∣
H1(Ω)/C

≤ C

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) ,

where C > 0 can be chosen independently of the geometry of Γ as a subset of ∂Ω.

Proof. For f ∈ H
−1/2
0 (∂Ω) we have

||f − P1f ||H−1/2(∂Ω) ≤
1

|Γ|

∣∣∣〈f,1〉L2(∂Ω\Γ)

∣∣∣ ||1||H̃−1/2(Γ) + ||f ||H̃−1/2(∂Ω\Γ)

≤
(
||1||H1/2(∂Ω\Γ) ||1||H̃−1/2(Γ)

|Γ| + 1

)
||f ||H̃−1/2(∂Ω\Γ)

≤ C

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) ,

where C > 0 can, clearly, be chosen independently of the geometry of Γ. Thus, the
claim follows by applying Theorem 2.1 to the difference of the solutions u0−u.

In a sense the result of Theorem 2.2 is quite natural: The discrepancy in the
forward solution is bounded by the norm of the current that we were not able to use.
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2.1.2. Complete electrode forward model. Next, we will introduce the
CEM, which has been shown to model real-world electrode measurements reason-
ably well [9]. Assume that the boundary of the investigated object Ω is smooth and
partially covered with electrodes em ⊂ ∂Ω, 1 ≤ m ≤ M , which are identified by the
parts of the surface that they cover and assumed to be ideal conductors. The union
of the electrode patches is denoted by Γe = ∪mem ⊂ ∂Ω. All electrodes are used for
both current injection and voltage measurement, and the current and voltage patterns
are denoted by {Im}, {Um} ⊂ C, 1 ≤ m ≤ M , respectively. To make the model even
more flexible, we assume that on Γn ⊂ ∂Ω, Γn ∩ Γe = ∅, the current input is given in
the continuous sense; i.e., on Γn the data belongs to H̃−1/2(Γn). Note that this kind
of Neumann boundary is not usually included in the formulation of the CEM; here
we introduce it to lighten our work load in section 3.

When conducting measurements with electrodes, a thin highly resistive layer
is formed at the electrode-object interface [9]. It is characterized by the contact
impedance z : ∂Ω → C that in our framework is assumed to be an integrable function
satisfying

Rez ≥ z0 > 0, |z| ≤ z1 < ∞,(2.4)

almost everywhere on ∂Ω. Note that the value of z between the electrodes indicates
the fictitious value of the contact impedance, i.e., the value of the contact impedance
if an electrode were present.

Traditionally, the electrode currents and potentials are handled as vectors of C
M

[9]. However, encouraged by the fact that in CM the boundary potentials and currents
are elements of L2-based Sobolev spaces, in this work we interpret the electrode
currents and potentials as elements of the subspace

T =

{
V ∈ L2(Γe) | V =

M∑
m=1

χemVm, Vm ∈ C, 1 ≤ m ≤ M

}
⊂ L2(∂Ω).(2.5)

In what follows, we will also use the subspace

T0 =

{
V ∈ T

∣∣∣∣
∫
∂Ω

V dS = 0

}
⊂ L2

0(∂Ω),(2.6)

to which the electrode currents belong if there is no Neumann boundary Γn.
With this convention the forward problem corresponding to the CEM is as follows.

For input currents I ∈ T and g ∈ H̃−1/2(Γn), with I+g ∈ H
−1/2
0 (∂Ω), find (ue, Ue) ∈

(H1(Ω) ⊕ T )/C that satisfies weakly

∇ · σ∇ue = 0 in Ω, ν · σ∇ue = 0 on ∂Ω \ (Γe ∪ Γn), ν · σ∇ue = g on Γn,

ue + zν · σ∇ue = Ue on Γe,
1

|em|

∫
em

ν · σ∇uedS = Im, 1 ≤ m ≤ M.
(2.7)

Note that the above formulation of the complete electrode forward problem differs
from the one in [9] by the scaling factor 1/|em| in the last equation of (2.7). However,
the underlying physical interpretation stays the same: In [9] the net currents through
electrodes were used; here we use the average currents. For more thorough physical
justification of (2.7), the reader should consult [9].

Theorem 2.3. Assume that (2.2) and (2.4) hold and let I ∈ T and g ∈
H̃−1/2(Γn), with I + g ∈ H

−1/2
0 (∂Ω), be given current patterns. Then problem (2.7)
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has a unique solution (ue, Ue) ∈ (H1(Ω) ⊕ T )/C. Further, this solution depends
continuously on the data; i.e.,

inf
c∈C

{||ue − c||2H1(Ω) + ||Ue − c||2L2(Γe)
}1/2 ≤ C{||I||L2(Γe)

+ ||g||H̃−1/2(Γn)},(2.8)

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω.
By using material in [9], one could easily provide a proof for Theorem 2.3. How-

ever, since we have included the Neumann data on Γn in our model and, in addition,
we are trying to build a connection between the complete electrode forward problem
(2.7) and the continuum forward problem (2.1), we prefer a slightly different working
order and postpone the proof until subsection 2.2.

2.2. Approximating with the CEM. In this subsection we aim to show that
the CEM can be viewed as a real-world finite element approximation of the math-
ematically more tractable CM. To be more precise, with the help of the orthogonal
projection P2 : L2(Γe) → T given by

P2f =

M∑
m=1

χem

1

|em|

∫
em

fdS, f ∈ L2(Γe),(2.9)

we may write the main result of this subsection as follows in Theorem 2.4.
Theorem 2.4. Assume that σ and z satisfy (2.2) and (2.4), respectively. Let f ∈

H
−1/2
0 (∂Ω), with f |Γe ∈ L2(Γe), be a given input current and let u0 ∈ H1(Ω)/C be the

corresponding solution of (2.1). Further, let (ue, Ue) ∈ (H1(Ω) ⊕ T )/C be the unique
solution of (2.7) with the input currents P2(P1f)|Γe ∈ T and (P1f)|Γn ∈ H̃−1/2(Γn),
where P2 is given by (2.9) and P1 by (2.3) with Γ = Γe ∪ Γn. Then it holds that

∣∣∣∣u0 − ue
∣∣∣∣
H1(Ω)/C

≤ C

{
1

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) + inf
V ∈T

∣∣∣∣U0 − V
∣∣∣∣
L2(Γe)/C

}
,

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω,
the subspace T ⊂ L2(Γe) is given in (2.5), and U0 = u0|Γe + zf |Γe .

Theorem 2.4 tells us, roughly speaking, that for a given current pattern the best
correspondence between the solutions of the forward problems (2.1) and (2.7) is ob-
tained when the electrodes are as small as possible and the gaps between the adjacent
electrodes are as narrow as possible.

In order to prove Theorem 2.4, we need, first of all, a suitable variational problem:

For f ∈ L2(Γe) and g ∈ H̃−1/2(Γn), with f + g ∈ H
−1/2
0 (∂Ω), find (u, U) ∈ H =

(H1(Ω) ⊕ L2(Γe))/C such that

B((u, U), (v, V )) = F (v, V ) for all (v, V ) ∈ H,(2.10)

where

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇vdx +

∫
Γe

1

z
(U − u)(V − v)dS,(2.11)

and

F (v, V ) =

∫
Γe

fV dS +

∫
Γn

gvdS,(2.12)
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where the latter term is to be interpreted in the sense of the dual pairing between
H̃−1/2(Γn) and H1/2(Γn). To keep the motivation high, note that variational equation
(2.10) is quite similar to the variational formulation of the complete electrode forward
problem in [9], the only clear difference being the space from which the solution is
sought. We claim that (2.10) has a unique solution with some interesting properties.

Before we can prove the unique solvability of (2.10), we still need to introduce an
inner product on H = (H1(Ω) ⊕ L2(Γe)/C, namely,

((u, U), (v, V ))∗H =

∫
Ω

∇u · ∇vdx +

∫
Γe

(U − u)(V − v)dS,(2.13)

with the corresponding norm

||(v, V )||2∗H = ((v, V ), (v, V ))∗H .(2.14)

The following lemma tells us that the above inner product and norm are well defined
and concordant with the conventional quotient norm of H given by

||(v, V )||H = inf
c∈C

{||v − c||2H1(Ω) + ||V − c||2L2(Γe)
}1/2.

Lemma 2.5. The sesquilinear map (·, ·)∗H : H×H → C given by (2.13) defines an
inner product which is concordant with the quotient topology of H = (H1(Ω)⊕L2(Γe))/
C. In consequence, H is a Hilbert space.

Proof. Clearly, (·, ·)∗H : H × H → C is well defined and satisfies all the inner
product axioms. Hence, the only thing we need to show, in order to prove the claim,
is that the usual quotient norm ||(·, ·)||H and the norm ||(·, ·)||∗H defined in (2.14) are
equivalent.

Let (v, V ) ∈ H be arbitrary. With the help of the trace theorem [5], we may
estimate

||(v, V )||∗H ≤ ||∇v||L2(Ω) + ||V − v||L2(Γe)

≤ ||v − c||H1(Ω) + ||v − c||L2(Γe)
+ ||V − c||L2(Γe)

≤ C
{
||v − c||2H1(Ω) + ||V − c||2L2(Γe)

}1/2

.

Since this holds for every c ∈ C, we actually have

||(v, V )||∗H ≤ C ||(v, V )||H .(2.15)

On the other hand, by using the trace theorem and Poincaré’s inequality [5], we get

||(v, V )||2H ≤ inf
c∈C

{
||v − c||2H1(Ω) + 2 ||v − c||2L2(Γe)

}
+ 2 ||V − v||2L2(Γe)

≤ C inf
c∈C

||v − c||2H1(Ω) + 2 ||V − v||2L2(Γe)

≤ C ||(v, V )||2∗H .

Combining this with (2.15) completes the proof.
Corollary 2.6. Assume that (2.2) and (2.4) hold. Then the sesquilinear form

B : H ×H → C given in (2.11) is continuous as follows:

|B((u, U), (v, V ))| ≤ C ||(u, U)||H ||(v, V )||H , (u, U), (v, V ) ∈ H,
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and coercive as follows:

|B((v, V ), (v, V ))| ≥ c ||(v, V )||2H , (v, V ) ∈ H,

where the positive constants c and C can be chosen independently of the geometry of
Γe as a subset of ∂Ω.

Proof. The claim is a straightforward consequence of Lemma 2.5 together with
inequalities (2.2) and (2.4).

Next we aim at showing that the functional F on the right-hand side of (2.10)
is continuous. To begin with, we extend the trace theorem for the quotient Sobolev
spaces as follows in Lemma 2.7.

Lemma 2.7. The quotient trace map

Tr : H1(Ω)/C → H1/2(∂Ω)/C, v �→ v|∂Ω,

is bounded.

Proof. The claim is a straightforward consequence of the traditional trace theorem
and Poincaré’s inequality.

Lemma 2.8. Let f ∈ L2(Γe) and g ∈ H̃−1/2(Γn) with f + g ∈ H
−1/2
0 (∂Ω). Then

the linear functional F : H → C given in (2.12) is well defined and continuous.

Proof. Let us first show that F : H → C is well defined. Consider two rep-
resentatives (v, V ) and (v + c, V + c) of the same equivalence class in H. Since

f + g ∈ H
−1/2
0 (∂Ω), we have

F (v + c, V + c) =

∫
Γe

fV dS +

∫
Γn

gvdS + c〈f + g,1〉L2(∂Ω) = F (v, V ).(2.16)

Further, by the use of (2.16) and Lemma 2.7, we may estimate, for an arbitrary
(v, V ) ∈ H,

|F (v, V )| = inf
c∈C

∣∣∣∣
∫

Γe

f(V + c)dS +

∫
Γn

g(v + c)dS

∣∣∣∣
≤ inf

c∈C

{||f ||L2(Γe)
||V + c||L2(Γe)

+ ||g||H̃−1/2(Γn) ||v + c||H1/2(Γn)}

≤ C{||f ||L2(Γe)
+ ||g||H̃−1/2(Γn)} ||(v, V )||H ,(2.17)

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω.
This completes the proof.

Now we have introduced enough weaponry to consider the solvability of (2.10).

Lemma 2.9. Assume that (2.2) and (2.4) hold and let f ∈ L2(Γe) and g ∈
H̃−1/2(Γn), with f + g ∈ H

−1/2
0 (∂Ω), be given current patterns. Then variational

equation (2.10) has a unique solution (u, U) ∈ H = (H1(Ω)⊕L2(Γe))/C. Further, the
first component of this solution, u ∈ H1(Ω)/C, is the unique solution of the continuum
forward problem (2.1) with the input current f +g, and the second component satisfies
U = u|Γe + zf .

Proof. The existence of a unique solution for (2.10) is a straight consequence of
the Lax–Milgram lemma [13], Corollary 2.6, and Lemma 2.8.

Let u0 ∈ H1(Ω)/C be the unique solution of (2.1) corresponding to the input

current f + g ∈ H
−1/2
0 (∂Ω) and define (u0, U0) = (u0, u0|Γe + zf) ∈ H. For an
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arbitrary (v, V ) ∈ H, it holds that

B((u0, U0), (v, V )) =

∫
∂Ω

ν · σ∇u0vdS +

∫
Γe

f(V − v)dS

=

∫
Γe

(ν · σ∇u0 − f)vdS +

∫
Γe

fV dS +

∫
Γn

ν · σ∇u0vdS

=

∫
Γe

fV dS +

∫
Γn

gvdS = F (v, V ),

where we used Green’s formula. Thus, (u0, U0) ∈ H is a solution to (2.10), which
completes the proof.

Now, it is time to return to the complete electrode forward problem. Note that
H ′ = (H1(Ω) ⊕ T )/C, where T is defined by (2.5), is a subspace of H = (H1(Ω) ⊕
L2(Γe))/C. Thus, the variational problem: For f ∈ L2(Γe) and g ∈ H̃−1/2(Γn), with

f + g ∈ H
−1/2
0 (∂Ω), find (u, U) ∈ H ′ so that

B((u, U), (v, V )) = F (v, V ) for all (v, V ) ∈ H ′,(2.18)

where B and F are defined in (2.11) and (2.12), respectively, can be considered a
Galerkin approximation for variational problem (2.10). We claim that the unique
solution for this approximating variational problem is in fact the unique solution for
the complete electrode forward problem (2.7) with a suitable electrode current.

Lemma 2.10. Assume that (2.2) and (2.4) hold and let f ∈ L2(Γe) and g ∈
H̃−1/2(Γn), with f + g ∈ H

−1/2
0 (∂Ω), be given current patterns. Then variational

equation (2.18) has a unique solution (ue, Ue) ∈ H ′ = (H1(Ω) ⊕ T )/C which is also
the unique solution of the complete electrode forward problem (2.7) corresponding to
the input currents P2f ∈ T , where P2 is given by (2.9), and g ∈ H̃−1/2(Γn).

Proof. By Corollary 2.6 and Lemma 2.8, the sesquilinear form B : H ×H → C

is continuous and coercive, and the linear functional F : H → C is continuous. In
consequence, the restrictions B : H ′ × H ′ → C and F : H ′ → C have these same
properties. Further, since H ′ is a closed subspace of the Hilbert space H, it is also
a Hilbert space, and so the unique existence of a solution to (2.18) follows from the
Lax–Milgram lemma [13].

To prove that variational problem (2.18) is equivalent to the complete electrode
forward problem (2.7) with the electrode current P2f ∈ T , we write the left-hand side
of (2.18) componentwise; i.e., for (u, U), (v, V ) ∈ H ′ we have

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇vdS +

M∑
m=1

∫
em

1

z
(Um − u)(V m − v)dS.

With the same tactic, the right-hand side of (2.18) can be transformed into

F (v, V ) =

M∑
m=1

∫
em

fV mdS +

∫
Γn

gvdS =

M∑
m=1

|em|(P2f)mV m +

∫
Γn

gvdS.

With this convention, the claimed equivalence between problems (2.7) and (2.18)
follows by the same line of reasoning as in the proof of Proposition 3.1 in [9], with
only slight alterations caused by the excess Neumann term on the right-hand side of
(2.18).
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Now we have also the means to prove Theorem 2.3.
Proof of Theorem 2.3. For the given current patterns I ∈ T ⊂ L2(Γe) and g ∈

H̃−1/2(Γn), with I + g ∈ H
−1/2
0 (∂Ω), the unique existence of the solution (ue, Ue) ∈

H ′ = (H1(Ω) ⊕ T )/C for (2.7) follows from the equivalence between problems (2.18)
and (2.7), considered in the proof of Lemma 2.10, by choosing f = I in (2.18) and
noting that P2I = I. Further, by using Corollary 2.6 and equation (2.17), we may
estimate

||(ue, Ue)||2H ≤ C|B((ue, Ue), (ue, Ue))|
= C|F (ue, Ue)|
≤ C{||I||L2(Γe)

+ ||g||H̃−1/2(Γn)} ||(u
e, Ue)||H ,

where the functional F , defined in (2.12), corresponds to currents f = I and g. This
completes the proof.

There are a few things worth noticing. First, the solution (ue, Ue) ∈ H ′ of (2.7)
satisfies

ν · σ∇ue|Γe
=

1

z
(Ue − ue|Γe

).

In particular, ν · σ∇ue|Γe
∈ L2(Γe). Second, the correspondence between problems

(2.7) and (2.18) gives the complete electrode forward problem a variational formula-

tion: For I ∈ T and g ∈ H̃−1/2(Γn), with I + g ∈ H
−1/2
0 (∂Ω), find (ue, Ue) ∈ H ′ so

that

B((ue, Ue), (v, V )) =

∫
Γe

IV dS +

∫
Γn

gvdS(2.19)

for all (v, V ) ∈ H ′.
Now we have derived the means to approximate the forward solution of the CM

(2.1) by the forward solution of the complete electrode problem (2.7) with a correctly
chosen electrode current pattern. First we will consider the case when no current is
conducted through ∂Ω \ (Γe ∪ Γn).

Theorem 2.11. Assume that σ and z satisfy (2.2) and (2.4), respectively. Let

f ∈ H
−1/2
0 (∂Ω), with f |Γe

∈ L2(Γe) and f |∂Ω\(Γe∪Γn) = 0, be a given input current

and let u ∈ H1(Ω)/C be the corresponding solution of (2.1). Further, let (ue, Ue) ∈
H ′ = (H1(Ω)⊕T )/C be the unique solution of (2.7) with the input currents P2(f |Γe) ∈
T and f |Γn ∈ H̃−1/2(Γn), where P2 is given in (2.9). Then it holds that

||(u− ue, U − Ue)||H ≤ C inf
V ∈T

||U − V ||L2(Γe)/C
,

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω,
the subspace T ⊂ L2(Γe) is given in (2.5), and U = u|Γe

+ zf |Γe
.

Proof. To begin with, note that, according to Lemma 2.9, the pair (u, U) ∈ H =
(H1(Ω) ⊕ L2(Γe))/C satisfies the variational equation

B((u, U), (v, V )) =

∫
Γe

fV dS +

∫
Γn

fvdS for all (v, V ) ∈ H,

and, on the other hand, Lemma 2.10 tells us that (ue, Ue) satisfies the very same
equation with the space H replaced by the subspace H ′. Since the sesquilinear form
B : H ×H → C is continuous and coercive, it follows from Cea’s lemma [2] that

||(u− ue, U − Ue)||H ≤ C inf
(v,V )∈H′

||(u− v, U − V )||H .(2.20)
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Choosing v = u on the right-hand side of (2.20), we obtain

inf
(v,V )∈H′

||(u− v, U − V )||H ≤ inf
V ∈T

inf
c∈C

{
||c||2H1(Ω) + ||(U − V ) − c||2L2(Γe)

}1/2

= inf
V ∈T

||U − V ||L2(Γe)/C
.(2.21)

Hence, combining (2.20) and (2.21), the claim follows.
The following corollary also tells us that the normal derivative of the solution to

(2.1) can be approximated with the normal derivative of the solution to (2.7).
Corollary 2.12. Suppose that the assumptions of Theorem 2.11 are valid.

Then, using the same notation as in Theorem 2.11, we have the estimate

||f − ν · σ∇ue||L2(Γe)
= ||ν · σ∇u− ν · σ∇ue||L2(Γe)

≤ C inf
V ∈T

||U − V ||L2(Γe)/C
.

Proof. Due to the boundary conditions of (2.7) and the way we have defined U
in Theorem 2.11, we may estimate

||ν · σ(∇u−∇ue)||L2(Γe)
≤ C ||zν · σ(∇u−∇ue)||L2(Γe)

= C ||(U − Ue) − (u− ue)||L2(Γe)

≤ C inf
c∈C

{||(U − Ue) − c||L2(Γe)
+ ||c− (u− ue)||L2(Γe)

}

≤ C ||(u− ue, U − Ue)||H ,

where we took advantage of the trace theorem [5]. The claim follows by combining
this with Theorem 2.11.

Finally, it is time to provide a proof for Theorem 2.4 by combining Theorem 2.11
with Theorem 2.2.

Proof of Theorem 2.4. Let u ∈ H1(Ω)/C be the solution to the continuum forward

problem (2.1) corresponding to the input current P1f ∈ H̃
−1/2
0 (Γ), where P1 is defined

by (2.3), and define U = (u+ zP1f)|Γe . According to Theorems 2.2 and 2.11, we can
estimate∣∣∣∣u0 − ue

∣∣∣∣
H1(Ω)/C

≤
∣∣∣∣u0 − u

∣∣∣∣
H1(Ω)/C

+ ||u− ue||H1(Ω)/C

≤ C

{
1

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) + inf
V ∈T

||U − V ||L2(Γe)/C

}
,(2.22)

where the latter term may be divided into two parts by using the triangle inequality

inf
V ∈T

||U − V ||L2(Γe)/C
≤ inf

V ∈T

∣∣∣∣U0− V
∣∣∣∣
L2(Γe)/C

+
∣∣∣∣U0− U

∣∣∣∣
L2(Γe)/C

.(2.23)

Further, by using (2.3), (2.4), Lemma 2.7, Theorem 2.2, and the way U0 and U are
defined, we deduce that∣∣∣∣U0 − U

∣∣∣∣
L2(Γe)/C

≤
∣∣∣∣u0 − u

∣∣∣∣
L2(Γe)/C

+ ||z(f − P1f)||L2(Γe)/C

≤ C
∣∣∣∣u0 − u

∣∣∣∣
H1(Ω)/C

+
1

|Γ|

∣∣∣〈f,1〉L2(∂Ω\Γ)

∣∣∣ ||z||L2(Γe)/C

≤
{

C

|Γ|1/2 +
z1

|Γ| ||1||H1/2(∂Ω\Γ) ||1||L2(Γe)

}
||f ||H̃−1/2(∂Ω\Γ)

≤ C

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) .(2.24)

The claim follows by combining (2.22), (2.23), and (2.24).
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2.3. Comparing current-to-voltage maps. It is time to move on to consider
the current-to-potential maps corresponding to CM and CEM. In order to keep things
simple, in this subsection we assume that there is no Neumann boundary; the intro-
duction of Γn in (2.7) was just a technical detail that is useful for us in the next
section—usually, it does not play any part in real-world measurements. As a further
simplification, we assume that all used current patterns are square integrable.

When dealing with the inverse problem for the CM, it is usually assumed that
the known data is the linear Neumann-to-Dirichlet map, i.e., the operator that maps
the applied current pattern onto the boundary potential

Λσ : f �→ u0
σ|∂Ω,(2.25)

which is isomorphic from H
−1/2
0 (∂Ω) onto H1/2(∂Ω)/C ∼ H

1/2
0 (∂Ω) and depends

nonlinearly on σ. On the other hand, when conducting real-life measurements with
the CEM, the only information one is able to obtain is the linear relation between the
applied average currents Im ∈ C, 1 ≤ m ≤ M , and the electrode voltages Ue

m ∈ C,
1 ≤ m ≤ M , given by

RσI = Ue,

where Rσ : T0 → T/C can be expressed in matrix form since T0, T/C ∼ C
M−1. The

next challenge is to build some kind of approximating link between the operators Λσ

and Rσ.
Assume that there is no Neumann boundary; i.e., Γn = ∅ in (2.7). By combining

Rσ with the projection

P = P2P1 : L2
0(∂Ω) → T0,(2.26)

where T0 is given by (2.6), and the projections P1, with Γ = Γe, and P2 are defined
in (2.3) and (2.9), respectively, we get the map

RσP : L2
0(∂Ω) → T/C, f �→ Ue

σ = (ue
σ + zν · σ∇ue

σ)|Γe ,

where (ue
σ, U

e
σ) ∈ (H1(Ω)⊕T )/C is the solution of (2.7) corresponding to the electrode

current Pf and the admittance σ.
The resemblance between the operators Λσ and RσP is quite apparent. However,

RσP is not a pure current-to-voltage map, which prevents us from using Theorem 2.4
to investigate the situation further. Luckily, in many of the reconstruction algorithms
for the CM, one does not use merely Λσ but the difference [1]

Λσ − Λ1 : f �→ (u0
σ − u0

1)|∂Ω,(2.27)

where Λ1 is the Neumann-to-Dirichlet map corresponding to the unit admittance
distribution, and u0

1 ∈ H1(Ω)/C is the associated forward solution for the input
current f ∈ L2

0(∂Ω). For the complete electrode counterpart, we get the formula

(Rσ −R1)P : f �→ (ue
σ − ue

1 + zν · (σ∇ue
σ −∇ue

1))|Γe ,(2.28)

which is, actually, quite close to (2.27).
Theorem 2.13. Assume that σ and z satisfy (2.2) and (2.4), respectively, and

let f ∈ L2
0(∂Ω) be a given current pattern. It holds that

||((Λσ − Λ1) − (Rσ −R1)P )f ||L2(Γe)/C ≤(2.29)

C

{
1

|Γe|1/2
||f ||H̃−1/2(∂Ω\Γe)

+ inf
V ∈T

||U0
σ − V ||L2(Γe)/C + inf

V ∈T
||U0

1 − V ||L2(Γe)/C

}
,
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where the boundary operators are defined by (2.27) and (2.28), and U0
σ = u0

σ|Γe
+zf |Γe

,
U0

1 = u0
1|Γe + zf |Γe , where u0

σ and u0
1 are the solutions of the continuum forward

problem (2.1) corresponding to the input current f and the impedance tensors σ and
1, respectively.

Proof. With the help of (2.27) and (2.28), the left-hand side of (2.29) can be
divided into three parts as follows:

||((Λσ − Λ1) − (Rσ −R1)P )f ||L2(Γe)/C
≤

∣∣∣∣u0
σ − ue

σ

∣∣∣∣
L2(Γe)/C

+
∣∣∣∣u0

1 − ue
1

∣∣∣∣
L2(Γe)/C

+ ||zν · (σ∇ue
σ −∇ue

1)||L2(Γe)/C
.(2.30)

For the first term on the right-hand side of (2.30), it follows from Lemma 2.7 and
Theorem 2.4 that

∣∣∣∣u0
σ − ue

σ

∣∣∣∣
L2(Γe)/C

≤ C

{
1

|Γe|1/2
||f ||H̃−1/2(∂Ω\Γe)

+ inf
V ∈T

∣∣∣∣U0
σ − V

∣∣∣∣
L2(Γe)/C

}
.

By the same means, we get an exactly similar estimate for the second term on the
right-hand side of (2.30).

In order to handle the third term on the right-hand side of (2.30), let uσ, u1 ∈
H1(Ω)/C be the solutions of (2.1) with the input current P1f ∈ L2

0(Γe), where P1 :
L2

0(∂Ω) → L2
0(Γe) is defined by (2.3) with Γ = Γe, for the admittances σ and 1,

respectively, and define Uσ = uσ|Γe
+ zP1f and U1 = u1|Γe

+ zP1f . We use Corollary
2.12 to estimate

||zν · (σ∇ue
σ−∇ue

1)||L2(Γe)/C≤||z(ν · σ∇ue
σ−P1f)||L2(Γe)+||z(P1f−ν · ∇ue

1)||L2(Γe)

≤C

{
inf
V ∈T

||Uσ − V ||L2(Γe)/C
+ inf

V ∈T
||U1 − V ||L2(Γe)/C

}

≤C

{
1

|Γe|1/2
||f ||H̃−1/2(∂Ω\Γe)

+ inf
V ∈T

∣∣∣∣U0
σ − V

∣∣∣∣
L2(Γe)/C

+ inf
V ∈T

∣∣∣∣U0
1 − V

∣∣∣∣
L2(Γe)/C

}
,

where we also use assumption (2.4) and inequality (2.24) from the proof of Theorem
2.4. The claim follows by combining the estimates for the terms on the right-hand
side of (2.30).

Again it is advisable to note a couple of things. First, the above theorem could

also have been formulated for currents f ∈ H
−1/2
0 (∂Ω) with f |Γe

∈ L2(Γe); the
notation would have been even more cumbersome, however. Second, the images of
the boundary maps are compared only on Γe ⊂ ∂Ω since in a real-life measurement
situation one is not measuring anything outside the electrodes and, thus, there is
nothing to compare on ∂Ω\Γe. Third, the correspondence between the maps Λσ−Λ1

and Rσ −R1 gets better when the area covered by the electrodes gets larger and the
electrodes get smaller.

3. Characterizing inclusions. In this section we demonstrate how the bound-
ary map Rσ −R1, considered in the previous subsection, can be used to characterize
an inclusion D ⊂ Ω with conductivity significantly higher or lower than the constant
background conductivity. The section is organized as follows. We begin by introduc-
ing our framework and listing some basic properties of Rσ. Section 3.1 presents a
factorization of Rσ − R1 into three parts. In section 3.2 the operators needed in the
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factorization are investigated further and, finally, in section 3.3 we provide the char-
acterization for the inclusion. This work can be seen as a discrete version of article
[3]; also, the mathematical methods used here resemble to some extent those in [3].

Our object Ω ⊂ R
n, n = 2, 3, is assumed to be isotropic with a conductivity

0 < σ ≤ C and a smooth boundary, and the used input current is assumed to be
nonvariating in time. Further, we assume that the contact impedance z : ∂Ω → R

is strictly positive and bounded. Let the subspaces T ⊂ L2(∂Ω) and T0 ⊂ L2
0(∂Ω)

be defined by (2.5) and (2.6), respectively, with the multiplier field C replaced by R.
Then, according to Theorem 2.3, for every I ∈ T0 the complete electrode forward
problem

∇ · σ∇u = 0 in Ω, ν · σ∇u = 0 on ∂Ω \ Γe,

u + zν · σ∇u = U on Γe,
1

|em|

∫
em

ν · σ∇udS = Im, 1 ≤ m ≤ M,
(3.1)

has a unique solution (u, U) ∈ H1(Ω) ⊕ T0, where we have specified the ground level
of the potential in an obvious way. The corresponding boundary map Rσ : T0 → T0

is defined through RσI = U .
We emphasize the resemblance between Rσ and its continuous counterpart Λσ,

given in (2.25), by showing that Rσ inherits some basic characteristics of Λσ.
Lemma 3.1. The operator Rσ : T0 → T0 is self-adjoint and positive. Furthermore,

Rσ is monotonically decreasing; i.e.,

〈I,RσI〉L2(∂Ω) > 〈I,Rσ̃I〉L2(∂Ω),

for σ ≤ σ̃, σ �= σ̃ on a set of nonzero measure, and I �= 0.
Proof. The result follows by imitating the proof of Lemma 2.1 in [3] with the help

of the weak formulation of (3.1) given by (2.19).
Since T0 is a finite-dimensional subspace of L2

0(∂Ω), the monotonicity property of
Lemma 3.1 implies that Rσ −Rσ̃ : T0 → T0 has a bounded inverse if the assumptions
of Lemma 3.1 are valid.

Corollary 3.2. Let σ ≤ σ̃, and σ �= σ̃ on a set of nonzero measure. Then
Rσ − Rσ̃ : T0 → T0 is strictly positive. In particular, Rσ − Rσ̃ is bijective and has a
bounded inverse.

Proof. From the monotonicity property of Lemma 3.1 we straight away obtain

〈I, (Rσ −Rσ̃)I〉L2(∂Ω) > 0,

for every I ∈ T0, I �= 0. Since T0 is finite-dimensional and Rσ − Rσ̃ is linear, this
induces the estimate

〈I, (Rσ −Rσ̃)I〉L2(∂Ω) ≥ c ||I||2L2(∂Ω) , c > 0.(3.2)

The injectivity, or, equivalently, the bijectivity, of Rσ −Rσ̃ : T0 → T0 follows trivially
from (3.2), which completes the proof.

3.1. Factorization of Rσ −R1. From now on we assume that the conductivity
inside Ω is of the form

σ =

{
κ in D,
1 in Ω \D,

(3.3)



ANALYSIS OF COMPLETE ELECTRODE MODEL OF EIT 915

where κ �= 1 is a positive constant and D is an open connected subset of Ω with a
smooth connected boundary and ∂D ∩ ∂Ω = ∅. Our aim is to prove the following
theorem.

Theorem 3.3. Assume that the conductivity inside Ω is of the form given in
(3.3). Then the difference of the boundary maps Rσ, R1 : T0 → T0 can be factorized as

Rσ−R1 = LFL′, where L : H
−1/2
0 (∂D) → T0 is continuous and surjective, its adjoint

operator L′ : T0 → H
1/2
0 (∂D) is continuous and injective, and F : H

1/2
0 (∂D) →

H
−1/2
0 (∂D) is self-adjoint, bijective, and either positive or negative definite.

Before we can introduce the operators needed for the above factorization, we must
consider some notational details. On the inner boundary ∂D we define

v±(x) = lim
t→0+

v(x± tν) and
∂v

∂ν

±
(x) = lim

t→0+
ν · ∇v(x± tν),

for x ∈ ∂D with ν(x) the unit normal pointing out of D, and further,

[v]∂D = v+ − v− and

[
σ
∂v

∂ν

]
∂D

=
∂v

∂ν

+

− κ
∂v

∂ν

−
.

Let us now define L and L′. By replacing Ω with Ω \D and choosing Γn = ∂D

in (2.7) and Theorem 2.3, we note that for every φ ∈ H
−1/2
0 (∂D) the boundary value

problem

∆v = 0 in Ω \D,
∂v

∂ν
= 0 on ∂Ω \ Γe,

∂v

∂ν

+

= φ on ∂D,

v + z
∂v

∂ν
= V on Γe,

1

|em|

∫
em

∂v

∂ν
dS = 0, 1 ≤ m ≤ M,

(3.4)

has a unique solution (v, V ) ∈ H1(Ω \D) ⊕ T0, where we have fixed the ground level
of the potential. Thus, we may define the operator L by

L : H
−1/2
0 (∂D) → T0, φ �→ V.(3.5)

With I ′ ∈ T0, let us next consider the boundary value problem

∆v′ = 0 in Ω \D,
∂v′

∂ν
= 0 on ∂Ω \ Γe,

∂v′

∂ν

+

= 0 on ∂D,

v′ + z
∂v′

∂ν
= V ′ on Γe,

1

|em|

∫
em

∂v′

∂ν
dS = −I ′m, 1 ≤ m ≤ M,

(3.6)

which, according to Theorem 2.3, also has a unique solution (v′, V ′) ∈ H1
0,∂D(Ω\D)⊕

T , where

H1
0,∂D(Ω \D) =

{
u ∈ H1(Ω \D)

∣∣∣∣
∫
∂D

udS = 0

}
.(3.7)

We define L′ by

L′ : T0 → H
1/2
0 (∂D), I ′ �→ v′|∂D.(3.8)

The following lemma shows that L and L′ are bounded and adjoint, and have the
mapping properties advertised above.
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Lemma 3.4. The operators L : H
−1/2
0 (∂D) → T0 and L′ : T0 → H

1/2
0 (∂D)

defined by (3.5) and (3.8), respectively, are bounded (independently of the geometry of
Γe) and adjoint. Further, L is surjective and L′ is injective.

Proof. We begin with the boundedness of L. For φ ∈ H
−1/2
0 (∂D) let (v, V ) ∈

H1(Ω \D)⊕ T0 be the unique solution of (3.4), suggested by Theorem 2.3. From the
continuous dependence on the data (2.8) and since V ∈ T0 ⊂ L2

0(Γe), it follows that

||V ||L2(Γe)
= ||V ||L2(Γe)/R

≤ ||(v, V )||(H1(Ω\D)⊕L2(Γe))/R
≤ C ||φ||H−1/2(∂D) ,

which proves the continuity of L : H
−1/2
0 (∂D) → T0.

Next we shall prove that L′ : T0 → H
1/2
0 (∂D) is the adjoint of L. Let (v, V ) ∈

H1(Ω \D)⊕ T0 and (v′, V ′) ∈ H1
0,∂D(Ω \D)⊕ T be the unique solutions of (3.4) and

(3.6), respectively. Then it holds that

〈I ′, Lφ〉L2(∂Ω) =

∫
Γe

(
I ′ +

∂v′

∂ν

)
V dS −

∫
Γe

∂v′

∂ν
V dS

= −
∫

Γe

∂v′

∂ν
V dS = −

∫
Γe

∂v′

∂ν

(
v + z

∂v

∂ν

)
dS

= −
∫

Γe

∂v′

∂ν
vdS −

∫
Γe

(
z
∂v′

∂ν
− V ′

)
∂v

∂ν
dS

= −
∫

Γe

∂v′

∂ν
vdS +

∫
Γe

v′
∂v

∂ν
dS

= −
∫
∂D

∂v′

∂ν

+

vdS +

∫
∂D

v′
∂v

∂ν

+

dS = 〈L′I ′, φ〉L2(∂D),

where we used the boundary conditions that the pairs (v, V ) and (v′, V ′) satisfy
together with Green’s formula. Since L is bounded and L′ is its adjoint operator, L′

is also bounded.
The injectivity of L′ is easy to obtain: Let I ′ ∈ T0 be such that L′I ′ = v′|∂D = 0,

which means, according to (3.6), that the Cauchy data of v′ vanishes on ∂D. Since v′

is harmonic in Ω\D, this implies that v′ = 0 from which it also follows that I ′ = 0. In
addition, due to the finite-dimensionality of R(L), we have T0 = N (L′)⊥ = R(L) =
R(L), which proves the surjectivity of L. This completes the proof.

Last but not least, let us introduce F : H
1/2
0 (∂D) → H

−1/2
0 (∂D). Let ψ ∈

H
1/2
0 (∂D) and assume that (wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R is the solution of the

diffraction problem

∆w = 0 in Ω \ ∂D,
∂w

∂ν
= 0 on ∂Ω \ Γe, w + z

∂w

∂ν
= W on Γe,

[w]∂D = ψ,

[
σ
∂w

∂ν

]
∂D

= 0,
1

|em|

∫
em

∂w

∂ν
dS = 0, 1 ≤ m ≤ M.

(3.9)

We define F by the mapping rule ψ �→ ∂(wσ−w1)
∂ν

+
|∂D, where w1 is the solution of

(3.9) with σ replaced by the unit conductivity 1.
Because the outer boundary condition of (3.9) is not of standard form, one must

convince oneself that wσ and w1, and thereby F : H
1/2
0 (∂D) → H

−1/2
0 (∂D), are

actually well defined. The following two technical lemmas and a corollary answer all
the necessary questions.
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Lemma 3.5. For ψ ∈ H
1/2
0 (∂D), diffraction problem (3.9) has a unique solution

(wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R. Further,∣∣∣∣
∣∣∣∣∂wσ

∂ν

+∣∣∣∣
∣∣∣∣
H−1/2(∂D)

≤ C ||ψ||H1/2(∂D) ,(3.10)

where C > 0 is independent of the geometry of Γe as a subset of ∂Ω.
Proof. To start with, note that the corresponding traditional diffraction problem

∆w = 0 in Ω \ ∂D,
∂w

∂ν
= 0 on ∂Ω,

[w]∂D = ψ,

[
σ
∂w

∂ν

]
∂D

= 0

has a unique solution w0 ∈ H1
0,∂Ω(Ω \ ∂D) (cf. [8]), where the space is defined in

equivalence with (3.7). Encouraged by this, we consider the following boundary value
problem:

∇ · σ∇w = 0 in Ω,
∂w

∂ν
= 0 on ∂Ω \ Γe,

w + z
∂w

∂ν
= W − w0 on Γe,

1

|em|

∫
em

∂w

∂ν
dS = 0, 1 ≤ m ≤ M,

(3.11)

and try to show that it has a unique solution (we,We) ∈ (H1(Ω) ⊕ T )/R.
From considerations in section 2.2, it follows in a straightforward manner that

problem (3.11) is equivalent to the variational problem

B((w,W ), (v, V )) =

∫
Γe

1

z
w0(V − v)dS,(3.12)

for all (v, V ) ∈ (H1(Ω)⊕ T )/R, where the bilinear form B is defined in (2.11). Since,
according to Corollary 2.6, B : (H1(Ω)⊕T )/R×(H1(Ω)⊕T )/R → R is continuous and
coercive, and the right-hand side of (3.12) clearly defines a continuous linear functional
on (H1(Ω)⊕ T )/R, equation (3.12) has a unique solution (we,We) ∈ (H1(Ω)⊕ T )/R
due to the Lax–Milgram lemma [13]. Now, it is easy to see that (w0 + we,We) ∈
(H1(Ω \ ∂D)⊕ T )/R satisfies the electrode diffraction problem given in (3.9) because
of the continuity conditions that we and σ ∂we

∂ν must satisfy on ∂D [8]. In particular,
(3.9) has at least one solution.

Assume now that (wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R is a solution of diffraction

problem (3.9) corresponding to ψ ∈ H
1/2
0 (∂D). Then, due to Green’s formula and

positivity of z, wσ satisfies

∣∣∣∣∣∣σ1/2∇wσ

∣∣∣∣∣∣2
L2(Ω)

=

∫
∂D

w−
σ κ

∂wσ

∂ν

−
dS −

∫
∂D

w+
σ

∂wσ

∂ν

+

dS +

∫
∂Ω

wσ
∂wσ

∂ν
dS

=

∫
∂D

(w−
σ − w+

σ )
∂wσ

∂ν

+

dS +

∫
Γe

(
Wσ − z

∂wσ

∂ν

)
∂wσ

∂ν
dS

= −
∫
∂D

ψ
∂wσ

∂ν

+

dS −
∫

Γe

z
∂wσ

∂ν

2

dS

≤ ||ψ||H1/2(∂D)

∣∣∣∣
∣∣∣∣∂wσ

∂ν

+∣∣∣∣
∣∣∣∣
H−1/2(∂D)

,(3.13)
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where we used the jump and boundary conditions of (3.9). Due to the boundedness
of the mapping (see p. 381 in [5]),

H(div,Ω \D) → H−1/2(∂D), v �→ (ν · v)+|∂D,(3.14)

where H(div,Ω \D) = {v ∈ L2(Ω \D)n | ∇ · v ∈ L2(Ω \D)}, it is true that∣∣∣∣
∣∣∣∣∂wσ

∂ν

+∣∣∣∣
∣∣∣∣
H−1/2(∂D)

≤ C ||∇wσ||L2(Ω) ,(3.15)

where C > 0 has nothing to do with Γe. Using this once in (3.13), we get

||∇wσ||L2(Ω) ≤ C ||ψ||H1/2(∂D) ,(3.16)

from which it follows that the only solution of (3.9) corresponding to ψ = 0 is the
zero element of (H1(Ω \ ∂D) ⊕ T )/R. Consequently, diffraction problem (3.9) has a
unique solution. Together with (3.15), (3.16) also proves (3.10), which completes the
proof.

Corollary 3.6. For ψ ∈ H
1/2
0 (∂D), the solution of diffraction problem (3.9),

(wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R, is the unique minimizer of the energy functional

Eσ(w,W ) =

∫
Ω\D

|∇w|2dx + κ

∫
D

|∇w|2dx +

∫
Γe

1

z
|W − w|2dS

over the subset

Hψ = {(w,W ) ∈ (H1(Ω \ ∂D) ⊕ T )/R | [w]∂D = ψ}.

Proof. Let (w,W ) ∈ Hψ be arbitrary and denote the difference (w−wσ,W −Wσ)
by (v, V ). In consequence, (v, V ) ∈ (H1(Ω \ ∂D) ⊕ T )/R with [v]∂D = 0 and we may
write

Eσ(w,W ) = Eσ(wσ,Wσ) + Eσ(v, V ) + 2

{∫
Ω\D

∇wσ · ∇vdx + κ

∫
D

∇wσ · ∇vdx

+

∫
Γe

1

z
(Wσ − wσ)(V − v)dS

}
.(3.17)

We claim that the mixed terms on the right-hand side of (3.17) vanish.
Indeed, by Green’s formula∫

Ω\D
∇wσ · ∇vdx + κ

∫
D

∇wσ · ∇vdx =

∫
∂Ω

∂wσ

∂ν
vdS +

∫
∂D

(
κ
∂wσ

∂ν

−
− ∂wσ

∂ν

+)
vdS

=

∫
Γe

∂wσ

∂ν
vdS,(3.18)

due to the jump condition of the normal derivative in (3.9). On the other hand,∫
Γe

1

z
(Wσ − wσ)(V − v)dS =

∫
Γe

∂wσ

∂ν
(V − v)dS = −

∫
Γe

∂wσ

∂ν
vdS,(3.19)

which, together with (3.17), (3.18), and the positivity of Eσ, implies that

Eσ(w,W ) ≥ Eσ(wσ,Wσ).(3.20)
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Since Eσ(v, V ) = 0 implicates that v, with [v]∂D = 0, is constant on Ω and that
V = v|Γe , the inequality in (3.20) is strict for (w,W ) �= (wσ,Wσ) in Hψ, which
completes the proof.

Lemma 3.7. The operator F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is well defined, continu-

ous, self-adjoint, and bijective, with a continuous inverse operator F−1 : H
−1/2
0 (∂D) →

H
1/2
0 (∂D). In addition, the operator sgn(1 − κ)F : H

1/2
0 (∂D) → H

−1/2
0 (∂D) is posi-

tive. Furthermore, there exist constants C+, C− > 0, independent of the geometry of
Γe as a subset of ∂Ω, such that

||F || ≤ C+,
∣∣∣∣F−1

∣∣∣∣ ≤ C−.(3.21)

Proof. For ψ ∈ H
1/2
0 (∂D), let (wσ,Wσ), (w1,W1) ∈ (H1(Ω \ ∂D) ⊕ T )/R be the

solutions of (3.9) corresponding to the conductivities σ and 1, respectively. First of
all, according to the divergence theorem,∫

∂D

∂(wσ − w1)

∂ν

+

dS =

∫
∂Ω

∂(wσ − w1)

∂ν
dS = 0,

from which it follows that ∂(wσ−w1)
∂ν

+
|∂D ∈ H

−1/2
0 (∂D). Together with Lemma 3.5,

this proves that F is well defined and continuous and that the first part of (3.21)
holds.

Next we want to establish the self-adjointness. To this end, for ψ1, ψ2 ∈ H
1/2
0 (∂D)

let (w1,W1), (w2,W2) be the corresponding solutions of diffraction problem (3.9) with
the conductivity σ. By using Green’s formula and the boundary conditions of (3.9),
we may write∫

∂D

∂w1

∂ν

+

ψ2dS =

∫
∂D

∂w1

∂ν

+

w+
2 dS −

∫
∂D

κ
∂w1

∂ν

−
w−

2 dS

=

∫
∂Ω

(
∂w1

∂ν
w2 − w1

∂w2

∂ν

)
dS +

∫
∂D

(
w+

1

∂w2

∂ν

+

− κw−
1

∂w2

∂ν

−)
dS

=

∫
Γe

∂w1

∂ν

(
W2 − z

∂w2

∂ν

)
dS −

∫
Γe

∂w2

∂ν

(
W1 − z

∂w1

∂ν

)
dS

+

∫
∂D

(w+
1 − w−

1 )
∂w2

∂ν

+

dS =

∫
∂D

ψ1
∂w2

∂ν

+

dS.

Since this holds also for 1 as conductivity, we actually have

〈Fψ1, ψ2〉L2(∂D) = 〈Fψ2, ψ1〉L2(∂D);

i.e., F is self-adjoint.

Next we prove the positiveness of sgn(1−κ)F : H
1/2
0 (∂D) → H

−1/2
0 (∂D). For ψ ∈

H
1/2
0 (∂D), ψ �= 0, let (wσ,Wσ) and (w1,W1) be the solutions of (3.9) corresponding

to the conductivities σ and 1, respectively. By careful use of Green’s formula and the
jump conditions of (3.9), we deduce

−
∫
∂D

∂wσ

∂ν

+

ψdS = κ

∫
∂D

∂wσ

∂ν

−
w−

σ dS −
∫
∂D

∂wσ

∂ν

+

w+
σ dS

=

∫
Ω\D

|∇wσ|2dx + κ

∫
D

|∇wσ|2dx−
∫

Γe

∂wσ

∂ν
wσdS

= Eσ(wσ,Wσ),
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where the last equality follows from a slight modification of (3.19) in the proof of
Corollary 3.6. Since similar reasoning also applies for (w1,W1), we have altogether

〈Fψ,ψ〉L2(∂D) = E1(w1,W1) − Eσ(wσ,Wσ).(3.22)

Assume first that κ > 1. Then, according to Corollary 3.6, it holds that

E1(w1,W1) < E1(wσ,Wσ) ≤ Eσ(wσ,Wσ).

Similarly, for κ < 1 we have

Eσ(wσ,Wσ) < Eσ(w1,W1) ≤ E1(w1,W1).

Together with (3.22), these estimates prove the claim.
Then it is time to concentrate on the invertibility of F , beginning with the injec-

tivity. Let ψ ∈ H
1/2
0 (∂D) be such that Fψ = 0, meaning that the restricted difference

((wσ − w1)|Ω\D,Wσ − W1) ∈ (H1(Ω \ D) ⊕ T )/R of the solutions to (3.9) satisfies

boundary value problem (3.4) with φ = 0. Thus, it follows from the unique solvability
of (3.4) (see Theorem 2.3) that wσ = w1 + c, c ∈ R, on Ω \D, and as a consequence
w−

σ = w+
σ − ψ = w+

1 − ψ + c = w−
1 + c on ∂D. Hence, from the unique solvability of

the Dirichlet problem

∆w = 0 in D, w = w−
1 on ∂D,

it follows that wσ = w1 + c also in D. Combining these with the jump conditions of
the normal derivatives in (3.9), on ∂D we have

∂wσ

∂ν

−
=

∂w1

∂ν

−
=

∂w1

∂ν

+

=
∂wσ

∂ν

+

= κ
∂wσ

∂ν

−
;

i.e, all these normal derivatives must vanish. In consequence, (wσ,Wσ) satisfies (3.4)
with φ = 0 in Ω \D and, in addition, wσ satisfies Neumann problem with zero input
current in D, meaning that wσ|Ω\D and wσ|D equal constants. Hence, ψ = w+

σ −w−
σ ∈

H
1/2
0 (∂D) equals a constant which must be zero due to the normalization condition.

Thus, F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is injective.

Next we move on to prove the surjectivity of F . For arbitrarily chosen φ ∈
H

−1/2
0 (∂D) we aim to construct ψ ∈ H

1/2
0 (∂D) such that Fψ = φ. First, we define

an auxiliary pair (v, V ) ∈ (H1(Ω \ D) ⊕ T )/R as the unique solution of (3.4) with
the input current φ on ∂D, and we continue v to D as the unique H1-solution of the
Dirichlet problem

∆v = 0 in D, v− = v+ on ∂D.(3.23)

Hence, (v, V ) ∈ (H1(Ω \ ∂D) ⊕ T )/R with [v]∂D = 0. Further, we define ϕ =

φ−κ ∂v
∂ν

−|∂D and note that ϕ ∈ H
−1/2
0 (∂D) since

∫
∂D

∂v
∂ν

−
dS = 0 due to the divergence

theorem.
The next step is to define the diffraction solution corresponding to the unit con-

ductivity. In the exterior domain Ω \D we choose (w1,W1) ∈ (H1(Ω \D)⊕ T )/R to
be the unique solution of (3.4) with φ = 1

κ−1ϕ, whereas in the inner domain D we

define w1 to be the unique H1-solution of the Neumann problem

∆w1 = 0 in D,
∂w1

∂ν

−
=

1

κ− 1
ϕ on ∂D,

∫
∂D

w−
1 dS =

∫
∂D

w+
1 dS.(3.24)
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Clearly, (w1,W1) ∈ (H1(Ω \ ∂D) ⊕ T )/R. As mentioned above, (w1,W1) plays here
the role of the solution to diffraction problem (3.9) with conductivity 1 and, hence, we

set ψ = [w1]∂D, which belongs to H
1/2
0 (∂D) because of the normalization condition

in (3.24). It is a straightforward task to check that the pairs (w1,W1), (wσ,Wσ) =
(w1 + v,W1 + V ) ∈ (H1(Ω \ ∂D) ⊕ T )/R satisfy diffraction problem (3.9) for the
conductivities 1 and σ, respectively. Moreover, it holds that

Fψ =
∂(wσ − w1)

∂ν

+

|∂D =
∂v

∂ν

+

|∂D = φ,

which proves that F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is surjective.

It is a consequence of the open mapping theorem that the inverse of the bijective
bounded linear operator F is also bounded. Moreover, by walking the above con-
structional proof of the surjectivity in the opposite direction and using the continuous
dependence on the boundary data of (3.4), (3.23), and (3.24), one easily sees that

F−1 : H
−1/2
0 (∂D) → H

1/2
0 (∂D) is, actually, uniformly bounded with respect to the

choice of the electrode configuration, i.e., with respect to the geometry of Γe as a
subset of ∂Ω. This completes the proof.

Now we have gathered enough weaponry to prove the factorization of Rσ −R1.
Proof of Theorem 3.3. For a fixed electrode current I ∈ T0 denote by (uσ, Uσ),

(u1, U1) ∈ H1(Ω)⊕T0 the solutions of the complete electrode forward problem, given
in (3.1), with conductivities σ and 1, respectively. Since uσ−u1 is harmonic in Ω\D,
it follows easily by using the divergence theorem and the complete electrode boundary
conditions that ∫

∂D

∂(uσ − u1)

∂ν

+

dS =

∫
∂Ω

∂(uσ − u1)

∂ν
dS = 0.

Thus, ((uσ − u1)|Ω\D, Uσ − U1) solves (3.4) for φ = ∂(uσ−u1)
∂ν

+
|∂D and, in particular,

L

(
∂(uσ − u1)

∂ν

+

|∂D

)
= Uσ − U1 = (Rσ −R1)I.

By introducing the operator Gσ : I �→ ∂uσ

∂ν

+|∂D and setting G = Gσ − G1, we have
so far derived the factorization

Rσ −R1 = LG.(3.25)

Note that G is a well-defined bounded operator from T0 to H
−1/2
0 (∂D) due to Theorem

2.3 and (3.14).

The next task is to calculate the dual operator G′
σ : H

1/2
0 (∂D) → T0 of Gσ. To

this end, consider (wσ,Wσ) ∈ H1(Ω\∂D)⊕T0 the solution of diffraction problem (3.9),

with a fixed ground level of the potential, corresponding to ψ ∈ H
1/2
0 (∂D). With the

help of the jump conditions [uσ]∂D =
[
σ ∂uσ

∂ν

]
∂D

= 0 (cf. [8]),
[
σ ∂wσ

∂ν

]
∂D

= 0, Green’s
formula, and the boundary conditions on uσ and wσ, we deduce

〈GσI, ψ〉L2(∂D) =

∫
∂D

∂uσ

∂ν

+

w+
σ dS −

∫
∂D

κ
∂uσ

∂ν

−
w−

σ dS

=

∫
∂D

(
∂wσ

∂ν

+

u+
σ − κ

∂wσ

∂ν

−
u−
σ

)
dS +

∫
∂Ω

(
∂uσ

∂ν
wσ − ∂wσ

∂ν
uσ

)
dS
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=

∫
Γe

∂uσ

∂ν
wσdS +

∫
Γe

∂wσ

∂ν
(Uσ − uσ)dS =

∫
Γe

∂uσ

∂ν

(
wσ + z

∂wσ

∂ν

)
dS

=

∫
Γe

(
∂uσ

∂ν
− I

)
WσdS +

∫
Γe

IWσdS = 〈I,Wσ〉L2(∂Ω),

which shows that G′
σψ = Wσ. Hence, with (w1,W1) ∈ H1(Ω \ ∂D) ⊕ T0 the solution

of diffraction problem (3.9) corresponding to ψ and the unit conductivity, we have

G′ψ = Wσ −W1.

The restriction ((wσ − w1)|Ω\D,Wσ − W1) ∈ H1(Ω \ D) ⊕ T0 solves (3.4) for

φ = ∂(wσ−w1)
∂ν

+
|∂D ∈ H

−1/2
0 (∂D), which means that

L

(
∂(wσ − w1)

∂ν

+

|∂D

)
= Wσ −W1 = G′ψ.(3.26)

Due to the way F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is defined and since ψ ∈ H

1/2
0 (∂D) was

chosen arbitrarily, relation (3.26) is equivalent to LF = G′. Taking the transpose of
this and plugging it into (3.25), we thus obtain

Rσ −R1 = LF ′L′ = LFL′,

which is what we set out to prove.

3.2. Some further properties of F , L, and L′. We define a new boundary
operator by

|Rσ −R1| = sgn(1 − κ)(Rσ −R1).(3.27)

Due to the way we have defined our conductivity in (3.3), it follows trivially from
Lemma 3.1 and Corollary 3.2 that |Rσ − R1| : T0 → T0 is self-adjoint and strictly

positive. Denoting the operator sgn(1 − κ)F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) by |F |,

it follows from Theorem 3.3 that this new boundary operator can be factorized as
|Rσ − R1| = L|F |L′. In the next subsection we will use the operator |Rσ − R1| to
characterize the inclusion D. However, to be successful in this task, we must devote
the ongoing subsection to further investigations of |F |, L, and L′.

Lemma 3.8. The operator |F | : H
1/2
0 (∂D) → H

−1/2
0 (∂D) can be given as |F | =

F 1/2(F 1/2)′, where F 1/2 : L2
0(∂D) → H

−1/2
0 (∂D) and (F 1/2)′ : H

1/2
0 (∂D) → L2

0(∂D)
are bounded, bijective, and dual to each other. Further, it holds that∣∣∣∣∣∣F 1/2

∣∣∣∣∣∣ ≤ C+
√
C−,

∣∣∣∣∣∣F−1/2
∣∣∣∣∣∣ ≤ √

C−,

where C+, C− > 0 are the constants introduced in Lemma 3.7.

Proof. Since H
1/2
0 (∂D) ↪→ L2

0(∂D) ↪→ H
−1/2
0 (∂D) is a Gelfand triple and since

|F |−1 : H
−1/2
0 (∂D) → H

1/2
0 (∂D) is isomorphic, self-adjoint, and positive, it follows

from material in [3] that there exists a factorization

|F |−1 = (F−1/2)′F−1/2,
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where F−1/2 : H
−1/2
0 (∂D) → L2

0(∂D) and (F−1/2)′ : L2
0(∂D) → H

1/2
0 (∂D) are

bounded, bijective, and dual to each other, with∣∣∣∣∣∣F−1/2
∣∣∣∣∣∣ =

∣∣∣∣∣∣(F−1/2)′
∣∣∣∣∣∣ ≤ ∣∣∣∣F−1

∣∣∣∣1/2 ≤
√
C−.(3.28)

Further, for η ∈ L2
0(∂D) we may estimate∣∣∣∣∣∣F 1/2η

∣∣∣∣∣∣
H−1/2(∂D)

=
∣∣∣∣∣∣|F |(F−1/2)′η

∣∣∣∣∣∣
H−1/2(∂Ω)

≤ C+
√
C− ||η||L2(∂D) ,

where we used Lemma 3.7 and (3.28).

In what follows we denote by N (L)⊥ ⊂ H
−1/2
0 (∂D) the orthogonal comple-

ment of N (L) ⊂ H
−1/2
0 (∂D) with respect to the inner product of the Hilbert space

H−1/2(∂D). Let Q : R(FL′) → N (L)⊥ be an orthogonal projection; i.e., for

φ ∈ R(FL′) ⊂ H
−1/2
0 (∂D),

Qφ = φ⊥ ∈ N (L)⊥ with Lφ⊥ = Lφ.(3.29)

Note that Q is well defined due to the projection theorem [6]. In addition, we claim
that Q is a bijection.

Corollary 3.9. The orthogonal projection Q : R(FL′) → N (L)⊥ defined by
(3.29) is bijective with the norm estimates

||Q|| ≤ 1,
∣∣∣∣Q−1

∣∣∣∣ ≤ (C+C−)2,(3.30)

where C+, C− > 0 are the constants introduced in Lemma 3.7.
Proof. To begin with, note that the left-hand inequality of (3.30) is obvious. In

order to obtain the right-hand inequality, let φ ∈ R(FL′) = R(|F |L′) and φ⊥ = Qφ ∈
N (L)⊥, and note that φ− φ⊥ ∈ N (L). In consequence, we may write

||φ⊥||H−1/2(∂D) ≥ sup
||ψ||

H1/2=1,ψ∈R(L′)
〈φ⊥, ψ〉L2(∂D)

= sup
||ψ||

H1/2=1,ψ∈R(L′)
〈φ, ψ〉L2(∂D).

Further, since |F |−1φ ∈ R(L′), we have

||φ⊥||H−1/2(∂D) ≥
1

|| |F |−1φ||H1/2(∂D)

〈φ, |F |−1φ〉L2(∂D) =

∣∣∣∣F−1/2φ
∣∣∣∣2
L2(∂D)

|| |F |−1φ||H1/2(∂D)

,

and so we finally obtain

||φ⊥||H−1/2(∂D) ≥
||φ||H−1/2(∂D)∣∣∣∣F 1/2

∣∣∣∣2 || |F |−1||
≥ 1

(C+C−)2
||φ||H−1/2(∂D)(3.31)

by Lemmas 3.7 and 3.8.

According to Lemmas 3.4 and 3.7, L : H
−1/2
0 (∂D) → T0 is surjective, L′ :

T0 → H
1/2
0 (∂D) is injective, and F : H

1/2
0 (∂D) → H

−1/2
0 (∂D) is bijective. Thus,

dim(N (L)⊥) = dim(R(FL′)) = dim(T0) < ∞, and so the bijectivity of Q : R(FL′) →
N (L)⊥ follows from its injectivity that is guaranteed by (3.31), which provides also
the needed norm estimate for Q−1.
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To end this subsection, we make a few comments about the inverse operators

of L and L′ defined in (3.5) and (3.8), respectively. Since L : H
−1/2
0 (∂D) → T0

is noninjective and L′ : T0 → H
1/2
0 (∂D) is nonsurjective, they do not have inverse

operators as such. However, the restrictions L : R(FL′) → T0 and L′ : T0 → R(L′)
do have bounded inverses due to the bijectivity of Rσ − R1 = LFL′ : T0 → T0 and
finite-dimensionality of T0. In what follows, we will denote by L−1 and (L′)−1 the
inverses of these restrictions, i.e.,

L−1 : T0 → R(FL′), (L′)−1 : R(L′) → T0,(3.32)

with LL−1 = id, L−1L|R(FL′) = id and L′(L′)−1 = id, (L′)−1L′ = id. With this
notation, we can factorize |Rσ − R1|−1 : T0 → T0, which exists according to Lemma
3.2, as

|Rσ −R1|−1 = (L′)−1|F |−1L−1 = (L′)−1(F−1/2)′F−1/2L−1,

due to Theorem 3.3 and Lemma 3.8.

3.3. Characterizing the inclusion. Before we can formulate and prove the
main result of this section, we need to introduce some new concepts. Let {TM} be a
sequence of electrode configurations, meaning that

TM = {eM1 , . . . , eMM ⊂ ∂Ω | eMl ∩ eMm = ∅ if l �= m}, ΓM = ∪M
m=1e

M
m ,

for each 1 ≤ M < ∞, satisfying the following conditions: d(eMm ) ≤ βM for all 1 ≤
m ≤ M ,

|∂Ω \ ΓM |, βM → 0 when M → ∞,(3.33)

where d(eMm ) is the diameter of eMm , i.e., d(eMm ) = supx,y∈eMm
|x−y|. The subspaces TM

and TM
0 , corresponding to the electrode configuration TM , are defined in accordance

with (2.5) and (2.6), respectively, and the associated orthogonal projections PM
1 :

L2
0(∂Ω) → L2

0(ΓM ), PM
2 : L2

0(ΓM ) → TM
0 , and PM : L2

0(∂Ω) → TM
0 are given by

obvious modifications of (2.3), (2.9), and (2.26). We also will use a similar index
notation for other operators depending on the used electrode configuration.

Let y ∈ Ω be a parameter and α̂ ∈ R
n a unit vector, and consider the solution

Φy of the following homogenous Neumann problem:

∆Φ(x) = α̂ · ∇δ(x− y) in Ω,
∂Φ

∂ν
= 0 on ∂Ω,

∫
∂Ω

ΦdS = 0,(3.34)

where δ is the delta functional. Physically Φy corresponds to the electromagnetic
potential created by a dipole point source at y pointing in the direction α̂. It is
a well-known fact that (3.34) is uniquely solvable with Φy ∈ C∞(Ω \ {y}) and Φy

singular at y.
Assume that (3.33) is valid and let {αM} ⊂ R+ be a sequence of regularization

parameters. Consider the minimizing sequence {IM} ⊂ L2
0(∂Ω), IM ∈ TM

0 , of the
Tikhonov functionals∣∣∣∣∣∣|RM

σ −RM
1 |1/2I − Φy

∣∣∣∣∣∣2
L2(∂Ω)

+ αM ||I||2L2(∂Ω) , I ∈ TM
0 , 1 ≤ M < ∞,(3.35)

where |RM
σ −RM

1 |1/2 : TM
0 → TM

0 is the unique, positive, self-adjoint, bijective square
root of |RM

σ −RM
1 | defined in (3.27). Since RM

σ −RM
1 can be obtained through bound-

ary measurements, so can |RM
σ − RM

1 |1/2 and, hence, the behavior of the sequence
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{IM} is something that can be observed by noninvasive methods. The following
theorem characterizes the inclusion D by the limit behavior of {IM}.

Theorem 3.10. Assume that (3.33) holds and the contact impedance z is smooth.
Let {IM} ⊂ L2

0(∂Ω), IM ∈ TM
0 , be the minimizing sequence for the functionals (3.35)

and assume that {αM} ⊂ R+ converges to zero but is such that the sequence{
infV ∈TM ||Φy − V ||2L2(∂Ω)

αM

}

is bounded. Then y ∈ D if and only if the sequence {IM} is bounded in L2
0(∂Ω).

In real life one is, naturally, not able to construct a sequence of electrode configu-
rations with the properties given in (3.33). However, when conducting measurements
with a fixed setting of electrodes that are relatively small and cover a large portion
of the object boundary, Theorem 3.10 gives a reason to believe that the electrode
currents needed for minimizing functional (3.35), with a fixed small α > 0, are larger
when y ∈ Ω\D than when y ∈ D. This observation leads to a possibility of numerical
implementation that will be considered in forthcoming articles.

The following simple lemma shows that the conditions of Theorem 3.10 are rea-
sonable. One could also quite easily derive a quantitative estimate to suggest an a
priori choice of regularization parameters αM in Theorem (3.10) but for simplicity we
content ourselves with a mere convergence result.

Lemma 3.11. Let f ∈ C∞(∂Ω) and assume that {TM} satisfies (3.33). Then it
holds that

inf
V ∈TM

||f − V ||L2(∂Ω) → 0,

when M goes to infinity.
Proof. The claim is a straightforward consequence of the good behavior of {TM}

given by (3.33).
The rest of this section is devoted to the proof of Theorem 3.10. Let LM be the

operator defined in (3.5) corresponding to the electrode configuration TM . We define

the associated limit operator L̃ : H
−1/2
0 (∂D) → H

1/2
0 (∂Ω) by

L̃φ = v|∂Ω, φ ∈ H
−1/2
0 (∂D),

where v ∈ H1
0,∂Ω(Ω \D) is the unique solution of the boundary value problem

∆v = 0 in Ω \D,
∂v

∂ν

+

= φ on ∂D,
∂v

∂ν
= 0 on ∂Ω.(3.36)

The adjoint of L̃ is L̃′ : H
−1/2
0 (∂Ω) → H

1/2
0 (∂D) [3],

L̃′φ′ = v′|∂D, φ′ ∈ H
−1/2
0 (∂Ω),(3.37)

where v′ ∈ H1
0,∂D(Ω \D) is the unique solution of the boundary value problem

∆v′ = 0 in Ω \D,
∂v′

∂ν
= −φ′ on ∂Ω,

∂v

∂ν

+

= 0 on ∂D.

The first step of our proof is to characterize the inclusion D by the operator sequence
{LM} with the help of known mapping properties of L̃ and L̃′.
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Assume that {αM} is a sequence of positive regularization parameters that con-
verges to zero and consider the following Tikhonov functionals:∣∣∣∣LMφ− Φy

∣∣∣∣2
L2(∂Ω)

+ αM ||φ||2H−1/2(∂D) , 1 ≤ M ≤ ∞.(3.38)

Since LM : H
−1/2
0 (∂D) → TM

0 ⊂ L2
0(∂Ω) is continuous for every M ∈ N, it is well

known that each of these functionals has a unique minimizer φM ∈ H
−1/2
0 (∂D). We

intend to show that, for a correctly chosen sequence of regularization parameters
{αM}, the behavior of the minimizer sequence {φM} at infinity determines uniquely
whether y belongs to the inclusion D or not. We begin with the case when y ∈ Ω \D.

Lemma 3.12. Assume that y ∈ Ω \ D, the contact impedance z is smooth, and

{αM} ⊂ R+ converges to zero. Let {φM} ⊂ H
−1/2
0 (∂D) be the minimizing sequence

for the functionals (3.38). Then it holds that∣∣∣∣φM
∣∣∣∣
H−1/2(∂D)

→ ∞,

as M goes to infinity.
Proof. First, we will show that LMφM converges to Φy|∂Ω as M goes to infinity.

Let ε > 0 be given. Since L̃′ defined in (3.37) is clearly injective, we have R(L̃) =

N (L̃′)⊥ = H
1/2
0 (∂Ω), where the orthogonal complement is taken with respect to the

dual pairing between H
−1/2
0 (∂Ω) and H

1/2
0 (∂Ω). Hence, R(L̃) is dense in H

1/2
0 (∂Ω)

and, thus, also in L2
0(∂Ω). In consequence, we can choose φε ∈ H

−1/2
0 (∂D) such that

∣∣∣∣∣∣L̃φε − Φy

∣∣∣∣∣∣2
L2(∂Ω)

<
ε2

6
.(3.39)

Note also that L̃φε ∈ C∞(∂Ω) ∩ H
1/2
0 (∂Ω) due to the regularity theory of elliptic

partial differential equations [10].

Since L̃φε ∈ H
1/2
0 (∂Ω) and LMφε ∈ L2

0(ΓM ), by using the projection PM
1 :

L2
0(∂Ω) → L2

0(ΓM ), defined by (2.3), we can estimate∣∣∣∣∣∣(L̃− LM )φε
∣∣∣∣∣∣
L2(ΓM )

≤
∣∣∣∣∣∣L̃φε − PM

1 (L̃φε)
∣∣∣∣∣∣
L2(ΓM )

+
∣∣∣∣∣∣PM

1 (L̃− LM )φε
∣∣∣∣∣∣
L2(ΓM )

≤C

{
|∂Ω \ ΓM |1/2

|ΓM |1/2
∣∣∣∣∣∣L̃φε

∣∣∣∣∣∣
L2(∂Ω\ΓM )

+
∣∣∣∣∣∣(L̃− LM )φε

∣∣∣∣∣∣
L2(ΓM )/R

}

≤C

{
|∂Ω \ ΓM |1/2

|ΓM |1/2
∣∣∣∣∣∣L̃φε

∣∣∣∣∣∣
L2(∂Ω\ΓM )

+ inf
V ∈TM

∣∣∣∣∣∣L̃φε−V
∣∣∣∣∣∣
L2(ΓM )

}
,

where the second-to-last inequality follows from (2.3), by using the Schwarz inequality,
and the fact that PM

1 (L̃ − LM )φε ∈ L2
0(ΓM ), and the last inequality follows from

Lemma 2.7 and Theorem 2.11 applied on boundary value problems (3.36) and (3.4).
Thus, according to Lemma 3.11, we can choose M0 ∈ N in such a way that

∣∣∣∣∣∣(LM − L̃)φε
∣∣∣∣∣∣2
L2(∂Ω)

≤ C

|ΓM | inf
V ∈TM

∣∣∣∣∣∣L̃φε − V
∣∣∣∣∣∣2
L2(∂Ω)

<
ε2

6
,(3.40)

and, in addition,

αM ||φε||2H−1/2(∂D) <
ε2

3
(3.41)
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for all M ≥ M0. Consequently, due to estimates (3.39), (3.40), (3.41), and the triangle
inequality, for every M ≥ M0 it holds that∣∣∣∣LMφM − Φy

∣∣∣∣2
L2(∂Ω)

+ αM

∣∣∣∣φM
∣∣∣∣2
H−1/2(∂D)

≤
∣∣∣∣LMφε − Φy

∣∣∣∣2
L2(∂Ω)

+ αM ||φε||2H−1/2(∂D) < ε2.

In particular, since ε > 0 was chosen arbitrarily, we have obtained∣∣∣∣LMφM − Φy

∣∣∣∣
L2(∂Ω)

→ 0,

when M goes to infinity.
Next, we will use contradiction: Assume that the minimizing sequence {φM}

is bounded in H
−1/2
0 (∂D). In consequence, it follows from fundamental functional

analysis [6] that {φM} has a subsequence {φMk}∞k=1 that converges weakly to some

distribution φ′ ∈ H
−1/2
0 (∂D). Our goal is to show that L̃φ′ = Φy|∂Ω, which is a

contradiction due to the singularity of Φy at y ∈ Ω \D [3].

Let g ∈ C∞(∂Ω) ∩ L2
0(∂Ω) be arbitrary and write it in two parts as g = PMk

1 g +
(I − PMk

1 )g, where PMk
1 is defined by (2.3). Then we have

〈LMkφMk , g〉L2(∂Ω) =〈LMkφMk , PMkg〉L2(∂Ω)+〈LMkφMk , (I−PMk
1 )g〉L2(ΓMk

),(3.42)

where we used the fact that LMkφMk is constant over each eMk
m and zero elsewhere,

and the way PMk is defined in (2.26). Due to the uniform boundedness of the

operators {LMk} ⊂ L(H
−1/2
0 (∂D), L2

0(∂Ω)) (see Lemma 3.4) and of the sequence

{φM} ⊂ H
−1/2
0 (∂D), the second term on the right-hand side of (3.42) can be esti-

mated by the Schwarz inequality as follows:

|〈LMkφMk , (I − PMk
1 )g〉L2(ΓMk

)| ≤
C

|ΓMk
|

⎧⎨
⎩
∫

ΓMk

∣∣∣∣∣
∫
∂Ω\ΓMk

gdS

∣∣∣∣∣
2

dS

⎫⎬
⎭

1/2

≤ C

|ΓMk
|1/2 |∂Ω \ ΓMk

| ||g||∞ → 0,

when k goes to infinity due to (3.33). On the other hand, for the first term on the
right-hand side of (3.42) we may write

〈LMkφMk , PMkg〉L2(∂Ω) = 〈φMk , (LMk)′PMkg〉L2(∂D)

= 〈φMk , ((LMk)′PMk − L̃′)g〉L2(∂D) + 〈φMk , L̃′g〉L2(∂D).(3.43)

Let (vMk , V Mk) ∈ H1
0,∂D(Ω \ D) ⊕ TMk and v ∈ H1

0,∂D(Ω \ D) be the solutions

corresponding to the operator current pairs ((LMk)′, PMkg) and (L̃′, g), respectively;
i.e., by (3.8) and (3.37), (LMk)′PMkg = vMk |∂D and L̃′g = v|∂D. Since φMk ∈
H

−1/2
0 (∂D), by a slight variation of Lemma 2.7 and Theorem 2.4, we have

|〈φMk , ((LMk)′PMk − L̃′)g〉L2(∂D)| ≤
∣∣∣∣φMk

∣∣∣∣
H−1/2(∂D)

∣∣∣∣vMk − v
∣∣∣∣
H1/2(∂D)/R

≤ C
∣∣∣∣vMk − v

∣∣∣∣
H1(Ω\D)/R

≤ C

{
inf

V ∈TMk

||(v − zg) − V ||L2(ΓMk
)

+
1

|ΓMk
|1/2 ||g||H̃−1/2(∂Ω\ΓMk

)

}
→ 0,
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when k goes to infinity by Lemma 3.11 and (3.33) since v|∂Ω − zg ∈ C∞(∂Ω) due to
the assumptions on z and g, and the regularity theory of elliptic partial differential
equations [10]. Finally, due to the weak convergence of {φMk}, the second term on
the right-hand side of (3.43) satisfies

〈φMk , L̃′g〉L2(∂D) → 〈φ′, L̃′g〉L2(∂D) = 〈L̃φ′, g〉L2(∂Ω),

when k goes to infinity.
Putting the above estimates together, we have established that

〈LMkφMk , g〉L2(∂Ω) → 〈L̃φ′, g〉L2(∂Ω) = 〈Φy, g〉L2(∂Ω) when k → ∞,

for all g ∈ C∞(∂Ω) ∩ L2
0(∂Ω), by the first part of the proof. This means that L̃φ′ =

Φy|∂Ω almost everywhere on ∂Ω, which is the contradiction we were looking for.
Then it is the turn of y ∈ D.
Lemma 3.13. Assume that y ∈ D and let {αM} ⊂ R+ be such that the sequence{

infV ∈TM ||Φy − V ||2L2(∂Ω)

αM

}
(3.44)

is bounded. Then the sequence of the minimizers {φM} ⊂ H
−1/2
0 (∂D) for (3.38) also

is bounded.
Proof. To begin with, note that

∂Φy

∂ν

+
|∂D ∈ H

−1/2
0 (∂D) due to the divergence

theorem. Since LM ∂Φy

∂ν

+
∈ L2

0(ΓM ) and, clearly, L̃
∂Φy

∂ν

+
= Φy|∂Ω ∈ H

1/2
0 (∂Ω), as in

the proof of Lemma 3.12, we have the estimate∣∣∣∣
∣∣∣∣LM ∂Φy

∂ν

+

− Φy

∣∣∣∣
∣∣∣∣
2

L2(∂Ω)

=

∣∣∣∣
∣∣∣∣(LM − L̃)

∂Φy

∂ν

+∣∣∣∣
∣∣∣∣
2

L2(∂Ω)

≤ C

|ΓM | inf
V ∈TM

||Φy − V ||2L2(∂Ω) .

Thus, due to the minimizing property of the sequence {φM} ⊂ H
−1/2
0 (∂D), for every

M ∈ N, we have∣∣∣∣LMφM − Φy

∣∣∣∣2
L2(∂Ω)

+ αM

∣∣∣∣φM
∣∣∣∣2
H−1/2(∂D)

≤ C

|ΓM | inf
V ∈TM

||Φy − V ||2L2(∂Ω) + αM

∣∣∣∣
∣∣∣∣∂Φy

∂ν

+∣∣∣∣
∣∣∣∣
2

H−1/2(∂D)

.(3.45)

Forgetting the first term on the left-hand side of (3.45) and dividing by αM , we get

∣∣∣∣φM
∣∣∣∣2
H−1/2(∂D)

≤ C
infV ∈TM ||Φy − V ||2L2(∂Ω)

αM |ΓM | +

∣∣∣∣
∣∣∣∣∂Φy

∂ν

+∣∣∣∣
∣∣∣∣
2

H−1/2(∂D)

,

for every M ∈ N. Together with assumptions (3.44) and (3.33), this proves the
claim.

If the operator sequence {LM} is known, Lemmas 3.12 and 3.13 give us the means
to find the inclusion D. However, to know {LM} is to know the shape of the boundary
∂D. Luckily, the operators LM and |RM

σ −RM
1 |1/2 are closely related, and so Lemmas

3.12 and 3.13 give us the weaponry to write out the proof for Theorem 3.10.

Proof of Theorem 3.10. Let us define a new sequence {φ̃M} ⊂ H
−1/2
0 (∂D), φ̃M ∈

R(FM (LM )′), by

φ̃M = (LM )−1|RM
σ −RM

1 |1/2IM , 1 ≤ M < ∞,
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where (LM )−1 is given by (3.32). We get a simple relation between the norms of IM

and φ̃M :

∣∣∣∣IM ∣∣∣∣2
L2(∂Ω)

= 〈|RM
σ −RM

1 |−1/2LM φ̃M , |RM
σ −RM

1 |−1/2LM φ̃M 〉L2(∂Ω)

= 〈φ̃M , (LM )′|RM
σ −RM

1 |−1LM φ̃M 〉L2(∂D)

= 〈φ̃M , (LM )′((LM )′)−1|FM |−1(LM )−1LM φ̃M 〉L2(∂D)

= 〈φ̃M , |FM |−1φ̃M 〉L2(∂D) =
∣∣∣∣∣∣(FM )−1/2φ̃M

∣∣∣∣∣∣2
L2(∂D)

.

In consequence, since the sequence {IM} minimizes the functionals (3.35), the se-
quence {φ̃M} minimizes the functionals

∣∣∣∣LMφ− Φy

∣∣∣∣2
L2(∂Ω)

+ αM

∣∣∣∣∣∣(FM )−1/2φ
∣∣∣∣∣∣2
L2(∂D)

, 1 ≤ M < ∞,(3.46)

within the subspaces R(FM (LM )′), respectively. Indeed, if φ̂M ∈ R(FM (LM )′) gave

a smaller value for functional (3.46), then one easily sees that |RM
σ −RM

1 |−1/2LM φ̂M ∈
TM

0 would give a smaller value than IM for functional (3.35), which is a contradiction.
We define yet a new sequence by {φM} = {QM φ̃M}, where QM : R(FM (LM )′) →

N (LM )⊥ ⊂ H
−1/2
0 (∂D) is defined by (3.29). Here and in the rest of this proof the or-

thogonal complement N (LM )⊥ is taken with respect to the H−1/2 inner product. By
similar reasoning as above, one sees that this new sequence minimizes the functionals

∣∣∣∣LMφ− Φy

∣∣∣∣2
L2(∂Ω)

+ αM

∣∣∣∣∣∣(FM )−1/2(QM )−1φ
∣∣∣∣∣∣2
L2(∂D)

, 1 ≤ M < ∞,

over the subspaces N (LM )⊥, respectively. Now, Lemma 3.8 and Corollary 3.9 tell us
that there exists a sequence of functionals {CM}, CM : N (LM )⊥ → R, such that∣∣∣∣∣∣(FM )−1/2(QM )−1φ

∣∣∣∣∣∣
L2(∂D)

= CM (φ) ||φ||H−1/2(∂D) , c ≤ CM ≤ C,

for all M ∈ N and φ ∈ N (LM )⊥, where c and C are positive constants independent
of M . Thus, the sequence {φM} also minimizes the functionals

∣∣∣∣LMφ− Φy

∣∣∣∣2
L2(∂Ω)

+ αMC2
M (φ) ||φ||2H−1/2(∂D) , 1 ≤ M < ∞,(3.47)

over the subspaces N (LM )⊥ ⊂ H
−1/2
0 (∂D), respectively. In particular, if we define

CM (φ) = C for φ ∈ H
−1/2
0 (∂D)\N (LM )⊥, the sequence {φM} minimizes functionals

(3.47) over the whole space H
−1/2
0 (∂D). It is an easy consequence of the upper and

lower bounds for {CM} that {φM} is bounded in H
−1/2
0 (∂D) if and only if y ∈ D.

Let {φM
c }, {φM

C } ⊂ H
−1/2
0 (∂D) be the minimizing sequences for the functionals

∣∣∣∣LMφ− Φy

∣∣∣∣2
L2(∂Ω)

+
1

2
αMc2 ||φ||2H−1/2(∂D) , 1 ≤ M < ∞,

and ∣∣∣∣LMφ− Φy

∣∣∣∣2
L2(∂Ω)

+ 2αMC2 ||φ||2H−1/2(∂D) , 1 ≤ M < ∞,
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respectively. It follows from Lemmas 3.12 and 3.13 that each of these sequences is
bounded if and only if y ∈ D. Let us shorten our strenuous notations by ΨM (φ) =∣∣∣∣LMφ− Φy

∣∣∣∣
L2(∂Ω)

and note that due to the minimizing properties of the sequences

{φM} and {φM
c }, for every M ∈ N, we have

Ψ2
M (φM ) +αMC2

M (φM )
∣∣∣∣φM

∣∣∣∣2
H−1/2(∂D)

≤ Ψ2
M (φM

c ) +αMC2
M (φM

c )
∣∣∣∣φM

c

∣∣∣∣2
H−1/2(∂D)

,

and

Ψ2
M (φM ) +

1

2
αMc2

∣∣∣∣φM
∣∣∣∣2
H−1/2(∂D)

≥ Ψ2
M (φM

c ) +
1

2
αMc2

∣∣∣∣φM
c

∣∣∣∣2
H−1/2(∂D)

.

By subtracting the second of these inequalities from the first one and arranging terms,
we get

∣∣∣∣φM
∣∣∣∣2
H−1/2(∂D)

≤
C2

M (φM
c ) − 1

2c
2

C2
M (φM ) − 1

2c
2

∣∣∣∣φM
c

∣∣∣∣2
H−1/2(∂D)

≤ 2C2 − c2

c2
∣∣∣∣φM

c

∣∣∣∣2
H−1/2(∂D)

.

On the other hand, by similar means we deduce that

∣∣∣∣φM
∣∣∣∣2
H−1/2(∂D)

≥ 2C2 − C2
M (φM

C )

2C2 − C2
M (φM )

∣∣∣∣φM
C

∣∣∣∣2
H−1/2(∂D)

≥ C2

2C2 − c2
∣∣∣∣φM

C

∣∣∣∣2
H−1/2(∂D)

.

From the above estimates it follows that {φM} ⊂ H
−1/2
0 (∂D) is bounded if and only

if y ∈ D.
Finally, walking the above path of reasoning backwards, one sees that

∣∣∣∣IM ∣∣∣∣
L2(∂Ω)

=
∣∣∣∣∣∣(FM )−1/2(QM )−1φM

∣∣∣∣∣∣
L2(∂D)

,

and so the claim follows from the uniform boundedness of the operator sequences
{(FM )1/2}, {(FM )−1/2}, and {QM}, {(QM )−1} given in Lemma 3.8 and Corollary
3.9, respectively.

We end this section, and at the same time the whole work, by noting that one
could easily modify Theorem 3.10 for the case of multiple inclusions by using the
means described in [3].
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