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Abstract

A generating functional formalism is developed to facilitate the derivation of coarse-grained
dynamics of macroscopically relevant variables in various types of many-body problems. The
relevant variables can be found either by using symmetry analysis of the action or experimen-
tal data. The outcome of the coarse-graining process is a set of coupled partial differential
equations for the expectation values of the relevant observables. The set of the macroscop-
ically important observables consists typically of conserved variables and order operators,
which are related to the broken symmetries of the system. Symmetry breaking (sponta-
neous or explicit) in the formalism can be dynamically induced by coupling the system to a
generalized heat bath.

The nonequilibrium generating functional formalism is applied to coarse-graining of gener-
alized hydrodynamics of macroscopic quantum phenomena such as Bose fluids and supercon-
ductors, and finally classical fluids. The method is by no means restricted to fluids, but can
be applied to condensed matter problems as well. High density systems are in general more
problematic and it remains to be seen if one can come up with more powerful approximation
methods within the current formalism in the future.

The generating functional formalism is shown to reproduce in the specific limits the well-
known ground state, finite temperature and time-dependent density functional theories in
the quantum regime. We enlarge the set of relevant variables to include also non-conserved
order-operators and show how to form generalized density functional theories, which can be
by construction linked to the phase-transition behaviour of the system. They are extensions of
the traditional density functional theories that were not developed to describe phase changes
but only facilitated the expression of the system’s (free) energy in terms of the conserved
density variable (e.g. number density of electrons).

We develop a generalized density functional theory (effective action of the generating
functional) for superconductors and superfluids. For superconductors it is shown by sim-
ple symmetry analysis that the relevant order parameter is the pair field of two electrons.
Coarse-graining out the phononic degrees of freedom is shown to lead to a retarded effective
interaction between the electrons. In the local static limit (effective interaction between elec-
trons static) the theory reduces to the time-dependent Ginzburg-Landau theory. Similarly,
by symmetry arguments, the order parameter of a weakly interacting Bose fluid is identi-
fied and its dynamics in the tree level approximation is shown to follow the Gross-Pitaevskii
equation. Higher order corrections can be systematically produced.

Classical molecular dynamics and stochastic cellular automata types of higher level de-
scriptions can be mapped into the same formalism using commonly known techniques. It is
also shown how to connect the static and dynamic density functionals to phase-field models
(models of critical dynamics), which are commonly used in materials science modelling. A
specific example is provided for a liquid-gas-solid system. The phase-field modelling is then
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applied to the derivation of dynamics of the liquid-gas phase boundaries and triple lines for
which a new projection operator technique is developed. We explain in detail how to go
from microscopics to macroscopics and relate the effective parameters on each level to each
other. For example, we express the macroscopic surface tensions from the phase-field model
in terms of the molecular dynamics simulation parameters. We also discuss how to extract
the relevant cross-over time and length scales from the theoretical description and relate them
to the experimentally measurable ones. It is shown how the coupling of the triple line and
the liquid-gas boundary leads to emergence of memory effects. For confined geometry we also
derive a new form for the restoring force acting on the contact line. The phase-field model of
the liquid-gas-solid system is first discussed without explicit hydrodynamics from the point
of view of diffuse mass transfer and then hydrodynamic effects (momentum conservation) are
added.

Evolution equations are derived for the mass, momentum and energy densities represent-
ing the proper set of macro variables of simple fluids. The derivation is based on a macroscopic
Poisson bracket formulation of phase-field dynamics. Navier-Stokes equations are obtained
with extra force terms arising from wall-fluid interactions and capillary stresses. It is also
shown how the hydrodynamics boundary conditions for stress tensor can be derived from the
bulk fields alone in the sharp interface limit. Some mechanisms for generation of the no-slip
boundary condition are also hypothesized. These results are important because they show
how in general boundary conditions and corrections to them can be derived and how the
numerical implementation can benefit from such a formulation of hydrodynamics, where all
boundary conditions are expressed in terms of bulk fields alone. Again, these results have
wider applicability than the setting where they have been derived.

The advantage of a systematic coarse-graining procedure enables us to clarify the role
of the order parameter concept in the phase-field description of one and two component
fluids. We also consider different ways of including gravitational effects and apply dimensional
analysis to obtain a condition for the onset of capillary turbulence.

Finally, we present some new formalism for stochastic processes, where the relevant field
variables are embedded in an environment characterized by quenched disorder. Whenever
some lower dimensional (e.g. defect) structures are projected out of the bulk field evolution
equations containing either frozen of coarse-graining generated noise fields, a more compli-
cated effective stochastic noise component will appear in the projected equation of motion of
the defect. In particular, the effective noise can be long-ranged even if the quenched back-
ground disorder is not. Several condensed matter and hydrodynamical examples describing
dynamics of interfaces and line-like objects such as polymers and domain wall defects are
considered.
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Author’s contribution specified

This section provides a specification of author’s original contributions. It is meant to com-
plement Sect. 1.3.1, which contains more explanation on the technical facts. Original work
in each chapter is explained below.

Chap. 2 (Non-equilibrium generating functional formalism). Author extends the concept of
η-ensemble to cover more general situations than the superfluid [1] example (Sect. 2.1.2).
Author shows how the standard quantum mechanical density functional descriptions
both for equilibrium and non-equilibrium systems can be derived from a unified for-
malism (Sect. 2.3.1 and Sect. 2.3.2). These have been been treated as separate issues
in the past. Author also extends the meaning of the density functional theory to cover
not only the densities of the conserved variables but also those of non-conserved order
parameters. Generating functional of similar to used in this work has been suggested in
Ref. [2] but as discussed in Sect. 1.3.1, the author approaches the subject from different
direction stressing the phase transition aspect. In Sect. 2.4 the author shows how one
can extend the formalism to cover more macroscopic starting points. The basic tech-
niques are well known but some generalizations to dissipative systems are presented
in Sect. 2.4.1, which have not been combined before in the context of the generating
functional formalism. Also the example considered in Sect. 2.4.2 is a new one.

Chap. 3 (Symmetry principles). Many new ideas are suggested to formalise the search of
relevant variables. In Sect. 3.1.2 the author applies the ideas presented in Ref. [2] to
the justification of the form of the equations of motion of classical fluids. Sect. 3.2
explains how the dynamic symmetry group concept can be useful for more systematic
isolation process of relevant degrees of freedom. Even though group theoretical means
are commonly utilized in various fields of physics, the author is not aware of systematic
application of such techniques within the present nonequilibrium framework. Discussion
on dynamic symmetry restoration is also presented.

Chap. 4 (Related approaches). Author shows how the generating functional formalism
is related to the different formalisms. More specifically, Sect. 4.1.1 explains some of
the mappings between the Peletminskii & Yatsenko & Bogolubov approach and the
coarse-grained density matrix theory. Sect. 4.2.1 covers analogs between the Pelet-
minskii & Yatsenko work and Zubarev’s formalism. Finally, the similarities between
Zubarev’s formalism and the non-equilibrium generating functional method are dis-
cussed in Sect. 4.2.2.

Chap. 5 (Hydrodynamics of macroscopic quantum systems). Some new ideas, which sup-
plement the symmetry based approach advocated in the thesis, about nuclear density
functional theory are discussed by the author in Sect. 5.2. A new type of phonon
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mediated time-dependent interaction between the electrons is derived by author in
Sect. 5.3. Not much effort is used for its detailed analysis given the crudeness of the
initial assumptions in its derivation. Based solely on the symmetry principles, the order
parameter is isolated in Sect. 5.5: Knowing its microscopic representation, its interpre-
tation becomes unambiguous. The same procedure is also illustrated for superfluids in
Sect. 5.7.2. Thus, even though the representation and equations of motions of the order
parameters for conventional superconductors and superfluids are well-known, they are
derived by new technique, which also allows for straightforward extension of the old
results. Also, the identification process of the order parameter as presented by the
author is different from the standard exposures to the subject and it is by no means
restricted to the examples studied in this chapter.

Chap. 6 (Density Functional Theory). The author proposes a new way of constructing
classical density functional theories in Sect. 6.1.3: It is just a straightforward combi-
nation of the effective action (of the generating functional) and Doi’s [3] techniques.
The author presents some analogs between different formulations of non-equilibrium
thermodynamics in Sect. 6.5.

Chap. 7 (Phase-field models and density functionals). The new result of Sect. 7.3 is the
mapping of the density functional of the liquid-gas-solid system to the phase-field free
energy, a simplified form of which has been utilized in the previous work of the author [4].
Both the mapping and the phase-field model used are new ones. In addition, the author
is not aware of any systematic attempts to relate phase-field models to (dynamic)
density functional theories.

Chap. 8 (Phase boundary dynamics in liquid-gas-solid system). Sect. 8.2.1 contains intro-
ductory material derived in the sources mentioned in references therein. Apart from the
phase-field surface tensions presented in Sect. 8.2.2 (first derived by M. Dubé) and the
dissipative terms of sessile droplet contact line mentioned in Sect. 8.9, all other results
are author’s own.

Chap. 9 (The route to classical hydrodynamics). Based on macroscopic Poisson brackets, the
author derives classical hydrodynamics from first principles. The results are reflected in
appearance of novel bulk force terms of capillary stresses and wall-fluid interaction term.
The form of the former has been postulated before, but the derivation here contains
some new elements. The author systematises the change of macro-variable basis of two-
component fluids in Sect. 9.5.3 and shows what kind of complications are imposed by
the velocity representation on the fluctuation-dissipation theorem in Sect. 9.5.2. As a
new important result the author shows that when dissipation is present, the definition of
macroscopic velocity field in terms of the momentum density field leads to contradictory
results as far as the equations of motion go. The momentum density field should be
considered more fundamental than velocity as the density of conserved quantity.

Chap. 10 (Bulk forces). In Sect. 10.1 the author shows that the pressure term is fixed by the
equation of state in the Poisson bracket derivation. The implementation of gravitational
effects on fluids are considered in Sect. 10.2. Sect. 10.4 is meant to clarify the choice of
the unit systems for dimensional analysis.

Chap. 11 (Emergence of boundary conditions). A systematic derivation of the hydrody-
namic boundary conditions on the jump conditions of the stress tensor based on the
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electromagnetic analogue in Sect. 11.2.2. In Sect. 11.3.1 the author shows what is the
microscopic origin of the zero normal velocity condition at solid walls. The deriva-
tion of zero tangential velocity at solid-fluid interfaces is harder and some explanations
based on diverging viscosity are presented in Sect. 11.3.2. An attempt to clarify the
emergence of dissipative phenomena in the vicinity of the solid-fluid boundary based
on the in-equivalence of the velocity and momentum representations are pondered in
Sect. 11.4.

Chap. 12 (Stochastic properties of interfaces and lines). Some examples of quenched noise
processes are presented. The author develops the concept of effective noise correlator,
and explains how it can be computed in practice. As the main example serves the
domain boundary motion in the continuum version of Random Field Ising model. Dif-
ferent scaling regimes of structure function are studied and results for slow driving are
shown to compare favourably with simulations.

Part III (Appendices). Except for App. D.4 (which is based on Ref. [5] with more details
and intermediate steps added by author) all material is author’s own.
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Chapter 1

Introduction

1.1 Emergence and coarse-graining

More is different. Take a system with the just two constituent objects: Be they men, or mice
or elementary particles. Studying experimentally what a single specimen does, when left in an
isolated laboratory on its own devices, does not really tell for sure what two specimen would
do together. Not to mention ten specimen, or a million. If they were atoms, they might form
molecules, which would form bigger structures such as polymers, micelles and finally complex
forms of inanimate or living matter. If the specimen were men they would probably form
alliances, trade unions, political parties and different schools of thinking about the complex
appearance of the world around them. Some of the men would become philosophers and
some physicists. And the latter would not be very popular among the former due to their
oversimplified reductionist attitude towards the deep concept of emergence.

The reductionist approach to understanding of nature requires that one first specifies the
starting level, i.e a microscopic model, which is equivalent to identification of the constituent
objects, which make up the system, and interactions (forces) between them. Based on this
information, one tries to come up with explanations concerning the collective behaviour of
the constituent objects. Collective phenomena are usually detectable only on scales larger
than those characteristic of the microscopic model. Therefore one refers to them also as
macroscopic phenomena. Reductionist tries to understand the macroscopic phenomena using
macroscopic laws derivable (in principle, at least) from a microscopic starting point. Even
though he recognizes the fact that more is different from few, he believes that it is possible
to say something about the world on a more macroscopic level given the entire microscopic
model. This approach only makes sense if the microscopic model contains only simple inter-
actions between not too many constituent objects.

Since the concepts of microscopic and macroscopic are not strictly defined, we would like
to be able to construct an entire chain of effective models, starting from the one defined on
the finest scale and moving on up to larger and larger scales. The process of constructing
effective models is called coarse-graining. The aim is to filter out the microscopic degrees of
freedom which are not essential to the more macroscopic questions we ask about the system.
If the system is correctly chosen, which in technical terms translates to requirement of clear
separation of time scales involved in description of phenomena at different coarse-graining
levels, we should be able to produce a relatively simple model of the system on a more
macroscopic level. For example, if we want to know whether there will be some overspill from
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a glass of water experiencing a sudden disturbance of a shaky hand, we do not have to solve
1023 Newton’s equations of motion for all the water molecules, which make up the microscopic
model. Instead it suffices to study just a handful (five!) of equations of motion (Navier-
Stokes equations) in the coarse-grained macro model, which comprises evolution equations
for relevant macro variables, i.e. the mass, momentum and energy densities. The relevant
variables are also called coarse-grained variables, or slow variables, because the time scales
where they experience considerable changes are much larger than the time scales of the more
microscopic degrees of freedom, which have been coarse-grained away. As far as the spilling
of water goes, we can reduce the number of macro variables even further owing to the fact
that we are only interested in the movement of the liquid-gas phase boundary. Defining a new
collective coordinate, which specifies the position of the water-air interface, we can integrate
out the bulk degrees of freedom of the Navier-Stokes equations and obtain a further coarse-
grained model for the collective interface coordinate alone. This represents another stage of
coarse-graining chain and is precisely something we will be doing in this book later on.

Technically the process of coarse-graining consists of three stages. The first stage, iden-
tification of the microscopic starting point, is usually the easiest in natural sciences (physics
especially) since basic constituent particles and the forces between them can be found. In
other fields of science this is more difficult: What is the force between two living cells or
two investors in the stock market, are much harder questions. The next step of coarse-
graining consists of identification of the relevant variables in our large scale description. In
other words, how can we characterize a complicated microscopic many-body system with the
smallest possible number of macroscopic variables, which still allow us to sensibly answer
the macroscopic questions we are interested in. How do we find the best possible ’collective
coordinate basis’? In practice, one usually has to rely on intuition and experimental data at
this stage. It is justified, though, to ask how far can we go by using only the information of
the microscopic starting point. This question haunts the reductionist mind of the physicist:
We would like to be able deduce the relevant variables from microscopics in principle at least
and avoid any recourse to emergent arguments. Then again, because the relevant variables
by definition have to do with the macroscopic description, it can very well be that not all of
them can be isolated without the use of higher level (more coarse-grained) information, which
is needed for there recognition. Certainly we can never replace intuition with a mechanical
machinery, but it does not hurt to try to develop a technique that can guide the creative
thinking. As is clear from the glass-of-water example, the relevant coarse-grained variables
can take rather different forms like the hydrodynamic fields of the Navier-Stokes equation
and the collective phase boundary coordinate. It turns out that these types of variables are in
principle naturally arrived at using symmetry analysis. Unfortunately, there is no systematic
and practical way of revealing the invariances of the action or symmetries of the density ma-
trix but in the simplest cases. Yet, we believe that it is possible to go beyond the mean-field
level in many cases of interest with proper combination of present techniques, if one wants
to be able to find the relevant variables from first principles.

The third stage of coarse-graining process produces the equations of motion of the rele-
vant variables. There exist several techniques in the literature for this stage. Classification of
them can be made in many ways depending on the basic postulates of each approach. For ex-
ample, Non-equilibrium Thermodynamics [6, 7, 8], Rational thermodynamics [9] Generalized
Thermodynamics [10] and Nonlinear Thermodynamics of irreversible processes [11] start from
given set of macro variables. Some approaches such as local space average methods [12] and
Generalized Irreversible-Reversible Coupling [13] formulations of continuum thermodynamics
have a more microscopic starting point and especially the latter allows for a more systematic
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development of the coarse-graining chain. The method of producing the evolution equation
presented in this work is based on the concept of nonequilibrium generating functional, which
contains the full microscopic information and the possibility of producing the evolution equa-
tions at chosen level of coarse-graining. Owing to the use of the microscopic information in
the derivation, our approach is closer the powerful projection operator technique [14] for-
mulations of kinetic equations than the traditional macroscopic theories of nonequilibrium
thermodynamics. Of course, in this context we cannot forget the great amount of work that
has been put in derivation of transport equations of gases and plasmas (Boltzmann, Vlasov,
Balescu-Lenard etc.) in classical [15] and quantum systems [16]. Especially the derivation of
hydrodynamic Navier-Stokes equations starting from the Boltzmann equation is analogous to
the philosophy advocated with the nonequilibrium generating functional formalism: Invari-
ance analysis of the collision operator (which is already an effective coarse-grained object)
reveals the conserved quantities (mass, momentum and energy observables) in the same way
as the invariance analysis of the (coarse-grained or microscopic) action yields the relevant
variables generating functional formalism.

The outcome of the successfull coarse-graining process is a set of coupled Langevin equa-
tions of motion for the relevant variables φi(x, t). Schematically,

∂tφi = f(φi) + ηi . (1.1)

Coarse-graining process gives rise to a stochastic force terms denoted by ηi. Here we have
written it as additive type of noise for simplicity (in many applications to be considered
the noise is actually of multiplicative type). The noise contains contributions from three
different sources. First, the effect of the fast degrees of freedom, which have been removed
by coarse-graining, on the relevant slow variables can be modelled by a rapidly oscillating
noise term. Second, our knowledge of the system is not usually perfect, which results in the
appearance of random fields (e.g. impurity fields) in the equation of motion. Finally, the
nonlinearities of the theory can be modelled approximately by adding a stochastic component
to the linearized deterministic part of the equation. In case the system is fully self-averaging
(relative fluctuations vanish in the large scale limit), our knowledge of the microscopic starting
point is perfect, and nonlinearities are allowed, the noise term will not be present in Eq. (1.1).
One of the advantages of the nonequilibrium generating functional formalism is that the
properties of the noise term can be derived, they do not have to be put in by hand.

An ultimate theory of coarse-graining would not only tell which variables are relevant but
it also gives means to climb up the coarse-graining ladder from one effective theory to the next
describing a whole hierarchy of models. How to do these things in practice (or how to explain
them at the level of principle at least) is one of the important open problems of contemporary
science. Our goal is more modest: We test our ideas of finding the relevant variables based on
symmetry arguments on a few well-known classical and quantum mechanical examples and
show that the principles we have put forward really work in these cases. As what comes to the
construction of the whole chain of effective models, we typically settle for a two-step chain:
We go from an interacting many-body problem to a dynamic density functional theory and
from there on to dynamics of lower dimensional structures such as phase-boundaries and lines.
Since the formulation of the theory (generating functional) is well-suited for renormalization
group (RG) analysis, there is a possibility of constructing a whole (continuous) set of effective
theories. In its traditional form, though, the field-theoretic momentum shell renormalization
group is too ’democratic’ for this purpose: An ultimate coarse-graining technique would have
to use a selective type of RG guided by the symmetry analysis performed at each effective
level of description.
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As an example of a hierarchical chain of models let us consider modelling the dynamics of
a set of adatoms on a crystal substrate. The macroscopic problem we are interested in is the
behaviour of the center of the mass of the adatoms in the course of time. It is known to be de-
scribed by a diffusion equation on the large scales [17]. The microscopic starting point could
be the quantum mechanical many body description of the substrate + adatoms complex. Via
first principles calculations of the adiabatic potential energy surface seen by the adatoms, we
can infer their jump rates, which can be used as input parameter of of higher level lattice-gas
cellular automata model, which can be further coarse-grained using the methods presented
in this work to finally yield the diffusion equation, which gives the hydrodynamic continuum
level description of the whole problem. In this way we can integrate the formalism presented
in this work with the existing coarse-graining and simulation methods suitable for multi-scale
modelling of materials science [18, 19]. We also consider applications of the nonequilibrium
generating functional to a direct coarse-graining of density functional representation of quan-
tum and classical many-body systems, without introduction of intermediate coarse-graining
levels.

1.2 Goals of this work

This book is intended to communicate to the reader that the idea of coarse-graining can
be formulated in a way, which truly encompasses many fields and helps in their conceptual
understanding by building bridges between seemingly unrelated things at first sight. On a
theoretical side the advantage is more coherent presentation of the subjects. On the prac-
tical (computational) side the benefits are that the current formulation is able to connect
techniques designed for different effective levels of description. For example, deriving a con-
tinuum field theory out of a lattice-gas or molecular dynamics simulation is straightforward.
Not all transitions are that easy to describe, though. We are not claiming to be able to un-
ambiguously cross the quantum-classical boundary by deriving Newton’s equations of motion
for coarse-grained point particles whose quantum mechanical description is given by compli-
cated electron-nucleon wavefunction. Of course, these effects are included in the theory, but
one has to come up with more power approximation schemes to obtain practically calculable
higher level models. For example, decoupling the nucleons from electrons and treating the
former classically results in a classical many-body interaction potential between the classical
’atoms’ (nuclear ions), which are not of simple two-body or three-body form, but formally
N-body form (where N is a large number). Systems with these types of potentials are difficult
to coarse-grain further just by mechanical application of the formalism. If one is able to show
that actually the classical atoms really interact only via few-body potentials then one can
make some progress.

The main formal message of the generating functional formalism can be condensed into
the following relation:

effective action A = generalized density functional → free energy F . (1.2)

This relation provides the connection between the quantum field theoretical effective ac-
tion (generating functional) and the density functional theories commonly used in electronic
structure calculations and classical many-body statistical mechanics. The effective action is
a time dependent quantity: Taking variations with respect to its argument fields, which are
the relevant variables, we generate their equations of motion. If the system equilibrates in
the limit t→ ∞ the effective action gives the static thermodynamic free energy of the system
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and the equations of motion reduce to equations of state. The last statement is very difficult
to prove because of the complicated nonlinear structure of the theory, but at least it can be
made plausible in the perturbative sense.

The effective action is also called a generalized density functional, because it not only
generates the density functionals of conserved variables (such as number, mass or electron
density), but it can also contain order parameters of the theory. This is a point which was
missed in the traditional derivations of density functional theory: The generating functional
formalism takes into account possible phase transitions, if one is able to find the relevant
order operators using first principles or experimental information. It also provides a direct
link to important materials science simulation technique called phase-field modelling. The
free energy which is used in phase-field models can in principle (and, as our examples will
show, in practice, too) be obtained from the density functional, which contains both con-
served variables, and order parameters, and their couplings. At this point we have to point
out that much of the usefulness of the generating functional formalism for practical calcu-
lations depends crucially on the determination of the effective action. Usually this is not
an easy task, especially for systems having high densities. However, for many interesting
problems, especially critical phenomena related, the precise form of the free energy is not so
important and the interesting phenomena will manifest themselves already in the lowest level
approximations.

In addition to the generating functional itself, another unifying principle utilized in this
work is the use of symmetry principles in recognition of the important degrees of freedom.
This works both for bulk macro degrees of freedom and for lower dimensional structures such
as defects of the order parameter fields [20, 21, 22]. We only concentrate on simple types
of defects: Domain walls (phase-boundaries and triple lines), whose projected dynamics is
studied in the Applications part. As for bulk dynamics, we discuss how to find the important
macro variables based on the symmetries of the action or the density matrix of the system.
The non-relativistic generalization of Goldstone’s theorem is an important tool for this.

The generating functional formalism and the symmetry principles hopefully provide a
more homogeneous picture of the different fields we will be discussing. We show how different
starting points for the coarse-graining process, such as classical molecular dynamics level or
stochastic cellular automata level can be described using the same language as used on the
genuinely quantum mechanical level. This allows the use of the same symmetry principles
for different level phenomena. Seeing the symmetries from Newton’s equations of motion, or
from transition rules of the cellular automata could be very difficult otherwise. Being able to
isolate the relevant variables from first principles naturally allows their correct interpretation
in simple enough cases where this is possible. This is not always obvious at the macro level.
Similarly, it is not always clear from the macroscopic point of view, how to include more
microscopic effects in the coarse-grained description. For example, how to include the solid-
fluid interaction in the free energy of the density functional formalism. Questions like this
can be clarified using the information obtainable from density functional theory.

Finally, we wish not to overestimate the power of the generating functional formalism.
The fact is that in its generality the nonequilibrium generating functional formalism is not the
best possible tool to be used at each level of the hierarchy of effective models. More specific
techniques work better in cases they have been developed for. However, the generating
funtional method can be used to complement and unify the specific techniques.
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1.3 Contents explained

1.3.1 What is new, what is old and what is in-between

The main difference to traditional formulations of quantum field theoretical models familiar
from particle physics is the choice of the time integration contour. There have been many
formulations which combine the equilibrium and nonequilibrium processes by a suitable choice
of the time-path (Kadanoff-Baym, Keldysh). Historically, the stress has been on the Green’s
functions and the generating functional has received less attention. The nonequilibrium
generating functional formalism presented in this work is identical to the closed-time path
Green’s function (CTPGF) formalism as presented in Ref. [2]. Chou et al. pointed out
the important feature that composite operators can be used in the generating functional
including conserved charges and order parameters. What the authors did not mention is the
important relation to the density functional theories (quantum and classical, equilibrium and
nonequilibrium), which we have explained in this work. Moreover, we have tried to develop
a systematic scheme to identify the order parameters based on the symmetries of the action
and the density matrix. Chou et al. only discussed how to find the conserved variables in
addition to showing how to obtain the equations of motion for both conserved variables and
order parameters. We have also used an explicit bath in many cases unlike Chou et al.

We are certainly not the first to suggest the use of symmetry principles, either. Those
have been successfully applied in great variety of forms to statistical physics and condensed
matter problems throughout the history of modern physics. Landau and co-workers explained
how the macroscopic free energy can be constructed through symmetry principles as far as
critical phenomena are considered.

To put it concisely, almost all of the material in the part Formalism of the book, is well
known in one form or another in different areas of physics. Since we have arrived at the
generating functional formalism from a little bit different direction than Chou et al., we have
stressed more the phase transition aspects. In part Applications the dynamic symmetry group
analysis of density matrix and identification of relevant variables has not been discussed in
the literature to the extent we present the subject and apply it to macroscopic quantum
phenomena in Sect. 5.5. We also derive the equation of motion for the superconductor,
which contains a retarded interaction between the the electrons. In the static limit the
theory reduces to the time-dependent Ginzburg-Landau model. Similarly, we show that the
lowest order order parameter dynamics of a weakly coupled Bose fluid is given by the Gross-
Pitaevskii equation. In part Applications we also use the fact (shown in Sect. 2.3) that the
generating functional reproduces three different density functional formalisms (Sect. 2.3.1
and Sect. 2.3.2). The ground state and finite temperature formalisms based on effective
action technique has been recently derived in Ref. [23] and the dynamic density functional
in Ref. [24]. We merely combined these works. In Chap. 7 we clarify the connection of the
phase-field free energy to the density functional. Traditionally, the phase field free energies are
justified using either macroscopic symmetry arguments or using coarse-grained equilibrium
partition function. Chap. 8 contains almost entirely new results. Especially, a new projection
formalism capable of attacking dynamic problems is developed for domain walls and triple
lines. In applications to classical hydrodynamics starting from Chap. 9 we systematically
apply the generating functional formalism to derivation of equations of motion of simple
fluids. The outcome is the well-known Navier-Stokes set of equations for relevant variables.
There are new force terms in the equations of motion, though, which are not present in the
traditional equations. These result from the capillary stresses and interaction with the solid
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wall. The capillary stress aspect has been discussed before using the phase-field language,
e.g. Ref. [25]. We also show the danger of using nonlinear transformations from one set
of relevant variables to another. These effects have not to our knowledge been thoroughly
discussed. Finally, in Sect. 12.3 we discuss how to replace the complicated quenched noise seen
by a moving phase-boundary by an equivalent stochastic process, which makes understanding
of the non-equilibrium critical dynamics of collective field coordinates more transparent.

1.3.2 How to read this book

The main formalism has been presented in part Formalism. In part Applications the nonequi-
librium generating functional formalism is applied to coarse-graining of hydrodynamics of
macroscopic quantum phenomena such as Bose fluids and superconductors, and finally clas-
sical fluids. The nasty details have been collected in the appendices. Many of the appendices
are actually formulated in a self-consistent manner, so they can be read on individual basis,
too. The largest set of appended material is related to the dynamics of liquid-gas phase
boundaries (App. C) and classical hydrodynamics (App. D).

The idea of the Applications part of the book is to start from the quantum mechanical
systems (Chap. 5), then introduce the reader to the traditional quantum mechanical density
functional theory and show its similarity to the classical density functional theory via the
Legendre transformation method in Chap. 6 Then, in Chap. 7 we show how to connect the
static and dynamic density functionals to phase-field models. The phase-field modelling is
then applied to the derivation of the dynamics of liquid-gas phase boundaries and triple lines
in Chap. 8. This chapter explains in detail how to go from microscopics to macroscopics
and relate the effective parameters on each level to each other. It also discusses how to
extract the relevant parameters, time and length scales, from the theoretical description and
relate them to the experimentally measurable ones. The phase-field model is first discussed
without explicit hydrodynamics from the point of view of diffuse mass transfer in Chap. 8
and the hydrodynamic effects (momentum conservation) are considered in Chap. 9, Chap. 10
and Chap. 11. Finally, Chap. 12 deals with quenched stochasticity abundant in effective
interfacial description of various processes.
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Chapter 2

Nonequilibrium generating

functional formalism

2.1 An intuitive approach to nonequilibrium thermodynamics

To get to the nonequilibrium thermodynamics we should start off by considering to which
extent we can extend some concepts of equilibrium thermodynamics. There are many equiva-
lent formulations of equilibrium thermodynamics. We prefer the partition function approach,
which establishes a direct link to microscopic world. Partition function Z acts as a generating
functional of macroscopically relevant variables such as pressure, internal energy, chemical
potential, and so on. Equivalently, we can take some of the thermodynamic potentials such
as Helmholz free energy F as the fundamental object as it is defined through F = −β−1 lnZ,
where β ≡ (kBT )−1, kB is the Boltzmann’s constant and T is the temperature. Typically,
partition function depends on the parameters, which somehow constrain the evolution of the
microscopic degrees of freedom in phase space. It will be a function of temperature since T
determines the mean energy in canonical ensemble. The partition function will depend on
pressure p when the system is confined in volume V . In addition, different types of fields
can be coupled to the system biasing its behaviour in the phase space. There is a kind of a
duality buried in equilibrium thermodynamics which allows us to express it either in terms of
the constraint parameters (say magnetic field h and inverse temperature β) or in terms of the
expectation values of the observables that are being constrained (in this case, magnetization
〈∑i si〉 and the average exchange energy 〈H〉 = 〈∑〈i,j〉 sisj〉) in case of an Ising ferromagnet,
for example. The duality can be mathematically expressed through a Legendre transforma-
tion, which can be performed on all variables or just on a chosen subset of variables. In
case of the Ising model, choosing the latter option relates the Gibb’s free energy G(h, T ) and
Helmholtz free energy F(M, T) via the partial Legendre transform

G(h, T ) = F (M(h, T )) − hM(h, T ) , (2.1)

where the expectation value 〈∑i si〉 ≡M is the magnetization order parameter. Thus, going
from constraints (or generalized displacements) to expectation values of constrained observ-
ables (or generalized forces) produces a thermodynamic potential, which in the field theoretic
language is called effective action. Usual thermodynamics deals with homogeneous variables
with no spatial resolution, but it is not difficult to generalize it for spatially inhomogeneous
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situations, where the observables become x-dependent fields. For instance, the generalization
of the relation (2.1) to inhomogeneous external magnetic field h(x) can be written as

G[h, T ] ≡ F [M [h]] −
∫

dxh(x)M(x) , (2.2)

where M(x) is the smoothed version of the block spin magnetization in cell whose center
point lies at x. Since the fields have acquired spatial dependence, the free energy functions
F and G have to replaced by functionals F [M ] and G[h]. The generating functional Z[h],
whose logarithm gives rise to the free energy G = −β−1 lnZ[h], we can be written as

Z[h] = 〈e
∫
dxh(x)M̂(x)〉eq , (2.3)

where 〈·〉eq means average over equilibrium ensemble defined microscopically via the density

matrix ρeq = e−βH . The operator M̂(x) is the unaveraged magnetization, which by definition

is a random variable, whose expectation value 〈M̂ (x)〉eq ≡ M(x). It will become clear later
on how to define the operator character of observables properly and how to technically include
the spatial dependence as indicated in Eq. (2.3).

The magnetic field h(x) is just one particular example of a constraining field J(x), which

in the field theoretic language can be called a source field. Similarly, the magnetization M̂(x)

is one realization of a more general field variable denoted below by ψ̂(x), whose interpretation

depends on the situation it is used. As will turn out later, the constrained degree of freedom ψ̂
can be called a response field, an order-parameter field or simply a (macroscopically) relevant
variable. Thus, in the general situation we can rewrite Eq. (2.3) as

Z[J ] = 〈e
∫
dx J(x)ψ(x)〉eq . (2.4)

The reason why we have dropped the hat above ψ is the averaging in Eq. (2.4) is to be
understood in the path integral sense: ψ is just a dummy integration variable. The natural
question to ask is if it is possible to generalize Eq. (2.4) to non-equilibrium situation. As will
be shown in the rest of this chapter, this is can be done with minimal effort:

Z[J ] = 〈e
∫
dx
∫
dt J(x,t)ψ(x,t)〉non−eq , (2.5)

The nonequilibrium probability weight is usually assumed to reduce to the equilibrium weight
〈·〉eq as initial or final condition. Using a generalized functional Legendre transformation, we
can now trade variable J(x, t) for the expectation value 〈ψ(x, t)〉non−eq of the field operator

in the same way as we traded the value of the external magnetic field h for M = 〈M̂〉eq in
Eq. (2.2):

A[〈ψ〉non−eq] = − lnZ[J ] −
∫

dx

∫

dt J(x, t) 〈ψ(x, t)〉non−eq , (2.6)

where we have replaced the Gibbs free energy G by the symbol of the effective action A,
which can also be called the generating functional of nonequilibrium thermodynamics. The
terminology derives from the fact, that A contains all the information needed to describe
macroscopic thermodynamics in terms of the averages 〈ψ〉non−eq. Requiring the stationarity
of the action with respect to variations of these expectation values produces the equations
of motion of the relevant variables, that is, the generalized hydrodynamics. As noted in the
introduction, the word hydrodynamics here refers in general to dynamics of macroscopically
important degrees of freedom being by no means restricted to description of dynamics of
fluids alone.



2.1. AN INTUITIVE APPROACH TO NONEQUILIBRIUM THERMODYNAMICS 31

2.1.1 Missing pieces of the puzzle

We begin with a small inventory of the tool box. What kind of means do we have at hand
when trying to explain the dynamics of an interacting many-body system? In many occa-
sions we are forced to approach the non-equilibrium properties through the equilibrium ones
relying on the assumption that when the deviations from the equilibrium state are small, the
equilibrium information can still be made use of. Furthermore, there exist many techniques,
which allow us to obtain the dynamics of the macroscopically relevant variables close to equi-
librium. Formally one of the most rigorous paths from microscopics to stochastic dynamics of
coarse-grained degrees of freedom is offered by projection operator methods. Since the early
days of Nakajima [26], Mori [27] and Zwanzig [28] approaches there have been several later
developments such as the Robertson [29] projection operator and the Kawasaki-Gunton [30]
projection operator. The idea of these methods is to project out the irrelevant degrees of
freedom and produce an equation of motion either for the relevant degrees of freedom di-
rectly or for the reduced density matrix describing the system. Typically, a reference state
(equilibrium state) is assumed and the equations of motion should hold close to the reference
state. This is clearly visible for example in the work of Mori, who produced a linear Langevin
equation to describe the dynamics of any relevant observable not too far away from thermal
equilibrium state described by density matrix ρeq.

The projection operator methods deserve a special merit being able to perform the coarse-
graining process by rigorously filtering out the fast degrees of freedom. Of course, there is
a price to be paid: In their bare form the equations of motion contain terms, whose evalua-
tion requires drastic approximations. This is easy to understand as the starting level of the
coarse-graining is the N -particle Liouville equation, where N is a very large number (for a
generalization of projection operator formalism to a system with stochastic dynamics, instead
of deterministic Liouville dynamics, see Ref. [31]). More specialized approaches existed al-
ready much before the projection operator methods. A whole lot of work has been devoted to
the hydrodynamic description of liquids and gases revolving around the Boltzmann-equation
and its modifications [15]. The less we insist on being able to rigorously connect the macro-
scopic description to the underlying microscopics, the bigger does the selection of different
techniques at our disposal become. Leaving out Standard model level description of the
matter, we can say that at the bottom of the hierarchy of effective descriptions lies the the
many-body quantum Schrödinger equation (or classical Liouville equation). At the macro-
scopic end, on the other hand, we have theories of nonequilibrium thermodynamics which
utilize phenomenological parameters, constitutive equations and so on, to yield the dynamics
of the macro variables.

To summarize, we have many successful means of describing dynamics close to equilibrium
once we know what the quantities of interest are. One of the biggest questions, which has
not been satisfactorily answered so far, has to do with finding the relevant variables suitable
for coarse-grained (macroscopic) description of the dynamics. If there is a way of deducing
them from the underlying microscopic description of the problem, we should clarify their
relation to existing classification of hydrodynamic variables, which to large extent still relies
on equilibrium concepts. In other words, if relevant variables can be defined far a way from
equilibrium, do they really reduce to their equilibrium counterparts and if so, under what
conditions. For example, can the kinetic pressure or local temperature really be related to the
variables p and T appearing in the (equilibrium) equation of state? Moreover, can we derive
the constitutive laws, which express the currents in terms of the hydrodynamic variables?
What are the general properties which make certain systems coarse-grainable?
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There are many questions and few general answers. We summarize below a few things,
which one has the possibility of shedding some light on using the generating functional for-
malism to be presented in this chapter.

• Existence of nonequilibrium generating functional (far away from equilibrium).

• Choice of relevant variables (symmetry principles and selective Renormalization Group).

• Form of the equations of motion of relevant variables.

• Stochastic properties of coarse-grained description.

Not to promise too much, let us comment a few things in the list. First, contrary to usual
claims in the literature, we feel that the generating functional Z[J ] deserves to be called
a nonequilibrium partition function as it generates the equations of motion the same way
as taking derivatives of ordinary partition function generates equations of state. In the
construction there is nothing that would exclude arbitrarily large values of the driving source
field J , which implies that the formalism should work for far-from-equilibrium situations as
well. Of course, many practical methods of evaluation of the equations of motion or the
search methods of relevant variables utilize the fact that the deviation from equilibrium is
not too large. In principle the formalism yields the the coupling terms binding together the
evolution of the different components of the order parameter, as well as the nonlinear self-
interaction terms, which may not always be so easy to fix based on shear symmetry principles
of the type used typically in the construction of Landau free energy [32]. Then again, for
dense systems we cannot use only the lowest order terms but have to work very hard to
generate the relevant higher order corrections. As what comes to the search of the relevant
variables, we can only offer a partial answer, which concentrates around identification of
conserved and broken-symmetry variables. Here we slightly modify the usual rhetoric, which
only mentions the conserved variables and symmetries related to the Hamiltonian of the
system. Instead, we identify the symmetries of the density matrix (or the effective action A)
and thereby pin down the relevant macro degrees of freedom. Unfortunately, we have very
little to offer to systematize the search of relevant variables using improved Renormalization
Group (RG) techniques, but we want to point out the importance and potential of new
schemes [33, 34], which seem offer some possibilities in this direction and can be readily used
within the current framework. Finally, we point out the relevance of the nonequilibrium
generating functional method for the deriving the properties of the noise fields which will
typically emerge in Langevin type of equations of motion of the relevant variables due to the
removal of fast degrees of freedom. The generating functional facilitates the determination
of the noise properties (correlation functions) from the first principles.

2.1.2 The idea of generalized η-ensembles

To motivate the generating functional formalism, we will discuss how the idea of spontaneous
symmetry breaking naturally leads to construction of probability weights, which we call
generalized η-ensembles. In turn, the phase transition picture present the η-ensemble can
be formalized and studied by functional Legendre transformation, which relates the effective
action A to the nonequilibrium generating functional. Let us begin by considering the familiar
Ising model of a ferromagnet. The equilibrium partition function can be written as

Z(T ) = Tr e
−β
∑

〈i,j〉 sisj ≡ Trρ0
eq . (2.7)
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Summation over nearest neighbours is implied in the exchange term and trace means the
summation over all spin degrees of freedom si = ±1. If one is interested in studying the order-
disorder transition, the relevant order parameter is the magnetization M , which is defined as
the expectation value of the order operator M̂ =

∑

i si over the equilibrium density matrix.

However, using ρ0
eq defined in Eq. (2.7) produces always the same result, M = Tr{M̂ρ0

eq} =
0 due to the reflection symmetry of the microscopic Hamiltonian even if one goes to the
thermodynamic limit. To generate a non-zero expectation value signalling the emergence of
long range order, one should study the properties of the ensemble, where there is an additional
coupling of the spin degrees of freedom to an external magnetic field h:

Z(T, h) = Tr e
−β
∑

〈i,j〉 sisj+h
∑

i
si ≡ Tr ρheq , (2.8)

Unlike Z(T ), Z(T, h) does reveal the ordering transition when the number of spins approaches
infinity. In the thermodynamic limit the partition function is not anymore analytic in the
whole phase space (T, h). This is reflected in the fact that even for infinitesimally small
magnetic field h, there can be a finite magnetization in the system. Thus, below the critical
temperature, T < Tc

m = − lim
h→0

lim
N→∞

1

βN

∂ lnZ(T, h)

∂h
6= 0 , (2.9)

where we have defined magnetization per spinm = M/N . The essential point is the following:
If we take the thermodynamic limit N → ∞ (or volume V → ∞) before h is taken to zero,
a non-zero value of the order parameter does reveal the phase transition, whereas inverting
the order of the limits does not. In a sense, adding an infinitesimally small magnetic field
is just a trick, but an essential one. It was first introduce by Bogolubov under the name of
quasi-averaging [35, 36].

More generally, Bogolubov’s quasi-averaging scheme has been designed for system’s whose
Hamiltonian H possesses some symmetry. In order to study the phase transition associated
with the spontaneous breakdown of the symmetry, one calculates the expectation value of
the order operator over an ensemble, whose Hamilton’s operator has been perturbed by an
additional term ηHpert, which breaks the symmetry of H. In the thermodynamic limit, when
η → 0, non-zero expectation values will be generated analogously to the Ising model. In cases
where the limit zero limit of η does not exist in the simplest setting described above, auxil-
iary conditions must be imposed, which facilitate the computation of the quasi-average [37].
Using temperature as the control parameter, we can say that the high temperature phase
corresponding to symmetry group G of H does not describe the properties of the system any
more in the low temperature (T < Tc) symmetry broken state, where the density matrix is
invariant under smaller symmetry group G′ ∈ G. We can approximate the broken symme-
try state by density matrix of the form exp(−βH + ηHpert), where the symmetry group of
−βH + ηHpert is G′. In general, the density matrix does not have to have this simple Gibb-
sian form but it produces in many cases a reasonably good approximation. When the state
(ground state or thermal state described via density matrix) of the system does not share the
same symmetries as the Hamiltonian H of the system we say that spontaneous symmetry
breaking has taken place. As is clear from above, the definition of system Hamiltonian H
takes place through the equilibrium density matrix, so it would be more proper to talk about
the symmetry of ρ, when evaluating averages of order operators. We will come back to this
point later.

Application of Bogolubov’s quasi-averaging to Bose superfluids gives rise a restricted
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ensemble, which is called η-ensemble [1] after the perturbing external field

ρ̂ηeq ≡ e−βĤB+η
∫
dx ψ̂(x)+h.c. , (2.10)

where the field annihilation operator ψ̂ plays the role of the order operator M̂ of the magnetic
example, and h.c. stands for hermitean conjugation. The microscopic Hamiltonian of the
weakly interacting Bose fluid is ĤB. It is easy to see that ρ̂ηeq is completely analogous to the

density operator ρheq defined in Eq. (2.8). The action of infinitesimal η is to induce a phase
transition when the control parameter T < Tc. Instead of long range spin order we have long
range phase order (to be discussed later), which manifests itself in the non-zero expectation

value of the order operator ψ̂: limη→0 Tr{ρηeqψ̂} 6= 0 for T < Tc. The crucial difference as
compared to the ferromagnetic example is that the constraining field η is not experimentally
realizable in the laboratory like the external magnetic field h. This is not something quite
unexpected given that also the symmetries which are broken can in general be quite abstract.
After all this said and done we are now ready to generalize the concept of the η-ensemble to
the general case of many-body system described by a density matrix, which for familiarity’s

sake is assumed to of Gibbsian form ρ̂0
eq = exp(−βH({â†i}, {âi})). In the following we will call

the basic creation and annihilation operators â†i and âi, reserving the symbol ψ̂({â†i}, {âi})
for the order operator, which is some function of the basic field operators. In the Bose fluid
example ψ̂† = â† and ψ̂ = a If we can find the symmetry generators of H({â†}, {â}), the

variables Q̂ which satisfy [Q̂,H({â†i}, {âi})] = 0 that is, then we can in principle construct

the order operators ψ̂. For finite quantum systems with discrete spectrum we can always
decompose Q̂ = ψ̂†ψ̂, which means that the order operators are just the generalized ladder
operators. For further arguments, see Sect. 3.3. The decomposition has nothing to do with
the system described by H, it is a property of the Hilbert space itself [38]. These arguments
have to be reconsidered for scattering states with continuous spectrum and infinite number of
constituent particles. For a known set of order operators ψµ (there can be many symmetries to
be broken), the phase diagram can be constructed by tracing over the generalized η-ensemble
weight given by

ρηeq ≡ exp
(

− βH({â†i}, {âi}) +
∑

µ

ηµψµ({â†i}, {âi})
)

(2.11)

Thus, from the symmetry analysis of the equilibrium density matrix we can find the order
operators associated with the spontaneous breaking of the continuous symmetries generated
by Q̂µ. By construction, when the control parameters of the Hamiltonian are such that some
subset µ ∈ Kb ⊂ K of symmetries K of H are broken, then

lim
η’→0

Tr
{

ρη’
eq ψ̂µ({â†i}, {âi})

}

6= 0 . (2.12)

where η’ are conjugate the order parameters ψ̂µ, µ ∈ Kb. As in the case of the superfluid,
there is no guarantee that all fields ηµ would be experimentally realizable.

The idea of the η-ensembles is naturally connected with the higher order Legendre trans-
formations advertized earlier. All we need to do is to make the the fields ηµ dependent on
the space coordinate x (and time coordinate in the non-equilibrium situation). Then the
generating partition functional becomes (with ηµ replaced by source field Jµ):

Z[J] = Tr e−βH−
∫
dxJ(x)· ˆψ(x) , (2.13)
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where ψ is a vector with components ψ̂µ. When the generating functional is arrived at via the

method of quasi-averaging, the constrained fields (operators ψ̂) have a natural interpretation
as order operators. However, the Legendre transformation, which will be discussed more
thoroughly in Sect. 2.1.3, only relates the constraining field (J) to its conjugate variable (〈ψ̂〉).
It does not care if the conjugate variable is an order operator or some other operator, the
transformation is completely general in that sense. Therefore, one can also consider Legendre
transformation of conserved charges (symmetry generators) Q̂, not just the order operators,

which in the simplest cases are related to the former via Q̂ = ψ̂†ψ̂. This generalization turns
out to be important when we will come across the concept of density functional theories in
later chapters.

2.1.3 How to see the phase transitions within the formalism

The functional Legendre transformation method of which the generalized η-ensemble offers
one example, was originally developed for more efficient technique to describe phase tran-
sitions by Belyaev [39] and de Dominics and Martin [40, 41] in the equilibrium quantum
statistics. De Dominics gave also related variational formulation of equilibrium classical sta-
tistical mechanics [42].

These developments utilized diagrammatic and combinatorial methods to express the
grand partition function in terms of the one and two-point functions (correlation function).
A field theoretic formulation presented by Dahmen and Jona-Lasinio [43] as well as the
effective action method of Cornwall, Jackiw and Tomboulis [44] made the formalism more
transparent. They considered a generating functional, which looks like Eq. (2.13) except that
in addition to the linearly coupled fields ψ there is also a coupling to the two point function:

Z[J1, J2] = (2.14)
∫

Dψ exp

(
ı

h̄
S[ψ] +

ı

h̄

∫

d4x1 J1(x1)ψ(x1) +
ı

2h̄

∫

d4x1

∫

d4x2 J2(x1, x2)ψ(x1)ψ(x2)

)

,

where S[ψ] is the action some general field theory without any couplings to sources J1 and J2.
This construction can be continued to higher order correlation functions, which yield more
precise information on the phase transition. Use of higher order composite operators allows
us to study symmetry breaking patterns in cases where we do not posses order operators of
lower order or their value is zero as the theory only allows a symmetric solution for them.
For example, in the case of superconductors the relevant order parameter is the anomalous
Green’s function 〈T̂+(ψ(x)ψ(x))〉, which means that we have to introduce a source J2 as in
Eq. (2.14) in the generating functional. The use of higher order couplings, which allow us
to express the partition function (generating functional) in terms of the correlation functions
〈ψ(x1)〉, 〈ψ(x1)ψ(x2)〉 etc., can also be utilized to improve the approximative construction of
the effective action because the presence of higher order operator products of field variables
results in automatic resummation of large subsets of terms of perturbation series. Using the
correlation functions (expectation values of composite operators) to improve the approxima-
tions of A by including nonlinear features is analogous to Kawasaki’s idea of including higher
order operator products [45, 46] as relevant variables to be used in the projection operator
method. Kawasaki operated at the level of equation of motion directly whereas the field
theoretic methods modify first the action and are then reflected in the emerging equations
of motion for the field expectation values. Owing to the higher order operator products, one
is not ultimately restricted to study only the small variations close to equilibrium anymore,
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a feature which is desirable in the studies of dynamics of fluctuations in the vicinity of the
critical points [45].

In practice, the construction of the effective action is difficult and requires specialized
techniques. Several methods exist especially in the traditional setting where the symmetry
breaking is approached through effective action expressed in terms of the constant expectation
value of the field operator [47]. Despite the ability to formally include nonlinear effects, the
practical computation is hard as the propagators of some theories are functionals of the field
expectation values [48]. Powerful diagrammatic methods for higher order Legendre transforms
of space dependent field operator products have been developed by Vasiliev [49] among others.
Below we will describe some of the results on generalized Legendre transformations, which
allow us to reach a sufficient level certainty that they offer enough flexibility and rigour to
help us in the difficult task of constructing the effective action. The functional Legendre
transformation in the most general form can be formulated as follows. First we define the
generating functional,

Z[J ] ≡ eW [J ] ≡ const

∫

Dψ eB[J,ψ] ; (2.15)

B[J, ψ] ≡
∞∑

n=1

1

n!

∫

dx1 . . . dxn Jn(x1 . . . xn)ψ(x1) . . . ψ(xn) . (2.16)

(The abbreviation const means a constant factor.) The source fields (or potentials) Jn are
arbitrary symmetric functions of their arguments. For finite temperature field theories, the
integrals include imaginary time integration as well. Transformation with respect to the first
m sources J ′ = J1 . . . Jm 7→ α = {α1 . . . αn} will be called the Legendre transformation of
order m [49]:

A[α, J ′′] = W [J ] −
m∑

k=1

Jkαk ; (2.17)

αn(x1 . . . xn) =
δW [J ]

δJn(x1 . . . xn)
=

1

n!
〈ψ(x1) . . . ψ(xn)〉 , (2.18)

where J ′′ is the set of higher order potentials not involved in the transformation and the
expectation value is computed over the weight eB . Integrals are implied in the product
Jkαk. Convexity of the transformation can only be guaranteed for so-called quasi-probabilistic
Euclidean theories, where the functional integrals with weight eB converge and the measure
(Dψ eB) can be treated as positive. Despite the absence of convexity in the most general case
(some more restricted forms of the transformation will be convex as we will see) we can still use
it for approximate construction of the effective action including anomalous solutions (Green’s
functions) of the field theory. All presently known anomalous solutions, corresponding to
broken symmetry, can be obtained in this way [49]. Moreover, in all cases one only has to
use the lowest order approximation of the effective action functional.

Let us now see how the symmetry breaking takes place at operational level using the
weakly interacting Bose fluid as an example. In this case, we will not need higher order
operator products (first order suffices) since the order parameter is be simply the expectation

value of the annihilation order operator ψ̂. The symmetry breaking can be understood
qualitatively using the η-ensemble concept introduced in Sect. 2.1.2. The equilibrium density
matrix is related to the generating functional through Z[J ] = Tr{ρ̂Jeq} In the high symmetry

phase, ρ̂0
eq ≡ e−βĤB commutes with the number operator N̂ ≡ ∫

dx ψ̂†(x)ψ̂(x) making N̂ a
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symmetry generator of ĤB (or equivalently ρ̂0
eq):

eıαN̂ ĤB e
−ıαN̂ = ĤB ; eıαN̂ ρ̂0

eq e
−ıαN̂ = ρ̂0

eq (2.19)

where α is the continuous parameter characterizing the transformation. The value of the
order parameter in the high symmetry phase is zero:

〈ψ̂〉 = Tr{ψ̂ ρ̂0
eq} = Tr{[ψ̂, Q̂] ρ̂0

eq} = Tr{[Q̂, ρ̂0
eq] ψ̂} = 0 , (2.20)

because Q̂ is a symmetry of the state ρ0
eq (or Hamiltonian ĤB): [Q̂, ρ̂0

eq] = 0. Upon altering
the constraint parameters of the theory (lowering temperature) we hit at some point the
low symmetry phase where the appropriate ensemble weight is no longer given by ρ̂0

eq but

ρ̂Jeq = exp(−βĤB) + Jψ̂ (approximately). In this case the order parameter will become
non-zero, as it should:

〈ψ̂〉 = Tr{ψ̂ ρ̂Jeq} = Tr{[Q̂, ρ̂Jeq] ψ̂} 6= 0 , (2.21)

In the broken symmetry phase, by definition, Q̂ is not any more a symmetry of the state:
[Q̂, ρ̂Jeq] 6= 0. It is easy to see that the symmetry generator Q̂ = N̂ = ψ̂†ψ̂ does not commute

with the term Jψ̂ even though it commutes with ĤB. This is basically the static picture
of the phase transitions described by the (algebraicly) simplest conceivable order parameter.
The dynamic view to phase transitions will be discussed in Chap. 3.

2.2 Ingredients of the formalism

A brief sketch of the most important features of the nonequilibrium generating functional for-
malism will be given here. As clarified in the following sections, the nonequilibrium partition
function suitable for describing the dynamics of phase transitions can be written as

Z[J+, J−, Jβ ] = Tr
{

U(tf , ti; J+) ρ0(Jβ) U
−1(tf , ti; J−)

}

, (2.22)

where U(tf , ti; J+) is the time evolution operator, which evolves the states from the initial
time ti to the final time tf . Explicitly,

U(tf , ti; J+) = T̂+e
− ı
h̄

∫ tf
ti
dt
∫
dx(Ĥ(x,t)+

∑

n
JQn (x,t)Q̂(x)+

∑

m
Jψm(x,t)ψ̂m(x))

. (2.23)

The time ordering operator is T̂+. Hamilton’s operator Ĥ(x, t) ≡ H(â†(x), â(x), t), may
depend on time through external driving fields, for example. The source fields JQ and
Jψ are reserved for generation of expectation values of the composite operators Q̂(x) ≡
Q̂(â†(x), â(x)) and ψ̂(â†(x), â(x)). The novelty lies in their choice of these operators. In
Sect. 2.1.2 we have shown that the order operators appear naturally in the density matrix
describing the broken symmetry states. They constitute the set {ψ̂m} and their expectation
values will be the order parameters of the theory. It should be noted that when forming the
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equation of motion for 〈ψ̂〉, the Legendre multipliers J will be removed. Unlike real external
coupling fields, the Legendre transformation does not induce (explicit) symmetry breaking,
its only task is to make the broken symmetries visible in the form of the effective action
(or expectation values of order operators). Even though the generating functional looks like
the density matrix of the broken phase, it is a different entity. For example, if the system
is described by a linearly (explicitly) broken symmetry by an external driving field also the

symmetry of the Legendre transformed action will stay linearly broken [50]. Operators Q̂ are
the generators of the symmetries of the steady-state (equilibrium) density matrix the system
evolves to for large enough times. Their presence in Eq. (2.23) will be better justified in
Sect. 2.3.1, where it is shown that when the conserved densities in the equilibrium, we obtain
the familiar density functional results used in first principles calculations [51].

The initial state ρ0 in Eq. (2.22)is arbitrary: It can be a pure state or a mixture like
thermal ensemble, in which case Jβ is the source fixed at the imaginary time value β. Together
with the other sources J+ and J− it acts as the source field, which can be utilized in the
functional Legendre transformation. For a pure initial state, e.g. ρ0 = |0〉〈0|, the generating
functional can be written in a more concise form

Z[J ] =

∫

Dφ eS[φ]+JQn Qn[φ]+Jφmψm[φ] , (2.24)

where S is the action (not the effective action) defined in terms of the Lagrangian of the system
as in Eq. 2.14 and integrals are understood in the products JQn Qn[φ] and Jφmψm[φ] as well
as summation over repeated indices. The formal similarity with Eq. (2.10) is obvious (trace
of the density matrix gives the generating functional if we interpret the symmetry breaking
field η as source J). However, as pointed out in the previous paragraph, the effective action
formed with the aid of the generating functional Z[J ] is capable of describing the physics
both in broken and unbroken symmetry case. It is not tied to the broken symmetry phase
like the density matrix ρ̂ηeq.

2.2.1 S-matrix and Closed-time-path

S-matrix is one of the fundamental objects in particle physics. It relates the infinitely past
unscattered free particle |in〉 states to the scattered free particle states |out〉 at infinitely
distant future describing all possible scattering processes. In order to evaluate the probability
amplitude for some particular scattering process one needs to compute the scattering matrix
elements of the form

〈p′
1,p

′
2; out |p1,p2; in〉 ≡ 〈p′

1,p
′
2; in|Ŝ|p1,p2; in〉 (2.25)

for a two particle scattering event with incoming free particles (”on the mass shell”) with
momenta (p1,p2) and outgoing free particles with momenta (p′

1,p
′
2). In Eq. (2.25) we have

used the fact that the complete set of free in-states is transformed to the complete set of free
out-states by the S-operator: |out〉 = Ŝ†|in〉. Because the particle states can be created by
application of field creation operators on the vacuum in-state |0; in〉, we get

|p1,p2; in〉 = â†in(p1)â
†
in(p2)|0; in〉 . (2.26)

where the in and out (creation and annihilation) operators are just unitary transformations of

each other: â†out = Ŝ†â†inŜ. Furthermore, as we can easily express the momentum space cre-

ation and annihilation operators in terms of the real space ones φ̂(x), we see from Eq. (2.25)
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and Eq. (2.26) that the scattering matrix elements are obtained from computing the expecta-
tion values of products of field operators sandwiched between vacuum out-state and vacuum
in-state, or between vacuum in-states using the definition of the S-matrix in Eq. (2.25). Re-
versing the argument, the knowledge of these vacuum expectation values of the time ordered
products of field operators (Green’s functios) allows us to reconstruct the entire S-matrix.
As usual, the Green’s functions are most conveniently expressed in terms of the generating
functional [47] Z[J ] whose relation to S-matrix is given by [52]:

〈0; out|T̂+

H (J)|0; in〉 = 〈0; in|ŜT̂+

H(J)|0; in〉 = eıθSZ[J ] , (2.27)

where θS is a phase shift created generated by the time evolution and and the subscript H
refers to Heisenberg representation of the field operators φ̂H in the functional (h̄ = 1)

T̂+

H(J) ≡ T̂+

H(ti = −∞, tf = +∞; J) ≡ T̂+ e
ı
∫∞
−∞ dt

∫
dx J(x,t)φ̂H(x,t)

. (2.28)

The origin of the phase factor exp(ıθS) in Eq. (2.27) lies in the relation between the vacuum
in and out states [52]

|0; out〉 = Ŝ†|0; in〉 = eıθS |0; in〉 , (2.29)

Finally, the explicit operator representation for the S-matrix is expressed in terms of the
interaction picture time evolution operator:

Ŝ ≡ U(∞,−∞) = T̂+ e
−ı
∫∞
−∞ dt Ĥ′

I
(t)
, (2.30)

where ĤI is the the interaction picture (subscript I) representation of the interaction part

Ĥ ′of the full Hamiltonian Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 generates the time evolution of the free

fields: H ′
I = eıĤ0tH ′e−ıĤ0t (H ′ is in the Schrödinger picture representation).

We will now make some modifications to the traditional formalism presented above. First
we note that Eq. (2.27) can be generalized for composite operators coupled to source fields
J2(x1, x2), J3(x1, x2, x3) and so on. For example, the generating functional of both one and
two particle Green’s functions (correlation functions) can be written as

Z[J1, J2] = 〈0; out|T̂+

H (J1, J2)|0; in〉 (2.31)

= 〈0; out|T̂+ e
ı
∫
dx1 J1(x1)φ̂H (x1)+ı

∫
dx1

∫
dx2 J2(x1,x2)φ̂H(x1)φ̂H(x2)|0; in〉 , (2.32)

where xi = (xi, ti) (i = 1, 2). This starts already looking something like Eq. (2.23), where

composite operators Q̂ and ψ̂ appear. To keep the notation more compact, we do not consider
higher than linear couplings J1φ̂H below.

If we wish to modify the formalism further and make it better suited for description of
other type of time evolution more appropriate for condensed matter systems, it is not that a
good idea to fix the final state to be that of non-interacting free particles That is, we want
to leave out the fixed boundary condition 〈0; out| and consider only given initial conditions.
In other words we wish to consider only matrix elements between in-states (in-in formalism)
instead of in and out states (in-out formalism). We cannot use Eq. (2.27) directly even though
it obviously converts in-out element into in-in one. The reason is that we have assumed that
the time-evolution of the initial condition |0; in〉 is related to the final state |0; out〉 by a mere
phase factor as shown in Eq. (2.29). If we wish to consider the dynamics of real systems,
where the final state can be very different from the initial one (say, phase transitions take
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place during evolution) there is no guarantee that the vacuum states infinitely far in the past
and future are related through a phase factor. As interactions will be switched on and off
taking the system out of equilibrium, it future vacuum |0; out〉 can be unknown to us [53, 54].
To summarize, we leave out the S-operator from Eq. (2.27) and call

Z[J ] = 〈0; in|T̂+

H (J)|0; in〉 =

∫

Dφ eıS[φ]+ıJφ (2.33)

the generating functional of vacuum correlations when Eq. (2.29) holds (path integral rep-
resentation will be discussed in Sect. 2.2.3). If Eq. (2.29) does not hold, we generalize the
concept of the generating functional to include only the initial condition, which leads to the so-
called Closed-time-path (CTP) formalism or Keldysh formalism developed by Schwinger [55]
and Keldysh [56]:

Z[J+, J−] ≡ 〈0|T̂−
H (J−)T̂+

H(J+)|0〉 =

∫

D(φ+, φ−) eıS[φ+]−ıS[φ−]+ıJ+φ+−ıJ−φ− , (2.34)

where
∫D(φ+, φ−) ≡ ∫Dφ+

∫Dφ− and the integration paths for φ+ and φ− join at some
arbitrary late time tf , which can be taken to infinity (this can be seen by inserting unit

operator
∫ Dψ |ψ, tf 〉〈ψ, tf | between T̂−

H and T̂+

H). We have dropped the ’in’-labels from the
state vectors, as we are by definition working with the initial conditions (states) in this
formalism. We have also defined a new operator,

T̂−
H(J−) ≡ T̂−

H(ti = −∞, tf = +∞; J−) ≡ T̂− e
−ı
∫∞
−∞ dt

∫
dx J−(x,t)φ̂H (x,t)

. (2.35)

where T̂− is the anti-time ordering operator. Comparing Eq. (2.34) with Eq. (2.27) we
can say that CPT (in-in) formalism compares the overlap of final states, which result from
having two vacua evolving under two different sources J+ and J−, whereas the ordinary in-out
formalism compares the overlap of the fixed final state with one that results from evolution
of initial vacuum under one source field. The doubling of the sources comes naturally given
the representation used in Eq. (2.34): If J+ = J− then, the operators T̂+

H and T̂−
H will cancel

each other. Using a different representation, though, as for example in Sect. (2.2.2), we see
that sources doubling is not absolutely necessary, but it leads to more symmetric theory. The
doubling of the time axis emerges naturally in both cases.

2.2.2 Initial correlations

In the previous section we generalized the usual generating functional formalism in two ways:
We allowed for more general sources (though, for notational simplicity we are using just a
single particle source) and we introduced a closed-time-path integration. Now it is time to
present a third generalization, which allows us to deal with arbitrary initial states, not just
vacuum states:

Z[J+, J−; ρ0] ≡ Tr
{

ρ0 T̂
−
H(ti, tf , J−)T̂+

H(ti, tf , J+)
}

(2.36)

=

∫

D(φ1, φ2, φ3) 〈φ1|ρ0|φ2〉〈φ2|T̂−
H(ti, tf , J−)|φ3〉〈φ3|T̂+

H(ti, tf , J+)|φ1〉 (2.37)

=

∫

D(φ1, φ2) 〈φ2|ρ0|φ1〉
∫

Dφ3

∫ φ3

φ1

Dφ+

∫ φ3

φ2

Dφ− eıS[φ+]−ıS[φ−]+J+φ+−J−φ− , (2.38)
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where the time integrals in the action and coupling terms run from ti to tf . The density
matrix of the initial state at initial time t = ti is denoted by ρ0. Setting ρ0 = |0〉〈0| (and
ti = −∞, tf = ∞) reproduces Eq. (2.34). How to obtain the path integral of Eq. (2.38) will
become clear in Sect. 2.2.3.

Perhaps an intuitively easier way of understanding how the closed-time-path arises is not
to us the definition of Eq. (2.34) but to start off directly with the Green’s functions (which
can be produced by taking functional derivatives with respect to the sources of the generating
functional). The one-particle (temperature) Green’s function is defined as

G1(x) ≡ 〈φ̂H(x)〉ρ0 = Tr{ρ0U(ti, t)φ̂I(x)U(t, ti)} , (2.39)

where the arbitrary initial density matrix is ρ0 and x = (x, t). The second equality follows

from using the relation between the Heisenberg (φ̂H) and interaction representation (φ̂I)

operators: φ̂H = Uφ̂IU
−1. The interaction picture time evolution operator is defined in

Eq. (2.30). It should be kept in mind that it is different from the free field time evolution

operator exp(ıĤ0t) which appears when Schrödinger picture operators are transformed into
interaction representation. Taking the initial time ti to −∞ we get

G1(x) = Tr{ρ0 U(−∞, t)

1̂
︷ ︸︸ ︷

U(t,∞)U(∞, t)φ̂I(x)U(t,−∞)
︸ ︷︷ ︸

T̂+[Ŝφ̂I(x)]

} = Tr{ρ0 Ŝ
†T̂+[Ŝφ̂I(x)]} . (2.40)

We have first inserted a unit operator and then combined the product of the first two time
evolution operators into Ŝ† = U(−∞,∞). Use of the time ordering operator T̂+ was justified

because the field operator φ̂I(x) is defined at time t. In a similar manner, we obtain the
two-point Green’s function (t1 < t2)

〈φ̂H(x1)φ̂H(x2)〉ρ0
= Tr{ρ0 U(ti, t1)φ̂I(x1)U(t1, ti)U(ti, t2)φ̂I(x2)U(t2, ti)}|ti=−∞ (2.41)

= Tr{ρ0 U(−∞, t1)U(t1,∞)T̂+[U(∞, t1)φ̂I(x1)U(t1, t2)φ̂I(x2)U(t2,−∞)]} (2.42)

= Tr{ρ0 Ŝ
†T̂+[Ŝφ̂I(x1)φ̂I(x2)]} = Tr{ρ0 T̂P [Ŝ†Ŝφ̂I(x1+)φ̂I(x2+)]} . (2.43)

The complete time path P = C+ + C− consists of two contours C+ : t+ ∈ (−∞,+∞) and
C− : t− ∈ (+∞,−∞), which can be imagined form a closed loop around the time axis.

In Eq. (2.43) we have defined a time path order operator T̂P which sets consecutive time
arguments in the countour C+ before those on the countour C−. This convention allows us
to place the operator Ŝ† to the right hand side of the path ordering operator in Eq. (2.43).

Without the the field operators φ̂I(x1+)φ̂I(x2+) (whose time arguments lie on contour C+:

x+ ≡ (x, t+)) we would simply get Ŝ†Ŝ = 1̂. Following Ref. [57] we can now define the
following single source generating functional of the Green’s functions

Z[J ] ≡ Tr

{

ρ0 T̂P

[

Ŝ†Ŝ eı
∫
dxJ(x+)φ̂I(x+)

]}

. (2.44)

To get a more symmetrical expression for the generating functional we can now introduce
another source field J(x−), which is is coupled to field operator φ̂I(x−). Furthermore, setting

Ŝ†Ŝ = exp(−ı ∫
P
dt Ĥ ′

I(t)) yields

Z[JP ] = Tr

{

ρ0 T̂P

[

e−ı
∫

P
dt Ĥ′

I(t)+ı
∫

P
dxJ(xP )φ̂I (xP )

]}

, (2.45)
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where the source term J(xP ) = J(x+) when t ∈ C+, and J(xP ) = J(x−) when t ∈ C−. Hence,
the source JP consists actually of two sources, one defined for the positive contour and one
for the negative. For all practical purposes, we can call them by different names J+ and J−.
The source term can be then written as

∫

P

dx J(xP )φ̂I(xP ) =

∫

dx

∫ ∞

−∞
dt
(

J+(x, t)φ̂I (x, t) − J−(x, t)φ̂I (x, t)
)

. (2.46)

The negative sign in front of the second term derives from the fact that we have inverted
the integration direction of negative times on contour C− to be the same as on the positive
contour. The equivalence of the three different representations (Eq. (2.45), Eq. (2.36) and
Eq. (2.22)) of the generating functional will be shown in Sect. 2.2.3.

Let us now briefly discuss some of the effects of the initial density matrix ρ0 on the physics.
With the aid of it we can conveniently model the evolution of pure states or mixtures such as
thermal ensembles, which are in equilibrium at t = ti. Several different initial state examples
have been considered for instance in Refs. [58, 59]. Let us first consider a case where the
equilibrium density matrix ρ = e−βH has the same Hamiltonian operator, which appears as
the generator of the non-equilibrium dynamics in the time evolution operator U (Eq. (2.23)).
In this case we can decompose the time path in three pieces: In addition to the normal
contours C+ : [ti → tf ] and C− : [tf → ti] there is evolution along the imaginary time path
denoted by Cβ : t ∈ [ti, ti − ıβ]. Typically we set ti → −∞ recovering the results of this
section. The advantage of setting the initial time infinitely far away is that in the generating
functional the contribution from thermal path Cβ decouples [60] and can be left out based
on Riemann’s lemma. It has been shown by direct calculation that leaving out the initial
density matrix (more correctly, contribution from the contour Cβ) leads to the neglect of
initial correlations [61, 62]. When the contribution from the thermal contour is left out, we
can say that the system has no direct memory of its initial conditions. Still, it turns out that
there is a remnant of the thermal initial conditions in the explicit form of the propagators of
the theory in case the system was in Gibb’s state to begin with, see Sect. 2.2.3 and Sect. 2.2.4.

In the case of general non-Gibbsian initial conditions at finite ti, the thermal contour plays
no role anymore. Yet, we can represent the matrix elements of the initial density matrix in
an exponentiated form as will be shown in Sect. 2.2.3. Cutting off the correlation at two-
point level leads to Gaussian initial noise. Higher order corrections are straightforward to
include [63, 58]. In addition to more general type of initial correlations, also more complicated
path structures have been considered in Refs. [64, 60, 65]. It should be noted [59], though,
that the Thermo Field Method of Ref. [64] and the finite temperature field theory of Ref. [65]
reduce in the zero temperature limit to the in-out formalism described in Sect. 2.2.1 as
the existence of vacuum-out state has to assumed. In contrast the method described in
Ref. [60] reduces to in-in formalism and is thus able to deal with genuine nonequilibrium
dynamics. There are also exceptional cases where the contour Cβ cannot be excluded [64]
even if ti → −∞.

2.2.3 Different representations of the generating functional

Both the interaction picture and the Heisenberg picture form of the non-equilibrium gener-
ating functional can be related simply by leaving out the interaction Hamiltonian Ĥ ′

I from

the expression of the generating functional (2.45) and replacing the field operators φ̂I by

Heisenberg operators φ̂H . To see how this comes about start with Eq. (2.22) which allow
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us to present the single source evolution operator in the form (for arbitrary time ordered
operators, see e.g. [66])

U(tf , ti, J+) = T̂+e
ı
∫ tf
ti
dt
∫
dxH(φ̂(x))+J+(x,t)φ̂(x)

(2.47)

= U0 T̂+e
ı
∫ tf
ti
dt
∫
dx J+(x,t)φ̂H (x,t)

= U0T̂
+

H(J+) , (2.48)

and U0 ≡ exp(ı(tf − ti)Ĥ). A similar decomposition can be applied to the time evolution
operator U−1. Due to the anti-time ordering, we obtain

U−1(tf , ti, J−) = T̂−e
−ı
∫ tf
ti
dt
∫
dx J−(x,t)φ̂H(x,t)

U−1
0 = T̂−

H(J−)U−1
0 . (2.49)

Using the representations of the time evolution operator given above, the generating func-
tional of Eq. (2.23) now becomes

Z[J+, J−, ρ0] = Tr
{

U(tf , ti, J+)ρ0U
−1(tf , ti, J−)

}

=Tr
{

ρ0U
−1(tf , ti, J−)U(tf , ti, J+)

}

(2.50)

= Trρ0 T̂
−
H(J−)U−1

0 U0 T̂
+

H(J+) = Tr

{

ρ0 T̂P

[

eı
∫

P
dt
∫
dx J(xP )φ̂H(xP )

]}

. (2.51)

As different authors use slightly different language, we mention by passing that the first
equality in Eq. (2.50) is consistent with the definitions of Refs. [67, 68], the last in Eq. (2.51)
with Refs. [69, 58, 63]. Moreover, if we choose to use a different decomposition in Eq. (2.48),
we can easily arrive at the interaction representation discussed in the previous section. Dis-
entangeling only the free (quadratic) part Ĥ0 of the full Hamiltonian Ĥ = Ĥ0 +Ĥ ′, such that

U0 = exp(ı(tf − ti)Ĥ0) takes us from Eq. (2.51) back to Eq. (2.45).
It is also easy to show how the path integral representation of the generating functional

arises using Eq. (2.51). Any time (path) ordered functional of Heisenberg operators can can
represented in the path integral form [70] using

〈ψ′, t′|T̂P [φ̂H(t1)φ̂H(t2) . . . φ̂H(tn)]|ψ′′, t′′〉

= 〈ψ′|e−ı(t′−t1)Ĥ φ̂e−ı(t1−t2)Ĥ φ̂e−ı(t2−t3)Ĥ . . . φ̂e−ı(tn−t
′′)Ĥ |ψ′′〉 (2.52)

= N
∫ ψ′′

ψ′
Dφ
∫

Dπ φ(t1)φ(t2) . . . φ(tn) e
ıS[φ, t′, t′′ ], (2.53)

where the N is a normalization constant and the action S[φ, t′, t′′] =
∫ t′

t′′dt
∫
dxπ(x)φ̇(x) −

H(φ). Typically, the Hamiltonian can be presented in terms of the momentum (π(x)) and
position (φ(x)) variables in the form H = (1/2)π2(x) + (1/2)|∇φ|2 + V (φ). For a general
functional F we obtain

〈ψ′, t′|T̂PF [φ̂H ]|ψ′′, t′′〉 = N
∫ ψ′′

ψ′
Dφ
∫

Dπ F [φ] eıS[φ, t′, t′′] . (2.54)

The normalization factor depends on the space-time volume (time interval and space volume
to be integrated over) but not on the form of the functional F . The boundary conditions of
the φ integral satisfy φ(x, t′) = ψ′(x) and φ(x, t′′) = ψ′′(x). For π-integration there are no
boundary conditions (all time slices to be integrated from −∞ to ∞). Finally, all the time
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arguments of F [φ] must lie in the interval [t′′, t′]. Treating T̂±
H as the functional F [φ̂H ] it is

now easy to see how the path integral representation of Eq. (2.38) comes about.

If the initial density matrix is of the Gibbsian form, ρ0 = exp(−βĤ), we can let it act on
the state vector on the left and obtain simply

〈ψ′, t′|ρ0 = 〈ψ′, t′ − ıβ| . (2.55)

This gives rise to the thermal contour in the complex time plane mentioned in Sect. 2.2.2.
In the path integral representation of the generating functional the trace operation the pres-
ence of the thermal contour enforces the so-called Martin-Kubo-Schwinger (MKS) boundary
condition on the end points of the φ-integration:

Z[J+, J−, ρ0 = e−βĤ ] = N
∫

Dφ
∫

Dπ eı
∫

P
[πφ−H(φ)+Jφ] = N

∫

Dφ eıS+ıJφ , (2.56)

where the MKS-restriction on φ-integral becomes φ(x, t′′− ıβ) = φ(x, t′′), and t′′ is the initial
time. For more general initial states than thermal Gibb’s state having the same Hamiltonian
as in the time evolution operator, we can use the techniques of Calzetta and Hu [58]. The
matrix elements of the initial density matrix in Eq. (2.38) are exponentiable

〈φ1, ti|ρo|φ2, ti〉 = exp(ıK[φa]) , (2.57)

where the functional K[φa] = K +
∫
dxKa(x1)φa(x1) + Kab(x1, x2)φa(x1)φb(x2) + . . ., and

summation over a, b = +/− corresponding to different time contours is implied. The integrals
in the expression of K[φa] can be written as four dimensional ones, if one supplements all
prefactor functions Ka, Kab and so on, with delta functions of time, which restrict the time
moment to the initial time ti (cf. also [69]). The full generating functional can be conveniently
presented as depending on ’new’ source fields Ka,Kab etc. in addition to the old ones J+ and
J−:

Z[J+, J−, ρ0] = Z[Ja,Kab,Kabc] =

∫

D(φa) e
ı(S[φa]+Jaφa+Kabφaφb+Kabcφaφbφc+...) , (2.58)

where Ka has been adsorbed into Ja. It should be kept in mind that the K-kernels are only
non-zero at initial time. As we will see, a similar looking expansion can be generated for in-
fluence functional as well but there the kernel functions are defined for all times. By including
the boundary conditions regarding initial times (or in general any fixed time moment) into
the definition of the path integral measure, will compactify the path integral representation
of the generating functional further. For example, leaving out the initial density matrix ρ
from Eq. (2.38) we could write

=

∫

Dφ+

∫

Dφ− eıS[φ+]−ıS[φ−]+J+φ+−J−φ− , (2.59)

which would mean that φ+(x, tf ) = φ−(x, tf ) = φ3(x), where φ3 is just a dummy field to be
integrated over and the initial condition is given (vacuum boundary). This notation [48, 71]
can be traced back to Ref. [72]. This can still be made shorter by not separating the time
contours or by going over to a doublet field (φ+, φ−) vector representation [73].
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2.2.4 Heat bath and the influence functional

In general, we can divide the degrees of freedom under study into two groups: the system
degrees of freedom which are directly relevant to us and the degrees of freedom, which we are
not directly interested in but which nevertheless have to be taken into account somehow to
get the correct description of the physics involved. The latter degrees of freedom are called
(heat) bath variables or just bath for short.

We introduce the field b for bath variables and φ for system variables. Using Eq. (2.50)
we can write the generating functional

Z[J+, J−, ρ0] = Tr
{

ρ0U
−1(tf , ti, J−)U(tf , ti, J+)

}

, (2.60)

where the initial density matrix has been assumed to be separable into two thermal Gibbs
states: ρ0 = ρb0 ⊗ ρs0 (b for bath and s for system). More general initial state preparations
have been considered e.g. in Ref. [74]. Assuming that the equilibrium Hamiltonians of the
initial density matrices are the same in the time-evolution operators, we can conveniently
cast ρ0b and ρ0s into the form of imaginary time evolution operators. From Eq. (2.48) we
obtain

Us0(ti − ıβs, ti, Jβs) = T̂P e
ı
∫ ti−ıβs
ti

dt
∫
dxHs(φ̂(x))+Jβs (x,t)φ̂(x)

(2.61)

Ub0(ti − ıβb, ti, 0) = T̂P e
ı
∫ ti−ıβb
ti

dt
∫
dxHb(b̂(x))

= e−βb
∫
dxH(b̂(x)) . (2.62)

Initially, the temperatures of the system and the bath have been the same. Choosing them
differently allows us to model situations where the system starts off from some non-equilibrium
temperature with respect to bath and evolves towards a new equilibrium state characterized
by the bath temperature βb. No source has been assigned to to equilibrium bath functional
because we will not be interested in the bath dynamics. The same applies to the evolution
operator U of the system-bath complex:

U(tf , ti, J+) = T̂P e
ı
∫ tf
ti
dt
∫
dxHs(φ̂(x))+Hb(b̂(x))+Hint(φ̂(x),b̂(x))+J+(x,t)φ̂(x)

(2.63)

The interaction Hamiltonian between the system and the bath is denoted by Hint. Insertion
of three unit operators of the form 1̂ =

∫ Dφi
∫ Dbi |φ, b〉〈b, φ| (i = 1, 2, 3) into the expression

of the generating functional (2.60) gives (cf. Eq. (2.37))

Z[J+, J−, Jβs ] =

∫

D(φ1, φ2, φ3)

∫

D(b1, b2, b3) {〈φ1, b1|Us0(ti − ıβs, ti, Jβs)Ub0(ti − ıβb, ti)

× |φ2, b2〉〈b2, φ2|U−1(tf , ti, J−)|φ3, b3〉〈b3, φ3|U(tf , ti, J+)|φ1, b1〉
}

.(2.64)

We can now (at least formally) eliminate the bath variables in terms of a so-called influence
functional I[φ+, φ−] defined as [75, 76]

I[φ+, φ−] ≡
∫

D(b1, b2, b3)

∫

D(b+, b−, bβ) e
ı(Sb [b+]−Sb[b−]+Sint[φ+,b+]−Sint[φ−,b−]) eıSb[bβ ] . (2.65)

The time limits of the actions in the previous result are given in terms of the corresponding
Lagrangian densities as follows:

Sb[b±] =

∫ tf

ti

Lb[b±] ; Sint[φ±, b±] =

∫ tf

ti

Lint[φ±, b±] ; Sb[bβ ] =

∫ ti−ıβb

ti

Lb[bβ] . (2.66)
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The boundary conditions for the fields can be read off from the matrix elements of Eq. (2.64).
Specifically, b1 = b+(ti) = bβ(ti − ıβb), b2 = b−(ti) = bβ(ti) and b3 = b+(tf ) = b−(tf ). For a
general initial condition ρb0 we would obtain [76],

I[φ+, φ−] ≡
∫

D(b+, b−) eı(Sb[b+]−Sb[b−]+Sint[φ+,b+]−Sint[φ−,b−]) 〈b+(x), ti|ρb0|b−(x), ti〉 , (2.67)

where we have used Jordan’s notation (Eq. (2.59)) the end point integration being included
in the path integral measure. Using the expression (2.65) of the influence functional, we can
now express the nonequilibrium generating functional as

Z[J+, J−, Jβs ] ≡ (2.68)
∫

D(φ1, φ2, φ3)

∫

D(φ+, φ−, φβ) e
ı(Ss[φ+]+J+φ+−Ss[φ−]−J−φ−) eı(Ss[φβ ]+Jβsφβ) I[φ+, φ−] .

The path integral representation of Z is almost the same as the expression of I but bath
fields b replaced with the system field φ. The action terms are defined as

Ss[φ±] =

∫ tf

ti

dtLs[φ±] ; Ss[φβ ] =

∫ ti−ıβs

ti

Ls[φβ ] . (2.69)

Similarly to the influence functional, the boundary conditions for φ-integrals are: φ1 =
φ+(ti) = φβ(ti − ıβs), φ2 = φ−(ti) = φβ(ti) and φ3 = φ+(tf ) = φ−(tf ).

The influence functional has played major role in many of the modern approaches to dis-
sipative quantum systems [74]. Some of the ideas leading to the effective action description
and thereby to influence functionals, can be traced back to the seminal paper by Onsager
and Machlup [77], where they considered the probability distribution(s) of linear classical
Langevin equations (point particles moving under stochastic force). In the semi-classical
approximation this is nothing but the transition probability for a quantum particle (field
theoretic transition probability can be formulated in the same way, see Ref. [60]). However,
in this analogue there are no noise sources (bath) in the quantum level, only the classi-
cal equation can be seen to contain (bath generated) noise. In the quantum context both
quadratic and more complicated heat baths were considered by Feynman and Vernon [78].
Instead of the generating functional one can also consider the time evolution of the reduced
density matrix of the system. For suitable coupling Hamiltonian Caldeira and Leggett [79]
showed that it obeys a Fokker-Planck equation. This piece of information becomes relevant
for us, too, as it offers another possibility to study the dynamics of phase transitions: The
relevant variables can be read off from the symmetries of the density matrix or the effective
action. Because the reduced density matrix changes in time, it is possible that its symmetries
at two different times differ from each other (initial symmetries can be different from the final
ones).

We will now see, how one can reduce the generating functional to a form suitable for
perturbative calculations. In case the coupling term Lint = −gbφ is linear in the bath and
system variables, the influence functional can be computed perturbatively as described by
Niemi [60]. The system and bath Lagrangians are of the general form L = L0 − V , where L0

is the quadratic free part (L0 = −(1/2)φ(2 +m2
s)φ and correspondingly for the bath) and V

contains the nonlinear self-interactions. Assuming that the initial time is taken to ti → −∞,
the thermal contour decouples and the influence functional simplifies to

I[φ+, φ−] =

∫

D(b+, b−) exp

(

ı

∫
1

2
φaD

−1
ab φb + V (φ−) + b−φ− − V (φ+) − b+φ+

)
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= exp

(

−ı
∫

V [−ıδ/δφ+] + ı

∫

V [+ıδ/δφ−]

)

exp

(
ıg2

2

∫ ∫

φaDab φb

)

(2.70)

= exp

(

−ı
∫

P

V [ıδ/δφ]

)

exp

(
ıg2

2

∫

P

∫

P

φD φ

)

(2.71)

Time integrals are running from −∞ to ∞ and a, b = ±. In the last equation (2.71) we have
not separated the contours to point out the contour propagators can be extracted from the
Green’s function of the free field [69, 65] satisfying (2 + m2

b)D = −ıδP (x1 − x2) satisfying
the Kubo-Martin-Schwinger periodicity condition (2.55). The solution can be presented com-
pactly in terms of the contour ordered theta function θP : D(x1, x2) = θP (t1, t2)D>(x1, x2) +
θP (t2, t1)D<(x1, x2), where

θP ≡







θ(t1 − t2) for t1 and t2 both on C+ ;
θ(t2 − t1) for t1 and t2 both on C− ;
1 for t1 on C+ and t2 on C− ;
0 for t1 on C− and t2 on C+ .

(2.72)

The contour ordering extends in the intuitive manner to the thermal contour as well, but as
we have dropped it from the generating functional when taking ti → −∞, we do not need to
specify the imaginary time ordering at this point. Going back to ± contour representation,
the Green’s functions Dab are now expressible as

D++(x1, x2) = θ(t1 − t2)D>(x1, x2) + θ(t2 − t1)D<(x1, x2) ; (2.73)

D−−(x1, x2) = θ(t2 − t1)D>(x1, x2) + θ(t1 − t2)D<(x1, x2) ; (2.74)

D+−(x1, x2) = −D<(x1, x2) ; (2.75)

D+−(x1, x2) = −D>(x1, x2) , (2.76)

where the signs are defined consistent with the direction of time contour integration in
Eq. (2.70). The advanced and retarded Green’s functions contain traces of the initial thermal
state even if we have left out the thermal contour contribution from the generating functional.
The Fourier space representation reads:

D>(k, t1, t2) = − ı

2ωk
[(1 − f(ωk))e

−ıωk(t1−t2) + f(ωk)e
ıωk(t1−t2)] , (2.77)

and D>(k, t1, t2) = D<(k, t2, t1). The thermal distribution function f(ωk) ≡ 1/(exp(βbωk) −
1) and ωk ≡ (m2

b + k2)1/2. Therefore, even if the system forgets about the direct influ-
ence of infinitely past initial conditions there will be an indirect contribution always in the
propagators.

A considerable simplification occurs for quadratic baths because we can leave out the
V [ıδ/δφ] term in Eq. (2.71). Now, the influence functional becomes

I[φ+, φ−] = exp

(
ıg2

2

∫ ∫

φaDab φb

)

(2.78)

= exp

(
ıg2

2

∫ ∫

(φ+D++ φ+ + φ−D−− φ− − φ+D+− φ− − φ−D−+ φ+)

)

(2.79)

Thus, for quadratic heat baths (or heat baths which are truncated at quadratic level [80]) the
only effect of the bath is that the free field structure of the action of the generating functional
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is modified. Eq. (2.68) reads now

Z[J+, J−, Jβs ] ≡ (2.80)
∫

D(φ+, φ−, φβ) e
ı(S0

s [φ+,φ−]+Vs[φ+]+J+φ+−Vs[φ−]−J−φ−) eı(Ss[φβ ]+Jβsφβ) .

To simplify notation, we have assumed that the integrals over contour end points are included
in the integral measure. We have also defined the ’free’ action

S0
s [φ+, φ−] ≡ (2.81)

1

2

∫ (

φ+(−2 −m2
s − D̃++)φ+ − φ−(−2 −m2

s + D̃−−)φ− − φ+D̃+−φ− − φ−D̃−+φ+

)

,

where D̃ab ≡ g2Dab. So, in a sense, even though we have not double the physical degrees
of freedom we can now think Z to represent a system, where there is in addition to the
quadratic massive self-interaction also a linear coupling between fields φ+ and φ−. This
interaction, though, is dissipative as it derives from the bath interaction. To model real
systems, however, one needs to use approximations for the bath-system interaction, which
means that depending on the approximation the dissipative effects might not be visible for
some composite observables (at least not to lowest order) as we will see in Chap. 5. We also
point out the full generating functional (2.80) (with quadratic or non-quadratic bath) can be
cast into a form similar to Eq. (2.70) for extraction of Feynman diagrams.

2.2.5 Remarks on external baths, internal baths and renormalization

Bath is called external if its degrees of freedom are separable entities from the system variables
and do not require the latter for their definition. The external heat bath variables can be for
example particles of type A, which are different from the system constituent particles B. If a
clearcut distinguishability is not possible, the bath is called internal: The system acts as its
own heat bath. For example, the high frequency Fourier modes of the field φk may constitute
the noisy background of the low-lying Goldstone modes, which make up the system relevant
in the hydrodynamic limit. Thus, the concept of internal bath is relevant for renormalization
process, where the short wavelength (large wave vector) k> modes act as a heat bath of the
long wavelength modes k<. Integrating out the rapidly oscillating components of the field
variables produces stochastic damped equations of motion for the macro variables living on
the scale k<. The problem, which is always present in this type of approach is that even if we
are able to recognize the relevant scales (which might be many even if the number of coupling
constants is small [81]) it can be difficult isolate the different components in practice [82].

As an idealization one can imagine knowing the fast external bath degrees of freedom
and their coupling to the slow system variables. Postulating simple enough properties for
bath, it can be eliminated partially or completely and the effective system equations of
motion derived. Making the size of the bath infinite induces genuine decay of correlations
and irreversibility. Also, non-dissipative equations of motion can result for some subset of
macro variables. Contrary to the internal bath case, which consists only of the system, one
does not have to assume the system to be infinitely large to see explicit decay. The use
of external bath allows different kinds of macroscopic boundary conditions to be studied,
but in its explicity it is also prone to produce only specialized results depending on the
particular way the coupling between the system and the bath has been chosen and what the
bath properties are [83]. In the Applications part of this thesis we will study the dynamics
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of superconductors, where we have a phonon bath acting on system consisting of electrons.
This bath can be considered as external since we assume to know its properties at Gaussian
level without any renormalization effects from the back reaction of the electrons. Of course,
this is just the zeroeth order approximation, which can be improved on. We also discuss the
Bose fluids, which have an internal phonon-like bath as can be seen from their excitation
spectra.

From the point of theoretical formulation, the division to internal and external baths
is somewhat artificial, as the generating functionals look the same in both cases, only the
variables have to be re-interpreted. However, from the point of view of elimination of the
bath modes, there is an important difference: For internal baths, the elimination takes places
gradually respecting long range symmetries of the effective action as in the momentum shell
RG. For external ones, we can decimate the bath degrees entirely regardless of their k-values.
This process does not necessarily respect the original symmetries the action of the system-
bath complex possessed before removal of the bath. If we choose to remove only the most
rapidly oscillating Fourier modes of the bath, we can not eliminate it entirely from the effective
description and we are then in a sense dealing with internal type of bath.

For internal baths the generating functional looks exactly like in the external case, where
field only have different names. First, we divide the field variable (Φ) into slow (φ) and fast
(ϕ) modes (soft and hard modes in the particle physics jargon) Φ = φ+ ϕ,

φ(x) =

∫

|k|<K
dkΦk e

ıkx ; ϕ(x) =

∫

K<|k|<Λ

dkΦk e
ıkx , (2.82)

where K is corresponds to some coarse-graining box size and Λ is the upper cut-off of integra-
tion. Thus, ϕ = b if we want to use the external bath language. Of course, the division is quite
arbitrary (as compared to external bath case). Moreover, the assumption about the factoriz-
ability of the initial state might be even a worse assumption for internal baths than what it is
for external ones. The action gets split accordingly: S[Φ] = S[φ, ϕ] = Ss[φ]+Sb[ϕ]+Sint[φ, ϕ].
The influence functional reads [84]

I[φ+, φ−] = (2.83)
∫

D(ϕf , ϕ
i
+, ϕ

i
−)

∫

D(ϕ+, ϕ−) eı(Sb[ϕ+]−Sb[ϕ−]+Sint[φ+,ϕ+]−Sint[φ−,ϕ−]) ρ0(ϕ
i
+, ϕ

i
−, ti) ,

which is nothing but our earlier result (2.67). Performing a partial trace (see Sect. 6.3.1
and Sect. 6.5) over the hard modes one obtains an effective action Seff [φ,K] for the soft
ones [85, 86]:

eıSeff [φ,K] ≡
∫

Dϕ eıS[φ,ϕ] . (2.84)

This, of course, is nothing but Wilson’s momentum shell RG [87]. Integrating over all fields
produces the generating functional Z[J ], which links together the expectation value of the
coarse-grained variable 〈φ〉J and and the source as explained in Sect. 2.1.3:

Z[J ] ≡ exp(W [J ]) =

∫

DΦ eı(S[Φ]+JΦ) , (2.85)

and the generating functional (effective action) is given by A[〈φ〉J ] = W [J ]−J〈φ〉J In general,
the two actions A and Seff are not the same (cf. [84])!. We point out that even in the limit
K → 0 the identification Seff [φ,K = 0] = A[〈φ〉J=0], requires the equivalence of the ensemble
and spatial averages (see Sect. 6.5). This difference should be kept in mind when constructing
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the equations of motion for relevant variables. Both actions can be said to be coarse-grained:
A[〈φ〉] contains the ensemble average of a macroscopically relevant observable (slow variable)
and Seff [φ] contains only the Fourier modes of the field Φ, which are relevant on large scales.
In fact it is possible to combine these two methods (elimination of high frequency modes
directly from A[〈φ〉]) into a so-called non-perturbative renormalization group method [88, 34]
which belongs to a family of exact renormalization group techniques [89, 90]. These methods
form an effective action AK relevant for momentum scale K and contrary to Seff [φ,K],
in this case it is true that limK→0 AK → A[〈φ〉J=0]. Though, the extension to composite
operators, which is essential for our purposes of describing nonequilibrium thermodynamics,
requires still work [91].

The same remarks that we made on the coarse-grained system dynamics apply to soft
mode dynamics as well. As we will see in Sect. 2.3.3 below, the dynamics follows from requir-
ing stationarity of the effective action A with respect to 〈φ〉. The dynamics of the soft modes
will be stochastic and dissipative with possible non-local features in space and time [92].
Moreover, one expects renormalization of the parameters of the soft mode Lagrangian and
appearance of new effective interactions of higher order in field variables. As in ordinary
quantum mechanics, the field theoretical models seem to produce Langevin types of equa-
tions of motion whose stochastic properties can be determined from the generating functional
directly. For example, Arnold et al. [93] and Bödeker have derived Vlasov-Boltzmann equa-
tions of motion for the soft modes of the gauge field in non-Abelian plasmas. Their example
is relevant for any effective field theory as they coarse-grain an already coarse-grained the-
ory. In other words, there are two energy scales in the theory to begin with. Removing all
momentum modes up to energy scale fixed by the temperature T produces a so-called Hard
Thermal Loop effective theory of the full quantum field theory (QCD). Then integrating out
all momenta to the next cut-off scale K = g2T (where g is the weak coupling constant)
produces a coarse-grained theory for the soft modes. This theory is simpler than the original
being characterized just by a single scale g2T . Moreover, the correlators of the noise term
can also be computed from first principles. Another example of elimination of large momen-
tum modes, which in addition utilizes the CPT-formalism, is the dynamic renormalization
group application to stochastic differential equations [94] offering an alternative of the more
traditional Martin-Siggia-Rose technique [95].

The elimination of hard modes is a powerful approach to coarse-graining. It is clear
from the examples given above and many others that it can be applied to a systems of high
complexity, both in classical and quantum settings. Its generality is also one of its weaknesses
from the point of view of coarse-graining. For it is often the case that removing short scales
also removes some degrees of freedom whose presence might be useful at the next level of
the hierarchy of the effective models. For example, suppose we want to construct an effective
description of the system consisting of atoms of type A and B. Atoms A tend to react
with each other forming bound molecules A−A, whose whose chemical properties are vastly
different from the individual atoms: They can react with the B atoms whereas single atoms A
are not likely to do so. Starting with non-equilibrium initial condition where all the atoms are
well separated from each other, we observe formation of molecules A−A and their reactions
with B particles. A blunt removal of some degrees of freedom, say the A-atoms can result in a
very complicated effective interactions between the ’system’ degrees of freedom, the B atoms,
making the modelling of the effective B system equally hard as the original problem despite
the reduction in the number of degrees of freedom. What would make more sense, is to keep
the A−Amolecules in the effective description of the coarse-grained level (system = A−A + B
) instead of introducing some complicated force fields between the B atoms alone. This would
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be possible if the RG procedure would be selective. In other words, it should only remove
the degrees of freedom of least importance. There have been attempts to formulate RG
approach in this manner [33] (cf. Sect. XI in Ref.[96]) but we are still missing more powerful
tools. One way of producing the ’packaging’ effect of particles (clustering of several particles)
is to use composite operators in the effective action (higher order products of several basic
field operators) in the manner we have described in this chapter. This has been discussed
by Kleinert in Refs. [97, 98, 99], where he shows the importance of the effective action
A[Φ, G, α3, α4] in modelling effects of clusters up to four particle composites. This is nothing
but fourth order Legendre transform discussed in Sect. 2.1.3. An analogous formulation in
the sense of the role of the expectation values of the composite (cluster) operators has been
formulated in the non-relativistic many-body theory context. These methods, which are not
based on effective action directly, but reparametrization of many-body Hilbert space, are
collectively known under the name coupled cluster methods [100], whose extensions has been
studied by Arponen, Bishop, Pajanne and Robinson [101, 102, 103, 104]. The potential of
these techniques has not yet been fully exploited in the general coarse-graining methodology.

2.3 How to use the formalism in and out of equilibrium

The first section is devoted the determination of the equilibrium properties of the generat-
ing functional formalism. It is shown how the generating functional formalism reproduces
the results of the ground state and finite temperature quantum density functional theories.
Sect. 2.3.2 shows that the various time dependent formulations of density functional theory
are equivalent to the generating functional formalism. Sect. 2.3.3 concentrates on the (non-
linear) deterministic dynamics. The actual process of going to equilibrium will be addressed
in Sect. 2.3.4, where stochastic properties are discussed.

2.3.1 Finite temperature Density Functional Theory

It is important to realize that the nonequilibrium generating functional formalism does not
only reproduce the equilibrium thermodynamics of homogeneous systems when the sources J+

and J− are set to zero (or time-axis is made unique through J+ = J−), but it also reproduces
the equilibrium thermodynamics of inhomogeneous systems, which usually goes under the
name Density Functional theory. In Chap. 6 we discuss more throughly the differences and
similarities of classical and quantum density functional theories at finite and zero temperature.
Here we concentrate on demonstrating that the zero and finite temperature quantum density
functional theories correspond to the equilibrium limit of the generating functional formalism.

When J+ = J−, the time evolution operators of Z cancel each other out because of the
cyclic property of the trace and Eq. (2.22) reduces to the expression of the (initial) equilibrium
generating functional

Z[Jβ ] = Tr {ρ0(Jβ)} = Tr
{

e−β(Ĥ+JβQ̂)
}

≡ e−βW [Jβ] . (2.86)

Choosing the general operator Q̂(x) = n̂(x) ≡ ψ̂†(x)ψ̂(x), where n̂ is the number density
operator, leads us to the ordinary (mass/number) density functional theory. This can be
most easily seen from the arguments of Sect. 2.1.2: Symmetry broken ensembles (generalized
η-ensembles) can be created by adding to the equilibrium Hamiltonian symmetry breaking

pieces of the form
∫
dx ηψ̂(x). Their presence is sufficient to give rise to non-zero value of
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the order parameter 〈ψ̂〉 in the broken phase as shown in Sect. 2.1.3. Similarly, we can

add symmetry preserving pieces of the form
∫
dxη ψ̂†(x)ψ̂(x). Replacing η by Jβ(x) takes

us back to Eq. (2.86). In the classical case one can see that using this trick of adding

a conserved charge of the form
∫ Dxηψ̂†(x)ψ̂(x) = ηN̂ → µN , where µ is the chemical

potential and N is the particle number, to the classical Hamiltonian H and performing the
classical trace over coordinate and momenta, generates the grand potential Ω as will be
shown in Sect. 6.3.2. Ω, which is a function of the chemical potential (or fugacity) is related
via a Legendre transformation to the Helmholtz free energy F , which is a function of the
particle density n. Thus, intuitively, taking logarithm of Z[Jβ ] in Eq. (2.86) should give us
the quantum analogue of the free energy, i.e. the density functional (W ).

Several implementations of the density functional theory utilizing the concept of effective
action (in our case, the effective action of the generating functional) and/or variational prin-
ciples [42, 105, 106, 23] exist. In Refs. [23, 107] it is shown that W is a convex functional
for finite system guaranteeing a one-to-one correspondence between the source Jβ and the

expectation value of the operator Q̂ defined as

〈Q̂(x)〉 =
1

Z[Jβ]
Tr
{

Q̂(x) e−β(Ĥ+JβQ̂)
}

=
δW [Jβ ]

δJβ(x)
. (2.87)

For infinite systems we can still perform the Legendre transformation (see remarks in Sect. 2.1.3)
but the derivatives of the transformed functional can become multivalued. Also, as pointed
out by Valiev and Fernando [23], by choosing the operator Q̂ suitably, it is possible to produce
a whole family of different density functional theories:

A)

Setting Q̂(x) = ψ̂†(x)ψ̂(x) one obtains temperature dependent density functional the-
ory [108], which reduces to the zero temperature DFT in the limit β → ∞.

B)

Setting Q̂(x) = ψ̂†
α(x)ψ̂α′(x), where α and α′ are spin indices, produces the spin-density

functional theory [109].

C)

Setting Q̂(x) = h̄
2meı

[

ψ̂†(x)∇ψ̂(x) − (∇ψ̂†(x))ψ̂(x)
]

produces the current density func-

tional theory [110].

D)

Setting Q̂(x) = Q̂gen(ψ̂
†(x), ψ̂(x)), where Q̂gen is any general density operator, produces

generalized density functional theory for the expectation value 〈Q̂gen〉. Moreover, Q̂(x)
does not have to a density of a conserved operator: It can be the density of an order
operator (corresponding to a non-conserved order parameter), for example.

The primary quantity people in the density functional theory are interested in is the expec-
tation value of the energy, which is a functional of the density 〈Q̂〉 = 〈n̂〉 Energy can be
obtained in terms of the effective action A, which is related to the functional W via the
functional Legendre transform:

A[Q] = W [Jβ ] − JβQ , (2.88)
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where Q ≡ 〈Q̂〉 and JβQ ≡ ∫
dx Jβ(x)Q(x). The equilibrium expectation value Qeq is defined

through the ’equation of motion’ (see Sect. 2.3.3 and Sect. 2.3.4)

δA[Q]

δQ(x)

∣
∣
∣
∣
Qeq

= 0 . (2.89)

When the value of Qeq is substituted back into the effective action functional, and the result
is divided by β, we obtain the equilibrium expectation value of the energy:

E = − 1

β
A[Qeq] . (2.90)

In the limit β → ∞ Eq. (2.90) gives the energy of the ground state. It is important to
notice the appearance of the factor 1/β. The action must have units of energy times the
units of (imaginary) time which is consistent with Eq. (2.90). After all, there can also
exist temperature (time) dependent solutions of the variational problem (2.89). After all,
we should keep in mind that when forming the functional integral representation of the
generating functional Z[J ] the coupling term becomes

∫
dx
∫
dt Jβ(x)n(x, t). Thus, even if

we use time-independent source field, the density field will be time-dependent in the action.
Given the non-linearity of Eq. (2.89), it possesses many kinds of solutions but we must pick
out the physically correct one. Using a space independent coupling constant Weinberg [111]
showed that the extremizing solution is also a minimum solution of the problem. Furthermore,
Cornwall et. al [44] proved that even when there are multiple operators Q̂n in the Legendre
transformation, the expectation value of the energy E[φ,G]

∫
dt = A[φ,G]|stat (expectation

values of one φ and two point operators G are included here), where the extent of the
time interval equals to ıβ in our example. Several condensed matter applications utilize
these results. For instance, Rebei and Hitchon derived an expression for the correlation
energy of electron gas [112]. Polonyi and Sailer [113] derived corrections to the Hartree-Fock
and Kohn-Sham [114] schemes using a similar effective action technique. These examples
show that the effective action functional can really bring about something new into the old
theories. For example, more powerful diagrammatic methods make the explicit construction
of the exchange-correlation functional more explicit than before [23]. In other words, explicit
expressions for Exc as a function of the density variable n can be derived and improved
systematically.

One of the extensions of the effective action method discussed in Ref. [23] is the natural
possibility of including a larger number of operators in the Legendre transform instead of a
single density as indicated by the general formula (2.23), where one can think of ρ0 as the
imaginary time evolution operator. This is important as nontrivial (nonlinear) couplings will
be generated between the expectation values in the expression of the effective action. The
operators do not necessarily have to commute with the Hamiltonian, but if they are not order
operators, their relevance for hydrodynamic description must be justified otherwise. We also
point out that choosing Q̂ to be the CSCO (Complete Set of Commuting Observables) of the

equilibrium Hamiltonian Ĥ or some subset of it (say, just the number operator N̂) makes
sense quantum mechanically in the sense that sensible density functional description is to
be expected. In the microcanonical (isolated) classical ensemble the stationary (equilibrium)
solutions of the Liouville equation are in principle functions of the system Hamiltonian H
and constants of motion In in involution with each other and H: {H, In} = 0, so they are
the classical equivalent of CSCO. However, the theory of dynamic system’s tells us that for
an ergodic system all other In except the Hamiltonian are non-isolating constants of motion,



54 CHAPTER 2. NONEQUILIBRIUM GENERATING FUNCTIONAL FORMALISM

which means thatH alone is sufficient to characterize the stationary measure of a Hamiltonian
system in the (finite) phase-space [115]. From the point of view of general coarse-graining
scheme it is important to understand what happens if we choose our equilibrium density
matrix to be of the form exp(−βĤ+

∑

n JnQ̂n) and the in such away that the classical limits

of the variables Q̂n are the integrals of motion In. Naively, by coarse-graining the Wigner
representation of the density matrix one would expect that the coarse-grained versions In of
the operators Q̂n would appear in the classical equilibrium distribution as well. But, how
can they, if the system is ergodic? We should keep in mind that direct coarse-graining of
equilibrium density matrix may lead us on the wrong track since we should also pay attention
to the way the system gets to equilibrium both quantum mechanically and classically. We
should ask first, what is the quantum equivalent of an ergodic system. Partial answers exist
(see Jancel [116]) but many questions remain still open. We will continue discussion of the
concepts of quantum integrability and nonintegrability in Sect. 3.2.3

2.3.2 Time Dependent Density Functional Theory and Berry’s phase

Restricting the formulation to ordinary quantum mechanics instead of quantum fields, we
show that the nonequilibrium generating functional reproduces the different time dependent
generalizations of the static (equilibrium) density functional theory of Sect. 2.3.1. The prob-
lem is to transform the solution of the time dependent Schrödinger equation into a variational
form by constructing an action functional analogously to the manner we have proceeded
above. The subject has a long history going back to Dirac’s variational principle [117]. More
recent formulations by Eboli et al. [118] in the quantum field theoretical setting and quantum
mechanical approach of Rajagopal [24] make it clear that the time-dependent density func-
tional theory [119] follows from the nonequilibrium generating functional formalism naturally.
We start by adding a source term to the Schrödinger equation:

ıh̄
∂

∂t
|±, t〉 =

[

Ĥ +

∫

dx J(x, t)n̂(x)

]

|±, t〉 . (2.91)

The plus and minus states refer to the initial and final state asymptotics: limt→ti |+, t〉 = |0〉
and limt→tf |−, t〉 = |0〉, where |0〉 is the ground state (vacuum) of the operator Ĥ. These
states correspond to the in and out states of the S-matrix formalism discussed in Sect. 2.2.1.
Following Rajagopal [24] we define a functional

A[φ+, φ−] ≡
∫ tf

ti
dt 〈φ−, t|(ıh̄∂t − Ĥ)|φ+, t〉 . (2.92)

Furthermore, it is required that A is stationary when the states |±, t〉 are varied independently
subject to the constraints

〈φ−, t|n̂(x)|φ+, t〉 = n−+(x, t) ; 〈φ−, t|φ+, t〉 = 1 . (2.93)

The extremizing transition density n−+ can be related via the Runge-Gross mapping theo-
rem [120] to the densities n±

n±(x, t) = 〈φ±, t|n̂(x)|φ±, t〉/〈φ±, t|φ±, t〉 , (2.94)

which in turn are the densities consistent with the solution of the Schrödinger equation (2.91).
In other words, n−+ = n−+[n−, n+]. This relation is invertible making it possible to use n−+
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as the basic variable, which is related to the external potential J in the familiar manner

δA[n−+]

δn−+(x, t)
= J(x, t) , (2.95)

Going from the density variable n−+ to the source field J requires the introduction of the func-
tional W , which plays the same role as in the more familiar generating functional description
of Eq. (2.86):

W [J ] = A[n−+] −
∫

dx

∫ tf

ti

dt J(x, t)n−+(x, t) ≡
∫ tf

ti

dtw(t) , (2.96)

where we have used Eq. (2.92) to define a time-dependent phase variable w(t) [118],

w(t) = 〈φ−, t|
[

ıh̄∂t − Ĥ −
∫

dx J(x, t)n̂(x)

]

|φ+, t〉 . (2.97)

Choosing w = 0 at time ti, the expression
∫ tf
ti dtw(t) ≡ γ ′B(ti, tf ) tells what is the total phase

of the generating functional after time tf − ti due to the time evolution. This interpretation
is a consequence of the fact that we can cast the generating functional into the same form,
which was used for the S-matrix in the in-out representation (cf. Eq. (2.27)). From Ref. [24]
we get

Z[J ] = 〈0|T̂+

H (ti, tf , J)|0〉 = exp

(
ı

h̄
γ′B(ti, tf , J)

)

exp

(
ı

h̄
E0(ti − tf )

)

, (2.98)

where E0 is the ground state energy. Berry’s phase is the phase change of the eigenstate
of the H associated with the adiabatic change of parameters of the Hamiltonian around a
closed loop in parameter space [121]. Technically speaking, it originates from the imaginary
part of the action in phase space representation [122] (ı dt p(t)ẋ(t) in terms of the overlap of
time-slices of single particle path integral) Therefore Berry’s phase can be identified as

γB(t, ti) ≡
∫ t

ti

dt′ 〈φ−, t
′|ıh̄ ∂

∂t
|φ+, t

′〉 = γ′B(t, ti, J) −
∫ t

ti

dt′〈φ−, t
′|Ĥ(t′)|φ+, t

′〉 , (2.99)

where the latter part is the phase change generated by the pure (time-dependent) Hamiltonian

action, Ĥ(t′) ≡ Ĥ +
∫
dx J(x, t′)n̂(x).

What is the relevance of Berry’s phase for coarse-graining? Whenever we are removing
the fast degrees of freedom from description and obtain a coarse-grained theory for the slow
degrees of freedom, there will be new interaction terms generated in the effective model. For
concreteness, think of the Born-Oppenheimer approximation, which is used to decouple the
slow nuclear degrees of freedom (R) from the fast electronic ones (r). Later on in Sect. 5.1
we will come across the following Schrödinger equations for the electrons (2.100) and the
nucleons (2.101):

[T̂e(r) + V̂e(r) + V̂e−N (r,R)]ψn(r;R) = εn(R)ψn(r;R) (2.100)

[T̂N (R) + V̂N (R) + εk(R) + 〈ψk|T̂N (R)|ψk〉]χnk(R) = Enχnk(R) , (2.101)

where ψn(r,R) ≡ 〈r;R|ψn〉 is the nth eigenvector of the electronic Hamiltonian and χnk(R) ≡
〈R|χnk〉 is the nth eigenvector of the nuclear Hamiltonian corresponding to kth effective po-

tential term 〈ψk|T̂N (R)|ψk〉. Since the latter term can also be presented as 〈ψk|T̂N (R)|ψk〉 =
(〈ψk|∇R|ψk〉)2/(2mN ), we can rewrite the nuclear Schrödinger equation as

[− 1

2mN

(

∇R + A(R)
)2

+ εk(R) + VN (R)]χnk = Enχnk . (2.102)
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The effect of the removal of the fast degrees of freedom is the appearance of vector potential
A ≡ 〈ψk|∇R|ψk〉 and an effective potential term εk. Nakahara [123] called the emergence
of A spontaneous creation of gauge symmetry. It is indeed remarkable, that integrating out
the bath does not always create only dissipative and stochastic effects. Of course, one has
to keep in mind the time scale restrictions, possible higher order corrections and also the set
of variables under study. The effects of removing the bath might be different for different
variables. When solving the time-dependent Schrödinger equation for the bath variables
with the effective Hamiltonian given in Eq. (2.100) gives rise to the Berry’s phase in the state
vector |ψk, t〉 reflecting the adiabatic influence of the slow nuclear degrees of freedom on the
faster ones. The components of the vector potential actually defines a connection on the
manifold of the slow degrees of freedom whose geometrical structure is reflected in Berry’s
phase [123].

Recently, geometric approaches have gained ever more popularity in phase transitions
studies in different fields. Optimization problems, for example, can be connected with the
geometry of the energy landscapes similar to those of spin-glasses [124]. Some recent studies
have indicated that geometric analysis of the topology of the phase space may give rise
to more powerful tools for deeper understanding of phase transitions. From the coarse-
graining point of view an interesting hypothesis was put forward by Casetti, Pettini and
Cohen in Ref. [125]. They showed that the perturbed geodesic motion on the manifold,
whose metric is determined by the potential energy of the N-body classical Hamiltonian,
can be approximated by a Langevin type of evolution equation for the perturbation vector,
with multiplicative noise. Thus, from the very high dimensional space of microscopic degrees
of freedom one filters out a coarse-grained equation of motion, whose parameters represent
average geometric properties of the manifold. Intriguingly, the authors suggest that there is
a deeper connection with the global topology change of the manifold and phase transitions,
which are reflected in changes of the parameters of the simplified equation of motion. Even
though we make no attempt to utilize these methods in this thesis, it should be kept in mind
that one possibility (remote at this point) in the search of relevant macro variables is to
use suitably averaged geometric information of the microscopic dynamics. Presumably some
topological invariants can play the role of slow or conserved variables.

2.3.3 Equations of motion for relevant variables

The closed-time-path formalism is beneficial for deriving equations of motion of the expec-
tation values of relevant macro operators because it generates equations of motion for the
expectation values of the relevant variables respecting causality and normalization require-
ments [2] (for real-valuedness of the expectation values see [59, 94]). In the usual in-out
type of generating functional formalism this is not guaranteed. The drawback of the CPT
formalism is that at low loop order there can be unstable solutions [59]. There exist several
ways of obtaining the equations of motion once the effective action A is known. Some ways
of computing A have been discussed in Sect. 2.1.3. It is also possible to proceed deriving the
dynamics without the construction of the action as we will see below.

Let us first define the ’canonical’ way of producing the evolution equations. The most
straightforward technique is to take variations of the action (which is determined in terms of
the generating functional Z[J+, J−]) with respect to time-dependent sources [2]

δA[φ+, φ−]

δφ+(x, t)

∣
∣
∣
∣
φ+=φ−

= −J(x, t) . (2.103)
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We have put J+ = J− = J(x, t) (unique time axis) from which it follows that φ+ = φ− =
φ(x, t). Of course, it is also possible to derive separate (nonphysical) equations of motion
for φ+ and φ− by not setting J+ = J− in Eq. (2.103) or by taking variations with respect
to J+(x, t) and J−(x, t) of the Legendre transformation of A, W [J+, J−] as in the so-called
inversion method of Koide [67]. In case of multiple relevant operators coupled equations of

motion result. For example, the physical evolution equations for the one point, φ = 〈φ̂〉, and
two-point functions, Dab (see Sect. 2.2.4) become [54]

δA[φ+, φ−, Dab]

δφ+(x)

∣
∣
∣
∣
φ+ =φ−

= 0 ;
δA[φ+, φ−, Dab]

δDab(x1;x2)

∣
∣
∣
∣
φ+ =φ−

= 0 , (2.104)

where we have set the external fields to zero (J = 0) and denoted x ≡ (x, t). From Eq. (2.104)
and Eq, (2.103) we see that the only difference with the equilibrium formalism is that the
source fields are kept separate from each other before the variation. Moreover, in the equi-
librium case the sources were independent of time (temperature).

Since the effective action is simple to form at tree-level [52], where no quantum corrections
are taken into account, let us now see what is the dynamics of a typical φ4-theory. Leaving
out initial correlations, we write the generating functional

Z[J+, J−] = eW [J+,J−] =

∫

D(φ̃+, φ̃−) eı(S[φ̃+,φ̃−]+J+φ̃+−J−φ̃−) , (2.105)

and the action is given by

S =

∫

dx
{

1
2 φ̃+[−2 −m2]φ̃+ + (λ/4)φ̃4

+ − 1
2 φ̃−[−2 −m2]φ̃− − (λ/4)φ̃4

−

}

. (2.106)

At the tree level the effective action, which results from the Legendre transformation A =
lnZ − Jφ = W − Jφ, is easy to obtain: One just needs to replace the dummy integration
fields φ̃+ and φ̃− in the action S with the expectation values of the field operators 〈φ̂+〉 = φ+

and 〈φ̂−〉 = φ−. Thus
Atree[φ+, φ−] = S[φ+, φ−]. (2.107)

Applying now rule (2.103) and setting the source fields J+ = J− = 0, we obtain the equation
of motion for the expectation value of the field:

δA[φ+, φ−]

δφ+(x, t)
= −(2 +m2)φ+ λφ3 = 0 . (2.108)

Some comments as regards the form of the action and the equation of motion are in order.
First of all, the relativistic form of the of the free part of the Lagrangian density (1/2)φ(2 +
m2)φ reveals that the ’kinetic energy’ of the field term (π(x, t)) of the canonical action has
been integrated out. In other words,

Scan =

∫

dt

∫

dx (ıπ(x, t)φ̇(x, t) −H(π, φ)) ; (2.109)

H(π, φ) = 1
2π

2(x, t) + 1
2 |∇φ|2(x, t) + V (φ) , (2.110)

and V (φ) = (m2/2)φ2 + (λ/4)φ4. Removing the variable π gives rise to the Alambartian 2.
If one goes over to the complex coordinates (a(x, t), a∗(x, t)) from the pair (π(x, t), φ(x, t))
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one usually does not integrate out a∗ from the canonical action (2.110). Therefore, the
corresponding action in the non-relativistic case would be written as

Scan =

∫

dt

∫

dx (ıa∗(x, t)∂ta(x, t) −H(a∗, a)) , (2.111)

where for a quantum problem H(a∗, a) = νa∗∇2a+ V (a∗, a) and ν = h̄2/(2m) (h̄ = 1). We
also note that it is possible to cast a fully classical stochastic field theoretic [94] problem or a
classical deterministic many-body problem (see Sect. (2.4)) into a suitable form for generating
functional formalism.

We also note that the path integral representation of the action of a fully classical (stochas-
tic) problem [94] is given by Eq. (2.111) but without the factor of ı in front of the term
a∗(x, t)∂ta(x, t). Thus, in the classical case the tree level equation of motion becomes

δA[a+, a
∗
+, a−, a

∗
−]

δa∗+(x, t)
= ∂ta− ν∇2a− ∂V (a∗, a)

∂a∗+
= 0 . (2.112)

For a fourth order polynomial potential this starts looking like the Ginzburg-Landau equation,
which we will come back in more detail in Sect. 5.1. When the expectation values are real, we
can rewrite Eq. (2.112) in a more suggestive form by defining a ’free energy’ function (having
units of action, cf. App. D.1) F [a] ≡ ∫

dt
∫
dx ν|∇a(x, t)|2 + (m2/2)a(x, t) + (λ/4)a4(x, t).

Then, the equation of motion for the order parameter a takes the following form

∂ta(x, t) + Ξ̂
δF [a]

δa(x, t)
= 0 , (2.113)

where the prefactor Ξ̂ = 1, in the this case. Later on we will see that Ξ̂ is actually an
operator, which can contain both dissipative and reactive couplings the order parameter and
other relevant quantities of the theory. Eq. (2.113) is basically the simplest evolution equation
of a non-conserved order parameter field, which is called Model A in the cathegorization
scheme [126] for critical dynamics models. They are also called phase-field models, as the
order parameter field acts as an indicator field taking a different value in each of the different
phases present in the system. Phase-field modelling is discussed in more detail in Chap. 7.

We have now described the canonical scheme of deriving the equations of motion. De-
pending on the situation this may not always be the most convenient one. For many purposes
it is physically motivated to go to the Wigner representation via the transformation

{

Jc ≡ (J+ + J−)/2 ;
J∆ ≡ J+ − J− .

(2.114)

Performing this change in the generating functional Z[J+, J−] leads to a corresponding change
the the effective action [63], which will now be expressed in terms of the expectation values

{

φc ≡ (φ+ + φ−)/2 ;
φ∆ ≡ φ+ − φ− .

(2.115)

The physical expectation value of the observable is now given by φc whereas the φ∆ will be
responsible for its fluctuations (Sect. 2.3.4). The equations of motion are generated as before,
by taking variations with respect to φc and φ∆:

δA[φc, φ∆]

δφ∆(x, t)
= −Jc(x, t) ; (2.116)

δA[φc, φ∆]

δφc(x, t)
= −J∆(x, t) . (2.117)
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The correct source field appearing on the right hand side of the previous equations can
be found from the relation J+φ+ − J−φ− = J∆φc + Jcφ∆. When the source field J∆ = 0,
Eq. (2.116) is the physical equation of motion and Eq. (2.117) is automatically satisfied [94]
because of the normalization [2]: Z[J∆ = 0, Jc] = 1. Owing to the normalization condition
we also obtain

φ∆(x)|J∆=0 = −ı δ lnZ[J∆, Jc]

δJc(x)

∣
∣
∣
∣
J∆=0

= 0 , (2.118)

which becomes handy, when simplifying the physical equation of motion (2.116).
A third way of obtaining the equations of motion, which is fully consistent with the

approaches presented above, does not require the construction of the effective action. It
suffices to study the symmetries of the generating functional. The Ward-Takahashi identities
generate equations of motion for the conserved variables as shown in Ref. [2]. We will return
to this important idea in Sect. 3.1.2. Another method, which utilizes the generating functional
directly was introduced by Greiner and Leupold in Ref. [80]: It uses the identity

0 =

∫

Dφ δ

ıδφ

(

ρ0 e
ı(S+Jφ)

)

=

∫

Dφρ0 (S′ + J) eı(S+Jφ) , (2.119)

and produces a closed equation of motion for actions quadratic in φ. For actions having
higher powers of field φ this approach leads to BBGKY type of hierarchy just like direct
averaging of Heisenberg equations of motion for field variables, which is of course always an
option. It should be noted that even though the construction of effective action is not easy, it
gives an equation of motion for the expectation value of the field and the BBGKY hierarchy
problem does not appear (it is non-trivially traded for the possibly problematic construction
process of A).

Finally, we note that equations of motion obtained from Eq. (2.103) or Eq. (2.116) using
the effective action A are equivalent to the saddle point equation of motion of the original
action S at tree level. This will become clearer in the next section where discuss the quasi-
classical corrections to equations of motion, which leads naturally to stochastic Langevin type
of equations of motion for the relevant variables. In a way, the highly nonlinear deterministic
equations of this section will be approximated by a stochastic (less nonlinear) equations of
motion.

2.3.4 Stochastic dynamics

There are two main sources of stochasticity in the coarse-grained models. First of all, there
is structural randomness present in any realistic problem such as distribution of point defects
in crystal or pore structure of sandstone [127]. It is a demanding coarse-graining task to try
to come up with the least possible number of macroscopic parameters, such as connectivity
or internal surface area, which adequately characterize the complicated structure. This type
of randomness is quenched or frozen, opposite to the dynamic (time dependent) type of
randomness arising from the removal of the non-interesting degrees of freedom. Random
fields associated with the decimation of dynamic variables mimic the effect of the fast degrees
of freedom on the slower ones. A third type of noise, which is related to the dynamical noise
can come about because of the nonlinearities of the effective theory: It is possible to model
the effects of nonlinearites by using stochastic terms (deterministic chaos [128]) to simplify
the form of the deterministic part of the equation of motion.

In the generating functional formalism it is basically the double time path structure,
which gives rise to the possibility of approximating the nonlinear deterministic dynamics
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using random fields to describe the interaction of the sources on different contours. Following
Chou et al. [2] we try to cast the generating functional into a form, which enables us to
interpret it as a generalization of Martin-Siggia-Rose [95] type of generating functional of a
stochastic process. The generating functional reads

Z[J+, J−] = eıW [J+,J−] =

∫

D(φ′+, φ
′
−) eı(S[φ′+,φ

′
−]+J+φ′+−J−φ′−) (2.120)

We have denoted the dummy integration variables of the generating functional with primed
variables to separate them from the expectation values of the corresponding operators (ob-

servable quantities), φ± = 〈φ̂±〉, which are Legendre conjugate’s of the sources J±. Previously,
we have occasionally denoted also the dummy integration variables by φ± when there has
been no danger of confusion. However, here one must differentiate between primed fields
and unprimed fields since we wish to make a change of variables: (φ′

+, φ
′
−) → (φ+, φ−). The

reason for this is that when the generating functional Z has been expressed in terms of the
new integration variables, its semi-classical limit corresponds to the generating functional of
a classical stochastic process with Gaussian noise. The end result will look like

Z[J+, J−] ≈
∫

D(φ+, φ−) eı(Atree[φ+,φ−]+J+φ+−J−φ−) (2.121)

More formally, this can be seen by performing a double Fourier transformation of the gener-
ating functional

Z[J ] = e−ıW [J ] =

∫

DI
∫

DQ eı
∫
Q(I−J) δ(Q+ −Q−)

︸ ︷︷ ︸

δ(I − J)

e−ıW [I] (2.122)

∝
∫

DQ
∫

DI eı
∫
QI−ıW [I]

︸ ︷︷ ︸

exp(ıSeff [Q])

e−ı
∫
JQ δ(Q+ −Q−) (2.123)

We have denoted Q = (φ+, φ−) and δ(Q+ −Q−) connects the integration paths at the initial
time moment. At tree level it can be shown [2] that Seff ≈ Atree and Eq. (2.121) follows.
Next, we utilize the representation given in Eq. (2.114) and (2.115) and expand the effective
action around the physical solution φ∆ = 0:

Z(Jc, J∆) ≈
∫

D(φc, φ∆) exp

(

ıAtree[φc, φc]+ ı
δAtree

δφ∆

φ∆ +
ı

2
φ∆

δ2Atree

δφ∆δφ∆

φ∆ + ıJ∆φc+ ıJcφ∆

)

.

(2.124)
Expanding the short-hand notation used above, the first derivative term in the argument of
the exponential is

δAtree

δφ∆

φ∆ =

∫

dx
δAtree

δφ∆(x)

∣
∣
∣
∣
0

φ∆(x) =

∫

dx

(
δAtree[φ+, φ−]

δφ(x+)
+
δAtree[φ+, φ−]

δφ(x−)

)∣
∣
∣
∣
0

φ∆(x) ,

(2.125)
where x± ≡ (x, t±) and |0 means that the expression should be evaluated at φ∆ = 0. Moreover,
we have used the fact that δA/δφ(x−) = −δA/φ−. The double time path notation is valid
for the expression in the parenthesis in Eq. (2.125) before the time axis are made unique
through substitution φ∆ = 0. Because differentiation of the effective action with respect to
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φ∆ produces by definition the physical equation of motion (Eq. (2.113) in the general case),
we can rewrite Eq. (2.125),

δAtree

δφ∆

φ∆ = 2

∫

dx

(

∂tφc(x) + Ξ̂
δF [φc]

δφc(x)

)

φ∆(x) (2.126)

The second order derivative with respect to φ∆ in Eq. (2.124) can be decomposed into four
different terms when distributed on the positive and negative time branches:

φ∆

δ2Atree

δφ∆δφ∆

φ∆ =

∫

dx

∫

dx′ φ∆(x)

{

δ2Atree

δφ(x+)δφ(x+)
+

δ2Atree

δφ(x+)δφ(x−)
(2.127)

+
δ2Atree

δφ(x−)δφ(x+)
+

δ2Atree

δφ(x−)δφ(x−)

}∣
∣
∣
∣
∣
0

φ∆(x′)

≡ ı

∫

dx

∫

dx′ φ∆(x)R(x, x′)φ∆(x′) . (2.128)

Taking into account that when time axis is made unique by making the different sources the
same, Atree[φc, φc] = 0. The generating functional (2.124) can now be written as

Z[Jc, J∆] = (2.129)

∫

D(φc, φ∆) exp

(∫

ı

[

∂tφc + Ξ̂
δF [φc]

δφc(x)

]

φ∆ − 1

2

∫ ∫

φ∆R(x, x′)φ∆ +

∫

(ıJ∆φc + ıJcφ∆)

)

.

We can now see that the source Jc correspond to the physical source j of the Martin-Siggia-
Rose [95] formalism (Bausch-Janssen-Wagner-de Dominics formalism [129, 130]) and J∆ is
the response source j̃ related to the fictitious field needed in the representation of the func-
tional delta function. Moreover, setting J∆ = 0 and integrating over φ∆ gives the generating
functional of the correlation functions of a stochastic process with zero mean and correlations
given by R−1.

The Langevin equation of motion for the expectation value φc can be derived by defining
a Gaussian noise field ξ whose distribution

P [ξ] = const e−
1
2

∫ ∫
ξ(x)R(x,x′)ξ(x′) . (2.130)

We also define a new generating functional Z̃ through Z[Jc, J∆] =
∫ Dξ P [ξ] Z̃[Jc, J∆, ξ].

Rewriting Eq. (2.129) in terms of P [ξ] gives

Z[Jc, J∆] = (2.131)

∫

Dξ P [ξ]

∫

D(φc, φ∆) exp

(

ı

∫ (

∂tφc + Ξ̂
δF [φc]

δφc(x)
− ξ

)

φ∆ + ı

∫

(J∆φc + Jcφ∆)

)

Thus, for all practical purposes, the argument of the exponential can be called a new effective
action Ã which contains a stochastic element ξ:

Ã[φ̃c, φ̃∆, ξ] ≡
∫

dx

(

∂tφ̃c + Ξ̂
δF [φ̃c]

δφ̃c(x)
− ξ

)

φ̃∆ (2.132)
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We do not use the symbols φc and φ∆ together with the action Ã anymore because they
are completely deterministic expectation values. The new fields φ̃c and φ̃∆ are stochastic
approximations to the old variables φc and φ∆. We also point out that there is a functional
Jacobian determinant related to the association of ξ with φ̃c but it turns out that as long as
there are only first order time derivatives involved (which is true for non-relativistic theories)
we can leave it out with no harm done on the interpretation of the results [131, 50]. Forming
now the equation of motion via the standard recipe gives

δÃ
δφ̃∆(x)

∣
∣
∣
∣
∣
φ̃∆=0

= 0 =⇒ ∂tφ̃c(x) = −Ξ̂
δF [φ̃c]

δφ̃c(x)
+ ξ(x) . (2.133)

The source Jc = 0 when there are no physical external driving fields. We will see later on that
in fact the operator Ξ̂ can also depend on the fields φ̃c (Sect. 3.1.2, Chap. 7 and Chap. 9). The
form of Ξ can be fixed based on general physical assumptions on streaming and equilibration
without having to calculate it. We will now briefly comment on the possibility of direct
determination of Ξ̂ and its role in equilibration of the system.

2.3.5 Remarks on dissipation

In the previous section we did not make use of the external bath but explained the emergence
of stochasticity by introducing a linear coupling of the non-physical variable φ∆ to a field ξ.
The purpose of ξ is to mimic the effect of non-linearities (higher order self-couplings) on the
dynamics of the physical field φc. The result is approximative in many ways: It does produce
sensible dynamics for the one-point function 〈φ̂〉 but the dynamics of two-point Green’s

function on the double time contour Dab = 〈φ̂(xa)φ̂(xb)〉 (a, b = ±) computed in terms of

〈φ̃(xa) ˜φ(xb)〉ξ is just an approximation even if there are only second order interactions in
the action [80]. To see the emergence of the dynamic noise due to coarse-graining (which
we did not perform explicity in Sect. 2.3.4), one should divide the system under study into
the system and bath degrees of freedom. When the bath is removed, new kinds of non-linear
self couplings of the system field will emerge and these can be modelled via introduction of
noise fields ξ as explained above. Similar approach can be applied directly at the level of
the non-linear equation of motion as has been discussed by Zwanzig [14] who shows how the
exact non-linear Langevin equation can be traded for the linear Langevin equation of Mori’s,
with different (renormalized or fluctuation corrected) noise and dissipative properties.

By explicitly integrating out the bath degrees of freedom, we will also see the origin of the
dissipation in the system, whose microscopic origin was hidden in Sect. 2.3.4). It should be
noted, though, that specifying bath is not absolutely necessary but it makes stochastic and
dissipative properties of the system more easily visible. These effects are of course present in
the general form of the generating functional. In the original presentation of Zhou et al. [63]
of critical dynamics in terms of the generating functional the dissipative effects are hidden in
the self-energy terms of the Green’s functions. In the (condensed matter) Green’s function
theory the irreversible dynamics [132] is a result from two factors: Infinite system size and
(impurity) scattering. Basically, the ’impurities’ can represent the frozen type of randomness
if they are fixed. If they are mobile, they can be thought of as dynamic bath degrees of
freedom the collisions of which with the system variables result in noise and dissipation.
Infinite system size is needed in order for there to be enough phase space volume for the
energy to vanish into without having it pumped back by the bath in a finite time. Naturally,
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the bath can also give rise to Landau type of damping (phase decoherence) without any
energy transfer.

When explicit bath is used, it is easy to see the emergence of the dissipation and stochas-
ticity. Several examples ranging from classical to many-body quantum mechanical systems
have been studied with linear [68, 133, 134] and higher order couplings between the bath
and system variables. For linear couplings in non-relativistic systems one can show that the
fluctuation-dissipation relation will be obeyed and the system will relax to Gibbs equilibrium.
The Poincare recurrence times become extremely long already for small number N of bath
variables (N ≥ 20 oscillators suffices to make it practically infinite [74]). Analogously to
equilibrium phase transitions, rigorously the time’s arrow can only emerge in the thermody-
namic limit when the number of bath variables goes to infinity [135, 136]. The problem with
infinite baths is the mathematical formulation of the quantum mechanics, which requires the
use of operator algebras (C∗-algebra). However, the traditional finite dimensional Hilbert
space approach is sufficient for the study of non-equilibrium dynamics when equipped with
a few reasonable phenomenological assumptions about the irreversibility [137].

At the level of quantum field theoretic formulation it is not problematic to establish
the irreversible behaviour at least in low loop order. One should remember though, that
for relativistic theories one must go to higher order corrections than Gaussian, to see the
emergence of terms which can be interpreted as friction [75, 138]. This is because of the
presence of the second order time derivative in the equation of motion instead of first order
one as in non-relativistic equations of motion. We must also remember that plain loop-wise
determination of the noise properties might not be the best way to proceed in cases where non-
perturbative effects due to nonlinearities are important. Of course, the ultimate aim would
be to show that the exact deterministic equation of motion, δA[φ]/δφ(x, t) = −J(x, t), truly
drives the system to in such a state, which could be described by a stationary distribution,
say of Gibb’s type. In the limit of large times, we thus expect that the dynamic equation
reduces to the equilibrium equation of state:

lim
t→∞

(

∂tφc + Ξ̂
δF [φc]

δφc(x, t)
+ Jc(x, t)

)

→ Ξ̂
δF [φeqc ]

δφeqc (x)
+ Jc(x,∞) = 0 , (2.134)

where φeqc (x) is the time independent equilibrium expectation value of the field and the source
field Jc is assumed to become stationary for large enough times. However, due to the high
degree of nonlinearity in field variables, this will not be easy to show from first principles as
we know from the theory of dynamic systems. By reducing the degree of non-linearity we also
have to face the risk of loosing the possibility to study things like multiple steady-states and
the related phase transition dynamics, nonlinearity generated instabilities and so on. But in
all honesty, even the tree-order non-linearities are challenging enough to keep us busy for the
next century or so.

For many purposes, semi-classical level of description leading to Langevin (2.133) equation
for the (partially averaged) expectation values of observables is sufficient. Using an external

bath it is possible to show that Ξ̂(φc) indeed contains a part which is related to the noise

kernel R−1 as required by the fluctuation-dissipation theorem. The coefficient Ξ̂ contains also
some explicit dependence of the field φc. The origins of Ξ̂(φc) are rooted in the nonlinear
self-interactions of the theory. This can be made manifest by looking at the form of the
renormalized action (of relativistic φ4-theory [139], for example):

A[φc] =

∫

dx
(

1
2Zeff [φc](∂φc)

2 − Veff (φc)
)

, (2.135)
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where Zeff (φc) is the wave function renormalization and Veff is the effective potential cor-
responding to our free energy F . The saddle point equation of motion results immediately
in 2φc + Z−1

eff [φc]∂Veff/∂φc = 0. In the closed time path case the structure is a bit more
complicated but analogous. Thus, in principle we know that there will be some field depen-
dence in the coefficient Ξ. In Sect. 3.1.2 we will give some arguments (cf. Ref. [63]) for the
following representation

Ξ̂(·) ≈
∫

dx′ {φµ(x), φν(x′)}(·) +M∇2(·) , (2.136)

when there are several conserved fields φµ present in the problem. The first term on the right
hand side of Eq. (2.136) represents dissipationless streaming and the second one dissipative
flux, which is responsible for the fulfilment of the fluctuation-dissipation theorem. Even
though any direct (renormalization) proof of the suggested form is difficult to give, the form

of the operator Ξ̂ can fortunately be found (consistent with Eq. (2.136)) entirely based on the
assumption that the system will go to Gibb’s equilibrium characterized by the free energy F
(App. D.4).

Finally, we point out the possibility of generating dissipative behaviour by truncating
the BBGKY moment hierarchy of correlation functions. This dissipation derives from the
initial correlations present in ρ0, Thus, it is not generated by bath as in the other examples
above. Calzetta and Hu [58, 140] have shown how the stochastic Dyson’s equation (Langevin
equation) arises due to the truncation process, which corresponds to the classical Boltzmann’s
molecular chaos assumption. As is known the full BBGKY hierarchy is reversible but the
truncated one is not. So, in a sense, this type of dissipation is artificial dissipation because
it results from an incorrect mathematical manipulations. However, it gives a reasonable
approximation just like Boltzmann’s equation does to real dynamics.

2.4 Unified formalism covering different starting points

This section serves to demonstrate who can one continue further coarse-graining of an effective
theory, which has already been coarse-grained. We consider two such effective intermediate
coarse-graining levels: Classical Hamiltonian dynamics of an interacting many-body system
obeying Newton’s equations of motion and lattice-gas type of cellular automata models obey-
ing Master equation. We are not trying to pave the way for going from quantum mechanics
to classical mechanics in the general case because any rigorous or semi-rigorous justifica-
tion is beyond the scope of this book and we direct the reader to the references mentioned
in Chap. 1. Similarly, references for going from the fully classical Newton’s dynamics to
lattice-gas description are dealt with in the Introduction.

Our starting point is that the dynamic rules (Newton’s equations of motion or transition
probabilities) are known. The question is how to obtain evolution equations for quantities
of interest such as mass or momentum densities. We will show that despite the shift from
quantum to classical world, we can disguise the problem in the same Quantum Field Theo-
retic (QFT) form as before. So, with minor modifications, we are able to address quantum
field theory, ordinary quantum mechanics and classical problems using the same language.
The field theoretic representation does not make the explicit calculations easier as using the
standard representation but it facilitates the use of certain techniques, such as symmetry anal-
ysis of the effective action based on continuum field representation or spectrum generating
algebra, which are not (readily at least) available in the traditional formulation.
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2.4.1 Classical Molecular Dynamics level

The basic formalism for second quantized representation of classical many-body system has
been given in Refs. [3, 141] and subsequently used in several contexts [142, 143, 53]. The idea

is to cast the time evolution of the deterministic Liouville equation, ∂tP = ıL̂P , where L̂ is
the Liouville operator, into a representation, which looks like second quantized many-body
quantum mechanics. So, this is just a different representation of the classical problem, not a
coarse-graining act linking the quantum and classical worlds. The central object is the time
dependent state vector

|φ(t)〉 ≡
∞∑

N=0

∫

dqN PN ({qi}, t) |qN 〉 (2.137)

where qN refers to all phase space coordinates {qi} ≡ {xi,pi} and |qN 〉 ≡ ∏N
i=1 a

†(qi)|0〉
is the occupation number representation of a state with N point particles located at sites
qi. The state vectors are symmetrized leading to a bosonic Fock-space description familiar
from many-body quantum mechanics. Creation and annihilation operators satisfy the usual
algebra

[a(q), a(q′)] = [a†(q), a†(q′)] = 0 ; [a(q), a†(q′)] = δ(q − q′) . (2.138)

The formalism is general enough to cover chemical reactions, which can lead to non-Hermitean
representations of the time evolution operator. Then, the spectral decomposition of operators
must differentiate between the left and right eigenvectors:

Â =
∑

p

|Lp〉λp〈Rp| , (2.139)

where the left and right eiqenvectors are orthogonal. For Hermitean operators the usual
symmetric decomposition holds. The vacuum state is special. According to Ref. [3]

a(q)|0〉 = 0 ; 〈0|a†(q) = 0 . (2.140)

This relation holds even though a and a† are not Hermitean conjugates [144]. There is
another difference from usual quantum mechanics related to the expectation values of ob-
servables: The mean value (expectation value) of an observable A at time t in state |φ(t)〉 =

exp(−ıtL̂)|qN 〉 is given by

〈α|Â|φ(t)〉 = 〈0|e
∫
dq a(q) A(a†, a) e−ıtL̂(a†,a)|qN 〉 . (2.141)

The coherent state (Glauber state) 〈α| ≡ 〈0| exp
∫
dq a(q) is always needed as the bra-state

because technically speaking it projects out the physical (probability) content of the state
vector |φ(t)〉 by collecting contributions from all different N -particle subspaces of the Fock
space. The explicit representation of the Liouville operator for a system with pair potential
V (x − x′) is given by [3]

L̂ =

∫

dx

∫

dp a†(x,p)
( p

m
· ∇x

)

a(x,p) − 1

2

∫

dx

∫

dp

∫

dx′
∫

dp′
{

a†(x,p)a†(x′,p′)

×
(

∇xV (x − x′)
)

·
(

∇pa(x,p)a(x′,p′) −∇p′a(x′,p′)a(x,p)
)}

. (2.142)

It is important to notice that the variables x and p are not conjugate variables above but
ordinary dummy integration variables. In Eq. (2.141) we chose the simple initial state
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|qN 〉 with N particles with positions and momenta qi. Equally well, we could have cho-
sen a thermal initial distribution ρ0|0〉, where ρ0 ≡ ∫

dqN exp(−βH̃N (a†, a))/ZN and ZN ≡
Tr{exp(−βH̃N (a†, a))}.

It is now time to consider a few generalizations to the basic scheme presented above. First,
we note that we can easily form the path integral representation of the generating functional:

Z[J ] = (2.143)

Tr
{

|0〉〈0|eaU−1(tf , ti, J)
}

= Tr
{

eaU−1(tf , ti, J)|0〉〈0|
}

= Tr
{

U−1(tf , ti, J)|0〉〈0|ea
}

,

where we have introduced a short-hand notation 〈α| = 〈0| exp(
∫
dx
∫
dp a(x,p)) ≡ 〈0| exp(a),

and

U−1(tf , ti, J) = T̂− e
−ı
∫ tf
ti
dt
∫
dq (L(a†(q),a(q))+J(q,t)a(q)+h.c.)

. (2.144)

This is basically the same formula, which we have been using before but with Hamiltonian
replaced by Liouvillean time evolution operator. We have also used the basic field operators
coupled with sources for simplicity. In applications there would be additional composite
operators corresponding to the relevant slow variables of the system coupled to their own
sources. As we can see from Eq. (2.143) things are complicated by the presence of the
operators |0〉〈0| and ea. One (formal) possibility of making the problem appear more like our
genuinely quantum mechanical formulation is to take |0〉〈0| to the right hand side of U −1 and
call it ρ0 (pure initial state). Then we can commute ea through the time evolution operator
as long as we hit the ket-vector of the projector |0〉〈0|: This amounts to replacing L(a†, a)
with eaL(a†, a)e−a = L(a† + 1, a). This is fine for single time path formalism, but it does
not work if we want to use CPT formulation. Instead, we can keep ea on the left of U−1 and
take ρ0 = |0〉〈0| to the right as indicated by the center expression in Eq. (2.143). Then, it is

possible to add a term eıtL̂ to the right hand side of ρ0 because |0〉〈0|eıtL̂ = |0〉〈0| according
to Eq. (2.140). Apart from the operator ea the representation of the generating functional
is then identical to Eq. (2.50) given that we add a source J−. Of course, we do not have to
insist on the closed-time-path implementation because the meaning of the in and out-states
is not the same any more as in the real quantum description.

Another possible generalization deals with modelling of dissipative classical systems. The
most rigorous way of modelling such a system would be to introduce a bath and coarse-grain
directly the Hamiltonian system + bath complex by forming its generalized time dependent
density functional representation. That can be straightforwardly done by using Eq. (2.143)
with bath and the source term coupled to composite operators such as the number density,
∫
dq
∫
dt J(q, t)a†(q, t)a(q, t). However, we could spare us from extra work if it was possible

to directly generalize the treatment for dissipative Liouville equations describing the time
evolution of a general non-Hamiltonian set of evolution equations

q̇i = f({qi}) , (2.145)

where f is a given function and i = 1 . . . 6N . The usual assumption in the literature about
the form of the evolution equation of the phase space density of the system (2.145) has the
form ∂tPN + ∇q · (q̇PN ) = 0. As pointed out in Refs. [145, 146, 147], in this equation there
is no reference to the phase space metric g. In general, Tuckerman et al. [145] claim that one
has to allow for a curved space with non-constant phase space metric leading to the evolution
equation

∂t(
√
gPN ) + ∇q · (q̇√gPN ) = 0 . (2.146)
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Any nontrivial metric has to be taken into account in the integration measure of Eq. (2.137):
instead of integrating over

∫
dqNPN we have

∫
dqN (

√
gPN ). Thus, setting P̃N ≡ √

gPN , we

notice that it satisfies the equation ∂tP̃N+(∇q ·q̇+q̇ ·∇q)P̃N = 0, or ∂tP̃N+ıL̃P̃N = 0, which
can be readily exponentiated to give the time evolution operator. The explicit presence of
the metric is important in observables, which contain the distribution function in nonlinear
combinations such as the (microscopic) Gibbs entropy. Even though the smoothness and the
existence properties of invariant measures are not given a proper account (not to mention
the generalization to include chemical reactions) in many of the more practically oriented
exposures of the subject [148, 149, 150], as far as the form of the generalized Liouville equation

can be represented as (∂t + ıL̂)PN = 0, with L̂ as linear operator, it is straightforward to
use it in the the generating functional coarse-graining formalism. In the next section we see
that when approximation the continuous systems by a lattice-gas type of description with
stochastic (or deterministic) transition rules we can readily obtain the path integral generating
functional and thereby the dynamics of expectation values of relevant observables.

2.4.2 Markov Chain Cellular Automata level

Here we cast the time evolution of the probability density of a given Master equation into
the Schrödinger form as we did for the Liouvillean in the previous section. Corresponding to
Eq. (2.137) we get in the lattice case

|φ(t)〉 ≡
∑

{ni}
P ({ni}, t) |{ni}〉 , (2.147)

where |{ni}〉 ≡ ∏

i(a
†
i )
ni |0〉 Existence of the lattice is only assumed to facilitate the x-

representation of the field operators. To make the discussion more concrete we will consider
a model of a directed fermionic world line, which lives on an L × L-lattice, with periodic
boundary conditions. The lattice consists of vertices and bonds: If a bond is part of the
world line, along that bond there is an arrow pointing from one vertex to the next in such a
way that the closed world line comprises of a set of arrows pointing left and down. The line
cannot cross itself but it can cross the system boundaries because of periodicity condition.
The dynamics is such that first a vertex is pick randomly and the configuration of arrows
related to that vertex is checked. If there are no arrows (line does not pass through that
vertex) a new vertex is chosen. Only if a combination of arrows having a corner shape (one
down arrow and one left arrow) at a vertex is found, we parallel transport both arrows to
the next nearest neighbour vertex with probability λ. To make this clear, let us enumerate
the arrows instead of the vertices. Let there be a left arrow at lattice site (i, j) and a down
arrow at (i + 1, j + 1). If the vertex connecting these two arrows is chosen, with probability
λ we parallel transport the down arrow to lattice site (i − 1, j + 1) and the left arrow to
site (i, j + 2). The Master equation now takes the following form in the second quantized
notation:

d

dt
|φ(t)〉 =

∑

{ni}

d

dt
P (n1, n2, . . .)(a

†
1)
n1(a†2)

n2 . . . |0〉 ≡ ĤM |φ(t)〉 . (2.148)

To obtain an explicit representation of the Master (Fokker-Planck) operator ĤM we first have
to consider how the occupation probability P changes. We get

d

dt
P = λ

∑

i,j

{[n(i+ 1, j + 1) + 1][n(i, j) + 1]Pin − n(i+ 1, j + 1)n(i, j)P} , (2.149)
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where Pin is the probability of finding a configuration with one ’extra’ particle at sites (i +
1, j+1) (down arrow) and (i, j) (left arrow), and a hole (no arrows) at sites (i− 1, j − 1) and
(i, j + 2):

Pin ≡ P
(

n(i− 1, j + 1) − 1, n(i, j + 2) − 1, n(i + 1, j + 1) + 1, n(i, j) + 1
)

. (2.150)

The probability of finding the configuration with unchanged number of particles is naturally

P ≡ P
(

n(i− 1, j + 1), n(i, j + 2), n(i+ 1, j + 1), n(i, j)
)

, (2.151)

with only those sites written down whose occupation probability can change as a result of
the attempt move. Using now the definitions of the creation and annihilation operators,

a†i | . . . , n(i), . . . 〉 = | . . . , n(i) + 1, . . . 〉 ; ai| . . . , n(i), . . . 〉 = n(i)| . . . , n(i)− 1, . . . 〉 , (2.152)

and [a(i), a†(j)] = δij , we obtain the second quantized representation of the Master equa-
tion (2.148) with time evolution operator

ĤM = λ
∑

i,j

{

a(i+ 1, j + 1)a(i, j)a†(i− 1, j + 1)a†(i, j + 2) (2.153)

− a†(i+ 1, j + 1)a(i + 1, j + 1)a†(i, j)a(i, j)
}

.

Continuum limit can be easily taken in the path integral representation. What is important
to notice is that the theory does not yet include truly fermionic operators. Even though there
cannot be but one arrow at each lattice site, the operators a and a† satisfy the hard core boson

(or spin-one-half) anticommutation condition [ai, a
†
i ]+ = 0 but commute for different lattice

sites. To make the annihilation and creation operators truly anticommute between different
sites, we have to fermionize the theory. This can be done in dimensions D = 1, 2, 3 using the
Jordan-Wigner transformation [151, 152]. In general, it has been shown by Fradkin [153] that
a two-dimensional spin-one-half system can be mapped via Jordan-Wigner transformation
into a system of spinless fermions minimally coupled to an Abelian gauge field with a Chern-
Simmons term. This is another example (cf. Sect. 2.3.2) of coarse-graining giving rise to
gauge fields in the effective description. Here, there is no information loss, though: The
gauge fields can be eliminated by changing the commutation relation of the ’matter’ fields
(a, a†). The world line model described in this section is one particular representation of a
Restricted-Solid-on-Solid crystal growth model, whose Master equation based coarse-graining
has been recently studied in Ref. [154]. Through a sequence of mappings it is possible to
relate it also to the six-vertex model (whose equilibrium partition function can be found
exactly [155]) and to Burger’s turbulence [156].



Chapter 3

Symmetry principles

3.1 Coarse-grained dynamics for conserved variables

3.1.1 Exact and approximate symmetries of the action

There are two closely related objects, whose symmetry properties we use to identify the
relevant coarse-grained variables: The density matrix and the action of the nonequilibrium
generating functional. Their symmetries are related to one another because the latter is the
trace of the former, when decorated with the couplings to the source fields. (Source terms are,
of course, not included in the symmetry analysis of the action: They are only needed for the
formation of the effective action via the Legendre transformation.) Since the initial density
matrix appears only as a boundary condition in the functional integral representation of the
action, any variational approach for symmetry analysis must be modified appropriately. If
there is a bath, it can either be analyzed together with the system or integrated out resulting
typically in an effective system action, which shows decoherence or dissipation.

Let us first discuss exact symmetries. Continuous symmetries of the action (Lagrangian)
are related to conservation laws of the system according to Noether’s theorem, which holds
for both relativistic and nonrelativistic systems [157]. Using particle physics language, let us
first discuss the concept of gauge invariance, which means that the generating functional of
the Green’s functions of the theory is invariant under gauge transformations of the matter and
gauge fields. This is easy to understand because the value of any (functional) does not depend
on the dummy integration variables, which can be freely redefined. Gauge transformation
is just a special type of redefinition of the dummy integration variables. The only pieces
of the generating functional of the Green’s functions, which are not gauge invariant are the
source coupling terms and gauge fixing terms. When performing an infinitesimal variation
of the fields (gauge transformation), the condition on vanishing source and gauge fixing
terms is translated into a form of a balance equation, which reduces to the conservation
equation for current density when external sources are set to zero. This identity is called
the Ward-Takahashi identity in Abelian and Slavnov-Taylor identity in non-Abelian field
theories. In condensed matter systems Zhou et al. [63] and Su [158] et al. have demonstrated
the effectiveness of Ward-Takahashi identities in deriving energy and momentum balance
equations for a electron-phonon-impurity system. Following their lead, we try to argue in
Sect. 3.1.2 the form of the balance equations of classical fluids.

In practice the exact symmetries are hard to find just like the exactly conserved con-
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stants of motion as we know from the theory of dynamic systems [116]: The set of known
isolating primary integrals of motion of a Hamiltonian system, which is not confined in finite
space usually reduce to energy, linear and angular momentum. Exactly integrable systems
represent but tiny subclass of all real systems. To extend the program of finding the relevant
macro variables, we should really start looking for approximate symmetries [159] (and con-
servation) laws in addition to (or instead of) exact ones. In practice, we will in any case have
to deal with a some sort of effective Lagrangian (action), so there is no point trying to isolate
its exact invariants, which is mathematically hard. Spontaneous breaking of a continuous
exact symmetry gives rise to low energy excitations called Goldstone bosons. There exists
a systematic way of expressing the low energy (coarse-grained) effective Lagrangian of the
system in terms of the Goldstone modes [157, 160]. This will be utilized in Sect. 5.8 where
the Goldstone mode representation of the order parameter of superfluids and superconduc-
tors is discussed (see also Sect. 4.1.3). The simplicity (compared to high energy phenomena)
and similarity of the low energy Lagrangians of various systems is one source of universal-
ity [161], which could also be formulated using renormalization group arguments as usually
done in equilibrium statistical mechanics. Thus, the coarse-grained physics (Lagrangian) is
not necessarily as sensitive as one might think, to the various approximations one is bound to
make, when trying to simplify the description. The Goldstone bosons related to the approx-
imate symmetries of effective description are called pseudo-Goldstone bosons or (massless)
quasi-particles [157, 162] in condensed matter systems. Not all quasi-particles are Goldstone
bosons, though. Optical phonons, for example, do have a finite energy for zero wave vectors
and cannot be called Goldstone modes [163]. Similarly, plasmons have a finite energy for zero
wavevector [1], because of the long range Coulomb forces. It is the long range Coulomb forces
which are also responsible for the missing Goldstone mode of the superconductors where the
photonic excitations acquire a small mass.

3.1.2 Link to classical hydrodynamics

In Ref. [63] the authors gave some general arguments for derivation of equations of motion
for conserved macro variables Qi based on the symmetry analysis of the action. They gave
a specific demonstration for isotropic antiferromagnet (model G of critical dynamics [126])
whose Lie group is finite. Below we try to adapt this method for an infinite dimensional
system of classical hydrodynamics. Under the action of the symmetry group,

Qα → Q′
α = Qα + ıfαβγζβQγ , (3.1)

where fαβγ are the structure constants of the symmetry group and ζβ are the infinitesimal
parameters of the transformation. If the Lagrangian (action) of the system is invariant under
the global symmetry transformation, we obtain the Ward-Takahashi identities for conserved
currents jα:

〈∂µjµα〉 = 〈∂0j
0
α〉 + 〈∂sjsα〉 = ∂tQα + ∇ · j = ıfαβγJβQγ = 0 . (3.2)

The zeroeth component is the time, and index s marks the spatial components. When
brackets are not shown, the quantities are assumed averaged. The appearance of the current
Jβ(x) ≡ δA[Q]/δQβ(x) is dictated by the Ward-Takahashi identity as the source term of the
generating functional is not invariant under the symmetry transformation. The final equality
follows in the non-driven case where external sources are set to zero: Jβ = 0.

Suppose now that the system has reached a steady-state: If there is dissipation in the
system, it is balanced by introducing an extra current ∆Jα. Since ∂tQα = 0 in the steady-
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state by definition, Eq. (3.2) gives

∇ · j′ = ıfαβγ(∆Jβ)Qγ . (3.3)

On the other hand, linear response argument suggests that we can write the difference between
the conserved currents with and without additional driving (cf. Sect. 4.1.3) as

j′ − j = −Mαβ∇(∆Jβ) , (3.4)

We can relate the extra current ∆Jβ needed to maintain the steady-state to the steady-
state form of the action As: δAs[Q]/δQβ = ∆Jβ, which is the general form of the equation of
motion. Calling As[Q] ≡ F [Q], ’free energy’, we can express ∆Jβ in terms of F and substitute
it back Eq. (3.3):

∇ ·
(

j−Mαβ∇
δF [Q]

δQβ

)

= ıfαβγ
δF [Q]

δQβ
Qγ (3.5)

We can now add the dissipative effects to the general current balance equation (3.2) by solving
for the current j from Eq. (3.5):

∂tQα = ıfαβγQγ
δF [Q]

δQβ
+Mαβ∇2 δF [Q]

δQβ
. (3.6)

Rigorously speaking, to justify the use of the free energy, we should accompany the dissipa-
tive term Mαβ∇2(δF [Q]/δQβ) with a proper stochastic field if we want the steady-state to
correspond to a Gibb’s equilibrium state as discussed in Sect. 2.3.4.

Let us now express the structure factors of the Lie symmetry algebra in a more useful
form. In general, the Lie algebra of the symmetry generators is closed by the commutator
relations

[Qα, Qβ] = ıfαβγQγ . (3.7)

Additionally, if there are non-conserved (order) operators ψβ present, Zhou et al. [63] propose
the following commutator relation for them: [Qα, ψβ ] = ıfαβγQγ for them. This relation bears
a great similarity to an early approach of quantum kinetics formulated by Peletminskii and
Yatsenko [164]. They proposed encoding the symmetries of the problem in the free part of
the system Hamiltonian H0 satisfying the commutation relation [H0, ψk] = akmψm, which
reduces to the form suggested by Zhou et al. if one takes H0 to consist of of a sum of conserved
charges

∑

iQi. Furthermore, our standard assumption of the commutation relation satisfied
by the order operator and its associated conserved charge, [Q,ψ] ∝ ψ, is a special case of the
same relation.

In the classical case the commutators have to be replaced by Poisson brackets, and we
will show later on in Chap. 9 and App. D.1 that the Poisson brackets of the classical mass φ
and momentum densities (conserved variables) j satisfy

{φ(x), ji(x
′)} = φ(x′)∂iδ(x − x′) ; (3.8)

{js(x), ji(x
′)} = −ji(x)∂′sδ(x − x′) + js(x

′)∂iδ(x − x′) . (3.9)

Formally, we can cast these equations into the form (3.7) by introducing a vector index
Qγ,x ≡ Qγ(x), which allows us to write Eq. (3.8) and Eq. (3.9) as

{Q0,x, Qi,x′} = f̃i(x,x
′)Q0,x′ ; (3.10)

{Qs,x, Qi,x′} = f̃s(x,x
′)Qi,x + f̃i(x

′,x)Qs,x (3.11)
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where we have defined Q0,x ≡ φ(x) and Qi,x ≡ ji(x) and f̃s(x,x
′) ≡ ∂sδ(x − x′). Thus, we

can easily find a function fα,x;β,x′;γ,x′′ such that Eq. (3.10) and Eq. (3.11) are equivalent to

{Qα,x, Qβ,x′} = fα,x;β,x′;γ,x′′Qγ,x′′ , (3.12)

where the summation convention is replaced by integration for the x′′-index. For more
rigorous treatment of Lie-algebra’s of spatially extended systems the reader is referred to
Refs. [50, 165]. Replacing now the the term ıfαβγ in the evolution equation (3.6) by the
Poisson bracket given in Eq. (3.12) leads to the following classical type of equation of motion
(where no stochastic terms have been taken into account)

∂tQα =

∫

dx′ {Qα(x), Qβ(x
′)} δF [Q]

δQβ(x′)
+ Γ̂αβ

δF [Q]

δQβ(x)
≡ −Ξ̂αβ

δF [Q]

δQβ
, (3.13)

where we have defined an evolution operator Ξ̂αβ, which consists of a streaming term (reactive
couplings) given by the Poisson bracket and a dissipative term, whose prefactor is given by

Γ̂αβ ≡ Mαβ∇2 consistent with the conservation law for the variable Q. When a suitable
stochastic term is added to Eq. (3.13) the Gibb’s equilibrium exp(−βF ) will be finally reached.
The whole form of the evolution equation can be actually justified based on the relaxation
argument alone as will be discussed in Chap. 7. In this section we have merely motivated
the the form that macroscopic evolution equations take from the microscopics. The other
advantage, which is not offered by the direct macroscopic approaches which postulate the form
of Eq. (3.13) for time evolution is that here one can try to obtain the transport coefficients
from first principles. In phase-field modelling type of macroscopic approaches these have to
be fitted from experimental data.

Even from microscopic point of view the derivation presented above leaves many important
questions open. Even though, it is possible to derive the transport coefficients such as Mαβ

using renormalization group techniques, it requires hard work to give them explicit expressions
in terms of the microscopic parameters of the theory. To our knowledge this has not been
explicitly done in the current context. The γ-matrix derivation presented in Ref. [63] is
illuminating but technically not entirely convincing. We also point out that one does not need
to explicitly reveal the commutator structure of the streaming term in Eq. (3.6) (ıfαβγQγ)
as the conserved current can be also directly constructed as shown in Ref. [158] freeing one
from the burden of thinking the crossing of the quantum-classical border line, which very
subtle. In fact, keeping the commutator term in Eq. (3.6) as it appears cannot be correct for
scalar operators at least, because inside the commutator there appear expectation values of
operators, which are commuting numbers. Writing instead

∂tQα = 〈[Q̂α, Q̂β]〉
δF [Q]

δQβ
+Mαβ(h̄)∇2 δF [Q]

δQβ
, (3.14)

is more correct if we insist in making a contact with the Lie group structure through the
commutator representation. On the other hand, since it is rigorously true [165] that

〈[Q̂α, Q̂β]〉 = {〈Q̂α〉, 〈Q̂β〉} , (3.15)

we should indeed be able to replace the expectation value of the commutator by the Poisson
bracket of the expectation values without any explicit reference to the canonical quantization
recipe: [Q̂α, Q̂β] → ıh̄{Qα, Qβ}. However, now the limit h̄ → 0 does not give the correct
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answer (relaxation to Gibbs equilibrium) if it happens that Mαβ(h̄) → 0 as h̄ → 0 because
then the dissipative term (and the noise term which is not shown) would vanish. If there
exists a non-zero limit for the noise kernel (as in the case of damped harmonic oscillator [74]),
this is not a problem. All in all, it is better not to call the evolution equation (3.13) classical
in the general case, since many of the observables we are interested in do not have a classical
partner: order parameter of the superfluid condensate is one example.

3.2 Finding relevant variables in the general case

In the absence of small expansion parameter like density for dilute systems it becomes nearly
impossible to extract the different time scales of an interacting many-body system from
equations of motion alone [45]. To pin down the slow variables one therefore usually relies
on experimental information on symmetry properties or utilizes the (few) microscopical con-
servation laws such as mass, momentum and energy conservation. In this section we want
to discuss a third possibility, which is of first-principles character being based on the group
theoretic analysis of the system’s density matrix. Our claim is that the slow variables asso-
ciated with conservation laws and symmetry-broken variables can be found by analysing the
dynamic symmetry group (spectrum generating algebra) of the density matrix. In practice,
the task is heavy and therefore the best way is usually to utilize experimental techniques to
find out the important symmetries and relevant order parameters.

3.2.1 Dynamic symmetry group of the density matrix

Dynamic symmetry group [166] of the Hamiltonian contains all the information of a quantum
system concerning the eigenstates of the Hamiltonian and the transition operators between
the eigenstates. In other words,

H = H(Ti) ; a = a(Ti) , (3.16)

where the a denotes the transition operators (generalized ladder operators) and Ti are the
generators of the dynamic group. For any finite quantum system there is only a finite number
of them: i = 1 . . . ng. The generators form a Lie algebra

[Ti, Tj ] =

ng∑

k=1

CijkTk , (3.17)

where the structure constants are Cijk. The dynamic group will play a central role in the
determination of the relevant macro variables. In practice it not easier to find the dynamic
symmetry group than diagonalize an arbitary many-body Hamiltonian, which means that
much of what we say will remain on a formal level. However, just like diagonalization can
be done approximately using various techniques, it is also possible to extract information
concerning the dynamic group once the system has been reduced by some means to a simple
enough form, which is usually a mean-field type of representation where the nonlinear operator
products have been simplified by contracting some terms.

Let us now give a couple of examples of dynamic groups. The simplest is perhaps the H4-
group (Heisenberg-Weyl group) of the harmonic oscillator, whose Hamiltonian H = h̄ω(n̂+
1/2). It consists of four generators a†, a, n̂ and the identity I satisfying the following algebra

[a, a†] = I ; [n̂, a†] = a† ; [n̂, a] = −a ; [Ô, I] = 0 , (3.18)
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where Ô = a†, a, n̂. The group representation theory tells us how to classify the generators
of the dynamic group into different subgroup chains, each of which has its own physical
meaning. Operators, which commute with all the generators of the dynamic group (subgroup)
are called Casimir operators, and they will play an important role in the hunt for relevant
macro variables as we will see below. For harmonic oscillator there is the following subgroup
chain [167] H4 ⊃ U(1)⊗U(1), and the Casimir operators associated with the chain members
are CH4 = −1

2I, CU(1) = I and CU(1) = n̂. The Casimir operators of a particular group chain
will form a complete set of commuting observables (CSCO), which are the relevant quantum
numbers labelling the eigenstates of the quantum system. For example, the Hamiltonian
eigenstates of the harmonic oscillator are |n〉, where the label is the eigenvalue of the nontrivial
Casimir operator n̂ of the group chain. A second example is a spin system [168], whose
Hamiltonian is given by H = aJ 2 + bJz. The dynamic group chain is now O(3) ⊃ O(2). The
generators of the rotation group O(3) are J+, J−, Jz and the generator of O(2) is Jz . The
Casimirs can be found right away: CO(3) = J2 (total angular momentum) and CO(2) = Jz.
Consequently, the eigenstates are |jm〉 labelled by the the eigenvalues of the CSCO generators
J2 and Jz .

Even for the simplest Hamiltonian, there is an infinite number of operators, which com-
mute with it: Take for example all projectors |n〉〈n| of the eigenstates of Hamiltonian and
their sums and products. The essence of the Casimir operators is that they will correspond
to the conserved macro-observables of any dynamic problem, because they commute with
the Hamiltonian. Furhtermore, CSCO gives us the smallest number of commuting operators
sufficient to span the Hilbert space of the system. They will act as a basis set of any hy-
drodynamical description. It is important to notice that in principle there is a mechanical
way (based on the representation theory of groups) of producing the conserved charges of the
problem. However, this is not easy in practice as we know.

The slight modification which we propose to the standard scheme is to consider the
dynamic symmetry group of the density matrix instead of the Hamiltonian of the system,
which is responsible for the time evolution. The reason for this is that to see the broken
symmetry, we need to average the order operator over the broken symmetry ensemble (density
matrix). In Gibb’s equilibrium the density matrix ρbs of the broken symmetry ensemble can
be approximated by

ρbs ≈ ρJeq = e−βH
′
s+Jψ , (3.19)

where J is the conjugate field of the order operator ψ. As we have explained in Sect. 2.1.3,
this construction is sufficient to separate between the symmetric and unsymmetric phases. It
is also important to separate between the Hamiltonian Hs responsible for the time evolution
of the system and the Hamiltonian H ′

s appearing in the (final state) equilibrium density
matrix. These two do not have to be the same, although for special type of system-bath
couplings it can be shown [169] that irrespective of the initial condition the system, whose
generator of time evolution is Hs, will go to Gibb’s equilibrium described by the Gibb’s
density exp(−βHs) in the symmetric case. In general we expect the following to scenario to
hold when t→ ∞:

ρs(t) = TrB{U(t)ρ0U
†(t)} →

{

ρ0
eq = e−βH

′
s for µi ∈ S ;

ρJeq = e−βH
′
s+
∑

i
Jiψi for µi ∈ U .

(3.20)

The set S represents the values of the the coupling constants µi in the symmetric phase.
The coupling constants µi denote the conjugate variables of symmetry generators, such as β,
which is conjugate to energy, or chemical potential µ, which is conjugate to particle number
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etc. The set U represents the values of the coupling constants for which the symmetries
related to order parameters ψi have been broken.

3.2.2 Symmetry breaking and restoration

In this section we will consider the operational definitions of symmetry breaking and restora-
tion. First we provide a three item list which shows the analogs between the ground state,
finite temperature and dynamic formalisms:

• Ground state formalism

Let Q be the symmetry generator of the system Hamiltonian Hs: [Q,Hs] = 0. Let ψ
be the order operator and for simplicity assume Q = ψ†ψ and [ψ,ψ†] = 1. The ground
state is denoted by |G〉. Spontaneous symmetry breaking occurs if

〈G(µ)|ψ|G(µ)〉 = Tr{ψ|G(µ)〉〈G(µ)|} = Tr{[ψ,Q]|G(µ)〉〈G(µ)|} (3.21)

= Tr{[Q, |G(µ)〉〈G(µ)|]ψ} 6= 0 , (3.22)

or equivalently, [Q, |G(µ)〉〈G(µ)|] 6= 0 for some values of the control parameters µ
(conjugate variables of conserved or constrained quantities).

• Finite temperature formalism

LetQ be the symmetry generator of the system HamiltonianHs: [Q,Hs] = 0. Then, it is
a symmetry generator of the equilibrium density matrix ρeq = exp(−βHs): [Q, ρeq] = 0.
Spontaneous symmetry breaking takes place, if Q is not a symmetry of ρbs(µ), which is
the relevant ensemble weight in some (broken symmetry) phase: 〈ψ〉 = Tr{[Q, ρbs(µ)]ψ} 6=
0, or equivalently, [Q, ρbs(µ)] 6= 0 for some values of the control parameters µ. In the
equilibrium case we can only see the symmetry breaking indirectly via Bogolubov’s
quasi-averaging or from analytic properties of the partition function.

• Nonequilibrium formalism

Let Q be the symmetry of the initial system density matrix ρs(0, µ), i.e. [Q, ρs(0, µ)] =
0. The time dependent density matrix is obtained in the usual manner by tracing out
the bath from the Heisenberg representation of the total density matrix. We say that
dynamic symmetry breaking occurs if 〈ψ〉 = Tr{[Q, ρs(t, µ′)]ψ} 6= 0, or [Q, ρs(t, µ

′)] 6= 0
for some values of the control parameters µ′ and time t. In the dynamic case the
transition can in principle be seen by observing the change in the form of the system
density matrix directly. The transition can be generated by changing some of the bath
parameters like temperature: µ = β1 < β2 = µ′.

It is easy to see that nonequilibrium formalism reduces to the finite temperature one if we
have ρs(t, µ) → ρbs(µ) when t → ∞ and ρs(0, µ) = ρeq. Similarly, the finite temperature
formalism reduces to the ground state formalism when T → 0 and ρbs → |G(µ)〉〈G(µ)| The
definition of the nonequilibrium formalism presented in the last item of the list is rather
narrow in the sense that it does not take into account intermediate symmetry breakings and
restorations. Dynamic symmetry breaking and restoration can be defined by saying that
if the set of symmetry generators Qi(t1), i ∈ K at time t1 is not the same as the set of
generators at time t2 > t1, some old generators have vanished and some new have emerged.
In a closed system this cannot happen since the number basic observables commuting with
the density matrix at some initial time stays the same for all times: They are unitarily related
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to each other. With a bath we have a richer structure. Unfortunately, the dissipation makes
also some of the language related to static dynamic groups obsolete (such as the concept of
conserved charge has to be modified, since the system observables become time dependent due
to the bath influence). Therefore, in the following we will concentrate on the dynamic group
of the final density matrix and Gibb’s equilibrium, where we can talk about a stationary
Hamiltonian H ′

s possessing a well-defined dynamic group structure.
Next, we discuss the important mean-field approach to symmetry breaking. As we have

pointed out before, even though we use a density matrix ρbs ≈ ρJeq = exp(−βH + J∆) to
describe the broken symmetry phase, it does not necessarily mean that we would have broken
the symmetry explictly by adding a coupling term J∆, where ∆ denotes the order parameter.
As a concrete example we use the mean-field theory of BCS superconductivity. Suppose first,
that the order parameter satisfies

[Q∆,∆] ∝ ∆ . (3.23)

Here Q∆ is the symmetry generator of the symmetric equilibrium ensemble The density
matrix in the mean-field approximation is given in terms of the mean-field Hamiltonian Hmf :

ρeq ≈ exp(−βHmf

(

〈∆〉 = 0)
)

. (3.24)

Order parameter ∆ is associated with the symmetry generator of the equilibrium ensemble
Q∆, which, by definition, satisfies [Q∆, ρeq] = 0. In Sect. 5.5 we will show how ∆ and Q∆

can be constructed from first principles. Below their microscopic representation will pop out
of the mean-field treatment. When the expectation value of the order operator 〈∆〉 = 0, we
obviously have that [ρeq, Q∆] = 0 as shown in item ’Finite temperature formalism’ of the
list above. On the other hand, in the broken symmetry phase described by weight ρbs the
order parameter becomes non-zero: 〈∆〉 6= 0, which means that Q∆ is not a symmetry of ρbs:

[Q∆, ρbs] 6= 0. Thus, we can take ρbs ≈ exp
(

−βHmf (〈∆〉 6= 0)
)

. The mean-field Hamiltonian

of BCS model can be obtained by choosing to contract creation (annihilation) operators with
opposite momenta and spin in the interaction part of the Hamiltonian. Thus,

ρ ≈ exp
(

− βHmf (〈∆〉)
)

= exp
(

− βH0 + β〈∆〉
∑

k

a†k↑a
†
−k↓ + β|〈∆〉|2/g + h.c.

)

(3.25)

≈






exp
(

− βH0

)

= ρeq 〈∆〉 = 0 ;

exp
(

− βH0 + β〈∆〉∆† + h.c.
)

= ρJeq = ρbs 〈∆〉 6= 0 .
(3.26)

We have defined H0 ≡ ∑

kσ εka
†
kσakσ, ∆ ≡ g

∑

k a−k↓ak↑, g is the contact potential and
summation over k is restricted in the vicinity of the Fermi surface. In the lower equation (3.26)
we have assumed that ∆ is small and dropped the quadratic term 〈∆〉2. Interpreting β〈∆〉 =
J , we see that the broken symmetry ensemble is approximatively described by a density
matrix ρJeq, which we have been using many times. In a way, the mean-field approximation
the spontaneous symmetry breaking has masked itself to look like an explicit symmetry
breaking in an ’external’ field J = β〈∆〉. It should be noted that the analysis above is
insufficient to prove the existence of the spontaneous symmetry breaking as long as 〈∆〉
is kept as a free parameter. Its value should be self-consistently fixed by minimizing the
free energy with respect to it. This leads to the gap equation and allows the construction
of the mean-field phase diagram. Another method of seeing the spontaneous symmetry
breaking, which is also convinient for determination of the phase diagram is the coherent
state method [170]. It is closely related to our methodology as it makes a direct use of the
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dynamic symmetry group of the system and has been successfully applied to situations such
as high-Tc superconductivity[171]. The close analogy to our Legendre transformation based
method comes from the fact that the coherent state parameters appear as conjugate fields
of generalized ladder operators (generators of dynamic symmetry group). Therefore, the
coherent state parameters can be interpreted as order parameters of the theory [172].

Finally, we will consider the signature of the spontaneous symmetry breaking from the
point of view of symmetry transformation and the symmetry of the expectation value of
order operator. Let Q be the generator of some symmetry of the symmetric phase and ψ
the associated order operator satisfying [ψ,Q] = ψ. In the broken symmetry phase the
expectation value of the order operator will not be invariant under the continuous symmetry
transformation:

lim
J→0

Tr
{

eıαQψe−ıαQ e−βH+Jψ
}

= lim
J→0

Tr
{

ψ e−ıαQe−βH+JψeıαQ
}

(3.27)

= lim
J→0

Tr
{

ψe−βH+exp(ıα)Jψ
}

= lim
J→0

δ

δ(eıαJ)
Tr
{

e−βH+exp(ıα)Jψ
}

(3.28)

= e−ıα lim
J→0

δ

δJ
Tr
{

e−ıαQe−βH+JψeıαQ
}

= e−ıα lim
J→0

δ

δJ
Tr
{

e−βH+Jψ
}

︸ ︷︷ ︸

limJ→0〈ψ〉J

. (3.29)

Bogolubov’s quasi-average makes the last term non-zero, and we see that an extra phase has
been created because the ensemble is non-symmetric. In the symmetric ensemble we have

Tr
{

eıαQψe−ıαQe−βH
}

= 0, because [Q, e−βH ] = [Q, ρeq] = 0. These results will be made use

of in Sect. 5.7.2

3.2.3 Can we really predict which symmetries are going to be broken?

The dilemma associated with the spontaneous symmetry breaking is the following. How can
we see which symmetry is going to be broken under the dynamics without putting in the
answer by hand? First, we have to find the symmetries of the system. In the long time limit
this can be achieved (in principle) by isolating the complete set of commuting observables
from the dynamic symmetry group of the density matrix. The next question is, based on the
known symmetries, can we construct the equilibrium phase diagram using already existing
formalisms? The answer is yes: In the previous section we mentioned that self-consistent
mean-field approach and coherent state method can be used to construct (an approximate)
phase-diagram. As what comes to the generating functional formalism, given that a few
conditions are fulfilled, the answer is positive, as discussed in Sect. 2.1.2. It suffices to form
the effective action (free energy) A[〈ψi〉], which is obtained from the Legendre transforma-
tion of the generating functional Z[{Ji}] = Tr exp(−βHs +

∑

i Jiψi). The condition that
should be fulfilled is that the Legendre transformation exists for each particular composite
order-operator ψi. Secondly, we have assumed that for finite quantum systems we are able
to decompose each Hermitean symmetry generator Q = ψ†ψ. If this is not true, more com-
plicated relations between the order parameter and symmetry generator must be considered
such as [Q,A] = ψ, where A is symmetry restoring variable [1]. In fact, in some applications
(e.g. superfluidity) we will be considering later on, the real order parameter will be the phase
of the expectation value of ψ. However, it can be computed from 〈ψ〉 via a nonlinear trans-
formation, which allows us to still formulate much of the discussion in terms of ψ. What
we basically expect the Legendre transformation of the generating functional to give us is
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an effective action whose pointwise density allows us to extract the phase diagram from its
local minimima. The non-convexity vs. convexity issue is pondered in more detail in App. A.
To see phase transitions, we expect a non-convex pointwise action density in the same sense
as the concept is used in the critical dynamics (phase-field) community [126]. Another, and
more correct way of expressing the same thing is to say that we expect the effective action to
give rise to anomalous solutions for various Green’s functions, the behaviour of which will aid
in the construction of the phase diagram. The existence of anomalous solutions is of course
a hall mark of field theories, so we should be careful as we have also assumed the generalized

ladder operator presentation of the symmetry generator Qi = ψ†
iψi, which might not be valid

in all cases in infinite space. However, if there are systems for which the effective action
behaves the way we have described above, we have basically been able to conctruct the phase
diagram based on the use of the symmetrical ensemble! We have not put in any symmetry
breaking by hand. The job of the Legendre transformation is not to induce explicit symmetry
breaking beacuse the field J of the generating functional is just a dummy variable, which will
be traded for the expectation value of its conjugate field when going from Z[J ] to A[〈ψ〉].
However, the Legendre transformation is capable of revealing the phase transition (and the
phase diagram) in the form of the anomalous solutions because each 〈ψ〉 corresponds to some
J , which can break the symmetry.

Let us now discuss, whether we can expect to be able to predict phase transitions taking
place in course of the time evolution of the system. For concreteness sake let us use the
simulation of the Heisenberg model as an example. In the symmetric high temperature phase
the spins are pointing in random directions resulting in zero value of the magnetization order
parameter (ψ). Temperature of the system can be changed by changing the temperature of
the heat bath. Quenching the bath from high to sufficiently low temperature will result in
ordering of the spins and emergence of a non-zero value for the order parameter, if we only use
the spatial averaging from a single simulation run. However, if we take an ensemble average
over the full initial density matrix, no net magnetization will be generated if there is nothing
asymmetric in the initial distribution, bath coupling or time evolution operators. In each
run long range order will emerge, but the overall direction of the net magnetization depends
on the initial condition we have started from: If there is no bias in the initial conditions (or
time evolution), the value of the order parameter will remain zero even though long range
ordering takes place. If we were able to take the thermodynamic limit in the simulation, we
would guarantee that once the system has chosen some ordering direction, it will keep it.
However, in a fully symmetric ensemble (dynamic or static) taking the thermodynamic limit
does not yet fix any particular direction, so averaging over the (symmetric) initial distribution
would still destroy the emergence of the non-zero value of magnetization. On the other hand,
thermodynamic limit combined with an infinitesimally small external field coupled with the
correct order parameter would not only break the ergodicity but also fix the direction of the
net magnetization giving rise to a non-zero value of the order parameter. Another possibility
would be to introduce some randomness into the system (e.g. impurities) such that when
phase transition temperature is approached, the system ’knows’ which way to go and the end
result will be biased to produce a non-zero value for the order parameter. But even in this
case, one needs to know how to couple the disorder with the correct order parameter.

Our assumption is that the functional Legendre transformation will automatically reveal
the symmetry breaking under dynamical conditions in the same way it reveals the equilibrium
phase transitions. We introduce the order operators ψi associated with all the relevant
symmetry generators (Casimir operators) into the time evolution operator as indicated in
Sect. 2.2: Z = Tr{U(tf , ti, {(Ji)+})ρ0U

−1(tf , ti, {(Ji)−})}. If the static analogy holds holds,
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forming the effective action A should now contain information on how the symmetry breaking
takes place dynamically. Again, we have not broken the symmetry explictly: The source
terms {Ji} are needed for the Legendre transformation. Computing the equations by requiring
stationarity of the action against the variations of 〈ψi(x, t)〉 produces the equations of motion
for the order parameters, which will also reveal the order in which the symmetries are broken
in different spatial regions.

In general, systems with many simultaneously broken symmetries are not easy to study.
These systems are abundant in condensed matter physics where one can have coexistence and
competition of phenomena such as superconductivity, structural transitions [173], spin waves,
charge density waves [174], ferroelectricity [175], and so on. Even in the equilibrium case,
depending on the particular way one contracts the nonlinear operator products to produce a
theory quadratic in field operators leads in each case to a different mean-field model. There are
several advantages in the generating functional formalism that make it an attractive choice for
modeling complicated systems. First, we are able to construct dynamic mean-field theories.
To our knowledge, the coherent state method has been so far used in static problems, but it
should be possible to develop a time-dependent generalization of it, too. Second, by including
renormalization effects we wish to go beyond standard mean-field results. For example, one
can utilize the non-perturbative renormalization flow of Berges et al. [34] to construct the
effective action on a chosen scale k and then form the dynamic mean-field theory based on
Ak. This way one would be able to discuss even the transport coefficients appearing in the
mean-field equations of motion on a coarser scale. Third, the couplings between the various
order parameters and conserved variables are generated correctly owing to the simultaneous
Legendre transformation with respect to several variables.

An important question left open by the formalism is related to the seemingly large (but
finite) number of symmetry generators (in a finite quantum system). It will be impractical to
write down an equation of motion for each of the symmetery generators and their associated
order operators if there is more than a handfull of them. Can we somehow show that there are
systems where the number of dynamic symmetry group generators diminishes in the course
of time due to the dissipative coupling to the heat bath so that in the end there is just a small
number of them left (such as mass, momentum and energy densities)? These systems would
then be suitable for coarse-graining treatment, because the number of relevant macrovariables
would be small engouh. However, one of the advantages of the generating functional formalism
is that it also works for any incomplete set of relevant variables. In other words, it can produce
the equations of motion for a subset of symmetry generators or order operators. An interesting
possibility, which can perhaps partly explain the apparently small number of relevant variables
in some systems like simple fluids, can be loosely formulated in the language of dynamical
symmetries. Again we have to be careful not to use blindly the results of ordinary finite
quantum systems in the quantum field theory setting. According to the standard terminology,
a finite quantum system is said to posess a dynamic symmetry if its Hamiltonian (density
matrix in our case) can be expressed as a function of the Casimir opertors (Qi) of a single
subgroup chain. If the dynamic symmetry is broken, the system is not integrable any more
and (quantum) chaos sets in [167]. In order to break the dynamic symmetry, it suffices to
destroy one of the commuting observables or alter the coefficients in the expansion of the
system density matrix (or ’time dependent effective Hamiltonian’ H̃(t)) in such a way that it
is not possible to possible to express it any more in terms of the Casimir operators of a single
subgroup chain. Here, H̃(t) is defined through ρs(t) = exp(β ˜H(t)) ≡ TrB{U(t)ρ0U

−1(t)} and
TrB is the trace over the bath. As we are using the nomenclature of the static equilibrium
theory to speculate what might happen in a dissipative dynamic system, everything should
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be taken with a grain of salt. However, as far as we can really talk about an instantaneous
dynamic symmetry group of a dissipative system, then it is possible that there are but
few isolating first integrals (good quantum numbers), which are relevant for hydrodynamic
description. Analogously to the classical arguments presented in the end of Sect. 2.3.2 the
chaotic behaviour resulting from dynamic phase transition of a finite dimensional quantum
system are reflected in the topology of the phase space.

Before the story gets too complicated, we must remember that nothing forces us to use
’ab initio’ determination of the symmetries to find the relevant macro variables. Physical
intuition cannot be replaced by mechanical machinery in practical problems. In most cases,
it is far more sensible to use experimental information on the symmetries and their associated
order parameters. Using these one can proceed in the familiar manner by substituting them
into the generating functional, which will serve to produce the dynamics.

3.2.4 Non-relativistic Goldstone’s theorem for ensembles

We will now justify why the dynamic symmetry group of the final steady-state density matrix
is on special importance for coarse-grained descripition of any system. It is noted by pass-
ing that a more detailed description of the intermediate time-scale phenomena (which can
have relatively long but not infinite life time) would be obtained by studying the dynamic
group of the time dependent density matrix. The problem is that for finite dimensional iso-
lated Hamiltonian systems the symmetries of the initial density matrix determine the group
structure and symmetries for all times leading to less rich structure than in open systems
where dissipation gives rise to important effects in the phase transition picture. For example,
in an open system, contrary to closed one, the symmetry generator of the density matrix
does not necessarily have to be a conserved variable. This can be easily seen by considering
Lindblad type of Master eqaution for the reduced density matrix of the system and showing
that [Q(t), ρs(t)] = 0 is not equivalent to (d/dt)Tr{Q(t)ρs(t)} = 0. Of course, in the case of
dissipative system one should strictly speaking use the concept of the symmetry generator
of the semigroup, not dynamic symmetry group. These complications will not be important
as far as we are concentrating on the hydrodynamic behaviour emerging in the limit t→ ∞,
where the system density matrix reduces to steady-state, which can in general be assumed
to be of the form exp(−βH ′

s). The exponential form is not essential, all that matters is that
there is a well-defined dynamic group structure in steady-state. For system’s where Gibbsian
equilibrium is reached with H ′

s = Hs [169] (the latter being the time evolution Hamiltonian
of the system) the study of the dynamic symmetries of the density matrix reduce to the study
of the dynamic symmetries of its Hamiltonian.

Below we demonstrate that both conserved symmetry generators and order-operators
associated with broken symmetries are relevant hydrodynamic variables as their life time
goes to infinity on large enough scales. This result is based on the non-relativistic version
of the Goldstone’s theorem [176], which is also known as the Bogolubov’s 1/q2-law [35, 177].
Let Q =

∫
dxQ(x) be a conserved charge, and a generator of a continuous symmetry of the

final state equilibrium density matrix [ρs(∞), Q] = 0 in the symmetric phase. So far we
have been assuming that we can relate the conserved variable to the order parameter ψ via
Q = ψ†ψ. More generally [1], we are trying to find local variables A and B, which satisfy
[A(x), Q] = B(x). The observable A is a so-called symmetry restoring variable and B is the
symmetry breaking variable alias order parameter. So far, we have been using A = B = ψ.
As before, if the state ρs(∞) is symmetric under Q ([ρs(∞), Q] = 0), then 〈B(x)〉 = 0. If
the state ρs(∞) breaks the symmetry ([ρs(∞), Q] 6= 0), then 〈B(x)〉 = 〈B〉 6= 0 assuming
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translational invariance of the equilibrium state. Following now Ref. [1], we compute the
response function χ′′

QA in the symmetry broken ensemble: χ′′
QA =

∫
dx′ [Q(x′, t), A(x)] = 〈B〉.

The important point is the in the previous equation the right hand side does not depend on
time because on the left

∫
dx′Q(x′, t) is a conserved charge, which is independent of time.

Therefore,
χ′′
QA(k = 0, ω) = π〈B〉δ(ω) . (3.30)

Furthermore, based on Eq. (3.30) we assume that there is nothing anomalous in the limiting
process limk→0 χ

′′
QA(k, ω) = π〈B〉δ(ω). But this implies the existence of an infinitely long

lived mode, whose energy ω(k) goes to zero, when k goes to zero: A Goldstone mode, that
is! This can be seen by writing

χ′′
QA(k, ω) = π〈B〉δ(ω − ω(k)) . (3.31)

Indeed, plugging Eq. (3.31) into the Bogolubov’s inequality we can see that the static sus-
ceptiblilty diverges like k−2:

∫

dω
1

πω
χAA(k, ω) ≡ χAA(k) ≥ |χQA(k)|2

χQQ(k)
∼ |〈B〉|2

k2
. (3.32)

The origin of the k−2 divergence is in the conservation law of the variable Q. Using projection
operator methods [14] one can show in general for a non-conserved variable, which satisfies
the equation of motion ∂tA + ∇ · jA = S, where jA is a current and S is a source, the
correlation function can be written as

CAA(k, z) =
ıβ−1χAA(k)

z + ıσAAχ
−1
AA(k)

, (3.33)

where the static susceptibility is given in terms of the Kubo scalar product 〈C1|C2〉 ≡
Tr{ρeqC†

1C2} as χAA(k) = β〈A(k)|A(k)〉. The memory function reads

σAA(k, z) = β〈Ȧ(k)|P⊥
ı

z − P⊥LP⊥
P⊥|Ȧ(k)〉 , (3.34)

where P⊥ is the projection operator into the space orthogonal to relevant slow variables and
L is the time evolution operator (Hamiltonian or Liouvillean).

From the denominator or the correlation function given in Eq. (3.33) we can read off the
life time τ of the ’quasi-particle’: 1/τ = σAA/χAA(k). For conserved variables the suscepti-
bility will go to a finite value when k → 0 but the memory function goes like σ ≈ σ2k

2 + . . .,
where the coefficient functions σi are hydrodynamic transport coefficients (diffusion constant
in this case). Therefore the life time diverges as k−2. For symmetry broken variables the
opposite happens: The susceptibility diverges as least as fast as k−2 but the memory function
goes to a constant in the small wavevector limit resulting in an infinite life time. Thus, we
have shown that indeed it is the dynamic symmetry group of the density matrix, which is
important in deriving the generalized hydrodynamics. Namely, in cases where H ′

s 6= Hs one
needs to define the symmetries of the system based on its density matrix ρs(∞), as all expec-
tation values in the formulae above are calculated with the weight ρs(∞). Most importantly,
the static susceptibility is calculated using the broken symmetry ensemble, which reveals the
divergence as in static phase transitions. It is interesting to notice that in Zubarev’s nonequi-
librium formalism, which has many similarites with our nonequilibrium generating functional
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formalism (Sect. 4), the averages will be performed over time-dependent ensemble weights
including the susceptibility. This gives rise to some interesting possibilities concerning a more
detailed picture of dynamics and identification of relevant degrees of freedom based on the
symmetries of the time dependent density matrix when the system has yet not reached the
asymptotic regime t→ ∞. We also point out the renormalization group methods applied to
the effective action of the generating functional may aid in the classification of the relevant
variables according to the the speed their life times diverge. In anomalous transport [178]
on fractal structures σ ≈ σ2k

γ , where γ 6= 2 (cf. diffusive fluid flow in a porous disorderd
medium modeled by a percolative pipe network). Speculatively, if one refrains from using
the standard Gree-Kubo type of close-to-equilibrium ansatz when constructing the transport
coefficients some anomalies would probably be avoidable. In general, the existence of the
transport coefficients is not a trivial thing. Kinetic extensions of the Green-Kubo relations
have been proposed [169, 179] and it remains to be seen if the validity of the ’old laws’ of
Fick’s and Fourier’s, for example, will be better understood in the near future.

3.3 Order operators as ladder operators

It is now time to pause for a moment to think about the validity range and pitfalls of our
procedure for reckognition of the relevant variables. We have used either a direct symmetry
analysis of the action of the generating functional or we have read off the relevant variables
from the density matrix. Direct symmetry analysis of action is always possible, though not
necessarily easy to perform. It works for both infinite and finite dimensional systems. In zero
temperature case infinite volume limit (combined with infinite particle number limit) is neces-
sary to see the spontaneous symmetry breaking rigorously: The vacuum state has to become
degenerate to allow the system to choose from different ground states of which not all share
the symmetry properties of the Hamiltonian. In the case of ensembles (finite temperature or
non-equilibrium situation), we have seen in the previous Sect. 3.2.4 that thermodynamic limit
is needed to rigorously see the diverging life time of the quasi-particle excitation, which is a
hallmark of a relevant variable. This comes about through the divergence of the susceptibility
χ, which goes like k−2 when averages are computed over the final state equilibrium (Gibb’s)
distribution. Thus, the infinite life time can be understood based on familiar arguments
from equilibrium thermodynamics. The thermodynamic limit in this case is only something
which makes the phase transition phenomenon more easily defineable mathematically. From
physics experience we know that phase transitions (spontaneous symmetry breaking) can be
seen in finite systems, though the divergences are not as clear (transition peaks are shifted
and flattened) as in the infinite system size idealizations. Thus, in a finite size system one
can study effective phase transitions and effective ergodicity breaking [180] (restricted ensem-
ble) by considering finite observational time scales. Different signs of spontaneous symmetry
breaking (such as effective clustrization property [177]) can be seen for sufficiently large finite
size quantum systems both at finite and zero temperature.

The mathematics of finite systems is simpler than infinite ones. As usual in quantum
many-body theory, we can assume periodic boundary conditions for the second quantized
representation of the creation annihilation operators (generalized ladder operators), using
standard volume normalization [181]. At the end of the calculation one can take the thermo-
dynamic limit (N → ∞, V → ∞) recovering field theoretic description. If symmetry breaking
is defined in the effective sense for finite systems based on sufficiently long return time as
compared to relevant observational time scales, we can study the system in symmetry broken
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and symmetrical phases using different density matrices as described in Sect. 3.2. We can also
study symmetry breaking in finite system using an infinite heat bath to get rid of recurrent
behaviour. The dynamic symmetry group of the density matrix may then contain different
number of symmetry generators at initial time moment and in the final state. Dynamical
symmetry of the Hamiltonian has been utilized previously in the study of zero temperature
and finite temperature phase transitions of finite quantum systems in the context of coherent
state analysis [170]. The idea can be easily explained in terms of the ground state formal-
ism. One first computes the expectaton value of the Hamiltonian in the approximate ground
state |η〉, which is generated from the physical vacuum through the action of a generalized
displacement operator T (η): |η〉 = T (η)|0〉, just like in the case of simple harmonic oscillator.
The variation of the coherent state expectation value (so-called Q-repreresentative [172]),

δ〈η|H|η〉 = 0 , (3.35)

yields the approximate ground state energy as a function of the symmetry constrained varia-
tional parameters η = (η1, η2, . . .). This gives rise to the possibility of plotting energy surfaces
of the system as a function of the parameters ηi. Since the variational parameters of |η〉 can
be related to the physical order parameters ψi, the minimization of 〈η|H|η〉 with respect
to ηi corresponds to the minimization of the free energy with respect to the order param-
eters at zero temperature. In this context, the order parameters ψi (expectation values of

the order operators ψ̂i) are simply related to the field operators, which have been averaged
out (contracted) when forming the mean-field Hamiltonian, whose dynamic symmetry group
can be found painlessly. Coherent state analysis has also been utilized [170, 182] in cross-
ing the quantum-classical boundary by letting the number of degrees of freedom N → ∞
(1/N -expansion).

Above we have presented arguements for using normal finite dimensional operator rep-
resentation of quantum mechanics for analyzing studying spontaneous symmetry breaking,
which strictly speaking is defined in the quantum field theoretical sense only (thermodynamic
limit). Let us now comment on the use of the relation

[Q,ψ] ∝ ψ , (3.36)

which we have frequently made use of. Eq. (3.36) utilizes the factorization property of self-
adjoint observables of Hilbert space of square integrable functions L2(V ), where the volume
V is finite. In such a space it is always possible to define adjoint ladder operators (ψ † and
ψ), which shift the eigenvalue of the symmetry generator Q by a finite amount (the ladder
spacing does not have to be constant):

ψ† =
∞∑

n=0

(qn+1 − q0)
1/2|Qn+1〉〈Qn| ; (3.37)

ψ =
∞∑

n=0

(qn+1 − q0)
1/2|Qn〉〈Qn+1| , (3.38)

where q0 is the ground state. In general, we expect the spectrum of the Hamiltonian (density
matrix) to be parametrizable in terms is mutually commuting operators (symmetry generators
Qi), which for finite V can be factorized as Qi = ψ†ψ =

∑

n(qn)i|Qn〉〈Qn|, where (qn)i is the
nth eigenvalue of the ith generator. Infinite volume limit gives rise to the possibility of having
continuous scattering spectrum and the ladder structure is not representable any more in the
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discrete manner as in Eq. (3.37) and Eq. (3.38). Any degeneracy present in finite volume is
assumed to be removed by introduction of different ladder operators for different quantum
numbers. Assuming also the existence of a normalizable ground state ket vector, we have in
general

[Q,ψ] = [ψ†, ψ]ψ , (3.39)

where the commutator

[ψ†, ψ] =
∞∑

n=0

(qn − qn+1)|Qn〉〈Qn| . (3.40)

From the point of view of the symmetry generator Q, the operator [ψ†, ψ] can be treated as
a c-number, since it is diagonal in the eigenstate basis of Q, and

[Q, [ψ†, ψ]] = 0 . (3.41)

Without the assumption [ψ†, ψ] = const, we have to generalize the discussion on the symmetry
breaking presented in Sect. 3.2.2 and Sect. 2.1.3. Writing [ψ†, ψ] = a, where a is a diagonal
operator with a well defined inverse, we have from Eq. (3.40) that

ψ = a−1[Q,ψ] . (3.42)

Calculating the expectation value of ψ in the state ρ we get 〈ψ〉 = Tr{ψρ} = Tr{a−1[Q,ψ]ρ} =
Tr{[Q,ψ](ρa−1)} = Tr{[(ρa−1), Q]ψ} = Tr{[ρ,Q]a−1ψ}, because [a−1, Q] = 0. Thus, we can
still use the same arguments as before: if Q is the symmetry of the ensemble ([ρ,Q] = 0),
then 〈ψ〉 = 0. If the symmetry has been broken ([ρ,Q] 6= 0), then 〈ψ〉 6= 0. As discussed
in Ref. [38] the ladder operator definition can be generalized in various ways. For example,
one can define [H,L±] = L±f±(H), where L+ is the raising and L− is the lowering operator,
which does not have to be the hermitean conjugate of the former. Also, Ref. [38] presents
some simple examples (e.g. hydrogen atom) where the spectrum generating algebra can be
found based on construction of the ladder operators. Moreover, the order operator definition
based on the commutation relation [Q,ψ] ∝ ψ can be generalized to the form [Q,A] = B
as discussed in sections 3.1.2, 3.2.3, 3.2.4, and 4.1. In many cases, it suffices, though, to
consider the special case B ∝ ψ (or ψ†) and A ∝ ψ (or ψ†), which is equivalent to saying
[ψ,ψ†] = const. Let us now present a list of some cases, where this type of simplification is
allowed and useful:

1. In Chap. 5 ’macroscopic’ creation annihilation operators are introduced, which in the
case of superfuilds treat entire Helium atoms as field excitations. Despite their mi-
croscopic composite character (atoms consisting of several electrons and nucleons) it
is possible to use the simple ansatz [ψ,ψ†] = 1 and Q = ψ†ψ, to discuss symmetry
breaking. This example also clearly shows that it is possible to define coarse-grained
objects (say, using selective RG, for example) such as atoms, whose field operator alge-
bra is simple enough to facilitate explicit computations. This type of approach should
be generalizable to more complicated systems as well.

2. Any mean-field type of theory which is quadratic in field annihilation and creation
opereators can be brought via a Bogolubov transformation into a form, which allows
one to use the simple relation [ψ,ψ†] = const. In this case the composite operators ψ
and ψ† are linear combinations of the microscopic field operators.
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3. All quantum systems, which are isospectral with a system of harmonic oscillators can
fall naturally into the category, which can be modeled using the simple commutation re-
lations mentioned above in the rigorouse sense. Of course, this is but a vanishing subset
of realistic systems most of which possess an unevenly spaced spectrum of eigenstates.
However, some relatively complicated integrable many-body models such as variants of
Calogero-Moser model [183, 184] do have a constant gap between successsive eigenen-
ergies.

4. Knowledge of experimentally observed symmetries of complicated systems allows the
construction of dynamic symmetry group and transition operator construction, which
obeys simple Lie group commutation properties similar to the harmonic oscillator ladder
algebra. As in the case of mean-field theories Bogolubov transformation facilitates the
quasi-particle description of the theory (see e.g. SU(5)-theory of high-temperature
superconductivity [171]).

3.4 Remarks on quasi-particle concept

In condensed matter physics quasi-particle is another name for our relevant (macro)variable.
By definition, what makes the relevant variable relevant is its long life time. In the hydrody-
namic regime all fluctuations except the ones with practically infinite life time have already
relaxed. The name quasi-particle refers to the fact, that it is a collective excitation, not a
real particle. It is some function of the basic particle field operators, just like the composite
operators which we have been using so far. Another name for quasi-particle appropriate due
to the composite structure is collective coordinate. By going over to a suitable generalized
coordinate frame one can usually present the spectrum of the system in terms of weakly
interacting quasi-particle excitations even if in the basis of the original creation and annihi-
lation operators the theory is strongly interacting. This was beautifully shown by Landau’s
Fermi liquid theory which has been an active field of research ever since. Typically, in the
mean-field level, the quadratic many-body Hamiltonians can be diagonalized in terms of Bo-
goliubov transformation into quasi-particle coordinate basis, in which case they form a free
non-interacting gas of excitations whose thermodynamics can be found out easily [173].

Good examples of collective excitations are phonons, which are the normal coordinates
of the displacement field of the nuclear positions. Photons are quanta of the electromagnetic
field and magnons are quanta of the spin waves, which are low energy excitations of many
different types of magnets [185]. Plasmons are the long wavelength excitations of the density
field of a gas of charged particles [181] and so on. In fact, the whole basis of modern solid
state physics, which has been build up on band structure theory relies on effective single
electron description. Of course, the developent of the electronic structure theory has been
developed from the static point of view, so calling the effective single electron wavefunctions
(which certainly are collective coordinates) as wave functions of quasi-particles is a bit unusual
statement and we refrain from doing that. It is just interesting to note that we can formulate
the whole electronic structure theory in terms of the static or dynamic density functionals,
which can be seen as evolution equations for relevant variables (Chap. 2). In fact, the Hartree-
Fock equation and its generalization do resemble the non-linear Schrödinger equation, which
typically results from the generating functional analysis as the equation of motion of the
relevant variable.

Let us briefly take a look at the traditional way of hunting quasi-particles in solid state
physics. Typically, one studies the pole structure of the Green’s function of the interacting
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theory. If one finds that

G(k, t− t′) = 〈T̂+(a(k, t)a†(k, t′))〉 ≈ e−ıE(k)(t−t′)e−Γ(k)(t−t′) , (3.43)

and Γ → 0 when k → 0, such that the life time 1/Γ → ∞, one can say that there are quasi-
particle excitations in the system, since in the long time limit their dispersion relation becomes
particle-like. In terms of the Lehmann representation of the Green’s function one can state
as a general rule the following [181]: ”In any many-particle system for which perturbation
theory converges, there are quasi-particles in the vicinity of the chemical potential µ”. This
statement does still not give us any means to construct an operator representation of the
quasi-particles in terms of the basic creation and annihilation operators of the interacting
theory. Some of the excitations with long life time must be somehow related to the order
operators or conserved charges of the theory, and to study the generalized hydrodynamics we
would need their (approximate) operator representation. Based on the dynamic symmetry
group analysis we argued in Sect. 3.2 that an explicit representation is obtained directly from
the generators of the dynamic symmetry group. On that same token, it seems plausible
to generalize of the quote above to the form: Quasi-particles can be found in the vicinity
of any variable which is conjugate to a symmetry generator of the (steady state) density
matrix. After all, in exactly the same way it was shown in Ref. [181] that chemical potential
(which is conjugate to particle number charge) has this property, one can use in the Lehmann
representation composite ladder operators ψ†(a†, a) and ψ(a†, a), satisfying ψ†ψ = Q, where
Q is a good quantum number of the system. In the derivation one also needs to assume that
[ψ†, ψ] = c, where c is a number or operator commuting with the rest of the generators. For
general composite operators this does not hold whereas special cases where this assumption
can be utilized are discussed in Sect. 3.3. Construction of the Lehmann representation with
identification ψ†ψ = Q basically amounts to the replacement of the chemical potential µ with
the conjugate variable µQ of Q in the derivation of the dispersion relation (3.43). In Sect. 3.2.4
we have shown that these types of collective observables have infinite life times based on the
non-relativistic version of the Goldstone’s theorem. Another word which characterizes those
the quasi-particles which decouple from the energy spectrum in the limit k → 0 is a (pseudo)
Goldstone excitation. As we have mentioned before, the Goldstone’s theorem was originally
devised for zero temperature relativistic systems, not for finite temperature non-relativistic
quasi-particles.



Chapter 4

Related approaches

We will now compare the structure of the formalism to some of the closely related formalisms.
There have been many formulations which combine the equilibrium and non-equilibrium
processes by a suitable choice of the time-path (Kadanoff-Baym, Keldysh). Historically,
the stress has been on the Green’s functions and the generating functional has received
less attention. The non-equilibrium generating functional formalism presented in this work is
identical to the closed-time path Green’s function (CTPGF) formalism as presented in Ref. [2].
Chou et al. pointed out the important feature that composite operators can be used in the
generating functional including conserved charges and order parameters. What the authors
did not mention is the important relation to the density functional theories (quantum and
classical, equilibrium and non-equilibrium), which we have explained in this work. Moreover,
we have tried to develop a systematic scheme to identify the order parameters. Chou et al.
only discussed how to find the conserved variables in addition to showing how to obtain the
equations of motion for both conserved variables and non-conserved order parameters once
they have been identified by other means. We have also used an explicit bath coupled with
the system in many cases unlike Chou et al.

In this section we will show that the generating functional formalism has important con-
nections to the older results derived and utilized by several Russian authors following the ideas
of Bogolubov. A particularly powerful formalism for non-equilibrium phenomena, which re-
duces to many of the known formalisms such as Mori-Zwanzig projection operator approach
in appropriate limits, has been developed by Zubarev et al [186, 179]. We should also mention
the work of Peletminskii and Yatsenko [164], whose formalism of quantum kinetic equations
which appears to have some important common features with Zubarev’s approach. Zubarev’s
non-equilibrium statistical operator again, uses the information theoretical starting point,
which was clearly advocated by Jaynes [187] and later on developed by Grandy [188].

Bogolubov’s starting point concerning the evolution of the density matrix of an equili-
brating system can be simply represented via a general ansatz

ρs(t) = ρeq + e−t/t1ρ1 + e−t/t2ρ2 + . . . (4.1)

where ρi (i = 1, 2, . . . ) are non-equilibrium corrections to the equilibrium density matrix ρeq.
Their influence will vanish after the cross-over times ti have been reached. Thus, the effect of
the bath is to change the symmetries of ρs(t) in the course of time evolution. By expanding
the exponentials and carrying out the trace in the expression of ρs(t) = TrB{U(t)ρ0U

−1(t)},

87
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we have the formal result

ρs(t) = e−βH̃(t) = e−β
∑

n
rn(t)fn({â†i },{âi}) . (4.2)

In this section we denote operators with caret symbolˆ to clearly separate them from their
expectation values. The exponential form of the density matrix given in Eq. (4.2) is not nec-
essary, it is just used to remind us of the fact that if the system relaxes to Gibb’s equilibrium
given by ρs(∞) = exp(−β ′H ′), where

β′H ′ ≡ βH̃(∞) , (4.3)

studying the symmetries of the Hamiltonian H ′ is equivalent to studying the symmetries of
the density matrix ρs(∞). If one wants to use a non-Gibbsian initial state, one must abandon
Eq. (4.3) which in addition assumes the factorizability of the initial bath and system density
matrices. Both the bath and the system have been assumed to be at temperature β at the
initial time. In the final state, the common factor of all operators in the argument of the
exponential having units of inverse of energy defines the final temperature β ′ according to
Eq. (4.3).

Supposing now that we can analyze the algebraic structure of the system density matrix
encoded in the effective Hamiltonian H̃, we can group the operators according to the lifetimes
of their prefactor functions. Combining the most long lived ones into operators Q̂ (which
correspond to the conserved variables) we get in the simplest approximation (t� t1)

ρs(t) ≈ e−
∑′

n
sn(t)Q̂n−

∑′
m
dm(t)ψm) , (4.4)

where Q̂n = Q̂n({â†i}, {âi}) and ψ̂m = ψ̂m({â†i}, {âi}) and β has been absorbed into the new

numerical coefficients sn and dm. The operators ψ̂n represent (but not necessarily exter-
nal) symmetry breaking fields, which have emerged due to a dynamical symmetry breaking
induced by the heat bath. In general, the conserved operators (hydrodynamically relevant

degrees of freedom) do not have to appear as simple linear sum of the form
∑

n Q̂n as above

but nonlinear combinations (e.g.
∑

nm Q̂nQ̂m) occur [170].
There are several advantages of considering the (over)simplified density matrix given in

Eq. (4.4). First, ρs(t) presents the simplest possible form of the density matrix, which allows
us to discuss simplification occurring due to disappearance of ’charges’ and the relation of the
dynamic group structure of H̃ to spontaneous (and explicit) symmetry breaking. Effectively,
we can write instead of Eq. (4.1)

ρs(t) ≈ e−β
′H′+exp(−t/t1)Q̂1+exp(−t/t2)Q̂2+... (4.5)

where the number of parameters needed for description of the theory is reduced in the course
of the time evolution. In the final state we have β ′H ′ = limt→∞(

∑′
n sn(t)Q̂n+

∑′
m dm(t)ψ̂m).

Second, if the dynamic group is a (semi-simple) Lie algebra, it is convenient to to operate in

the Cartan basis, where charges Q̂n commute with each other and ψm can be considered as
generalized ladder operators [189, 190]. Therefore, we can assume as further simplification
that the operators in Eq. (4.4) satisfy

[Q̂i, Q̂j ] = 0 ; [Q̂i, ψ̂j ] ∝ ψ̂j . (4.6)

The third advantage of considering the representation (4.4) is that we can see interesting
connections with the Zubarev’s and Jaynes’es formalisms of non-equilibrium thermodynamics
as will become clear in the subsequent sections.
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4.1 Kinetic equations from approximate symmetries

Based on the Bogolubov’s idea on the relaxation of the density matrix of low density gases
Peletminskii and Yatsenko (PY) in Ref. [164] developed a method to derive the transport
equations using the known symmetries of the unperturbed Hamiltonian responsible for the
time evolution of the system. Equivalently, we can speak of the approximate symmetries of the
total Hamiltonian including perturbations or approximate symmetries of the non-equilibrium
density matrix to be defined shortly. Peletminskii and Yatsenko consider a situation where
complicated non-equilibrium density matrix reduces to a Gibbsian form after successive re-
ductions of the number of relevant (macroscopic) parameters γk occurring at cross-over times
ti as shown in Eq. (4.1). The parameters γk are the coupling constants of the theory, and they
are related to the prefactor functions rn (Eq. (4.2)) or to the functions sn and dn (Eq. (4.4))
as will be described in Sect. 4.1.1. More specifically, PY assume

ρs(t) ≈ exp
(

−
∑

k

Xk({γi(t)})γ̂k
)

≡ ρ(0)(γ) , (4.7)

when t is sufficiently large such that all time dependence is buried in the implicit time
dependence of the prefactor functions Xk on the expectation values

γi = Tr{γ̂k ρ(0)(γ)} . (4.8)

Just as we assumed that the prefactor functions sn and dm approach some constant values
when t → ∞, it is shown in Ref. [164] that the expectation values of γi relax to their
equilibrium values making the prefactor functions Xk constant for t→ ∞.

By separating out the perturbative part V of the full Hamiltonian, H = H0 + V , we
can obtain kinetic equations for the relevant variables γk order by order in the perturbation
potential. The fundamental kinetic equation obtained by Peletminskii and Yatsenko reads

∂tγk = Lk(γ(t)) = Tr{γ̂k ρ(γ)} , (4.9)

which looks like a typical phase-field evolution equation if one takes e.g. Lk(γ) = γk − γ3
k .

The derivation of phase-field equations has been discussed in Sect. 3.1.2 and Chap. 7. The
operator Lk can be perturbatively expressed in terms of a function f and a time evolution

operator S
(0)
τ γ(0) = γ(τ) as

Lk(γ) = (4.10)

L
(0)
k (γ(t)) + ıTr{ρ0(γ(t))[V, γ̂k ]}

︸ ︷︷ ︸

L
(1)
k

+ ı lim
η→0

∫ 0

−∞
dτ eητTr{[V, γ̂k]eıH0τf(S(0)

τ γ)e−ıH0τ}
︸ ︷︷ ︸

L
(2)
k

+L
(3)
k

+···

.

In the integral we have substituted a convergence factor exp(ητ). The superscript i of L(i)

k
indicates the power of V present in the expression. The function f can be obtained from
the equation of motion of the density matrix which can be made to show relaxational effects
by assuming a specific form for ρ. The Heisenberg equation of motion is ∂tρ − ı[ρ,H] = 0.
Assuming that ρ is a function of the macroscopic fields γ(t) we can write

Lk(γ)
δρ

δγk
− ı[ρ(γ),H] = 0 , (4.11)
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where we have also made use of Eq. (4.9). This equation is now reorganized to give f :

L
(0)
k (γ)

δρ

δγk
− ı[ρ(γ),H0] = ı[ρ(γ), V ] − δρ

δγk
(Lk(γ) − L

(0)
k (γ)) ≡ f(γ) . (4.12)

Similarly to the functional Lk we can expand f in powers of V . To first order,

f (1)(γ) = ı[ρ(0), V ] − δρ(0)

δγk
L

(1)
k (γ) . (4.13)

In order to obtain the second order result one needs to use the perturbation expansion of the
density matrix ρ. The first order correction to ρ, which will be used in the computation of
f (2) can be obtained by substituting f (1) into the expression of the full density matrix [164]

ρ(γ) = ρ(0)(γ(t)) + lim
η→0

∫ 0

−∞
dτ eητ eıH0τf(S(0)

τ γ)e−ıH0τ (4.14)

Indeed, Eqs. (4.14), (4.12), (4.10) and (4.9) form a closed set, which can be iterated to give
both the explicit form of the non-equilibrium density matrix and the equation of motion of
the coarse-grained variables γk. The dissipation comes in through the late time boundary
condition for the density matrix, which is required to relax to the equilibrium given by

e−ıH0τρ(γ)eıH0τ → ρ(0)(S(0)
τ γ) . (4.15)

Thus, no matter what the form of the full V -dependent density matrix is, the final state is
assumed to be of Gibb’s form with H ′ =

∑

kXkγ̂k. This is consistent with our assumptions in
the beginning of Chap. 4 where we said that the system Hamiltonian (H0+V ) can be different
from the Hamiltonian H ′ appearing in the argument of the final Gibb’s state. Moreover,
the symmetries of the final state dictate the relevant variables of the problem. In fact,
Peletminskii and Yatsenko assume that H0 satisfies

[H0, γ̂k] = aklγ̂l , (4.16)

where akl are c-number coefficients. Relation (4.16) has been utilized in the derivation of the
results above.

4.1.1 Analogs between NGF and PY formalisms

In this section we will show what the analogs are between the coarse-grained density matrix
theory and the method used by Peletminskii and Yatsenko (PY) in Ref. [164]. The coarse-
grained density matrix theory should produce results identical to those of the non-equilibrium
generating functional method as what comes to the dynamics of macro variables. In other
words, when computing the time evolution of some relevant observable, we can either av-
erage over the time-dependent coarse-grained density matrix or we can use the Legendre
transformation of the generating functional and use the stationarity condition to yield the
dynamics of the expectation value of any macro observable. Even though the coupling terms
(
∑′
m dmψm) in Eq. (4.4) are reminiscent of the conjugate field couplings present in the time

evolution operators of the non-equilibrium generating functional (cf. Eq. (2.23)) they repre-
sent explicit or spontaneously broken symmetries only the latter of which can arise through
the Legendre transformation of the action of the generating functional. (Of course, explicitly
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broken symmetries can be dealt with in the generating functional description but they are
not dummy integration variables in the Legendre transformation). Thus, we should really
be talking about the comparison of the PY method and the coarse-grained density matrix
theory, but for the latter we use the acronym NGF, short for Non-equilibrium Generating
Functional, since the time evolution of observables is the same for these two descriptions.
The symbols of PY formalism are mapped to coarse-grained density matrix parameters NGF
as

(PY) (NGF)

γ̂k ↔ Q̂k, ψ̂k (4.17)

Xk ↔ sn, dm (4.18)

exp
(

−∑kXk(γ(t))γ̂k
)

↔ exp
(

−∑nsn(t)Q̂n −
∑

mdm(t)ψ̂m
)

(4.19)

[H0, γ̂i] = aij γ̂j ↔ [Q̂i, ψ̂i] = aψ̂i . (4.20)

In the last equation we have chosen a = const on the NGF side for a single component order
parameter. In general, the PY symmetry condition is closer to the Lie group structure of
the dynamic symmetry group if one assumes that H0 =

∑

n Q̂n, where Qn are the symmetry
generators of the unperturbed system. To cast the density matrix of the NGF theory into the
same format as the PY formalism, we first define the vector γ̂, which contains all symmetry
generators and their order operators (not just the ones, which correspond to the symmetries
actually broken by the dynamics):

γ̂ = (γ̂1, γ̂2 . . . γ̂N , γ̂N+1, γ̂N+2 . . . γ̂2N ) (4.21)

= (Q̂1, Q̂2 . . . Q̂N , ψ̂N+1, ψ̂N+2 . . . ψ̂2N ) (4.22)

Furthermore, writingH0 =
∑2N
n=1Xnγ̂n = s1Q̂1+s2Q̂2+. . .+sN Q̂N+d1ψ̂1+d2ψ̂2+. . .+dN ψ̂N

and assuming [Q̂n, ψ̂n] ∝ ψ̂n, we obtain the familiar relation [H0, γ̂i] = aijγ̂j , where

aij = θ(N − i)Xi+N δi+N,j + θ(i− (N + 1))(−Xi−N )δij . (4.23)

The step function is denoted by θ above. It should be noted that the matrix aij does not
have to be invertible in PY formalism. In fact, it can also consist of zero elements if we take
H0 to be just a function of the commuting symmetry generators. It should also be noted
that those Xn’s, which are conjugate to the order operators ψn of non-broken symmetries,
should be set equal to 0 in the expression H0 =

∑2N
n=1Xnγ̂n, if the final state density matrix

only contains those order operators, which correspond to genuinely broken symmetries.

4.1.2 Entropy production and Einstein’s fluctuation formula

In this section we define the non-equilibrium entropy and derive from the PY formalism the
rate of entropy production consistent with Einstein’s fluctuation formula,

P (∆S) ∝ e∆St/kb , (4.24)

which states that the probability of a thermodynamic fluctuation ∆S to occur is exponentially
dependent on the quadratic changes of the relevant variables from their equilibrium values [8]:
∆St =

∑

ij γigijγj, where γi are the relevant thermodynamic fields. This equation can also
be written in terms of the free energy fluctuation at constant temperature according to the
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principle of minimum work [32]. The non-equilibrium entropy S is defined by using the final
state density matrix:

S ≡ −Tr{ρ(0) ln ρ(0)} = Xiγi − Ω , (4.25)

where summation over repeated indices is implied and Ω ≡ − lnTrρ(0) = − lnTr{exp(−Xiγi)}.
Differentiation with respect to time gives

Ṡ =
d

dt
S(γ) = γ̇i

dS

dγi
= γ̇iXi . (4.26)

In terms of vocabulary of standard non-equilibrium thermodynamics we can call Xi general-
ized forces and γ̇ are the fluxes or time rates of change of generalized coordinates (relevant
macro-variables). Next, we need to find out what γ̇i is.

If the relevant macro observables γ̂k are symmetry generators of the unperturbed part
of the Hamiltonian H0 (equivalently, approximate symmetries of H, see Sect. 3.1.1), then
[H0, γ̂k] = 0. It then follows that L(0)

k (γ) = ıaklγl = 0, because [H0, γ̂k] = aklγ̂l = 0. We also
assume that the symmetry generators commute with each other: [γ̂k, γ̂l] = 0. Then,

L
(1)
k (γ) = Tr{ρ(0)(γ)[V, γ̂k]} = Tr{[γ̂k, ρ(0)(γ)]V } = 0 . (4.27)

The final equality holds because [γ̂k, ρ
(0)(γ)] = [γ̂k, exp(

∑

nXnγ̂n)] = 0. Thus, to second
order in perturbation potential V the equation of motion (4.9) reduces to

∂tγk = L
(2)
k (γ) . (4.28)

Consequently, we can write the entropy production (4.26) as

Ṡ = Xiγ̇i = XiL
(2)
i (γ) . (4.29)

The positivity of entropy production, Ṡ ≥ 0, can be shown by performing the trace operation
in the expression L(2)

i using the mutual eigenstates |n〉 of γ̂k andH0. The equilibrium values of
the generalized coordinates X (0)

i can be found from the condition of zero entropy production:

Ṡ = X (0)

i L(2)

i (γ) = 0. In Sect. 4.1.3 we will show that considering small fluctuatons ∆Xi ≡
Xi −X(0)

i to linear order, we can write

γ̇i = gij∆Xj , (4.30)

where gij is the Green-Kubo expression for transport coefficient. The entropy production
under nonequilibrium conditions becomes

Ṡ = γ̇iXi = gij(∆Xj)Xi = gij∆Xj∆Xi . (4.31)

In the final equality we have utilized the property of the equilibrium forces, L(2)

i X
(0)

i = 0 ⇒
gij(∆Xj)X

(0)

i = 0, so it does not really matter if we use Xi or ∆Xi in the expression of the
entropy production. Taking into account higher order corrections in L(2)

i , one can now derive
non-linear corrections to Einstein’s fluctuation formula.
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4.1.3 Green-Kubo expression for transport coefficients

Let us now derive the Gree-Kubo expression for the transport coefficients gij . The linear
response argument assumes that

∆γ̇i = gij∆Xj , (4.32)

where ∆γ̇i ≡ γ̇i − γ̇(0)

i . For example, if the generalized current γ̇j corresponds to the electric
current J , then ∆Xj is the (small) force acting on the system, i.e the electric field, and the
susceptibility matrix gij reduces to electric conductivity Σ:

J = ΣE . (4.33)

(We could also rewrite this roughly as ∆J = ∆γ̇ = M∂xδF/δφ = M∂xµ, where ∂xµ represents
the force as gradient of (chemical) potential, corresponding to the thermodynamic force ∆Xj .
Matrix M corresponds to gij . This representation should be compared with Eq. (3.4), where
∆J should be replaced by j′ − j.) To get an expression for gij one should expand the density

matrix appearing in the expression L
(2)
i to first order in the deviation ∆Xi. From Eq. (4.10)

we have [164]

L
(2)
i (γ) = −1

2

∫ ∞

−∞
dτ Tr{ρ(0)(γ) [V (τ), [V, γ̂i]]} , (4.34)

where V (τ) ≡ exp(ıH0τ)V exp(−ıH0τ). The density matrix is approximated as exp(Ω −
γ̂iXi) = exp(Ω − γ̂i(X

(0)

i + ∆Xi)) ≈ ρ0(1 − γ̂i∆Xi) with

ρ0 ≡ exp(Ω − γ̂iX
(0)
i ) . (4.35)

Denoting [V, γ̂i] ≡ Ai, we can immediately see that γ̇ (0)

i = 0 leading to ∆γ̇i = γ̇i:

γ̇
(0)
i = −1

2

∫ ∞

−∞
dτ Tr{ρ0 [V (τ), Ai]}
︸ ︷︷ ︸

Tr{[ρ0, V (τ)]Ai}
= 0 , (4.36)

because the equilibrium condition (zero entropy production) translates into [ρ0,
∫∞
−∞ dτ V (τ)] =

0. Thus, the time rate of change of the current is

∆γ̇j =
1

2

∫ ∞

−∞
dτ Tr{ρ0γ̂j∆Xj [V (τ), Ai]} (4.37)

=
1

2

∫ ∞

−∞
dτ ( Tr{ρ0γ̂jV (τ)Ai}∆Xj − Tr{ρ0γ̂jAiV (τ)}∆Xj) (4.38)

=
1

2

∫ ∞

−∞
dτ Tr{ρ0(γ̂jV (τ) − V (τ)γ̂j)Ai}∆Xj (4.39)

In deriving Eq. (4.39) we have once again utilized the equilibrium condition [ρ0,
∫∞
−∞ dτ V (τ)] =

0 to commute the places of V (τ) and ρ0. Finally, we arrive at Eq. (4.32) with transport co-
efficient matrix given by

gij = −1

2

∫ ∞

−∞
dτ Tr{ρ0 [V (τ), γ̂j ] [V, γ̂i]} = −1

2

∫ ∞

−∞
dτ Tr{ρ0 [H(τ), γ̂j ] [H, γ̂i]} (4.40)

= −
∫ ∞

0
dτ Tr{ρ0

ˆ̇γj(τ)ˆ̇γi(0)} = −
∫ ∞

0
dτ 〈Jj(τ)Ji(0)〉 , (4.41)
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where we have defined Ji(τ) ≡ ˆ̇γj(τ) and H(τ) ≡ exp(ıH0τ)H exp(−ıH0τ). The second
equality in Eq. (4.40) follows from the fact that [H0, γ̂i] = 0 ⇒ [V (τ), γ̂i] = exp(ıH0τ)[H0 +
V, γ̂i] exp(−ıH0τ). Obviously, the transport coefficients are symmetric with respect to change
of indices i and j. This is a consequence of the time reversal symmetry of the underlying
microscopic equations. When discussing the similarity of the Peletminskii and Yatsenko
approach to Zubarev’s formulation of transport coefficients in Sect. 4.2 we will be needing
the representation of gij derived above.

4.2 Zubarev’s nonequilibrium statistical operator

Zubarev’s nonequilibrium statistical operator method [186, 179] provides a powerful scheme
for deriving equations of motion for relevant variables. It has been applied to a wide range of
classical [191] and quantum kinetic problems [192, 193], and also in relativistic field theoretic
setting [194]. Zubarev’s formalism has some striking similaritities with Jayne’s information
theoretical approach [188] (Sect. 4.3) and the nonequilibrium generating functional (NGF)
method, which we will clarify below.

The basic entity in Zubarev’s theory is not the generating functional but the reduced
density matrix of macro observables, which is called the nonequilibrium statistical operator.
To define it one needs to postulate first a relevant statistical distribution ρrel, which acts as
the initial density matrix:

ρrel ≡ exp

(

− Φ(t) −
∑

n

Fn(t)Pn

)

, (4.42)

where Fn are analogous to variables Xn of Peletminskii and Yatsenko (cf. Eq. (4.7)). Com-
pared to the nonequilibrium generating functional method, they are analogous of the conju-
gate fields needed for the Legendre transformation. The Massieu-Planck functional,

Φ(t) ≡ lnTr

{

−
∑

n

Fn(t)Pn

}

, (4.43)

is the time-dependent normalization weight whose equilibrium partner is denoted by Ω in
Eq. (4.35). The index n in the summation can also take continuous values (n = x).

In the NGF formalism the conjugate source fields are dummy variables in the sense that
they get replaced by the expectation values of the relevant observables via the Legendre
transformation. Yet, the values of the source fields are not irrelevant as they determine the
values of their Legendre transformation partner fields. In a similar manner, the fields Pn are
dummy variables in Zubarev’s formalism, because they can be eliminated through a set of
self-consistency conditions:

〈Pn〉t = 〈Pn〉trel ≡ Tr{Pn ρrel(t)} . (4.44)

Notation 〈·〉t means averaging over the full nonequilibrium statistical operator (density ma-
trix) ρ(t) defined as

(∂t + ıL)ρ(t) = −ε(ρ(t) − ρrel(t)) . (4.45)

Expectation values of observables are calculated in such a manner that one first takes the
thermodynamic limit (V → ∞, N/V = const), after which one lets ε → 0. It is imperative
that the limits are taken in this order in order to select out the retarded solution of the
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Liouville equation, which is time-reversal symmetric without any source terms on the right
hand side of Eq. (4.45). The use of the infinitesimal field ε is the time dependent analogue of
Bogolubov’s quasi-averaging method, which we have discussed in Sect. 2.1.2. It is a highly
idealized way of taking into account the effect of the interaction of the system with its
surroundings. It also automatically induces the arrow of time, which is a clear advantage
compared to some other methods, where the emergence of the second law of thermodynamics
results because of approximations and assumptions whose overall effect can be more difficult
to assess. The negative thing about the way the irreversibility is put in is the fact that
it is impossible to evaluate the precise effect of the system-bath coupling on the dynamics
and steady-state conditions. However, if these things are not directly relevant, Zuabarev’s
approach gives more universal results with less effort than explicit heat bath models as the
bath influence is hidden in a single parameter ε, which is taken to zero at the end of the
calculation.

4.2.1 Relation to PY formalism

Let first compare the equations of motion at the operator level. Both in PY formalism and
Zubarev’s formalism the relevant observables obey Heisenberg equation of motion:

∂tγ̂k = [γ̂k,H] . (PY) (4.46)

∂tPk = [Pk,H] . (Zubarev) (4.47)

These are somewhat redundant, since we always consider averages over ensembles. The
averaging induces the dissipative behaviour in the equations of motion:

∂t〈γ̂k〉 = Lk(γ) . (PY) (4.48)

∂t〈Pk〉 = 〈Ṗk〉trel +
∑

n

∫ t

−∞
dτ e−ε(t−τ)Lkn(t, τ)Fn(τ) , (Zubarev) (4.49)

where the dotted variable is to be interpreted as 〈Ṗk〉trel ≡ Tr{[Pk,H]ρrel(t)}. The first
term on the right hand side of Eq. (4.49) corresponds to L(1)

k if we interpret ρrel as ρ(0) in
Eq. (4.10). As pointed out in Sect. 4.1.2 This term vanishes if all Pk’s (γk’s) commute with the
Hamiltonian. Then we are left with the dissipative higher order terms L(2)

k +L(3)

k + . . . which
correspond to the second term on the right hand side of Eq. (4.49). Using linear response
approximation to express Fn in terms of Pn’s and replacing ρrel with Gibb’s equilibrium
density ρeq ∝ exp(−βH) leads to the familiar (averaged) Langevin equation

∂tδ〈Pk〉t = −ı
∑

n

Ωknδ〈Pn〉t −
∑

n

∫ ∞

0
dτ e−ετσkn(τ)δ〈Pk〉t−τ , (4.50)

where δ〈Pk〉t ≡ 〈Pk〉t − 〈Pk〉eq, Ω is the frequency matrix (stemming from the first term on
the right hand side of Eq. (4.49)) and σ is the memory matrix. Both these have appeared
previously in Sect. 3.2.4.

Indeed, let us now show under what kinds of approximations the Green-Kubo coefficient
gmn is consistent with the expression of the transport coefficient Lmn of Zubarev’s theory.
The general form for the latter is [186]

Lmn(t, t′) =

∫ 1

0
dxTr

{

Im(t)Urel(t, t
′)ρxrel(t

′)In(t
′)ρ1−x

rel (t′)
}

, (4.51)
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where Urel(t, t
′) ≡ T̂+ exp(−ı ∫ tt′ PKG

⊥ (τ)L). The Kawasaki-Gunton projection operator is

denoted by PKG, and PKG
⊥ = 1 − PKG. The generalized fluxes In ≡ PM

⊥ Ṗn, where PM is the
Mori projection operator, and PM

⊥ = 1 − PM . In the Markovian limit, we can simplify the
exact expression (4.51) following again Ref. [186]

Lmn(t) =

∫ 0

−∞
dt1e

εt1(Im(t), eıt1LIn(t))rel , (4.52)

where the nonequilibrium correlation function of two dynamical variables A and B is defined
through

(A,B)rel ≡
∫ 1

0
dx 〈∆Aρxrel∆Bρ−xrel〉trel , (4.53)

and ∆A ≡ A− 〈A〉trel and similarily for ∆B. Replacing now ρrel by ρ0 to make contact with
PY approach, we get

Lmn(t) ≈
∫ 0

−∞
dt1 e

εt1〈Ṗm(t)Ṗm(t+ t1)〉0 =

∫ ∞

0
dτ e−ετTr{Ṗm(t)Ṗn(t− τ)ρ0} (4.54)

=

∫ ∞

0
dτ e−ετTr{Ṗn(0)Ṗm(τ)ρ0} . (4.55)

The crucial approximation utilized in the first equality of (4.54) is to leave out the projectors
PM

⊥ , which are missing from the PY treatment. Thus, we have replaced the currents In =
PM

⊥ Ṗn by Ṗn directly. Eq. (4.55) assumes translational invariance of time in the equilibrium
state. The result is the same as given in Eq. (4.41).

Finally, we note that the self-consistency relation of Zubarev’s (Eq. (4.44)) is equally
restrictive as what comes to the derivation of the equations of motion as the final state
boundary condition used for density matrix by Peletminskii and Yatsenko. We show this
by utilizing a special property of the final state density matrix of PY formalism given in
Ref. [164]:

Tr{γ̂kρ(γ)} = Tr{γ̂kρ(0)(γ)} . (4.56)

This looks like the self-consistency condition of Zubarev’s, but it should be noted that instead
of ρ(0) Zubarev uses ρrel, which is rather the initial condition for the full density matrix ρ(t).
Using Eq. (4.56) and the symbols defined in the beginning of Sect. 4.1, gives

Tr{γ̂kρ(γ)} = Tr{γ̂kρ(0)(γ)} ⇒
∫ 0

−∞
dτe−ητ e−ıaτTr{γ̂kf(S(0)

τ γ)} = 0 (4.57)

⇒ Tr{γ̂kf(γ)} = 0 ⇒ ıTr{ρ(γ)[V, γ̂k ]} − Lk(γ) + L
(0)
k (γ) = 0 . (4.58)

Thus, we have arrived at the expression of Lk(γ) consistent with Eq. (4.10). Since γ̇k =
Lk(γ) we have shown that the constraint property (4.56) fixes the form of the macrovariable
evolution equation in a way, which is analogous to the derivation of Zubarev’s equation of
motion (4.49) by using the self-consistency condition (4.44).

4.2.2 Relation to NGF formalism

We commence the search for similarities between the nonequilibrium generating functional
formalism and Zubarev’s method by comparing the expressions of density matrices. First,
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let us take a look at the time reversible parts:

ρrZ = eı(t−t0)Hsρrel(t0) e
−ı(t−t0)Hs ; (4.59)

ρrs = eı(t−t0)Hsρ0(t0) e
−ı(t−t0)Hs ; (4.60)

We note that ρrZ, where r refers to ’reversible’, satisfies Zubarev’s equation of motion (4.45)
with L = Hs and ε = 0. Eq. (4.60) is just the time dependent system density matrix in
the Heiseberg representation. We see that ρrel plays the role of ρ0 in the usual many-body
formalism. When dissipative effects are taken into account the expressions of the density
matrices start to differ from each other more. This is because the irreversibility is can be
induced in many ways: Zubarev uses time averaging, ρZ(t) = 〈ρrZ(t, t0)〉t0 , wheras we resort
to the bath averaging 〈·〉B : ρs(t) = 〈ρs(t)〉B . We can also rewrite these expressions as

ρZ(t) = eıtHs〈e−ıt0Hsρrel(t0) eıt0Hs〉t0 e−ıtHs ; (4.61)

ρs(t) = eıtHs〈T̂+e
−ı
∫
dτ HSB(τ)ρSB0 (t0) T̂−e

ı
∫
dτ HSB(τ)〉B e−ıtHs . (4.62)

If one could show the equivalence of the ensemble average 〈·〉B ≡ TrB{·} to the time average,

ρZ(t) = lim
ε→0

ε

∫ t

−∞
dt′ e−ε(t−t

′) eı(t−t
′)L ρrel(t

′) = lim
t−t0→0

1

t− t0

∫ t

t0
dt′ eı(t−t

′)Lρrel(t
′) , (4.63)

it would be possible to show that ρZ(t) = ρs(t). This is, however, too strong a requirement,
and not even necessarily true in all situations. We can settle for a weaker condition, which
is the equivalence of the expectation values

〈ψ(x)〉ts = 〈ψ(x)〉tZ . (4.64)

If this relation holds for all times and positions, also the ensuing equations of motion for the
expectation values of observables will be the same. This is expected to be the case as the self-
consistency relation of Zubarev’s actually fits the Lagrange multipliers Fn(t) in such a way
that the (experimentally or otherwise) observed values of relevant variables are reproduced.
This is because 〈Pn〉trel is chosen to respect any known information about the system. On
the other hand ρs(t) contains the full physics of the problem with no simplifying assumptions
made at this point. Therefore, it should also give rise the same time (and spatial) dependence
of the expectation values in agreement with the experiments.

There are some striking similarities between the Legendre transformation of the nonequi-
librium generating functional and the Zubarev’s nonequilibrium entropy, which coincides with
the information entropy of the relevant ensemble, defined as as

S(t) ≡ −Tr{ρrel(t) ln ρrel(t)} = Φ(t) +
∑

n

Fn(t)〈Pn〉t . (4.65)

This is similar to the entropy of PY formalism given in Eq. (4.25): S ≡ −Tr{ρ(0) ln ρ(0)} =
∑

iXiγi − Ω. There is also a close connection to the entropy used in the early versions of
variational formulation of statistical mechnics by De Dominics [42, 40] and others. Even more
curiously, we can use S to define a ’Legendre transformation pair’ [179]

〈Pn〉t = − δΦ(t)

δFn(t)
; Fn(t) =

δS(t)

δ〈Pn〉t
. (4.66)
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Even though these equations resemble the ones which are obtained from the nonequilibrium
generating functioal theory (Sect. 2.3.3), we cannot identify the Zubarev’s entropy directly
with the action of the generating functional. This is because of the different way the Lagrange
multipliers (conjugate source fields) are fed in: In Zubarev’s formalism they are placed directly
in the expresion of ρrel, which is then time evolved under the action of exp(ıtL), whereas in
the nonequilibrium generating functional the time dependent source fields are placed in the
time evolution operator U itself (Eq. (2.23)).

4.3 Jaynes’es information theoretical approach

For starters, we wish to compare the Heisenberg equation of motion for a general opetor A
with the Liouville-von Neumann equation for the density matrix. The latter is given by [195]

d

dt
ρ(t) = −ı[H(t), ρ(t)] , (4.67)

where the Hamiltonian can be time-dependent. As pointed out in Ref. [196], frequently
Eq. (4.67) is written (see e.g. [16, 197]) in the form ∂tρ = −ı[H, ρ] with partial time derivative
on the left. Technically speaking it really does not matter for density matrix whether one
uses the total derivative or the partial time derivative, because time is the only variable
in the quantum case (as opposed to classical Liouville equation). Eq. (4.67) resembles the
Heisenberg eqation of motion,

d

dt
AH(t) = ı[HH(t), AH (t)] +

∂

∂t
AH(t) , (4.68)

where for explicitly time-dependent operator AS(t) in the Schrödinger picture the partial
time derivative is defined as [195, 181]

∂

∂t
AH(t) ≡ U †

S(t, t0)(∂tAS(t))US(t, t0) , (4.69)

where it is important to notice that the time evolution operators U are also given in the
Schrödinger picture as indicated by the subscripts. The noteworthy feature is that by setting
ρ = A in the Heisenberg equation of motion the sign of the commutator is reversed as
compered to the Liouville-von Neumann equation for the density matrix. Therefore, the time
dependendent density matrix cannot be said to be in the Heisenberg representation based on
the form of the equation of motion. Builiding up the density matrix from time-dependent
Schrödinger states,

ρ(t) ≡
∑

n

pn(t)|ψn(t)〉〈ψn(t)| (4.70)

where the time-dependence of the occupation probabilities pn(t) results from the influence of
the system with its surroundings (heat bath), it is straightforward to show that the equation
of motion becomes [196, 198]

d

dt
ρ(t) = ı[ρ,H] +

∂

∂t
ρ . (4.71)

The partial time derivative is defined as

∂

∂t
ρ ≡

∑

n

dpn(t)

dt
|ψn(t)〉〈ψn(t)| . (4.72)
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When the occupation probabilities do not change with time, Eq. 4.71 reduces to the Liouvielle-
von Neumann equation.

The non-unitary time evolution of the density matrix in the Jaynes’es and Zubarev’s for-
malism occurs because of bath interaction. In Zubarev’s formalism an infinitesimal external
field is introduced, which is taken to zero at the end of the calculation. Here, the origin
of irreversibility is related directly to the time-change of the occupation probabilities. The
non-equilibrium density matrix is constructed using information theoretical arguments (Shan-
non [199, 200]) based on the concept of information entropy. Time-dependent probabilities
concerning the state of macroscopic observables are taken to depend on the experimentally
available information of the system, which has accumulated over the time intervall [t0, t].
In a manner analogous to derivation of Gibb’s distribution based on constraints on maxi-
mum Gibb’s entropy and normalizability, one can derive a maximum information entropy
prediction for the time dependent probabilities [196]:

ρ ≡ pi(t0, t) = Z−1[λ] exp

(

−
∫ t

t0
ds λ(s)fi(s)

)

, (4.73)

where λ is a Lagrange’s multiplier (analogous to Zubarev’s Pm-field). For spatially extended
systems we can write the previous equation as

ρ = Z−1[λ] exp

(

−
∫ t

t0
ds

∫

dxλ(x, s)f(x, s)

)

. (4.74)

If λ contains many components, we should write
∑

k λkfk(x, s) instead of just λf(x, s) as
above. The ’partition functional’ is given by

Z[λ] ≡ Tr

{

exp

(

−
∫ t

t0
ds λ(s)fi(s)

)}

=
∑

i

{

exp

(

−
∫ t

t0
ds λ(s)fi(s)

)}

, (4.75)

Eq. (4.75) looks a lot like Zubarev’s generating functional. While both the Jaynes formalism
and Zubarev’s formalism are based on information theory (the concept of relevant ensemble
ρrel), the functionals Z[λ] is different from Z[P ]: In Zubarev’s theory the relevant variables
appearing in the argument of the relevant distribution are functions of position only, where
as in Eq. (4.75) the quantum observables f follow Heisenberg’s equation of motion (4.68).
In this sense, Jaynes formulation is closer to our non-equilibrium generating functional pre-
sentation of the time evolution operators (which make up the generating functional when
initial distribution is left out), which contain Heisenberg fields coupled with the sources J as
shown in Eq. (2.35) (cf. with Eq. (2.23)). However, if one only consideres the unaveraged
equations of motion of the relevant variables (with no reference to the generating functionals),
Heisenberg equations of motion are obeyed by construction in Jaynes formalism as well as in
Zubarev and Peletminskii & Yatsenko cases as shown in Eq. (4.46) and Eq. (4.47).

Just like Zubarev’s ρrel, ρ(t) introduced in Eq. (4.73) divides the probablity mass as
evenly as possbile in the phase space in the information theoretical sense maximizing the
information entropy

Snon−eq[λk] ≡ kB lnZ[λk] + kB
∑

k

∫ t

t0
ds

∫

dxλk(x, t)〈fk(x, t)〉 , (4.76)

It is possible to use a different domainRk for each of the Lagrange’s multipliers (corresponding
to different spatial and temporal intervals, from which information has been gathered). In
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Eq. (4.76) we have set all domains the same
∫

Rk
dt dx =

∫ t
t0
ds
∫∞
−∞ dx. The values of the

Lagrange’s multipliers can be fixed using the experimentally measured expectation values in
the way familiar from the Peletminskii & Yatsenko (Sect. 4.1) theory and Zubarev theory
(Sect. 4.2):

〈fk(x, t)〉 ≡ Tr{ρfk(x, t)} = − δ

δλ(x, t)
lnZ . (4.77)

The differential forms of equations of motion of the expectation values 〈g(x, t)〉t of relevant
observables can be produced by differentiating the ’solution’,

〈g(x, t)〉t =
∑

i

gi(t)pi(t) , (4.78)

where the short-hand notation gi(t) = g(xi, t). Differentiation of Eq. (4.78) with respect to
time yields

∂t〈g(x, t)〉t =
∑

i

(∂tpigi(t) + pi∂tgi(t)) =
∑

i

∂tpigi(t) + 〈ġ(x, t)〉t . (4.79)

Using Eq. (4.73) we obtain

∂tpi = − 1

Z2
∂tZ exp

(

−
∫ t

t0
ds λ(s)fi(s)

)

− λ(t)fi(t)pi(t) . (4.80)

On the other hand, differentiation of the partition functional (4.75) gives

∂tZ = −
∑

i

λfi(t) exp

(

−
∫ t

t0
ds λ(s)fi(s)

)

= −λ〈f(x, t)〉tZ . (4.81)

Combining this result with Eq. (4.80) allows us to write ∂tpi = −λ∆fi(t)pi(t), where ∆fi(t) ≡
fi(t) − 〈f(x, t)〉t. Plugging these into Eq. (4.78) finally yields the equation of motion for the
relevant field:

∂t〈g(x, t)〉t = 〈ġ(x, t)〉t − λ(t)Kfg(x, t) . (4.82)

The covariance function Kfg(x, t) ≡
∑

i ∆fi(t)gi(t)pi = 〈g(x, t)f(x, t)〉t − 〈f(x, t)〉t〈g(x, t)〉t.
Thus, the similarity between the equations of motion derived through other formalisms are
obvious. Just like in Zubarev’s case, the first term on the right hand side of Eq. (4.82) is the
streaming term whereas the covariance term (correlation function) counts for dissipative ef-
fects and entropy increase consistent with the second law of thermodynamics [188]. Choosing
f = g allows us to cast Eq. (4.82) into

∂t〈g〉t = 〈ġ〉t − λ(t)Kgg(t) . (4.83)

This should be compared with Zubarev’s equation of motion for relevant variables Pm under
the action of external fields hn [179]:

∂tδ〈Pm〉t = 〈Ṗm〉t − β
∑

n

(Ṗm, Pn)hn(t) , (4.84)

If the relevant ensemble is the equilibrium one, it follows that ∂tδ〈Pm〉t = ∂t〈Pm〉t and the
Eq. (4.84) starts resembling Eq. (4.83) given that one considers only a single component
in the former and associates βhn(t) with λ(t). However, the correlation functions are not
precisely the same: Zubarev’s correlator contains a time derivative of the relevant variable,
which is not present in Eq. (4.83).
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Chapter 5

Hydrodynamics of macroscopic

quantum systems

5.1 Derivation of Time Dependent Ginzburg Landau model

of superconductivity

We will now apply the coarse-graining formalism explained in Chap. 2 to derivation of
time-dependent Ginzburg-Landau theory of superconductivity. The subject has a long his-
tory [201, 202, 203] and the theory itself has found numerous applications in the fields of
condensed matter and particle physics. A systematic scheme derivation scheme is neces-
sary to enlargen the range of validity of the nonequilibrium theory of superconductivity: In
its most elementary form, the time-dependent Ginzburg-Landau equation is only valid very
close to the critical point and deviations from equilibrium must be small such that the quasi-
particle exctitations remain essentially in equilibrium with the heat bath (phonons) [204].
The derivation presented below will be based on the generating functional formalism making
use of some crucial approximations tested in context of other approaches. What we are trying
to clarify and systematize is the choice of the order parameter. After it has been fixed, the
equations of motion follow mechanically from the generating functional, in principle. The
program in the nutshell will look as follows

(1) Fix the starting point of the coarse-graining process: Many-body
theory with electrons and nucleons. Identify bath degrees of freedom
(phonons) and establish Fröchlich Hamiltonian:

Z[J ] =

∫

D(ψ∗, ψ)

∫

D(b∗, b) eı
∫

[ψ̄(ı∂t−ε(∇))ψ+bψ∗ψ+b∗(ı∂t−w(∇))b+J∆]

(5.1)
The electronic coordinates are denoted by ψ, phonons by b and ∆ is the
order operator. Operators ε(δ) and w(δ) fix the electron and phonon
energies.

103
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(2) Integrate out phonons by tracing over the bath, which can be done
exactly if phonon-phonon scattering is suppressed:

Z[J ] =

∫

D(ψ∗, ψ) eı
∫

[ψ̄(ı∂t+∇2)ψ+ψ∗ψ∗V ψψ+J∆] (5.2)

Neglect retardation effects and assume constant attractive contact po-
tential. Use symmetry analysis of the action to fix the order operator:
∆ = ψψ = pair field. (Classically, ∆ =

∫
gψψ, where g is the effective

interaction.)

(3) Perform first stage of coarse-graining by going to the pair field rep-
resentation:

Z[J ] =

∫

D(∆∗,∆) eı
∫

[∆̄(∂t+∇2)∆+g|∆|4+J∆] (5.3)

Systematic corrections can be computed, which extend the validity range
from the vicinity of the critical point.

(4) Formation of tree level effective action for the expectation value of
the order operator via Legendre transformed effective action A[〈δ〈]:

δA[〈∆〉]
δ[〈∆(x, t)〉] = (∂t + ν∇2)〈∆〉 +m′〈∆〉 + g′|〈∆〉|2〈∆〉2 = 0 . (5.4)

The averaging over the nonequilbrium density matrix completes the sec-
ond coarse-graining stage. Eq. (5.4) is the time-dependent Ginzburg-
Landau equation for the order parameter (gauge fields left out).

The end result is the familiar Ginzburg-Landau theory, where time dependence is not put in
by hand as in the phenomenological way of deriving critical dynamics (not based on projec-
tion operator formalism). The Kadanoff-Baym time-path Green’s function technique [203]
is equivalent to our CPT-formalism leading to the same result. However, the whole coarse-
graining aspect is more hidden in the plain Green’s function approach, which is why we prefer
to use the generating functional. Its action offers a suitable starting point for the symmetry
analysis, which will lead to reckognition of the relevant macro variables, and their (coupled)
equations of motion can be conviniently derived using the stationarity of the effective action.
In the usual Green’s function technique, which is equivalent to the generating funcitonal
method, one usually does not perform the change to collective coordinates (∆ is a compos-
ite operator). Here, other usufull information can be read off from the action in the new
coordinates, too. The second coarse-graining stage, which is the nonequilibrium ensemble
averaging of the order operator (the average being the physically observable order param-
eter) is performed automatically (in principle) without any BBGKY hierarchy problems as
opposed to direct averaging of composite operators. Of course, in practice the construction
of the effective action is not that easy, because of the nonlinearities. Symmetry principles are
powerfull and can be used in direct (Ward-Takahashi) construction of the equations of motion
as shown in Sect. 3.1.2. This is another advantage of the generating functional representation
of the Green’s function formalism.
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5.2 From nuclear degrees of freedom to phonons

In Sect. 2.3.2 we discussed how the decoupling of the nuclear and electronic degrees of freedom
result in an effective equation of motion for the slow nuclear degrees of freedom, where
the effect of the electronic ’bath’ is manifested in the appearance of effective potential and
coupling to a vector potential. Conversely, the nuclear motion is reflectd in the effective
equations of motion of the electrons to be derived in this section. While it might be wrong
to call the nucleons themselves as bath variables (them being slow), we can describe their
effect through the action of small vibrational motion around their equilibrium positions in
terms of collective phonon coordinates. Integrating out the phonons from the equation of
motion of the electrons results in a new type of interaction term between the electrons, which
is responsible for superconductivity. The microscopic starting point is thus the many-body
Schrödinger equation for electrons and nucleons. The full Hamiltonian,

H = He +HN + Ve−N , (5.5)

is a sum of the electronic (He) Hamiltonian, nuclear (HN ) Hamiltonian and the electron-
nucleon interaction potential (Ve−N ). Specifically,

He =
Ne∑

i=1

1

2me
p2
i +

1

2

∑

i6=j

e2

|ri − rj|
≡ Te + Ve ; (5.6)

HN =
NN∑

ji=1

1

2mN
P 2
i +

1

2

∑

i6=j
VN (Ri −Rj) ≡ TN + VN ; (5.7)

Ve−N =
Ne∑

i=1

NN∑

j=1

ve−N (ri −Rj) . (5.8)

Thus, nuclei have been described by structureless ions, which obey Shrodinger equation with
some effective pair potential VN . Here is where the first coarse-graining trick comes into play.
Due to the large mass difference between the electrons and the nuclei one assumes that their
equations of motion can be approximately decoupled by separation of variables in the total
wave function Ψ:

〈r,R|Ψn〉 ≡ Ψn(r,R) =
∞∑

m=1

χnm(R)ψm(r,R) , (5.9)

where χ is the nuclear wave function and ψ is the electronic one. Substituting the ansatz (5.9)
into the Schrödinger equation, HΨn = EnΨn and projecting both sides by 〈Ψk|, we ob-
tain [181]

[T̂e(r) + V̂e(r) + V̂e−N (r,R)]ψn(r;R) = εn(R)ψn(r;R) (5.10)

[T̂N (R) + V̂N (R) + εk(R) + 〈ψk|T̂N (R)|ψk〉]χnk(R) = Enχnk(R) . (5.11)

The off-diagonal matrix elements 〈ψn|T̂N (R)|ψk〉 (n 6= k) have been dropped in the Born-
Oppenheimer approximation. Utilizing the fact that the ions perform small vibriational

motion around their equilbrium positions R0 we can expand Ri = R
0)
i + ui, where ui is the

ionic displacement. For small ui Eq. (5.11) becomes

[

TN +
1

2

NN∑

n,m=1

3∑

µ,ν=1

uµmu
ν
nA

µν
mn + . . .

]

χnk = Enχnk , (5.12)
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where we have grouped all the potential terms in Eq. (5.11) into one term called W . Then
W has been Taylor expanded and the coefficient of the quadratic term is called Aµν

mn ≡
[∂2W/(∂Rµm∂R

ν
n)]|R(0) . The first order term vanishes because the total force on the ion at its

equilibrium position must vanish.
Expanding now similarily the electron-nucleon interaction term Ve−N in small displace-

ments gives the following efective Hamiltonian for the electronic degrees of freedom (Eq. (5.10))

Te +
1

2

∑

i6=j

e2

|ri − rj |
+

Ne∑

i=1

NN∑

j=1

ve−N (ri −R0
j )

︸ ︷︷ ︸

H0
e

+
Ne∑

i=1

NN∑

j=1

ui · ∇rive−N (ri −R
(0)
j )

︸ ︷︷ ︸

He−ph

+ . . . . (5.13)

The problem can now be treated perturbatively in the basis of the eigenvectors of the effective
zeroeth order Hamiltonian H0

e , which determines a single electron problem in a periodic lattice
of ions. The basis states so determined are called Bloch states [181] and their corresponding
second quantized creation and annihilation operators are denoted as c†σ(k) and c†σ(k), where
σ is the spin index and k is a wave vector in the first Brillouin zone. Replacing also the
displacement position coordinate u in Eq. (5.13) by the sum of the creation (b†(k)) operators
of phonon excitations, we obtain [205]

He−ph =
∑

k,q,σ

V (k)
(

b(q) + b†(−q)
)

c†σ(k + q)cσ(k) , (5.14)

where the summation is over the first Brillouin zone and V (k) ∝ Ve−N (k) (Umklapp processes
left out). We also restrict the analysis to a single phonon polarization state.

To make contact with our general coarse-graining scheme a few words on finding out the
phonon variables from first principles are in order. Phonons are Goldstone modes, which can
be read off from the Madelung representation of the order-parameter field(s), which in this
case is the Fourier transform of the (number) density of the nuclei [162, 206], ρG = |ρG|eıθ,
where θ = G·u (G is the reciprocal lattice vector of the ions). More appropriately, one should
call ρG the order operator and its cell average over a sufficiently large coarse-graining cell the
order parameter. For sufficiently large cell size one can then define a single valued and contin-
uous displacement field ũ: 〈ρG〉cell ∝ eıG·ũ, which can be made in coarse-grained descriptions
of hydrodynamics of solids [207]. Since we have stressed the importance of symmetries in
indentification of the order parameters, and the algebraic approach for their extraction, we
should now try to see, how ρG fits in the story. Trying to derive the conventionally used
order parameters from first principles is not always so straightforward as we know. In this
case we are merely trying to see, if we can give an operator formulation of ρG, which (if
possible) conforms to the intuitive algegraic picture we have been using in many occasions in
this book: Order operators ψ† and ψ act as generalized ladder operators, and ψ†ψ = Q is a
generator of symmetry transformation of the Hamiltonian. In the traditional setting it is the
Landau free energy F [〈ρG〉cell] that is invariant under the symmetry transformations related
to the (cell averaged) order parameter 〈ρG〉cell. Here, if we want to see the symmetry trans-
formation in the operator level, we can imagine that our Hamiltonian Heff can be written

as a function of generalized field operators a†Gi and aGi , which either create or annihilate a
nucleus at site G of the reciprocal lattice. In fact, we can say that the order parameter vector
ρG = (ρG1 , ρG2 . . .)

T (’T’ for transpose), where ρGi are the values of the Fourier components
of order parameter field at all lattice points, can be created by action of an order operator

ψ† ≡ (a†G1
, a†G2

. . .)T on the vacuum state. When multiplied with its conjugate transpose,



5.3. FRÖHLICH HAMILTONIAN AND THE EFFECTIVE INTERACTION 107

ψ ≡ (aG1 , aG2 . . .) on obtains the total number density operator, which commutes with Heff .
We need a more stringend condition, however, since the Hamiltonian should be invariant in
all local rotations which leave the nuclear lattice intact. Similar to our example in Sect. 2.4.2

we impose the following commutation relation for the component operators: [aGi , a
†
Gi

]+ = 1
and all other pairs commute analogous to the spin operators. Then, we see that

eı
∑

n
αna

†
Gn

a
Gn Heff

(

{a†Gi}
)

e−ı
∑

n
αna

†
Gn

a
Gn = Heff , (5.15)

whenever the rotation angle αn is such that the operator prodcuts contained in Heff ,

a†Gia
†
Gj
a†Gk . . . 7→ exp(ı(αi + αj + αk + . . .)) a†Gia

†
Gj
a†Gk , (5.16)

stay invariant: αi+αj +αk + . . . = 2nπ. Thus, in this case it seems to be possible to express
the crystal symmetry generator in the form ψ†ψ. In more complicated cases one has to resort
to other types of order operator decompositions.

We also note that it is possible to device a similar kind of density functional theory for
the nuclear degrees of freedom as for the electronic ones. This can be done by introducing a
generating functional of the form

Z[JN , Je] =

∫

D(c∗, c, ψ∗
N , ψN ) eıS[c∗,c,ψ∗

N
,ψ
N

]+J
N
ψ∗
N
ψ
N

+Jec∗c , (5.17)

where (c∗, c) are the electron fields and (ψ∗
N , ψN ) the fields of nuclei. In the more traditional

representation the two-component density functional theory would take a form similar to
Sect. 6.2. In the density functional approach the whole symmetry analysis together with
the order operator identification could be dealt with in a more systematic manner from the
beginning. This was not the case in the discussion above, where we were partly mixing
classical and quantum mechanical ideas.

5.3 Fröhlich Hamiltonian and the effective interaction

Given the approximations of Sect. 5.2 leading to the nuclear (phonon) Hamiltonian (5.12)
and to the electronic Hamiltonian (5.13) quadratic in canonical coordinates, we can cast the
full Hamiltonian into the form

H ≈
∑

k

ε(k)c†(k)c(k)

︸ ︷︷ ︸

Hel

+
∑

k

w(k)b†(k)b(k)

︸ ︷︷ ︸

HN = Hph

+
∑

k,q

V (k)c†σ(k + q)cσ(k)
(

b†(q) + b†(−q)
)

︸ ︷︷ ︸

Ve−N

.

(5.18)
This is the Fröchlich Hamiltonian of electrons in a quadratic phonon bath. Basically, Ve−N
(combined with the short-range part of Ve) gives rise to the effective attraction of the electrons.
Therefore, we have left out the electronic Coulomb potential Ve, which can always be added
in the end of the calculation. We will futher simplify the problem by assuming that V (k) = d
is a constant. Replacing k-dependent Fröhlich interaction between electrons and phonons
in the static theory by a constant is equivalent to introducing a constant attractive contact
interaction in the Bardeen-Cooper-Schrieffer Hamiltonian [205] between the electrons. In the
time dependent calculation, it turns out that even if we replace V (k) by a constant, there will
be a non-trivial frequency kernel present in the effective interaction between electrons. This
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will become clear in a moment. The third approximation is to use free electron annihilation
(ψ) and creaction (ψ†) operator symbols for the states in the vicinity of the Fermi level
instead of the Bloch state operators in Eq. (5.18). They will remind us of the fact that the
band energy ε(k) ≈ k2/(2m), where m is the effective band mass. These approximations said
and done, we can write the generating functional as

∫

D(ψ∗, ψ)

∫

D(b∗, b) eı(Se [ψ
∗,ψ]+Sph[b∗,b]+Se−ph[ψ∗,ψ,b∗,b]+Je∆) , (5.19)

where ∆ is the order parameter. That is some functional of the electronic fields to be fixed
soon. The explicit forms of the actions are given by

Sph ≡
∫

P
dt

∫

dx b∗(x, t)
(

ı∂t − w(∇)
)

b(x, t) =

∫

P
dt
∑

k

b∗k(t)
(

ı∂t −wk
)

bk(t) ; (5.20)

Se ≡
∫

P
dt

∫

dx ψ∗
σ(x, t)

(

ı∂t − ε(∇)
)

ψσ(x, t) =

∫

P
dt
∑

k

ψ∗
k,σ(t)

(

ı∂t − εk
)

ψk,σ(t) ;(5.21)

Se−ph ≡
∫

P
dt
∑

k

d0ρk(bk + b∗−k) =

∫

P
dt
∑

k

(

d0ρkbk + d0ρ
∗
kb

∗
k

)

. (5.22)

In the last equation we have made use of the fact that for constant interaction between
electrons and phonons we can perform the summation over q in Eq. (5.18) (summation over
repeated spin indices is assumed), and set

∑

q,σ c
∗
σ(k+q)cσ(q) =

∑

q ψ
∗
σ(k+q)ψσ(q) = ρ(k) =

ρ∗(−k). We can perform the trace over the bath using
∫

D(b∗, b) eı
∫

P
dt
∫
dk
∫

P
dt′
∫
dk′ [b∗(k,t)A(k,t;k′,t′)b(k,t)+j∗(k,t)b(k,t)δ(k−k′)δ(t−t′)+h.c.] (5.23)

= eıTr lnA− ı
∫

P
dt
∫
dk
∫

P
dt′
∫
dk′ j∗(k,t)A−1(k,t;k′,t′)j(k′,t′) .

In our case, the k-integration is understood to be taken over the first Brillouin zone and
the determinant term can be dropped it being independent on electron fields. In fact, the
k-integration has a more stringend restriction, when only the effective attractive electron-
electron interaction is kept. From the perturbation theory it can be concluded that the
energies of the electrons in momentum states k and k + q should be less than the average
phonon energy h̄ω if one wants to approximate the potential V (k) by a constant d [202]. The
best values for d and ω can be found from variational principle. Identification of A = (ı∂t−wk)
and j = d0ρ

∗ leads to the following representation of the density matrix ρS (not to be confused
with electronic density) of the system, which is expressed entirely in the electron coordinates

ρS(ψf , ψ
′
f , t) =

∫

Dψi
∫

Dψ′
i ρS0(ψi, ψ

′
i)

∫ ψf

ψi

Dψ+

∫ ψ′
f

ψ′
i

Dψ− eıS[ψ+,ψ−]I[ψ+, ψ−] , (5.24)

where cluttering of notation has been avoided by not showing the integration measures over
the conjugate Grassmann fields. I is the influence functional defined in Sect. 2.2.4. For
generality, we have also included the initial density matrix here to remind us of the possibility
of modeling a situation with nontrivial initial correlations. In the generating functional we
will take the initial time to −∞ when comparing with results from the literature. For finite
times we have

S[ψ+, ψ−] =

∫ t

−∞
ds

∫

dx ψ∗
+

(

ı∂s − ε(∇)
)

)ψ+ −
∫ t

−∞
ds

∫

dx ψ∗
−

(

ı∂s − ε(∇)
)

)ψ− . (5.25)
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The energy ε(∇) = ∇2/(2m) and the influence functional is given in terms of the countour
Green’s functions defined in Eqs. (2.73) – (2.76):

I = exp

(
ı

2

∫ t

−∞
ds

∫

dx

∫ t

−∞
ds′
∫

dx′ [d0ρa(k, s)]Dab(k, s;k
′, s′)[d0ρ

∗
b(k

′, s′)]
)

(5.26)

It is pointed out the the electron density field ρ is a product of two anticommuting variables
so it transforms like a bosonic object [208, 209]. Also, the signature of the initial thermal
distribution will remain in the propagators even if we decouple the thermal countour and
extend the time integrations over the entire real axis. The generating functional now reads

Z[J+, J−] =

∫

D(ψf , ψ
′
f ) δ(ψf − ψ′

f )ρS(ψf , ψ
′
f , t)e

ı
∫∞
−∞ dt

∫
dx (J+(x,t)∆+(x,t)−J−(x,t)∆−(x,t))

,(5.27)

which reduces to Eq. (5.19) when the initial correlations (ρS0) are left out. The remaining
task is to find out an explicit representation for the order operator ∆. This can be done more
easily if we introduce some approximations for the expression of the effective interaction of
the electrons present in the influence functional. This is the subject of the next section.

5.4 Approximating retarded interaction by a static one

The standard methods of deriving the phonon mediated effective interaction for the electrons
give different results from what we have shown in the previous section. One should not draw
any far reaching conclusions from the time dependence of the effective interaction as we have
assumed that the parameters such as wk are the bare phonon frecuencies which have not
been renormalized by electronic effets and vice versa [210]. We also assumed that the band
energy εk = k2/2m, where is free electron like with the mass of the electron replaced by
effective mass m. This is not such a bad approximation for the states close to Fermi surface
in an unstrained crystal [211]. What about the effective interaction then? In the single time
path formalism the propagators are simpler because there are no thermal factors. We can
write [212]

D(k, z) =
wk

z2 − w2
k

, (5.28)

(Im(z) > 0). In the static limit we can just set z = 0 and the whole effective interaction
term goes basically like (−d2

0/wk)ρkρ
∗
k, where we have also assumed that V (k) is constant d0.

Thus, the interaction is attractive. This is consistent with the second order static perturbation
calculations for energy eigenvalues presented in Refs. [211, 181]. The justification for setting
the frequency z = 0 in the dynamic formulation is equivalent to the static perturbation
calculation where z2 in the denominator of D(k, z) is replaced by the energy difference (εq −
εk+q)

2. Indeed, close to the Fermi surface it holds that |εq − εk+q| � h̄wk (see Ref. [205])
justifying the use of static interaction.

Based on these arguments we are now going replace Dab in the generating functional by
an attractive static contact interaction −g, which does not depend on wavevectors or time
(g = d2

0/wk ≈ const). Hence,

Z[J+, J−] =

∫

D(ψ∗, ψ) exp

{

ı

∫

P
dx

(

ψ∗
α

(

ı∂t − ε(∇)
)

ψα − gψ∗
αψ

∗
α′ψα′ψα + J∆ + h.c.

)}

,

(5.29)
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where initial correlations have been left out and spin indices are denoted by σ. All fields are
evaluated at the same space-time position x ≡ (x, t). For simplicity, we have also decoupled
the different time paths from each other by the choice of the contact interaction given in
Eq. (5.29).

5.5 Pair field as the order operator

We can now give a recipe for determination of the order operator ∆ in Eq. (5.29). After
all the nontrivial approximations employed in reducing the interaction to the contact form,
the action of the generating functional is now simple enough that a mechanical isolation of
symmertry generator(s) and order parameter(s) is possible. Following the general approach
given in Chap. 3 we first search for a generator of continuous symmetry. At this stage one
can resort either to algebraice techniques, intuition or experimental information. Because
electric charge is conserved, a natural candidate for continuous symmetry generator in real
space represention is

Q =

∫

dx
(

ψ↑(x)ψ↑(x) + ψ↓(x)ψ↓(x)
)

, (5.30)

where arrow symbol are used to indicate the spin labels. Obviously Q commutes with the
free field part of the action. Using the commutator identities

[AB,C]− = +A[B,C]+ − [A,C]+B ; [A,BC]− = −B[A,C]+ + [A,B]+C ; (5.31)

[AB,C]+ = +A[B,C]+ − [A,C]−B ; [A,BC]+ = −B[A,C]− + [A,B]+C . (5.32)

For fermionic operators it is straightforward to show that the commutator of Q and the
effective electron-electron interaction term vanishes. In the following we will use the symbol
Q for the conserved variable and its local density (Q =

∫
dx q(x)). This meaning should be

clear from the context. We get

[Q , gψ†
↑ψ

†
↓ψ↓ψ↑]− = 0 . (5.33)

where all field operators are evaluated at the same spatial location. By Pauli principle the
electrons should have opposite spins (of course, one must be carefull when talking about
the entities created by the operators c† ≈ ψ† as individual ’electrons’). More rigorously the
spin attachement can be justified by considering the energy of the lowest lying excitations:
Opposite spins cost less energy as shown in Ref. [211]. Of course, there are also other
conserved observables, which can be expressed as a function of Q. The same rule applies to
the construction of the symmetry operator and conserved charge as to finding the complete
set of commuting variables: only the basis generators are considered.

The order operator ∆ is now easily constructed in terms of Q, which was just shown to be
a generator of a continuous symmtery of the action. The simplest candidates should satisfy
the generalized ladder operator requirement: [∆, Q]− ∝ ∆ based on the simple arguments on
spontaneous symmetery breaking in Sect. 2.1.3. Substituting ∆ = ψ↑ψ↓ gives

[Q,∆]− = −2∆ . (5.34)

Thus, we draw the conclusion that ∆(x) = ψ↑(x)ψ↓(x) is a valid order operator and its

expectation value, the anomalous Green’s function 〈T̂P (ψ↑ψ↓)〉 is the order parameter. The

same is true for ∆ = ψ†
↑ψ

†
↓.
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It is now time to perform the next coarse-graining step by going to a pair field represen-
tation from the single fermionic fields ψ. Based on the operator analysis presented above, we
can now define a local pair field (a collective coordinate or collective quantum field) through

∆αβ(x, t) = gψα(x, t)ψβ(x, t) . (5.35)

To be more precise, Eq. (5.35) turns out to be the same as the classical constraint equation
(no quantum corrections), which follows from extremizing the pair field representation of the
action of the generating functional (Eq. (5.29) without the source fields) with respect to ∆∗.
This can be seen by representing the interaction part of the generating functional in terms
of ∆αβ

exp

(
ı

2
g
∑

α,β

∫

dxψ†
α(x)ψ†

β(x)ψβ(x)ψα(x)

)

= (5.36)

const

∫

D(∆∗,∆) exp






− ı

2

∑

α,β

∫

dx
(

|∆αβ(x)|2/g − ∆∗
αβψαψβ − ∆αβψ

∗
αψ

∗
β

)






.

Taking variation δ/δ∆∗
αβ leads immediately to the classical condition of Eq. (5.35). A bilocal

interaction can also be decomposed in the same way as shown in Ref. [213]. The use of the
bilocal field is an important generalization, which makes the extraction of the order operator
more involved at the operator level. However, since we can easily generalize Eq. (5.36) for
interaction potential V (x, x′) the extraction of the order parameter at classical level is readily
obtained by requiring the stationarity of the action with respect to ∆∗. Without quantum
corrections, the order parameter then turns out to be ∆αβ(x, x

′) = V (x, x′)ψα(x)ψβ(x
′),

which would indicate that in the first order approximation the order operator would include
the potential V : ∆̂αβ(x, x

′) = V (x, x′)ψ̂†
α(x)ψ̂β(x

′), where we have indicated the operator
character of the symbols by carets to separate them from their ensemble averaged expectation
values, which appear in the classical constraint equation. (Saddle point equaton corresponds
to the tree level effective action.) This can be readily generalized for more complicated cases
(where direct operator analysis might be hard) such as fermionic superfluid 3He, whose order
parameter can be related to the expectation value of the pair field in a similar fashion as
above. Several equivalent representaion exist as demonstrated in Refs. [214, 215, 216]

To obtain the effective action, we can now make use of Eq. (5.23) by generalizing it for
field doublets b̃ ≡ (ψ↑, ψ

∗
↓ ), where b̃ is now a Grassmann vector and the free field part of the

action (5.29) is given by a quadratic form whose kernel A becomes a two-by-two matrix:

A(x, x′) =

(

(ı∂t − ε(∇)) δαβδ(x− x′) −∆αβ(x) δ(x − x′)
−∆∗

αβ(x) δ(x − x′) −(ı∂t + ε(∇)) δαβδ(x− x′)

)

. (5.37)

When integrating out the single fermion fields the effective action can be read off from
Eq. (5.23). Expanding the logarithmic term resulting form exponentiating the determinant
we obtain

Z[J+, J−] =

∫

D(∆∗,∆) exp(ıS[∆∗,∆, J∗, J ]) . (5.38)

It should be remembered that the time integrals run over the path P in the previous expres-
sion. The action in Eq. (5.38) is not yet the effective action, which generates the equation
of motion, but an exact representation of the generating functional in the new collective
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(integration) variables ∆. Explicitly we have

S[∆∗,∆, J∗, J ] = −1

2
Trspin

∫

dx
1

g
|∆(x)|2 (5.39)

−ı
∞∑

n=1

(−1)n

2n
TrTrspin

{[

(ı∂t − ε(∇))−1δ
](

(∆ + J)δ
) [

(ı∂t + ε(∇))−1δ
](

(∆∗ + J∗)δ
)}n

,

where δ ≡ δ(x − x′), Tr is the trace over space-time degrees of freedom, and Trspin is the
trace over the spin degrees of freedom.

5.6 Order parameter dynamics

The dynamics of the expectation value of the order operator is generated in standard manner
by forming the effective action (second stage of coarse-graining) and using its stationarity
property. We have kept the source field J in the description from the beginning and due to
the change of variables from single fermion fields to pair fields, the form of the generating
functional is awkward since the powers of the source are mixed with the powers of the field
∆ making it difficult to form even the tree level action. To circumvent this problem we can
imagine doing the following. Let us not include the source fields before in the final stage
where S[∆∗,∆] has been formed. Only then we add linearily coupled fields in the generating
functional. Thus,

Z[J+, J−] ≡ eıW [J+,J−] =

∫

D(∆∗,∆) eı(S[∆∗,∆]+J∆+h.c.) (5.40)

where the action can be obtained from Eq.(5.39) by setting J ∗ = J = 0. Analytically
continuing the imaginary time path result of Ref. [213] the pair field Lagrangian density can
be written as

L = a1∆
∗(x)(−∂t)∆(x) + a2|∇∆(x)|2 + a3|∆(x)|2 + a4|∆(x)|4 + . . . (5.41)

This series describes the physics close to the critical point and picking up more terms from
Eq. (5.39) one can extend its validity range. The remarkable fact is that the coefficient

a3 = N(0)

(

1 − T

Tc

)

(5.42)

changes its sign at critical temperature signalling the emergence of the phase transition. The
parameters are [213] N(0) = (mpF )/(2π2), where pF is the Fermi momentum. The critical
temperature goes like Tc = ωD exp(−1/(N(0)g)). One ends up with similar result using
a direct ’internal bath’ coarse-graining method by integrating out the rapidly oscillating
modes of the basic fermion and only then utilizing the pair field representation for the slow
modes [217]. Of course, the same approximations must be present in the direct coarse-graining
process, but the fact that it can be done increases the confidence on the idea that predictions
on coarse-grained behaviour of systems, which are not experimentally and theoretically as
well understood as low-Tc supercondutors, can be made.

The Lagrangian density is clearly invariant under a global transformation ∆ → e−ıα∆ just
like the original Lagrangian density expressed in terms of the basic field ψ. Naturally, this has
to be so, because the introduction of the pair field is an exact transformation into collective
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coordinates system, which cannot alter the symmetries of the theory. The orginal Lagrangian
can be made invariant also under a local space-time dependent gauge transformation

ψ(x, t) → e−ıα(x,t)ψ(x, t) (5.43)

by introduction a gauge field coupling to electric and magnetic vector potentials (VE,A). The
simplest way of doing this is to use the minimal substitution, which leads to the following
pair field Lagrangian density

L = a1∆
∗(x)

(

− ∂t + ı2eVE
)

∆(x) + a2

∣
∣
∣

(

∇− ı2(e/c)A
)

∆(x)
∣
∣
∣

2
(5.44)

+ a3|∆(x)|2 + a4|∆(x)|4 + a5

(

− VE∇2VE + Ȧ2/c2 + A · ∇2A
)

in the Coulomb gauge ∇·A = 0. The factors of two arise naturally in the pair representaion.
Using Eq. (5.44) the equation of motion for the order parameter follows immediately. First,
the effective action for the expectation value of the order operator at tree level is given by
Atree[〈∆〉+, 〈∆〉−] = S[〈∆〉+, 〈∆〉−], where S =

∫
dxL. Using the methods of Sect. 2.3.3 we

get

δA[〈∆〉+, 〈∆〉−]

δ〈∆〉+(x, t)

∣
∣
∣
∣
〈∆〉+=〈∆〉−

= (5.45)

a1

(

− ∂t + ı2eVE
)

∆(x) − a2

(

∇− ı2(e/c)A
)2

∆(x) + a3∆(x) + a4|∆(x)|2∆(x) = 0 ,

which is nothing but the familiar time-dependent Ginzburg-Landau equation. Variation with
respect to the gauge degrees of freedom would give rise to the current equation. One should
keep in mind, though, that we did not introduce the gauge fields from the beginning as
coarse-grained dynamic variables.

It should be remembered that a whole bunch of approximations has been made use of in
the derivation. We did not carry out the analysis as far as to include the dissipative effects
which be come relevant for higher temperatures. Retarded effects of the non-renormalized
phonon interaction were left out in Sect. 5.4. We also utilized the single time path Lagrangian
in Eq. (5.44) and substituted it directly into the CPT-formalism. Thus, the effect of initial
correlations and any higher order path interactions are not taken into account in the present
derviation. Combining these effects with the phenomena taking place further away from
the critical point (such as phonon-phonon) scattering and dissipation will be an interesting
exercise. Hopefully it will turn out to be possible to extend the validity range of the time-
dependent description in this way to facilitate comparison with more advanced theories [204]
of nonequilibrium superconductivity.

5.7 Weakly interacting Bose fluids

Compared to the superconductors, the task of finding out the order parameter and its dy-
namics in the case of weakly interacting Bose superfluids (He4) is considerably simpler due
to the simplicity of the order parameter: Double field representation is not needed nor do we
need to integrate out (external lattice) phonons to obtain the lowest order approximation for
the dynamics.



114 CHAPTER 5. HYDRODYNAMICS OF MACROSCOPIC QUANTUM SYSTEMS

5.7.1 Derivation of dynamics of the condensate

Let us first present some standard ways of deriving the Gross-Pitaevskii equation, which de-
scribes the dynamics of the Bose condensate. The starting point is already a coarse-grained
effective theory as soon as we call the basic field operators ψ† and ψ the creation and annihi-
lation operators of Helium atoms, which are composite objects. Expasion in the basis states
α allows us to decompose the field operator ψ(x) =

∑

α fα(x)aα, where aα annihilates field
excitations in the general state labeled by quantum number α. Choosing plane wave basis,
the single particle wavefunctions fα(x) = exp(ık·x). Bose-Einstein condensation means that
a macroscopic number of particles occupy the zero momentum state k = 0, and consequently
we can write the field annihilation operator as

ψ(x) =
∑

k

eık·xak = a0 +
∑

k6=0

eık·xak ≡ Φ + ψ′(x) , (5.46)

where the condensate wavefunction Φ is just a space independent constant, Φ =
√
n0, where

n0 is the homogeneous condensate density (number of condensate particles per unit volume)
for a suitable definition of the phase. If the condensate is in motion or there the external con-
straints (coupling fields, boundary conditions) depend on time, the condensate can form but
it is not anymore homogenous in time and space. Therefore, Eq. (5.46) must be generalized
to the form

ψ(x, t) = Φ(x, t) + ψ′(x, t) , (5.47)

where Φ ≡ 〈ψ〉 is the expectation value of the field operator ψ. Because of its spatial
dependence, the condensate wavefunction must now contain also other than zero momentum
states [201].

The idea is now to write down the Heisenberg equation of motion for the field operator
ψ(x, t) and separate out the condensate part. Using an effective pair potential Ueff to describe
the interaction between two helium atoms, we obtain immediately

ıh̄
∂

∂t
ψ(x, t) = [ψ(x, t),H] =

(
h̄2

2m
+

∫

dx′ ψ†(x, t)Ueff (x − x′)ψ(x, t)

)

ψ(x, t) , (5.48)

where we used the Hamiltonian H =
∫
ψ†(−h̄2/(2m))ψ+

∫ ∫
ψ†ψ†Ueffψψ. Using now the de-

composition (5.47) and the approximation Ueff ≈ gδ(x−x′) yields the Gross-Pitaevskii [218,
219, 220] equation for the condensate (ψ ′ terms are dropped as ’small’):

ıh̄
∂

∂t
Φ(x, t) =

h̄2

2m
Φ(x, t) + g|Φ(x, t)|2Φ(x, t) . (5.49)

In this equation Φ is a not an operator but complex valued function, which can be parametrized
as

Φ(x, t) =
√

n0(x, t) e
ıθ(x,t) , (5.50)

where θ is the phase of the condensate wave function Φ. The phase will play an important part
in the determination of the order operator as we will now see from the generating functional
approach.

The nonequilibrium generating functional is easily constructed based on the approxima-
tive form of the Hamiltonian. Exactly as in the case of superconductors we used a constant
attractive interaction potential, we use here a constant repulsive potential. This is not a bad
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approximation because binary s-wave scattering at low energies [221] is independent of the
details of the two-body potential. Thus,

Z[J+, J−] =

∫

D(ψ∗, ψ) eı
∫

P
dx (ψ∗(ı∂t−ε(∇))ψ+gψ∗ψ∗ψψ+Jψ) (5.51)

We have written the order operator as ψ directly, because taking the saddle point approxi-
mation, which is equivalent to forming the tree level effective action,

A =

∫

P
dx 〈ψ∗〉(ı − ε(∇))〈ψ〉 + g|〈ψ〉|4 , (5.52)

one obtains immediately the Gross-Pitaevskii equation (5.49) for the expectation value of the
order operator. Thus, the generating functional formalism leads to the same result on tree
level as the direct averaging of Heisenberg’s equation of motion. The identification of the
order operator is easy to justify more rigorously by using our algebraic approach (Sect. 2.1.3,
Chap. 3) as shown below.

5.7.2 Isolating the order operator based on symmetry

The conserved charge in the case of superfluids is the number of particles [N,H] = 0, where
N =

∫
ψ†ψ. The low energy approximation for H is

H(x) ≈ −ψ†(x)
h̄2

2m
∇2ψ(x) + gψ†(x)ψ†(x)ψ(x)ψ(x) . (5.53)

Thus, N generates the continuous symmetry transformation e−ıαNψeıαN = eıαψ under which
the action of the generating functional (Hamiltonian) is invariant. As easily seen, the equi-
librium density matrix

ρJeq ≡ e−βH+Jψ (5.54)

does not commute with the number operator N because of the presence of the field J . Thus, in
the broken symmetry phase, which is described by the J-ensemble weight (5.54) (η-ensemble,
Sect. 2.1.2), the order operator will gain a non-zero expectation value:

〈ψ〉 = Tr{ψ ρJeq} = Tr{[ψ,Q] ρJeq} = Tr{[Q, ρJeq]ψ} 6= 0 , (5.55)

because [Q, ρJeq] 6= 0. In the symmetric phase, which is described by ρ0
eq, the expectaion

value is zero. In exactly the same manner we can see the symmetry breaking related to
super conductivity. We just have to replace the symmetry generator N with the conserved

charge Q = ψ†
↑ψ↑ + ψ†

↓ψ↓ and the order operator ψ with the pair field ∆ = ψ↑ψ↓ and the
same argumentation falls through. The spontaneously broken U(1) symmetry manifests itself
in the form of the expectation value of the order-operator in the symmetry broken phase:
It will not stay intact in the symmetry transformation because the state does not remain
intact. This is the reason why we use two different density matrices ρ0

eq and ρJeq to describe
the symmetric and symmetry-broken states. In the symmetry broken state (ensemble) the
Hamiltonian part of the action of Z remains invariant in the substitution ψ → eıαψ but the
order parameter transforms as 〈ψ〉 → eıα〈ψ〉. For superconductors, the pair field Hamiltonian
part is invariant under replacement ∆ → eı2α∆ but when symmetry is spontaneously broken
〈∆〉 → eı2α〈∆〉. The appearance of a single constant phase is analogous to appearance of
the spontaneous homogenous orientation (relative to some reference direction) of spins in the
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Heisenberg model of a ferromagnet. When a certain direction of magnetic moments has been
established, the rotational invariance has been (spontaneously) broken.

Of course, the symmetry can be also broken explictly, but this is not what we are doing
here, even though it may appear so from the form of the density matrix ρJeq we use to
describe the broken symmetry phase! After, all Bogoliubov’s quasi-averaging method only
revels the spontaneous symmetry breaking, when the field J (which explicitly breaks the
symmetry in ρJeq) is taken to zero. Similarily, it should be remembered that the Legendre
transformation, which is why we introduce the sources of the generating functional, does not
generate symmetry breaking, because the order operator acts as a dummy variable which
vanishes when we express the effective action in terms of its expectation value. Its effect is
to make the emergence of the anomalous solutions visible, when other control parameters of
the theory are in suitable range. This is why we use the field dependent density matrix in
Eq. (5.55), where the symmetry is explictly broken in terms of the field J even though the
symmetry-breaking is spontaneous, not explicit, in reality.

In conclusion we find that the dynamics of the superconductors and superfluids is very
similar as what comes to the tree level equations of motion. In both cases the scattering of
the constituent objects can be described in terms of s-wave process and contact interaction,
which is repulsive for Bose-fluid and attractive for superconductor. In both cases we we
also able to give an interpretation for the order parameter based on the symmetry analysis
of the action. For super conductors it is the pair field of the Bloch states participating in
the scattering characterized by the contact potential. For superfluids the order parameter
is the (annihilation/creation) field expectation value for helium atoms whose scattering is
well-approximated by the s-wave contact interaction in the weak coupling approximation.
The present derivation suggests that as far as we can call Φ = 〈ψ〉 the macroscopic wave
function of the condensate, these two are one and the same thing. Calling Φ a wavefunction
is misleading in the sense that it is a complex classical field, which does not have the same
probability interpretation as the quantum wavefunctions [222] (Φ is the expectation value of
the field operator). In a finite size sample, where the gauge symmetry breaking or off-diagonal
order arguments cannot be strictly speaking applied, people have defined the condensate
wavefunction through diagonalization of the one-body density matrix ρ1:

∫

dx ρ1(x,x
′)Ψi(x) = NiΨi(x) (5.56)

Condensate wavefunction Ψ is the one corresponding to the largest eigenvalue Ni. The con-
nection between the condensate wavefunction determined through Eq.(5.56) and the concept
of the order parameter commonly used in the theory of superfluidity is a nontrivial problem
according to Ref. [221].

The difference between Bose-fluids and superconductors is that because there was no need
to go to pair field representation for the former, no temperature dependence is generated in
the coefficients of the equation of motion at tree level when neglegting the initial correlations
(it should be remembered that the propagators of the CPT formalism do carry the thermal
signature even if the initial time ti = −∞, but the tree level derivation does not involve any
propagators). Therefore, there is no ’double well’ potential in variable 〈ψ〉 in the free energy
(effective action) of the superfluids unlike in Eq. (5.44) for superconductors, even though there
is spontaneous symmetry breaking. Another important difference [204] is that in front of the
time derivative there is an imaginary unit in the Gross-Pitaevskii equation (nondissipative
dynamics) whereas the ∆-field of superconductors evolves in real time (dissipative dynamics).
This will be discussed in the next section.
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5.8 Hydrodynamic balance equations for superfluids

To derive equations of motion for the mass and momentum densities of superconductors and
weakly interacting Bose fluids we can try to gain some insight by considering the microscopic
Lagrangian [222]

L = −ıh̄ψ∗∂tψ +
1

2m

[

(h̄∇− i(e/c)A)ψ
]∗[

(h̄∇− i(q/c)A)ψ
]

+ qV ψ∗ψ , (5.57)

where V is the external potential and q is the charge. Taking variation with respect to
ψ∗ produces Schrödinger’s equation of motion. We can parametrize the wave function as
ψ =

√
ρ eıθ, and rewrite the Lagrangian as

L = −ıh̄∂tρ+ h̄ρ∂tθ +
1

2m
ρ
(

h̄∇θ − (q/c)A
)2

+
h̄2

2m
(∇√

ρ) · (∇√
ρ) + qV ρ . (5.58)

Forming the Lagrange’s equations of motion (δL/δρ = 0 and δL/δθ = 0) for the variables ρ
and θ leads to the following pair of equatons

∂tρ+ ∇ · (ρv) = 0 ; (5.59)

h̄∂tθ +mv2/2 + p+ qV = 0 , (5.60)

where the velocity field v ≡ (h̄∇θ − (q/c)A)/m and p ≡ h̄2

2m
1√
ρ∇2√ρ is interpreted as the

pressure. Hitting on both equattions with ∇, they can be recast into

∂tρ+ ∇ · (ρv) = 0 (5.61)

m(∂tv + (v · ∇)v) = qE− (q/c)v ∧B−∇p . (5.62)

To obtain the second equation have used the definition of v, which allows us to write ∇v2 =
2(v · ∇)v + 2v∧ (∇∧v) = 2(v · ∇)v− 2q/(mc)v ∧B. The magnetic induction is B = ∇∧A

and electric field E = −∇V −∂tA/c. Eq. (5.61) and Eq. (5.62) seem to form hydrodynamical
balance equations of the ’electron fluid’: The first equation looks like the conservation of
mass equation and the second looks like the conservation of momentum equation, when the
variables are identified as we have done.

The crucial point here is that the the mass and momentum conservation equations pre-
sented above are still microscopic, i.e. not coarse-grained. In the case of Bose fluids, the
coarse-graining is readily done at tree level, so we can replace the basic fields in Eq. (5.58) by
their expectation values (A[〈ψ∗〉, 〈ψ〉] =

∫
dxL[〈ψ∗〉, 〈ψ〉]). However, the interpretation of the

Madelung transformation becomes more difficult: For hydrodynamics it makes a difference
if we write 〈ψ〉 = 〈√ρ exp(ıθ)〉 =

√

〈ρ〉 exp(ı〈θ〉). Even if ρ and θ degrees of freedom are
independent, averaging the nonlinear functions in the mean-field manner does not necessarily
lead to a consistent description. This fact is discussed for classical hydrodynamics in Chap. 9
(cf. also App. D.2.2). In fact, treating ρ and θ as expectation values of some operators ρ̂ and

θ̂ is approaching Landau’s attempt of construction of quantum hydrodynamics [201], which
was later on criticized by Feynman [222] for not taking into account the quantum indistin-
guishability of the particles. On the other hand, if we just decide to call 〈ψ〉 =

√
ρ exp(ıθ),

without any operator association for density and phase variables. Then, we can proceed as
above and obtain the hydrodynamic equations (5.61) and (5.62) at the cost of loosing the
possibility of being able to tell, what kind of microscopic field operators ρ and θ are made of.
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To obtain the correct quantum hydrodynamic description we have a few options avail-
able. First, it is possible to construct the quantum mechanical operator equivalents of the
conserved variables directly and then average their equations of motion. This approach is
discussed in more detail in App. D.3. The disadvantage of this approach is not so easy to
express the expectation values of nonlinear operator products in terms of the expectation
values of mass, momentum and energy densities. The second option, where this is done auto-
matically, is to use the nonequilibrium generating functional formalism and proceed via the
Legendre transformation. Now the difficulty is transferred to the formation of the effective
action functional. This is equivalent to the construction of the balance equations from time-
dependent density functionals [120] as we have shown in Sect. 2.3.2. The fourth option is to
use coupled cluster methods, whose cluster amplitudes are somewhat similar to our averaged
macro observables. Arponen et al. have provided a detailed description of the non-dissipative
superfluid hydrodynamics at zero temperature in Ref. [104].

In fact, there is no need to try to extract the hydrodynamic balance equations of conserved
variables from the equations of motion of the order parameters as done in the beginning of
Sect. 5.8. Both the order parameters and the conserved variables obey their own equations
of motion, which is why we have kept them separate in our general expression for the gen-
erating functional (Eq. (2.22) and Eq. (2.23)). For Bose fluids we should have also added
the conserved momentum and mass density terms in the evolution operator by introducing
additional source terms. Now Eq. (5.51) for the generating functional only contains the order
parameter of the theory. Of course, there is nothing wrong with developing the equation of
motion for the order parameter alone: The fact that the interactions and fluctuations will be
correctly taken into account in the averaging process of the Legendre transformation even for
’incomplete set of macrovariables’ is of course one of the beautiful features of the generating
functional formalism. However, the physical interpretation might be easier, albeit technically
more involved, if one uses both conserved and symmetry broken variables in the formulation
of the macro dynamics.

The problems in trying to extract hydrodynamic equations for number and momentum
densities become clearer if we try to use the Lagrangian (effective action) of the superconduc-
tor (5.44) instead of the the superfluid Lagrangian. The difference is that the time derivative
term in Eq. (5.44) does not contain imaginary time unit. Consequently, proceeding just like in
the superfluid case, the momentum balance equation will have the same form as in Eq. (5.60),
corresponding to nondissipative momentum flow (only the normal current experiences dissi-
pation) but in the number density equation there is an extra imaginary factor in front of the
time derivative, which is unphysical. As far as the identification of the probability current
(momentum current) j determined from the microscopic Schrödinger equation,

j ≡ 1

2m

{

ψ∗(−ıh̄∇− (q/c)A)ψ +
[

(−ıh̄∇− (q/c)A)ψ
]∗
ψ
}

, (5.63)

can be associated with the macroscopic electric current jGL determined from the Ginzburg-
Landau effective action, the two seem to match when setting ej = jGL, q = 2e and replacing
ψ by ∆. However, there is another inconsistency present already in the forms of the effective
actions (Lagrangians) of Eq. (5.57) and Eq. (5.44). Leaving out the gauge terms, we see that
the superconductor action contains a term |∆|4, which is required for the stability of the
equilibrium condensate density. When using Eq. (5.57) to form the equations of motion, the
stabilizing term must be put in by hand [222].

To summarize, Eq. (5.44) and Eq. (5.52) are valid descriptions for generation of order
parameter dynamics. When trying to extract information from the conserved quantities (or
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other relevant variables) by using nonlinear transformations like

∆ =
√
ρ exp(ıθ) , (5.64)

one should be carefull. Eq. (5.64) should be seen as transformation into Goldstone coordinate
representation. It should not be seen as mapping between the order parameter and other
relevant variables (ρ,v) except in some special cases: θ turns out to be the analogy of the
(compactified) velocity potential for superfluids and superconductors. Then we are making
no other implications than saying that the order parameter has a well-defined magnitude χ
and phase θ. When extracting the low energy effective action for variable θ it is possible
to show the complete equivalence [215, 223] of the two descriptions despite the fact that
Eq. (5.52) contains the imaginary factor in front of the time derivative and Eq. (5.44) does
not.
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Chapter 6

Density Functional Theory

The purpose of this chapter is to give some background information on techniques, which
enable the construction of the density functional which is another name for the free energy
functional of an inhomogeneous system. The relevance of the free energy functional can be
seen to arise from the dynamics: The time evolution of an equilibriating system should be
designed in such a way that we get relaxation to Gibb’s equilibrium state governed by the
probability weight

1

Z
exp(−βF [φ]) , (6.1)

where the normalization constant Z is the equilibrium partition function. The precise way
in which F appears in the equations of motion is discussed more throughly in Chap. 7 and
Chap. 9 which address dynamics related questions. In this chapter we concentrate only on
the static properities and construct the free energy functional F using different approaches.

In Sect. 6.3 we coarse-grain the free energy from the partition function and compare the
result with another derivation based on the Legendre technique presented in Sect. 2.3.3. The
third method for obtaining free energy functionals, which is very powerful, is the classical
density functional theory. It is the main focus of this chapter. Classical DFT has a long
history and therefore many results and approximations can be directly borrowed from the
literature. We also point out the similarities in the traditional formulations of the classicical
and quantum density functional theories (Sect. 6.2), which might have been blurred to some
extent due to the fact that they have been developed as separate theories. In particular,
the quantum DFT makes little reference to its ’thermodynamic roots’ (Mermin [108]) in its
traditional exposition [224] being a zero temperature theory. The time dependent density
functional theory TDFT will not be discussed in this section as we have already covered
the topic in Sect. 2.3. For numerical techniques on computation of the free energy one can
consult e.g Refs. [225, 226]. Experimental construction of the free energy functional [5] is
based on the knowlegde of the 2-point function (structure factor). That is briefly discussed
in the context of the phase-field modeling in Chap. 7.

6.1 Quantum and classical density functional theories

We review some basic relations and results of density functional theory below to complement
the material presented in Sect. 2.3.1. We will not discuss the practical implementation of
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the computational program but rather concentrate on those ideas from the litrature, which
display the similarity aspects of quantum and classical theories [227].

6.1.1 Quantum density functional theory

The basic idea of density functional theory is get rid of the many-body nature of the un-
derlying Hamiltonian description and replace the large number of entries {xi} (i = 1, . . . N),
which are the single electron coordinates of the Schröedinger wave function, with a den-
sity function n(x). The procedure is thus similar to the (quantum or classical) derivation of
Boltzmann’s transport equation [16] from Liouville’s many-body description in the sense that
instead of many position coordinates xi one uses the reduced density matrix with single entry
x to describe some aspects of dynamics. In contrast, the density functional theory originally
concentrated only on the static ground state properties of many-electron systems. Density
functional theory is a coarse-grained theory in the sense that the spatial information encoded
in the many-body ground state wave function cannot be recovered from the electron density
alone.

Let us now describe some of the basic concepts of the theory. First, we define the Hamil-
tonian H to be a sum of three contributions,

H = T + U + V . (6.2)

The second quantized representation of the kinetic energy T , one-body potential V and two-
body potential U are:

T ≡
∫

dxψ†(x)

(

− h̄2

2me
∇2
)

ψ(x) ; (6.3)

U ≡ 1

2

∫

dx

∫

dx′ ψ†(x)ψ†(x′)
e2

|x − x′| ψ(x′)ψ(x) ; (6.4)

V ≡
∫

dxψ†(x)Vext(x)ψ(x) , (6.5)

where me is the mass of the electron and e is its charge. The density of electrons in the
ground state |Ψ〉 is

n0(x) ≡ 〈Ψ|ψ†(x)ψ(x)|Ψ〉 . (6.6)

Clearly, n0 is a functional of the external one-body potential Vext. Conversely, we can regard
Vext as a unique functional of the density n0. Fixing Vext fixes the form of the Hamiltonian
H and thereby its ground state |Ψ〉. Thus, the ground state energy can be seen to be a
functional of n0 as shown by Hohenberg and Kohn [224]:

EV [n0] = 〈Ψ|H|Ψ〉 =

∫

dxVext(x)n0(x) + F [n0] , (6.7)

where F [n0] ≡ 〈Ψ|T + U |Ψ〉 is a universal functional, which does not depend on the chosen
Vext. As a matter of fact, Eq. (6.7) can be seen as a Legendre transformation for the pair of
variables (Vext, n0), which is the reason for writing EV [n0] instead of E[n0]. It has become
customary to separate out the long range Coulomb energy and rewrite

F [n0] =
e2

2

∫
n0(x)n0(x

′)
|x− x′| +G[n0] , (6.8)
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which specifies another universal functional G[n0]. Its explicit representation in terms of
one-particle density matrix, ρ1(x,x

′) ≡ 〈Ψ|ψ†(x)ψ(x′)|Ψ〉, and pair correlation function g(2)

reads

G[n0] =
h̄2

2me

∫

dx∇x∇x′ρ1(x,x
′, [n0])|x=x′ +

e2

2

∫

dxdx′ n0(x)n0(x
′)

|x − x′| g(2)(x,x′, [n0]) . (6.9)

The form of the pair correlation function will be derived in Sect. 6.2. The full energy func-
tional becomes

EV [n0] =

∫

dxVext(x)n0(x) +
e2

2

∫
n0(x)n0(x

′)
|x − x′| +G[n0] (6.10)

Since the correlation function depends on expectation values of products of density matrices,
we are facing a similar hierarchy problem as in the case of the so-called Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [220], which expresses lower order reduced distri-
bution functions in terms of higher order ones. Eq. (6.10) can be generalized for any density
n

EV [n] =

∫

dxVext(x)n(x) +
e2

2

∫
n(x)n(x′)
|x − x′| +G[n] (6.11)

When n = n0, the functional EV [n] reaches its minimum value which correponds to the
ground state energy [224]. The search of the ground state can thus be converted into a
minimization problem of the density functional EV [n].

The generalization of the ground state formalism to finite temperatures is rather straight-
forward [108]. One basically needs to replace the ground state expection values with thermal
averages and consider free energy (which includes entropic effects) instead of plain energy.
The equilibrium density n0 is now defined as the thermal average over distribution ρ0:

n0(x) ≡ 〈ψ†(x)ψ(x)〉0 ≡ Tr{ρ0 ψ
†(x)ψ(x)} . (6.12)

The grand canonical density matrix ρ0 is defined as

ρ0 ≡ 1

Z
e−β(H−µN) , (6.13)

and Z ≡ Tr{exp(−β(H − µN))}. In order to obtain a functional minimization problem
similar to the ground state formalism, we define the functional Ω[ρ] for arbitrary density
matrix ρ:

Ω[ρ] ≡ Tr{ρ (H − µN + β−1 ln ρ)} , (6.14)

where H = T +U +V . Arbitrary ρ here means that it has the same grand canonical form as
ρ0 but the external potential Vext will differ from that of ρ0. When ρ = ρ0, Eq. (6.14) gives
the equilibrium grand potential Ω = −kBT lnZ. Because to each

n(x) ≡ Tr{ρψ†(x)ψ(x)} , (6.15)

there is a unique Vext(x), which determines the density matrix ρ[Vext], we can say that the
entire N -body density matrix ρ is a functional of n(x). Then, for the particular case ρ = ρ0,
Eq. (6.14) gives

Ω[ρ0] ≡ ΩV [n0] =

∫

dxVext(x)n0(x) + F [n0] − µ

∫

dxn0(x) , (6.16)
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which is the thermal analogue of Eq. (6.7). The universal functional F [n0] is defined as

F [n0] = Tr{ρ0 (T + U + β−1 ln ρ0)} . (6.17)

In the finite temperature case Eq. (6.8) has exactly the same form also. The only difference
is that thermal averages should be taken when calculating ρ1 and g(2). For general density
n, which does not correspond to the external potential Vext associated with n0, Eq. (6.16)
becomes

ΩV [n] =

∫

dxVext(x)n(x) + F [n] − µ

∫

dxn(x) , (6.18)

This can be seen in the following way: Separating out the term
∫
dxψ†(x)Vext(x)ψ(x) from

the Hamiltonian H in Eq. (6.14) and tracing over the non-equilibrium density matrix ρ
(Eq. 6.15) gives immediately rise to the first term on the right hand side of Eq. (6.18).
Similar arguments can be applied to the chemical potential term. Furthermore, owing to the
universality of the functional F its form stays the same no matter what density matrix we
use. Therefore we can directly replace F [n0] by F [n]. As we will see in the next section,
Eq. (6.16 – 6.18) will can be used directly in the classical regime as well.

6.1.2 Classical density functional theory

In the classical regime we replace the quantum mechanical trace by summation over classical
degrees of freedom. Thus, the defining equation Eq. (6.14) stays the same but

Trcl ≡
∞∑

N=0

1

h3NN !

∫

dx1 . . . dxN

∫

dp1 . . . dpN (6.19)

The other definitions are the same as in the quantum mechanical case. The N -body Hamil-
tonian is a sum of three pieces: H = T + U + V , where

T ≡
N∑

i=1

p2
i

2m
; U ≡ U(x1, . . . ,xN ) ; V ≡

N∑

i=1

Vext(xi) , (6.20)

The interaction potential U can contain m-body (m > 2 ) interaction terms, too. There is
nothing that would have stopped us from using higher order than two-body interaction terms
in the quantum mechanical case either. Their presence leads to appearance of higher order
correlation functions in the functional G in Eq. (6.9). The functional ΩV is defined [228] as
in Eq. (6.14)

Ω[ρ] ≡ Trcl{ρ (H − µN + β−1 ln ρ)} , (6.21)

The average density for distribution ρ is n(x) ≡ Trcl{ρ
∑N
i=1 δ(x − xi)}. In terms of n, we

can cast Eq. (6.21) into the follwing form:

Ω[ρ] ≡ ΩV [n] =

∫

dxVext(x)n(x) + F [n] − µ

∫

dxn(x) , (6.22)

which is just the same as the quantum equation (6.18). The minimization property of the
density functional is now conviniently expressed as

δΩV [n]

δn(x)

∣
∣
∣
∣
n0

= 0 . (6.23)
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As in the quantum case, the equilibrium density n0 satisfies ΩV [n0] = Ω, where Ω is the
equilibrium grand potential. As will be discussed in Sect. 6.1.3 and Sect. 7.4, the functional
F appearing in Eq. (6.22) can be called the intrinsic (Helmholtz) free energy. When the
inhomogenous field is added, we get the total (Helmholtz) free energy FV , which can be seen
as the functional Legendre transformation of the intrinsic one:

FV [n] ≡ F [n] +

∫

dxVext(x)n(x) . (6.24)

Using Eq. (6.23) together with (6.22), we can define analogously the concept of intrinsic
chemical potential µin ≡ δF [n]]/δn(x). It satisfies

Vext(x) + µin[n0] = µ . (6.25)

Hence, the x-dependence of µin(x) must exactly cancel that of Vext(x) in order for the global
chemical potential µ to be a constant.

Let us now derive some explicit representaions of F [n] which will be utilized in the subse-
quent sections. The simplest many-body system is the ideal gas with no interactions: U = 0.
The intrinsic free energy becomes βFid[n] =

∫
dxn(x)[ln(λ3

Tn(x))− 1], where λT it the ther-
mal wavelength. Depending on the system under study, one usually separates the free energy
(and other functionals) into two parts,

F = Fref + ∆Fref . (6.26)

The first contribution to F on the right hand side is the reference free energy of a system,
whose properties are well-known. For example, approximating a weakly interacting system
by the ideal one, we would set Fref = Fid Then the effect of the particle interactions would
be in ∆F . In terms of the decomposition (6.26) the intrinsic chemical potential becomes

βµin[n] ≡ β
δF [n]

δn(x)
=
δFid[n]

δn(x)
+
δ∆Fid[n]

δn(x)
= ln(λTn(x)) − c(x, [n]) , (6.27)

where c(x, [n]) ≡ −δ∆Fid[n]/δn(x) is the so-called direct correlation function, which contains
the effect of interactions. It will be made use of later on in Sect. 7.4.

With attractive interactions present, one obtains in many cases [229] a more accurate
pertubative result for F [n] if one separates out the hard-core repulsive part of the potential
and sets Fref = FHS , where FHS is the hard sphere reference free energy [230]. Assuming
for simplicity that the interaction potential U =

∑

i<j u(xij) consists of pair potentials only,
the grand potential ΩV can be seen as a functional of u(xij). By varying the pair potentials,
while keeping the one-body potential V =

∑

i Vext(x1) fixed, we obtain

δF = −kBT δ lnZ =
1

Z

∞∑

N=0

λN

λ3N
T N !

∫

dx1 . . . dxN e−β(U+V )
∑

i<j

δu(xij) (6.28)

=
1

2

∫

dx1

∫

dx2 ρ
(2)(x1,x2)δu(x12) , (6.29)

where λ ≡ eβµ is the fugacity. Using the symmetries of the summand we expressed the
variation in terms of the pair distribution function ρ(2) on the second line. Thus,

δF

δu(x12)
=

1

2
ρ(2)(x1,x2) . (6.30)
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The variational equation (6.30) can be solved by a process called functional integration (not
to be confused with the usual meaning of path integral). Depending on the way one chooses
to parametrize the variation, the end results seem a bit different superficially [229, 231, 230].
Here we define the following test system potential:

uα(x12) ≡ u0(x12) + αu1(x12) , (6.31)

where 0 ≤ α ≤ 1. For α = 0 the potential of the test system is just the reference potential u0.
When α reaches value one, the test system potential has become the full interaction potential
of the system under study uα=1 = u = u0 + u1. Solution of Eq. (6.30) reads

F [n] = F0[n] +
1

2

∫ 1

0
dα

∫

dx1

∫

dx2 ρ
(2)(x1,x2, α)u1(x12) . (6.32)

By restricting the variation δu = δu1 it is easy to see through functional differentiation that
Eq. (6.30) is reproduced. Eq. (6.32) is exact but useless unless we can compute ρ(2)([uα]). In
the so-called Random Phase Approximation (RPA) one ignores all the correlations between
the particles and replaces ρ(2) ≈ n(x1)n(x2), which leads to

F [n] ≈
∫

dx1 fHS(n(x1)) +
1

2

∫

dx1

∫

dx2 n(x1)n(x2)u1(x12) . (6.33)

We have also used the Local Density Approximation (LDA) in setting the replacing the
homogeneous argument of the hard sphere fluid reference free energy with spatially dependent
density n(x). This is the simplest approximation one can think of but it seems to work
reasonably well for the situations which we will be considering later on.

6.1.3 Formal similarity and Wigner’s representation

The question we are posing now, is whether the quantum and classical density functional
approaches can both be represented in a unified form, which allows for the use of the Legendre
trasformation technique? The positive answer is to be found in Sect. 2.4 The concept, which
in the current literature is known by the name v-representablility [51], has probably become
more well-known to the general audience in the context of quantum density functional theory.
It allows to expresse the density and the external potential v as unique functionals of each
other. This property facilitates the emergence of the expectation values of the density to
appear in the functional F as we have seen above. Thus the intrinsic free energy F and the
total free energy FV can be seen as generalized thermodynamic potentials. Indeed,

FV [n[Vext]] = F [n[Vext]] +

∫

dxVext(x)n(x, [Vext]) , (6.34)

Going from variable n to conjugate variable Vext is easy. They are related through

n(x, [Vext]) =
δFV

δVext(x)
(6.35)

In the previous sections we have presented a few possibilities to construct these functionals.
To add to the selection we now present an alternative way of constructing the free energy
functionals, which makes direct contact with the usual equilibrium formulation of statistical
mechanics, and can be even extended to cover the non-equilibrium phenomena as discussed in
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Chap. 2. Moreover, the extension to other types of theories, which make use of more compli-
cated variables than single particle densities, is very transparent in the new formulation. As
we pointed out in Sect. 2.3, both the ground state and finite temperature density functional
theories can be derived from the following generating functional W (J):

e−βW [J ] ≡ Z[J ] ≡ Tr
{

e−βĤ+JQ̂
}

, (6.36)

where Ĥ = T̂ + Û is the many-body Hamilton’s operator consisting of kinetic term and
interactions. Note that Vext whose only function is to transmit the v-representability condition
is not needed, its role is played by the source field J . The quantum density functional theory
is generated by choosing the operator

Q̂ = n̂(x) = ψ†(x)ψ(x) . (6.37)

Once Z[J ] is known, it is straightforward to obtain the density functional via the Legendre
transformation:

F [n] = W [J ] −
∫

dxJ(x)n(x) . (6.38)

It is important to notice that F [n] is truly a function of the expectation value of n̂. Eq. (6.38)
should be compared with Eq. (6.24) with FV replaced by W [J ] and Vext by J . In the classical
case we cannot unfortunately just add a source term of the same form as in the quantum
case to the Hamiltonian:

JQ̂ =

∫

dx J(x)n̂(x) . (6.39)

Trying the same in the classical case will not work because integral expressions of the form
∫
dxJ(x)n(x) cannot appear in the classical Hamiltonian of point particles. Thus, one is

naturally led to formulate the Legendre transformation using a local potential Vext(xi) which
just takes us back to the classical starting point. To overcome this problem we propose to
use the mapping presented in Sect. 2.4. The second quantization representation of Doi [3]
enables us to write the following generating functional for a classical system

Zcl[J ] = 〈0|e−βĤ′
cl

+JQ̂|0〉 = Tr
{

e−βĤ
′
cl

+JQ̂ |0〉〈0|
}

(6.40)

where the ’shifted’ second quantized classical Hamiltonian Ĥ ′
cl(ψ

†, ψ) ≡ Ĥcl(ψ
† + 1, ψ), and

Ĥcl =

∫

dx1

∫

dp1 ψ
†(x1,p1)

p2
1

2m
ψ(x1,p1) (6.41)

+
1

2

∫

dx1

∫

dp1

∫

dx2

∫

dp2 ψ
†(x1,p1)ψ

†(x2,p2)u(x1 − x2)ψ(x1,p1)ψ(x2,p2)

The remarkable thing is that this method allows the construction of the density functional
(or more generally, free energy functional in any variables, not just particle density) for any
classical point particle system where the interaction forces are known. Higher order than pair
potentials can naturally be included.

Owing to the similarity, of the expressions Z[J ] and Zcl[J ] one is tempted to ask whether
there it is possible to coarse-grain the quantum mechanical generating functional and obtain
the classical one. The differences between Eq. (6.36) and Eq. (6.40) are the following: First,
Zcl is the vacuum-to-vacuum expectation value whereas Z has trace over all states. In the
path integral representation this only sets an extra constraint for the boundary values of the
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fields when computing Zcl. Second, the field operators of Ĥcl have both x and p as their
arguments. Moreover, in the classical case they are commuting numbers, not operators. But
this is exactly what one would expect from a coarse-grained model: When the coarse-graining
cell size grows big enough, the cell averaged operators 〈x̂〉cell and 〈p̂〉cell start approaching
their classical counterparts (numbers x and p), which commute. At the level of density

matrices (ρ̂ ∝ exp(Ĥ + JQ̂)) one expects that when averaging over cells ∆x∆p much larger
than (2πh̄)3 the classical density matrix should emerge [186]. Using Wigner representation
of the single particle density matrix ρW as an example, it is possible to show [232] that

∫

∆x∆p

dxdp ρW (x,p) =

∫

∆x∆p

dxdp ρcl(x,p) + O
(

(2πh̄)2

∆x∆p

)

(6.42)

It remains to be seen if the second quantized generating functional description makes it any
easier in practice to cross the quantum-classical boundary for some simple systems at least.
It sort of reverses the task: Instead of trying to represent the quantum system in classical
kind of form using the Wigner representation, one can cast the classical system in a quantum
form using Doi’s second quantized notation.

6.2 Multi-component density functional theory

This section generalizes the concept of density functional for several interacting particle
species, which is important for some later developements of our formalism. Just as in the case
of single component density functional theory, it is advantageous to decompose the pairwise
additive intermolecular potential as

Vij = V R
ij + λV A

ij . (6.43)

The first term on the right is the interaction of the reference system (typically hard sphere
fluid) and the second contains the attractive part of the potential. The perturbation param-
eter λ describes the deviation of the system from the noninteracting case λ = 0. For λ = 1,
the interaction potential Vij has become that of the system of interest (p. 462, Ref. [230]).
Correspondingly, the free energy of the system is

F = FR + FA , (6.44)

where the free energy of the reference system can be further decomposed into the free energy
of the ideal noninteracting system (ideal gas) F I and the excess free energy FE arising from
the interactions of the molecules of the reference system: F R = F I +FE . The ideal gas part,

F I = kBT
∑

i

∫

dxφi(x) ln(φi(x)) . (6.45)

There are many ways of obtaining an expression for F E [229, 233] Analogously to the local
density approximation of the exchange energy of quantum case (Sect. 6.1.1), one can define
(weighted) local density apporximation [234]:

FE = kBT

∫

dxφ(x)fex,u(φ̄i(x)) , (6.46)
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where φ(x) ≡∑

i φi(x) is the total density and fex,u is the excess free energy per particle in a
uniform fluid taken at some weighted density φ̄i(x). The excess free energy fex,u is assumed
to be a known for any value of density. If we set φ̄i(x) = φi(x), we obtain the normal LDA
approximation. Details on how to choose φ̄i and modifications of WDA can be founs in
Ref. [229]. Finally,

FA =
1

2

∑

ij

∫ 1

0
dλ

∫

dx

∫

dx′ φi(x)φj(x
′)g(2)

ij (x,x′, λ)Vij(|x − x′|) . (6.47)

This is an exact representation of the free energy contibution due to the attractive part of the
interaction potential. Still, the non-trivial task of finding out the form of the pair correlation
function gij for arbitraty λ remains. Finally, the grand potential is given by the Legrande
transformation:

Ω[{φi}] = F [{φi}] −
∑

∫

dxµiφi(x) , (6.48)

where the chemical potentials of the ith particle species is denoted by µi.
To point out the analogy to the quantum mechanical case, let us quote the corresponding

results of the two-component density functional theory of two fermion species (electrons and
positrons) with densities n+ and n−. The total energy (not free energy) of the system is
given by [235]:

E[n−, n+] = Es[n−] +Es[n+] +

∫

dxVext(x)[n−(x) − n+(x)] − V C
−+ +Ee−pc [n−, n+] , (6.49)

where Vext is an external potential and Ee−p
c is the electron-positron correlation energy.

Coulombic interaction energy functional is given by

V C
ij ≡

∫

dx

∫

dx′ ni(x)nj(x
′)

|x − x′| , (6.50)

where i, j = +/−. The single component energy functional Es in Eq. (6.49) consists of the
following pieces:

Es[ni] ≡ T [ni] +
1
2V

C
ii +Exc[ni] . (6.51)

The kinetic energy of the non-interacting electrons or positrons is denoted by T [n±] and
the exhange-correlation energy of single particle species is Exc. The exchange-correlation
contains both the effect of caused by the mixing of basis orbitals of the ground state wave
function ansatz (exchange) and the so-called correlation energy. The latter contains all the
effects which go beyond the Hartree-Fock approximation such that when summed up with the
kinetic, Coulobic and exchange contributions the exact ground state energy Es is obtained.
There is no electron-positron exchange term present in Eq. (6.49) because the different species
are distinguishable from each other and the Slater determinant ground state wave function
ansatz does not mix basis states of the two species. But the correlation energy E e−p

c is still
needed in order to get the correct ground state energy of a system with interacting electrons
and positrons. As stated above, the correlation energies Ee−e

c and Ep−p
c are hidden in the

terms Exc[n−] and Exc[n+], respectively.
Let us see how far the analogous structure of the quantum and classical theories goes.

Leaving out the kinetic energy, which is only present in the classical formulation through de
Broglie wavelength, we can see that the external potential Vext(x) of the quantum theory
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plays the role of an inhomogeneous chemical potential in the classical case. The exchange-
correlation energy can be represented as [51] (pp. 184-185)

Exc[ni] =
1

2

∫

dx

∫

dx′ ni(x)V (x,x′)ni(x
′)
∫ 1

0
dλ
(

g
(2)
ii (x,x′, λ, [n]) − 1

)

, (6.52)

where gii is the pair correlation function of the system (p. 158, Ref. [51]). Although this
result seems very nontrivial at first sight, it is a straightforward consequence of the second
quantization and parametric perturbation similar to the classical case as shown below. We
assume that the reference system consists just of non-interacting particles in an external
potential vλ. The parameter λ determines the strength of the two-body forces:

Ĥλ = T̂ +
∑

α

∫

dx vλ(x)ψ̂†
α(x)ψ̂α(x) +

λ

2

∑

αβ

∫

dx

∫

dx′ V (x,x′) ψ̂†
α(x)ψ̂†

β(x
′)ψ̂β(x

′)ψ̂α(x) .

(6.53)
The spin index α = ±. The values of the parameter λ are restricted to range 0 ≤ λ ≤ 1. The
external potential vλ(x) is chosen in such a way [51] that the ground state density n(x) is
independent of λ:

n(x) = nλ(x) ≡ 〈Ψλ|n̂(x)|Ψλ〉 , (6.54)

where
∑

α ψ̂
†
α(x)ψ̂α(x) ≡ n̂(x) is the density operator. The ground state wave function of

the test system is denoted by |Ψλ〉. When λ = 1, the Hamiltonian Ĥλ of the test system

becomes that of the true system Ĥ: Ĥλ=1 = Ĥ. Thus, vλ=1(x) = v(x) is the prescribed
external potential and vλ=0(x) = v(x) + vH(x) + vxc(x) is by definition the effective Kohn-
Sham potential. Differentiation of the ground state energy of the test system with respect to
λ can be computed using the Hellman-Feynman theorem:

dE(λ)

dλ
= 〈Ψλ|

∂Ĥλ

∂λ
|Ψλ〉 (6.55)

=
∂

∂λ

∫

dx vλ(x)n(x) +
1

2

∫

dx

∫

dx′ V (x,x′)n(x)n(x′)g(2)(x,x′, λ, [n]) , (6.56)

where we have made use of the definition (6.54) and the fact that the pair correlation function
can be related to the expectation values of the field operators in the following manner:

∑

αβ

〈Ψλ|ψ̂†
α(x)ψ̂†

β(x
′)ψ̂β(x

′)ψ̂α(x)|Ψλ〉 = 〈Ψλ|n̂(x)n̂(x′) − δ(x − x′)n̂(x)|Ψλ〉 (6.57)

= n(x)n(x′)g(2)(x,x′, λ, [n]) . (6.58)

Eq. (6.58) follows from the definition of the pair distribution function g (2), which is defined
to be the conditional probability of finding a particle at x given that there is another particle
at x′:

g(2)(x,x′) ≡ 〈∑N
i6=j δ(x − x̂i)δ(x

′ − x̂j)〉
n(x)n(x′)

=
〈n̂(x)n̂(x′)〉
n(x)n(x′)

− δ(x − x′)
n(x)

. (6.59)

where n̂(x) =
∑N
i=1 δ(x − x̂i) =

∑

α ψ
†
α(x)ψα(x) is another representation of the density

operator with summation over all N particles. The state vectors in the expectation value
above 〈·〉 have been left unspecified.

The crucial assumption leading to Eq. (6.56) is that the potential V (x,x′) is independent
of the spin labels. With this assumption we have now shown how the the pair correlation
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function arises upon taking the expectation value of the interaction part of the Hamiltonian.
Integrating Eq. (6.56) we obtain the ground state energy

E[n] = E(λ = 1) = E(0) +

∫ 1

0
dλ dE(λ)/dλ (6.60)

= T0[n] +

∫

dx v(x)n(x) +
1

2

∫

dx

∫

dx′ V (x,x′)n(x)n(x′) +Exc[n] (6.61)

= T0[n] +

∫

dx v(x)n(x) +
1

2

∫ 1

0
dλ

∫

dx

∫

dx′ V (x,x′)n(x)n(x′)g(2)(x,x′, λ, [n]) .

where the exchange-correlation functional can be written as in Eq. (6.52). The kinetic en-
ergy of the non-interacting system T0 plays the role of free energy of the reference system
in the classical density functional theory. The external potential acts like an inhomgeneous
chemical potential and finally, the structure of the interaction term containing the pair corre-
lation function is exactly the same both in classical and quantum density functional theories.
However, in quantum theory we did not separate out the attractive part of the interaction.
The second important difference is the missing of the mixed pair correlation functions the
exchange correlation functional (6.52). In the corresponding classical expression (6.47) the
distinguishability of the species gave rise to gij , i 6= j.

6.3 Derivation of classical free energy

Two different types of methods are used to construct an approximate expression for the free
energy. The first one is the classical cell technique [236, 237, 197] (for a field theoretic Green’s
function based analog, see Ref. [58]). An alternative techique is presented in Sect. 6.3.2,
where the poor man’s version of the use of functional Legendre transformation is given. It
will hopefully make the somewhat abstract presentation given in Chap. 2 more transparent.

6.3.1 Restricted trace and the cell technique

Density functional techniques can be applied to any interacting many-particle system whether
it is solid, liquid or gas. We will now focus on a classical fluid system (liquid-gas system),
where there is no long-range crystal order. Using a so-called cellular coarse-graining method
we derive the free energy F . We start with the definition of classical N -particle partition
function

Z(T, V,N) = Trcl
{

e−βHN
}

=
1

λ3N
T N !

∫

dxN e
−β
∑

i<j
u(xij) , (6.62)

where V is the volume the system occupies. We have integrated out the momenta leaving
only the configurational part unintegrated: dxN ≡ dx1 . . . dxN . Let us now use the same
trick, which gives rise to the φ4-field theory in the case of Ising model. We divide the system
into large number of cells, whose volume ∆ � V , but which are large enough to contain
many particles. The form of the pair potential U is assumed to be such that it gives rise to
a hard core radius a and has a long range attractive tail.

U(xi − xj) = U(xij) =

{

+∞ , xij < a ;
−w(xij) , xij > a .

(6.63)
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To allow the presence of many particles in one cell we require a� ∆1/3 � V 1/3. Furthermore,
we assume that the attractive tail is sufficiently weakly decaying to be able to approximate the
attractive interactions between particles in the same cell by a constant potential. Performing
the trace operation in Eq. (6.62) in two stages we can write

Z =
1

λ3N
T N !

′∑

{Nα}

∫

dxN
∏

α

δ
(

Nα −
∫

∆α

dx′ φ(x′)
)

e
−β
∑

i<j
u(xij) . (6.64)

Restricted summation
∑′ takes into account only such configurations, which fulfil

∑

αNα =
N . There are Nα particles in cell α, which occupies the volume ∆ around point xα. The
density of particles at point x is denoted by φ(x) ≡ ∑N

i=1 δ(x − xi). The configurational
phase space volume Y available in a cell with Nα particles is

Y (Nα) ≡ (∆ −Nαδ)
Nα , (6.65)

where δ ≡ (4/3)πa2 is the hard core volume of one particle. In terms of Y the partition
function becomes

Z =
1

λ3N
T N !

′∑

{Nα}

N !

ΠαNα!
Y (Nα) e(β/2)

∑

αα′ wαα′NαNα′ (6.66)

The combinatorial term N !/ΠαNα! tells in how many ways one can divide N particles into
Nα cells. The phase space volume in each cell is given by Y . Finally, wαα′ characterizes the
attractive part of the interaction between cells α and α′. Exponentiating all factors yields

Z = λ−3N
T

′∑
exp

(

− βFc[Nα]
)

; (6.67)

Fc[Nα] ≡
∑

α

[

Nα ln

(
∆ −Nαδ

Nα

)

+Nα +
1

2
β
∑

αα′
wαα′NαNα′

]

. (6.68)

Going over to density n ≡ Nα/∆ measured in units of δ we arrive at the continuum approx-
imation of the free energy functional [236, 197]:

F [n] =

∫

dx

[

n(x) ln

(
1 − n(x)

n(x)

)

+ n(x)

]

+
1

2
β

∫

dx

∫

dx′ w(x − x′)n(x)n(x′) . (6.69)

This should now be compared with density functional results of Eq. (6.32) and Eq. (6.33).
The cell technique corresponds leads to the same expression as the use of LDA and RPA
approximations in the case of density functionals. It should be noted, though, that the
reference free energy fHS in Eq. (6.33) has a different functional dependence on the density
than the expression in the square brackets in Eq. (6.69). However, when one plots F as a
function of constant density, it is easy to see that the well structure is the same in both cases:
There is a single well above critical temperature Tc (which can be worked out in terms of
model parameters). Below Tc the (mean field) free energy density becomes non-convex giving
rise to coexistence of liquid and gas phases. The non-convexity is a result of the mean field
like cell approximation combined with the use of homogeneous density field to approximate
the pointwise free energy density. As will be discussed more thoroughly in Sect. A, the the
pointwise free energy density does not have to be convex in contrast to the homogeneous free
energy density (F/V ), which is convex in the thermodynamic limit.
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6.3.2 Legendre transformation technique

Let us now repeat the derivation of the free energy of a dilute fluid (liquid-gas) system
using the Legendre transformation technique, which has already been introduced in Chap. 2.
Moreover, in Sect. 6.1.3 we discussed the interpretation of the v-representability as a Legendre
transformation between variables Vext and the density n. Here we will carry out the same
procedure but with constant fields, which means that we do not have to introduce a spatially
dependent fields Vext(x) and n(x) but we can do with constant fields µ and n and put in
the spatial dependence in the final result by hand. (Remember that Vext can be seen as the
spatially dependent part of the chemical potential µ.)

Following Ref. [238] we expand the grand potential βΩ = − lnZ to order O(λ2) in the
fugacity, which should be reasonable for dilute system:

βΩ = − ln
∞∑

N=0

λN

N !

∫

dxN e−βHN (6.70)

≈ − ln
(

1 + λ̃V + (λ̃2/2)

∫

dx1

∫

dx2 e
−βu(x12) + . . .

)

(6.71)

≈ −V
(

λ̃− (λ̃2/2) a+ . . .
)

, (6.72)

where a ≡ ∫
dx (1 − e−βu(x)) is the virial coefficient and λ̃ ≡ λ/λ3

T . Eq. (6.72) follows from
expanding the logarithm. Next, we need to find a relation between the variables µ and n.
Thermodynamic identity (which holds in equilibrium only),

nV = N = −∂Ω

∂µ
, (6.73)

leads to the following equation of state: n ≈ λ̃ − aλ̃2. Solving for λ̃ in terms of the density
gives

λ̃ ≈ n+ an2 + O(n3) . (6.74)

Now that we know what λ̃(n) is (or more properly, what µ(n) is) we can use the Legen-
dre transformation to compute the Helmholtz free energy, which has density as its natural
variable:

1

V
F (n) =

1

V
Ω[µ(n)] − µ(n)n . (6.75)

This equation should be compared with Eq. (6.34). It is clear that the role of FV is played by
Ω and Vext corresponds to µ. By making Vext = const and dividing both sides of Eq. (6.34)
by the volume V generates exactly Eq. (6.75). Substitution of µ[n] = −β−1 ln λ̃(n) yields the
explicit representation

F (n) = β−1V
(

n ln(λ3
Tn) − 1

)

+ (a/2)n2 . (6.76)

Using local density approximation and replacing the constant fields with n(x) the previous
expression becomes the exactly same as the density functional result (6.33) when one uses the
ideal gas result Fid as the reference free energy functional instead of FHS , and approximates
the virial coefficient a ≈ u(x), which holds in the limit βu� 1.

Thus, all methods (density functional, cell coarse-graining and Legendre technique) seem
to give consistent results at least for low enough densities. There are a few subleties, though,
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which should be kept in mind. The Legendre transformation technique used above made use
of homogeneous fields. Had we computed the full equation of state with no approximations,
and inverted it to find out µ(n), the F (n)/V obtained through Legendre transformation
would have been convex in the limit V → ∞ as required by conventional equilibrium thermo-
dynamics. It is only due to the approximations that the double well potential emerges in this
case. However, the pointwise free energy density (see Sect. A), which is used in the functional
Legendre transformation for spatially dependent fields, does not have to be convex. When
we try to find the pointwise free energy density by replacing the homogeneous values n by
space dependent ones in F (n), there is no guarantee in general that we should obtain exactly
the same result as with density functional treatment or by using the cell method. In this
example the results seem to agree, though.

6.4 Fluid-solid density functional and wall potential

Let us start by discussing the classical density functional theory, which forms the basis of the
phase-field approximation to be introduced in Sect. 7.3. Wetting of a solid can be described
in terms of the following density functional for spatially inhomogeneous number density φ
(cf. dimensionless phase-field C.2) [228, 239]:

Ω([φ], T, µ0) =
1

2

∫

D
dx

∫

D
dx′ w̃(|x − x′|)φ(x)φ(x′) +

∫

D
dx fHS(φ(x), T ) +

∫

D
dx [VS(x) − µ0] .

(6.77)
As usual, T denotes temperature and µ0 is the equilibrium chemical potential, which deter-
mines the average number density. The domain occupied by the fluid is D. As explained in
Sect. 6.1, fHS is the hard sphre reference chemical potential responsible for repulsive interac-
tions, and the first term on the right hand side of Eq. (6.77) describes the effect of attractive
fluid-fluid particle interactions within the mean-field theory. In the simplest approximation,
the effective interaction w̃ is the attractive part of the pair potential. In a more refined
theory, w̃ becomes the pair distribution function as explained in the begining of this chapter,
which in turn can be connected with the total pair correlation function (p. 159 Ref. [229]).
Even though the nonlocality of the short-range particle-particle correlations, which become
important close to the substrate surface, are negelected in Eq. (6.77), it still provides a rea-
sonable description of wetting phenomena when the thickness of the adsorbed liquid film is
much larger than the diameter σf of the fluid particles [239].

The parameters of the density functional theory described above can be computed for a
Lennard-Jones fluid with pair potential strength εf :

w(r) = 4εf [(σf/r)
12 − (σf/r)

6] . (6.78)

The full potential is then split into the attractive part watt and repulsive part wrep. Within
the Weeks-Chandler-Andersen (WCA) approximation, the latter gives rise to an effective
temperature dependent hard sphere diameter:

d(T ) =

∫ rco

0
dr [1 − exp(−βwrep(r))] , (6.79)

where the cut-off rco ≡ 21/6σf . In terms of the hard sphere diameter we can express the
dimensionless packing fraction ζ ≡ (π/6)d3(T ), which allows us to write the Carnaghan-
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Starling approximation of the hard sphere reference free energy as

fHS(φ, T ) = β−1φ

(

ln(φλ3
T ) − 1 +

4ζ − 3ζ2

(1 − ζ)2

)

, (6.80)

where λT is the thermal de Broglie length. It turns out to be computationally advantageous
to approximate the WCA result for attractive part of the pair potential by the simpler
form [239]:

watt(r) ≈ w̃(r) = −
4w0σ

3
f

π2
(r2 + σ2

f )
−3 , (6.81)

where the prefactor w0 = −(32
√

2/9)πεfσ
3
f . The choice of w0 guarantees that the integrals

of w̃ and the attractive part of the pair potential, watt, become the same.

6.4.1 Interaction of the solid wall with the fluid

The volume occupied by the fluid particles is D over which all integrals are performed. Thus,
the solid phase is manifest only through the presence of the potential term VS whose origin’s
we now look into more carefully. To be able to derive VS we need to introduce a new density
field ρ hich describes the solid phase. In order to homogenize the notation to be used later
on (see Sect. 7.3) let us denote the fluid density field φ ≡ φ1 and the solid ρ ≡ φ2. Quite
generally, we can write the intrinsic part of the free energy as (p. 214, Ref. [229])

F [φ1, φ2] =
1

2

2∑

i,j=1

∫

dx

∫

dx′ φi(x)vAij(x,x
′)φj(x

′) +

∫

dxV (φ(x)) (6.82)

≈
∫

dx

{
1

2

2∑

i,j=1

mij∇φi · ∇φj + Ṽ (φ1, φ2)

}

, (6.83)

where we have performed the gradient expansion of the attractive part vA of the pair poten-
tial and combined the non-gradient terms with the potential V thus generating an effective
potential Ṽ .

As we are interested neither in the variation of the solid density nor its dynamics, we
leave out all terms having gradients in the solid density in the free energy (6.83). Thus, we
obtain something like

F [φ1, φ2] =

∫

dx
1

2
|∇φ1|2 +

∫

dx

∫

dx′ φ1(x)wS(x,x′)φ2(x
′) + . . . . (6.84)

The second term on the right describes the interaction of the fluid and solid particles. As
there is no obvious reference state for both the solid and the fluid, no reference free energy
will be constructed here in contrast to the liquid-gas case. The interaction of the fluid and
solid particles is taken to of the Lennard-Jones type:

wS(r) = 4εS [(σS/r)
12 − (σS/r)

6] . (6.85)

Let us integrate out the solid density field,

∫

dx

∫

dx′ φ1(x)wS(x,x′)φ2(x
′) =

∫

dxφ1(x)VS(x) , (6.86)
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where we have defined VS(x) ≡ ∫
dx′ wS(x,x′)φ2(x

′). If the solid density field is approxi-
mated by a constant average density with infinite extent, φ2(x) ∝ θ(−u′), where u′ is the
normal coordinate of the solid surface, the effective potential VS(x) will not depende on the
coordinates in the plane of the surface. In this case we can approximate VS(x) with the
laterally averaged potential VS(z). In Sect. 7.3 we intoduce a phase-field description of the
model which utilizes a field A, called wall potential. This field is linearily coupled with φ
and therefore it plays a role analogous to the substrate potential VS . As will be described in
more detail below, making A = A(z), where z is the coordinate perpendicular to the wall,
the spatially varying thickness of the wetting layer can also be controlled, in addition to the
contact angle.

6.4.2 Equivalent macroscopic variables for fluid- fluid system

The choice of hydrodynamically important coarse-grained variables is discussed in Sect. 9.5.3.
For static purposes the relevant set of macroscopical fields consists of the the densities of
the fluid components, that is φ1 and φ2. The density field of the solid does not appear
anymore explicitly: its presence is taken into account through the potential VS derived in
the previous section. For mixing components the concentration C ≡ φ1/φ, and the total
density φ ≡ φ1 + φ2 form another pair of variables on which the density functional theory
can be based. A third possibility is to choose the pair {C, φ1}. Let us see what the typical
free energy of a multi-component system looks like when expressed in different variables.
Start with pair {φ1, φ2}. By choosing different fundamental variables and substituting into
Eq. (6.83) we obtain representations of free energy, which superficially may look quite different
from each other. However, when we are approaching the sharp interface limit, the variables
the concentration and total density become less and less independent. In the limit they are
related through

φ(x) = φ1 C(x) + φ2 (1 − C(x)) , (6.87)

where φ1 and φ2 are the constant bulk values of the densities of the components. Thus,
the free energy, whether expressed in variable φ(x) or C(x) looks almost the same, only the
positions of the minima of the potential wells have been shifted and the magnitude of the order
parameter field has become scaled by factor ∆12 = φ1−φ2. In other words, F [φ] = F [2C−1] ≡
F ′[C] for typical choice of phase-field parameters φ1 = +1, and φ2 = −1. Of course, in the
sharp interface limit the concentration plays the role of the characteristic function of the fluid
domains and its derivatives are not well defined right at the border line separating the fluids.
When mixing takes place (and it does, even for so-called immiscible fluids), we can consider
a perturbation theory in variable pair {C, φ1}, which was one of the choices mentioned in the
beginning of this section. The total density φ(x) = φ1C(x) + φ2(1 −C(x)) + r(φ1(x), C(x)),
where

r(φ1(x), C(x)) ≡
[

φ1(x) − φ1C(x)

]

+

[

φ1(x)
1 − C(x)

C(x)
− φ2(1 − C(x))

]

. (6.88)

Clearly, the correction term is negligible everywhere else except in the vicinity of the boundary
of the two fluids. The two-component density functional can be decomposed by writing
F [φ1, φ2] ≡ F ′[φ1, C] = F ′

1[C] + F ′
2[φ1, C], where F ′

2 is the contribution to the total free
energy from regions where the correction terms r is nonvanishing. However, if one wishes
to use the Poisson bracket formalism to be introduced in Sect. 7 to generate the dynamics
of the relevant macrosocopic degrees of freedom including φ1 and C, one should be carefull
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not to throw away the free energy F ′
2 even though it only collects contribution from the

regions where r 6= 0. The Poisson bracket formalism involves functional derivatives of the
free energy with respect to fields φ1 and C which are pointwise quantities. For example, close
to boundary it may hold for some spatial region in the system that δF2/δC(x) > δF1/δC(x),
and therefore the contribution from F2 cannot be left out.

6.5 Internal energy and emergence of temperature

So far we have been predominantly been talking about the mass (number) density when
addressing density functional description of a many-body system. But there are other im-
portant densities, relevant for hydrodynamic characterization, which can and must also be
taken into account especially when modeling dynamics. As will be discussed in more detail in
Chap. 9 and App. D for simple fluids the relevant macrovariables consist of the expectation
values over (trace over dynamic density matrix) of the following quantities:

φ(x, t) ≡
∑

α

mδ(x − xα(t)) . (6.89)

j(x, t) ≡
∑

α

pα(t) δ(x − xα(t)) . (6.90)

E(x, t) ≡
(
∑

α(pα)2/(2m) + (1/2)
∑

α6=βV (xαβ)
)

δ(x − xα(t)) . (6.91)

Instead of n, we use here the generic symbol φ for mass density, momentum density is denoted
by j and internal energy density by E . The microscopic coordinate are xα and the difference
xα − xβ ≡ xαβ . Finally, pα is the microscopic momentum of particle α.

In the next chapter 7 we will be utilizing the generalized free energy F (〈φ〉, 〈j〉, 〈E〉) as
a generator of the non-equilibrium time evolution for so-called phase-field models, which
constitute a powerful way of describing the coarse-grained dynamics of rather complicated
systems. The question we are posing is, how do we find a generalized free energy (or rather,
action) functional as a function of 〈φ〉, 〈j〉 and 〈E〉? As to mass density φ, we have already
given many ways of doing this in this chapter. The most true to the original idea of block-
spin transformation [87] is the cellular coarse-graining method, which can be formalized by
using a delta function constrained trace operation as shown in Sect. 6.3.1. Leaving out the
summation over the cells

∑′
{Nα} from Eq. (6.64) we get

F [〈φ〉] = −kBT lnZ ′[〈φ〉] ; (6.92)

Z ′[〈φ〉] = Trcl

{
∏

x

δ
(

〈φ(x)〉 − ∆−1
∫

∆x

dx′ φ(x′)
)

e−βHN
}

. (6.93)

The logic is thus that only those configurations of atomic positions whose density inside
each of the cells ∆ coincides with the given average density 〈φ(x)〉 contribute to the coarse-
grained free energy F [〈φ〉] (some prefer the word coarse-grained Hamiltonian). It should be
noted that the average 〈φ〉 appearing in Eq. (6.93) must be interpreted as the spatial average
because the given values 〈φ〉 are compared against a spatial cell average in the constraining
delta function.
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Continuing this type of process for other relevant macrovariables leads to physically sen-
sible free energies. For example, using

HN =
∑

α

1

2m
(pα)2 +

1

2

∑

α6=β
V (xαβ) (6.94)

we can find the generalized free energy, which takes into account the average momentum flux
〈j〉:

F [〈φ〉, 〈j〉] = −kBT lnZ ′[〈φ〉, 〈j〉] ; (6.95)

Z ′[〈φ〉, 〈j〉] =

Trcl

{
∏

x

δ
(

〈φ(x)〉 − ∆−1
∫

∆x

dx′ φ(x′)
)

δ
(

〈j(x)〉 − ∆−1
∫

∆x

dx′ j(x′)
)

e−βHN
}

. (6.96)

Using this approach Langer and Turski [240] we able to derive F [〈φ〉, 〈j〉], which we will
be utilizing later on in Chap. 9. However, as they point out, one should be careful with
the size of the cell ∆. Naively one would think that the bigger ∆ becomes the more the
spatial average 〈ρ〉 approaches a smooth function, which can be used as the argument of the
functional free energy, with its coarse-grained derivatives well-behaving on the cell scale xc.
As argued in Ref. [240] the optimal cell size relevant for condensation problem is of the order
of the correlation length. The cell size restriction becomes relevant also when one tries to
apply the delta function restricted trace method to internal energy dependence of the free
energy. In principle we can just add a third delta function into Eq. (6.96). Dropping the
mass and momentum densities for simplicity, we obtain F [〈E〉] = −kBT lnZ ′[〈E〉], and

Z ′[〈E〉] = Trcl

{
∏

x

δ
(

〈E(x)〉 − ∆−1
∫

∆x

dx′ E(x′)
)

e−βHN
}

(6.97)

Clearly, we do not obtain a sensible answer if we let the cell size approach the system size V .
Because

∫

V dx E(x) = Hn it follows for ∆ = V that

Z ′[〈E〉V ] ∝ e−βE , (6.98)

which would mean that the free energy is the same as the internal energy. Of course, there
is another problem in keeping total volume V finite and letting ∆ → V : The coarse-grained
system consists of a single cell located around its central point x, so one cannot talk about
a real density of points x. Therefore, it seems to be necessary to take the thermodynamic
limit V → ∞ first before starting to increase the cell size ∆.

In fact, we will not be needing F [〈E〉] since energy transport will not be one of the
phenomena we have chosen to concentrate on in this work. Let us, however consider methods
that have been suggested in the literature to reveal the form F [〈E〉]. One possibility is to use
quasi-thermodynamic arguments and represent the internal energy density in temrs of other
thermodynamic variables such as temperature and density. For example, to linear order in
small deviations from equilibrium we can relate the local temperature δT (x), energy density
δE(x) and the mass density δφ(x) through

δT (x) =

(
∂T

∂U

)

n
δE(x) +

(
∂T

∂n

)

U
δφ(x) , (6.99)
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where normal chain rule has been used. Moreover, the average space independent values
of the macrovariables at linearization point are denoted as n for density and U for internal
energy. Based on fluctuation analysis, the coarse-grained free energy can near the expansion
point be written as [241]

F [〈δT (x)〉, 〈δφ(x)〉] =

∫

dx

(
CV
2T

〈δT (x)〉2 +
1

2n2KT
〈δφ(x)〉2

)

, (6.100)

where we have assumed that the microscopic realization of the fluctuation can be replaced
with its average value. Substitution of δT (x) from Eq. (6.99) then produces the lowest order
approximation to the free energy density expressed in terms of the local internal energy den-
sity. In order to be able to describe the whole phase transition region and not just the vicinity
of one equilibrium state some authors have drawn the physically sensible conclusion that the
well-structure of the free energy should be present in the internal energy representation also,
not just in the normal mass density. For example, in nucleation studies of relativistic particles
the free energy, when assumed to be just a function of 〈E〉, becomes [242, 243]

F [〈E〉] =

∫

dx
K

2
|∇〈E〉|2 + V (〈E〉) , (6.101)

where the potential V can taken to be of the usual double well form.
If we do not want to get confused by the complicated interactions between cells or we do

not trust the quasi-thermodynamic arguements presented above, perhaps the most convinient
way of obtaining the free energy as a functional of expectation values of any desired set of
macroscopic observables is to use the functional Legendre transformation [49]. In this formal-
ism temperature appears naturally as the space dependent ’source’ field whose elimination
in exchange for 〈E(x)〉 appears naturally. To compute the effective action (free energy) for
the mass, momentum and internal energy variables we first define the generating functional
(in the quantum language)

e−W [JE ,Jφ,Jj ] ≡ Z[JE , Jφ,Jj ] = Tr
{

e−JEĤN−Jφn̂−Jj ·̂j
}

, (6.102)

whereintegrals are understood, e.g. Jφn̂ =
∫
dx Jφ(x)n̂(x). The operators are defined as

n̂ = ψ†(x)ψ(x), ĵ = (h̄/(2mı)) [ψ†(x)∇ψ(x) − (∇ψ†(x))ψ(x)] and ĤN is given by Eq. (6.2).
In case one is dealing with a classical problem, one can always transform it into the form
Eq. (6.102) by using the methods explained in Sect. 6.1.3. The effective action then reads

F [〈ĤN 〉, 〈n̂〉, 〈̂j〉] = (6.103)

W [JE , Jφ,Jj ] −
∫

dx
(

JE (x) 〈ĤN (x)〉 + Jφ(x) 〈n̂(x)〉 + Jj(x) · 〈̂j(x)〉
)

,

where the expectation values are averages over the relevant quantum ensemble e−W . There
are some interesting relationships that these formula have some related formulations of ther-
modynamics of non-equilibrium systems. First, we point out the similarity of our generating
functional (6.102) to the density matrix of non-homogeneous systems proposed by Kadanoff
and Martin [244] (for a related work, see Ref. [245]). Their idea was to perturb the grand
canonical density matrix ρG by adding spatially varying components to intensive variables
(Lagrange’s multipliers). For a system moving with average velocity v,

ρG = Z−1
G exp(−βHv) ≡ Z−1

G exp
([

H0 − µN + (1/2)mv2N −
∫

dx j(x) · v
])

(6.104)
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where ZG = Trcl exp(−βHv). Note that there is no x-dependence in v to begin with, which
means that ρG is a valid description of thermodynamics. Adding small perturabations δµ(x),
δT (x) and δv(x) to the chemical potential, velocity and temperature, we can to first order
in fluctuations still write the perturbed density matrix in equilibrium form:

ρ′ = (Z ′
G)−1 exp(−βH ′

v) , (6.105)

where Z ′
G = Trcl exp(−βH ′

v) and H ′
V ≡ Hv + δHv . The first order perturbation correction

reads

δHv ≡ −
∫

dx

(
δT (x)

T
[E(x) − µn(x)] + δµ(x)n(x) + δv(x) · j(x)

)

, (6.106)

where we have used the densities
∫
dx E(x) + µn(x) = H0 + µN , etc. Let us also note

that we do not have to separate out the temperature dependence explicitly, but we could
define a new set of intensive variables as β, βµ ≡ ν and so on. Adding the small variations
β + δβ(x), ν + δν(x) and forming the perturbed density matrix would lead to the same
result (6.106), which is completely analogous to our usage of external fields in Eq. (6.102).
Using ρ′G one can easily construct the linear responses for small perturbations and study the
emerging hydrodynamics (when the fields E , n and j are made t-dependent as well as being
x-dependent in terms of correlation functions. In effect, this approach becomes very close to
the information theoretical construction of the density matrix presented in Ref. [188]:

ρ̂(t) ∝ exp
(

− βĤ +

∫

dx

∫ t

−∞
dt′λ(x′, t′) Ê(x′, t′)

)

, (6.107)

where λ(x′, t′) is the Lagrange’s multiplier equivalent to our source field JE . Differences of
these approches from our generating functional formalism are discussed in Chap. 2.

Finally, we want to point out the difference with the ensemble average constraint used
in the Legendre transformation techinque and the spatial average constraint used in the
restricted trace method (cellular coarse-graining) For concreteness, we momentarily consider
the Ising model of interating spins instead of point particles. For Ising model, the coarse-
grained free energy corresponding to Eq. (6.93) reads

e−βFs(M,T ) ≡
∑

{si}
δ

(

M −N−1
N∑

j=1

sj

)

e−βHI , (6.108)

where the nearest neighbor interactions fix HI =
∑

i6=j sisj and N is the total number of
spins. As discussed in Sect. A, there is another way to obtain the coarse-grained free energy,
which can be formalized using the functional Legendre transformation and discussed more
thoroughly in Sect. A. By introducing a coupling of the spins to external magnetic field h
one obtains

eβG(h,T ) =
∑

{si}
e−βHI+βh

∑N

i=1
si (6.109)

If we can associate (as we usually do) Fs with the thermodynamic Helmholtz free energy F
and M as the magnetization, we can switch between the representations via the Legendre
transformation G = F −hM . To be able to use this type of identification, we have made the
crucial assumption that the ensemble average

1

βN

∂g(h, T )

∂h
= 〈N−1

N∑

i=1

si〉 = −M(h, t) (6.110)
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is the same as the spatial average, which constrained the trace in Eq. (6.108). This assumption
is valid in self-averaging systems, but in general we know that not all systems are like that.
Therefore, one should be careful in relating the free energy functionals which have been
obtained by spatial cell averaging and functional Legendre methods.
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Chapter 7

Phase-field models and density

functionals

In many cases the construction of the free energy functional using the currently existing
coarse-graining methods can be so laborous that it makes more sense to postulate the form
of F using experimentally known phase diagram and symmetries of the system. The free
energy (or coarse-grained Hamiltonian) can then be used as the generator of the relaxational
dynamics towards thermodynamic equilibrium state. Historically one calls the class this type
of modeling attempts Time-Dependent-Ginzburg-Landau models, models of critical dynamics
or phase-field modeling [246]. There exists a number of ways to determine the form of the
time evolution of the coarse-grained variables. The models of critical dynamics [126] can be
derived at least by projection operator [14] formalism, mode-coupling techniques [247] and
correlation functions [244] approach but none of these methods makes the free energy such
a central concept as the phase-field technique. One of the major goals of this chapter is
to try to convince the reader that phase-field models can be derived from microscopics in
pratice, too. For this, one needs too things. First, we need to get the form of the equation of
motion. This is given to us by the nonequilibrium generating functional method as detailed
in Sect. 7.1. Second, we need an explicit representation of the free energy functional in the
relevant field variables. This can be obtained either phenomenologically (Sect. 7.2), or from
density functional theory (Sect. 7.3).

7.1 Connections with the general formalism

We will first show how the form of the stochastic evolution equation of phase-field formalism
rises from the general principles in Sect. 7.1.1. It turns out that postulating a simple set of
rules, which govern the evolution and relaxation to thermal equilibrium at the classical level,
result in the same equation as shown in Sect. 7.1.2. Even if the reader has doubts about the
validity of going from quantum world to classical as presented above, it is always possible
to resort solely to the postulates of Sect. 7.1.2 to generate the equation of motion with no
recourse to quantum mechanics.

143
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7.1.1 Form of the evolution equation

Let us remind ourselves on the general principles presented in Chap. 2. There we showed
how the stationarity condition of the effective action A generates the equation of motion of
relevant macrovariable fields 〈ψµ〉:

δA[〈ψ〉]
δ〈ψµ〉(x, t)

= 0 , (7.1)

where we have set external sources to zero. Separating out the time derivative terms of the
action we can write the previous equation as

∂t〈ψµ〉 + Ξ̂µν
δF̃ [〈ψ〉]

δ〈ψν〉(x, t)
= 0 . (7.2)

This equation of motion is exact, in principle. Our first approximation assumes that in the
classical limit, where h̄ becomes small compared to the value of the action, classical Poisson
brackets will replace any quantum commutators appearing in the streaming (non-dissipative)
part of Eq. (7.2). Thus, as we have argued in Sect. 3.1.2, the classical approximation to the
full evolution equation (7.2) should for conserved multicomponent field ψ look like

∂t〈ψµ〉 = −
∫

dx′
∫

dt′
{〈ψµ〉(x, t), 〈ψν 〉(x′, t′)

} δF̃ [〈ψ〉]
δ〈ψν〉(x, t)

− Γ̂µν
δF̃ [〈ψ〉]

δ〈ψν〉(x, t)
, (7.3)

Due to the extremely high degree of nonlinearity of F̃ we expect that the completely de-
terministic dynamic system described by Eq. (7.2) may relaxe to a steady state even if the
underlying microscopic many-body system was isolated (Hamiltonian). Periodic motion is
also possible but not the focus here. If the underlying microscopic model is an open system,
dissipation will result and steady-state relaxation is again expected. In case the steady-state
is Gibbsian, we can approximate the approach with a stochastic evolution equation

∂tψµ = −
∫

dx′
∫

dt′
{
ψµ(x, t), ψν(x

′, t′)
} δF [ψ]

δψν(x′, t′)
− Γ̂µν

δF [ψ]

δψν(x, t)
+ ηµ . (7.4)

The expectation values from the field 〈ψµ〉 have been dropped since the introduction of the
noise field ηµ means that some degrees of freedom have been left unaveraged. The properties
of the noise η can be in principle obtained from Eq, (7.2). In practice this means that we
have to perturbatively expand F̃ around the chosen steady-state. Sometimes this works, but
in general obtaining the noise requires the use of some non-perturbative tools. However,
when relaxation towards thermodynamic Gibbs equilibrium is concerned, we know that the
properties of η can be fixed at Gaussian level from the known value of the dissipative coefficient
(operator) Γ̂ through the fluctuation-dissipation theorem, which must hold at equilibrium.
Instead of trying to derive F from first principles by first computing F̃ , we can utilize less
heavier techniques, which lead to fully satisfactory results as will be shown in this chapter.

There are many ways of obtaining the coarse-grained equations of motion for the relevant
set of macro-observables. Sect. 7.1.2 first presents the general framework called Poisson
bracket formalism, which yields a set of stochastic evolution equations reproducing standard
thermodynamics in the limit of observation time going to infinity. in Sect. 7.3 it will be
shown how the key ingredient of the formalism, the free energy functional F , can be obtained
from classical density functional theory of fluids, and how its appearance can be simplified for
further analytic and numerical work. We also point out that similar equations of motion for
the relevant variables are arrived at by employing Mori type of projection operator methods
either to the time dependent observables directly [27] or to the distribution functions [248].
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7.1.2 Cookery book recipe for Poisson bracket formalism

There are several ingredients needed for coarse-graining the macroscopic phase-field model
out of microscopic many-particle description. Below we will freely quote the most important
features of the state-of-the-art method [5, 126] for construction of phase-field models.

• Need to assume a Gibbsian equilibrium distribution that the microscopic many-body
system, which we wish to coarse-grain, will relax to in the limit t→ ∞.

lim
t→∞

P (t) → Peq ∝ e−βHN , (7.5)

where HN is the microscopic Hamiltonian of the N -particle system.

• There exists a coarse-grained probability distribution for macroscopically relevant de-
grees of freedom, which is obtained by tracing out (Tr’) fast degrees of freedom of the
microscopic distribution:

Tr′ e−βHN ∼ e−βF [ψ] . (7.6)

Hamiltonian HN has been replaced by free energy F and the microscopic degrees of
freedom by a macroscopic (phase) field ψ = {ψµ}.

• One assumes that there is a macroscopic Poisson bracket relation giving the time evo-
lution of any macrovariable analogous to the microscopic Poisson bracket relation

∂tAµ = {HN , Aµ} −→ ∂tψµ = {F,ψµ} +Rµ (7.7)

Above, operators Aµ are just some functions of the microscopic coordinate and mo-
menta. The form of the terms in Rµ are fixed by the final requirement below.

• The probability distribution of the macro system in equilibrium should be e−βF [ψ].
This gives rise to stochastic and dissipative terms in the equation of motion for the
components ψµ of phase field (order parameter field). Typically,

Rµ = −Γ̂µν
δF

δψν
+ ηµ (7.8)

Comparing Eq. (7.7) and Eq. (7.8) with Eq. (7.4) shows that plausible but ad-hoc
assumptions about the phase-field dynamics generate an equation of motion, which
approximates the complicated true dynamics of Eq. (7.3) with the aid of a stochastic
process.

Above the underlying microscopic Hamiltonian mechanics was manifest in two ways. First,
the macrovariable equilibrium distribution is of the form e−βF , which is convinient for calcu-
lations. Second, the way the macroscopic Poisson brackets are obtained from the microscopic
ones assumes the existence of the microscopic Hamiltonian equations of motion. However, if
our starting point is not a microscopic Hamiltonian system but an intermediate mesoscopic
scale description having stochastic elements due to the effect of coarse-graining, the effec-
tive description on an even higher level of coarse-graining given in terms of the Langevin
equation (7.7) still makes sense. The methods, have to be changed, though, since the Pois-
son bracket formalism, which we employ here, assumes the existence of microscopic Poisson
brackets. For example, one can try to come up with macroscopic Poisson bracket relations
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based on intuition, or one can derive the terms of the Langeving equation by various pro-
jection operator methods [31]. The Langevin of Eq. (7.7), especially the structure of the
Poisson bracket terms {F,ψµ} will be a subject of further study in Chap. 9. In particular, in
App. D.4 we show how the form of the macroscopic Langevin equation becomes fixed through
the requirement of relaxation into Gibb’s equilibrium.

7.2 Construction of free energy from phase diagram

The simplest and in many cases the most efficient way of obtaining the free energy F [ψ]
introduced in Eq. (7.6) is to utilize the phase diagram and any other experimental information
one may have on statics or dynamics of the system. For concreteness sake, let us build
up the free energy for our three phase system, which we will use later on to study the
wetting of different solid surfaces structures. For simplicity, we will concentrate on a single
conserved, macroscopic density field ψµ = φ, which we call a phase-field. Different phases are
distinguished by the different value the phase field takes in each of the bulk phases as will
become clear soon.

So, how to derive the free energy functional, which supports the coexistence of three
different phases (solid, liquid, gas)? Since thermodynamics tells us that systems seek for
minimum of free energy, we expect F to have (at least) three wells corresponding to each of
the stable equilibrium bulk phases. Hence, in the first approximation we write a Landau [32]
type of attempt free energy

F =

∫

dx 1
2 |∇φ|2 + V (φ) , (7.9)

where the function of the first term is to punish for rapid spatial variations of the phase-field
φ. The emergence of the gradient term can be seen quite naturally from the experimental
scattering data. Intensity of the reflected radiation I is proportional to the structure factor,
which in the non-critical region is typically seen to have the following k-dependence [249]:

I ∝ S(k) ∼ 1

m2 + k2
, (7.10)

where m2 is a parameter that can be related to the compressibility of the system. On the
other hand, S(k) = 〈φ(k)φ(−k)〉. The probability weight exp(−βF ) over which the thermal
average is calculated must have a free energy of the form

F [φ] =

∫

dk φ(−k)(m2 + k2)φ(k) =

∫

dx |∇φ(x)|2 +m2φ2(x) (7.11)

to the lowest order in powers of φ. The mass term m2φ2 can be adsorbed into the potential
V (φ) and the remaining contribution is just the gradient term shown in Eq. (7.9). As we
will see in the next section, the density functional theory, which gives a more precise form
for the free energy, generates a term like |∇φ|2 only in the lowest order approximation. The
improved form of the free quadratic interaction term of the free energy contains a non-local
operator (Sect. 7.4), whose local approximation leads to the square gradient term.

In addition to the square gradient term, the information of the phase diagram has been
encoded in the well structure of the potential V (φ), too. In case we would like to model a
system (like water) in its triple point, we could write

V (φ) = aφ2 − bφ4 + cφ6 , (7.12)
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where the constants a, b and c are all positive. Denoting the minima of V (φ) with φi
(i = a, b, c), three phase coexistence is guaranteed if V (φa) = V (φb) = V (φc). It turns out,
however, that a free energy with potential V can only support a complete wetting regime,
where the contact angle θ = 0 by definition. In other words, the stable equilibrium situation
towards which the system develops consists of a layer of water in between ice and vapor. We
would like to be able to study partial wetting conditions where the contact angle can be freely
adjusted. Moreover, we would like to be able to model a system, where the solid phase is not
made up of the same type of molecules as the liquid and the gas. These two requirements lead
to the introduction of a new thermodynamic degree of freedom, which we call ρS . Increasing
the number of thermodynamic variables is the simplest construction which guarantees the
ability to model partial wetting situation [231, 250].

The function of ρS is to act as an indicator field or characteristic function of the solid
phase: when ρS(x) takes a certain value, say +1 in scaled units, then the point x belongs
to the fluid phase. When ρS(x) takes another value, say −1, the point x is situated within
the solid phase. As we will see in the next section, by shifting and scaling ρS suitably, we
can make its physical interpretation as the density of the solid more apparent. Because the
fluid phase hosts both the liquid and the gas phase, the potential needs to have a double
well structure there. On the other hand, inside the solid phase the phase-field must have a
single well structure as there is just one phase there. The simplest potential V (φ, ρS), which
satisfies these requirements is

V (φ, ρS) = (1/2) (1 + ρS)(φ2 − 1)2 +Ks(1/2) (1 − ρS)(φ−A)2 , (7.13)

where the meaning of the constant Ks will be discussed in Sect. 7.3. Clearly, when ρS = +1,
onle the first term on the right is non-zero and the equilibrium values (densities) of the fluid
are at φ = ±1, corresponding to bulk values of the liquid and gas. When ρS = −1, only
the last term on the right is non-zero fixing the equilibrium value of φ = A inside the solid
phase. Of course, in reality, the fluid cannot go into the solid domain, but the phase-field
needs to be defined everywhere as we do not keep track on the spatial location of the phase
boundaries at the level of bulk fields. The meaning of A is contemplated in the next section.
In Sect. 8.2.2 we will see that field A can be used to fix the values of the surface tensions
and the equilibrium contact angles in a three phase system. Thus, the phase-field free energy
becomes

F =

∫

dV 1
2 |∇φ|2 + V (φ, ρS) , (7.14)

with V (φ, ρS) given by Eq. (7.13). In Sect. 7.3 we show how this particular form of F can be
justified from density functional perspective.

As a general rule of thumb of construction of Landau free energies (phase-field free en-
ergies), one should use minimal couplings between fields and respect the symmetries of the
system, which are known either microscopically or experimentally. For complicated enough
systems this type of semi-phenomenological approach might very well be the only sensible
option in practice: Direct construction of density functional theory may prove to be too diffi-
cult. The disadvantage of the methodology described above is that the parameters of the free
energy are not easily related to more microscopic parameters. Also, the symmetry principle
guiding the form of the interaction terms in the free energy (couplings, powers of fields etc.)
may not be strong enough to fix the form of the terms in the actual evolution equation of the
field even though many universal (scaling related) phenomena are not that sensitive to the
exact form of F . There are methods to fix the form of the coupling terms approximatively
in the evolution equation. We will return to this subject again in Chap. 9.
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7.3 Relating phase-field model to density functionals

As the microscopic starting point we consider a Hamiltonian many-body system with Lennard-
Jones type of interaction potential between the fluid particles. To solve the static problem, i.e.
the determination of the free energy functional F we can utilize various techniques discussed
in Chap. 6. For example, we could try to calculate

Tr’e−βHN = e−βΩ[φ] ∝ (7.15)
∞∑

N=0

1

h3NN !

∫

dr1 . . . dr1

∫

dp1 . . . dpN δ
(

φ(r) − 〈φ̂(r)〉b
)

e−β(HN−µN) . (7.16)

Classical trace in the previous formula is equivalent to integration over all coordinates and
momenta, h is the Planck’s constant. The ’cell’ average of the microscopic exprssion of the
total density, φ̂ ≡∑N

n=1 δ(r− ri), over a cell of linear size b is denoted by 〈φ̂〉b. For practical
purposes it is more convinient to construct Ω using some other technique than doing the
multiple integrals in Eq. (7.16). One possibility is to use classical density functional theory
[228] a brief account of which is given in Sect. 6.1.2. The generalized grand canonical free
energy density functional ΩD for a fluid interacting with a solid wall is given by

ΩD[φ] ≡ 1

2

∫

D
dr

∫

D
dr′ w̃(|r − r′|)φ(r)φ(r′) +

∫

D
dr fHS(φ(r), T ) +

∫

D
dr [VS(r) − µ0]φ(r) ,

(7.17)
where φ(r) is the inhomogeneous density of the fluid. The solid walls in the present description
only appear through the domain restriction D of the volume integration: the support is non-
zero only in the region occupied by the fluid. The temperature of the fluid is T and the
reference chemical potential is µ0. Depending on the magnitude of µ0 we can have coexistence
of liquid and gas, or we can make either one of the two phases metastable. The free energy
density of hard sphere reference fluid is denoted by fHS. It contains the information on
repulsive interactions in the system. The attractive interparticle potential between fluid
atoms is w̃. Finally, VS is the substrate potential. Note that we use the term ’generalized’
grand canonical free energy for ΩD, because it is only by minimizing ΩD with respect to φ
that yields the thermodynamic grand canonical free energy of the fluid at fixed temperature
T and chemical potential µ0.

The functional ΩD can be cast into a local form by performing a gradient expansion for
the slowly varying density field φ. The result is

1

2

∫

D
dr

∫

D
dr′ w̃(|r − r′|)φ(r)φ(r′) ≈ 1

2

∫

D
dr %0(φu)|∇φ|2 + a′(φu)φ

2(r) + . . . , (7.18)

where φu is the average uniform value of the density field around which we are expanding
and a′(φu) is a constant. As a matter of fact, Eq. (7.18) is the low density limit of a more
general gradient expansion which is discussed in Sect. 7.4. The mass matrix %0(φu) can be
expressed in terms of direct pair correlation function c(2) (which is different from ordinary
correlation function) as

%0(φu) =
1

6
kT

∫

dr r2c(2)(r, φu) . (7.19)

When combined with the quadratic terms of the expansion of w̃, the reference free energy
density fHS gives rise to the famous double well potential which can be approximated as
%2φ

2 + %4φ
4. In order to be able to model a two-phase coexistence with the aid of local
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free energy density one needs to have non-convex potential (see also Sect. A). If non-local
quadratic interaction is kept, then the potential part consisting of fHS is convex even for
two-phase coexistence. The local free energy density with square-gradient and non-convex
potential part will not be able to model the detailed structure of wetting film in the manner
of the non-local one, which gives a very reasonable description of both partial and complete
wetting films [239, 251]. Of course, the existence of the substrate potential is also crucial for
the detailed description of the film. We will show below that the effect of VS can be generated
by other means, too, if only the partial wetting regime is to be described (with finite contact
angles) and no attention is paid to the film structure.

Since the solid phase does not appear in Eq. (7.17) except through the definition of the
integration domain, we can define a new field ρS , which allows us to extend the integration
over the whole space, including the solid domain. Let ρS be the indicator field (scaled density
field) of the solid phase. In other words, ρS = 1 inside the solid phase (r /∈ D) and ρS = 0 in
the fluid phase (r ∈ D). We can then rewrite Eq. (7.17) as

ΩD[φ] ≈ Ω̃[φ, ρS ] , (7.20)

where the approximative equality follows from the use of the gradient expansion of Eq. (7.18),
which enables us to write the new functional

Ω̃[φ, ρS ] ≡ 1

2

∫

dr (1 − ρS) %0(φu)|∇φ|2 +

∫

dr (1 − ρS) f̃(φ) +

∫

dr (1 − ρS) [VS(r) − µ0]φ .

(7.21)
The effective double well potential is denoted by f̃ . Because of the factors (1 − ρS) the
integrands are zero when we go outside of the original integration domain D. Therefore, in
principle, we do not have to worry about the indefinite values of the φ field inside the solid
domain as far as numerics goes. However, since the physical interpretation of the density
functional theory requires that the values of both fields φ and ρS should be unambigiously
given at all spatial points according to the physical values of the density there, we should
assign the value φ(r) = 0 to the points r /∈ D, because the fluid density vanishes inside the
solid. To enforce the vanishing fluid density inside the solid domain, we define

Ω[φ, ρS ] ≡ Ω̃[φ, ρS ] +

∫

dr ρSφ
2 . (7.22)

The second term on the right is zero in the fluid phase, since ρS = 0 there. In the solid phase,
the free energy functional Ω[φ, ρS ] clearly has a single parabolic well with minimum at φ = 0.
Thus, if we replace φ by its minimum value (which should be realized in the equilibrium) and
substitute it into

∫
dr ρSφ

2, we notice that the thermodynamics should be unaffected as we
have merely added a constant (zero) to the free energy.

Next, we argue that we can simplify the appearance of the functional Ω further by leaving
out the term

∫
dr (1 − ρS)(VS − µ0)φ by allowing the field φ be replaced with a new field φ̃,

which takes non-zero values even inside the solid phase. The new field φ̃ cannot be interpreted
as a density field any more. Rather, it becomes a phase-field, which takes a different value
inside each of the phases (solid/liquid/gas). We define

φ̃(r) =

{

φ(r) , for r ∈ D ;
A(r) , for r /∈ D ; .

(7.23)

The new field A is constant in time but can possibly depend on spatial location within its
domain. The field A can be interpreted as a ’wall potential’ that gives rise to spatially
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dependent wetting properties of the solid walls. Its action is equivalent to the potential of
the solid wall VS , which makes partial wetting and metastable coexistance possible (VS can
be taken to contain the constant off-set −µ0). Hence, we obtain

Ω[φ, ρS ]
.
= ΩA[φ̃, ρS ] ≡

∫

dr
{

(1 − ρS)
[
m
2 |∇φ̃ |2 + f̃(φ̃)

]

+ ρS(φ̃−A)2
}

, (7.24)

where the relational symbol
.
= says that the two expressions of free energy have the same

physical content: only the way the interaction between the fluid and solid phases is controlled
has been changed, not the effect itself. According to Eq. (7.23), the field φ̃ is identical to
φ in the fluid phases and takes the exact value of A(r) in the solid phase. With definition
of Eq. (7.23), it is exactly true that

∫
dr ρSφ

2 =
∫
dr ρS(φ̃ − A)2. Even if we drop the

requirement that φ̃ = A in the solid phase, it still holds approximatively that
∫
dr ρSφ

2 ≈
∫
dr ρS(φ̃−A)2. This is because the relaxational dynamics to be introduced below, drives the

phase-field configuration towards such a state where φ̃ ≈ A. In particular, well within the
solid phase we expect the equality to hold. Small violations appear close to phase boundaries
but their magnitude can be controlled by introducing a ’stiffness’ parameter Ks such that
instead of the free energy contribution

∫
dr ρS(φ̃ − A)2 we write (for unconstrained field φ̃)

∫
drKsρS(φ̃−A)2. When Ks is large enough, the approximation φ̃ ≈ A becomes better and

better even under non-equilibrium conditions, because the dynamics quickly relaxes any non-
equilibrium configuration of the phase-field to its equilibrium value A, which is the minimum
of the potential (φ̃−A)2. As a conclusion, we argue that the term

∫
drKsρS(φ̃−A)2 mimics

the effect of the substrate potential on scales where VS(r) ≈ 0. It is important to notice that
if we extended the domain of the field A into the fluid domain, spatially varying thickness of
the fluid film under complete wetting conditions could be modeled as well. With the current
model we can only control only the contact angle. For more discussion on the role of the
substrate potential consult Sect. 6.4.

Finally, we can define a shifted density field in such away that instead of the characteristic
values of ρS being zero and one, we make them plus and minus one. The full free energy is
now of the form

F =

∫

d3r
[

(m/2)|∇φ|2 + (1/2)(1 + ρS)f̃(φ) + (Ks/2)(1 − ρS)(φ−A)2
]

. (7.25)

Thus, we have ended up with the same expression as in Eq. (7.14), which obtained using the
experimentally known phase diagram and structure factor! In the expression above we have
allowed the gradients ∇φ̃ to vary in all space, so the factor (1 − ρS) of the gradient term
from Eq. (7.21) has been removed. The only effect, which is easy to estimate analytically,
of the removal is that the magnitudes of the surface tensions are changed. This free energy
will be utilized in Chap. 8 to derive explicit equations of motion for phase boundaries present
under phase coexistence. Before doing that, we apply the cook book recipe presented in the
beginning of the chapter to fix the dynamics. The solid density field ρS needs no equation
of motion since we treat it as inert spectator phase in the current approximation. When
momentum conservation is left out of the description of the problem, the Poisson brackets
producing reactive couplings vanish completely in Eq. (7.7). The remaing term R has to have
the structure

R = M∇2 δF

δφ
+ η , (7.26)

where η is stochastic conserved noise with correlations

〈η(x, t)η(x′, t′)〉 = T M∇2δ(x− x′) δ(t− t′) . (7.27)
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The presence of the Laplacians (∇2) is dictated by the fact that the fluid mass is conserved.
The equation of motion for φ is

∂tφ = R , (7.28)

where the form of R guarantees relaxation to the equilibrium probability density e−βF . Ne-
glecting the noise means that we are cutting off the connection to the equilibriating heat bath.
Since the fluctuations can be added later on, we wil first study the properties the model with
no thermal noise and with no convective hydrodynamic modes. The generalization of the
model to cover these important features is presented in Ch. (9)

7.4 Remarks on density correlations and gradient expansion

Let us try to see fit together the language of the density functional theory with the phase-field
formalism by studying the two-point density correlation function. First, we note that the free
energy, which the phase-field formalism utilizes is related to the grand potential Ω by the
Legendre transformation with constant chemical potential µ:

F = Ω − µN , (7.29)

where N =
∫
dx ρ(x). Therefore, by leaving out the contribution of constant chemical po-

tential we can use F instead of Ω. The Legendre trasformation that the classical density
functional theory utilizes is with respect to external one-body potential Vext(x), which can
be taken to be part of the total chemical potential. However, traditionally one separates these
contributions and calls the constant part of µ the chemical potential and the varying part
Vext(x) external field (potential). To make contact with the density functional literature, we
divide

FV [φ] = F [φ] +

∫

dxVext(x)φ(x) , (7.30)

where FV can be seen as the functional Legendre transformation of F . To be more exact,
we should write FV [Vext] = F [φ]+

∫
dxVext(x)φ(x) to make it explicity that the variable Vext

is replaced by the expectation value φ = 〈φ̂〉 the brackets denoting average over equilibrium
Gibb’s distribution.

In Sect. 7.2 we showed hot the structure function gives rise to the gradient term in the
free energy. Let us see now what kind of density correlation function (structure factor) is
generated if we use the non-local density functional F derived in Sect. 6.1.2 as the phase-field
free energy.

F [φ] = F 0 +
1

2

∫ 1

0
dα

∫

dx1

∫

dx2 ρ
(2)
α (x1,x2)U1(r12) , (7.31)

where the interaction potential of the system U has been divided into the reference potential
U0 residing in the reference free energy F 0 and the two-body interaction U1 as explained in
Sect. 6.1.2. To compute the two-body function in the phase-field representation we make use
of the following results from density funtional theory:

δΩ

δU(x12)
=

δF

δU(x12)
=

1

2
ρ(2)(x1,x2) . (7.32)

As shown in [229] (p. 158), these relations hold exactly. Treating the thermodynamic free
energy FT as a functional of the interaction potential, the phase-field formalism tells us that

δFT
δU(x12)

=
δ

δU(x12)
(−β−1) lnZ ≈ − β

Z

δ

δU(x12)

∫

Dφ e−βF (7.33)
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=
1

Z

∫

Dφ δF

δU(x12)
e−βF ≈ 1

2
ρ(2)(x1,x2)

1

Z

∫

Dφ e−βF =
1

2
ρ(2)(x1,x2) . (7.34)

So, Eq. (7.32) is confirmed as far as we can consider replacement of F by FT as a reasonable
approximation. However, it would be inconsistent to write δF/δU(x12) ∝ 〈φ(x1)φ(x2)〉
because the functional F is not of the form

∫
dx′∫ dx′ φ(x)U(x,x′)φ(x′) as ρ(2) is a non-linear

functional of φ. In the low density approximation the quadratic form appears, but even then,
it is not the full interaction potential U , which is sandwidched between φ’s but U1 = U −U0.

To extract the quadratic approximation of F we Taylor expand it around a constant
homogeneous density φu and consider fluctuations only to second order in ∆φ(x) ≡ φ(x) −
φu � φu. The free energy becomes ( [231], p.99)

F [φ] ≈ F [φu] +
1

2
kBT

∫

dx1

∫

dx2 ∆φ(x1)

(
δ(x1 − x2)

φu
− c(|x1 − x2|, φu)

)

∆φ(x2) , (7.35)

where c is the direct correlation function of the system. The direct correlation function
(minus the delta function) is related to the inverse of the pair correlation function as we will
see soon. In the Fourier space

F [φ] ≈ F [φu] +
1

2
kBT

∫

dq ∆φ(q)

(
1

φu
− c(q, φu)

)

∆φ(−q) . (7.36)

Direct computation yields

G(k,k′) = 〈∆φ(k)∆φ(k′)〉 =

(
1

φu
− c(q, φu)

)−1

= χ(k)/β ∝ S(k) , (7.37)

where χ(k) is the static density response function and the last relation follows from the
definition of the structure factor S. A more cumbersome way of seeing this is to operate in
real space. We define a matrix

KS(x,x′) ≡ δ(x − x′)
φu

− c(|x − x′|, φu) (7.38)

The path integration
∫Dφφ(x)φ(x′) exp(−βF ) = K−1

S (x,x′) = G(x,x′) gives the inverse

kernel. It should be kept in mind that K−1
S (x1,x2) 6= 1/G(x1,x2) but

∫

dx3K
−1
S (x1,x3)G(x3,x2) = δ(x1 − x2) . (7.39)

Strictly speaking, KS is determined as a function of a space dependent equilibrium density
φ0(x) as shown in Ref. [228]. Correspondingly, the correlation function is also defined as
G = 〈(φ(x)−φ0(x))(φ(x)−φ0(x))〉 and c(k, φu) is replaced with c(2)(k, φ0). We have simply
evaluated the functional Taylor series expansion of F [φ] around the point φu = const.

We can continue simplifying the non-local functional (7.35) further. Usually, the direct
correlation function of a uniform fluid is short-ranged [231]. Hence, we can write

∆φ(x2) ≈ ∆φ(x1) + (x12 · ∇)∆φ(x1) + 1
2(x12 · ∇)2∆φ(x1) + . . . . (7.40)

Expansions utilizing of derivatives of density are realistic only in situations where the spatial
variation of the density φ is slow over atomic distances, e.g. close to spinoidal (p. 15,
Ref. [233]). However, the full non-local form of the quadratic interaction term should be
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used when the inhomogeneities are steeply varying [252]. By choosing the order-parameters
cleverly (Fourier coefficients of the density profile instead of densities) even the nucleation
of crystal out of the melt has been considered [253] using square-gradient approximation.
Substitution of the expansion (7.40) into Eq. (7.35) yields [231, 228]

F [φ] =

∫

dx 1
2%0(φu)|∇φ(x)|2 + f0(φ(x)) + . . . . (7.41)

where the prefactor function %0(φu) = (kbT/6)
∫
dx c(r, φu). Moreover, it has been assumed

that we can replace the argument φu of the reference free energy density f 0 of the homoge-
neous fluid by φ(x).

The important physics can be read off from the lowest order terms of the expansion. The
density and temperature dependent value of %0 affects the surface tension of the system as
well as on the bulk correlation length especially in the critical region. Moreover, the prefactor
function of the quadratic term φ2(x) is

%2 ≡ −kBT
(

ca(φu) −
1

φu

)

, (7.42)

where ca(φu) is the k-independent term of the expansion c(k, φu) ≈ ca(φu) + cb(φu)k
2. The

fluid is stable against fluctuations whose wavevectors satisfy %2 > 0. Spinodal decomposition
takes place in the negative compressibility region %2 < 0. Of course, there are higher order
terms which provide a cut-off for unstable modes.
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Chapter 8

Phase boundary dynamics in

liquid-gas-solid system

Having described the coarse-graining formalism in practice for macroscopic quantum phenom-
ena, we are now ready to move onto another application, which has to do with the dynamics
of classical fluids in contact with solid phase. Our goal is to model both the bulk and inter-
facial dynamics of a liquid-gas system confined by solid wall(s). In particular, we want to
derive the equations of motion for the meniscus (two dimensional liquid-gas phase boundary)
and the contact line (one dimensional line, where all the three phases meet) starting from the
3D bulk equations of motion. The formalism flexible enough to allow for the description of
considerabley more complicated set-ups but for concreteness sake we present in glory detail
the calculations for the following system:

A column of liquid is confined between two vertical straight walls situated at y = 0 and y =
L. Both finite and infinite wall separations will be considered. The liquid rises spontaneously
under the action of capillary forces. It is connected with an infinite reservoir which fills the
lower half-space z ≤ 0. The reservoir is not explictly modeled and its presence will be felt only
through boundary conditions to be discussed later. The walls are assumed to be smooth but
they can contain chemical impurites, which alter the local wetting properties: The advancing
contact line wants to visit the more easily wettable (energetically more favourable) regions
of the walls and avoid others. Of course, the surface tension takes care of the fact that a
section of the triple line slowly traversing through a hard to wet region cannot fall too much
behind from the more rapidly advancing parts giving rise to an avalanche type of motion [4].
Because the contact line roughens in the course of time, it also affects the morphology of the
meniscus and vice versa.

Why should on be interested in the dynamics of lines and interfaces in the first place?
Because they are a natural part of the coarse-graining chain. First of all, as lower dimensional
subsets of slow variables they are relevant macroscopic variables themselves. In the present
context they can be interpreted as Goldstone modes of the bulk system, which have long
life times. Another fact, which justifies their study, has to do with reduction of information
content. Because many physically relevant processes take place on interfaces such as phase
and grain boundaries [18] the bulk degrees of freedom are not directly relevant or their effect
can be taken into account indirecetly through suitable boundary conditions, for example. In
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Figure 8.1: Top view shows the meniscus H(x, y, t) rising between two chemically inhomoge-
nous walls, which cause the contact lines Cs(x, t) (s = a, b) to roughen. The lower figure
provides a side view of the parabolic meniscus profile H0(y, t).

this sense the bulk can be sometimes seen to act as a kind of a heat bath on the subsystem
(=interface) degrees of freedom. Integrating, or more appropriately for the purposes of this
chapter, projecting out the bulk can considerably simplify the computational task of finding
out what happens at phase boundaries. Of course, there are limitations just like in the many-
particle models where one tries to obtain an effective model for fewer degrees of freedom by
’integrating out’ the effect of some particles (degrees of freedom). A blind elimination of
uninteresting degrees of freedom, when continued far enough, results in a intractable model
with very complicated effective interactions between the remaining degrees of freedom. The
complication present in the huge number of constituents with simple interactions transforms
into the not-so-simple (≈ hopelessly difficult) interaction between the surviving constituents.
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A distant indication of this can already be seen in App. C.14.6 where the coupled equations
of motion are given for the interaction of two contact lines in the double wall set-up. These
equations are approaching the limit where analytic work is still feasible.

8.1 Where do we stand in the coarse-graining chain?

At this point it is good to remind ourselves of our current location in the big scheme of
things. To establish a link of the material to be presented in this chapter to the general
theme of coarse-graining, go back to Sect. 7.1.1 where we tried to justify the general form
the time evolution equation that any macroscopically relevant quantum observable should
have. As far as the expectation values of the observables can be considered classical, and the
limit (action of generating functional)/h̄→ ∞ can be taken, the equation of motion (7.4) for
conserved classical fields ψµ reads

∂tψµ = −
∫

dx′
∫

dt′
{
ψµ(x, t), ψν(x

′, t′)
} δF [ψ]

δψν(x′, t′)
+M∇2 δF [ψ]

δψµ(x, t)
+ ηµ , (8.1)

where we have set Γ̂µν = −M∇2δµν . First, we should determine the physical meaning of the
fields ψµ. Conserved, and thus slow variables of the three-phase system consist of the mass,
momentum and energy densities of the fluids given that the solid can be regarded as an inert
spectator phase. For simplicity we only consider the total mass density of the fluids here.
Inclusion of the momentum and energy densities will be considered in the next chapter. The
next step is the determination of the free energy F3D. Classical density functional theory
introduced in Chap. 6 allows us to bridge the length scale gap between the molecular fluid and
the macroscopic density representation. Thus, F3D has the form given in Eq. (7.25). Hence,
supposing that the mass density of the fluid is the only relevant macrovariable, ψµ = φ(x, t)
and the Poisson bracket term on the right of Eq. (8.1) vanishes. If we also drop the stochastic
term η for simplicity, Eq. (8.1) reduces to a nonlinear diffusion type of equation of motion
for the bulk field φ:

∂tφ(x, t) = M∇2 δF3D [φ]

δφ(x, t)
. (8.2)

This result could have been obtained right away using physical intuition. Because φ is con-
served, it should follow a continuity type of equation, ∂tφ + ∇ · jφ = 0. The conserved
current can in first approximation to be the gradient of the driving chemical potential ac-
cording to Fick’s law: jφ = −M∇µ and by definition µ = δF3D/δφ. Combining all this leads
immediately to Eq. (8.2).

There are regimes for physical parameters where the dropping of the momentum density
can be justified in the dimentional analysis sense as will be shown in Sect. 10.4. Of course,
in reality, leaving out momentum conservation will not be a good approximation which holds
in all space points x. The dimensional analysis argument holds only in spatial average
sense over suitable chosen scales. It turns out that the dynamics induced by the equation
of motion (8.2) is rather boring far a way from the phase boundaries: The density field
φ simply relaxes to its constant bulk equilibrium value and does not change after a while.
The interesting dynamics takes place only in the vicinity of the boundaries where multiple
phases meet. Therefore, we will project out the uninteresting bulk degrees of freedom and
concentrate on studying the evolution of the lower dimensional structures, which include two
dimensional phase boundaries and one dimensional triple lines (contact lines).
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The main theoretical findings of Chap. 8 consist of the coupled set of equations of motion
for the meniscus and the contact lines in the geometry depicted in Fig. 8.1. The linearized
equation of motion for the fluctuations h(k, t) of the meniscus will be presented in Eq. (8.65)
for single wall set-up:

g1(k, t) ∂th(k, t) + g2(k, t)h(k, t) = −Mσ

4
k2 h(k, t) . (8.3)

This equation tells us how the local velocity (term g1∂th(k, t)) of the meniscus depends on
the local (and nonlocal) features of the geometry. The prefactor functions g1 and g2 contain
important physics. All the relevant time and length scales of the problem can be extracted
from them as will be explained in Sect. 8.3. The contact line equation, which acts as boundary
condition for the meniscus equation, is given in Eq. (8.58) and Eq. (8.61). Combining them
yields the following equation for the fluctuations c(k, t):

|k|−2f1(C0|k|) ∂tc(k, t) +
∂tC0

|k| f2(C0|k|) c(k, t) = MΓ(k) c(k, t) +MAk[C0, c] (8.4)

The structure of this equation is the same as Eq. (8.3). On the right hand side we have a
deterministic restoring force Γ(k), which counteracts the stochastic pinning force Ak stem-
ming from the chemical inhomogeneity of the walls. It is the stochastic force, which makes
the contact line rough and the meniscus crumbled. In moving from the Molecular Dynamics
description to the large scale physics given by Eq. (8.4) the span of the time and lenght scales
is huge: From molecular collision times and mean-free paths to features visible to bare eye!

The next step in making the model more realistic is to take into account the momentum
conservation of the fluid particles. This leads to a fully hydrodynamic description of the three
phase model which is the focus of Chap. 9. The reason why we have not talked about the
momentum conservation in this chapter is that the general methods applied in the derivation
of the hydrodynamic equations of motion in Chap. 9 are not restricted to the contact line
problem in any way. We will briefly touch on the generalization of the evolution equation (8.2)
in Sect. 10.2 at the Stokes’ flow level, where the inertial terms of the momentum balance
equation disappear. The projection formalism given in this chapter then produces new terms
in the meniscus and contact line equations. The derivation and study of them is left for
future work.

8.2 Coarse-graining model parameters from microscopics

8.2.1 Crossing quantum-classical boundary: van der Waals forces

In the Born-Oppenheimer approximation one can try to form the effective many-body force
fields between nuclei, which can thereafter be treated as classical ’atoms’ (or ions). It is
then, in principle, possible to go on developing classical Molecular Dynamics based approach
for the coarse-grained degrees of freedom, which calls for more approximations and causes
accumulation of errors. Even though we are never free from approximations, it is sometimes
more convenient not to introduce intermediate coarse-graining steps, but take one bigger leap
instead. This approach works nicely for determination of macroscopic surface tensions from
the quantum mechanics.

Simplifying things a bit, one can say that the surface tensions are produced by van der
Waals forces, which depend on the electronic structure of the materials in contact. To put it
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in another way, the electronic structure determines the optical properties of materials, which
give rise to the London dispersion forces, the most significant element of the van der Waals
force. The importance of optical properties can be understood by the fact that quantum
fluctuations induce dipole-dipole interactions most efficiently in the spectral range varying
from visible to vacuum ultraviolet spectrum [254]. Thus, even completely neutral surfaces
can attract each other thorough quantum fluctuation induced forces. One of the well-known
examples of this phenomenon is the Casimir effect [255]

To accomplish the calculation of the surface energies one now resort to either analytic
or computational techniques. On the analytical side, one can use finite temperature Green’s
function formalism [256] (to which our generating functional formalism reduces in equilib-
rium) to compute effective interaction between macroscopic bodies as a function of their
separation. On the computational side one can perform a first-principles calculation using
the quantum density functional theory discussed in the previous chapter 6. In practice, one
computes the interface energy per unit area (surface tension) for a system comprised of a thin
film of material of type B between slabs of material A and C. Depending on the surface ten-
sion one wishes to calculate, some of the materials can be the same or vacuum. One obtains
EAC(Lf , ε), where Lf is the thickness of the intercalating film. The expression for EAC(Lf , ε)
makes also use of the London dispersion spectra of the materials [257] (dielectric constant
ε), which can be obtained from experimental data or first-principles calculations [254]. More
precisely, the surface tension σAC is related to EAC(Lf , ε) through

σAC = −1

2
EAC(Lf , εA, εB , εC) , (8.5)

because there are two interphases in the three slab system (ABC) where the intercalating layer
B is the vacuum. Moreover, Lf cannot be taken to zero: It is of the order of interatomic
bond length. It is also important to notice that another coarse-grained quantity, namely
the dielectric constant ε has entered our hierarchical construction. Microscopically, ε tells
how the interaction of two charged objects embedded in polarizable material change due
to polarization effects, which are of many-body nature: interaction with phonons leads to
screening of charges [258]. Macroscopically, ε binds together the (macroscopic) eletric field
E and the (macroscopic) electric displacement field D:

D = εE (8.6)

in homogenous medium. These macro fields have been obtained by spatially coarse-graining
(averaging over semi-macroscopic cells) the microscopic Maxwell’s equations [259]. Since
Eq. (8.6) can also be written as D = ε0(1 + χE)E, where

χE ≡ 1

ε0

∂P

∂E
(8.7)

is the electric susceptibility and P is the polarizability, we see that ε represents a generalized
susceptibility. Thus, it is not a transport coefficient, because it does not bind a field to a
current but it mediates a linear response between two macroscopic fields just like the transport
coefficients do, and so its expression can be coarse-grained in a similar way from microscopics.
Using ε, we can express the surface tension as a function of parameters belonging to different
levels of effective descriptions:

σ = σ(ε(h̄, e,me)) . (8.8)
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Electron’s massme and charge e represent the dependence on the quantum mechanical degrees
of freedom, which themselves can be functions of more microscopic parameters, in principle
at least. We should keep in mind, though, that crossing of scales in cases, which are not as
well known as the present example, will not be easy. Here we have had the luxury to bypass
many pitfalls by utilizing knowledge, which has accumulated over several decades of research
in the area.

This section will finish with a remark on the disjoining pressure, which also arises do
to van der Waals forces, and plays an important role in the hydrodynamics of wetting. The
surface tensions only capture the short-range effect of the van der Waals-London forces as seen
from the definition (8.5): The distance Lf is of the order of the bond length, so the energy
EAC contains effects such as covalent bonding. But the van der Waals forces are long-ranged.
For two dipoles the force decays like r−7 as a function of the distance. For two macroscopic
surfaces separated by distance ζ, combining the effect of all individual dipoles leads to a
long range force FvdW , which follows another power law: FvdW ∼ ζ−3. The corresponding
interaction energy [254],

EvdW (ζ) = − AH

12πζ2
. (8.9)

The constant AH is called Hamaker’s constant, and its value dependes on the matrials, whose
interaction energy is being evaluated as well as on the the shape of the bodies. Hamaker’s
constant can be postive or negative. When negative, it produces a repulsive force between
solid surface and the liquid-gas boundary of the wetting layer, which corresponds to the
material B sandwidched between the solid A and gas C using our earlier nomenclature.
The disjoining pressure Π(ζ), which tends to thicken the wetting layer, is then defined as
Π ≡ −dEvdW /dζ. Inversely, EvdW (ζ) =

∫∞
ζ dζ ′ Π(ζ ′). In deriving the equation of motion of

the contact line, one must then include the disjoining pressure (long range van der Waals
energy) in the free energy functional F1D [260]:

F1D = F0 +

∫ xmax

xmin

dx

(

− S + 1
2σ(dζ/dx)2 +EvdW (ζ) +G(ζ)

)

. (8.10)

The reference free energy is F0, S is the spreading coefficient and G describes the gravitational
and hydrostatic effects. The domain covered by the liquid is confined between xmin and xmax.
This is essentially the form of the free energy (ζ = c) which we will be using in later sections
apart from the term EvdW . As we are not intrested in the microscopic motion of the precursor
film, we drop the van der Waals energy. Taking EvdW into account would bring about a new
term on the right hand side of Eq. (8.89), for example.

8.2.2 Surface tensions from classical Density Functional Theory

Another possibility of determining the macroscopic surface tensions is to introduce an inter-
mediate coarse-graining stage, which is the classical Molecular Dynamics level. In terms of
the effective two-body (and higher) interaction forces one can derive the classical free energy
density functional which can then be used for determination of the surface energies in terms
of the parameters of the free energy. This has been done in Refs. [261, 239]. First, the
liquid-gas surface tension,

σ =
1

2
(∆ρ)2

∫ ∞

0
dz t(z) , (8.11)
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where ∆ρ is the liquid-gas density difference and z-direction is opposite to the solid substrate
surface. The potential of the fluid particle interacting with the other fluid particles filling the
upper half space is denoted by t(z):

t(z) ≡
∫ ∞

z
dz′
∫ ∞

−∞
dx′
∫ ∞

−∞
dy′ w̃(r′) , (8.12)

with r′ =
√

x′2 + y′2 + z′2. The attractive part of the effective two-body potential w̃ has been
given in Eq. (6.81). The solid-liquid surface tension reads,

σsl = −1

2
ρ2
l

∫ ∞

0
dz t(z) + ρl

∫ ∞

dw
dz VS(z) . (8.13)

The interaction between the solid and the fluid particles leads to a formation of the narrow
depletion layer whose width is dw [239]. This is of the order of the interatomic bond length,
as discussed in Sect. 8.2.1. The origin of the substrate potential VS has been explained in
Sect. 6.4.1. Finally, the solid-gas surface tension

σsg = Ωs(l0) , (8.14)

where Ωs is the effective interface potential (free energy) which can be extracted from the
free energy (7.17) by substituting the sharp-interface ansatz,

φl(z) = θ(z − dw)
(

θ(l− z)ρl + θ(z − l)ρg
)

, (8.15)

and collecting the terms which are proprotional to the interfacial area. The bulk densities of
the liquid and gas have been denoted by ρl and ρg in Eq. (8.15) and the width of the liquid
layer is l. The value l0 of l which minimizes Ωs appears on the right hand side of Eq. (8.14).
Finally, θ stands for the Heaviside step function above.

Having now extracted the values of the surface tensions from the classical density func-
tional theory, let us do the same thing using our phase-field formulation, which has been
explained in Sect. 7.3. The procedure is well-known [231] and follows the same lines as in the
density functional case. One of the main differences is that the phase-field free energy (7.25)
is local in its argument fields and therefore the sharp kink approximation used in Eq. (8.15)
is not a good one any more. Instead, to get analogous results from the phase-field theory,
one should substitute an ansatz like

φ(z) ≈ tanh((z − l)/ξ) , (8.16)

where we have assumed that ρg ρl have been shifted to values ±1 in dimensionless units.
The bulk correlation lenghth ξ is a function of the parameters of the phase-field free energy,
and when it goes to zero, we recover Eq. (8.15). Using this type of approach combined, the
surface tensions have been calculated in Ref. [262]. We get

σ = 2
√

2/3 (8.17)

in our dimensionless unit system where the liquid and gas densities have been shifted to
φ = ±1. The solid-liquid surface tension will have a more interesting dependence of the
parameters of the (phase-field) free energy (7.25):

σsl(Ā,Ks) =
φ3

1 − 3φ1 + 2

3
√

2
+

√
Ks

2
(Ā− φ1)

2 , (8.18)
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where the auxiliary function

φ1 ≡ −
√

Ks

2
+

√

Ks

2
+ Ā

√

2Ks + 1 . (8.19)

Finally, the solid-gas interface energy, which looks very similar to σsl except for the signs of
the terms:

σsg(Ā,Ks) =
−φ3

2 + 3φ2 + 2

3
√

2
+

√
Ks

2
(Ā− φ2)

2 , (8.20)

with

φ2 ≡
√

Ks

2
−
√

Ks

2
− Ā

√

2Ks + 1 . (8.21)

We should keep in mind that we only made the form of the phase-field free energy (7.25)
plausible. We did not not tell what the values of the parameters Ks and the mean value of Ā
one should use (noise correlation function was fixed through fluctuation-dissipation therem,
which does not say anything about Ā). However, knowing the values of the surface tensions
from density functional theory, we are now in a position to fix the parameters Ks and Ā
(which we will encounter again in Sect. 8.3.1). They can be solved from the set of equations
obtained by setting the phase field surface tensions equal to the values computed from density
functional theory. Corresponding to Eq. (8.8) we now have

σsg = σsg
(

Ā(w̃, VS), Ks(w̃, VS)
)

, (8.22)

and similarily for σsl. The difference is that now the chain of effective descriptions ends at
the level of classical Molecular Dynamics parametrization. Of course, we could express w̃
and VS in terms of quantum mechanical parameters, which would make Eq. (8.22) the same
as Eq. (8.8) if not too much pile-up of error would have been induced by introduction of
the Molecular Dynamics coarse-graining level. This problem will be discussed in the next
section 8.2.3.

8.2.3 Breakdown of classical Density Functional Theory

There are two main assumptions which must not be violated in order for the results of
Sect. 8.2.2 to be trusted. The first assumption concerns the mean-field nature of the density
profile ansatz (Eq. 8.15 or Eq. (8.16)). The mean-field density profile given in Eq. (8.16) can
be found by solving the extremal of the phase-field free energy via Euler-Lagrange equation
corresponds to a situation where the translational invariance has been broken in one spatial
direction only. When substituted back into the expression of free energy to compute the
surface tension, we do not get a correct result which would be valid in finite temperature,
rather the zero temperature approximation. This is because the thermal fluctuations roughen
the phase boundary and the straight interface profile φ(z) = tanh((z − l)/ξ) does not take
this into account: Starting at z = −∞ the liquid bulk density becomes φ(−∞) = −1. The
profile changes sign at plane z = l and assumes the gas bulk density far a way from the
interface: φ(∞) = +1.

To take into account the temperature effects, one should estimate the entropic effects,
which must be done perturbatively in most cases [263]. For simple enough toy models σ(T )
can be found exactly [264] What is quite surprising, though, is that when the mean-field
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surface tension is used (despite its approximative nature) in the evolution equations of the
interface such as the dynamics of the meniscus, which is going to be discussed in Sect. 8.4,
the dynamics seems not to be affected by the fact that temperature renormalization of σ has
not been taken into account. This seems to indicate that the zero temperature fixed point
controls the dynamic situtation at least as far as the correctness is measured by comparing
numerical results of scaling of the correlation functions with those calculated using dynamic
renormalization group [246]. It is an interesting question whether this phenomenon has
something in common with the competition of quenched and thermal noises, which renders
temparature as dangerous irrelevant variable to be briefly discussed in Sect. 8.3.1. Even if
there is no quenched noise component to begin with, it might be generated when projecting
lower dimensional interfactial evolution equations out of the bulk dynamics (Sect. 12.3).

Another factor which is missing from the analysis of the surface tensions so far is the effect
of curved (global) geometry. Because the meniscus in a capillary tube is curved, the usual
thermodynamic relations do not hold any more. It turns out that the radius of curvature
should be introduced as a new thermodynamic variable. When the radius of curvature goes
to infinity, the corrections to surface energy goes like

σ ≈ σ∞(1 − 2δ/Re + . . .) , (8.23)

where σ∞ is the limit of the surface tension when radius of curvature Re → ∞ and δ is
roughly a constant. For more information the reader is referred to Refs. [262, 265, 266]. The
effect of curved geometry is clearly visible in the value of the contact angle θeq which is a
function of the surface tensions. For small enough curvatures (which is the limit our theory
should work) this correction vanishes and will not be taken into account in the rest of the
text.

Despite the usefulness of the density functional theory, there is another problem associated
with it, which is more fundamental than the mean-field approximations addressed above. This
has to do with the breakdown of the pairwise additivity of interactions. As we have indicated
in Sect. 6.4.1, the total interaction energy of two macroscopic bodies occupying volumes V1

and V2 is given by ∫

V1

dV1

∫

V2

dV2 ρ1(r1)w(r1 − r2) ρ2(r2) . (8.24)

As explained in Chap. 6 w is the interaction potential between atoms of type one and two
in the lowest order approximation of density functional theory. Using effective dipole-dipole
interaction in Eq. (8.24) reproduces Eq. (8.9). The problem is that if the density of the
macroscopic objets 1 and 2 is high, their atoms loose their identity as their electronic structure
becomes more bulk like. Lifshitz [267] has shown that as far as the medium between the two
materials is vacuum, the interaction still obeys pairwise additivity and is attractive. However,
if the interlayer medium is not vacuum, the pairwise additivity breaks down and the density
functional theory presented above does not hold. If it turns out, that taking into account
some higher (finite) order many-body interactions is sufficient (which does not have to be the
case), the classical density functional theory can be generalized to inclued these effects. Thus,
the quantum mechanical approach presented in Sect. 8.2.1 is safer as it takes into account
the full many-body nature of the van der Waals interaction, which becomes important when
there is a thin layer of third material in-between two others.

All in all, if we are not focusing on two microscopic details the classical density functional
theory should be a reasonable approximation for the quantities of interest. Numerics seems
to indicate that in the dynamic situations the zero-temperature approximation used in the
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mean-field calculation of the surface tensions does not seem to affect many of the universal
properties such as statistical measures of roughness of the phase boundary.

8.3 Experimentally measurable parameters

In Sect. 8.1 we advertized that the relevant time and length scales, which are hidden in the
three dimensional bulk evolution equation (8.2), can be read off from the parameters of equa-
tions of motion of the meniscus and the contact line. The macroscopic parameters appearing
in Eq. (8.3) and Eq. (8.4) are functions of the more microscopic parameters of underlying
levels of the hierarchy as explained in Sect. 8.2. More specifically, the parameters of our effec-
tive theory can all be expressed in terms of the surface tensions, which in turn can be given
in terms of more microscopic (known) parameters. The mobility M is the only exception to
the rule: It is expressible with the aid of more microscopic parameters of the theory, which
are not directly related to the surface tensions. Knowing the values of the parameters of the
model is one of the great advantages of the systematic coarse-graining procedure. The final
stages of the procedure, projecting out the bulk dynamics, works for many inhomogeneous
systems, where the bulk phases are separated by thin interfaces. For simple enough sys-
tems [268, 269] it is possible to deduce the correct form of the interface equation without any
intercourse to systematic coarse-graining approach. The family of models which start directly
with the interfacial description of the problem are called sharp interface models. The problem
of this approach is, though more time-saving than the systematic coarse-graining derivation,
the fact that the parameters of the sharp interface model have to be guessed or fitted. As
shown in Ref. [270] the projection method allows the determination of the sharp-interface
model parameters in terms of the parameters of the bulk free energy F3D in more general
cases than the contact line problem, too. It should be kept in mind that usually it is very
difficult to guess the right form of the effective interface equation without deriving it through
the projection technique. The ’first principles’ derivation of the contact line dynamics clearly
rules out some popular choices for effective description of triple line [4] at least in the case of
smooth walls. Among others, local equations such as Quenched-Edwards-Wilkinson (QEW)
equation [271] have been suggested to describe roughening of the contact line. In contrast,
Eq. (8.4) is non-local in real space, which is evident from factors |k|. Non-local Fourier space
forms of evolution equations have been derived using slightly different methods in Ref. [272].

As not just the form of the equations but also the values of the parameters are fixed
through coarse-graining, we should explain the relation of the most important parameters of
the theory to the experimentally measurable observables. That is what we will do next. Let
us concentrate on the contact line equation (8.4) as it contains in addition to the parameters
of the meniscus equation also the stochastic term which needs two extra parameters for its
quantification. Expanding the coefficient functions we get the result (App. C.15.2),

1 − e−2C0|k|

4k2
∂tc(k, t) +

∂tC0

4|k|
(

1 + e−2C0|k|
)

c(k, t) = −2Mσ|k| c(k, t) +MAk(c) , (8.25)

where the stochastic noise originates from the contribution of the stochastic properties of
the solid walls to the projected free energy. According to our variational prescription of
the projection (App. C.1) the random part of the equation of motion is generated from
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(App. C.14.6)

δ

δc(x, t)

∞∫

−∞
dt

∞∫

−∞
dx

C(x,t)∫

0

dz (σsl(x, z) − σsg(x, z)) = A(x, 0,C0(t) + c(x, t)) , (8.26)

where A(x, 0, z) ≡ σsl(x, z)−σsg(x, z) is the projection of the bulk field A(x, y, z) on the wall
y = 0. It should kept in mind that the Fourier transform,

Ak(c) ≡
∫

dx eıkxA(x, 0,C0(t) + c(x, t)) , (8.27)

cannot be carried out explicitly because the random field A depends on the fluctuating con-
tact line profile c, which additionally also appears in the equation of motion (8.25) linearily
on both sides. Thus, even though the deterministic part of the evolution equation has been
linearized the stochastic part has not. In fact, more care should be exercized when linearizing
non-linear stochastic equations [273]. Here we are simply guided by the physical intuition that
in the limit of vanishing surface randomness the linearized theory should provide a reasonable
approximation. Even with non-vanishing noise the corresponding linearized stochastic evo-
lution equation for a similar system has been numerically shown to give consistent results [4]
for many observables of interest.

8.3.1 Noise parameters

The local wetting properties of the solid walls can be altered in two ways. We are focusing
on perfectly flat walls with chemical impurites randomly distributed over the surface. We
also briefly consider regular distributions in Sect. 8.8. Instead of altering the local surface
tensions, the local wetting properties can also effectively be changed by making the side
walls rough e.g. be etching or lapping with coarse sapphire powder [274]. It turns out that
formalism we are developing here for smooth solid walls can also be used for the rough ones.
However, since the noise enter is a somewhat different way in the latter case, we refrain from
applying our results to such cases and leave it for future work.

By definition the field Ak depends on the random solid-liquid and solid-gas surface tensions
both of which are known functions of more microcopic parameters. What has to be fixed
experimentally, is the distribution and the local amplitude of the noise inside the wetting
patches on the solid walls. For simplicity, A(x, 0, z) is assumed to be Gaussian white noise
with

〈A(x, 0, z)〉 = Ā . (8.28)

〈A(x, 0, z)A(x′ , 0, z′)〉 = Dδ(x− x′) δ(z − z′) . (8.29)

Gaussianity is not a serious limitation and can be dropped. For simplicity, let us concentrate
now on the case where the distribution of local wetting sites is characterized by a single
parameter, the noise strength D appearing in the noise correlation function. If it can be
experimentally shown that the adjacent wetting sites (corresponding to a chosen resolution)
are not correlated (consistent with delta distribution), it remains to determine the spread
of the local noise amplitudes a. One realization of the random variable a can be defined as
a ≡ A(x, 0, z) for x, z ∈ S, where the set S determines the Sth patch area. In other words,
the parameter D is the half-width of the Gaussian peak, P (a) ∝ exp(−Da2), where a is the
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local noise amplitude. The position of the peak determines the mean value of Ā and its width
D can fixed by binning the local fluctuation of the contact line within a given time window
τ [275]:

a(x, t) ≡ ∆c(x, τ + t) − ∆c(x, t) , (8.30)

where ∆c(x, t) ≡ c(x, t) − 〈c(x, t)〉. Typically, the larger τ is, the more Gaussian the distri-
bution becomes. This type of noise extraction method seems to work well in practice, and
it has been successfully applied to two-phase fluid flow [276] and slow combustion fronts in
paper [277].

The frozen side wall noise is not the only noise which appears in the problem. So far we
have neglected the thermal noise which comes into play through the requirement that the
fluid should go to Gibb’s equilibrium in the long time limit (see Sect. 7). In this chapter
we are leaving out the thermal noise both for simplicity and because the quenched noise Ak

is expected to dominate many of the universal scaling properties as compared to thermal
noise. Using renormalization language, it is not obvious, though, that the zero temperature
fixed point should dominate. The competition of the thermal and quenched noise has been
studied e.g. in the context of creep in elastic systems [278], where the authors showed that
the dimensionless temperature flows to zero. Yet, temperature turns out to be a dangerously
irrelevant variable (thermal disturbance being the only noise present, makes temperature
normally relevant variable!).

Including thermal noise furnishes us with an experimental method to determine the value
of the mobility M . This can be done via the Fluctuation-Dissipation theorem [8]. By perform-
ing a measurement of the fluctuations through e.g. scattering radiation into the two-phase
system produces the structure function, which is essentially the correlation function C(x)
of total density fluctuations in the system. Extracting the mobility from the dimensionfull
prefactor of C(x) gives in principle the value of M . Unfortunately, the Poisson bracket for-
malism, which we are using does not give any means to fix dissipative transport coefficients
such as M theoretically. We have to do it by other means. For example, one can use Mori’s
projection technique [27].

8.3.2 Important length scales

As is clear from Eq. (8.25), all length scales can be expressed in terms of the surface tensions,
mobility and noise parameters explained above. The mean contact line height in a pure
system C0 will be derived in App. C.12.2:

C0(t) =

√

MσKt

u
+ c2i , (8.31)

which for zero initial height, ci = 0 follows a diffusive-like t1/2-growth law. This result has
been experimentally verified in a number of different systems [279, 280]. Taking into account
gravity and evaporation [281], for example, limit the validity range of the simple form given
in Eq. (8.31).

The contact line height C0 thus depends on the mobility, liquid-gas surface tension σ and
the curvature K of the meniscus (u is just a numerical constant). When K 6= 0, the meniscus
in the pure system is assumed to have a parabolic shape in the double wall set-up:

H0 ≈ C0 +K(y2 − Ly) , (8.32)
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where we have assumed that the two walls are situated at y = 0 and y = L. This ansatz
holds very well both numerically and analytically [262]. Since the curvature can be expressed
as a function of the contact angle for parabolic meniscus and because the contact angles are
functions of the mean value Ā of the noise at the wall, we have

K = K(Ā) . (8.33)

This holds to a good approximation even when the interface is moving because the dynamic
contact angle θd(t), which actually should be used to fix K does not deviate from the equi-
librium value θ0 significantly the higher the meniscus rises. For a driven system, where fluid
is forced to flow between the plates with the aid of a pressure or chemical potential gra-
dient this does not hold any more: θd 6= θ0 [262]. Also, since the average value 〈A〉 = Ā
has been included in the dynamics of the pure system (8.32), it should be removed from
Eq. (8.25). Multiplying both sides by a factor |k| will effectively take care of this as explained
in App. C.15.2.

There are also other internal scales hidden in Eq. (8.25), which manifest themselves in
certain statistical measures of the contact line such as its two-point correlation function. The
cross-over length,

ξ×(t) ≡
√

Mσ/Ċ0 ∼
√

C0/K , (8.34)

can be obtained by comparing the strengths of the second term on the left to the restoring
force (first term on the right) in Eq. (8.25). The correlation length ξ× separtes two differ-
ent types of regimes: On scales kξ× � 1 the contact line fluctuations are damped by the
interfacial tension σ whereas for kξ× � 1 the damping is due to the mass flow from the
reservoir. The interesting thing is that ξ× is given by the same expression in a simpler model
of spontaneous imbibition in disordered medium [4] given that one makes the identification
K = ᾱ/(Mσ). Thus, the average disorder ᾱ corresponds to the curvature of the meniscus
in the contact line problem. As we will show later in App. C.8, in deriving the contact line
evolution equation, we have made use of the fact that the curvature is small: KL2/C0 � 1.
Together with Eq. (8.34) this means that

ξ× � L . (8.35)

In other words, the dimensions of the experimental set-up have to be such that the separtion
of the walls in y-direction must be much smaller than the extent of the walls in the x-direction
in order for there to be enough room for the correlations to reach the cross-over scale ξ×.
To get some idea of the magnitude of the numbers we plug in a plate separation L ∼ 50µm
which satisfies inequality (8.35) when ξ× ≈ 1mm. Supposing the mean contact line height is
also of the order of 1mm, the curvature should be O(103m−1).

Finally, we note that the computationally convinient boundary condition of the chemical
potential µ(x, y, 0) = 0, which establishes the connection to the reservoir, is not the best
possible for direct experimental comparison. Rather, the theory should be formulated in
terms of the mass flux (∂zµ|z=0) which is easier to measure experimentally. This is possible
even for non-driven mass flows if one can self-consistently find the flux which gives rise to
the same flow which would arise in spontaneous capillary rise with no forcing. For driven
systems there is no problem, as the flux is a given quantity.
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8.4 Projection of the 3D bulk model

We will now start deriving the equations of motion for the meniscus and the contact line. The
remaining sections from now on utilize heavily the material presented in the App. C. The
appendices can be read through in the order they appear to get a more detailed justification
of the results presented below.

We start with the 3D bulk evolution equation for the conserved order parameter field
φ(x), whose values determine in which phase the system is sitting at any particular spatial
location x. In Sect. 7.3 we have argued that the following bulk evolution of motion should
be used for a conserved density field (phase-field) φ:

∂tφ(x, t) = M∇2µ(x, t) , (8.36)

where the chemical potential density µ ≡ δF/δφ, and M denotes mobility. The free energy
functional through which the chemical potential is defined is of the Ginzburg-Landau form:

F =

∫

dx

∫

dt

[
1

2
|∇φ|2 + V (φ, ρ,A)

]

. (8.37)

The gradient term punishes for spatial fluctuations in the value of the order parameter φ
when moving from one phase to the other. The potential,

V = (1/2)(1 + ρ)(φ2 − 1)2 + (1/2)(1 − ρ)(φ−A)2, (8.38)

has three minima corresponding to three different (equilibrium) phases. Field ρ represents
the ’density’ of the solid phase: in the spatial regions where ρ(x) = −1 the factor (1 + ρ) = 0
and the potential V has a single minimum at φ = A, which is fixed to be the value of the
phase field in the solid phase. Where ρ(x) = +1 the factor (1−ρ) = 0 and the potential V has
two minima (φ = ±1) signifying the coexistence of two fluid phases. We can interpret φ = +1
as the characteristic value of the phase field in the liquid phase, and φ = −1 characterizes
the gas phase.

In order to utilize standard techniques to eliminate bulk degrees of freedom from the
formulation, we need to invert the Laplacian opertor appearing on the right hand side of
Eq. (8.36). Therefore, we have to determine the boundary conditions for the chemical po-
tential. The solid phase studied in this work will comprise two vertical walls separated
by distance L. Obviously, in the limit if L → ∞ it suffices to study just the effect of a
single wall. We will assume that there is no mass flux through the solid boundaries, i.e.
∂nµ|0 = ∂nµ|L = 0. At the reservoir boundary (z = 0) we establish a connection to the
fluid reservoir via a Dirichlet boundary condition µz=0 = 0. These requirements allow us to
find G3D explicitly. The actual construction of the Green function is performed in App. C.6
and other choices for the boundary conditions are discussed in App. C.7. Invertion of the
Laplacian yields

M−1
∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

∫ ∞

0
dz1G3D(x, y, z : x1, y1, z1) ∂tφ(x1, y1, z1, t) = µ(x, y, z, t) . (8.39)

To derive the effective equation of motion for lower dimensional objects such as the meniscus
(H(x, y, t)) and the contact line (C(x, t)), it is useful to think of Eq. (8.36) as arising from
minimization of a free energy functional (see [282]) containing both driving potential (µ)
and the Rayleigh dissipation functional (

∫
(∂tφ)2) such that the Euler-Lagrange equation
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corresponds to the bulk equation of motion (Eq. (8.36)). The three dimensional nonlinear
evolution equation for the bulk order parameter field φ, which has to be supplemented with
proper boundary conditions, is very hard to solve analytically. Further progress can be
made by approximating the smoothly varying true solution φ with a function which is the
characteristic function of the phases changing discontinuously from one bulk value to the
other right at the phase boundary. Specifically, we will choose

φ ≈ −1 + 2 θ(H(x, y, t) − z) . (8.40)

The factor of two is the so called miscibility gap and it is given by the separation of the
potential wells of the free energy, which for the current choice of model parameters is 2.
Matters simplify substantially since we only have to know the position of the phase boundary
(given by z = H(x, y, t)) to be able to tell with the aid of Eq. (8.40) what the approximate
3D bulk solution is. The dynamics of the phase boundary H is obtained by projecting out
the bulk degrees of freedom. Mathematically this means that both sides of Eq. (8.39) will be
operated on by the projection operator

P (·) ≡
∫

dz (∂zφ) (·) ≈
∫

dz (−2δ(H − z)) (·) . (8.41)

Differentiation of the approximative solution of φ in Eq. (8.40) with respect to time gives us
something simple

∂tφ ≈ 2δ(H − z)vz ≈ 2δ(H − z) ∂tH , (8.42)

where we discarded some nonlinearities by setting vz ≈ ∂tH. Using these results we can cast
Eq. (8.39) into the following form (NB: should be checked if vn is really the normal velocity
also for model B):

4

M

∫

dx1

∫

dy1G3D(x, y,HC(x, y, t) : x1, y1,HC(x1, y1, t)) ∂tHC(x1, y1, t)

= − δF2D [HC]

δHC(x, y, t)
= σ∇ · ∇HC

√

1 + |∇HC|2
. (8.43)

We have written H = HC to stress the fact that the current equation of motion (8.43) has to
be supplemented with a fixed (unknown) boundary condition C(x, t) determining the contact
line.

In the set-up we have in mind there will be multiple phase boundaries: with one vertical
plate immersed in the liquid reservoir there will be a gas-solid phase boundary above the
meniscus and a liquid-solid boundary below the meniscus. The projection operator defined in
Eq. (8.41) only projects onto the liquid-gas phase boundary and thus only yields the meniscus
equation of motion. In principle, we should also perform a similar projection for the gas-
solid and liquid-solid boundaries and generate their equations of motion as well. To avoid
this complication we are assuming that both these boundaries are completely determined
through knowledge of the position of the three-phase contact line H(x, y = 0, t) ≡ C(x, t). In
the sharp phase boundary approximation the liquid-solid interface will be those point in the
plane y = 0 of the vertical wall which satisfy z ≤ C(x, t). The remaining area, z > C(x, t) in
the same plane determines the gas-solid boundary.

To get an evolution equation for the contact line itself, we would like to simply set y = 0
in Eq. (8.43) and use the fact that H(x, 0, t) = C(x, t) Doing so, we don’t gain any new
information because we would have to know what the expression ∇2H|y=0 on the right hand
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side of the projected equation means. In order to understand how to obtain the contact
line equation systematically requires that we take a couple of steps back and returnd to our
fundamental evolution equation for the phase field, Eq. (8.39) which hasn’t been projected
yet. The way to proceed is to treat the problem as an functional extremization problem
(validity of this interpretation depends on the boundary conditions of µ). The functionals to
be extremized are called Rayleigh’s dissipation functional R and the free energy functional F .
In the normal Lagrangian mechanics the dissipation function is a positive definite function
quadratic in the velocity v whereas the free energy is a function of the spatial position variable
q. Since we are dealing with a field theory, the corresponding objects in our case will be the
velocity of the phase field ∂tφ(x, y, z, t) and its ’conjugate’, φ(x, y, z, t). Both of these objects
live in the three dimensional space. As will be explained below, we aim at constructing
Lagrange’s equation of motion for the pair ∂tφ and φ by ’differentiating’ (taking variations)
of the Lagrangian with respect to them. Our next assumption is that we will obtain the
correct equation of motion for the liquid-gas boundary, which lives in two dimensional space,
by restricting the bulk variations δφ to this lower dimensional subspace, where they will
become related to variation δH as explained in App. C.1. Finally, at the bottom of the
hierarchy we have the contact line which is a one dimensional object. To obtain its dynamics
we have to restrict the variations of δH to one dimensional domain of the contact line given
by δC. All in all, we are assuming that the higher dimensional variation always contains all
the information of the lower dimensional one, and once we take the restricted variation of the
functionals, we obtain the relevant information concerning the dynamics of lower dimensional
collective coordinates (meniscus and contact line in this case). Applying the familiar means
of Lagrangian mechanics [283]: we exactly reproduce the fundamental evolution equation of
the phase field (Eq. (8.39)):

δR3D[∂tφ]

δ(∂tφ(x, y, z, t))
= − δF3D [φ]

δφ(x, y, z, t)
. (8.44)

More information about the technique is provided in App. C.1. Replacing φ with its approx-
imation given in Eq. (8.40) and ∂tφ with the form given in Eq. (8.42) in the functionals and
performing the integration over z-coordinate yields new functionals R2D[∂th] and F2D[h]. The
projected equation of motion for the meniscus, Eq. (8.43) is reproduced by taking functional
derivatives with respect to the projected degrees of freedom

δR2D[∂tH]

δ(∂tH(x, y, t))
= − δF2D[H]

δH(x, y, t)
. (8.45)

As explained in the App. C.1 the variation of the meniscus in the previous equation should
be performed in such a manner that the contact line profile C stays fixed. Solving Eq. (8.45)
in terms of the unknown (fixed) C, substituting back and integrating out the y-coordinate
finally produces again two new functionals R1D[∂tC] and F1D[C]. The contact line equation
results after taking variations of the new functionals with respect to projected degrees of
freedom ∂tH(x, 0, t) ≡ ∂tC(x, t) and H(x, 0, t) ≡ C(x, t), analogously to the meniscus equation
of motion:

δR1D [∂tC]

δ(∂tC(x, t))
= −δF1D[C]

δC(x, t)
. (8.46)

Eq. (8.46) together with Eq. (8.45) constitute a pair of equations to be solved simultaneously.
The contact line equation acts as a boundary condition for the meniscus equation, which in
turn is needed to determine the form of the contact line equation. The problem is fully
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analogous to Stefan type diffusion problem relevant e.g. for crystal growth on vicinal surfaces
[284] in which the diffusion equation for density ρ is to be solved subject to boundary condition
which depends on the bulk field ρ. In other words, the boundary conditions affects the bulk
solution whose derivatives are needed to fix the boundary condition. If time variations are
neglected the equilibrium problem is analogous to the two-step minimization procedure used
in the context of critical wetting theory [285].

Finally, assuming that contact angle at solid wall(s) is close to π/2 it follows that |∇H|2 �
1 and the coupled equations of motion for the meniscus and the contact line are in the
single wall case without memory effects can be written in the following form. First, the
meniscus equation is obtained from Eq. (8.45) by forming the correct functionals R2D and
F2D (App. C.5), taking the variations:

M−1
∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, y,H(x, y, t);x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t)

= − δF2D [HC]

δHC(x, y, t)
≈ (σ/4)∇2

H(x, y, t) . (8.47)

Then, the contact line equation, which acts as a boundary condition for the previous equation,
is given by Eq. (8.46)

2M−1
∫ ∞

−∞
dx1

∫ ∞

0
dy1

∫ ∞

−∞
dt1

∫ ∞

−∞
dx2

∫ ∞

0
dy2

∫ ∞

−∞
dt2

δ(∂t1HC(x1, y1, t1))

δ(∂tC(x, t))

×G3D(x1, y1,HC(x1, y1, t1);x2, y2,HC(x2, y2, t2)) δ(t1 − t2) ∂t2HC(x2, y2, t2)

= −δF1D[C]

δC(x, t)
= frestoring + frandom(C) . (8.48)

We have purposefully written the left hand side in a lenghty format to make it clearer how on
actually goes from Eq. (8.45) (equivalently, Eq. (8.47)) to Eq. (8.46) (equivalently, Eq. (8.48)).
One simply solves the linearized version of Eq. (8.47) and substitutes the solution HC back
into the dissipation functional R2D to produce R1D[∂tC]. It is the variation of this functional
with respect to velocity ∂tC(x, t) which constitutes the left hand side of Eq. (8.48). Of course,
most of the integrals can be done and the deterministic part of the linearized equation motion
becomes local in the Fourier space. On the right hand side of Eq. (8.48) we do exatly the same
thing: We substitute HC into F2D and integrate out the y-dependence thus producing F1D[C]
for the contact line which lives in a lower dimensional space than the meniscus. Since the
procedure is exactly the same on both sides, we have not expanded the variational derivative
δF1D/δC(x, t) explicitly. Instead, we have said that it consists of two pieces: The deterministic
restoring force is denoted by frestoring and the random pinnig force is frandom. The latter
force appears because of the chemical composition is not homogeneous on the wall and its
specific form is derived in App. C.1. In next section we will see what these equations look
like in the Fourier representation after linearizing their deterministic parts.

8.5 Partially linearized equation of motion for contact line

To progress analytically further, we linearize the deterministic parts of the equations of
motion, that is the Green functions appearing in Eq. (8.47) and Eq. (8.48). Linearization
is performed around the mean meniscus profile H0(y, t) (the detailed derivation is given in
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App. C.5). We assume that without any random inhomogeneities on the wall(s), the meniscus
assumes the shape H0, which we sometimes call the zeroeth order solution for the meniscus. It
can be a funtion of both spatial coordinates x and y, but assuming that the wall is completely
homogeneous, H0 = H0(y, t), i.e. the zeroeth order solution only dependes on the coordinate
perpendicular to the wall. The fluctuations of the meniscus induced by random distribution
of more or less wettable regions of the solid wall are denoted by h = h(x, y, t). Let the full
solution of the meniscus be denoted with H. Then,

H(x, y, t) = H0(y, t) + h(x, y, t) ; C(x, t) = C0(t) + c(x, t) . (8.49)

where we have also defined the corresponding elements of the full contact line profile C. It
consists of the height of the contact line on the pure wall C0 and the fluctuating part c arising
from the randomness in the local wetting properties. It is convinient to assume that the
zeroeth order solutions and the fluctuating contributions are tied together through

H0(0, t) = C0(t) ; h(x, 0, t) = c(x, t) . (8.50)

These choices suffice to respect the definition H(x, 0, t) ≡ C(x, t). In the simplest case of one
vertical wall one obtains,

H0(y, t) ≈ C0 − αy , (8.51)

h(x, y, t) ≈
∫

dk eıkx gqs(k, y) c(k, t) (8.52)

The magnitude of the coefficient α is fixed by the contact angle θ, which is a known function of
the parameters of the free energy. The dependence of h on c as given in Eq. (8.52) holds only
in the so called quasi-stationary approximation only, which is derived in App. C.11.1. Thus,
in the single wall case we define the quasi stationary kernel function gqs(k, y) ≡ exp(−|k|y).
For double wall set-up with solid walls at y = 0 (a-wall) and y = L (b-wall),

H0(y, t) ≈ C0 +K(y2 − Ly) , (8.53)

h(x, y, t) ≈
∫

dk eıkx gaqs(k, y) c
a(k, t) +

∫

dk eıkx gbqs(k, y) c
b(k, t) (8.54)

The quasi stationary kernel for double wall system, gaqs(k, y) = sinh(|k|(L − y))/ sinh(|k|L)

reduces to e−|k|y in the single wall limit L→ ∞. The other kernel, gbqs = sinh(|k|y)/ sinh(|k|L)
vanishes as the b-wall recedes to infinity. The explicit representations of the kernel functions
gaqs and gbqs in Fourier and real space have given in App. C.11.1.

In the rest of this section we will concentrate on the evolution equation of the contact line
in the single wall case. As we have seen, the real space form of the evolution equation (8.47)
is a lengthy one. Linearization of the Green’s function G3D given in App. C.3 makes it even
lenghtier giving rise to three distinct pieces on the left hand side. Substitution of

HC = H0 + hC = H0 +

∫

dx′ gqs(x− x′.y) c(x′, t) , (8.55)

and separating out the deterministic terms, which are functions of C0 but not c, we get a
nested convolution chain on the left hand side:

1

M

∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

0
dy1

∫ ∞

0
dy2 gqs(x− x1, y1)×
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{

G3D(x1, y1,H0(y1, t);x2, y2,H0(y2, t))

∫ ∞

−∞
dx′2 gqs(x2 − x′2, y2) ∂tc(x

′
2, t)

+∂z1G3D(x1, y1, z1;x2, y2,H0(y2, t))|H0

∫ ∞

−∞
dx′1 gqs(x1 − x′1, y1) c(x

′
1, t) ∂tH0(y2, t)

+∂z2G3D(x1, y1,H0(y1, t);x2, y2, z2)|H0

∫ ∞

−∞
dx′2 gqs(x2 − x′2, y2) c(x

′
2, t) ∂tH0(y2, t)

}

= frestoring + frandom(C) . (8.56)

On the third line the substitution symbol |H0 ≡ |H0(y1,t) because the derivative is taken with
respect to z1. On the fourth line |H0 ≡ |H0(y2,t) since the Green’s function is differentiated
with respect to z2. Though not obvious immediately, even after linearization of the Green’s
function, Eq. (8.56) will still be strongly nonlinear since the random fluctuations of the surface
tension term frandom will be dependent on the contact line position C(x, t). The (linearized)
non-local restoring force derived in App. C.18 on the contact line can be expressed in the
following form subject to same approximations mentioned above:

frestoring = −2

∫ ∞

−∞
dx1

∫ ∞

0
dy1

∫ ∞

−∞
dx′1

{[
∂x1gqs(x− x1, y1)∂x1gqs(x− x′1, y1)

+ ∂y1gqs(x− x1, y1)∂y1gqs(x− x′1, y1)
]
c(x′1, t)

}
. (8.57)

As said above, the explicit form of the Green functions G3D and gqs, which depend on the
geometery of the set-up, will be derived later. In this section will state the results for the
single wall case, which is the simplest.

Collecting the results presented fully in App. C.3 and App. C.15.2 yields the following
equation of motion for fluctuating Fourier modes of the contact line:

|k|−2f1(C0|k|) ∂tc(k, t) +
∂tC0

|k| f2(C0|k|) c(k, t) = −M δF1D [c]

δc(k, t)
. (8.58)

The scaling function f1 is related to the contribution originating from expression PID. It
scales like f1 ∼ |k|C0 for |k|C0 � 1; for |k|C0 � 1 f1 approaches a constant. The other scaling
function f2 goes to different constants at these limits. In later calculations of the dynamic
critical properties we have used the following approximations of the functions f1 and f2:

f1 ≈ 1 − exp(−2C0|k|) ; f2 ≈ 1 + exp(−2C0|k|) . (8.59)

For comparison, the equation of motion of an imbibition front [4] reads

|k|−1fI1(C0|k|) ∂tck(t) + ∂tC0fI2(C0|k|) c(k, t) = −M δF1D [c]

δc(k, t)
, (8.60)

where C0 is the mean position of the fluid front and c(k, t) denotes the Fourier modes of the
fluctuations around C0. As seen from the definitions of the functions [4] fI1 and fI2 are the
same as the approximations used for f1 and f2. The only difference between the left hand
sides of the equation of motion of imbibition and contact line problems is the ’extra’ factor
of |k| in the latter. Its originates from the functional dependence of h on c.

The driving force originating from the functional derivative on the right hand side of the
equation of motion (8.58) is given by

δF1D [c]

δc(k, t)
= Γ(k) c(k, t) +Ak(c) , (8.61)
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where the restoring force is denoted by Γ and Ak is the projection of the wall potential to
the solid-fluid phase boundary. Correlations of the stochastic force have been discussed in
Sect. 8.3. Specific forms of the restoring force will be considered in Sect. 8.8.

8.6 Approach of equilibrium

As seen from Eq. (8.47) the Laplacian appearing on the right hand side of the evolution
equation of the meniscus, makes it necessary to impose a boundary condition to be satisfied
at the wall y = 0 (in the case of a single wall). In general we can either say that the height of
the contact line is given at the wall (i) or that the gradient of H is given (ii). The full model
for the meniscus dynamics is then given by

(i) Meniscus equation of motion + Dirichlet boundary condition (8.62)

H(x, 0, t) = C(x, t) .

(ii) Meniscus equation of motion + von Neumann boundary condition (8.63)

∇nH(x, y, t)|y=0 = tan θ(x, t) .

Both choices (i) and (ii) should lead to the same result. In other words, the bulk evolution
equation for the phase field φ also determines how the phase boundaries move. The boundary
condition for H must be so chosen that the behaviour of φ(x, y,H(x, y, t), t) = 0 fixed by
Eq. (8.36) is faithfully reproduced. We will show in Sect. 8.7 how the dynamic contact angle
can be expressed in terms of the contact line position or vice versa.

Equilibriation takes place when the meniscus reaches the equilibrium contact angle θ0(x),
which is a (known) function of the chemical surface structure of the wall. If the wetting
properties of the wall are homogeneous, the equilibrium contact angle will not depend on
the spatial position x measured along the wall. For a set-up with single vertical wall the
equilibrium meniscus shape should be given by H = C0 − α0y, i.e it is a straight plane with
contact angle θ0 = π/2 − α0 crossing the solid wall at height C0. The value of θ0 is a
function of the the surface tensions as discussed in Sect. 8.2. When there are two vertical
walls present equilibriation without gravity takes place when α = 0, i.e. when the meniscus
becomes a straight horizontal plane with no curvature. With zero curvature there cannot be
any pressure difference (or chemical potential difference in this version of our model which
has no hydrodynamics and therefore no real pressure field) across it unlike in the case of a
curved meniscus.

In equilibrium we assume that Eq. (C.207), which determines the behaviour of the mean
meniscus position H0(y, t), is satisfied. In other words,

IA(y, t) =
Mσ

4
∂2
yH0(y, t) + Λ̃H0(y, t) , (8.64)

where the projected surface contribution of pure walls is denoted by Λ̃H0 . In equilibrium
IA ∝ ∂tH0 = 0 from which it follows that ∂2

yH0 = −(4M/σ)Λ̃H0 . If we have supplied the

boundary conditions in such a form (see discussion above) which gives rise to a non-zero Λ̃H0

independent of y, we get a parabolic equilibrium profile. There can be other mechanisms,
too, which give rise to equilibrium curvature of the meniscus. For example, modeling a stripe
defect (App. 8.8) would give rise an additional constant contribution to the curvature due to
the Lagrange’s multiplier guaranteeing the conservation of the fluid volume.
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Next, we discuss the fluctutations around the equilibrium profile H0, which is assumed
to be reached in one of the cases mentioned above. In App. C.9 we derived the following
equation for the fluctuation modes hk of the meniscus:

g1(k, t) ∂thk(t) + g2(k, t)hk(t) = −Mσ

4
k2 hk(t) . (8.65)

Let us study now how the zero mode of Eq. (8.65) behaves if the contact line has stopped mov-
ing: Eq. (8.64) is satisfied by H0 = const when boundary conditions are such that Λ̃H0(y, t) =
0. Furthermore, since ∂tH0 = ∂tC0 = 0 and because g2(k, t) ∝ ∂tC0, it must be that g2 = 0.
The linearized meniscus equation of motion reduces to g1(k, t) ∂thk(t) = −(σ/4)k2hk(t). For
k → 0 the right hand side of previous equation goes to zero and therefore the zero mode of
the fluctuations becomes zero for suitably chosen initial condition. In fact, this is required
by self-consistency of our assumption given in Eq. (8.49): If hk=0 6= 0 it has to be included in
the deterministic H0. It should be noted that even after the average position of the contact
line has become stationary (∂tC0 = 0), locally the contact line is still searching for minimum
energy configuration and the non-zero modes become static only after the local equilibrium
contact angles fixed by the wall impurities have been attained. The decay time constant can
be estimated from

hk(t) ∼ exp

(

−
∫ t

0
dτ

Mσk2

4g1(k, τ)

)

hik , (8.66)

which is the solution of the fluctuating meniscus modes in the case of fixed mean contact line
position determined by ∂tC0 = 0. The ’initial’ condition hik is given by the meniscus shape
at the moment when ∂tC0 becomes zero. In reality the approach of pinning height can very
slow. Using the results of Sect. 8.7 we can obtain a rough estimate of the life time τk of
perturbations:

τk ≈
C0

Mσk2
. (8.67)

The result holds only for modes in the local regime where C0k � 1.

8.7 Equation of motion for the meniscus: memory effects

In this section we study the equation of motion for the liquid-gas interface and show that
the combined system (contact line and meniscus) has a memory, i.e. the changes in the
morphology of the contact line will affect the motion of the meniscus for some time, not
just instantaneously. We will show this by demonstrating that the evolution equation of the
meniscus starts resembling a diffusion equation on certain time and length scales.

In the following we will concentrate on modes satisfying the constraint C0(t)k � 1, which
determines the so called local regime. In this regime the equation of motion will be local in
real space; in Fourier space only even powers of wave vectors will appear. From Eq. (8.65)
we obtain

∂thk(t) = −σ̃k2 hk(t) , (8.68)

where σ̃ ≡Mσ/(4g̃1). In real space we have the following equivalent boundary value problem

{

∂th(x, y, t) = σ̃∇2h(x, y, t) .
h(x, 0, t) = c(x, t) .

(8.69)
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Strictly speaking, one should be more carefull with going from Fourier to real space because
Eq. (8.68) is only valid for wave vectors C0(t)k � 1. For larger values of k one should take
into account the full k-dependence of the functions g1 and g2 appearing in Eq. (8.65). The
correction terms arising from the inclusion of the full k-dependence will be neglected in the
following.

The full solution of the boundary value problem of the type (∂t−σ̃∇2)ψ = ρ with Dirichlet,
von Neumann or mixed boundary conditions is given by [286]:

ψ(r, t) =

∫ t

t0
dt′
∫

V
dV ′GH(r, t; r′, t′) ρ(r′, t′) + σ̃

∫ t

t0
dt′
∫

S
dS′

[

GH(r, t; r′, t′) ∂n′ψS(r′, t′)

− ∂n′GH(r, t; r′, t′)ψS(r′, t′)
]

+

∫

V
dV ′GH(r, t; r′, t0)ψ(r′, t0) , (8.70)

where GH is the Green function of the diffusion equation (heat kernel) respecting the bound-
ary conditions and σ̃ plays the role of the diffusion constant. The source term is denoted by
ρ and the initial condition by ψ(r, t0). Naturally it is assumed that t > t0. The boundary
of domain V is S; ψS(r, t) denotes the point r on S and ∂nψS the component of ∇ψ along
the outward normal dS. Depending on whether we choose to use Dirichlet or von Neumann
boundary data, only one of the two boundary data terms on the right hand side of Eq. (8.70)
will survive, because the Green function GH

2D is assumed to fulfil homogeneous boundary
conditions.

If t0 would be taken to be the time when the initial meniscus was a flat plane, dropping the
last term of Eq. (8.70) would be rigorously justified. However, since Eq. (8.69) becomes valid
only when the terms proportional to the velocity of the contact line ∂tC0 can be neglected, the
meniscus has had enough time to assume some non-flat shape. For the discussion of memory
effects the last term is not important in the sense that it doesn’t contain any information on
the configurations at the intermediate times t′ ∈ (t, t0) unlike the second term in Eq. (8.70).
Forgetting the initial condition and source terms we can now write down the solution. For
von Neumann data we get

h(r, t) = σ̃

∫ t

t0
dt′
∫ ∞

−∞
dx′GH2D(x, y, t;x′, 0, t′)α(x′, t′) . (8.71)

Above we utilized the assumption of small α: ∂yh|0 = tanα ≈ α. For the Dirichlet problem
posed in Eq. (8.69) we obtain:

h(r, t) = −σ̃
∫ t

t0
dt′
∫ ∞

−∞
dx′ ∂y′G

H
2D(x, y, t;x′, y′, t′)|y′=0 c(x

′, t′) (8.72)

Choosing the Dirichlet boundary data we see that for ∂tC0 ≈ 0 both the fluctuations of the
local contact angle θ(x, t) = π/2 − α(x, t) and the fluctuations of the meniscus h(x, y, t) can
be expressed with the aid of a memory kernel:

h(x, y, t) =

∫ t

t0
dt′
∫ ∞

−∞
dx′Kh(x− x′, y, t− t′) c(x′, t′) + hi(x, y, t) ; (8.73)

α(x, t) =

∫ t

t0
dt′
∫ ∞

−∞
dx′Kα(x− x′, t− t′) c(x′, t′) + αi(x, t) , (8.74)

where we have also taken into account the modifications due to the initial conditions hi and
αi at time t0. They can be easily worked out from Eq. (8.73). Explicitly,

Kh(x− x′, y, t− t′) ≡ −σ̃ ∂

∂y′
GH2D(x, y, t;x′, y′, t′)|y′=0 ; (8.75)
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Kα(x− x′, t− t′) ≡ −σ̃ ∂2

∂y∂y′
GH2D(x, y, t;x′, y′, t′)|y = 0

y′ =0
. (8.76)

First of all, it should be remembered the only constant solution of Eqs. (8.73) and (8.74) is
the trivial one: h = 0, α = 0. These equations describe the fluctuations and any constant
contribution has been included in the zeroeth order term H0. Secondly, we note that it doesn’t
suffice to set y = 0 in Eq. (8.72) or in Eq. (8.73) to generate an integral equation for the
contact line c, since both these formulae were derived under the assumption that the mean
height C0 has already become almost stationary. Eq. (8.73) doesn’t say anything about how
the flucutations of the meniscus (or the contact line) evolved while the mean interface height
was traversing towards its initial position at t = t0. This information is buried in the term
hi(x, y, t). To take into account the time developement as well as the random fluctuations
of the wetting properties of the wall, one should use Eq. (8.58). Similar criticism applies to
the formula for the dynamic contact angle which was derived for α � 1 by differentiating
Eq. (8.73) with respect to y. To get an expression for the dynamic contact angle during
movement of the average contact line position C0(t) (say, as a function of driving chemical
potential gradient) one has to resort to different solution scheme because the Green function
formula above only works for operators of the type ∇2.

By substituting Eq. (8.73) into the evolution equation of the contact line (Eq. (8.48)) we
can formally cast the contact line dynamics into a form of the generalized Langevin equation
which in the Fourier space reads

∂tck(t) +

∫ t

t0
dt′Skk′(t− t′) ck′(t

′) = fr , (8.77)

where Skk′ is the memory kernel matrix (App. C.16). Summation is implied over the entry k ′.
The random noise term fr is not thermal but quenched so the full equation is nonlinear, after
all. The emergence of memory terms is, of course, immediately clear from the full equation
of motion of the meniscus (Eq. (8.47)) after one replaces the fluctuation part of the terms
H with h given in Eq. (8.73). Drastic approximations are needed, though, to unravel the
physics.

8.8 Stripe defects and restoring force

Restoring force is the (deterministic) force opposing the bending of the contact line. The line
is being bent either by geometric properties (roughness of the solid walls) or by different local
wetting properties arising from the chemical composition of the walls. These two effects result
in different types of terms in the equation of motion of the contact line and hence, one cannot
be replaced fully by the other in some effective sense. As stated in the beginning of Chap. 8
we will only concentrate on chemically inhomogeneous but completely smooth solid surfaces.
The chemical composition such as that of a polycrystalline material is said to give rise to
a regular defect, when the local wetting properties of a region having a simple well defined
geometric shape is different from the rest of the wall. For example, take the wall to be situated
on plane y = 0, which means that its surface of the wall is spanned by coordinates x and z.
If the local wetting properties of a stripe like region (−Ld/2 ≤ x ≤ Ld/2, −∞ < z < ∞)
are homogeneous and different from the rest of the wall, we call it a stripe defect with defect
width Ld. From our results it is clear that the form of the force is independent of the precise
form of the defect geometry. In contrary, the force is dependent on the overall geometry
(whether there are two walls or just one, for instance).
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Let us now see how the physical set-up affects the form of the restoring force per unit
lenght, Γ(k). The first derivation was presented by Joanny and de Gennes (JdG) who obtained
a linear wave vector dependence:

ΓJdG(k) = θ2
0σ|k| . (8.78)

In the previous equation σ denotes the liquid-gas surface tension and θ0 is the contact angle.
A similar derivation was presented by Pomeau and Vannimenus in Ref.[287]. The authors
included the effect of gravity which was neglected in the derivation of Eq. (8.78). The result
in the units of capillary length σ/(gρ) is

ΓPV (k) = ϑ−
3
4

(

1 + ϑ−
1
2k2

) 1
2 , (8.79)

where the geometric factor ϑ ≡ 1 + (tan θ0)
−2. The contact angle θ0 = arctan ∂yH0|y=0.

Eq. (8.79) is a slight generalization of Pomeau and Vannimenus which interpolates correctly
between the small and large values of distance y as compared to capillary length. Equivalently,
in Fourier space one can reproduce the JdG result by considering wave vectors k/ϑ1/4 � 1
for θ0 � 1. In this chapter we are studying a set-up where there are two walls instead of
just one and no gravity. Inclusion of gravity is discussed in Sect. 10.2 This change in the
global geometry changes the form of the kernel Γ changes again. In the units of L, the wall
separation, we get

Γ2W (k) = σ|k| coth(|k|L) (8.80)

All of these three kernels become similar for large enough values of the wave vector |k|. To
get a nonzero value for the kernel one needs either gravity or a finite system (finite wall
separation for the two wall set-up). The detailed derivation of the restoring force Γ2W has
been presented in App. C.17. It should be noted that the factor θ2

0 present in Eq. (8.78) is
missing from our result due to the different choice of coordinates better suited for contact
angles close to π/2. Even when the liquid-gas surface is exactly perpendicular to the solid
wall, there is a finite restoring force resisting bending of the line.

Based on the form of the restoring force for the two-wall set-up, it is straightforward to
write down the relationship existing in equilibrium between the contact line profile (C(x, t))
and the local wetting properties of the solid wall (Γ):

C(x) =

∫ ∞

−∞
dx1

∫ ∞

0
dq
κ(x,C(x)) cos(q(x− x1))

Γ2W (q)
. (8.81)

The local surface tension fluctuations have been denoted by κ(x, z) ≡ (σsl(x, z)−σsg(x, z))/σ,
where σ is the liquid-gas surface tension. The restoring force kernel Γ2W is given in Eq. (8.80).
Clearly more complicated defect geometries can be considered with the aid of Eq. (8.81) than
just a single stripe defects. For example, we can easily find out the emerging contact line
profile for an array of stripe defects by making κ(x, z) a periodic function in x. When con-
sidering defects which have unlimited extension in the z-direction, the non-linearity present
in Eq. (8.81) vanishes and we have

C(x) =

∫ ∞

−∞
dx1

∫ ∞

0
dq
κ(x) cos(q(x− x1))

Γ2W (q)
. (8.82)

For a single stripe defect κ = k2 = const when |x| < Ld and otherwise κ = k1, where k1 is
another constant. The width of the defect is Ld. As pointed out at the end of App. (C.18),
in order for the integral to exist, it is important that Γ2W (q) does not go to zero too fast (or
at all). Thus, we see that one does not even have to introduce gravity to have the desired
property limk→0 Γ(k) → const: Confinement of the fluid between two walls suffices.
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8.9 Dissipation channels

Wetting of defects having regular geometry is just application among many others. Using the
formalism presented it is possible to study the dynamics of these effects, not just in thermal
equilibrium properties. Another dynamics related application has to do with the foundations
of dissipation channels close the moving contact line. Ref. [288] utilizes a variational formalism
similar to ours. They study the spreading dynamics of a sessile droplet, which relaxes from
the initial nonequilibrium configuration to equilibrium its shape obeyin the following equation
of motion:

δR1D[r, ṙ]

δṙ(t)
= −F1D[r]

δr(t)
. (8.83)

The radius of the droplet is r(t). The free energy is just the surface free energy of the droplet,
which can be parametrized in terms of the height ξ of the droplet from solid:

F1D[r] = πr2(t)(σsl − σsg) + 2πσ

∫ r(t)

0
dρ ρ

√

1 + (dξ/dρ)2 . (8.84)

Owing to the volume conservation of the liquid, there is a functional relationship between
the height and the radius, which must be taken into account when taking the variational
derivative of F1D with respect to r.

The dissipation functional is not constructed through projections as in our approach.
Instead, the authors make use Ref. [260], where the dissipative contributions to the contact
line motion are divided into three channels:

R1D = Rl +Rw +Rf . (8.85)

The origin of the first term on the right hand side of Eq. (8.85) lies in the asymmetric hopping
of the liquid molecules between the adsorbtion sites of the solid surface as they are pushed
away by the advancing liquid edge [288]. This term has the form

Rl = 2πr
ζ0ṙ

2

2
, (8.86)

where ζ0 is a friction coefficient. The second term, Rw, accounts for the dissipation due to
viscous fluid flow inside the droplet:

Rw ∝ rηṙ2 ln(r/a) , (8.87)

with a microscopic cut-off a. The viscosity of the fluid is η. Finally, the last channel, Rf , is
due to the dissipation in the precursor film:

Rf ∝ ηṙ2

θa
, (8.88)

where θa is the apparent contact angle. Even though all these terms (Rl, Rw, Rf ) are pro-
portional to the square of the velocity, they cannot be derived from our Rayleigh dissipation
functional, which, dispate being proprotional to the square of the velocity, only conveys the
effects of fluid’s mass conservation. After all, the nontrivial kernel G3D results from the
inversion of the ∇2-operator on the right hand side of the fundamental bulk equation of
motion (8.36).
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How to derive the dissipation channels more rigorously, without resorting to a semi-
phenomenological contact line equation (8.83)? As all the channels result from the effect of
hydrodynamics of the fluid molecules, we cannot rely on an entirly diffusive mass transport
model used in this chapter. The motion of the fluid molecules have to be taken into account by
proper coarse-graining of the hydrodynamic degrees of freedom combined with the diffusive
phase-field model given by Eq. (8.36) This is the subject of Chap. 9. However, in the current
context we do not take the modeling as far as to be able dexcribe processes giving rise to the
term Rl. We only show how to systematically derive an equation of motion for a system where
the conservation of the momentum of the fluid is to be accounted for. It remains as a future
project to try to justify at least the terms Rw and Rf through a two stage projection process
which we have described in this chapter. When properly done, it may be possible that the
conservation of the fluid volume will affect the form of the dissipative terms above. It will be
especially interesting to compare with theories which are based on solid physics principles but
which use less systematic procedure to derive the time evolution of triple line. For example,
Ref. [289] gives the following dynamics for the contact line motion on a heterogeneous surface:

3ηl

θ0

∂c

∂t
= −σθ2

0

∫

dx′ ΓPV c(x
′, t) −H(c(x, t) + C0, z) . , (8.89)

The equilibrium contact angle is θ0 and l is a numerical constant originating from elimination
of divergence of the viscous stress at the contact line. The random field H(x, z) corresponds
to our random wetting force Ak. The right hand side coincides exactly with our result of
Eq. (8.61) when the restoring force takes into account the effect of gravity: Γ = ΓPV given in
Eq. (8.79) and contact angle θ0 is assumed to approach zero. When the projection formalism
is applied to the fully hydrodynamical model (which will be briefly discussed in Sect. 10.2
for non-fluctuating contact line) we expect the friction term on the left of Eq. (8.89) to be
modified due to the presence of the Green’s function G3D, which takes care of the volume
conservation. Similar comments apply to a recent proposition [290] to model the contact line
motion with the aid of Model A type of non-conserved phase-field technique coupled with
hydrodynamics. In contrast, the conservation of the fluid has been properly taken into account
in Ref. [291], where contact line dynamics of a diffuse fluid interface is studied using phase-field
description. However, no clear meaning is associated with the order parameter field φ, which
is just referred to as ”measure of the phase”. When the coarse-graining from microscopics is
possible, as is the case here, there will be no uncertanity about the physical interpretation of
the macroscopic fields, such as φ. We have already considered some possible interpretations
in Sect. 6.4.2, where mass density and concentration representations are compared. The
discussion is continued in Sect. 9.5.3.



Chapter 9

The route to classical

hydrodynamics

9.1 Density functional of solid-fluid system

The interpretation and derivation of the components of the free energy functional are pre-
sented in Chap. 6. There the tools for deriving the effective action (free energy) are discussed
in more detail. The proper derivation based on density functional theory reveals the precise
for Ft should have when expressed in terms of the set of relevant macroscopic variables which
consists of the mass density and momentum densities (velocity) of the fluid as well as the mass
density of the solid. The total free energy Ft of the solid-fluid system can be decomposed
into three parts as

Ft = Fk + Ff + FS . (9.1)

As we are going to utilize a variational principle in most of this work work, we customarily
include also a time integral in the expression of the free energy so that the units of Ft are
actually those of action: [Ft] = [E]s, where unit of energy is denoted by [E]. For more details
on the units of Ft the reader is referred to App. D.1. The first term in Eq. (9.1) is the energy
of the moving fluid elements, which are being constantly kicked by the equilibrium thermal
fluctutations in addition to being subject to macroscopic fluxes imposed through boundary
conditions:

Fk =

∫

dV

∫

dt 1
2φv2 . (9.2)

The form of the kinetic part of the free energy density can be justified in many ways, for
example by Galilean invariance. Another derivation presented in Ref. [240] is based on a
direct cellular coarse-graining technique, which is also discussed in Chap. 6. There we have
also derived the free energy of the inhomogeneous stationary fluid F (Eq. (???)), which we
now split into two pieces: F = Ff + FS .

Ff =

∫

dV

∫

dt
[

1
2 |∇φ|2 + V (φ)

]

, (9.3)

where φ is the density field. For a liquid-gas system the potential has a double well form:
V (φ) = aφ2 + bφ4 as discussed earlier. The remaining piece

FS =

∫

dV

∫

dt (VS − µ0)φ . (9.4)
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The potential VS of the solid wall felt by the fluid particles is called the substrate potential.
The constant (auxiliary) chemical potential µ0 doesn’t play a role in what follows and will
be dropped from further analysis.

The substrate potential VS also enables the modeling of the variable thickness of the
absorbed liquid film under complete wetting conditions in the direction normal to the solid
surface. As this was not relevant for the applications we considered in Chap. 8, we used there
another (analytically simpler) form of the fluid-solid free energy, which also allowed us to
establish the connection between the phase-field and density functional theories. As argued
in Sect. 7.3, the physics remains the same if we replace the sum Ff + FS given above with
the functional (Sect. 7.3)

F =

∫

dV

∫

dt
[

1
2 |∇φ|2 + V (φ, ρ,A)

]

, (9.5)

where ρ is the density field of the solid and A is the wall potential, which plays a role similar
to the substrate potential VS as far as the local surface tensions are considered even though its
effects are macroscopically relevant. The wall potential A is thus not a macroscopic relevant
variable in the same sense as ρ, φ and v. Setting the value of φ = A in D ′ (= domain of
the solid), where A is a given local function, determines the local wetting properties of the
solid surfaces in the system. Alternatively, one can choose to change the substrate potential
VS in order to change the local surface tensions. As shown in Ref. [262], the wall potential,
which vanishes in the fluid phase, is sufficient to reproduce Young’s law governing equilibrium
contact angle formation.

In the next section we will derive the evolution equations of the coarse-grained, macroscop-
ically relevant variables (e.g. mass and momentum densities). The form of these equations is
dictated by the form of the free energy, which we have been able to derive from microscopics.
An important related issue is to what extent can the boundary conditions of the evolution
equations of the relevant variables be derived from the microscopics. This question is not
commonly pondered in the literature: the boundary conditions are usually imposed in such
a way that the problem becomes mathematically well-posed and respects the experimentally
observed facts. In the forthcoming chapters we will demonstrate that the effective boundary
conditions on a macroscopic level are readable from the form of the free energy. Indeed, in
Ch. 11 we demonstrate that a substrate potential, which does not vanish in the fluid phase,
does play a role in the emergence of the solid-fluid boundary condition for the velocity of the
fluid elements. This effect is not accounted for by a wall potential A which vanishes in the
fluid domain. To model the interaction between the fluid and the solid at this level can be
done by letting A = A(x, y, z) 6= 0, even when z ∈ D (D = fluid domain) in the vicinity of
the solid boundaries. This extention is not used, however, in any of the current applictions
of this work.

9.2 Evolution of coarse-grained fields

Corresponding to the splitting of the free energy, we will denote the chemical potentials
arising from taking the variation with respect to φ with the same subscripts. Thus,

µk ≡
δFk
δφ

=
1

2
v2 ; µf ≡ δFf

δφ
; µS ≡ δFS

δφ
= VS . (9.6)
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We note that µf is the same chemical potential µ which we used in Sect. 8.4. The total
chemical potential is obviously

µt ≡
δFt
δφ

= µk + µf + µS . (9.7)

This information will be used to derive the Poisson bracket terms in the equation of motion
for the velocity (momentum) field v. We denote the contribution to ∂tvi due to the nonlinear
coupling between the velocity and the order parameter field φ as Qµν , where µ and ν refer to
the labeling of the components of the order parameter. The order parameter ψ is a column
vector whose transpose is below denoted by row vector ψT:

ψT ≡ [ψ0, ψ1, ψ2, ψ3]
T = [φ(x, t), vx(x, t), vy(x, t), vz(x, t)]

T . (9.8)

In our hydrodynamic formulation, we have four dynamically relevant components ψµ: the
density field φ is the zeroeth component of ψ; the three remaining components of ψ consist of
the three components of velocity (momentum density) vs (s = x, y, z, or s = 1, 2, 3). As will
be discussed at the end of this section and in Sect. D.2.2 we should really use the momentum
density as the order parameter and write instead of Eq. (9.8),

ψT ≡ [ψ0, ψ1, ψ2, ψ3]
T = [φ(x, t), jx(x, t), jy(x, t), jz(x, t)]

T . (9.9)

However, since the equations of motion appear more familiar in the velocity representation
we can use the variable v directly for the purposes of Sect. 9.3 and Sect. 9.4.

The simplest possible form of the equation of motion for the order parameter field, which
guarantees relaxation to Gibbs equilibrium characterized by Ft and which incorporates the
macroscopic Poisson bracket in an intuitive way, is given below:

∂tψµ(x, t) = Nµ − Γµν
δFt[ψ]

δψν
+ ηµ(x, t) . (9.10)

Einstein summation convention for repeated indices is used. The various quantities appear-
ing in the previous formula are defined as follows: Γµν is the dissipative coefficient (∝ ∇2

for conserved dynamics) and ηµ is the thermal noise field, whose correlations depend on
Γµν . For conserved dynamics the noise is conserved, which means that the thermal aver-
age 〈η(x, t)η(x′, t′)〉 ∝ ∇2δ(x − x′)δ(t − t′). More complicated forms of the noise correlator
are encountered in Sect. 9.5.2. Finally, Nµ is the Poisson bracket term producing couplings
between different component fields. Its exact form will be derived in App. D.4:

Nµ = −
∫

dx′
(

Qµν(x,x
′)
δFt[ψ]

δψµ(x′)
− T

δQµν
δψµ(x′)

)

. (9.11)

To get Nµ we need to compute Qµν , which is defined to be the Poisson bracket of the
macroscopic component fields:

Qµν(x,x
′) ≡ {

ψµ(x), ψν(x
′)
}
. (9.12)

Typically the latter term in Eq. (9.11) turns out to be zero or negligible for other reason.
In the current construction it is equal to zero as shown below. Since all Poisson brackets
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Qµν are proportional to a derivative of the delta function, it suffices to study just the case
Qµν = {vs(x), φ(x′)} (µ = s = 1, 2, 3 and ν = 0). We obtain,

∫

dx′ T
δQµν
δψµ(x′)

= T

∫

dx′ δ

δφ(x′)



φ(x)
∂δ(xs − x′s)

∂xs

∏

r 6=s
δ(xr − x′r)



 (9.13)

= T V 2/3
∫

dx′s δ(xs − x′s)
∂δ(xs − x′s)

∂xs
= 0 . (9.14)

We have normalized the delta functions at zero equal to the linear size L of the system
δ(0) = V = L3, where V is the total volume. The last integral is zero because we are
integration an odd function over the symmetric interval. Similiar argumentation holds for
the Poisson brakets of the momentum densities, as well. If one treats v as the fundamental
variable and relates it to the momentum density the latter term on the right hand side of
Eq. (9.11) can become non-zero. This is another indication that it is really the momentum
field which should be considered more fundamental than the velocity field.

9.3 Momentum balance

We first derive the equation of motion of the momentum field j of the fluid, which can be
recast in a little bit different but more familiar form in terms of the velocity field v. As
argued above, we can drop the second term on the right hand side of Eq. (9.11) yielding

Ns = −
∫

dx′Qµs(x,x
′)
δFt[ψ]

δψµ(x′)
(9.15)

= −
∫

dx′ {vs(x), φ(x′)} δFt
δφ(x′)

−
∫

dx′ {vs(x), vj(x
′)} δFt

δvj(x′)
. (9.16)

The number of spatial dimensions is three and the time dependence of the fields has been
suppressed. It should be noted that the couplings mediated by the Poisson bracket terms lead
to renormalization of both reactive and dissipative coefficients [5]. In other words, Poisson
bracket terms contain both reactive and dissipative terms. The brackets are evaluated in
App. D.1. We obtain

{vs(x), φ(x′)} = ∂sδ(x − x′) ; (9.17)

{vs(x), vj(x
′)} =

(vs(x
′) − vs(x))

φ(x)
∂jδ(x − x′) +

(vj(x
′) − vj(x))

φ(x′)
∂s

′δ(x′ − x) . (9.18)

The abbreviatation ∂i denotes differentiation with respect to xi, and ∂i
′ denotes differentiation

with respect to the primed coordinate x′i.
The result of applying the kernels defined in Eq. (9.17) and Eq. (9.18) on an arbitrary

function f(x) is seen by partial integration which allows us to get rid of the derivatives of
the delta functions:

∫

dx′ {vs(x), φ(x′)} f(x′) = ∂sf(x) ; (9.19)
∫

dx′ {vs(x), vj(x
′)} f(x′) = −vs(x)φ−1(x)∂jf(x) − ∂s

[

vj (x)φ−1(x)f(x)
]

+ vj(x)∂s
[

φ−1(x)f(x)
]

+ φ−1(x)∂j
[

vs(x)f(x)
]

. (9.20)



9.3. MOMENTUM BALANCE 185

After replacing the function with an appropriate functional derivative of the total free energy,
the Poisson bracket contribution to the equation of motion of the velocity field reads

∫

dx′ {vs(x), φ(x′)} δFt
δφ(x′)

= ∂sµt = ∂sµk + ∂sµf + ∂sµS ; (9.21)

∫

dx′ {vs(x), vj(x
′)} δFt

δvj(x′)
= (v · ∇)v − 1

2
∇v2 , (9.22)

where v2 ≡ v2
1 +v2

2 +v2
3 . The velocity dependent term ∇v2/2 present in the expression of ∇µk

cancels out the last term on the right hand side of Eq. (9.22) when the two Poisson brakcet
expressions of Eq. (9.21) and Eq. (9.22) are summed up. Thus, substituting the values of
∇µk and ∇µS into Eq. (9.16) and grouping similar terms together yields

N = − [∇µf + ∇VS + (v · ∇)v ] . (9.23)

The last term in the expression of N is the usual convective term of the Navier-Stokes
equation. The second and third force terms are new. They will be shown to give rise to
boundary conditions at solid-fluid and fluid-fluid boundaries. The full form of the momentum
balance equation is

φ (∂tv + (v · ∇)v) = −∇p+ ηd∇2v + f̃b + η , (9.24)

where we have defined a driving force term f̃b, which is a sum of the new terms mentioned
above:

f̃b ≡ −φ∇µf − φ∇VS . (9.25)

The final term on the right hand side of Eq. (9.24) describes the stochastic momentum
exchange between fluid elements by thermal fluctuations. The emergence of the pressure
term p is explained in Sect. 10.1. Depending on our preferences, different representations of
this equation are possible. Also, the way the boundary conditions of the momentum balance
equation has to be supplemented with, can change its appearance through additional terms.
Some of the choices regarding boundary conditions are discussed in Sect. 11. With reference
to Sect. 10.2 we can rewrite Eq. (9.24) as

φ (∂tv + (v · ∇)v) = −∇p2 + ηd∇2v + fb + η , (9.26)

where, in addition to a new pressure field p2 ≡ p+φµf , we have used a new bulk force density

fb ≡ fcap + fwall , (9.27)

whose effect on the dynamics of the flow will be made clear in the subsequent chapters.
Specifically,

fcap ≡ µf∇φ ; fwall ≡ −φ∇VS . (9.28)

Even though both terms have been expressed in terms of the bulk fields (µf , φ and VS), their
range of action is limited as can be easily seen from the form of the forces. The capillary
force is active close to fluid-fluid boundaries where the density field experiences a sudden
jump making ∇φ a sharply peaked function there. By construction, the same mechanism is
active at the fluid-solid boundary, because the gradient of φ changes there rapidly. However,
it should be remembered, that in this work we do not make any claims about the actual form
of the solid-fluid capillary stress which can be generalized from the more familiar fluid-fluid
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capillary stress [292] As will be shown in Chap. 11, fcap will correctly reproduce the the well-
know Laplace pressure drop across curved phase boundaries. The second term fwall is active
only in the vicinity of the solid walls due to the short range of the substrate potential VS .
Its effects, which are related to the emergence of the no-slip boundary condition of the fluid
elements are discussed Sect. 11.3. There we also briefly discuss how VS effects the magnitudes
of the equilibrium contact angles in a three phase system. It should be remembered, that
when the equilirium contact angle formation is concerned, one should either use the wall
potential A, which we have introduced in Sect. 9.1, or the substrate potential VS since their
effect is the same.

9.4 Mass balance

In this section we derive the equation of motion of the mass density field φ, which turns
out to take the form of the Model B of critical dynamics with an extra convective term. In
Sect. 10.2 we study the consequencies of the convective term in the equation of motion of the
phase-field φ. Proceeding in a similar manner as previously, Eq. (9.10) gives

∂tφ(x) = −Γ00
δFt[φ]

δφ
−
∫

dx′ {φ(x), vs(x
′)} δFt

δvs(x′)
+ η0 . (9.29)

The stochasitic conserved noise is denoted by η0. Thus, the conservation law of mass deter-
mines the correlation function of the noise through the fluctuation–dissipation theorem and
fixes the kinetic coefficient Γ00 = −M∇2. The rest of the couplings are zeroes: Γ0ν = 0 for
ν = 1, 2, 3. The Poisson bracket gives

{φ(x), vs(x
′)} = ∂sδ(x − x′) . (9.30)

Applying it to an arbitrary function f(x) gives

∫

dx′ {φ(x), vs(x
′)} f(x′) = ∂sf(x) . (9.31)

Substitution of δFt/δvs = φ vs for f in Eq. (9.31) gives the explicit form of the Poisson
bracket term: ∫

dx′ {φ(x), vs(x
′)} δFt

δvs(x′)
= ∇ · (φv) . (9.32)

Placing the previous result on the left hand side of the equation gives the following equation
of motion for the order parameter field φ:

∂tφ+ ∇ · (φv) = −Γ00
δFt[φ]

δφ
+ η0 . (9.33)

Using the incompressibility, ∇ · v = 0 and the kinetic coefficient Γ00 = −M∇2 gives

∂tφ+ v · ∇φ = M∇2µt + η0 , (9.34)

where µt = δFt[φ]/δφ. The phase-field model, which we studied previously can be obtained
by leaving out the convective term v ·∇φ as well as the noise term η0. In this approximation
the density field φ obeys just the equation of continuity. There is also no connection with the
heat bath. It should also be noted that the incompressibility condition is an extra restriction
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imposed on the velocity field. It is not deriveable from the present formalism. For a single
homogeneous (constant density everywhere in space) fluid component the mass conservation
equation reduces to the incompressibility condition since the diffusive mass flux vanishes
and by the same token one should also remove the thermal noise to respect the fluctuation-
dissipation theorem. Of course, in reality thermal noise is always present.

It is appropriate to point out that the incompressibility condition really means that the
comoving density (following the fluid) is constant dφ/dt = ∂tφ+v ·∇φ = 0. If the continuity
equation holds (no sources or sinks), together with dφ/dt = 0 it follows that ∇ · v = 0.
Even gases can be taken effectively incompressible over sufficiently small distances, if the
flow velocity is small enough (p.59, prob.6, Ref. [293]). From microscopic simulation point of
view, when the particle velocities up are much smaller than the velocity of sound cs, up � cs
the incompressibility result ∇ · v = 0 holds to a good approximation [294]. Compressibility
of mixtures made of two incompressible components is discussed in Ref. [295].

9.5 Analysis of the equations of motion

In the following two subsections we analyze the equations of motion of single and two–
component fluids more thoroughly. For compliteness sake we have also included the energy
density, even though we have not derived any explicit representation of the dependence of the
free energy density on the (internal) energy density E . The temperature dependence of f(E)
is discussed in Sect. 6.5. Here we settle for contemplating on the zero temperature behaviour
were appropriate.

9.5.1 Single component fluid, two phases

Relevant set of coarse-grained variables of a single component 2-phase fluid is ψ ≡ (φ, j, E),
where the index assignment goes as ψ0 ≡ φ, ψi ≡ ji (i = 1, 2, 3), and ψ4 ≡ E . Instead of the
momentum density one can use velocity. The internal energy density E can be replaced with
entropy s (or Ep defined in App. D.1.4). The equations of motion are

∂tφ = −
∫

dx′ {φ(x), φ(x′)} δFt
δφ(x′)

−
∫

dx′ {φ(x), js(x
′)
} δFt
δjs(x′)

(9.35)

−
∫

dx′ {φ(x), E(x′)
} δFt
δE(x′)

+ Γ0ν∇2 δFt
δψν(x)

+ η0 .

∂tji = −
∫

dx′ {ji(x), φ(x′)
} δFt
δφ(x′)

−
∫

dx′ {ji(x), js(x
′)
} δFt
δjs(x′)

(9.36)

−
∫

dx′ {ji(x), E(x′)
} δFt
δE(x′)

+ Γiν∇2 δFt
δψν(x)

+ ηi .

∂tE = −
∫

dx′ {E(x), φ(x′)
} δFt
δφ(x′)

−
∫

dx′ {E(x), js(x
′)
} δFt
δjs(x′)

(9.37)

−
∫

dx′ {E(x), E(x′)
} δFt
δE(x′)

+ Γ4ν∇2 δFt
δψν(x)

+ η4 .

In Eq. (9.36) the index i takes values in the set {1, 2, 3} correponding the to three momentum
currents. The structure of all equations is the same: on the right hand side there are first
the reactive terms which give couplings between the different coarse-grained variables. The
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last two terms describe dissipation of (free) energy and thermal fluctuations, which quarantee
the relaxation to Gibb’s equilibrium state. All dissipative terms are of ’conservation type’
indicated by the presence of the operator Γµν∇2. This is necessary to respect the conserved
nature of the relevant coarse-grained variables. Other choices of dissipative coefficients are
discussed in Sect. 9.5.2. Had some other (non-conserved) variable been used instead, it would
not have been a priori clear what kind of dissipative coefficient one should use. Of course,
the theory still does not say anything about the numerical value of Γµν , which can also be
chosen to be zero.

We begin to analyze the set of equations above by a few observations on Eq. (9.35). The
first (framed) Poisson bracket on the right is zero, it has just been written down for more
symmetric appearance. The next term on the right,

∫
dx′ {φ(x), js(x

′)} δFt/δjs(x′) = ∇ · j,
is the familiar convective term (derived in Eq. (D.57)). The third term describes a coupling
with the energy density and is not present in conventional mass balance equation. Also
the last two terms, which describe dissipation (Γ0ν∇2δFt/δψν) and noise (ηφ) caused by
thermal fluctuations, are absent in the conventional hydrodynamics. However, these terms
are automatically generated through when applying Eq. (9.10). Thus, the formalism described
in the beginning of Sect. 9.4 gives rise to both fluctuation (noise) and dissipation in the mass
balance equation. Noise and dissipation go hand in hand: either they are both present or
absent. Otherwise we have to accept the violation of the fluctuation-dissipation theorem. We
should remember, though, that equations of the form of Eq. (9.35) without thermal noise, have
been studied in other contexts. For example, in Ref. [4] a phenomenological evolution equation
of the Cahn-Hillard type was taken to describe diffusive motion of fluid penetrating a porous
medium. The dissipative term gives also rise to additional nonlinear momentum dependence
due to the kinetic energy term present in Ft: Γ00∇2δFt/δφ = Γ00∇2(−j2/(2φ2)+µf+µS) and
Γ0ν∇2δFt/δψν = Γ0ν∇2(jν/φ) (ν = 1, 2, 3). In traditional model H of critical dynamics this
problem is avoided by scaling away the dependence of the order parameter φ such that the
kinetic energy does not couple mass density with the momentum field. Some consequencies
of this assumption are discussed at the end of App. D.1.2. For small flow velocities it seems
appropriate to disregard the quadratic term in momentum density in the same way as the
nonlinear convective term of the momentum balance equation can be left out.

If strict mass conservation is required the last two terms of Eq. (9.35) have to be left
out and it reduces to the continuity equation of standard form. In case the extra terms are
kept, we have to find a physical interpretation for them. The dissipative term Γ00∇2δFt/δφ
(which is the heart of the phase-field formalism without momentum and energy conservation)
describes the interchange of mass between the liquid and gas phases. Without it the numerical
solution of the pure mass balance equation cannot preserve a phase boundary of fixed internal
width indefinitely. Leaving out the diffusive flux, means that we only have transport through
the convective flux, j = φv, arising from the Poisson bracket between φ and j. The stochastic
terms (ηφ, ηv, ηE) describe the effect of coarse-graining: the thermal fluctuations in the mass
balance formula are caused by uncontrolled ’leakage’ through the walls of the differential
fluid elements by microscopic motion of molecules [293]. Since mass cannot be generated out
nothing, in the context of Eq. (9.35) one possibility to interpret ηφ is to say that it describes
conversion of one phase to the other. Interpreted as a microscopic source/sink term, the
noise ηφ describes condensation of small gas bubbles in liquid phase, or condensation of liquid
droplets in the gas phase. This interpretation has special relevance close to the liquid-vapour
critical point, where the coarse-graining cell size of cellular scheme [240] cannot become
arbitrarily large. In a single phase fluid only continuity equation emerges (both dissipative
and random terms are missing), whereas the momentum and energy balance equations may
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still contain noise [293].
The first two Poisson bracket terms on the right hand side of Eq. (9.36) produce the sum

−(1/φ)∇p + ∇ · P + f̃b where p is the pressure and Pij = (1/φ)jijj is the usual convective
term of the momentum balance equation. For the free energy functional of Eq. (9.1) the
force term f̃b = −∇VS − ∇µf , where VS is the solid wall potential and µf is the chemical
potential of the fluid. Even though the third term on the right hand side of the momentum
balance equation (9.36) gives a sensible contribution, when Ft is replaced with the microscopic
Hamiltonian (App. D.3), the macroscopic contribution will be non-standard. This, of course,
requires that we are able to find a sensible dependence of Ft on the macroscopic energy density
E . This point is further discussed in Sect. 6.5. The choice of the coefficient operator of the
dissipation term of the momentum equation and the properties of the noise are presented in
Sect. 9.5.2.

Finally, we make a few remarks on the reactive contribution to the energy balance equa-
tion (9.37). As shown in App. D.2.1 the convective terms ∇ · j in the mass balance equation
and ∇ · [(1/φ) jj] = ∇ · P in the momentum balance equation are correctly produced if one
uses just the kinetic energy part Fk[φ, j] of the full free energy functional Ft. These convective
flux terms can also be motivated based on Galilean invariance of the equations of motion. In
conventional hydrodynamics the Galilean invariant part of the energy flux tensor, jEG ≡ E +p,
contains both energy and the pressure field. Without knowing the explicit form of Ft[φ, j, E ]
in the total energy density E , we cannot evaluate the Poisson bracket terms of Eq. (9.37).
However, if we drop the internal energy contribution and evaluate on the flux of the kinetic
energy density Ek ≡ j2/(2φ), we obtain

∂tEk = −
∫

dx′ [−j(x) · ∇′δ(x′ − x)
] δFt[φ, j]

δφ(x′)
(9.38)

−
∫

dx′
[

−∂′jδ(x′ − x)Pji(x) + Ek(x′) ∂iδ(x − x′)
] δFt[φ, j]

δji(x′)
.

The first term on the right hand side of previous equation is the contribution from the
Poisson bracket {Ek(x), φ(x′)}, which has been evaluated in Eq. (D.45). The second term on
the right comes from evaluating the bracket {Ek(x), ji(x

′)} (Eq. (D.49)). It should be noted
that there is no term

∫
dx′ {Ek(x), Ek(x′)} δFt/δEk(x′) appearing on the right hand side of

Eq. (9.38). This is because Ek is not an independent variable but expressible in terms of φ
and j. If the substrate contribution to the free energy Ft is left out, then δFt[φ, j]/δφ(x′) =
−j2(x′)/(2φ2(x′)) + δFf/δφ(x′). Substitution of this result together with δFt[φ, j]/δji(x

′) =
ji(x

′)/φ(x′) into Eq. (9.38) gives

∂tEk = −j · ∇δFf
δφ

−∇ ·
(

Ek
j

φ

)

= −v · (∇p+ ∇ · pcap) − v ·
(

v
1

2
φv2

)

, (9.39)

where we have utilized j = φv, and the relation φδFf/δφ = ∇p + ∇ · pcap to be derived
in Sect. 10.1.1. Moreover, the microscopic momentum flux density tensor P‡ appearing in
Eq. (D.54) has been replaced with the macroscopic one, which corresponds to taking averages
of both sides of equation of motion. It is this term which is responsible for cancelling out
the nonlinear momentum dependence of the first term on the right hand side of Eq. (9.38):
∫
dx′ ∇′δ(x′−x) ·P(x) · (j(x′)/φ(x′)) = −j(x) ·∇[j2(x)/(2φ2(x))]. Let us compare the results

to those of conventional hydrodynamics, which yields the following relation:

∂

∂t

(
1

2
φv2

)

=
1

2
v2∂tφ+ φv · ∂v

∂t
= −v · ∇p− v ·

(

v
1

2
φv2

)

, (9.40)
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which reduces to our result when capillary pressure pcap is neglected. When the time variation
of the kinetic energy given above is combined with the time variation of the internal energy
u (per unit mass) we obtain [293]

∂E
∂t

=
∂

∂t

(
1

2
φv2 + φu

)

= −∇ ·
[

φv

(
1

2
v2 + he

)]

= −∇ ·
[

v

(

E + p

)]

. (9.41)

The last equality follows from the fact that the enthalpy per unit mass he = u + p/φ. We
have also substituted E = φv2/2+φu. To confirm this result from Poisson bracket formalism,
we should compute the time variation of the internal energy. To be able to do that, we need
to determine the energy dependence of the free energy Ft, which we have not specified. This
point is further discussed in Sect. 6.5.

9.5.2 Fluctuation and dissipation in single component fluid

In Sections 9.5.1 and 9.5.3 the structure of all the dissipative operators was for simplicity
taken to be the same: Γ∇2. This is a perfectly valid choice based on the conservation of
the variables. However, such a choice has indications with respect to the physical properties
of the fluid, such as its ability to sustain shear stress. We will make this more transparent
below by using a single component, two-phase fluid as an example. For simplicity we will only
concentrate on the dynamics of the velocity field as usually the viscous stresses are expressed
directly in terms of v, and consequently the fluctuation-dissipation relation is easily seen to
hold.

Let us contrast some of the results of Sect. D.2.2 against standard hydrodynamics. First
of all, we show below that treating velocity as the fundamental variable in the Poisson bracket
formalism will lead to apparance of an ’extra’ factor of φ in the dissipative term as compared
to having the momentum density as the fundamental variable: In Eq. (D.77) the dissipative
term reads Γ∇2(ji/φ) = Γ∇2vi (momentum density as the fundamental variable) and the

dissipative term in Eq. (D.79) is of the form Γ̂∇2(φvi) (velocity as the fundamental variable).
To make the latter term appear like the the viscous term ν∇2vi in standard hydrodynamics we
have to define the use instead of the operator Γ̂∇2 a more complicated form of the dissipative
operator defined below:

Γ̂(φ(x)vi(x)) ≡
[

ν∇2 1

φ(x)

]

(φ(x)vi(x)) = ν∇2vi(x) , (9.42)

where we have used the kinematic viscosity ν ≡ ηd/φ because both sides of the equation of
motion (D.79) have been normalized by the density φ. In standard hydrodynamics, if the
dissipative term is of the form ν∇2vi we know that the fluid must be incompressible. This
is because the general requirements on the stress tensor (vanishing under uniform rotation
and at rest frame, small velocity gradients) allow us to expresse the Navier-Stokes equation
in the form

φ
(

∂tv + (v · ∇)v
)

= −∇p+ ηd∇2v + (ζ + ηd/3)∇(∇ · v) . (9.43)

The shear viscosity is denoted by ηd and the bulk viscosity is ζ. Clearly, if the last term on
the right is missing, we must have ∇ · v = 0, since both ηd, ζ > 0. It is also assumed in
Eq. (9.43) that the viscosities are not strognly dependent on the other thermodynamic fields
(p, T ), which holds reasonably well for many substances.

Hence, if we wish to allow the appearance of a more general form of the viscous stresses, we
have to alter the properties of the stochastic noise terms ηi (i = 1, 2, 3) as compared to their



9.5. ANALYSIS OF THE EQUATIONS OF MOTION 191

properties associated with the simple dissipative term Γ∇2(φvi) to fulfil the Fluctuation-
Dissipation theorem. We are at liberty of making this choice, since the current Poisson
bracket formalism does not fix the form of the coefficient operators. The dissipative operator
Lij corresponding to Eq. (9.43) reads instead of Γ̂∇2

Lij(x) ≡
[

ηdδij∇2 + (ζ + ηd/3)∇i∇j

] 1

φ(x)
, (9.44)

which is consistent with the results of Ref. [296, 297] when the mass density φ is taken to be
a constant. The noise correlators of the components of the velocity field become

〈ηi(x)ηj(x
′)〉 = 2TLij(x)δ(x − x′)δ(t − t′) . (9.45)

When φ is not constant, the more general form of dissipative terms implies multiplicative noise
terms, which are non-local in Fourier space. Of course, when the momentum density variable
is taken to be the fundamental one, this type of non-locality due to the presence of the φvi
in the argument of the dissipative operator instead of just vi, will not be a problem since the
extra factor of φ vanishes when setting ji = φvi. Another source of non-locality in Fourier
space comes about through mode coupling close to critical point. Thus, even though the
noise itself would be independent of density or concentration, the transport coefficients, such
as viscosity do acquire dependence on the other fields close to criticality as renormalization
group procedure shows [298].

9.5.3 Two-component fluid

A relevant set of coarse-grained variables of a two-component single phase fluid is {φ0, φ1, j, E},
where φ0 and φ1 are the component mass densities. An alternative choice of relevant variables
replacing φ0 and φ1 will be discussed later on. As before, the momentum density one can
used instead of the velocity. Also, the internal energy density E can be replaced with entropy
s (or Ep or temperature T ). The equations of motion are

∂tφ0 = −
∫

dx′ {φ0(x), φ0(x
′)} δFt

δφ0(x′)
−
∫

dx′ {φ0(x), φ1(x
′)} δFt

δφ1(x′)
(9.46)

−
∫

dx′ {φ0(x), js(x
′)
} δFt
δjs(x′)

−
∫

dx′ {φ0(x), E(x′)
} δFt
δE(x′)

+ Γ0ν∇2 δFt
δψν (x) + η0 .

∂tφ1 = −
∫

dx′ {φ1(x), φ1(x
′)} δFt

δφ1(x′)
−
∫

dx′ {φ1(x), φ0(x
′)} δFt

δφ0(x′)
(9.47)

−
∫

dx′ {φ1(x), js(x
′)
} δFt
δjs(x′)

−
∫

dx′ {φ1(x), E(x′)
} δFt
δE(x′)

+ Γ1ν∇2 δFt
δψν (x) + η1 .

∂tji = −
∫

dx′ {ji(x), φ0(x
′)
} δFt
δφ0(x′)

−
∫

dx′ {ji(x), φ1(x
′)
} δFt
δφ1(x′)

(9.48)

−
∫

dx′ {ji(x), js(x
′)
} δFt
δjs(x′)

−
∫

dx′ {ji(x), E(x′)
} δFt
δE(x′)

+ Γiν∇2 δFt
δψν(x)

+ ηi .

∂tE = −
∫

dx′ {E(x), φ0(x
′)
} δFt
δφ0(x′)

−
∫

dx′ {E(x), φ1(x
′)
} δFt
δφ1(x′)

(9.49)

−
∫

dx′ {E(x), js(x
′)
} δFt
δjs(x′)

−
∫

dx′ {E(x), E(x′)
} δFt
δE(x′)

+ Γ5ν∇2 δFt
δψν(x)

+ η5 .
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Similarily to Sect. 9.5.1, the boxed Poisson brackets are zero because they contain no depen-
dence on microscopic momenta. The mass fluxes should contain no dissipative or stochastic
components since they are conserved and cannot transform into each other as contrast to
two-phase, single component case. The indices i takes the values 2, 3, 4 above. The order
parameter vector now has six components with the following organization:

(ψ0, ψ1, ψ2, ψ3, ψ4, ψ5) ≡ (φ0, φ1, j1, j2, j3, E) . (9.50)

As the microscopic coordinates of different species are independent of each other, the Poisson
brackets with the total momentum density j ≡ φv = j0 + j1 are are given by

{
φa(x), j(x′)

}
= ∇δ(x − x′)φa(x

′) , (9.51)

for a = 0, 1. In order to evaluate the bracket we used the following definition of the total
momentum:

j(x, t) ≡ j0(x, t) + j1(x, t) =
∑

α0

pα0(t) δ(x − xα0(t)) +
∑

α1

pα1(t) δ(x − xα1(t)) , (9.52)

where the summation index α0 runs over the indices of particle species 0 and α1 runs over
the indices of species 1. Using Eq. (9.51) it is straightforward to show that the streaming
part of Eqs. (9.46) and Eq. (9.47) without the total energy contribution are given by

∂tφ0 = −∇ · (φ0 v) . (9.53)

∂tφ1 = −∇ · (φ1 v) . (9.54)

For two totally immiscible fluids with different viscosities it is possible to use a separate
momentum balance equations instead of just one, as we have done. However, whether or not
mixing takes place, it is easier to consider suitably ’averaged’ quantities such as total pressure
(p ≡∑

i pi), density (φ ≡∑

i φi) and velocity (v ≡∑

i(φi/φ)vi) to simplify the mathematical
description (p. 154 in Ref. [299]). It should also be noted that when computing Eq. (9.51) we
did not have to specify the component velocities vi (i = 0, 1). In total momentum description
the variable viscosities can be taken into account by introducing ηd = ηd(φ) which takes values
η0 ≡ ηd(φ̄0) inside the domain of the fluid component 0 and the value η1 ≡ ηd(φ̄1) within the
second components domain. In these formulae φ̄i (i = 0, 1) are the bulk values of density.
Effects of a spatially varying viscosity are discussed in Sect. 11.3.3.

Just like it was possible to use velocity instead of momentum density, we can replace the
component mass densities φ0 and φ1 with the total density φ and concentration C (which is
a useful variable for mixing components) of one of the species:

φ ≡ φ0 + φ1 ; C ≡ φ0/(φ0 + φ1) = φ0/φ . (9.55)

Consequently, the relevant set of macrosvariables is now given by {φ,C, j, E}. Owing to the
nonlinear relation between the different variables one should keep in mind that in general the
equations of motion produced by Poisson bracket formalism can differ depending on whether
one first uses the fundamental conserved varibles (such as j and φ as in Sect. D.2.2) and
then obtains an equation for a non-conserved variable (v), or if one computes the equation of
motion for the non-conserved variable directly. Indeed, in terms of φ and C we can replace
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Eqs. (9.46) and (9.47) with

∂tφ = −
∫

dx′ {φ(x), φ(x′)} δFt
δφ(x′)

−
∫

dx′ {φ(x), C(x′)} δFt
δC(x′)

(9.56)

−
∫

dx′ {φ(x), js(x
′)
} δFt
δjs(x′)

−
∫

dx′ {φ(x), E(x′)
} δFt
δE(x′)

+ Γ̃0ν∇2 δFt
δψν(x) + η̃0 .

∂tC = −
∫

dx′ {C(x), C(x′)} δFt
δC(x′)

−
∫

dx′ {C(x), φ(x′)} δFt
δφ(x′)

(9.57)

−
∫

dx′ {C(x), js(x
′)
} δFt
δjs(x′)

−
∫

dx′ {C(x), E(x′)
} δFt
δE(x′)

+ Γ̃1ν∇2 δFt
δψν(x)

+ η̃1 .

In Eq. (9.56) we have should explicitly set Γ̃0ν = η̃0 = 0 because the total mass density is
a strictly conserved quantity. We have used a tilde symbol above the dissipative coefficients
and the noise terms to stress the fact that they are different from the correponding quantities
presented in Eqs. (9.46) and (9.47).

Leaving out the Poisson brackets with energy density, the total mass density and concen-
tration evolution equations reduce to the following standard formula in the absense of sources
and sinks in the velocity representation:

∂tφ = −∇ · (φv) . (9.58)

∂tC = −v · ∇C . (9.59)

Eq. (9.58) is a direct consequence of the conservation of mass of both species given by
Eqs. (9.53) and (9.54). The second equation can be derived by first formulating the Poisson
bracket with concentration in terms of the primary variables φ0 and φ1. Using the chain rule
one gets

{

C(x), ji(x
′)
}

=
∂C(x)

∂φ0

{

φ0(x), ji(x
′)
}

+
∂C(x)

∂φ1

{

φ1(x), ji(x
′)
}

(9.60)

The first equality follows as the derivative operators with respect to the microscopic position
and momentum coordinates are let to act on C(φ0({xα0 }, {pα0 }), φ1({xα1 }, {pα1 }), where the
different species are designated by sub indices 0 and 1. The thermodynamic partial derivatives
are readily obtained from the defining equation (9.55): ∂C/∂φ0 = (1 − C)/φ and ∂C/∂φ1 =
−C/φ. Substitution of Eq. (9.60) and Eq. (9.51) into Eq. (9.57) does indeed produce the
result ∂tC = −v · ∇C.

Since we can also rewrite the flow equation of the concentration as dC/dt = 0, where d/dt
is the total derivative (substantial derivative), which means that the composition of any fluid
element remains unchanged in the absence of diffusive currents as it moves about. In practice,
however, even in immiscible fluids there is limited miscibility between the components, which
means that the concentration will not be a step function [300]. This is true even at rather
low temperatures [295]. Since partial miscibility implies the presence of diffusive currents we
can rewrite Eqs. (9.58) and (9.59) as

∂tφ = −∇ · (φv) . (9.61)

∂t(φC) = −∇ · (φCv) . (9.62)

Let the diffusive current be denoted by i. When partial mixin takes place the previous
equations are replaced with [293]:

∂tφ = −∇ · (φv) . (9.63)

∂t(φC) = −∇ · (φCv) −∇ · i . (9.64)
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These are consistent with (though not equivalent to) the following equations of motion (cf.
Ref. [300], where the definition of the total density is different)

∂t(φC) = −∇ · (φCv) −∇ · i . (9.65)

∂t(φ(1 − C)) = −∇ · (φ(1 −C)v) + ∇ · i . (9.66)

Instead of φC and φ(1 − C) above we could have equally well used φ0 and φ1, respectively.
With this replacement we arrive again at Eqs. (9.53) and (9.54) where the diffusive current
±i must be added. In the isothermal case we can give an expression for the current i using
Fick’s law: i = −M∇µmix, where µmix is the chemical potential of the mixture. Eq. (9.66)
becomes

φ(∂tC + v · ∇C) = M∇2µ . (9.67)

This form of the concentration equation is very close to the mass balance equation of the
single component fluid described in Sect. 9.5.1. There are differencies, however. First, the
convective term is of the form v ·∇C and not ∇·(vC) as compared to Eq. (9.33). This makes
a difference if the fluids are not incompressible. Second, the chemical potential appearing
in the evolution equation of the concentration field is not µ̆ = δF/δφ defined in Eq. (9.6)
(cf. also Eq. (10.10)) for single species. It is the ’reduced’ chemical potential of the fluid
mixture [293]:

µmix ≡ µ̆0 − µ̆1 = µ0/m0 − µ1/m1 , (9.68)

where m0 (m1) is the mass of the particles in the component 0 (1). The chemical potential of
the mixture is obtained by taking the variation of the free energy with respect to concentra-
tion, not density as for single component fluid: µmix = δF/δC. Because of these differences
one should be carefull in interpreting the nature of the order parameter. When the free
energy density f (F =

∫
dx f(x)) is expressed as a function of both density and concentra-

tion, f = f(φ,C), it makes a great difference, of course, how the derivatives with respect
to arguments are interpreted. For example, without the gradient corrections φ2∂f/∂φ = p
and ∂f/∂C = µmix as shown in Sect. 10.1.1 and Ref. [295]. It should also be noted that
in the single component case we need the phase exchange to take place in order to justify
the emergence of the stochastic term. In the two component system we can add a random
current i′ on physical grounds, too. Naturally, the Poisson bracket formalism gives rise to
stochastic current, as C is not a strictly conserved quantity.

9.6 Comparison with other formalisms

Let us summarize the most important similarities and differences of our derivation of evolution
equations of coarse-grained variables, which constitute the hydrodynamical description of
simple fluids, compared to the similar theories. Typically, φ4-potential is used in several
studies as a prototype free energy. Instead of the double well potential, we use a three-well
potential (see Sect. 7.3), whose properties can be mapped onto those of Ft given in Eq. (9.1).
It is deriveable via classical density functional theory and provides a direct link between the
microscopic and macroscopic worlds. This link allows a direct interpretation of the fields as
we know their microscopic origin. The same thing cannot be said about all of the existing
work, where the coarse-grained fields are sometimes given names in too loose a manner.
Concentrating on mass and momentum balance equation, our model consists of the following
equations:

∂tφ+ ∇ · (φv) = M∇2µt + η0 . (9.69)
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The first term on the right is included since we wish to have a well-defined phase boundary
numerically, and allow for diffuse mass exchange through the boundary. The final term
describes temperature fluctuations. Since the interpretation based on density functional
theory identifies φ as the total density field of the system, we should interpret Eq. (9.69) as a
description of a two-phase system with a single component. In a two-component system the
different components cannot transform into each other via the action of thermal fluctuations.
As we have shown in Sect. 9.5.3, for two-component fluid an equation similar to (9.69)
emerges, but with different interpretation of the variables: φ is analogous to the concentration
and µt is analogous to the chemical potential of the mixture, which is a linear combination
of the chemical potentials of the components.

The second equation of our model is the momentum balance equation. As its name
suggests, it takes its simplest form when it is expressed in terms of the momentum density
j. However, since most of the work we will be referencing below is formulated in terms
of the velocity field v, we have to cast the momentum balance equation into the velocity
representation through the substitution j = φv. Unfortunately, the velocity representation
looks rather complicated as is explained in App. D.2.2. Therefore we pause here for a moment
to shed some light into the appearance of the momentum balance equation leaving more
detailed discussion for Appendix. The reason why the velocity representation gives rise to
unfamiliar looking terms can be seen by concentrating on the left hand side of the equation
of motion (Eq. (D.77)): the time variation of the momentum density can be split into two
parts:

∂tji = ∂t(φvi) = (∂tφ)vi + φ(∂tvi) . (9.70)

We can now solve for ∂tφ from the mass balance equation (Eq. (D.75)). Substitution of the
result back into Eq. (9.70) and taking the term (∂tφ)vi to the right hand side gives rise to
the form of the momentum balance equation (D.80). To add to the complication, depending
on how we choose to represent the driving forces, the final form of the momentum balance
equation may look different as will be discussed in Sect. 10.1. Below we express the driving
forces in terms of the chemical potential µ2 ≡ µf +VS , where µf is the chemical potential per
unit mass of the fluid and VS is the substrate potential. The meaning of µ̆f will be discussed
more thoroughly in the Chap. 10.

Now we are finally ready to reveal the momentum balance equation in the velocity rep-
resentation. For each component of the velocity (i = 1, 2, 3) we get from Eq. (D.80),

φ
(

∂tvi + (v · ∇)vi
)

= −φ∇iµ2 + Γ̂′
ij

δFt
δvj

+ ηi +B(φ, vi) , (9.71)

where we have defined a short-hand symbol B(φ, vi) ≡ −Γ00[∇2(µk + µ2)]vi − η0vi. The
’kinetic’ chemical potential is µk ≡ −j2/(2φ2), and η0 stands for the noise source of the mass

balance equation. In addition, we have used a more general noise term Γ̂′
ijδFt/δvj , where Γ̂′

can in general be an integral operator as discussed in App. D.2.2. For consistency’s sake we
differentiate between primed and unprimed operators Γ̂ depending on whether the functional
derivative of the dissipative term is with respect to vj (in this section) or jj (as in App. D.2.2).
In case we neglect B(φ, vi), whose effects have been contemplated in App. D.2.2, we can cast
the evolution of the velocity field into the following form:

φ
(

∂tvi + (v · ∇)vi
)

= −∇p2 + µf∇φ− φ∇VS + Γ̂′
ij

δFt
δvj

+ ηi , (9.72)
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We end up with the same result, if we treat v as the fundamental variable in the Poisson
bracket formalism. This was to be expected, of course, since B(φ, vi) originates from the
dissipative and noise terms of the mass balance equation.

When the dissipation and thermal fluctuations are left out of the mass balance equation
it reduces to the continuum equation of standard hydrodynamics [293], which enforces strict
mass conservation of a single component single phase fluid:

∂tφ+ ∇ · (φv) = 0 . (9.73)

Leaving out the force terms fb ≡ µf∇φ−φ∇VS , which are active close to boundaries, together
with the noise term ηi from Eq. (9.72), reproduces the standard evolution equation of the
velocity. It should be noted that a noisy version correponding to Eq. (9.72) has been presented
in (Ref. [293] p. 523) without the force term fb. If we choose to use only the φ4-potential in
Ft instead of the more general form of Eq. (9.3), which gives rise to the extra force φ∇VS, the
momentum balance equation (9.72) together with the continuity equation (9.73) reproduce
the model of Ref. [301], where momentum density is treated as the fundamental variable

instead of velocity. In principle the form of the dissipative operator Γ̂′ is not fixed by the
formalism. If we want to generate the viscous stresses of standard hydrodynamics, we have to
choose Γ̂′ as explained in Sect. 9.5.2. This leads to non-vanishing cross correlations between
the components ηi of the noise. If we make an additional assumption about the velocity field,
and set ∇ · v = 0, we can write Γ̂′

ijδFt/δvj = ηd∇2vi. Substitution of this into the evolution
equation of velocity gives

φ
(

∂tvi + (v · ∇)vi
)

= −∇p+ µf∇φ+ ηd∇2vi , (9.74)

where the φ4-potential has been used resulting in the missing of the φ∇VS term. Stochastic
terms have been dropped, too. Due to the condition ∇ · v = 0 we do not use p2 symbol
for pressure, as p2 is a fixed function of the other fields as will be explained in Sect. 10.1.
In Eq. (9.74) the pressure p mediates the incompressibility condition and is unknown to be
begin with. Together with a fully deterministic mass balance equation,

∂tφ+ ∇ · (φv) = M∇2µf , (9.75)

Eq. (9.74) constitutes the model of Ref. [302]. It should be also noted that the chemical
potential in Eq. (9.75) is not the full chemical potential µt as in our case but only the φ4-
part. Leaving out the solid potential VS and the noise, for low enough velocities we can
approximate µt = µk + µf ≈ µf thus reproducing Eq. (9.75).

One of the first models, which coupled the stochastic momentum balance equation and
deterministic continuity equation is presented in Ref. [303]. In terms of the velocity,

∂tv + (v · ∇)v = − 1

m
∇µ+ ν∇2v + η , (9.76)

which should be compared with the representation of the driving force given ∇µ2 in Eq. (D.79):
µ/m is essentially the chemical potential per mass of molecule just like µ2 is. Specifically,
m = m0φ0/φ, where φ is the density, φ0 is the average density and m0 is the mass unit. The
mass balance equation of Ref. [303] reads

∂tφ+ ∇ · (φv) = 0 . (9.77)
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Assuming that the Laplacian can be replaced with 1/(c1L
2) (∇2v ≈ v/(c1L

2)), where c1 is
a constant of the order of unity, we can solve Eq. (9.76) and substitute the velocity into the
mass balance equation. Even though Eq. (9.77) is deterministic to begin with, it becomes a
stochastic equation with dissipation:

∂tφ = M
[

∇2µ+m∇ · dv/dt
]

+ η̃ , (9.78)

where d/dt = ∂t + v · ∇ and η̃ ≡ −Mm∇ · η. In App. (D.2.2) we used a converse method:
new stochastic and dissipation-like terms appeared in the velocity equation after substitution
of the mass balance equation. The effect of these terms are pondered further in Sect. 11.4.

Finally, we note that selecting just the transverse velocity fluctuations in Eq. (9.72) we
arrive at the so-called Model H of critical dynamics. In addition we have to drop the solid
potential and set Γ̂ijδFt/δvi = ηd∇2v. In Model H we interpret φ (order parameter) as the
entropy density instead of mass density, which is taken to be constant. The evolution of φ
is given by Eq. (9.69), with µt replaced with µf . Thus, due to the interpretation of φ, its
evolution is subject to thermal fluctuations in contrast to the models mentioned above.

It is remarkable that a model similar to Model H can be derived directly based on a
projection operator formalism [45]. The complete set of hydrodynamic variables consists
of the total mass density and concentration, velocity field and entropy densities. The mass
density and the longitudinal velocity components are left out since they are relevant for sound
wave mode, which acts on much faster time scale than the diffusive components. Furthermore,
entropy variable is assumed to decouple as well, leaving us the velocity and concentration as
relevant fields to describe a binary fluid. The velocity equation reads [45]:

∂vi(x)

∂t
+ vj(x)

∂

∂xj
vi(x) = − 1

φ

∂p(x)

∂xi
+ ηd∇2vi(x) + (ζ + ηd/3))

∂

∂xi

∂

∂xj
vj(x) + fKi , (9.79)

where φ = φ1(x)+φ2(x) is the average density of the fluid. The form of the stress force term
fKi is fixed by the projection formalism to be

fKi ≡ −a1

[
∂

∂xj

(
∂C

∂xj

)(
∂C

∂xi

)

− ∂

∂xi

(
∂C

∂xj

)(
∂C

∂xj

)]

+
a1

2
∇2
[

δC
∂C

∂xi

]

(9.80)

− a2
∂

∂xi

(

[δC(x)]2 − 〈δC(x)2〉
)

,

where δC ≡ C(x) − C is the deviation from the equilibrium density C. Both factors, which
include correlation functions of the concentration, are inversely proportional to the mean
density: a1, a2 ∝ 1/φ. The evolution equation of the concentration becomes [45]

∂C(x)

∂t
+ vj(x)

∂

∂xj
C(x) = D0∇2C(x) . (9.81)

Eq. (9.79) and Eq. (9.81) are essentially the same as the equations of motion, which we have
presented in Sect. 9.5.3. Only the thermal noise has been dropped. Also the form of the
capillary stress term is slightly different than the one which comes out of the Poisson bracket
formalism. Namely, if one accepts the arguments of Sect. 6.4.2, in the sharp interface limit
we can write

F [φ] ∝ F [C] ≈
∫

dx
1

2
|∇C|2 + . . . . (9.82)
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In the Poisson bracket formalism the momentum balance equation will contain a new term,
which we call fPi . To see this more clearly we use Eq. (9.48) and replace the coordinates φ0

and φ1 with φ and C:

∂tji = −
∫

dx′ {ji(x), φ(x′)
} δF

δφ(x′)
−
∫

dx′ {ji(x), C(x′)
} δF

δC(x′)
(9.83)

−
∫

dx′ {ji(x), js(x
′)
} δF

δjs(x′)
−
∫

dx′ {ji(x), E(x′)
} δF

δE(x′)
+ Γiν∇2 δF

δψν(x)
+ ηi .

The second term on the right is responsible for generation of the capillary stresses equivalent
to fKi . Computing the Poisson bracket of C with the aid of the fundamental conserved
quantities φ0 and φ1 according to Eq. (9.60), we get

fPi ≡ −
∫

dx′ {ji(x), C(x′)
} δF

δC(x′)
(9.84)

= −
∫

dx′
[
∂C(x′)
∂φ0

{
ji(x), φ0(x

′)
}

+
∂C(x′)
∂φ1

{
ji(x), φ1(x

′)
}
]

δF

δC(x′)
. (9.85)

From C = φ0/(φ0 + φ1) we get ∂C(x′)/∂φ0 = (1 − C(x′))/φ(x′), and ∂C(x′)/∂φ1 =
−C(x′)/φ(x′). The brackets of momentum with mass densities are readily obtained: for
a = 0, 1, {ji(x), φa(x

′)} = −∂′iδ(x′ − x)φa(x). Substitution of these results together with
Eq. (9.82) into the expression of fPi gives

fPi = ∂i

(

C(x)
δF

δC(x)

)

= ∂i[C(x)∇2C(x)] . (9.86)

This is similar to the result of Eq. (9.80) but not exactly the same. In addition to the terms
∂iC∇2C and C∇2∂iC there are also other combinations of derivatives appearing in Eq. (9.80).
A more quantitative comparison is possible if the two-component density functional F [φ0, φ1]
is derived carefully from first principles and the pair of variables {φ0, φ1} is replaced with
{φ,C}. If one uses the velocity representation instead of momentum density, the result is
fPi = (1/φ)∂i[C(x)∇2C(x)], which is consistent with Kawasaki’s result (who also utilized
the velocity representation) according to which the thermodynamic prefactors a1, a2 ∝ 1/φ.
We note the similarity to result fLTi of Ref. [295] who obtains the capillary force fLTi ∝
−[∇ · (ρ∇C ⊗ ∇C)]i, where ρ(x) is the density of the fluid. The difference in the density
variable is manifest already in the definition of the pressure tensor, and free energy, which
reads [295]: F ∝ ∫

dx(ρ/2)|∇C|2. A similar, but not identical result is also obtained in
Ref. [300], where the force term fA reads

fA = ∇ ·
[

ρ
∂e

∂α

(

|∇C|2I−∇C ⊗∇C
)]

, (9.87)

where the density factor ρ comes about through the same mechanism as before. The energy
of the system is defined as E =

∫
dxρe(x) where e is the internal energy density per unit

mass. Naturally, e = e(α,C, ρ), where α = |∇C|2/2. Quasi-thermodynamic arguments used
in the two previous in Ref. [295] and Ref. [300] partly explain the differences of the results as
compared to each other and the result of Eq. (9.86).



Chapter 10

Bulk forces

10.1 Emergence of pressure

As we have not defined pressure to be one of the primary coarse-grained variables, we should
justify its appearance in the momentum balance equation (9.26) by other means. We will
show below that the application of the Poisson bracket formalism gives rise to a driving force
term, which can be interpreted as pressure field. Naturally, the form of the pressure is fixed
by the relevant macrovariables (φ, j, E). At the current level of sophistication, it turns out
that

p = p(φ) (10.1)

analogously to equilibrium thermodynamics. Eq. (10.1) reduces to standard equation of state
form when gradient corrections are neglected. This will be shown in Sect. 10.1.2. Sect. 10.1.2
and Sect. 10.1.3 will help us see what kinds of different forms the driving forces of the
momentum balance equation can take.

Not only are the driving forces representable in many ways but also the meaning of the
pressure term depends on what is assumed to be known of the system. Because the pressure
is a known function of the mass density field (Eq. (10.1)), it does not have to be solved unlike
in the case where it mediates the incompressibility condition. In other words, using Euler
equations as an example, our problem here is analogous to solving the mass and momentum
balance equations,

φdv/dt = −∇p+ b ; (10.2)

dφ/dt+ φ∇ · v = 0 , (10.3)

where d/dt = ∂t + v · ∇ is the total derivative, and b is a bulk force, whose specific form is
irrelevant here. Since we have four equations and five unknowns, we have to connect pressure
to other fields via equation of state (Eq. (10.1)). It should be noted that other methods such
as the Lattice-Boltzmann method described in Ref. [294] and its variants also yield an explicit
expression for the pressure in terms of other coarse-grained variables. If the expression of the
pressure field is not given, or fixed by the formalism, we need a separate equation to fix its
value. Consider, for example the incompressible Euler problem:

φdv/dt = −∇p+ b ; (10.4)

dφ/dt = 0 ; (10.5)

∇ · v = 0 . (10.6)
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Now, the pressure acts as a Lagrange’s multiplier, which forces the constraint of Eq. (10.6)
on the flow field v. Thus, the role of pressure is conceptually different for compressible
and incompressible flows. However, both for inviscid and inviscid incompressible flows the
pressure is determined through the condition ∇·v = 0 (p. 37 of Re. [304]). Our condition 10.1
makes sense in both cases.

10.1.1 Thermodynamic preliminaries

Let us start by writing down some thermodynamic relations involving the pressure, chemical
potential and enthalpy. We first make a distincintion between thermodynamic quantities
defined per unit mass and unit volume. For example, the total free energy is denoted by F ,
free energy density per unit mass is f̃ ≡ F/M (M total mass), and free energy density per
unit volume is ρf̃ . To make the use of familiar thermodynamic relations easier in Sect. 10.1.1,
instead of the symbol φ, we use here the symbol ρ ≡M/V for constant mass density. Thus,
the free energy can be written in the following way: F =

∫
dV ρf̃(ρ) = V (M/V )f̃(M/V ) =

Mf̃ . The static thermodynamic pressure is defined through

p ≡ −∂F
∂V

= − ∂

∂V

(

Mf̃(M/V )
)

= (M/V )2f̃(M/V ) = ρ2∂f̃

∂ρ
. (10.7)

In a similar manner, we obtain an expression for the chemical potential per unit mass. Define
M ≡ mN , where m is the mass of the molecule and N is the total number of molecules in
the system. Then,

µ ≡ ∂F

∂N
=

∂

∂N

[

mNf̃
(

mN/V
)]

= mf̃
(

mN/V
)

+mNf̃ ′
(

mN/V
)m

V
(10.8)

= m
[

f̃(ρ) + ρf̃ ′(ρ)
]

=
M

N

∂

∂ρ

(

ρf̃(ρ)
)

. (10.9)

Thus, chemical potential per unit mass, µ̃ satisfies Nµ̃ = ∂(ρf̃)/∂ρ. Alternatively, we can
define chemical potential per mass of a molecule µ̆ ≡ µ/m: µ̆ = ∂(ρf̃)/∂ρ = ∂f/∂ρ, where
f is the free energy density per unit volume. When the gradient dependent parts of the free
energy density are left out we have

δF [ρ]

δρ(x)
=
∂f(ρ(x))

∂ρ(x)
= µ̆(ρ(x)) . (10.10)

That’s why it would be consistent to use µ̆ instead of µ but for notational simplicity we
use just µ everywhere else but in this section. We just have to keep in mind that µ really
means the chemical potential per mass of the single molecule (cf. Ref. [303]) unless otherwise
stated. Utilizing the thermodynamic relation (µN = G) for Gibbs free energy G, we can
write µ̆ = f̃ + ρ∂f̃/∂ρ ≡ g̃, where g̃ is the specific Gibbs free energy [295].

To see how the pressure is related to the variation of the free energy, we compute
∇(δF [ρ]/δρ) = ∇(∂f/∂ρ) = ∂2f/(∂ρ)2 ∇ρ. On the other hand, using the standard ther-
modynamic relationship, p = ρ∂f/∂ρ− f , we obtain

1

ρ
∇p =

1

ρ
∇
(

ρ
∂f

∂ρ
− f

)

=
∂2f

∂ρ2
∇ρ = ∇δF

δρ
. (10.11)

Owing to the last relation, we can relate the pressure changes to enthalpy he of the system.
For an isentropic process conserving particle number it holds that dh̃e = (1/ρ)dp. Therefore,
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∇h̃e = (1/ρ)∇p. Even though the gradient of the enthalpy in this case is the same as the
gradient of δF/δρ = ∂f/∂ρ = ∂(ρf̃)/∂ρ, it does not follow that h̃e would be the same
as ∂(ρf̃)/∂ρ. The correct relation between the free energy and the enthalpy is given by
h̃e = ũ+ p/ρ, where ũ is the internal energy per unit mass. Thus,

he = p+ (f + Ts) = ρ2∂f̃/∂ρ+ ρf̃ + Ts = ρ∂f/∂ρ+ Ts , (10.12)

where s is the entropy per unit volume. Using the relation ρ∂f/∂ρ = ρµ/m = ρNµ̃ = Nµ/V ,
we obtain the familiar thermodynamic identity for quantities per unit volume, he = Nµ/V +
Ts, or He = Nµ + TS. For an isenthalpic system we can instead of Eq. (10.7) express the
pressure also as [304] p = ρ2∂ũ/∂ρ by assuming that the pressure is a function of ρ only. This
is equivalent to dh̃e = (1/ρ)dp.

10.1.2 Reversible part of the stress tensor

The bottom line is that in the equation of motion for the momentum field j the first Poisson
bracket term on the right hand side of Eq. (9.36) contains a term −ρ∇δFf/δρ(x), which we
can write as (ρ = φ)

−φ∇δFf/δφ(x) ≡ −∇ · σR . (10.13)

We have defined the reversible stress tensor σR, which does not contain viscous stresses
generated by the velocity field. Below we will show that the stress tensor can be split into
two parts:

σRij = ptot δij + κ ∂iφ∂jφ , (10.14)

The effects of the gradient corrections of the free energy functional, which go beyond standard
thermodynamics, are visible both in the non-diagonal part κ ∂iφ∂jφ and in the total pressure
field ptot, which contains a standard thermodynamic part and a capillary correction:

ptot ≡ p+ pcap . (10.15)

The thermodynamic pressure field p and the capillary pressure pcap are defined as:

p ≡ φ
∂f

∂φ
− f ; pcap ≡ −φκ∇2φ . (10.16)

In the special case of dimensionless density field in Eq. (9.3) the constant κ = 1. In case the
free energy functional has a more complicated dependence on the gradients, such that the
partial derivative of the free energy density per unit volume with respect to ∂φ/∂xi ≡ ∂iφ is
not simply ∂iφ as above, but

∂f

∂(∂iφ)
= (∂iφ(x))κ(φ(x),∇φ(x)) , (10.17)

By construction of the functional derivative, δFf [φ]/δφ ≡ ∂f/∂φ−∑j ∂j
[

(∂jφ)κ(φ,∇φ)
]

, it

is easy to show that

φ∂i
δFf
δφ

= ∂i

(

φ
δFf
δφ

)

− δFf
δφ

∂iφ = ∂i

(

φ
δFf
δφ

)

− ∂f

∂φ
∂iφ+

∑

j

[

∂j(κ ∂jφ)
]

(∂iφ) (10.18)

= ∂i

(

φ
δFf
δφ

− f

)

+
∑

j

∂j
[

κ(φ,∇φ) ∂jφ∂iφ
]

. (10.19)
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The last relation can be confirmed by rewriting the second and third terms in Eq. (10.18) as

∂f

∂φ
∂iφ = ∂if −

∑

j

∂f

∂(∂jφ)
∂i(∂jφ) ; (10.20)

∑

j

[

∂j(κ ∂jφ)
]

(∂iφ) =
∑

j

∂j
[

κ ∂jφ∂iφ
]

−
∑

j

κ ∂jφ∂j(∂iφ) . (10.21)

Using the definition (10.17) and cancelling out some terms yields Eq. (10.19). The first term
in the parenthesis on the right hand side of Eq. (10.19) is the total pressure (diagonal part
of the stress tensor). After expanding the functional derivative we obtain

ptot = φ
∂f

∂φ
− f − φ∇ · [κ∇φ] . (10.22)

Thus, for constant κ we have derived the result of Eq. (10.15). The diagonal part of the stress
tensor can also be put into a more symmetric form in the derivatives of the mass density. In
the general case of non-constant κ:

ptot = φ
∂f

∂φ
− f + κ |∇φ |2 − 1

2∇ ·
[

κ∇φ2
]

, (10.23)

which is the result to be found in Ref. [301]. The components of the reversible part, which
does not contain viscous stresses, of the stress tensor σRij can be written as

σRij = ptot δij + κ ∂iφ∂jφ , (10.24)

where we have also taken into account the non-diagonal contribution represented by the
second term in Eq. (10.19). In tensor form we can coviniently express it as

σR = ptotI + κ∇φ⊗∇φ . (10.25)

The unit (3 × 3)-tensor I ≡ ∑

j ej ⊗ ej . Customarily, the indeterminite vector product,
which has been used occasionally in the text means the tensor product. For example, in the
expression of the flux density tensor we have a term j j ≡ j⊗ j.

10.1.3 Driving forces

In the previous sections we have seen how the functional derivative of the fluid’s free energy
Ff with respect to mass density φ gives rise to the diagonal pressure term ptot and an off-
diagonal contribution κ∇φ⊗∇φ which together make up the reversible stress tensor σR. Its
divergence acts as the driving force on the fluid elements. Let us see now how this comes
about by using the full form of the momentum balance equation:

∂tji = −φ∂i
(
δFf
δφ

+
δFS
δφ

)

+ ∂s

(
1

φ
jijs

)

+Miν∇2 δFk
δjν

+ ηi . (10.26)

For derivation of this equation the reader is referred to Sect. (9.5.1). We have split the full free
energy into three different contributions according to Eq. (9.1). The driving forces can now
be represented in various ways, which are all equivalent, of course. First of all, δFS/δφ = VS
so that the term −φ∇VS is always present when the interaction of the fluid with the solid
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walls is taken into account. In expressing the first term −φ∂i(δFf/δφ) on the right hand side
of Eq. (10.26) we have more freedom.

Analogously to capillary pressure, we can define a capillary chemical potential, which
stems from the gradient corrections of the free energy: Eq. (10.10) is replaced with

δF [ρ]

δρ(x)
=

∂f(ρ(x),∇ρ(x))

∂ρ(x)
−

3∑

i=1

∂

∂xi

[
∂f(ρ(x),∇ρ(x))

∂(∂iρ(x))

]

(10.27)

= µ̆(ρ(x)) + µ̆cap(ρ(x)) ≡ µ̆tot . (10.28)

We remind the reader of the convention that excluding this section, the chemical potential
per unit mass is denoted without the breve symbol. Thus, in the rest of this work, we identify

δFp
δφ

≡ µp . (10.29)

where p any acronym for different contributions to total free energy, which may or may not
contain gradient corrections: we do not separate the homogeneous and gradient corrections
parts anywhere else but in this section. The definition of the chemical potential per mass of
the molecule of Eq. (10.10) allows us to write

−φ∂i(δFf/δφ) = −φ∂iµ̆tot = −∂i(φµ̆tot) + µ̆tot ∂iφ = −∂i(φµ̆+ φµ̆cap) + µ̆tot ∂iφ (10.30)

= −∂i(f + p+ φµ̆cap) + µ̆tot ∂iφ , (10.31)

where we have used the fact that the thermodynamic part of the chemical potential φµ̆ =
φ(f̃ +φ∂f̃/∂φ) = f + p. For κ = const, the capillary chemical potential takes a simple form:
µ̆cap ≡ −κ∇2φ, which is related to the capillary pressure through φµ̆cap = pcap. Thus, we
can rewrite Eq. (10.31) as

−φ∇δFf
δφ

= −∇p′tot + µ̆tot∇φ , (10.32)

where we have defined a modified pressure p′tot ≡ ptot + f . It should be noted that p′tot is a
known (fixed) function of φ just as ptot and p are.

We can now collect the results we have derived above. The driving force term −φ δFf/δφ
can be represented in various ways. For example,

−φ δFf
δφ

=







−∇ · σR ;
−∇p′tot + µ̆tot∇φ ;
−φ∇µ̆tot .

(10.33)

When substrate interaction is included, there will be an additional force term −φ δFS/δφ =
−φ∇VS on the right hand side of the momentum balance equation. It is important to notice
that if incompressibility condition is not imposed by hand, the gauged pressure term p ′tot(φ)
does not have to be solved for: It is a known function of the phase-field φ when Ff is used
in the variational expression of Eq. (10.33). Was Ft to be used instead, the pressure would
become a known function of φ and j (v) just like in some other coarse-grained derivations
of hydrodynamics (e.g. lattice-Bolzmann fluids [305]). Similarily to the pressure, σR(φ) and
µ̆tot(φ) are known. Substitution of correct expression on the right hand side of Eq. (10.33)
always generates the same driving term when expressed as a function of φ. If incompressibility



204 CHAPTER 10. BULK FORCES

is required in addition to mass and momentum balance equations, then p′tot must modify the
fluid’s velocity field in such a way that ∇·v = 0. Consequently, p′tot is not known a priori. The
problem, of course, have become different then as compared to the compressible case, where
the mass balance equation does not reduce to condition ∇·v = 0. Additional representations
can be generated by using thermodynamic identities, but one should be carefull in doing
so: the kinematic fields are not necessarily the same as their equilibrium thermodynamic
partners.

10.2 Gravity and hydrodynamics

In this section we implement a real gravitational force into the theory with the aid of hy-
drodynamic description. Specifcally, we derive the form the convective term v · φ takes after
projecting onto the liquid-gas interface. Our starting point is the following set of equations:







ηd∇2v −∇p+ f̃b = 0 ;
∇ · v = 0 ;
∂tφ+ v · ∇φ = M∇2µf ,

(10.34)

where the dynamic viscosity is denoted by ηd and the pressure field by p. The bulk force term
has the form given in Eq. (9.25). Since we will be using as simple form of the free energy
as possible, the susbstrate potential VS does not have to be introduced as will become clear
below. Therefore, the bulk force term simplifies to f̃b = −φ∇µf . In the topmost equation
we have assumed a stationary Stoke’s flow. This assumption only makes sense if the fluid
has enough time to reach the stationary flow regime which might be difficult to justify in
disordered medium but could hold for at least a single capillary tube in which the net driv-
ing force (hydrostatic or external pressure gradient and capillary force) is balanced against
dissipation. Even though the average traveling velocity of the meniscus is continuously di-
minished by gravity and mass conservation the inertial effects can be dropped leading to the
steady state approximation of Eq. (10.34). The argumentation parallels the derivations of the
Washburn’s law [306] and meniscus motion in a capillary tube [307]. The incompressibility
condition is an extra condition (see App. D.1.2) which cannot be derived from microscopics
without using the mass conservation equation and homogeneity of the density, which obvi-
ously does not hold for liquid-gas coexistence we consider here. We briefly return to this
subject at the end of this section. In the mass conservation equation we have dropped the
additional dissipative terms which result from taking the variation of the full free energy Ft
with respect to φ as specified by Eq. (9.7): µk ∼ v2 is dropped as second order effect for slow
velocities and µS ∼ VS is left out since we do not use the substrate potential for anything in
this section. Since we don’t have a separate Stokes equation for the gas and liquid phases,
we are rather modeling a situation where one imisicible fluid displaces another. Both fluids
are incompressible (as opposed to compressible gas). In addition, the their viscosities are the
same. The last condition can be relaxed, though, by introducing a viscosity which depends
on the field φ: ηd = ηd(φ).

The gravitational contribution to the chemical potential is obtained from the gravitational
part Fg of the total free energy F ≡ Ff + Fg, where

Fg ≡
∫

dx

∫

dt gzφ ; (10.35)

Ff =

∫

dx

∫

dt

[
1

2
|∇φ|2 +

1

2
(1 + ρ)(φ2 − 1)2 +

1

2
(1 − ρ)K2

w(φ−A)2
]

. (10.36)
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The form of Ff holds for cases where the fluids do not enter into the third phase (solid phase)
whose shifted density field is denoted by ρ. The corresponding chemical potentials are defined
below:

µg ≡
δFg
δφ

= gz ; µf ≡ δFf
δφ

. (10.37)

In order to simplify the projection which we are about to perform, we will introduce a new
pressure field p2 which is related to the old one through: p2 ≡ p+ φµf . In terms of the new
pressure field,

−∇p+ f̃b = −∇p2 + µf∇φ− φ∇µg (10.38)

On the right hand side we recognize the capillary force term fcap = µf∇φ given in Eq. (9.28).
Introduction of the new pressure field has made it easier to recognize the origin of capillarity,
but the final outcome of the computations to follow does not necessitate the transformation
from the old fields (p, φ∇µf ) to the new ones (p2, µf∇φ) in any way.

Let us isolate the contribution caused by gravitation by throwing away the capillary force
term µf∇φ, which is active close to the phase boundaries, only. Thus, Eq. (10.34) gets
replaced by 





ηd∇2v −∇p2 + fg = 0 ;
∇ · v = 0 ;
∂tφ+ v · ∇φ = M∇2µf

(10.39)

The gravitational force is directed along the z-axis: fg ≡ −φ∇µg = −gφ ez. We will first
consider a simpler free energy than the one given in Eq. (10.36). The free energy of the
imbibition model is

Ff =

∫

dx

∫

dt

[
1

2
|∇φ|2 − a

2
φ2 +

b

4
φ4 − φAI

]

, (10.40)

where typically we fix the coefficients a = b = 1. The last term in the free energy is responsible
for the dynamics: AI is a quenched random field just like A is in Eq. (10.36). As discussed
before, this free energy does not account for the presence of the solid phase. When plugged
into the equation of motion for the phase field, it gives rise to the liquid and gas phases
whose capability of entering different regions of space can be controlled by adjusting AI . In
this sense we can take AI to describe the effect of a random porous substrate through which
the liquid propagates displacing the gas (or another fluid). Taking the divergence of the first
equation of the set (10.39) and using the incompressibility, ∇ · v = 0, leads to the Poisson
equation for the pressure field:

∇2p2(x, z) = ∇ · fg = −g∂zφ(x, z) . (10.41)

As we now have a Poisson’s equation for the pressure field, we have to supplement it with
boundary conditions. In the general case these are read off from the conditions on the stress
tensor as described in Sect. 11.2. Here we can use a more intuitive reasoning. Clearly, the
boundary condition for p2 is the same as the boundary condition for the original pressure field
p because of the boundary condition for the chemical potential: p2|0 = p|0+(φµf )|0, where the
substitution is at z = 0. Because µf |0 = 0 it follows that p2|0 = p|0. If the liquid-gas boundary
taken to be straight in the first approximation, the pressure at reservoir level z = 0 is the
constant hydrostatic pressure which can be gauged equal to zero if we can neglect the effect
of the fluid velocity on the pressure as well. Due to the homogeneous boundary conditions
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the Green’s boundary terms vanish when inverting ∇2-operator in Eq. (10.41). Then, for
spatially varying profile of the phase boundary the pressure becomes approximately

p2(x, z) = g

∫ ∞

−∞
dx1

∫ ∞

0
dz1G

I
2D(x, z;x1, z1)∂z1φ(x1, z1) (10.42)

= −2g

∫ ∞

−∞
dx1G

I
2D(x, z;x1,H(x1, t)) , (10.43)

where GI2D is the familiar Green’s function of the imbibition problem. The height of the
liquid front measured from the reservoir boundary is denoted by H(x, t). The phase-field
configuration was approximated as φ ≈ −1 + 2θ(H − z), which is an approximation to the
extremal solution of the free energy functional of Eq. (10.40) with coefficients a = b =
1. This choice of the coefficients, which is typical of pure phase-field simulations without
hydrodynamics, gives rise to the factor of two in front of the integral in Eq. (10.43).

Since φ correponds to the mass density, it would be more physical to choose the val-
ues of the coeffients a and b in such a way that φ only takes non-negative values: φ ≈
∆φ θ(H − z), where ∆φ = ∆φ(a, b) is the miscibility gap which tells the difference of the
densities of the liquid and gas phases. The magnitude of ∆φ can be changed by redefining
the units. To get an idea how this can be done, we can compare the physical dimensions
of different terms in Eq. (10.39) to the convective one (φ∂tv), which has been left out:
[φ∂tv] = (kg/m3)(m/s2) = (kgm/s2)/m3 = N/m3, which has correctly the units of force
density. The units of the viscosity ηd can be solved from [φ∂tv] = [ηd][∇2v]. It follows
that [ηd] = (kg/m3)(m2/s) = [φ]m2/s. Since pressure is force per area, we consistently have
[∇p2] = (1/m)(N/m2) = N/m3. Finally, the graviational constant has units [g] = m/s2 be-
cause [fg] = [φg] = (kg/m3)[g] = N/m3. These units hold when density field φ has its normal
units kg/m3. Since in the phase-field formalism we prefer to use dimensionless φ, [φ] = 1, we
have to see how the units of the other fields and parameters change. Comparing the convective
term with pressure p2 defined in new units, we get [φ∂tv] = [∂tv] = [∇p2], or [p2] = m2/s2.
Comparison of the dissipative term with the convective one gives [∂tv] = [ηd][∇2v] from
which we get that [ηd] = m2/s. Finally, the units of the gravitational constant can be solved
from [fg] = [φg] = [g] = [∇p2] = (1/m)(m2/s2). Therefore, [g] = m/s2 which is the same as
in the original system of units.

In the following we shall consider a situation where we are observing a rising liquid front
from such a distance that we can take the profile H to be a constant in space: H(x, t) ≈ H0(t).
Then,

GI2D(x, z;x1, z1) =
1

4π
ln

[

(x− x1)
2 + (z + H0)

2

(x− x1)2 + (z − H0)2

]

(10.44)

Shifting the integration variable as (x1)new = x− x1, we see that the pressure p2 will not be
a function of x, but it does depend on z. For general miscibility gap ∆φ,

p2(z) ≈ −∆φ g

4π
lim
ε→0

∫ ∞

−∞
dx1 cos(εx1) ln

(

x2
1 +A2

x2
1 +B2

)

(10.45)

= lim
c→0

{

−∆φ g

2ε

(

e−|B|ε − e−|A|ε
)}

= −∆φ g

2
(|A| − |B|) , (10.46)

where we have defined A ≡ z+H0 and B ≡ z−H0. Despite the fact that we had to regularize
the divergent integral with the aid of constant ε in Eq. (10.45), which is a peculiarity of the
two-dimensional set-up, we do obtain a sensible answer. When z < H0, p2 = −∆φ gz, which is
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nothing but the familiar hydrostatic pressure. In the gas phase, z > H0, the pressure becomes
constant: p2 = −∆φ gH0.

Knowing the pressure, we can now solve for the velocity v. Both of its components satisfy
the Poisson equation, as seen from Eq. (10.39). In terms of the density field φ we can express
the approximate solution of the pressure field through p2(z) ≈ p0 − gzφ. Therefore,

vx =
1

ηd

∫ ∞

−∞
dx1

∫ ∞

0
dz1Gx(x, z;x1, z1) (∂x1p2 − fg · ex) +Bx ; (10.47)

vz =
1

ηd

∫ ∞

−∞
dx1

∫ ∞

0
dz1Gz(x, z;x1, z1) (∂z1p2 − fg · ez) +Bz . (10.48)

The explicit form of the Green functions will be given below. The boundary terms Bx and
Bz will not be zero if we are thinking of modeling a situation where we bring a stochastic
porous medium (described by the field AI) into contact with the fluid reservoir at z = 0
without modeling the reservoir itself. In this case there will be non-zero velocity gradient at
z = 0 consistent with the boundary condition µf (x, z = 0) = 0. The other option is that
we take the reservoir to be part of our system. Denoting its depth by H0r we can perform
the calculations presented above by simply setting the lower integration limit to z = −H0r,
which correponds to the bottom of the reservoir. This is usefull, because at the bottom of
the reservoir the boundary condition for the velocity field is naturally the no-slip condition:
v(x, z = 0) = 0. No self-consistent evaluation of µf at z = 0 is needed. Because of the
homogenuity of the boundary condition Bx = Bz = 0. Since there is no gravitational force in
the x-direction, fg · ex = 0, we get that vx = 0. Replacing fg · ez = −gφ in Eq. (10.48) gives

vz =
1

ηd

∫ ∞

−∞
dx1

∫ ∞

−H0r

dz1Gz(x, z;x1, z1) [−gz1∂z1φ(x1, z1, t)] (10.49)

≈ −∆φ g

ηd

∫ ∞

−∞
dx1Gz(x, z;x1,H0) H0 (10.50)

With no-slip boundary condition the Green’s function of the velocity field becomes the same
as that of the pressure field in the chosen geometry: Gz = GI2D. Thus, we can perform a
similar calculation as with the pressure field using regularization of the integral:

vz(z) = −∆φ g

2πηd
H0

∫ ∞

−∞
dx1 ln

[

(x− x1)
2 + (z + H0)

2

(x− x1)2 + (z − H0)2

]

≈ −∆φ g

ηd
H0 z , (10.51)

which holds in the liquid phase. One can also readily verify that this result is dimensionally
correct in the system of units where [φ] = 1. Since in the equation of motion of the phase-
field φ the velocity term is multiplied by the gradient of the phase-field, it gets effectively
projected onto the plane z = H0 where vz(H0) ∼ −(∆φ g/ηd)H

2
0 which is the relevant term in

the interfacial dynamics. Therefore, the equation of motion for the phase-field can be written
in the following form:

∂tφ+ vz(t) ∂zφ = M∇2µf (φ) . (10.52)

Thus, we have been able to justify the plausibility of the following simplified model [281],
which should be equivalent to the set of equations (10.39):

∂tφ+ geff∂zφ = M∇2µf (φ) , (10.53)

where geff is the effective gravitational constant, which is actually proportional to the physical
gravitational constant g. It is also pointed out that Eq. (10.52) is the appropriate generaliza-
tion of the bulk equation of motion (8.2) studied in the previous chapter when vz is the only
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nonzero component of the velocity. When all velocity components are non-zero, we should
write it in the form to be given in Sect. 10.4, Eq. (10.70), which can be further projected to
yield the meniscus and contact line equations as explained in Chap. 8.

Our derivation shows that the convective term with on the left hand side of Eq. (10.53)
equation should approximate the Stoke’s set when we consider phase boundaries which do
not move very fast or have become pinned, in which case H0 is a constant in time. The
correspondence is not exact, though. Not only have we replaced vz(z) with its value in the
vicinity of the phase boundary, but in addition we have decoupled the momentum balance
equation (the first equation of the Stokes’s set (10.39)) from the mass balance equation (the
last equation) by dropping the capillary driving force −µf∇φ, whose effects will be discussed
in Sect. 10.4. We have also neglected the quenched noise field AI present in the free energy
(Eq. (10.43)) which acts as kind of a stochastic capillary pressure term. Thus, in a sense
vz used in Eq. (10.52) describes the gravitational contribution to the convection velocity
only. As a result, relating the interfacial velocity given vz(H0) to the time variation of the
mean interface height, we get an underestimate of the true interface velocity relaxation:
dH0/dt ∼ H2

0 ⇒ H0 ∼ t−1, which is not consistent with the mean field interface evolution
equation [281] obtainable from Eq. (10.53):

H0 dH0/dt = ᾱ/2 − geffH0 , (10.54)

where ᾱ is the mean value of the quenched noise field AI (which we dropped from our
analysis). When H0 is solved from this equation it actually grows like t1/2 for early times and
crosses over to exponential relaxation towards the pinning height, where dH0/dt.

What about the dynamic critical properties? Are they affected by the time dependence
vz(t)? As the mean height of the phase boundary H0 approaches the pinning height, vz be-
comes independent of time and we expect to see no effects if the relaxation is sufficiently rapid.
Indeed, direct numerical integration of Eq. (10.52), where we have also kept the stochastic
contribution to chemical potential due to the quenched noise field AI and parametrized the
velocity as

vz(t) = a1 − a2 H0(t)
2 , (10.55)

with constants a1 and a2, indicates that the fluctuations of the phase boundary are not
strongly affected by the time dependence of vz. The values of the critical exponents of the
roughening phase boundary are the same as for the ’fake’ gravity (Eq. (10.53)), where vz is
independent of time. If we choose to drop the incompressibility, the pressure field does not
satisfy a simple Poisson’s equation (10.41) as the velocity field cannot be eliminated by taking
divergence of both sides of the Stoke’s equation. When incompressibility equation, ∇·v = 0,
is left out, we have to express the pressure in terms of the remaining coarse-grained variables
of the problem. This can be done by utilizing the coarse-grained free energy functional as
explained in Sect. 10.1. Quasi-thermodynamic arguments lead to a relationship p2 = p2(φ).

10.3 Alternative ways to include gravity

In this section we present different approaches to implementation of gravity. We start with a
derivation based on Darcy’s law goverining the motion of fluid driven by externally imposed
pressure gradient through porous matrix. Darcy’s law suggests a linear relationship between
the (volume averaged) pressure gradient driving the flow and the (volume averaged) velocity
of the fluid:

v =
k

ηd
(−∇p− gρez) . (10.56)
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The permeability of the porous medium is k; the dynamic viscosity of the fluid is ηd and
density of the fluid is ρ. This should not be confused with the density field of the solid, which
was also denoted by ρ in Sect. 9.1. Upon substitution of the velocity v, the convective term
(v · ∇φ) appearing in the final line of Eq. (10.39) becomes

(v · ∇φ) = − k

ηd
∇p · ∇φ− kρg

ηd
∂zφ . (10.57)

The latter term above represents the contribution to the convection flow by gravity. Since
the permeability tensor depends on the spatial location the flow field will also be position
dependent in general. Only if k = const and the pressure gradient is zero, we can identify
the parameter of the imbibition model with gravity. It is pointed out that the pressure field
appearing in Eq. (10.56) is a coarse-grained pressure resulting from local volume averaging
as will be shown below. The role the phase-field plays in this formalism is not the density
of the fluid but rather the concentration, which is a relevant coarse-grained quantity for
two-component fluids (see Sect. 9.5.3).

To get some insight into the nontrivial concept of coarse-grained pressure field, let us give
a brief derivation of Darcy’s law based on Ref. [308]. Start with Stoke’s flow

∇p− ηd∇2v = 0 . (10.58)

Taking the divergence on both sides and using the incompressibility of the fluid gives ∇2p = 0.
Therefore, acting on both sides of Eq. (10.58) with the Laplacian operator ∇2 yields ∇4v = 0.
The spatial dependence of the velocity is transferred to a velocity transformation tensor X

via
v = X(r)〈v〉 , (10.59)

where 〈v〉 represents an average coarse-grained flow velocity. Obviously, X depends on the
pore structure in a complicated way. Substituting this into Stokes’ equation leads to

∇p = ηd[∇2X]〈v〉 . (10.60)

Averaging of both sides over a local volume of semi-macroscopic size defines the permeability
in terms of the average of the velocity transformation tensor: ∇p̄ = −(ηd/k)〈v〉, where p̄ is
the coarse-grained pressure. Solving for velocity and taking into account the gravity yields
Eq. (10.56). The nontrivial assumptions about connecting the micro and macro scales through
k have been improved further in Ref. [309] using lattice gas cellular automata. Without
volume averaging the pressure, the linear relationship between the driving pressure gradient
and velocity can be derived for a simple capillary tube flow without any porous medium [293].
Similar result holds for Poisell flow in a Hele-Shaw cell [310].

The use of Darcy’s law or Stokes’ law leads to hydrodynamic models where the phase-
field plays the role of density or concentration. Within the pure phase-field formulation alone
it is also possible to include the effect of gravity through a phase-field dependent mobility
M [311, 312], which should not be confused with the velocity transformation matrix above.
The typical order parameter dependence of the mobility is of the form M(φ) = 1 − φ2. The
equation of motion reads

∂tφ = ∇
(

M(φ)∇µ(φ)
)

. (10.61)

As will be shown below, even a simpler form, M(φ) = 1 − φ, is sufficient to generate a
convective term in the the equation of motion of the phase-field reminiscient of Eq. (10.53).
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Even though in this case the form of the linear density dependence of the mobility can be
justified based on analogy to diffusion constant D(φ), it remains to be checked that the
symmetries of the problem are respected in choosing M(φ). This obviously applies to more
complicated nonlinear density dependent diffusion constants [313], too.

To cast Eq. (10.61) into a form which bears resemblance to our previous formulation with
hydrodynamics, we let the gradient operate on the mobility and the chemical potential:

∇
(

M(φ)∇µ(φ)
)

= ∇M · ∇µ+M∇2µ . (10.62)

Remembering that the hydrodynamic pressure and the chemical potential of a pure phase-
field model are analogous (see Ref. [4]), and since the pressure gradient is related to velocity
according to Darcy’s law, we can roughly write ∇M · ∇µ ∼ ∇M · vint. The velocity at the
interface, vint emerges because ∇M = (∂M(φ)/∂φ)∇φ is sharply peaked at the liquid-gas
boundary. Therefore, the equation of motion of the phase-field can be represented as

∂tφ−M ′ vint · ∇φ = M∇2φ , (10.63)

where M ′ vint = (∂M(φ)/∂φ)∇µ is analogous to the drift velocity caused by gravity in the
mass balance equation (10.39) in the hydrodynamic description. To summarize, all the differ-
ent ways to include gravity we have introduced, can be made analogous to the hydrodynamic
description by suitable redefinition of parameters. In other words, the phase-field evolution
equation will contain a convective term of the form v · ∇φ where the drift velocity is either
of hydrodynamic origin or comes from phase-field dependent mobility.

10.4 Dimensional estimates of importance of hydrodynamics

Hydrodynamic effects is always important on small enough scales within the boundary layers
close to solid walls. It makes sense, though, to ask if they can be neglected on certain
time and length scales if the parameters of the theory are replaced with effective, large scale
(renormalized) parameters, such as coarse-grained capillary pressure, which is relevant for
description of two-phase flow in a porous medium (random disordered network of capillaries).
At this level of description, microscopic boundary conditions (boundary layers etc.) do not
play a role anymore. In particular, we would like to know if there is a regime where one could
neglect the convective (∇ · (vφ)) term in comparison to the diffusive mass flux (M∇2µ̆) in
the mass balance equation,

∂tφ+ ∇ · (vφ) = M∇2µ̆ . (10.64)

To solve for the velocity field in terms of the mass density (phase-field), we start with Stokes’
flow equation (10.34):

ηd∇2v −∇p2 + fcap = 0 , (10.65)

where fcap ≡ µ̆∇φ is the capillary force. Pressure field is assumed to be fixed through the
incompressibility condition ∇·v = 0, which in the Fourier representation means transversality
of the velocity field: k · v(k) = 0. Taking the dot product of

v(k) = [−ıkp2(k) + fcap(k)]/(ηdk
2) (10.66)

with v(k) allows us to solve the pressure field: p2(k) = −ık · fcap/k2. Substitution of the
expression of the pressure back into Eq. (10.66) gives the transversal velocity field,

vi(k) =
1

ηdk2

[

− kikj
k2

(fcap(k))j + (fcap(k))i

]

= Tij(k)(fcap(k))j . (10.67)
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The tensor appearing on the right is called the Oseen tensor. In Fourier space it looks like

Tij(k) ≡ 1

ηdk2

(

δij −
kikj
k2

)

. (10.68)

In real space the Oseen tensor takes a different form depeding on the spatial dimension. In
three dimensions

Tij(x) ≡ 1

8πηdr

(

δij +
rirj
r2

)

. (10.69)

In two dimensions the real space representation of the tensor is Tij(x) = [−δij ln(r/a) +
rirj/r

2]/(4πηd), where a is a cut-off scale, which nondimensionalizes the argument of the
logarithm. Thus, with the aid of Eq. (10.67) the mass balance equation (phase-field equation),
∂tφ+ v · ∇φ = M∇2µ, can be written in the form

∂tφ(x) = −
∫

dx1 [∇φ(x) · T(x− x1) · ∇φ(x1)] µ̆(x1) +M∇2µ̆(x) . (10.70)

Basically, we want to find out the physical condition when the first term on the right hand
side of Eq. (10.70) dominates over the second. In other words, when is the convective mass
flux due to hydrodynamics more important than the diffusive flux due to chemical potential
differences?

10.4.1 Units of chemical potential

To be able to match the units of the variables in the mass and momentum balance equations,
we now define two systems of units. We denote the variables in the system of units where
the generic density symbol [ρ] = 1 (equivalently, [φ] = 1) with unprimed symbols and reserve
the primed symbols for quantities expressed in the physical unit system with [ρ ′] = kg/md

in d dimensions. This convention does not apply to lengths and time arguments, which have
the same units in both systems. Typically, when the mass balance equation is interpreted
as the phase-field evolution equation, we set [φ] = 1. In other words the phase-field (mass
density) is dimensionless. In App. C.2 we have shown that in the unit system with [φ] = 1,
the dimensions of the chemical potential are

[µ(x)] ≡
[
δF

δφ(x)

]

=

[
F ′

md

]

1
=

[
Nm

md

]

1
=

[

kg m2/s2

md

]

1

= [ρ′]1
m2

s2
=
m2

s2
, (10.71)

where we have also defined a unital operator [·]1, whose function is to convert all expressions,
which have been expressed in physical primed units, into units where [φ] = 1. For example,
for any quantity W

[W ′]1 = [W ] . (10.72)

The free energy has the units of energy E ′: [F ′] = [E′] = Nm. It is important to notice that
if we use the (effective) action instead of the equilibrium free energy, the units of the (time
dependent) chemical potential do not change:

[µ(x, t)] ≡
[

δA

δφ(x, t)

]

=

[
A′

mds

]

1
=

[
Nms

mds

]

1
= [ρ′]1

m2

s2
=
m2

s2
. (10.73)
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We have defined the action A′ to have units [A′] = [E′]s = Nms. This must be so because
the only difference between the free energy and action is the fact that in the latter there is
an extra time integral because the fields depend not only on x but also time:

F =

∫

dx f(φ(x)) ; A =

∫

dx

∫

dt f(φ(x, t)) . (10.74)

In other words, the form of the free energy density f is the same as the action density
but the argument fields of A depend additionally on t. Usually we do not use a different
symbol for the action but denote it by F . For further details on action, free energy and their
interchangeability we refer to App. C.2 and App. D.1.

Using the unprimed unit system together with the definition µ = δF/δφ in Eq. (10.71) is
a bit dangerous, since it does not reveal the fact that the chemical defined in such a manner
is actually the chemical potential per molecular mass µ̆, which was introduced in Sect. 10.1.1:

µ̆ ≡ δF

δφ
. (10.75)

As a remainder we note that whenever define the chemical potential through the variational
approach, we should used the symbol µ̆. For brevity, we usually just write µ. In the rest of
this section, however, we will indicate the normalization of the chemical potential explicitly
in order not to confuse the different quantities when converting back to real units. Below we
will find the physical units of the chemical potential in the primed unit system and thereby
show that it has to be interpreted as the chemical potential per molecular mass m0:

µ̆ = µ/m0 . (10.76)

On the right hand side we have the thermodynamic chemical potential, which has the physical
units of energy [µ′] = [E′] = Nm = kg(m/s)2.

In App. C.2 we have determined the units of various quantities in the unprimed unit
system with [φ] = 1. Let us now consider the conserved case with physical units. Leaving
out the hydrodynamic convection, the equation of motion for φ′ reads

∂tφ
′ = M ′∇2 δA

′

δφ′
= M ′∇2µ̆′ = M ′∇2

(

− γ′∇2φ′ + a′φ′ + b(φ′)3
)

, (10.77)

where we have used the symbol of the action A′ instead of the free energy F ′ to stress the
fact that [A′] = [E′]s = Nms. Explicitly,

A′[φ′] ≡
∫

dx

∫

dt
(

(γ′/2) |∇φ′(x, t)|2 + (a′/2) (φ′(x, t))2 + (b′/4) (φ′(x, t))2
)

. (10.78)

The units of the coefficients of the action can be fixed from Eq. (10.77) and Eq. (10.78).
Using the latter,

[A′] = mds [γ′]
1

m2
[φ′]2 ⇒ [γ′] =

[A′]m2

mds [φ′]2
. (10.79)

Utilizing the last equality of Eq. (10.77) we get an expression for the mobility [M ′]:

[φ′]
s

=
[M ′][γ′][φ′]

m4
⇒ [M ′] =

m4

s [γ′]
=
m2+d[φ′]2

[A′]
, (10.80)
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where the last equality follows from Eq. (10.79). It is easy to see that in the unprimed unit
system the units of the mobility reduce to those given in Sect. C.2. On the other hand, using
the chemical potential µ̆′ defined in the second equality of Eq. (10.77) gives

[∂tφ
′] = [M ′∇2µ̆′] ⇒ [φ′]

s
=

[M ′][µ̆′]
m2

⇒ [M ′] =
m2 [φ′]
s [µ̆′]

. (10.81)

Equating the two expressions for [M ′] given in Eq, (10.80) and Eq, (10.81) yields finally the
units of the chemical potential:

m2+d [φ′]2

[A′]
=
m2 [φ′]
s [µ̆′]

⇒ [µ̆′] =
[A′]

mds [φ′]
=

[E′]
md [φ′]

(10.82)

Substitution of the units [A′] = [E′]s = kgm2/s and [φ′] = kg/md gives [µ̆′] = (m/s)2, which
clearly confirms the interpretation that chemical potential defined through the variational
derivative of the action with respect to density should be interpreted as the chemical potential
per molecular mass:

[µ̆′] =
[µ′]
[m′

0]
=
m2

s2
, (10.83)

where the physical units of the thermodynamic chemical potential are those of energy: [µ ′] =
[E′] = Nm. Comparison with Eq. (10.71) and Eq. (10.73) allows us to write

[µ̆(x)] = [µ̆(x, t)] = [µ̆′(x)] = [µ̆′(x, t)] =
m2

s2
(10.84)

because the physical units of the chemical potential per molecualr mass do not depend on
the density. It should also be remembered that the unit change does not change the absolute
scale of the variables. That is to say, scale change will take place if we define the potential
energy minima of the free energy F to be such that the bulk value of density becomes +1
in the dimensionless units instead of +1000, which would correspond to density of water of
+1000 kg/m3 in the real units.

We close this section by demonstrating the necessity of introducing the new operation
denoted by [·]1 in Eq. (10.71). The mobility M may serve as an example. Suppose we in a
somewhat carefree manner use the equation of motion [M∇2µ̆] = 1/s = [∂tφ] to determine
the units of M , and write

[M ] =
m2

[µ̆]s
=

m2

[A]
mds

s
=
m2+d

[A]
. (10.85)

Even though this relation is consistent with the other relations concerning units of different
terms in the equation of motion as shown in Sect. C.2, it has not been fully reduced in the
sense that one can still extract density variable out of it if one naivly assumes that since
[A′] = kg(m/s)2 does not contain units of density we should have [A′] = [A]. If this was true,
Eq. (10.85) would give

[M ] =
m2+d

[A]
=
md

kg
s . (10.86)

However, since md/kg = 1/[ρ′] we should really set it equal to one in the unprimed unit
system, thus correctly reducing the dimension of [M ] = s. Despite the fact that we obtained
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the correct answer finally, it is important to notice that the intermediate steps were incorrect.
Instead of Eq. (10.85) we should have written

[M ] =

[

m2

µ̆′s

]

1

= s . (10.87)

It is also difficult to try to go back to real units from the unprimed representation, which
has been obtained by mixing expressions whose units have not all been converted at the
same time as in Eq. (10.85). Trying to obtain the physical units of primed representation
from it would give [M ′] = (1/[ρ′])s, which is clearly not right. The reason is that we do
not know the powers of [ρ′] multiplying this expression since in the unprimed representation
they are equivalent to factor of one. As can be seen from Eq. (10.80) the correct result is
[M ′] = (1/[ρ′]) s[ρ′]2 = [ρ′] s.

Alternative unit system

Often in the applications we would like to use variables which are defined per unit volume.
It is indeed possible to define such a unit system (variables in these units carry a subscript
V ) with a little bit of extra work. In other words we would like to have something like
µV = µ′/V ′, where V is the volume occupied by the system in physical units [V ′] = md.
We would also like define µV through the variation of the action functional (free energy
functional) with respect to density. We will show below that these two requirements cannot
be simultaneously satisfied in the physical unit system if we impose also the requirement that
the action (free energy) in the new system has its natural units:

[AV ] = [A′] = Nms . (10.88)

Additionally, the time and space variables are also unaffected by the unit transformation,
which means that [VV ] = [V ′] = md. Let us first consider the capillary force term, whose
expression can be reorganized to give

µ̆′∇φ′ ∼ µ′

m′
0

∇m′
0N

′

V ′ =
µ′

V ′∇N
′ = µV∇N ′ , (10.89)

where N ′ is the number density of constituent particles (unitless number in any system).
Hence, we notice that it is possible to define µV to have units of energy density per unit
volume if we accept the fact that the density field appearing in the place of the phase-field
φ is really the number density. This case is different from defining a unit system where the
density [φ] = 1 because in such a system [µV ] = (m/s)2 as we have shown above.

What happens if we now define µV = δA/δφ? Let us use a similar techique as above to
determine the units of µV . Defining the mobility in the new unit system as MV , the equation
of motion reads

∂tφV = MV∇2 . (10.90)

Replacing the primed variables where necessary by the variables carrying subscript V we can
proceed in the same manner as above. Analogously to Eq. (10.80) we obtain

[MV ] =
m2+d[φV ]2

[AV ]
. (10.91)
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In the new units Eq. (10.81) becomes

[MV ] =
m2 [φV ]

s [µV ]
. (10.92)

These two equations allow us to solve for the units of the chemical potential per unit volume:

[µV ] =
[AV ]

mds [φV ]
. (10.93)

It is easy to see that indeed [µV ] = [AV ]/(mds) = [E]/md = Nm1−d if we consistently
identify φV as the number density N . Correspondinly, the units of the mobility become
[MV ] = m2+d/[AV ].

10.4.2 Relevant time and length scales

To derive Eq. (10.70) we have to solve for the velocity from the Stokes’ equation, which in
the primed units reads

η′d∇2v′ −∇p′2 + µ̆′∇φ′ = 0 . (10.94)

All quantities have their normal units: [ηd] = [φ]m2/s, [φ] = kg/md, [p2] = [E]/md−1,
[µ̆′] = [µ̆] = [µ]/[φ] = [E]/(md[φ]) and [E] = Nm = kg(m/s)2. In the unprimed unit system,
where [φ] = 1, Eq. (10.94) reads

ηd∇2v −∇p2 + µ̆∇φ = 0 . (10.95)

Because the dimensions of length and time do not change in the unit transformation, we have
[v] = [v′]. The unit of the viscosity is [ηd] = m2/s in the unit system with [φ] = 1. Thus, the
kinematic and dynamic viscosities have the same units when mass density is dimensionless.
Velocity has units [v] = m/s. Thus, [ηd∇2v] = m/s2. As we have shown in Sect. 10.2, in
the representation, where [φ] = 1, the units of the pressure field become [p2] = m2/s2 and
thus, the dimensionality of the second term in Stoke’s equation is consistent with the first
one. Finally, we have (as we should), [µ̆∇φ] = [µ̆](1/m) = m/s2.

Since the boundary condition of the stress tensor in the normal direction is due to the
capillary force, we can estimate fcap ∼ ∇p2 ∼ (1/L)∆p2 ∼ (1/L)σK ∼ σ/L2, where L is the
observational length scale on which the all spatial derivatives are evaluated. The value of the
surface tension in the units where [φ] = 1 is σ. To get a relation between the physical surface
tension σ′ and σ, we first note that ∇p2 ∼ µ̆∇φ⇒ [µ̆] = [p2] = [σ/L], where

[σ] = m3/s2 . (10.96)

On the other hand, since fcap = µ̆∇φ ∼ µ̆/L, we obtain the following relation between
the chemical potential and the surface tension: µ̆ ∼ σ/L. In the physical units we have
correspondinlgy µ̆′ ∼ σ′/L. Therefore, owing to the simple linear relationship between the
units of the surface tension and the chemical potential, we can write,

[µ′]
[µ̆′]

=
[µ′]
[µ̆]

=
[σ′]
[σ]

= [ρ′] =
kg

md
. (10.97)

The mobility parameter M appearing in the equation of motion of the phase-field φ can be
related to its partner M ′ in the same way. This can be seen by comparing the equations of
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motion in the two different unit systems: [∂tφ
′] = [M ′∇2µ̆′] and [∂tφ] = [M∇2µ̆]. Comparing

[∂tφ
′] with [∂tφ] we see immediately that the former contains an extra factor of units of

density as compared with the latter. To compensate for that the right hand side [M ′∇µ̆′]
must also contain the same factor as compared with [M∇µ̆]. Because [µ̆] = [µ̆ ′], the extra
factor has to reside in M ′ and therefore,

[M ′]
[M ]

= [ρ′] =
kg

md
. (10.98)

Plugging in the units we obtain,
[M ′] = [ρ′] s . (10.99)

This equation should be compared with the results presented at the end of Sect. 10.4.1, where
it is shown that one should be carefull in trying to reconstruct the units of the physical primed
representation from the units of the unprimed one.

Unlike the chemical potential, the physical dimension of the Oseen tensor depends on
spatial dimension: in 3D T ∼ 1/(ηdL) whereas in 2D T ∼ 1/ηd. Evaluation of the the
second term on the right hand side of Eq. (10.70) in two and three dimensions gives M∇2µ̆ ∼
M(1/L2)(σ/L) = Mσ/L3. The first term gives

∫

dx1 [∇φ(x) · T(x− x1) · ∇φ(x1)] µ̆(x1) ∼ L3 1

L

(
1

ηdL

)
1

L

σ

L
=

σ

ηdL
. (10.100)

In 2D the same result holds because
∫
dx1 [∇φ · T · ∇φ] µ̆ ∼ L2(1/L)(1/ηd)(1/L)(σ/L) =

σ/(ηdL). Thus, the condition for the dominance of the diffusive term is

σ/(ηdL) �Mσ/L3 ⇒ L� (Mηd)
1/2 . (10.101)

Thus, the hydrodynamic description is relevant for large length scales L� √
Mηd in 3D. This

condition has been derived in Ref. [314] in the three dimensional case and it is easy to show
that it also holds in 2D (rather trivially, since ∂tφ on the right of Eq. (10.70) has no dependence
on dimensionality on space). The condition for the time scale where diffusive description
makes sense can be obtained through relation ∂tφ = M∇2µ̆, or 1/t ∼ Mσ/L3. Solving for
the length scale we get that L ∼ (Mσt)1/3. Plugging this into the inequality (10.101) yields

t�M
1/2
η

3/2
d σ−1 . (10.102)

Dimensions of the parameters are: [M ] = s, [ηd] = m2/s and [σ] = m3/s2. Of course,
the time scale given in Eq. (10.102) should be compared with the other time (length) scales
obtained from comparing the magnitude of the inertial terms to the convective ones.

10.4.3 Relevance of turbulence for capillary flow

We conclude this section by estimating the scales where turbulence becomes important. This
is to be expected for capillaries where there are large gradients in the velocity field. Generally
speaking, large Reynolds number Re (O(1000)) characterizes turbulent flow. Reynold’s num-
ber Re ≡ Lv/ν is the dimensionless combination of the typical velocity and length scales and
the kinematic viscosity. When Re is small (Re � 1) it gives a rough estimate on the scales
where the viscous term (ν∇2v) in the Navier-Stokes equation dominates over the nonlinear
convective term (v · ∇v). Therefore, turbulence is expected if Lv̄/ν > 103, where v̄ is the
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average velocity of the fluid in capillary tube. The characteristic velocity is obtained from
the hydrodynamic result for the averaged meniscus speed of fluid column under gravity [281]:

v̄ = dh/dt =
R2

8ηd
(pc/h(t) − gφ) , (10.103)

where h(t) is the height of the liquid in the tube. R is the radius of the tube and pc ≡ 2σ/R is
the capillary pressure in the units where [φ] = 1. This formula holds for spontaneously rising
front with no external pressure gradient driving, which would alter Eq. (10.103) substantially.
It is clear that the liquid rises higher the narrower the tube is. However, it also rises faster the
wider the tube radius is. Of course, this behaviour seazes to hold when the radius becomes
so large that the conditions under which Eq. (10.103) has been derived break down. In the
Washburn regime the condition for the onset of turbulence becomes

h < 10−3 R
2σ

νηd
≡ hcr . (10.104)

Notice that ν ≡ ηd/φ and [φ] = 1. The upper limit of the tube radius can be determined from
the condition that gravitational effects must not dominate the meniscus shape: the derivation
presumes a spherical cap.

Eq. (10.104) is easier to evaluate if we use the physical units for all variables. Substituting
the values of water [293] we set ν ′ ≈ 10−6m2/s, η′d ≈ 10−3Ns/m2 and σ′ ≈ 10−1N/m we
estimate that for a capillary whose radius is of the order of 1mm the critical height hcr below
which Reynolds number is in the turbulent regime, is of the same order (O(1cm)) as the
capillary length. For capillaries with radius smaller than 0.1mm the critical height is about
hundred times smaller as it scales like R2. Analogous scaling relation holds also in the case of
driven flow between two plates separated by distance x [315]: The average flow velocity v goes
like v ∝ x2. Thus, if Eq. (10.104) is to be believed, for capillaries of this size turbulence should
not be a problem except for a small fraction of the capillary height. Of course, it should be
remembered the Washburn equation (10.104) does not hold for small enough heights: when
h → 0, the velocity becomes infinite, which is of course unphysical. Also, in the derivation
of the mean velocity of the meniscus one has assumed quasi-stationary Stokes’ flow, which
does not hold for small altitudes where the velocity field experiences rapid changes [279].
The distance XP at which the parabolic velocity profile typical of Poiseuille flow assumed in
the derivation has been reached, depends on the capillary radius and Reynolds number. A
simple formula, which gives a rouhg estimate [316] is XP /R = Re/15.
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Chapter 11

Emergence of boundary conditions

In standard sharp-interface hydrodynamics one needs to supplement the partial differential
equations of mass, momentum and energy densities (and other fields relevant for large scale
description) with proper boundary conditions. This section demonstrates that the Poisson
bracket formulation of hydrodynamics, in which the boundaries are diffuse and no boundary
conditions are needed, is capable of mimicking the sharp-interface hydrodynamics governed
by standard Navier-Stokes equations. In other words, the new non-linear coupling terms in
the equations of motion arising from the Poisson bracket formalism give effectively rise to the
boundary conditions of the sharp-interface model (standard Navier-Stokes), whose evolution
equations contain a smaller number of driving force terms. Boundary conditions can be
modeled with the aid of bulk fields, which is a great advantage especially when flows take
place in a geometrically complicated (disordered) medium.

11.1 Classical boundary conditions

According to the standard hydrodynamics of simple liquids the boundary conditions that a
single component viscous two-phase flow has to satisfy are the following.

• Fluid-fluid boundary. Normal stress is continuous across a straight boundary. If the
boundary is curved there is a discontinuity in normal stress components given by
Laplace’s formula. Tangential stress is continuos if the surface tension is constant
and the fluids can be considered immiscible. Otherwise discontinuity appears also in
tangential direction (p. 234 of Ref. [293], p.11 of Ref. [317]). Both normal and tangen-
tial velocities are continuous (the same on both sides of the boundary), See [318] p.56
derivation for irrotational fluid.

• Fluid-solid boundary. In the frame moving with the boundary the normal velocities of
the fluid must be zero. For viscous fluid the also the tangential velocities are the same
on both sides (p. 95, Ref. [299]). These requirements give rise to the no-slip condition
v = 0 at solid boundaries in the frame where the solid stays fixed.

Unless elastic properties of the solid are accounted for, one cannot say anything about the
behaviour of the stress tensor at solid-fluid boundaries (p. 8 of Ref. [292]). The only thing
which can be said on general grounds is that the both tangential and normal forces (stress

219
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vector) across the interface are continuous (p. 45 Ref. [299]) (except when shock waves are
present), according to the action-reaction principle of Newton’s. In a more refined treatment
it is possible to derive equilibrium conditions for the stresses across the fluid-solid boundary
analogous to Laplace’s formula for fluid-fluid interfaces (p. 18 Ref. [292]), whose presence is
not taken into account in our list above. As the solid is considered completely inert spectator
phase in our description, we will not consider these refinements at this point but settle for
studying only the standard conditions mentioned in the list above. We will also assume
that the interfaces are charge neutral. For charged interfaces one should also include electric
stresses (p. 10 Ref. [317], Ref. [319]).

The boundary conditions can be formulated in many ways dependening on the choice of
the variables and method of solution. For example, in the case of single phase flow, we can
cast out the pressure field altogether by projecting onto the longitudinal momentum com-
ponent that satisfies the ideal fluid boundary condition v · n = 0, where n is the normal
vector of the solid. Therefore, we do not need to set boundary condition for pressure using
this description. It can always be expressend in terms of the velocity as shown in (p. 39
Ref. [304], see also boundary conditions of the pressure field in Helmholtz-Hodge decompo-
sition). Sometimes vorticity representation is preferred over velocity, boundary conditions
for this type of formulation can be found in (p. 635 Ref. [320]). The standard boundary
conditions for our purposes are most conviniently formulated in terms of the velocity field
and stress tensor:

{
v(x) = 0 , x ∈ ∂ΩS .

(p1 − p2 − σK)ni =
(

(τik)1 − (τik)2
)

nk + ∂σ/∂xi ,
(11.1)

where the subscripts (1, 2) refer to the two sides of the boundary. The first condition is
the no-slip condition at fluid-solid boundary ∂ΩS . The second condition is the stress tensor
condition at fluid-fluid boundaries. For incompressible fluid the viscous part of the stress
tensor is defined as

(τik)α ≡ (ηd)α

(
∂vi
∂xk

+
∂vk
∂xi

)

α
, (11.2)

and α = 1, 2. When surface tension gradients are not present, the latter condition in Eq. (11.1)
reduces at equilibrium to Laplace’s formula ∆p = σK, where K ≡ 1/R1 + 1/R2 is the local
curvature with principal radii of curvature R1 and R2 in 3D. The components of the unit
normal vector of the fluid-fluid interface are denoted with nk in Eq. (11.1).

The sign of the ∂σ/∂xi term reveals that it should be interpreted as contractive surface
pressure gradient analogous to the bulk force ∇p. Moreover, in Eq. (11.1) the surface tension
is strictly defined on the boundary only. In other words, σ = σ ′(ξ2(x), ξ3(x)), where ξ2 and
ξ3 are the curvlinear coordinates spanning the interface and ξ1 is defined to be the normal
coordinate of the interface, whose position in the Cartesian frame can be obtained from the
relation ξ1(x) = 0. We will prove now that the cartesian gradient ∇σ is a tangential vector,
which is physically clear from the action of this term (contraction of the interface). First, we
define an auxiliary surface tension σ̃ ′(ξ1, ξ2, ξ3) ≡ σ′(ξ2, ξ3)δS , where δS ≡ |∇ξ1|δ(ξ1) is the
surface delta function. Taking the Cartesian gradient ∇ ≡ e1∂1 + e2∂2 + e3∂z (∂i ≡ ∂/∂xi)
on both sides of the defining equation we get

∇σ̃′(ξ1, ξ2, ξ3) =

(
∂σ′

∂ξ2
∇ξ2 +

∂σ′

∂ξ3
∇ξ3

)

δS + σ′∇δS . (11.3)

Since the orthonormal basis vectors of the curvlinear system [321] are given by ai ≡ ∇ξi/|∇ξi|
(i = 1, 2, 3), we see that the last term on the right hand side of Eq. (11.3) points in the
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direction of the normal n ≡ a1: ∇δS = nn · ∇δS . Clearly, the expression in parenthesis, ∇σ ′

is orthogonal to n. Therefore, we can say that the Cartesian derivative of σ ′ is tangential,
which also applies to σ(x)

σ′(ξ2(x), ξ3(x)) ≡ σ(x) , (11.4)

which lives only at the boundary. To make the tangentiality of the term ∇σ apparent, we
should replace ∂σ/∂xi in Eq. (11.1) with (δik − nink)∂σ/∂xk = (∇ − ∇n)σ, where ∇n ≡
nn · ∇. With this modification, it is straightforward to split the condition on stress tensor
into its normal and tangential parts. Let ni be the components of the unit normal and si the
components of the tangent vector (in some preferred direction on the tangential plane). The
normal and tangential derivatives are given by ∂n ≡ n·∇ = ni∂/∂xi and ∂s ≡ s·∇ = si∂/∂xi,
respectively. Contraction of the pressure tensor gives

ni (τik)αnk = (ηd)α ni

(
∂vi
∂xk

)

α
nk + (ηd)α ni

(
∂vk
∂xi

)

α
nk (11.5)

= 2(ηd)α nk

(
∂vk
∂n

)

α
; (11.6)

si (τik)αnk = (ηd)α si

(
∂vi
∂xk

)

α
nk + (ηd)α si

(
∂vk
∂xi

)

α
nk (11.7)

= (ηd)α si

(
∂vi
∂n

)

α
+ (ηd)α

(
∂vk
∂s

)

α
nk . (11.8)

Using the results above, we can resolve the stress tensor condition (11.1) into to scalar
equations for the normal and tangential directions:

p1 − p2 − σK = 2(ηd)1 nk

(
∂vk
∂n

)

1
− 2(ηd)2 nk

(
∂vk
∂n

)

2
; (11.9)

(ηd)2

(

si
∂vi
∂n

+ nk
∂vk
∂s

)

2
− (ηd)1

(

si
∂vi
∂n

+ nk
∂vk
∂s

)

1
=

∂σ

∂s
. (11.10)

We have thus reproduced the results of Refs. [322, 323]. We will return to these equations in
Sect. 11.2 where we show how they arise from the Poisson bracket formalism, and indicate
how corrections to them can be generated.

11.2 Derivation of boundary condition for stress tensor

Sect. 11.1 reviewed the classical boundary conditions of fluid mechanics for sharp-interface
models. The jump condition of the stress tensor can also be derived using the sharp interface
model assuming a singular stress distribution on the phase boundary (cf. σ̃ ′ above):

P ≡ P+θ+ + P−θ−− σ(I− nn) δS , (11.11)

where P± ≡ p±I− τ± and θ± ≡ θ(±ξ1(x, t)). The bulk fields can be divided into two parts
indicating medium 1 with + and medium 2 with −:

φ = φ+θ+ + φ−θ− ; v = v+θ+ + v−θ− ; τ = τ+θ+ + τ−θ− . (11.12)

The bulk values of the density on both sides are denoted by φ±. Substitution of these
definitions into the momentum balance equation, ∂t(φv)+∇· (φvv) = −∇·P gives a regular
and singular contribution. The latter is given by

(p+ − p−)n = (τ+ − τ−) · n + Kσn + ∇σ , (11.13)
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which is precisely the same as Eq. (11.1). This result with viscous effects added has been
derived in Refs. [262, 324]

11.2.1 Limiting value of capillary stress in diffuse boundary formulation

We now turn to derivation of the boundary condition for the stress tensor using diffuse inter-
face description where the evolution equations are obtained from Poisson bracket formalism.
In this case no boundary conditions are needed (because there are no sharp boundaries in
the first place). Instead, the nonlinear couplings among the coarse-grained fields (order pa-
rameter fields) give rise to effective boundary conditions, which in the sharp interface limit
approach the classical ones. In equilibrium the momentum balance equation (9.26) yields
the Laplace’s pressure drop condition. For zero velocity the surviving terms fulfil the force
balance

−∇p2 + µf∇φ = 0 . (11.14)

On scales large compared with the bulk correlation length the capillary force µf∇φ is a sharply
peaked function at phase boundaries because ∇φ changes rapidly there. Approximating ∇φ ≈
δ(x− xb), where xb denotes the spatial position of the phase boundary we see that capillary
force becomes proportional to the chemical potential evaluated at the interface: (µf )int ≡
µf (xb). At curved fluid-fluid interfaces (µf )int ≈ −σK/∆φ, where ∆φ is the miscibility gap.
Integrating Eq. (11.14) over the phase boundary yields the boundary condition for the normal
component of the stress tensor:

∆p2 = σK/∆φ . (11.15)

In the unit system where [φ] = 1, we usually scale the magnitude of the bulk density in such
away that ∆φ = 2. By defining a new pressure field p̃2 ≡ p2/∆φ we can cast Eq. (11.15) into
the standard form.

In the tangential direction the term µf∇φ gives rise to another force if the surface tension
is not a spatial constant. This possibility rises if there are for instance surfactants present in
the solution. The tangential force is balanced against the viscous stresses as will be shown
later. Below we show how it arises from the diffuse boundary description. Projection of the
tangential force mediated by the capillary stress term µf∇φ in the direction s is given by
µfs(s · ∇φ) = µf∂sφ s. Integrating this force across the phase boundary yields

∫

duµf
∂φ

∂s
s =

∫

du
δFf
δφ

∂φ

∂s
s ≈

∫

du
∂f

∂s
s . (11.16)

To obtain the last approximate equality, we have made use of the free energy density f
(Ff =

∫
dV f). It has also been assumed that the gradients of φ(u, s) in the direction s are

negligible in comparison to the gradients in the normal direction u. Specifically,

∂

∂s

∫

du f(φ) ≈ ∂

∂s

∫

du
[

1
2 |∂uφ|2 + V (φ)

]

(11.17)

=

∫

du
[

−∂2
uφ(u, s) + V ′(φ(u, s))

]

∂sφ(u, s) ≈
∫

du
δFf
δφ

∂sφ . (11.18)

Finally, at the level of accuracy where the tangential derivative terms can be left out, we
show that ∫

du
∂f

∂s
s ≈ ∂σ

∂s
s . (11.19)
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Owing to the specific form of the free energy Ff , which we are using, the bulk free energy is
normalized to zero. This means that the free energy F++ of single phase composition with
no phase boundaries is zero: F++ = 0. The surface tension σ is defined to be the free energy
difference between a system with a single phase boundary between phases + and − (free
energy F+− = Ff ), and the free energy of a pure system divided by the boundary area A.
Thus,

σ ≡ 1

A
(F+− − F++) =

1

A
F+− =

1

A

∫

dV f =
1

A

∫

dA

∫

du f ≈
∫

du f , (11.20)

where we have assumed that
∫
du f(u, s) depends very weakly on the tangential variable s.

Since ∂σ/∂s ≈ ∫
du ∂f/∂s according to Eq. (11.20), we have been able to show that the extra

force term

µf∇φ ≈
(

σKn +
∂σ

∂s
s

)

δS + O(ξ) . (11.21)

When the width of the phase boundary ξ goes to zero we expect the correction terms to
vanish (like some power of ξ in general) and we are left with a distribution of force which is
concentrated at the boundary regime indicated by the surface delta function δS . Based on the
effective form of the force term µf∇ derived in Eq. (11.21) we show now how it contributes
to boundary condition of the stress tensor in the limit ξ → 0.

11.2.2 Boundary condition of stress tensor through electromagnetic ana-

logue

To derive the boundary condition for the stress across the interface between two fluids, we
make use of an electromagnetic analog. Jump conditions for electric displacement D and
magnetic field vector H, which are the macroscopic averaged counterparts of the microscopic
electric field E and magnetic induction B inside macrosopic medium, can be derived directly
from Maxwell’s equations. This can be done by enclosing a small volume dV around the
boundary layer, where the permeabilities change, into (for instance) a cylinderical pill box,
whose height is let to approach zero. In this way one obtains conditions [259] regarding
either normal or tangential (or both) components of the fields, which they have to satisfy
when crossing the boundary region. Analogously, we try to find out what are the conditions
on the stress tensor (velocity field) when we cross a boundary between two fluids with possibly
different macroscopic (averaged) properties such as viscosities. It should be noted that the
conditions are enforced by the structure (nonlinear coupling terms) of the equations of motion
themselves, they are not put in by hand. Our starting point is the momentum balance
equation without stochastic terms:

φdv/dt = −∇ · P + µf∇φ , (11.22)

where P ≡ pI + τ is the full stress tensor with viscous stresses included. We enclose a small
boundary region ∆V in a cyliderical pillbox whose bottom and top are on different sides of
the boundary. When the height of the cylinder approaches zero, the volume integral over
the left hand side of the equation of motion,

∫

∆V dV φ dv/dt → 0 because the integrand is
assumed to be bounded. This statement may not hold if the there are strong anomalies such
as shock waves present.
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Let us take the volume integrals of the right hand side of the equation of motion. Trans-
formation of the divergence of the tensor field P into a surface integral gives

−
∫

∂V
P · dS +

∫

V
dV µf∇φ = 0 , (11.23)

where ∂V is the surface area of the pillbox. We take the bottom and top areas of the pillbox
to be the same: ∆Stop = ∆Sbottom ≡ ∆S. The normal vector of the top is denoted by n and
the normal vector of the bottom is opposite to it. As the height of the pillbox goes to zero,
the surface integral of Eq. (11.23) yields in the limit

−
∫

∂V
P · dS → (P+ −P−) · n∆S . (11.24)

The remaining volume integral over the capillary force density can be calculated with the aid
of Eq. (11.21):

∫

∆V
dV µf∇φ ≈

∫

dS

∫

du

(

σKn +
∂σ

∂s
s

)

δS = ∆S

(

σKn +
∂σ

∂s
s

)

. (11.25)

Combining Eqs. (11.25) and (11.24) and canceling out the common factor ∆S gives us the
final answer:

(p+ − p−)n = (τ+ − τ−) · n + σKn +
∂σ

∂s
s . (11.26)

This is consistent with the standard stress tensor jump condition and with the result based
on the singular distribution method leading to Eq. (11.13), where ∇σ must be understood as
tangential derivative.

11.2.3 Dimensional estimation of strength of viscous stress

Even though viscous stresses are always important close to phase boundaries, we can ask
how strong is the effect of viscous stresses on the stress tensor boundary condition. If the
viscous pressure drop across fluid-fluid boundary is negligible as compared to the surface
tension contribution, we can simplify the analysis of a situation where the two fluids have
different viscosities: If we can set the terms on the right hand side of Eq. (11.9) to zero in
comparison to the σK on the left, we could neglect the fact that ηd = ηd(φ) as far as the
normal component of the stress tensor boundary condition is concerned. Besides giving some
idea of the magnitude of the viscous pressure drop across the divinding surface, this could be
useful for a numerical simulation in case the spatially varying viscosity caused any problems:
Inside the transition zone (thickness of the phase boundary) it would be possible to use a
constant effective viscosity, which would be the same for both fluids. The assumption about
constant effective viscosity in the vicinity of the phase boundary would also simplify the
tangential stress tensor condition to mere identity. If the surface tension is a spatial constant
the tangential stresses obviously cancel each other as can be seen from Eq. (11.10) by setting
(ηd)1 = (ηd)2. Of course, we would also have to assume that the derivatives of the velocity
are continuous across the phase boundary which seems reasonable as no sudden jumps should
appear when the width of the boundary is finite (a few lattice units in simulation).

From the expression of the viscous stress tensor we have τ ∼ ηd∂v/∂x ∼ ηd∆v/∆x ≡
S1. The Laplace pressure drop S2 is given by S2 ∼ σ/R, where R is the characteristic
size of the radius of curvature. Hence, the size of the transition region where the surface



11.3. SOLID-FLUID INTERACTION 225

tension effects dominate over viscous effects can vary spatially with the spatial variation of
the curvature K. Situation simplifies considerably in cases where the curvature is the same
constant along the whole phase boundary. A narrow capillary tube with spherical meniscus
(R ∼ radius of the tube) has a constant curvature and serves as a test bench below. The
condition for the dominance of surface tension effects is thus S1 � S2, or

ηd∆v/∆x� σ/R ⇒ ηd∆v/σ � ∆x/R . (11.27)

Let us see what the condition for the ratio ∆x/R in case of a capillary tube. The length scale
∆x corresponds to the meniscus width ∆x within which the pressure drop ∆p takes place, and
R is the radius of the tube. The surface tension of water-air interface is σ ≈ 102erg/cm2 =
10−1N/m, and the viscosity of water is ηd ≈ 10−3Ns/m2. We will also assume that the
velocity jumps from zero to average advancing velocity of the front, which is take to be
∆v = vave ≈ 10−3m/s. Plugging these numbers into Eq. (11.27) yields ∆x/R� 10−5 which
should be an experimentally realizable figure.

11.3 Solid-fluid interaction

We will show now that the substrate potential VS is not a redundant parameter when we
are considering the velocity field v of the fluid in addition to its density φ. As argued in
Sect. 9.1 for equilibrium situations when the momentum density of the fluid can be left out
of description, we can replace VS(z) (which is small but non-zero in the fluid domain close
to the solid boundaries ) with the wall potential A, which vanishes in the fluid domain D.
Equivalently, based on the density functional results, we can say that keeping the integrated
value of

∫∞
dw
dzn VS(zn) constant, where dw is the depth of the microscopic depletion zone

just above the solid surface, is equivalent to fixing a certain value to wall potential A as far
non-zero contact angles are considered. Also complete wetting can be achieved through a
wall potential, which vanishes in the fluid domain. However, it is not possible to vary the
depth of the wetting layer unless one extends the support of A into the fluid domain D:
A = A(x, y, z), where A is non-zero close to solid boundaries even if z ∈ D. Alternatively,
one can use VS(z) instead of A(z) as we have noted before.

Below we will first show how the force term ∇VS(z), where z is the coordinate normal
to the solid surface, naturally explains the boundary condition vn = 0 which holds for both
viscous and non-viscous fluids. In other words, the substrate potential turns out to be
responsible for bringing the moving fluid elements into contact with the solid walls and for
preventing them from entering the solid domain D ′. In Sect. 11.3.2 we discuss the possible
mechanicms of the tangential velocity condition, vt = 0, along solid wall in a viscous fluid.

11.3.1 Vanishing normal velocity at solid wall

We drop everything else from the equation of motion and concentrate on the effect of fwall
term in Eq. (9.24):

φ∂tv = −φ∇VS . (11.28)

The term −φ∇VS on the right hand side of the previous equation is active only in the vicinity
of the solid-fluid boundaries. Let us give a hand waving proof that Eq. (11.28) plays a role in
the emergence of the boundary condition typical of a viscous fluid or nonviscous fluid. First,
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consider separately components of the velocity field normal (vn) and tangential (vt) to the
solid boundary:

∂tvn = −∂nVS ; (11.29)

∂tvt = −∂tVS . (11.30)

Since the potential changes much more rapidly in the normal than in the tangential direction,
we can effectively set ∂tVS ≈ 0. Then, the second equation only posesses the trivial solution
vt 6= vt(t) and thus the wall potential is not seen to affect the dynamics parallel to the wall
in this approximation. Thus, we are only left with Eq. (11.29) to describe the dynamics with
the boundary layer close to the wall. The term on the right is clearly a force term which pulls
the fluid elements into the potential well located at the minimum of VS . Simultaneously, it
prevents the fluid from entering the interior of the solid phase because VS becomes (infinitely)
repulsive right at the location of the solid boundary.

11.3.2 No-slip condition

The action of the force ∇VS is sufficient to explain the emergence of the macroscopic con-
dition vn = 0 which prevents the fluid particles entering the interior of the solid because
their momentum perpendicular to the solid wall will be zero at the solid-fluid boundary.
Macroscopically, we know that this condition is satisfied by a non-viscous fluid satisfying
Euler’s equation of motion. However, there are no terms in the present equation of motion
which would naturally explain the vanishing of the momentum parallel to the wall leading to
macroscopic no-slip condition v = 0 typical of simple viscous fluids.

Since the no-slip condition cannot be generated by ∇VS in the manner described above,
we have to search for other mechanisms. One possibility is to resort to a concept of effective
dynamic viscosity η∗d, which in a way becomes infinitely large close to solid boundaries and
thus enables the normal dissipative force term η∗d∇2v to take care of removal of fluid elements
kinetic energy close to solid walls. Inside the fluid η∗d = ηd is the same as the normal dynamic
viscosity of the fluid. This approach can be shown to be consistent with zero slipping length
of the fluid elements at the wall [325]. The momentum equation of motion has the form

φ (∂tv + (v · ∇)v) = −∇p2 − ηd∇2v + fb , (11.31)

where the boundary force term fb contains the capillary contribution and the potential barrier
generated by VS : fb ≡ fcap−φ∇VS = µf∇φ−φ∇VS . It is worth pointing out that in Ref. [325]
it is shown that the normal Navier-Stokes equation (Eq. (11.31) without the boundary force
fb) supplemented with boundary conditions

j‖|b = δwall ∂nj‖|b , j⊥|b = 0 , (11.32)

is a sufficient large scale description of the microscopic NEMD (Non-Equilibrium Molecular
Dynamics) simulation of molecular fluid. There are new phenomenological parameters intro-
duced in Eq. (11.32): j‖ is the momentum flux in the direction of the wall and j⊥ is the flux
perpendicular to it. The slipping length is δwall and the fluxes are evaluated at the boundary
|b = |z0 , where z0 is the height at which the diffuse solid-fluid boundary is taken to be. In
terms of the velocity field we can equivalently write ∂zvs|b = vs|b/δwall for s = x, y with z
as the perpendicular direction. In other words it is possible to find out the values of the
new parameters z0 and δwall from the simulation data by using a linear response argument
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relating the force on the fluid elements at the wall to autocorrelation function of the parallel
momentum fluctuations via a generalized Green-Kubo relation. If the microscopic interaction
potential of the fluid and wall particles satisfies certain conditions, it follows that δwall = 0
and consequently the no-slip condition holds.

Even though the previous method can be called an ab initio derivation of the boundary
condition, it still relies on the traditional form of the Navier-Stokes equation which holds for
bulk fluids. Consequently, it does not really reveal where the dissipation comes from on the
level of the forces. We can even cast it in the usual form by trading the boundary conditions
of Eq. (11.32) to an effective viscosity η∗d which dependes on the fluid and solid density fields
φ and ρ:

φ (∂tv + (v · ∇)v) = −∇p2 − η∗d(φ, ρ)∇2v + fb , (11.33)

It is supposed that η∗d becomes infinitely large close to solid boundaries such that the sharp
interface boundary condition v = 0 is satisfied. The possibility of having a density (order
parameter) dependent viscosity has been suggested in Ref. [25] not to model the effect of
solid walls but to allow the components of the binary fluid have different viscosities.

Anther possibility for obtaining the no-slip condition is to add a new force term (to be
derived from free energy, of course) which acts on a faster time scale than the other terms
since v = 0 is an instantaneous condition. In this way we could avoid introduction of η∗d(φ, ρ)
which obviously complicates both some aspects of analytic and numerical work, though it
does save us from the pain of imposing the no-slip at every solid-fluid boundary, something
which might prevent the simulation attempt of fluid flow in complicated porous medium using
traditional tools. If we choose to implement the no-slip condition by introduction of a new
force term instead of using effective viscosity η∗d, we should repeat the Green-Kubo analysis
of Ref. [325] to see how the extra force term exactly appears in the linear response argument.
As it is, it only contains contribution from the dissipative force ηd∇2v.

11.3.3 Remarks on effective viscosity

So far we have considered two possibilities which give rise to viscosity coefficient that acquires
spatial dependence. In Sect. 11.3.2 we introduced the concept of effective dynamic viscosity
η∗d(φ, ρ), whose dependence on the fluid and solid density fields lead to no-slip boundary
condition at solid boundaries. In Sect. 9.5.3 the description of two-component flow in terms
of total momentum led to a density dependent viscosity ηd(φ), which becomes equal to the
viscosity of each fluid component within the components domain. In this section we demon-
strate that at least on the level of Stoke’s flow, where the inertial terms of the Navier-Stokes
equation can be left out, the use of effective dynamic viscosity η∗d still allows us to obtain the
formal analytic solution of the velocity and pressure fields. This can be usefull for analysis
of flow and liquid-gas boundary properties in complex solid matrix. Instead of Eq. (10.39)
we have 





η∗d(x, y)∇2v −∇p2 + fg = 0 ;
∇ · v = 0 ;
∂tφ+ v · ∇φ = M∇2µf .

(11.34)

In 2D the effective viscosity is η∗d(x, y) ≡ η∗d(φ(x, y), ρ(x, y)). Dividing both sides of the first
equation with η∗d and taking the divergence, we get

−∇ ·
(

1

η∗d
∇p2

)

+ f̃g = 0 , (11.35)
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where we have defined f̃g ≡ ∇·(fg/η∗d). This type of equation is difficult to solve in the general
case but in 2D one can resort to complex function techniques. Supposing it is possible to
find a conformal mapping between the z = x+ ıy plane and the w-plane where w = g(z), the
gradient transforms as

∇z = ḡ′∇w , (11.36)

where ḡ denotes the comples conjugate of g. If we could identify g ′ with 1/η∗d it is straightfor-
ward to proceed solving Eq. (11.35). In general, there is no guarantee, that such a conformal
g-function exists. However, the Riemann mapping theorem guarantees [326] that almost ar-
bitrarily complicated region can be conformally mapped onto a regular one in the w-plane.
Therefore it should be possible to at least get rid of the complicated spatial dependence of the
prefactor function 1/η∗d by making a transformation which straightens the phase boundary
into a straight line. Then one can proceed solving Eq. (11.35) by other standard methods.

11.4 Dissipative effects close to solid boundaries

As molecular processes close to solid boundaries are not modeled at the current level of
sophisitication, it cannot be expected that the Poisson bracket formalism with the free energy
given in Eq. (9.1) would produce the no-slip boundary condition without addition of any
extra terms to Ft. However, it is interesting to see if there are any mechanisms built-in in
the current formalism which enable dissipation of kinetic energy of the fluid elements close
to solid walls. Indeed, in App. D.2.2 it has been shown that when the momentum density
is treated as the fundamental coarse-grained quantity, and its equation of motion is used to
generate the evolution equation of the velocity field through substitution j(x) = φ(x)v(x), we
generate extra terms on the right hand side of the Navier-Stokes equation. The derivation of
of the full evolution equation of the velocity field is presented in App. D.2.2. Here it suffices
to study the following reduced form of the Eq. (D.80):

φdvi/dt = −Γ00

[

∇2
(

− 1

2φ2
j2 + µ2

)]

vi = Γ00(∇2µk) vi − Γ00(∇2µ2) vi . (11.37)

For free energy of Eq. (9.1), δF/δφ = −j2/(2φ2) + µ2, where µ2 ≡ µf + VS . The chemical
potential of the fluid is µf and VS is the averaged substrate potential of the solid, which
couples linearily to φ. Whether or not this simple interaction is sufficient and how it is to
be modified to create dissipation of kinetic energy of fluid elements depends crucially on the
magnitude and form of the constituents of µ2.

The first term in the square brackets in Eq. (11.37) tries to even out kinetic energy
differences. This can be seen in the following way. First, drop the second term and multiply
both sides by velocity v (1D). Equation of motion becomes ∂tE ∝ (∂2

xE)E, where E = v2 is
proportional to kinetic energy for constant mass density. If the initial profile is sinusoidally
varying in space, we see that in the regions where ∂2

xE < 0 (hill tops) the energy is lowered,
whereas the energy of those regions with ∂2

xE > 0 (valleys) increases.
To be able to say that the second term in the square brackets corresponds to a viscous

dissipative force we need to show that the prefactor Γ00(∇2µ2) > 0. If this is so, then in
principle Γ00(∇2µ2)vi can be generated by taking variation with respect to vi of a positive-
definite functional, Rayleigh dissipation functional, which is quadratic in velocity. Obviously,
the prefactor does not have to be positive everywhere in space. To be able to say that
the prefactor has something to do with no-slip boundary condition, however, it suffices to
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prove that the curvature of µ2 is positive close to solid boundaries. Of course, even this is not
sufficient for effective generation of no-slip boundary condition: for that to be true, one would
have to show that the magnitude of the prefactor is so large that on macroscopic scales the
kinetic energy of the fluid element is dissipated almost instantaneously. In addition, a further
requirement that a force term responsible for producing the no-slip effect should satisfy, is
that its support is concentrated in the vicinity of the solid boundaries. Clearly, there is no
guarantee that Γ00(∇2µ2) will actually behave so in every situation.

Let us see how far we can get by using the current form of the free energy. In equilibrium
(without thermal fluctuations) the velocities of the fluid elements are zero and the momentum
balance equation reduces to condition ∇µ2 = 0. In order for the fluid to equilibriate in a
capillary tube set-up, for example, one must add the gravitational chemical potential to
expression of µ2. Only when the fluid elements are moving can there be nonzero curvature
for the potential µ2, which complicates analysis considerably. Although static arguments are
insufficient we may gain some insight by considering the form of µ2 = µf + VS . The solid
potential VS is unaffected by motion of the fluid whereas µf changes as a function of v. The
static wall potential is strongly repulsive at short distances, rising very deeply on approaching
the outermost atomic layer of the wall. Therefore, it does not sound unreasonable to assume
that VS � µf close to the walls. If the fluid is not driven too fast, we can roughly take µf
to be the same constant in both liquid and gas phases. Thus, if the overall potential µ2 close
to the wall is dominated by VS and further away from walls it is given by µf , there must be
a region of positive curvature in-between. This can be made more quantitative as follows:
Normalizing VS − µf = 1 in suitable units, we can write µ2 ≈ −θ(x) + θ(x − L), where L
is the separation between two walls (consider system with two vertical walls at x = 0 and
x = L for simplicity). This approximation means that we have calibrated the bulk value
of µf = 0 between the walls and taken the phase boundaries to be infinitely sharp. Then,
the derivative ∂xµ2 ≈ −δ(x) + δ(x − L). Taking into account the fact that in nature no

boundary is absolutely sharp we can approximate the delta function with δ(x) ≈ Ae−A
2x2/2,

where the (large) value of A is fixed by the molecular length scale determining the finite
physical width of the solid-fluid phase boundary. The second derivative is given by ∂ 2

xµ2 ≈
−A3x e−A

2x2/2+A3(x−L) e−A
2(x−L)2/2. Plotting curvature of the chemical potential µ2 versus

the spatial location ensures that within the fluids domain ∂2
xµ2 takes positive values only in

the immediate vicinity of the solid boundaries and consequantly −Γ00(∇2µ2) vi dissipates
kinetic energy fast due to the largeness of the prefactor A.

The biggest shortcoming of our argumentation is that the assumption of VS dominating
over µf and having the step function profile mentioned above close to the boundaries seems
to be contradicting our earlier requirement that µ2 = VS + µf = const when approaching
equilibrium. One should be careful, though, since we have also assumed that the total chem-
ical potential does not experience any discontinuities when crossing the solid-fluid boundary
whereas the pressure field is confined inside the fluid phase only. To be more faithfull to the
phase-field philosophy we should also study the extensions of the pressure field inside the solid
phase and see if there are any anomalous contributions close to the phase boundary. Finally,
we conclude that if it is possible to study the dissipation at solid boundaries by adding new
terms to the free energy (coarse-grainable from microscopics) it might also be possible to cast
some light into the ab initio derivation of the dissipative effects at contact line and in thin
precursor films (dissipation channels) discussed in Sect. 8.9.
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Chapter 12

Stochastic properties of interfaces

and lines

Having produced the dynamics of the relevant bulk variables of classical fluids (Sect. 3.1.2,
Chap. 9) and having shown how the dynamics of lower dimensional structures such as liquid-
gas boundaries and triple lines can be projected out of the bulk equations of motion (Chap. 8),
we will now consider the stochastic aspects of the equations of motion of the projected
collective coordinates. Stochasticity of the bulk equations of motion can result at least from
three different sources. Part of it is due to the coarse-graining process itself as explained in
Sect. 1.1 and Sect. 2.3.5. Static frozen impurites (or partial information of the embedding
environment) can have a strong effect on the dynamics of collective coordinates. Also, non-
linear deterministic (or stochastic) terms in the equation of motion of relevant variables can
sometimes be approximated by a special type of noise fields in the equations of motion of the
collective coordinates. It is mainly the last two types of stochasticty that we will concentrate
on in this chapter.

In Sect. 12.1 we discuss the relevance of lines and interfaces as defects of order parameter
fields as seen from a perspective of defect dynamics, which is a natural continuation of the
coarse-graining chain which can be achieved by ’integrating out’ the bulk degrees of freedom.
Sect. 12.2 gives several examples of stochastic phenomena, which can be attacked by means
to be developed in the last section 12.3, where we develope a new method for constructing
an effective noise correlator for the moving interface, which is very different from the static
bulk disorder correlator giving rise to it.

12.1 General coarse-graining aspects

The use of collective coordinates such as interfaces and lines is by no means separate issue but
falls naturally into the theme of the coarse-graining. Lower dimensional collective coordinates
such as triple lines and interfaces are important as many physically important processes
take place at boundary region separating different media. For example, catalytic reactions
typically take place on surfaces, impurites in many cases migrate to grain boundary region,
surfactants residing in the interfacial region between different fluids may alter the local surface
tensions, and so on. Defect structures can typically be considered as quasi-particle types of
observables described by some collective coordinates. Defects are abundant in the area of
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the condensed matter physics: For instance, vortices in superconductors and dislocations in
crystals play an important role in explaining both equilibrium properties and dynamics of
phase transitions. Since defects can be seen as singularites of the order parameter fields, they
can also be seen as relevant ’macro’ variables, which can allow a further reduction of total
number of degrees of freedom, if we can somehow integrate out the bulk dynamics of the
order parameter fields.

Defects are formed when symmetry breaking takes place. On the other hand, when
continuous symmetries are broken, Goldstone modes emerge. These two concepts can be
seen to be connected via the the order parameter, which in the Madelung parametrization
(ψ = χ(x)eıθ(x)) contains both amplitude and phase fluctuations (considering scalar order
parameters for simplicity). The Goldstone modes are associated with the long wave length
spatial phase fluctuations of the order parameter, whose energy goes to zero for k → 0,
and which are continuously related to the ground state. Defects have to do with the very
short scale spatial amplitude fluctuations of the order parameter, which are not continuously
connected to the ground state [327]. The traditional Landau free energy is an expansion
in the amplitude of the order parameter, which is assumed to be small. At sufficiently
high temperatures the amplitude fluctuations cannot be neglected unlike for low-energy (low
temperature) part of the spectrum, where the phase-fluctuations dominate in the form of
Goldstone modes [328]. However, defects can be long lived (e.g. topological defects ), so in this
sense they behave like Goldstone modes. Even though the amplitude fluctuations of the order
parameter are energetically more expensive than phase fluctuations, they nevertheless need
to be taken into account in modeling various types of phenomena. For example, topological
defects called vortices determine most of the fundamental properties of superconductors and
their responses to external static and oscillating electromagnetic fields [204]. Domain wall
types of defects play an important role in phase-ordering kinetics [314] in fluids (liquid-gas
phase boundary) and solids (e.g. ferromagnetic domain walls). In Sect. 12.3 we mainly
concentrate on domain wall types of defects and consider the effect of frozen bulk impurities
on the dynamics of defects.

Finally, we point out a natural group theoretical continuation of the coarse-graining
scheme, which is suitable for analysis of defect structures. Just like we utilized the dynamic
symmetry group to find out the relevant order parameters, one can use homotopy (group)
theory to study the em topology of the vacuum manifold [20]. The group theoretic approach
may not be the most efficient to find the defects in a specific application but it helps us to see
the analogs more clearly. Thus, the situation is analogous to extracting the relevant variables
which can be done group theoretically by constructing the dynamic symmetry group or by
using other means, which can be much more efficient for specific applications. All in all, it
is important to realize that at least in principle, very complicated problems can be cast into
a standard representation (group theory e.g.), which provides the answers. This fact can be
used as a starting point of developing systematic approximative classification schemes.

12.2 Examples of quenched processes

Several examples of quenched noise processes will be presented below. We want to demon-
strate that in all cases the equation of motion for the relevant macro variable takes a form of a
nonlinear Langevin equation with driving force and noise field deriveable from the underlying
microscopic physics.
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12.2.1 Dendritic growth

Dendrites are commonly observed microstrucure in metals, where the heat diffusion from
liquid to bulk phases controls the morphology of the solidfication front. To model these types
of problems one has typically utilized two techniques in the materials science: One has either
studied a so-called sharp-interface models (e.g. Stefan or Hele-Shaw models [268]) or the
phase-field approach [329]. In the traditional setting the phase-field is seen as an auxiliary
field which only imposes the correct boundary condition at solid-liquid boundary. It is lacking
the physical meaning which is associated with it in Sect. 7. As an auxiliary field it cannot
be interpreted as a defect structure, contrary to the case where it is seen to represent the
domain wall separating two phases.

In this section we present the sharp interface analog of the equations of motion for den-
dritic growth and compare it with the contact line motion in three dimensions and liquid-gas
boundary motion in two dimensions (imbibition). As we have pointed in Sect. 8.3 It is possi-
ble to derive the sharp interfaced model parameters by projecting out the bulk dynamics of
the phase-field models, whose parameters themselves can be obtained from more microscopic
theories via density functional methods. In Ref. [270] the sharp-interface parameters have
been derived by performing an asymptotic inner-outer expansion and matching the solutions
at the phase boundary. In other words, the experimentally important parameters appearing
in the projected equation of motion of the phase boundary such as the kinetic coefficient β,
capillary length d0 and surface tension σ are expressible in terms of molecular properties of
the solidifying material.

Interestingly, it turns out the in the one sided dendritic growth model (no heat diffusion
in the solid phase) and in a quasistationary situation, where diffusion lenght is large, we
obtain and equation of motion which is almost exactly like the imbibition equation [4]

∫

ds′G(x(s), h(x(s));x(s′), h(x(s′)))vn(x(s
′), t) = µσK(s) +B + αD(x(s), t) , (12.1)

where αD(x(s), t) is the projected noise (stochastic undercooling) expressed in the curvlinear
coordinate system following the phase boundary,

αD(x(s), t) ≡
∫

ds′G(x(s), h(x(s));x(s′), h(x(s′))) η(x(s′), t) . (12.2)

The normal velocity of the interface is denoted by vn in Eq. (12.1), G is the Green function
and B is the boundary condition term. Jacobian is included in measure ds′. Eq. 12.1 should
be compared with the results derived in Refs. [330, 269]. Thus, the equation of motion of the
phase boundary is similar to the equation of motion of the 2D liquid-gas phase boundary in
imbibition [4], or the equation of the motion of the triple line to discussed below. To make the
analogy complete one should assume that undercooling field is not constant but stochastic,
which could result from impurities of the solidifying substance.

12.2.2 Contact line

We have seen in Chap. 8 that the equation of motion for the fluctuating Fourier modes of the
contact line coordinate c(k, t) becomes very similar to Eq. 12.1 corresponding to a different
physical system. Namely,

∂tc(k, t) = FCL(k, t) c(k, t) + αCL([c], t) , (12.3)
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where the FCL is the driving force and αCL is the quenched noise field. Notation [c] means
that αCL is actually a functional of the contact line position c. The origin of αCL can be
traced back to the chemical impurities on the walls confining the liquid. If there are two
vertical walls present, quite generally we can write the following coupled set of equations of
motions for the contact lines ca and cb on the two walls:

{

a∂tc
a + b∂tc

b + cca + dcb = αCL([c
a]) ;

a∂tc
b + b∂tc

a + ccb + dca = αCL([c
b]) .

(12.4)

The coeffiecients a, b, c and d are linear operators defined in App. C.14.6. When the separation
of the two walls goes to infinity we recover Eq. (12.3). These type of coupled equations appear
when we project out the defect structure from inhomgeneous bulk macrovariable fields. A
similar equation of motion can be obtained at the mean field level of phenomenological models
for the interacting step edges to be discussed in Sect. 12.2.3. It should also be noted that
memory effects will always be present due to the coupling of the collective coordinates even
if the retarded effects are left out when expressing the higher dimensional field (meniscus
in this case) in terms of the lower dimensional one (contact line). Thus, even if the quasi-
stationary limit (App. C.11.1) is applied, solving contact line profile cb in terms of ca from
the latter of Eq. (12.4) and substituting it into the former, we see that ca will depende on
past times. Dynamic hysteresis effects can in general be seen to arise in this way. As for the
dendritic growth, the complicated noise correlations of αCL field can be worked out in detail
by knowing the distribution and statistics of the chemical impurities on solid walls, which
hinder the motion of the triple lines. This will be demonstrated via a simplified example in
Sect. 12.3.

12.2.3 Charge density waves and step-flow growth of crystals

Charge density waves (CDW) which are periodical modulations of the electron density re-
sulting from the electron-phonon interaction. As we have mentioned at the beginning of
Chap. 12, the order parameter of CDW can be written as [331]

ψ(x, t) = ρc(x, t) cos(Q · x + θ(x, t)) , (12.5)

which can be seen as the real part of the exponential Madelung representation. The constant
wave number of the periodic modulation is given by Q = 2kF , where kF is the Fermi mo-
mentum, ρc is the amplitude of the CDW and θ is the phase modulation. Goldstone modes
of the problem are phasons [162] and the defects are dislocations of the CDW lattice, where
one part of the density wave moves relative to the rest. The dynamics of a driven charge
density wave can be phenomenologically modeled via a modified Swift-Hohenberg equation
as shown in Ref. [332]. Thus, the problem appears as a phase-field model with a free energy
functional having a stochastic pinning potential describing the presence of frozen impurites,
which can distort the moving CDW. If one was only interested in the dynamics of the hill-tops
or valley-bottoms of the waves, it would be possible to develop an effective field theory of
these one dimensional ’lines’, which would appear very much like the model of interacting
contact lines described in the previous section. This can be done by continuing the series of
effective descriptions by approximating the Swift-Hohenberg model with a simple φ4-type of
phase-field model (Model A), which can sustain multi-kink configurations [333]. Imagining
that we are interested in the dynamics of the hill-tops, we can associate them with the posi-
tion of the kinks in the Model A, and derive equations of motion for them by projection as
usual.
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At this point further analogs appear. Phase-field model of type A with giving rise to
a multi-kink configuration can also be generated using a periodic, say sinusoidally varying
potential in the free energy. In this case, all the multiple minima of the potential can be
imagined to characterize of phase of their own, which could also be interpreted to describe
different steps on the vicinal surface of a growing crystal. By projection one ends up producing
a set of coupled equations of motion for the interacting step edges, which are similar to
equations of motion of the coupled contact lines. In particular, the stochastic structure is the
same. Fixing the one of the edges to be the reference plane and measuring distance of the
adjacent step edge from it by h(x, t), it can be shown to satisfy [334]

∂th(k, t) = FSE(k, t)h(k, t) + αSE([h]) , (12.6)

where the subscript SE refers to Step Edge. In the step flow problem the physical origin
of the stochastic term comes from the presence of impurities contaminating the surface.
The action of the force kernel FSE(k, t) is exponentially damped meaning that the the step
edges only see each other when they come closer than the distance of the bulk correlation
length. The reason for lacking a long-range repulsive entropic forces is that in deriving
Eq. (12.6) thermal fluctuations have been neglected. Thermal fluctuations have been included
in different types of non-equilibrium phase-field descriptions of vicinal growth. For example,
Karma and Misbah [335] have considered an extension of the Burton-Cabrera-Frank model,
which again bears a close resemblance to the dendritic growth model described in Sect. 12.2.1
with temperature field of the melt-solid system replaced by adatom concentration on terraces.

The long range entropic effects are not relevant for the charge density problem but they
do play an important role in the kinetics of step edges. In many cases, the potential energy
of neighboring steps with average distance L can be written as V (L) = A/L2 [336]. To
arrive at such a potential by integrating out the bulk (terrace) degrees of freedom is quite
nontrivial and has not been performed under time-dependent close-to-equilibrium conditions.
In principle the derivation could be doable along the same lines as the drumhead model
derivation of Kawasaki’s [337]: In the path integral formalism one can see the effect of multi-
kink configurations and thermal fluctuations on interactions between kinks without having
to restrict oneself to zero temperature conditions. If the long range forces can be derived
in this way, it means that the zero temperature fixed point cannot dominate unlike in some
related problems with quenched disorder discussed Sect. 8.2.3.

12.2.4 Polymere in a solvent and vortices in superconductors

Polymers do not represent defects of the order parameter field but their dynamics in solution
can be mapped into a form, which resembles the equations of motion of the line-like collective
coordinates of precious examples. Similar conclusion holds for vortices, which are genuine
defects. Starting with polymers, we follow Ref. [338] and write the following equation of
motion for the monomers of the polymer chain:

M
dvn(t)

dt
= fn(t) + ξ[u(rn(t) − vn(t))] , (12.7)

where M is the mass of the monomer, fn is the force on the string force on the nth monomer
and vn is the velocity field of the nth monomer. Finally, un(rn(t, t)) is the velocity field
of the solvent at rn at time t and coefficient ξ accounts for viscous effects. Neglecting the
inertial effects we ignore the left hand side of Eq. (12.7) and solve for vn:

vn(t) =
1

ξ
fn(t) + u(rn(t), t) . (12.8)
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It is easy to derive an explicit expression for the solvent velocity using linearized hydrody-
namics [339]. Knowing its form we can replace the discrete index n by a continuous parameter
s, which gives the arc length of the chain. In this representation the string force becomes
fn ≈ K∂2

sR(s, t) ≡ ξFPS(∂s), where R is the spatial position vector pointing from the origin
to point s in the chain. Eq. (12.8) becomes

∂tR(s, t) = FPS(∂s)R(s, t) + αPS([R]) + fd , (12.9)

where the ’quenched’ noise field is related to the velocity field of the solvent: αPS = u(rn(t), t) =
u(R(s, t), t). Stochasticity arises from the thermal fluctuations of the momentum density (ve-
locity u). We have also replaced the monomer velocity with a term ∂tR(s, t) on the right
hand side of Eq. (12.9) and added an external driving force fd on the right.

Large scale properties of magnetic vortices (flux lines) in type II superconductors can be
described by an equation of motion very similar to the one above [340]:

1

µ
∂tR(x, t) = −δH

δR
= ∂2

xR + αFL(x,R(x, t)) + fd , (12.10)

where x corresponds to s in Eq. (12.9) for small curvatures. The bulk Lorentz force is
denoted by fd and the stochastic force αFL is defined to the gradient of the pinning potential
αFL(x,R(x, t)) ≡ −∇V (x,R). Since the origin of αPS in the polymer example is in the thermal
fluctuations, the polymer does not become pinned unlike the flux line, which experiences the
force αFL stemming from the frozen impurities. Nevertheless, similar tools can be applied to
the analysis of both types of quenched (= field dependent) forces as will be demonstrated in
Sect. 12.3.

12.2.5 Domain boundaries in random magnets

Many physical problems can be mapped onto the Random Field Ising model (RFI) or some
of its variants. The discrete version is defined by the Hamiltonian H = J

∑

ij SiSj +
∑
Siαi,

where the summation is over the nearest neighbors and αi is the random field at site i. In
the continuum limit

H =

∫

dx
(

J̃ |∇S(x)|2 + V (S(x)) + α(x)S(x)
)

, (12.11)

where V = aS2 + bS4 is the double well potential. Projection of the order parameter (spin)
field onto the domain boundary between up and down spins with S(x, y) ≈ 2θ(y− h(x))− 1,
where h is the distance from a reference plane, gives

H1D = σ

∫

dx
√

1 + (∂xh)2 +

∫

dx

∫ h(x)

0
dy α(x, y) . (12.12)

Here we have considered a two-dimensional set-up: x = (x, y). Forming the dissipative
dynamics of model A type by setting ∂th = −δH1D/δh yields

∂th(x, t) = FRFI(∇)h(x, t) + αRFI([h]) . (12.13)

As in the case of the polymer, there is a surface tension term FRFI(∂x) ≡ σ∇2. The quenched
random term αRFI([h]) arises from the projection of the bulk field α: αRFI([h])(x, t) ≡
αRFI(x, h(x, t)). The purpose of the next section 12.3 is to show how we can calculate the
correlations of the projected noise αRFI from the known correlations of the frozen randome
field α(x, y).
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12.3 Reduction of bulk noise to effective interfacial noise

This section provides new functional means to obtain the effective noise correlator seen by a
moving interface or line. The continuum formulation of the Random field Ising model, which
is also known as the Quenched Edwards-Wilkinson equation will serve as a test bench. The
basic idea is the following: Given the stochastic properties of the frozen background field, say
〈α(x, y)〉 = ᾱ = const and 〈α(x, y)α(x′, y′)〉 = Dδ(x− x′)δ(y − y′), we have to find out what
is 〈αRFI(x, t)〉 ≡ 〈α(x, h(x, t))〉 as a function of x and t. We should also be able to express
the correlation function 〈αRFI(x, t)αRFI(x′, t′)〉 ≡ 〈α(x, h(x, t))α(x′ , h(x′, t′))〉 as a function of
x, x′ t and t′.

The background field correlations do not have to be Gaussian white noise but more general
forms can be used. In literature the effective noise correlator concept has been used in the
context of Functional Renormalization Group (FRG) from a slightly different perspective (see
e.g. Ref. [341] and Ref. [342]). The method developed in this section offers an alternative to it.
The main findings of the present section are the following. Even if the background noise has
simple short-range static correlations, the effective noise correlations 〈αRFI(x, t)αRFI(x′, t′)〉
can be long ranged with nontrivial power law kernels both in space and time variables. Also,
the projection of thermal noise does not have to be thermal as nontrivial time kernel can
emerge. Knowing the correlations of αRFI we can replace it in Eq. (12.13) by en effective
noise αeff , which has the same correlations:

∂th(x, t) = FRFI(∇)h(x, t) + αeff(x, t) . (12.14)

The advantage is that it is easier to compute various statistical averages in terms of αeff(x, t)
because it does not depend on the height field h anymore. We can also see Eq. (12.14)
as an equivalent stochastic process, which produces the same two-point functions as the
original process of Eq. (12.13) at a given level of approximation (e.g. two-point correlation
functions will be correctly reproduced when we truncate the effective noise correlations at
Gaussian level). It is also possible, though we do not directly utilize this feature below,
to include some nonlinear deterministic terms in the definition of αeff(x, t) and take their
influence into account stochastically. In this sense we come close to Eyink’s method [343]
of approximating the non-linear deterministic dynamics in terms of a linearized stochastic
model. The equivalent stochastic process reaches a steady-state for finite size systems in the
manner familiar from various surface growth models even if fluctuation-dissipation theorem
would not hold in the traditional sense.

12.3.1 Equations of motion

The full equation of motion for the ’height’ field H (just a generic stochastic field obeying
equations of motion of the type to be discussed in Chap. 12) is assumed to be given by

∂tH(x, t) = σ∇2H(x, t) + F + α(x,H(x, t)) . (12.15)

We have added a constant driving force F on the right hand side. Field α is the quenched ran-
dom field, the subscript RFI is dropped for convenience. Let us consider different strategies
for solving Eq. (12.15). Construction of the solution can be done by splitting the equation
of motion into mean-field part (h̃0) and fluctuations (h̃) around it. This partitioning is not
unique, of course. For example, we can define a new noise field α̃(x,H) ≡ α(x,H)−〈α(x,H)〉
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from which it follows that 〈α̃(x,H)〉 = 0. This gives the following equations of motion:

∂th̃0(t) = F + 〈α(x, h̃0 + h̃)〉 = F + 〈α〉(t) , (12.16)

∂th̃(x, t) = σ∇2h(x, t) + α̃(x, h̃0(t) + h̃(x, t)) . (12.17)

In other words, we can write h0(t) ≡ Ft+ v(t), where v(t) ≡ 〈α(x, h̃0 + h̃)〉 is the velocity of
the mean interface height. In this approach h0 will have to be solved self-consistently as it is
unknown from the outset.

Another type of splitting, which will be employed in the rest of the text is achieved by
setting h0 equal to a known value: Define H as follows to be H(x, t) ≡ h0(t) + h(x, t) with
h0(t) ≡ Ft. The equation of motion Eq. (12.15) takes the following form

∂th0 = F , (12.18)

∂th(x, t) = σ∇2h(x, t) + α(x, h0(t) + h(x, t)) . (12.19)

We note that h0 is not the mean field solution and h is not a correction to it. Function h
contains the full information of the original problem and is easier to work with in the current
formalism than H. Moreover, Fourier transforming this equation one does not have to worry
about zero modes as the driving term F is missing from both sides of the equation of motion
for h. The price that we have to be comes about through nonzero noise average 〈h〉, contrary
to the method used in Eq. (12.17)

Solving Eq. (12.19) formally gives us the following representations of h which shall be
used later on. In Fourier space

h(k, t) =

∫ t

0
ds e−σk

2(t−s)
∫

dx1 e
−ıkx1α(x1, h0(s) + h(x1, s)) . (12.20)

In real space,

h(x, t) =

∫

dk

∫

dx1 e
ık(x−x1)

∫ t

0
ds e−σk

2(t−s) α(x1, h0(s) + h(x1, s)) (12.21)

=

∫ t

0
ds

∫

dx′K(x− x′, t− s)α(x′, h0(s) + h(x′, s)) , (12.22)

where K(x, t) ≡ (4πσt)−d/2 exp(−x2/(4σt)) is the heat kernel and d is the dimensionality of
the space.

The formal solution of Eq. (12.19) can be presented in the form of functional fixed point
problem h = T [h] which one can try to solve by successive iterations:

hi+1 = T [hi] . (12.23)

For amplitude limited white noise in a system which has a finite extent in the direction of
propagation of the height field h (y-direction) it is possible to show that T is a contraction
operator. Thus, higher and higher order iterations will converge to a fixed point and no small
expansion parameter is needed as usually in perturbative calculations. The noise has also
been assumed to be Fourier transformable, which does not hold for genuine white noise. To
simplify the actual calculations below, we drop the amplitude limitation and assume that the
background noise field has a delta function correlator. Starting the iterations from h0 and
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applying the nonlinear operator T once generates first order iterative approximation to full
h:

h1(x, t) = T [h0] =

∫

dk1

∫

dx1 e
ık1(x−x1)e−σk

2
1t
∫ t

0
ds eσk

2
1sα(x1, h0(s)) (12.24)

=

∫

dk1

∫

dx1 e
ık1(x−x1)e−σk

2
1t
∫ t

0
ds eσk

2
1s
∫

dqeıqh0(s)αq(x1) . (12.25)

we will be utilizing this result when computing the explicit forms of the effective noise corre-
lators and structure factors. More details are presented in App. B.

12.3.2 Scaling of effective noise correlator

In the next sections we will perform a quick and dirty derivation of the most important scaling
properties which will suffice to produce the correct results. A much more detailed account is
given in App. B. It is mainly reserved for those readers who want to get an idea of the math
involved. More intuitive physical arguments are presented below.

The effective noise correlator has the following representation

〈α(x1,H(x1, t1))α(x2,H(x2, t2))〉 = C0(x1, t1;x2, t2) + Cαα′(x1, t1;x2, t2) (12.26)

Term C0 can be computed exactly (its scaling is studied in Sect. 12.3.2) whereas the term
Cαα′ we have constructed iteratively in the App. B. Even though it is possible to determine
the non-Gaussian features of the effective correlator (this is shown in the appendices) we ease
our job below by trying to find the best Gaussian process which accurately reproduces the
same expectation values for certain observables as the original quenched stochastic process.
Term C0 corresponds to noise contribution which can be thought of arising from decoupling
the degrees of freedom perpendicular to the mean interface direction from those parallel to
it. It should be noted that this is also the starting point of the functional RG calculations,
but we will see that it is not the whole story. Part Cαα′ contains the mixed contribution. In
the second order iterative approximation it further subdivided into four pieces

Cαα′ = CA + CB + CC + CD (12.27)

The scaling of the first one of these CA is computed below. First, however, we concentrate on
the scaling of C0, which represents the most straightforward contractions of the noise fields.

Scaling of C0, Ft/Wt � 1, L→ ∞
Below we shall check that annealed noise correlator of the Edwards-Wilkinson problem is
recovered when the dimensionless parameters of the problem approach certain limits. Cor-
relator C0 gives rise, in this limit to the annealed noise correlator whereas the contribution
from terms Cαα′ vanishes. The important scale in the problem is the ratio Ft/Wt → ∞ which
can be seen by nondimensionalizing the correlation function Gc appearing in the expression
of C0 (see App. B.1 and App. B.3):

C̃0(k, ts1; k
′, ts2) = D[G(1)

c (0, ts1, ts2)]
−1/2 exp

(

(Ft)2(s1 − s2)
2

G(1)
c (0, ts1, ts2)

)

(12.28)
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The correlation function scales as

G(1)
c (0, ts1, ts2) = W 2

t

[

s2β1
1 fw(0) + s2β1

2 fw(0) − 2g(0, s1, s2, 0)
]

, (12.29)

where

g(0, s1, s2, 0) =

∫

dk1 e
−k2

1 |s1−s2|
(

1 − e−2k2
1 min{s1,s2}

)

/(2k2
1) . (12.30)

Define new variables that will make the limit more obvious:

s′i ≡ si/
√

G(1)
c (0, ts1, ts2) , s = 1, 2 . (12.31)

Multiplying and dividing by (Ft) gives

C̃0(k, ts1; k
′, ts2) =

D

Ft
[G(1)

c ]−
1
2 lim
Mw→∞

Mw exp
(

M2
w(s′1 − s′2)

2
)

(12.32)

→ D

Ft
[G(1)

c ]−
1
2 δ(s′1 − s′2) =

D

Ft
[G(1)

c ]−
1
2 [G(1)

c ]
1
2 δ(s1 − s2) (12.33)

=
D

F
δ(t1 − t2) , (12.34)

where we have used the definition Mw ≡ Ft/Wt. This is the correct annealed noise limit for
H = h0(t) = Ft. Note that the limit σk2t � 1 needed to make Ci (i = A,B,C,D) vanish
plays no role here because C0 is independent of that. The equality in Eq. (12.33) strictly
speaking only holds if G(1)

c is constant, independent of si, which is not true. How to get
around this obstacle more rigorously is explained in App. B.8.

Scaling of C (1)

A , Ft/Wt � 1

Next, we determine the scaling behaviour of C (1)

A with the aid of some shaky mathematical
arguments which lead more directly to the correct result derived in App. B.4. There are, of
course, many ways to arrive at the correct scaling result. In the regime M ≡ Ft/Wt � 1 the
exponential term exp(−M 2

wm2) ≈ 1 in the full expression of the noise correlator (Eq. (B.69),
App. B.4) C (1)

A . Similarly, the expression in square brackets [−1 − 2M 2
wm1] ≈ −1.

C̃(1)

A (k, t1; k
′, t2) ≈ −D

2π
√

2

2w2

∫ L

dx e−ıkx
∫

1
L

dk3 e
−σk2

3t1

∫ t1

0
ds1 e

σk2
3s1

∫

1
L

dk4 e
ık4(x1−x2) e−σk

2
4t1

∫ t1

0
ds2 e

σk2
4s2 a1(x, t1, t2)

− 3
2 . (12.35)

First noting that a1 ∼ w1, we can neglect its x-dependence and pull it out. Also, integration
over s1 is easy:

C̃(1)

A ≈ − D2π

w2w3
1

∫

1
L

dk3
1 − e−2σk2

3t1

σk2
3

∫ L

dx e−ıkx
∫

1
L

dk4 e
ık4x 1 − e−2σk2

4t1

σk2
4

(12.36)

≈ − D2π

w2w3
1

(
∫

1
L

dk3
1 − e−2σk2

3t1

σk2
3

)

1 − e−2σk2t1

σk2
(12.37)

∝ − D2

w2w3
1

(σt1)
2β1

σ

1 − e−2σk2t1

σk2
= − D2

w2w3
1

Fw2
1

D

1 − e−2σk2t1

σk2
(12.38)

= DF
1

w1w2

1 − e−2σk2t1

σk2
. (12.39)
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The early and late time scaling regimes are:

C̃A ≈ F 2(σt)1/2 , σk2t� 1 ; (12.40)

C̃A ≈ F 2L , σk2t� 1 . (12.41)

All other correlators scale essentially in the same way in the corresponding limits.

12.3.3 Results for scaling

We can either compare the structure factors SA and S0, or the noise correlators C (1)

A and C (1)

0
directly because

Si = e−2σk2t
∫ t

0
ds1

∫ t

0
ds2 e

σk2(s1+s2) C̃i(k.s1.s2) , (12.42)

which means that when we make the two time integrals dimensionless, we just get a prefactor
t2. Since C̃(1)

0 ∼ D/G(1)
c ∼ D/Wt we obtain immediately a condition for the dominance of

C(1)

0 :

C(1)

0 � C(1)

A ⇒ D

Wt
� F 2L , (12.43)

This is consistent only if the requirement Ft/Wt � 1 holds, and for late enough times:
σk2t � 1∀k ⇒ σt/L2 � 1. This is proven below by showing that the two requirements
(dominance of C̃(1)

0 and late time requirement) lead to the same consistency condition Dσ �
(FL)3:

D

Wt
� F 2L⇒ D2

W 2
t

� F 4L2 ⇒ D2 �
(
D

Fσ
L

)

F 4L2 ⇒ Dσ � (FL)3 ; (12.44)

Wt � Ft⇒W 2
t � F 2t2 � F 2L

4

σ2
⇒ Dσ � (FL)3 . (12.45)

(In the infinite system size limit this can only be satisfied if the driving F → 0 which is a
somewhat singular limit in this formulation.) This means that for late times the exponent
χ is determined by the scaling of C (1)

0 (S(1)

0 ). Since S(1)

0 (L) ∼ L4−χ1 = L7/2 ∼ L2χ2+1, i.e
χ2 = 5/4.

Condition for dominance of C (1)

i over C (1)

0 is shown to be consistent with the requirement
that Ft�Wt:

F 2(σt)1/2 � D

Wt
⇒ F 2(σt)1/2W 2

t � D

Wt
W 2
t ⇒ F 2(σt)1/2

D

Fσ
(σt)1/2 � DWt(12.46)

⇒ F 2(σt)1/2
D

Fσ
(σt)1/2 � DWt ⇒ FDt� DWt ⇒ Ft�Wt . (12.47)

This means that when Ft/Wt � 1 and for small enough times σk2t � 1 the dynamic
roughness exponent β is given by the scaling of C (1)

i (S(1)

i ). This scales as (cf. Eq. (B.83))

C(1)

A ∼ t2−d/2−4β1 ∼ t2β2+d/z2 = t(2+d/χ2)β2 , (12.48)

from which it follows, β2 = 25/28. Finally determining the remaining exponent from the def-
inition z2 = χ2/β2 = 7/5. The velocity exponent can be obtained from the exponent identity.
Since the upper critical dimension is d = 2 in this perturbative approach, only the d = 1
result, i.e. β1 = 1/4 can safely be taken as the starting point of the iterative construction of
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the scaling exponents. With the aid of self-consistent methods higher dimensional estimates
can be achieved. Let us now compare our findings to the other results from literature in the
form a the following table:

Method χ β z

E N C 5/4 ≈ 1.25 25/28 ≈ 0.89 7/5 ≈ 1.40

N U M 1.25 0.88 1.42

F R G-1 1 3/4 ≈ 0.75 4/3 ≈ 1.33

F R G-2 1.43 0.85 1.68

Acronym ENC (Effective Noise Correlator) stands for our analytic results, NUM refers to
numerical results obtained in Ref. [344]. The first order ε-expansion results of Functional
Renormalization Group (FRG-1) are also taken from Ref. [344] whereas the second order
(ε2) results (FRG-2) are taken from Ref. [345]. As we can see, the effective noise correlator
method seems to offer a competitive alternative for the functional renormalization group. It
must be remembered, though, that estimated values of the FRG results (for results including
higher order corrections) deviate less from the numerical values than the ε2 results. For the
ENC-method this conclusion cannot be drawn as no tests have been made. It should also be
remembered that the exponents presented above are specific to certain scaling regimes whose
limits have been provided above. Depending on which one of the competing terms in the
correlator wins, there are other scaling regimes associated with different exponents.

12.3.4 Approach to pinning limit

For sufficiently large pinning force strength and small enough velocity the interfaces and
lines can become pinned by the frozen impurities. Mathematically, this can be expressed by
expressing the dependence of the propagation velocity v as a function of the driving force F :

v →
{

F , for F � Fc
(F − Fc)

θ , for F → Fc from above .

The critical driving force is Fc (for smaller driving the average interface stops) and the velocity
exponent is θ. Typically θ is less than one. We should be able to write the mean velocity of
the interface in the form which reproduces the limit in Eq. (12.3.4) correctly. The simplest
guess is that for θ < 1 we can write

v ≈ (F − Fc) + |F − Fc|θ + . . . (12.49)

Can we cast the perturbative result for v = F + 〈∂th〉 into this form? We first note that

〈∂th〉 = 〈σ∇2h〉 + 〈α(x, h0 + h)〉 = 〈α(x, h0 + h)〉 , (12.50)

because 〈∇2h〉 vanishes for any noise when we have periodic boundary conditions. From
physical point of view we should remember that the average of the quenched noise represents
the random energy content of the wandering phase boundary. When one approaches pinning
the system has had enough time such that the boundary has found the minimum energy
configuration, i.e. |〈α(x, h0 +h)〉‖ has taken its maximum value. In other words, the interface
is not necessarily moving when 〈α(x, h0+h)〉 6= 0. Only when 〈α(x, h0+h)〉 ≥ −Fc the phase
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boundary has a nonzero velocity. To the second order accuracy with which the exponents
have been determined the velocity does not reveal any pinning behaviour. There is just an
initial transient regime as the phase boundary accelerates towards its steady state velocity
F around we have expanded.

〈∂th2〉 = F + v(t) , (12.51)

with v(t) → 0 for t→ ∞. This is a rather peculiar result given that the functional RG calcu-
lations (which should be consistent with the results here after transforming to the comoving
frame), which only contain few of the lowest order diagrams resulting from the expansion of
the exponential factors exp(vt +H) in powers of H, predict pinning and nontrivial velocity
exponent. However, here we have summed over infinitely many more diagrams and end up
with some smooth behaviour.

Our aim is now try to see if there is any nonanalytic behaviour in the expression 〈α(x, h0+
h2)〉 which appears in the third order iterative approximation to velocity 〈∂th3〉. The non-
analyticity should manifest itself via making some integrals divergent for F < const = c.
Then we can identify c = Fc. Going to higher order iterations (3rd) turns out not to solve the
problem despite the fact that in principle one should find out the possible pinning behaviour
simply by studying the exact equation

〈∂th〉 =

∫

dq ıq〈δh(x, t)
αq(x)

exp(ıqh(x, t))〉 (12.52)

To get the functional derivative of h we ’only’ need to solve the following linear integral
equation

δh(x, t)

αq(x)
= f1(x, t, q) +

∫

dx1

∫

dt1K(x− x1, t− t1)f2(x1, t1)
δh(x1, t1)

αq(x)
, (12.53)

where

f1(x, t, q) ≡
∫

dk1

∫

dx1

∫

dt1 e
−σk2

1(t−s)e−ıq(vt1+h(x,t1)) (12.54)

f2(x1, t1) ≡
∫

dq ıq eıq(vt1+h(x1,t1))αq(x1) . (12.55)

Similarity to Schrödinger’s equation for electron in the random potential is obvious. In a
system, where the underlying lattice of frozen impurity field has been discretized leading to
finite noise correlation lengths of the order of the lattice constant ∆x in the x-direction we
have used dimensional arguments to derive an expression for the critical force [346],

Fc =

(

D2

σa

)1/3

g

(

DL3

σ2a2
,
∆x

L

)

, (12.56)

where the physical length of the domain satisfies L = N∆x, N being the number of lattice
sites in the x-direction. The precise form of the scaling function g is unknown but its limiting
behaviour can be worked out. The lattice spacing in the growth direction is denoted by a
(which naturally translates into the background noise correlation length in the y-direction).
Hence, this result suggests that it can make a difference whether we assume perfect delta
function correlations (zero correlation length) for the frozen noise field or not. Interestingly,
in the functional RG treatment on considers the random force correlations of the growth
direction to decoupled from the other directions even if the background noise field does not
support this asymmetry [278].
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Chapter 13

Conclusions

We summarize below the main results derived in the thesis. They are categorized into gen-
eral and specific ones the former having a broader applicability not restricted to any specific
example we have discussed.

General results:

We have discussed and compared several methods devoted to description of non-equilibrium
thermodynamics. The non-equilibrium generating functional formalism, which is the method
of choice in this work, has been shown to combine many of the features one would wish
a general theory of non-equilibrium thermodynamics to have. The generating functional
naturally combines the known quantum many-body density functional theories with the phase
transition dynamics familiar from the models of critical dynamics. It is also possible to relate
it to the phase-field models, which are very popular in the materials science modelling. The
generating functional formalism produces the equations of motion for the relevant variables
and performs averaging over the non-equilibrium density matrix naturally, without having
to worry about whether one has been able to find a complete set of macro variables or not.
Any subset will do. Moreover, the functional is naturally suited for renormalization group
studies. We have also shown how to apply the quantum field theoretic formalism to classical
many-body systems and lattice-gas type of more coarse-grained starting points.

We have also tried to shed some light on the very difficult open question on finding
the relevant macro variables. We proposed to study the symmetries of the effective action
of the generating functional. Alternatively, one can study the symmetries of the dynamic
density matrix of the system. Density matrix based approach provides explicit operator
representations of the relevant variables given that its dynamic group can be found. This is
close to impossible for any realistic system but approximatively the task can be carried out
in the vicinity of suitable chosen reference states. Therefore, physical intuition (as expected)
cannot be replaced by a mechanical machinery but the intuition may be guided by having a
machinery to aid in the process of isolating the relevant physics.

All in all, the generating functional can be used in many different ways. Sometimes it
is better to use more conventional approaches, which have been designed for a more specific
purpose. Yet, the strength of the generating functional concept lies in the fact that it brings
together many apparently different fields of physics (variational principles, thermodynamics,
quantum mechanics, particle physics concepts, dynamical system’s theory, stochastic analy-
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sis, density functional theory, RG, etc.). It also offers a whole lot of theoretical challenges,
which should be put on a more firm ground mathematically. There are at least two immedi-
ate application fields for the generating functional formalism, which are worth putting some
effort into. One is the derivation of coarse-grained density functional models of complex
liquids and colloidal suspensions. Dynamic mean-field theories are immediately obtained.
The real challenge comes when trying to take into account the higher order non-perturbative
density corrections. If we can find rather general and robust ways of doing this, we can give
the coarse-grained dynamic density functional description corresponding to any Molecular
Dynamics simulation, say. On the quantum mechanical side we have already demonstrated
the strength of the symmetry analysis in order parameter extraction, which can be readily
applied to systems as complicated as He3. This gives some hope that it might be possible
(though difficult) to obtain some new information about the high temperature superconduc-
tors, too, using the techniques presented here. Also, some of the methods (such as partial
symmetry analysis) will play a major role at this stage. Of course, being able to extract
the order parameter and the effective Lagrangian of a high-temperature superconductor from
microscopics sounds like a far fetched speculation but it should be kept in mind that a fair
amount of information has already been gathered on the symmetries of cuprate compounds
and experimental information has been used to construct the static dynamic symmetry group
of the effective Hamiltonian. These pieces of information can be utilized in filtering out the
unwanted parts of the complicated microscopic Hamiltonian.

Specific results:

We showed how to find the order parameters and relevant conserved variables of superconduc-
tors, superfluids and classical (simple) liquids based on the symmetries of the density matrix
(or Hamiltonian describing the steady-state). Time-retarded effective interaction was shown
to result from the non-renormalized action of the phonons on the electrons in the ordinary
superconductor. We did not make use of the full power of the formalism but settled for re-
deriving the standard time-dependent Ginzburg-Landau equation. Similarly, we derive the
Gross-Pitaevskii equation for the order parameter of a weakly interacting Bose fluid having
first found it using the symmetry analysis. In these cases it was easy to find the associated
symmetry operator but in more complicated cases where there are hidden symmetries the
story gets more interesting and challenging.

We displayed the analogs between quantum and classical density functional theories and
showed how they are connected thorough the concept of generalized Legendre transformation.
The effective action of the solid-fluid-gas system obtained from classical density functional
theory was shown to correspond to the free energy of the phase-field model, which had been
previously used by us in simulating fluid flow in complex geometries. We showed how the
macroscopic parameters of the phase-field model can be expressed in terms of the microscopic
simulation parameters by computing surface tensions in both ways (from MD and from phase-
field model). We explained how randomness present in real experiments (surface roughness of
solid walls or chemical impurities) can be modelled mathematically, and what its connection
to the theoretical parameters is.

Equations of motion were derived for triple lines and liquid-gas boundaries confined by
solid walls. To start with, we only considered mass balance equation and then later on took
into account the momentum balance equation of the fluid, as well. This results in extra
driving terms in the evolution equations of the meniscus and contact line. It was shown,
how the physically important time and length scales can be extracted from the partially
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linearized equations of motion. The stochastic properties arising from the presence of chem-
ically impure walls were analyzed in the Appendices. We also showed that a whole plethora
of seemingly unrelated models can be cast into an analogous form by choosing correctly the
collective coordinate (step edges of growing crystals, dendritic side branches, contact line,
flux line, polymer chain, domain wall of random magnet etc.) To extract the dynamics of
the collective coordinates (domain walls and lines) a new projection technique was developed
based on a variational method. The analysis of the ensuing stochastic equations required the
development of computational tools for quenched noise processes, which surprisingly yielded
better results for the simple test case of random ferromagnet (QEW) than the functional
renormalization group method (Sect. 12.3.3).

Finally, we demonstrated how the boundary conditions, which in the conventional sharp-
interface hydrodynamics are imposed as extra constraints, can be effectively taken into ac-
count as extra driving terms in the balance equations of the conserved quantities. Since the
explicit form of these extra terms can be derived using the generating functional technique, it
means that there exist a systematic way of deriving the sharp interface boundary conditions
from microscopics. In addition, it is possible to derive corrections to the boundary conditions
due to finite interface width, which is more physical than the idealized assumption about the
infinitesimally thin boundary layer.
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Appendix A

Convexity of action functional

This set of notes tries to shed some light on the different properties of the free energy (action)
and its density both in finite and infinite systems. Infinite system in the case of lattice models
of magnets means that the total number of spinsN → ∞. In the case of particles in continuum
medium the number of particles N and the volume of the system V go to infinity in such a
way that the density ρ = N/V stays finite. In continuum order parameter description (see the
Ginzburg-Landau-Wilson free energy functional below) the previous statement is equivalent
to having a finite pointwise density φ(x) and letting V → ∞.

There are many ways of deriving the thermodynamic Helmholtz free energy F (M,T,N)
(we are considering a model of a magnet system for simplicity). Total magnetization is
denoted by M and temperature is T (below β = 1/T where the temperature is expressed in
units J/kB where J is the spin-spin interaction coupling constant). The first way is to start
from the probability weights fixed by the microscopic Hamiltonian H =

∑

<i,j> sisj and trace
over all spin degrees of freedom {si} for which it holds that the local magnetization in a cell
(i.e. group of spins) located at xm is φ(xm). This leads to so-called Ginzburg-Landau-Wilson
free energy density functional Fl[φ]:

Z ′ =
∑

{si}

Nb∏

m=1

δ
(

φ(xm) − (1/Nc)
∑Nc
n=1sn

)

e
−β
∑

<i,j>
sisj ∝ e−βFl[φ] , (A.1)

where Z ′ denotes the restricted partition function, and Fl[φ] =
∫

V dx fl(φ(x)). The number
of spins in any cell Nc and the number of cells (number of block spins) Nb satisfy NcNb = N .
The pointwise free energy density comes out to be

fl(φ(x)) ≈ (1/2)|∇φ(x)|2 + aφ2(x) + bφ4(x) + O(φ6) . (A.2)

The attribute pointwise is used just to stress the fact that fl depends on the spatial location
x and thus characterizes spatial inhomogeneity present e.g. in locally equilibrated systems.

The series expansion holds actually for small values of the order parameter (φ) only, so
the higher order terms have been dropped. Summing over the remaining degrees of freedom,
i.e. letting the local magnetization (order parameter φ) take any value in each cell with the
constraint that the global magnetization has a fixed value M , results in

Z =

∫

Dφ(x) δ

(

M − V −1
∫

V
dxφ(x)

)

e−βFl[φ] ≡ e−βF (M,T,N) . (A.3)
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(The particle number N is a bit ambiguous since the continuum approximation, that is,
the replacement of block spins by smooth field φ(x), assumes that Nb = N/Nc → ∞. In
other words the number of block spins Nb should also approach infinity. Thus we have to
’rediscretize’ to make some sense out of the last equality in Eq. (A.3).) The simplest working
interpretation of the functional integration measure is to take it to be a product of pointwise
measures:

∫

Dφ(x) ≡
Nb∏

i=1

∫ ∞

−∞
dφi , (A.4)

where the index i runs from one to the total number of cells (block spins) in the system.

The second way of arriving at the same result is to simply leave out the intermediate block
spin summation:

Z =
∑

{si}
δ
(

M −N−1∑N
j=1sj

)

e
−β
∑

<i,j>
sisj = e−βF (M,T,N) . (A.5)

Notice that the summation in the delta function is over all spins N , not over the spins in a
single cell as above. It should also be noted that M appearing in the argument of F is the
spatially averaged magnetization. The third way of obtaining F is to first use the Gibbs free
energy G and then make a Legendre transformation

e−βG(H,T,N) =
∑

{si}
e
−β
∑

<i,j>
sisj+βH

∑

i
si . (A.6)

The external magnetic field H has here taken to be constant globally. Then we can relate
F and G through G(M,T ) = F − HM , where the external field is related to the global
magnetization through the equation of state:

1

β

∂g(H,T )

∂H
= −M(H,T ) , (A.7)

where g is the Gibbs free energy density. In Eq. (A.7) the magnetization M is the ensemble
averaged quantity in contrast to the spatial average appearing in Eq. (A.5). For self-averaging
systems these should be the same but not necessarily in general. Being a bit more careful
we should write limN→∞ 1/(βN) ∂G(H,T,N)/∂H = −M(H,T ). Although M didn’t appear
explicitly in the partition function in Eq. (A.6), it is defined through Eq. (A.7.) It should
also be remembered that Eq. (A.7) does not result from minimization of free energy G but
is a thermodynamic identity which holds for equilibrium free energy G(H,T,N). Similar
argument holds for the Helmholtz free energy density: limN→∞ 1/(βN) ∂f(M,T,N)/∂M =
H(M,T ).

Minimization is needed for the phenomenological Landau free energy, the generalization
of which to spatially inhomogeneous cases we have called the Ginzburg-Landau-Wilson free
energy (see Eq. (A.2)). Magnetization (order parameter in general) can be thought of as a
(macroscopic) state variable which takes on values others than those characteristic of ther-
modynamic equilibrium, too. In this sense expressing free energy as a function of order
parameter means that we have generalized the concept of free energy to nonequilibrium sit-
uations. All of the generalized thermodynamics potentials can be thought of depending on
this extra parameter whose equilibrium value is fixed by the condition that the corresponding
potential will be minimized [347].
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Specifically, in the Landau theory the order parameter (magnetization) is a free parameter,
which does not depend on T and H to begin with. Only in equilibrium (which corresponds
to minimum of Fl) M becomes a function of the the temperature T and the external field
H. In Ref. [249] the starting point is the free energy density Γ which for a magnetic system
looks like

Γ(η, T,H) = Γ0(T,H) − ηH

kBT
+
tη2

2
+

1

4
η4 , (A.8)

where M corresponds to η in the notation of Ref. [249]. Minimizing Γ with respect to η
results in the equation of state

H

kBT
= ηt+ η3 + . . . , (A.9)

which is an approximation to Eq. (A.7). Notice that Eq. (A.9) holds only in equilibrium
where η ( or M) becomes a function of T and H.

How can we derive ’non-equilibrium’ free energies like Γ in Eq. (A.8)? Again, the form can
be justified in a couple of different ways. Starting from microscopics, we can require that on
the average each spin feels the same average magnetization which justifies the nomenclature
’mean-field’ approach. Naively, we are trying to perform a summation over spin configurations
with the constraint that each individual spin takes the same value M :

Z ′′ =
∑

{si}

N∏

n=1

δ (M − sn) e
β
∑

<i,j>
sisj . (A.10)

This is, however, ill-defined mathematically since fixing −1 < M < 1 would always give
zero weight for all spin configurations since individual spins can only have values ±1. To
get around this obstacle we require less restrictively that each block-spin must take the same
average value M . Using the coarse-grained free energy Fl and performing the functional
integral over spatially homogeneous configurations φ(x) = M defines the mean-field free
energy Fmf :

Z ′′ =

∫

Dφ(x)δ(M − φ(x))e−βFl[φ] ≡ e−βFmf (M,H,T,N) ≈ e−β(aM2+bM4−HM)N , (A.11)

where we have changed the microscopic Hamiltonian from H =
∑

ij SiSj to H =
∑

ij SiSj +
H
∑

i Si, since otherwise Fl would not contain H, which is needed in the expression of the
mean-field free energy Fmf in Eq. (A.11). So, the crucial difference between the previous
equation and Eq. (A.3) is that in the latter case one has a less restrictive constraint the
integral in the delta function being over the whole volume of the system leaving for the
individual block spins considerable freedom to fluctuate. In Eq. (A.11) we have defined the
mean-field approximation for the (non-equilibrium) free energy density fmf as

fmf ≡ Fmf/N ≈ a(T )M 2 + bM4 + O(M6) −HM . (A.12)

Hence, we see that fmf is Γ, essentially.
To get an approximation for the thermodynamic free energy from this mean field ex-

pression one should still minimize the argument of the exponential function which yields the
condition of Eq. (A.9) tying together the equilibrium value of M with T and H. For sim-
plicity we can set H = 0. Substituting the equilibrium solution M(T,H = 0) into the free
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energy density fmf in Eq. (A.12) one can see that the result fmf (M(0, T ), 0, T ) is convex in
T even though fmf (M,H, T ) is not convex in M below the critical temperature T < Tc.

Doing all this simply means that we are approximating the value of the functional integral
∫
Dφ(x) exp(−βFl[φ]) with its value at the extremal of the integrand Fl because for the

homogeneous configuration φ(x) = M = const minimizes the gradient term |∇φ|2 (pp. 25-
26 [81]) after which we find the minimum of the remaining expression by solving Eq. (A.9).
In other words, ∫

Dφ(x) e−βFl[φ] ≈ e−βFmf (M(H,T ),H,T,N) . (A.13)

This result is analogous to the saddle point approximation of integrals, see for example the
computation of the partition function for the infinite range Ising model, where the saddle
point approximation becomes exact in the thermodynamic limit N → ∞.

Some additional points:

• The true thermodynamic free energy F (M,T, V,N) can be non-convex (below Tc) since
the domain walls cost energy. In other words the free energy goes like

F (M,T, V ) = V fb(M,T ) +Afs(M,T ) + . . . , (A.14)

where the bulk free energy density is denoted by fb and the free energy density cost of domain
boundaries is fs (cf. p. 25 [249]). Similarly, the homogeneous free energy density (remember,
the pointwise fl is a different thing) fb can be non-convex for finite system size V (or N).
Only in the thermodynamic limit the homogeneous free energy density fb becomes strictly
convex (even for T < Tc):

lim
V→∞

F (M,T, V )

V
→ fb(M,T ) , (A.15)

where the surface term (and other correction terms) vanishes because A/V → 0.

• The mean-field results given above can be interpreted as much more restricted trace op-
eration than summing over all spins having just the global magnetization M fixed (Eq. (A.3)).
In the former case one does not allow any spatial fluctuations between the cells and therefore
there are much fewer configurations that one sums over. In this sense the outcome corre-
sponds to a ’non-equilibrium’ situation resulting in further need to minimize the free energy
Fmf (or Γ) with respect to the value of the order parameter M . The value of of M = Meq

minimizing the generalized free energy should then be substituted back into Γ to produce an
approximation to the true thermodynamic free energy defined in Eq. (A.3).

• What are the extra degrees of freedom whose presence is manifested in the presence
of order parameter having a non-equilibrium value in the expression of the generalized free
energy? It must be the fact that all the block spins were forced to have the same value. The
bigger blocks we are using the more configurations can be included in the configurational sum
of the partition function and more closely we are approximating the equilibrium situation
which corresponds to just one big block of the size of the system. Since the partition function
grows the more configurations are included in the configurational sum, the free energy will
become more and more negative being defined as F = −1/β lnZ. The need to minimize
the mean-field theories comes about through the same mechanism: averages of products of
spin operators (order parameter products, in general) are assumed to be equal to products of
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averages of individual spin operators, which is equivalent to assuming a constant ’block-spin’
value in each cell. Using the infinite range Ising model as familiar example, we can write the
magnetization in the following way

∑

{sk}
(N−1∑

isi) e
−β
∑

j,k
sjsk+βH

∑

j
sj ≡ 〈N−1∑

isi〉 = 〈tanh
(

β(H +N−1∑

isi)
)

〉 , (A.16)

where we have first defined the ensemble averaging < · >. Mean field approximation (which
becomes exact in the thermodynamic limit in this simple case) means that we write

〈tanh(β(H +N−1∑

isi))〉 ≈ tanh(β(H + 〈N−1∑

isi〉)) = tanh(β(H + 〈si〉)) = 〈si〉 , (A.17)

where we have used the fact that 〈N−1∑

i si〉 = 〈si〉. In other words, more generally we are
first expanding in powers of the order parameter and then neglecting cross-correlations:

〈tanh(β(H + si))〉 = 〈(H + si +
1

3
s3i + . . .〉) = H + 〈si〉 +

1

3
〈s3i 〉 + . . . (A.18)

≈ H + 〈si〉 +
1

3
〈si〉3 + . . . . (A.19)

It should be remembered that for some simple systems mean-field approximation is exact but
usually this is not the case. Since the mean-field approximation can be carried out technically
in many ways, it should be pointed out that using it to evaluate the lower or upper bounds
for the entropic contribution to the free energy can lead to overestimation or underestimation
of the actual free energy. (In other words,

Z =
∑

i

gie
−βEi , (A.20)

where the multiplicities gi of configurations having an energy Ei may be evaluated using the
mean-field approximation.) So, the term ’mean-field’ does not necessarily imply higher free
energy than the thermodynamic free energy.

• These questions are related to the previous point where we concluded that the need
for further minimization of the mean-field free energy arose from the fact that the degrees
of freedom we had excluded by making all block-spins take the same value resulted in an
extra parameter, the order parameter not having its equilibrium value in the expression of
the generalized free energy. So, how do we know weather we should minimize further just
by looking at the summation in the partition function? Is it always certain that a global
constraint (like global magnetization) will result in convex density fb without any need for
further minimization? What about more local constraints?

• The exact free energy of a model having sufficiently long range interactions does not
necessarily have to be convex (cf. the infinite range Ising model) Furthermore, it is possible to
have a phase transition even in d = 1 for long range interactions which vanish slowly enough
at infinity [348, 349]. The non-convexity can also result from the mean-field approximation as
shown above (e.g. Bragg-Williams approximation see for example the book by Guggenheim
and Fowler [350]).

• Is the bump in the free energy important for physics at all? Since its height grows
proportionally to the area A of the domain boundaries in the system we have that A ∼ L2 in
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d = 3 (assuming non-fractal boundaries). In terms of volume A ∼ V 2/3 because V ∼ L3. The
Lee-Yang theorem guarantees the existence of the free energy density which is independent
of the shape of V if the surface area increases no faster than V 2/3 (p. 208 [220]). Taking the
thermodynamic limit means that we let V → ∞. Therefore also the height of the bump in the
free energy for T < Tc will grow to infinity. This observation explains the ergodicity breaking
mentioned in the first chapter of Ref. [249]: imagine performing a Monte-Carlo simulation of
kinetic Ising model (or some variant of it). Start the simulation at some high temperature and
then quench it below the critical temperature Tc. The dynamics of the system can be chosen
in various ways, for further references on Monte Carlo methods consult for example Ref. [351].
For example, one can choose a spin at random and make an attempt to flip it. If the the total
energy of the system is lowered after the flip, the trial will be accepted with probability one,
otherwise the acceptance probability will have some fixed value p ∝ e−β∆E < 1 where ∆E is
the energy difference between the final (after spin flip attempt) and initial (before attempt)
spin configurations. More refined algorithms can swap complete spin clusters guaranteeing
a faster approach to equilibrium. Below Tc reversing the magnetization of the system (that
is, hopping from the potential well with m = −1 to the well m = +1 or vice versa) requires
an amount of energy ∆E ∼ A ∼ V 2/3 which diverges to infinity in the thermodynamic limit
V → ∞. So, the bigger the system is, the probability of being able to switch magnetization
approaches zero. In the thermodynamic limit the system becomes stuck in one of the wells.
Ergodicity is broken because the ’mirror’ spin states have become unreachable. The lesson
to be drawn from this story is that if one only concentrates on the properties of the the free
energy density one misses the kinetic effect which derives from the fact that the free energy
can be non-convex for T < Tc (even for N → ∞) but the density of it (total free energy over
total volume) will be convex in the limit.



Appendix B

Formalism for quenched processes

B.1 Effective noise correlator: construction

The noise correlator seen by the moving interface is computed perturbatively although certain
contributions will be nonperturbative as seen below. Unless specifically stated, in what follows
the noise average 〈·〉 is always over the field α whose properties will be determined shortly.
We suppose that the noise field is Fourier transformable with respect to the coordinate
perpendicular to the interface (y-coordinate in this case) in which case we write

α(x,H(x, t)) =

∫

dq1 e
ıq1H(x,t)αq1(x) . (B.1)

Note that the integrals over variables q (e.g. q1, q2, q
′ etc.) are always one dimensional,

whereas integrals over k and x can have any dimensionality, in which case dot products are
understood.

Using the Fourier transform with respect to the second argument we can cast the noise
correlator into the following form:

〈α(x1,H(x1, t1))α(x2,H(x2, t2))〉 (B.2)

=

∫

dq1

∫

dq2 〈αq1(x1)αq2(x2)e
ıq1H(x1,t1)eıq2H(x2,t2)〉 (B.3)

=

∫

dq1

∫

dq2 〈αq1(x1)αq2(x2)〉〈eıq1H(x1,t1)eıq2H(x2,t2)〉

+

∫

dq1

∫

dq2 〈 [αq1(x1) u [αq2(x2) u eıq1H(x1,t1)eıq2H(x2,t2)]] 〉 (B.4)

≡ C0(x1, t1;x2, t2) + Cαα′(x1, t1;x2, t2) , (B.5)

where

C0 ≡ 〈αq1(x1)αq2(x2)〉〈eıq1H(x1,t1)eıq2H(x2,t2)〉 ; (B.6)

Cαα′ ≡
∫

dq1

∫

dq2 〈 [αq1(x1) u [αq2(x2) u eıq1H(x1,t1)eıq2H(x2,t2)]] 〉 . (B.7)

Notation 〈 [αq1 u [αq2 u f(α)]] 〉 means that first αq2 is contracted with some α field in f(α),
then αq1 is contracted with another noise field in the remaining expression [αq2 u f(α)]. The

257
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noise average 〈·〉 takes care of contracting the remaining α’s. In other words, the second term
on the right hand side of Eq. (B.4) performs all other contractions except those where αq1
is contracted with αq2 and the exponentials among themselves (first term on the right). To
illustrate the method in practice, consider

[α1 u α3
2] = [α1 u α2]α

2
2 + α2[α1 u α2]α2 + α2

2[α1 u α2] = 3[α1 u α2]α
2
2 . (B.8)

Performing the averaging gives

〈[α1 u α3
2]〉 = 3[α1 u α2]〈α2

2〉 = 3〈α1α2〉〈α2
2〉 , (B.9)

because for two fields only [α1 u α2] reduces to [α1 u α2] = 〈α1α2〉.
After simplifying the notation by defining H(1) ≡ H(x1, t1); H(2) ≡ H(x2, t2) we get

C0(x1, t1;x2, t2) =

∫

dq1

∫

dq2 〈αq1(x1)αq2(x2)〉〈eıq1H(1)eıq2H(2)〉 (B.10)

=

∫

dq1

∫

dq2Dϕ‖(x1 − x2)ϕ⊥(q1, q2)〈eı(q1H(1)+q2H(2))〉 (B.11)

Here we have defined the correlations of the noise field α to have correlations ϕ‖(x1 − x2) in
the direction parallel to the interface and ϕ⊥(q1, q2) in the perpendicular direction. In many
of our applications we are assuming that the noise is Gaussian white noise (short-ranged, in
general) in which case 〈αq1(x1)αq2(x2)〉 = D δ(x1 − x2) δ(q1 + q2). In this case

C0(x1, t1;x2, t2) = D δ(x1 − x2)

∫

dq1 〈eıq1(H(1)−H(2))〉 . (B.12)

Expanding the exponential to second order in h and averaging gives

〈e∆H 〉 = 1 + 〈∆H〉 +
1

2
〈(∆H)2〉 + O(∆3

H) (B.13)

where we have defined ∆H ≡ (ıq1)(H(1)−H(2)) Taking logarithms on both sides of previous
equation and using again the Taylor expansion: ln(1 + x) = x− x2/2 + . . . we notice that

ln
(

e∆H

)

= 〈∆H〉 +
1

2
(〈∆2

H〉 − 〈∆H〉2) + . . . + O(δ3H) (B.14)

Re-exponentiating and keeping only second order terms yields

〈e∆H 〉 ≈ e(ıq1)κ1(∆H)+(ıq1)2κ2(∆H) , (B.15)

where κ1(∆H) ≡ 〈∆H〉 and κ2(∆H) ≡ 〈∆2
H〉 − 〈∆H〉2. More information how to use the

cumulant expansion to include non-Gaussian aspects are discussed in App. B.6. Gaussian
approximation in Eq. (B.12) leads to

C0(x1, t1;x2, t2) ≡ D δ(x1 − x2)

∫

dq1 〈eıq1(H(1)−H(2))〉 (B.16)

≈ D δ(x1 − x2)

∫

dq1 e
(ıq1)κ1(∆H)+(ıq1)2κ2(∆H) (B.17)

= D δ(x1 − x2)[Gc(x1, t1;x2, t2)]
−1/2 exp

(

− ∆2(t1, t2)

Gc(x1, t1;x2, t2)

)

. (B.18)



B.2. EFFECTIVE NOISE CORRELATOR: CONTRACTIONS 259

The following short-hand notation has been used above:

∆(t1, t2) ≡ κ1(∆H) (B.19)

≡ h0(t1) − h0(t2) + 〈h(x1, t1)〉 − 〈h(x2, t2)〉 (B.20)

= h0(t1) − h0(t2) + 〈h〉(t1) − 〈h〉(t2) ; (B.21)

Gc(x1, t1;x2, t2) ≡ κ2(∆H) (B.22)

≡ 〈(H(1) −H(2))2〉 − 〈(H(1) −H(2))〉2 (B.23)

= 〈(h(1) − h(2))2〉 − 〈(h(1) − h(2))〉2 , (B.24)

where h(1) ≡ h(x1, t1) and h(2) ≡ h(x2, t2) are the spatially varying parts of H(1) and H(2).
The second cumulant κ2 has been renamed as Gc which is the familiar two-point correlation
function used in kinetic growth theory.

B.2 Effective noise correlator: contractions

The difficulty of forming all possible contractions can be circumvented by using functional
differentiation instead of explicit noise averaging. We introduce the following definition

δ

δα1
α2 ≡ D δ(x1 − x2)δ(q1 + q2) = 〈αq1(x1)αq2(x2)〉 , (B.25)

where αi ≡ αqi(xi), i = 1, 2. Had we long range noise correlations, we could define

δ

δα1
α2 ≡ Dϕ‖(x1 − x2)ϕ⊥(q1, q2) . (B.26)

Eq. (B.25) is sufficient for white noise, which we shall be mainly using. Let us first compute
the action of a single contraction.

[α1 u exp(ıq1h(1)) exp(ıq2h(2))] = [α1 u exp(ıq1h(1) + ıq2h(2))] (B.27)

=
δ

δα1
exp(ıq1h(1) + ıq2h(2)) =

δ

δα1

∞∑

n=0

1

n!
(ıq1h(1) + ıq2h(2))

n (B.28)

=

(

ıq1
δh(1)

δα1
+ ıq2

δh(2)

δα1

) ∞∑

n=1

1

(n− 1)!
(ıq1h(1) + ıq2h(2))

n−1 (B.29)

=

(

ıq1
δh(1)

δα1
+ ıq2

δh(2)

δα1

)

exp(ıq1h(1) + ıq2h(2)) (B.30)

Two contractions is equally simple to produce (note that it doesn’t matter whether we con-
tract α2 prior to α1 or vice versa):

[α1 u [α2 u exp(ıq1h(1) + ıq2h(2))]] (B.31)

=
δ

δα1

{(

ıq1
δh(1)

δα2
+ ıq2

δh(2)

δα2

)

exp(ıq1h(1) + ıq2h(2))

}

(B.32)

=

{(

ıq1
δh(1)

δα1
+ ıq2

δh(2)

δα1

)(

ıq1
δh(1)

δα2
+ ıq2

δh(2)

δα2

)

(B.33)

+

(

ıq1
δ2h(1)

δα1δα2
+ ıq2

δ2h(2)

δα1δα2

)}

exp(ıq1h(1) + ıq2h(2)) . (B.34)
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Supposing that h is known for a particular realization of the noise α, well-posed linear inte-
gral equations will be generated for the functional derivatives of h ((δh)/(δα), (δ2h)/(δαδα′)).
These formal solutions can be substituted back into Eq. (B.34) to fix the form of the con-
traction. Next, compute the functional derivate of h1 defined in Eq. (12.25) with respect to
noise,

δh1(x, t)

δαk1(x1)
=

∫

dk′
∫

dx′ eık
′(x−x′)e−ık

′2t
∫ t

0
ds eık

′2s
∫

dq eıqh0(s)D δ(x1 − x′) δ(q + k1)

= D

∫

dk′ eık
′(x−x1)e−σk

′2t
∫ t

0
ds eıσk

′2se−ık1h0(s) . (B.35)

In the first order approximation the second functional derivative is zero:

δ2h1(x, t)

δαk1(x1)δαk2(x2)
= 0 , (B.36)

because there is now α-dependence left in Eq. (B.35). For higher order approximations this
is not true and some genuinely new structure will emerge out of Eq. (B.36)

B.3 Effective noise correlator: constituents

The full effective noise correlator consists of two main pieces:

〈α(x1, h(1))α(x2, h(2))〉 ≈ C0(x1, t1;x2, t2) + C (1)

αα′(x1, t1;x2, t2) (B.37)

The superscript ’1’ of C (1)

αα′ means that we use the first iterative correction h1, i.e H(x, t) ≈
h0(t) + h1(x, t). After performing the noise contractions in Cαα′ yields

C(1)

αα′ =

∫

dq1 e
ıq1h0(t1)

∫

dq2 e
ıq2h0(t2)〈 eıq1h1(1)+ıq2h1(2)

(

ıq1
δh1(1)

δα1
+ ıq2

δh1(2)

δα1

)(

ıq1
δh1(1)

δα2
+ ıq2

δh1(2)

δα2

) 〉 (B.38)

=

∫

dq1 e
ıq1h0(t1)

∫

dq2 e
ıq2h0(t2)

(

ıq1
δh1(1)

δα1
+ ıq2

δh1(2)

δα1

)

(

ıq1
δh1(1)

δα2
+ ıq2

δh1(2)

δα2

)

〈 eıq1h1(1)+ıq2h1(2) 〉 , (B.39)

Using again the cumulant expansion to take care of the noise average of the exponentials at
Gaussian order we get

〈exp (ıq1h1(1) + ıq2h1(2))〉 = exp

(

κ1(ıq1h1(1) − ıq2h1(2))

+
1

2!
κ2(ıq1h1(1) − ıq2h1(2)) + . . .

)

≈ exp

(

ıq1〈h1(1)〉 + ıq2〈h1(2)〉

−1

2
[〈(q1h1(1) + q2h1(2))

2〉 − 〈(q1h1(1) + q2h1(2))〉2]
)

(B.40)

= exp

(

−1

2
q21〈h2

1(1)〉 −
1

2
q22〈h2

1(2)〉 − q1q2〈h1(1)h1(2)〉
)

(B.41)

= exp

(

−1

2
q21w

2
1 −

1

2
q22w

2
2 − q1q2S

)

. (B.42)
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In simplifying the previous result we have made use of the fact that 〈h1〉 = 0 (but 〈h〉 6= 0h).
In the last line we have introduced a short-hand notation: w2

1 ≡ 〈h2
1(1)〉; w2

2 ≡ 〈h2
1(2)〉;

S ≡ 〈h1(1)h1(2)〉. Explicitly,

w2
1(t, L) =

D

F

∫

1/L
dk

1 − e−2σk2t

2σk2
=

D

Fσ
(σt)2β1fw(

√
σt/L) ; (B.43)

S(x1, t1;x2, t2, L) =
D

F

∫

1/L
dk eık(x1−x2)e−σk

2|t1−t2| 1 − e−2σk2 min{t1,t2}

2σk2
, (B.44)

where we have defined the growth exponent β1 ≡ (2−d)/4, d being the dimensionality of the
space. The universal scaling function

fw(
√
σt/L) ≡

∫

√
σt/L

dk
1 − e−2k2

2k2
. (B.45)

In the limit x → 0 the scaling function fw approaches a constant. For x → ∞ it scales
as fw → x−2χ1 . Here χ1 = (2 − d)/2 is the roughness exponent. Where the system size
dependence is not important, we drop out the system size L from the list of arguments.

Expanding the products in Eq. (B.39) and using the Gaussian approximation for the noise
averaged exponential (Eq. (B.42)) we can split the different contributions to four parts:

C(1)

αα′ = C(1)

A + C(1)

B + C(1)

C + C(1)

D (B.46)

Specifically,

C(1)

A (x1, t1;x2, t2) ≡
∫

dq1 (ıq1)
2eıq1h0(t1)

∫

dq2 e
ıq2h0(t2)

δh1(x1, t1)

δαq1(x1)

δh1(x1, t1)

δαq2(x2)
exp

(

−1

2
q21w

2
1 −

1

2
q22w

2
2 − q1q2S

)

; (B.47)

C(1)

B (x1, t1;x2, t2) ≡
∫

dq1 (ıq1)e
ıq1h0(t1)

∫

dq2 (ıq2)e
ıq2h0(t2)

δh1(x1, t1)

δαq1(x1)

δh1(x2, t2)

δαq2(x2)
exp

(

−1

2
q21w

2
1 −

1

2
q22w

2
2 − q1q2S

)

; (B.48)

C(1)

C (x1, t1;x2, t2) ≡
∫

dq1 (ıq1)e
ıq1h0(t1)

∫

dq2 (ıq2)e
ıq2h0(t2)

δh1(x2, t2)

δαq1(x1)

δh1(x1, t1)

δαq2(x2)
exp

(

−1

2
q21w

2
1 −

1

2
q22w

2
2 − q1q2S

)

; (B.49)

C(1)

D (x1, t1;x2, t2) ≡
∫

dq1 e
ıq1h0(t1)

∫

dq2 (ıq2)
2eıq2h0(t2)

δh1(x2, t2)

δαq1(x1)

δh1(x2, t2)

δαq2(x2)
exp

(

−1

2
q21w

2
1 −

1

2
q22w

2
2 − q1q2S

)

. (B.50)

The partial noise correlators CB and CC are symmetric functions of their arguments:

C(1)

B (x1, t1;x2, t2) = C (1)

B (x2, t2;x1, t1) ; (B.51)

C(1)

C (x1, t1;x2, t2) = C (1)

C (x2, t2;x1, t1) . (B.52)

Owing to the symmetry C (1)

A (x1, t1;x2, t2) = C (1)

D (x2, t2;x1, t1) we only have to calculate CA,
say. Defining

U(q1, q2) ≡ exp

(

−1

2
q21w

2
1 − 1

2
q22w

2
2 − q1q2S

)

(B.53)
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and suppressing the arguments xi and ti, which are redundant at this stage, we note that the
powers of (ıqi) appearing in the integrals above can be generated by differentiating U with
respect to ’variables’ w2

i and S:

2∂w2
1
U = (ıq1)

2U ; 2∂w2
2
U = (ıq2)

2U ; ∂SU = (ıq1)(ıq2)U . (B.54)

Utilizing this and substituting the functional derivatives δh/δα given by Eq. (B.35) decorated
with proper arguments we are left with computation of the following expressions:

C(1)

A (x1, t1;x2, t2) = 2D2∂w2
1

∫

dq1 e
ıq1h0(t1)

∫

dq2 e
ıq2h0(t2) U(q1, q2) (B.55)

∫

dk eık(x1−x1)e−σk
2t1

∫ t1

0
ds eσk

2se−ıq1h0(s)
∫

dk eık(x1−x2)e−σk
2t1

∫ t1

0
ds eσk

2se−ıq2h0(s).

C(1)

B (x1, t1;x2, t2) = D2∂S

∫

dq1 e
ıq1h0(t1)

∫

dq2 e
ıq2h0(t2) U(q1, q2) (B.56)

∫

dk eık(x1−x1)e−σk
2t1

∫ t1

0
ds eσk

2se−ıq1h0(s)
∫

dk eık(x2−x2)e−σk
2t2

∫ t2

0
ds eσk

2se−ıq2h0(s).

C(1)

C (x1, t1;x2, t2) = D2∂S

∫

dq1 e
ıq1h0(t1)

∫

dq2 e
ıq2h0(t2) U(q1, q2) (B.57)

∫

dk eık(x2−x1)e−σk
2t2

∫ t2

0
ds eσk

2se−ıq1h0(s)
∫

dk eık(x1−x2)e−σk
2t1

∫ t1

0
ds eσk

2se−ıq2h0(s).

C(1)

D (x1, t1;x2, t2) = 2D2∂w2
2

∫

dq1 e
ıq1h0(t1)

∫

dq2 e
ıq2h0(t2) U(q1, q2) (B.58)

∫

dk eık(x2−x1)e−σk
2t2

∫ t2

0
ds eσk

2se−ıq1h0(s)
∫

dk eık(x2−x2)e−σk
2t2

∫ t2

0
ds eσk

2se−ıq2h0(s).

Factors of D arising from functional differentiation have been placed in front of the expres-
sions. The temporal scaling features of the noise correlators are scrutinized in App. B.4.

B.4 Special scaling features of noise correlators

In this section we will derive the scaling behaviour and functional form of the different noise
correlators. To illustrate the general methods we use C (1)

A as a working example. We have
derived the following form for it in Eq. (B.55):

C(1)

A (x1, t1;x2, t2) = 2D2∂w2
1

∫

dq1 e
ıq1h0(t1)

∫

dq2 e
ıq2h0(t2) U(q1, q2) (B.59)

∫

dk3 e
−σk2

3t1

∫ t1

0
ds1 e

σk2
3s1e−ıq1h0(s1)

∫

dk4 e
ık4(x1−x2)e−σk

2
4t1

∫ t1

0
ds2 e

σk2
4s2e−ıq2h0(s2)

Next, regroup all integrals containing integration over qi (i = 1, 2) and define a new symbol
I (substitute h0(t) = Ft)

I ≡
∫

dq1

∫

dq2 e
ıq1F (t1−s1) eıq2F (t2−s2) U(q1, q2) . (B.60)

We can now express the correlator more concisely

C(1)

A = 2D2
∫

dk3 e
−σk2

3t1

∫ t1

0
ds1 e

σk2
3s1

∫

dk4 e
ık4(x1−x2)e−σk

2
4t1

∫ t1

0
ds2 e

σk2
4s2 ∂w2

1
I (B.61)
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We have let the differential operator ∂w2
1
to act on I which is evaluated in App. B.7 (Eq. (B.177)):

I =

√
2π√
a1w2

exp

(

−F
2(t2 − s2)

2

2w2
2

+
a2

2

a1

)

, (B.62)

where we have introduced new functions

a1(x1 − x2, t1, t2) ≡ 1

2

[

w2
1(t1) −

S2(x1 − x2, t1, t2)

w2
1(t2)

]

(B.63)

a2(x1 − x2, t1, t2, s1.s2) ≡ ıF

2

[

(t1 − s1) − (t2 − s2)
S(x1 − x2, t1, t2)

w2
1(t2)

]

. (B.64)

Indices have been written out explicitly to see which parts will be affected by a spatial Fourier
transform. The fact that only differences of the form x1 −x2 appear in the arguments means
that the Fourier transformed correlator will be proportional to δ(k1 + k2). To perform the
transformation ∫

dx1

∫

dx2 e
−ı(k1x1+k2x2)f(x1 − x2) , (B.65)

we change variables of integration as x1 − x2 = x; x1 + x2 = 2X. Inversely, x1 = X + x/2;
x2 = X − x/2. The Jacobian of the transformation is unity: ∂(x1, x2)/∂(x,X) = 1. The
argument of the exponential becomes

k1x1 + k2x2 = k1(X + x/2) + k2(X − x/2) = X(k1 + k2) + x(k1 − k2)/2 . (B.66)

Since the integrand is independent of X we can perform the integration over it yielding
∫

dx1

∫

dx2 e
−ı(k1x1+k2x2)f(x1 − x2)

= δ(k1 + k2)

∫

dx e−ıx(k1−k2)/2f(x) = δ(k1 + k2)

∫

dx e−ıxk1f(x) . (B.67)

Utilizing this result we transform C (1)

i (k, t1; k
′, t2) (i = A,B,C,D):

C(1)

i (k, t1; k
′, t2) ≡

∫

dx1

∫

dx2 e
−ı(kx1+k′x2) C(1)

i (x1, t1;x2, t2) ≡ δ(k + k′) C̃(1)

i (k, t1; k
′, t2) ,

(B.68)
where for simplicity we have introduced new notation C̃(1)

i to be used in the rest of the text.
Hence,

C̃(1)

A = 2D2
∫

dx e−ıkx
∫

dk3 e
−σk2

3t1

∫ t1

0
ds1 e

σk2
3s1

∫

dk4 e
ık4xe−σk

2
4t1

∫ t1

0
ds2 e

σk2
4s2

π
√

2

4w2
a1(x)

−3/2

[

−1 − 2
a2

2(x)

a1(x)

]

exp

(

−F
2(t2 − s2)

2

2w2
2

+
a2

2(x)

a1(x)

)

(B.69)

To be able to see the relevant scaling behaviour of different terms we extract the dimen-
sionfull quantities by rescaling time arguments as ti ≡ tpi, si ≡ ts′i, i = 1, 2. The idea is to
divide the analysis into domains where the expressions contain as few dimensionless variables
as possible. New dimensionless length x′ ≡ x/

√
σt. Rescaling arguments of S (Eq. (B.44))

gives
S(

√
σt x′, tp1, tp2,

√
σt/L) = W 2

t g(x
′, p1, p2,

√
σt/L) , (B.70)
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where

g(x′, p1, p2,
√
σt/L) ≡

∫

√
σt/L

dk1 e
ık1x′ e−k

2
1 |p1−p2|1 − e−2k2

1 min{p1,p2}

2k2
1

. (B.71)

The last argument of g will be explicitly written out when system size dependence is important
for the analysis. In the infinite system limit it will be dropped from the argument list. The
symbol W 2

t is determined by scaling of w2
1(tpi, L) (i = 1, 2), see Eq. (B.43):

w2
1(tpi, L) =

D

Fσ
(σtpi)

2β1

∫

√
σtpi
L

dk
1 − e−2k2

2k2
→
{

W 2
t p

2β1
i fw(0) , for

√
σt
L � 1

W 2
L , for

√
σt
L � 1 .

(B.72)

Defining the growth exponent β1 = (2 − d)/4 and the roughness exponent χ1 = (2 − d)/2
allows us to write the prefactors as

W 2
t ≡ D

Fσ
(σt)2β1 ; W 2

L ≡ D

Fσ
L2χ1 (B.73)

In the following we will be interested in taking the limit where the dimensionless variable
σk2t becomes large. To derive the hidden dimensionless scales we will scale perform a similar
scaling of arguments for a1 and a2 as we did for wi and S. To simplify the resulting expressions
and to be able to see more clearly, how the expressions behave as a function σk2t only, we’ll
require that

√
σt/L � 1, which is obviously true in the infinite system size limit L → ∞.

However, the results should apply for finite systems as well. Setting the lower boundary of k
integrals σt/L2 � 1 = 0 means that in the spherical coordinate system we start integrating
the radial k-mode from zero onwards. In rectangular coordinates the notation means that
there will be no infrared cut-off. Extraction of time dependent factors yields

a1(
√
σt x′, tp1, tp2) =

1

2

(

W 2
t p

2β1
1 fw(0) − W 4

t g
2(x′, p1, p2)

W 2
t p

2β1
2 fw(0)

)

(B.74)

=
W 2
t

2

(

p2β1
1 fw(0) − g2(x′, p1, p2)

p2β1
2 fw(0)

)

. (B.75)

a2(
√
σt x′, tp1, tp2, ts

′
1, ts

′
2) =

ıF t

2

(

(p1 − s′1) − (p2 − s′2)
W 2
t g(x

′, p1, p2)

W 2
t p

2β1
2 fw(0)

)

(B.76)

=
ıF t

2

(

(p1 − s′1) − (p2 − s′2)
g(x′, p1, p2)

p2β1
2 fw(0)

)

. (B.77)

The hidden scale reveals itself since the ratio a2
2/a1 can be seen to be proportional to

(Ft/Wt)
2. Depending on the size of it different noise correlator terms will dominate.

a2
2

a1
=

(
Ft

Wt

)2

m1(x
′, p1, p2, s

′
1, s

′
2) , (B.78)

and

m1(x
′, p1, p2, s

′
1, s

′
2) ≡ −

[

(p1 − s′1) − (p2 − s′2)p
−2β1
2 f−1

w (0)g(x′, p1, p2)
]2

[

p2β1
1 − p−2β1

2 g2(x′, p1, p2)
] (B.79)
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The same is true for the argument of the exponential in Eq. (B.69) which can be written in
a more symmetrical form (App. B.7):

−F
2(tp2 − ts′2)

2

2w2
1(tp2)

+
a2

2(
√
σt x′, tp1, tp2, ts

′
1.ts

′
2)

a1(
√
σt x′, tp1, tp2)

= −1

2

(
Ft

Wt

)2

m2(x
′, p1, p2, s

′
1, s

′
2) , (B.80)

where

m2(x
′, p1, p2, s

′
1, s

′
2) ≡

p2β1
1 fw(0)(p1 − s′1)

2 + p2β1
2 fw(0)(p2 − s′2)

2 − 2(p1 − s′1)(p2 − s′2)g(x
′, p1, p2)

p2β1
1 p2β1

2 f2
w(0) − g2(x′, p1, p2)

.(B.81)

Knowing the scaling of the individual parts of C (1)

A we are now ready to compute the scaling
behaviour of the whole.

Noise correlator C (1)

A

Rewrite Eq. (B.69) in scaled variables: ti = tpi, si = ts′i x
′ = x/

√
σt. Placing the dimension-

full quantities in front gives

C̃A
(1)

(k, tp1; k
′, tp2) = 2πD2t2(σt)−d/2 W−4

t

∫

dx′ e−ık
√
σtx′ (B.82)

∫

dk′3 e
−(k′3)2p1

∫ p1

0
ds′1 e

(k′3)2s′1

∫

dk′4 e
ık′4x

′
e−(k′4)2p1

∫ p1

0
ds′2 e

(k′4)2s′2 p−β1
2 f

− 1
2

w (0)

[

p2β1
1 fw(0) − g2(x′, p1, p2)

p2β1
2 fw(0)

]− 3
2
[

−1 − 2

(
Ft

Wt

)2

m1(x
′, p1, p2, s

′
1, s

′
2)

]

exp

(

−1

2

(
Ft

Wt

)2

m2(x
′, p1, p2, s

′
1, s

′
2)

)

. (B.83)

Now we start considering the limits in the previous expression. When Mw ≡ Ft/Wt � 1 the
exponential term and the expression in the square brackets can be approximated as

exp(−M 2
wm2/2) ≈ 1 ; [−1 − 2M 2

wm1] ≈ −1 . (B.84)

In the opposite limit, Mw � 1 second term in the square brackets dominates [−1−2M 2
wm1] ≈

−2M2
wm1, and the factor M 2

w together with exp(−M 2
wm2/2) forms a two dimensional rep-

resentation of the delta function. This can be seen by forming new integration variables
s′′i ≡ pi − s′i and diagonalizing the quadratic form in variables s′′i , i = 1, 2, more details in
App. B.8 In other words, the limit Mw → ∞ is well defined. Letting also k

√
σt → ∞ leads

to vanishing of the whole expression because of rapidly oscillating integrand. This is true for
other noise correlators (CB , CC , CD), too.

Noise correlator C (1)

B

Repeating the steps that lead to Eq. (B.69) and using Eq. (B.56) together with Eq. (B.180)
we have for the Fourier transformed C (1)

B :

C(1)

B (k, t1; k
′, t2) ≡

∫

dx1

∫

dx2 e
−ı(kx1+k′x2)C(1)

B (x1, t1;x2, t2) (B.85)



266 APPENDIX B. FORMALISM FOR QUENCHED PROCESSES

= 2D2 δ(k + k′)
∫

dx e−ıkx
∫

dk3 e
−σk2

3t1

∫ t1

0
ds1 e

σk2
3s1

∫

dk4 e
−σk2

4t2

∫ t2

0
ds2 e

σk2
4s2

π
√

2

w2
a
−3/2
1

[

S

2w2
2

− a2
ıF (t2 − s2)

w2
2

+
Sa2

2

w2
2a1

]

exp

(

−F
2(t2 − s2)

2

2w2
2

+
a2

2(x)

a1(x)

)

(B.86)

Next, we write the expression in square brackets in a more symmetrical form with respect to
interchange of time indices using Eq. (B.184).

S

2w2
2

− a2
ıF (t2 − s2)

w2
2

+
Sa2

2

w2
2a1

=
S

2w2
2

+
F 2

2w2
2

∆1∆2 +
S

w2
2

(

a2
2

a1
− F 2∆2

2

2w2
2

)

(B.87)

=
W 2
t g(x

′, p1, p2)

2W 2
t p

2β1
2 fw(0)

+
F 2(tp1 − ts′1)(tp2 − ts′2)

2W 2
t p

2β1
2 fw(0)

+
W 2
t g(x

′, p1, p2)

W 2
t p

2β1
2 fw(0)

(

−M2
w

m2

2

)

(B.88)

=
g(x′, p1, p2)

2p2β1
2 fw(0)

+M2
w

(p1 − s′1)(p2 − s′2)

2p2β1
2 fw(0)

−M2
w

g(x′, p1, p2)

p2β1
2 fw(0)

m2 . (B.89)

All arguments in the previous equation (including function m2) are expressed in scaled quan-
tities. We have also set

√
σt/L→ 0. Defining a new function

m3(x
′, p1, p2, s

′
1, s

′
2) ≡

(p1 − s′1)(p2 − s′2)

2p2β1
2 fw(0)

− g(x′, p1, p2)

p2β1
2 fw(0)

m2(x
′, p1, p2, s

′
1, s

′
2) , (B.90)

we can write

S

2w2
2

− a2
ıF (t2 − s2)

w2
2

+
Sa2

2

w2
2a1

=
g(x′, p1, p2)

2p2β1
2 fw(0)

+M2
wm3(x

′, p1, p2, s
′
1, s

′
2) . (B.91)

Extracting dimensionfull variables and using Eq. (B.91) yields

C̃B
(1)

(k, tp1; k
′, tp2) = 8πD2t2(σt)−d/2 W−4

t

∫

dx′ e−ık
√
σtx′ (B.92)

∫

dk′3 e
−(k′3)2p1

∫ p1

0
ds′1 e

(k′3)2s′1

∫

dk′4 e
−(k′4)2p2

∫ p2

0
ds′2 e

(k′4)2s′2 p−β1
2 f

− 1
2

w (0)

[

p2β1
1 fw(0) − g2(x′, p1, p2)

p2β1
2 fw(0)

]− 3
2
[

g(x′, p1, p2)

2p2β1
2 fw(0)

+M2
wm3(x

′, p1, p2, s
′
1, s

′
2)

]

exp

(

−1

2
M2
wm2(x

′, p1, p2, s
′
1, s

′
2)

)

. (B.93)

Limit Mw → ∞ is well defined as for C (1)

A . In the opposite case, Mw � 1 we can approximate
the exponential by one and leave out the part in the square brackets which is proportional
to M2

w. Scaling behaviour of C (1)

B in time is obviously the same as that of C (1)

A . It should also

be noted that taking σk2t→ ∞ makes C (1)

B go to zero.

Noise correlator C (1)

C

Calculation of the remaining noise correlator C (1)

C is straightforward now. Utilizing Eq. (B.57)
the Fourier transform gives

C(1)

C (k, t1; k
′, t2) ≡

∫

dx1

∫

dx2 e
−ı(kx1+k′x2) C(1)

C (x1, t1;x2, t2) (B.94)
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= 2D2 δ(k + k′)
∫

dx e−ıkx
∫

dk3 e
−ık3xe−σk

2
3t2

∫ t2

0
ds1 e

σk2
3s1

∫

dk4 e
ık4xe−σk

2
4t1

∫ t1

0
ds2 e

σk2
4s2

π
√

2

w2
a
− 3

2
1

[

S

2w2
2

− a2
ıF (t2 − s2)

w2
2

+
Sa2

2

w2
2a1

]

exp

(

−F
2(t2 − s2)

2

2w2
2

+
a2

2(x)

a1(x)

)

(B.95)

Notice that the time indices (integrals over s1 and s2) are different from those of C (1)

A and

C(1)

B . With the aid of Eq. (B.91) we can extract the dimensionfull variables of C (1)

C . Placing
them in the front gives

C̃C
(1)

(k, tp1; k
′, tp2) = 8πD2t2(σt)−d/2W−4

t

∫

dx′ e−ık
√
σtx′ (B.96)

∫

dk′3 e
−ık′3x′e−(k′3)2p2

∫ p2

0
ds′1 e

(k′3)2s′1

∫

dk′4 e
ık′4x

′
e−(k′4)2p1

∫ p1

0
ds′2 e

(k′4)2s′2 p−β1
2 f

− 1
2

w (0)

[

p2β1
1 fw(0) − g2(x′, p1, p2)

p2β1
2 fw(0)

]− 3
2
[

g(x′, p1, p2)

2p2β1
2 fw(0)

+M2
wm3(x

′, p1, p2, s
′
1, s

′
2)

]

exp

(

−1

2
M2
wm2(x

′, p1, p2, s
′
1, s

′
2)

)

. (B.97)

Limiting case Mw → ∞ is analogous to C (1)

A and C (1)

B . The power law scaling in time is the

same as well. Limit σk2t→ ∞ causes C (1)

C to vanish. Finally, since C (1)

D behaves as C (1)

A with

time and spatial arguments interchanged, we conclude the all the four noise correlators C (1)

i
(i = A,B,C,D) share the same scaling form and vanish in the limit σk2t→ ∞.

B.5 Structure factors

In this section we will determine the scaling behaviour of the structure factors Ci (i = A,B,C)
for Ft/Wt � 1. The opposite limit has been considered in App. B.4.

Structure factor S(1)

A

When Ft/Wt � 1, Eq. (B.69) reduces to

C̃(1)

A ≈ −2D2
∫

dx e−ıkx
∫

dk3 e
−σk2

3 t1

∫ t1

0
ds1 e

σk2
3s1

∫

dk4 e
−σk2

4t1

∫ t1

0
ds2 e

σk2
4s2

π
√

2

4w2
a
− 3

2
1 .

(B.98)
Performing the time integrations over si (i = 1, 2) and including the system size dependence
gives

C̃(1)

A = −2D2
∫ L

dx e−ıkx
∫

1
L

dk3
1 − e−σk

2
3t1

σk2
3

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t1

σk2
4

π
√

2

4w2a
3/2
1

(B.99)

= −2D2π w−3
1 (t1, L)w−1

1 (t2, L)

∫

1
L

dk3
1 − e−σk

2
3t1

σk2
3

∫ L

dx e−ıkx

∫

1
L

dk4 e
ık4x1 − e−σk

2
4t1

σk2
4

[

1 − S2(x, t1, t2)

w2
1(t1, L)w2

1(t2, L)

]− 3
2

. (B.100)



268 APPENDIX B. FORMALISM FOR QUENCHED PROCESSES

Further simplifications of the form of the noise correlator can be obtained by considering
various limits of the dimensionless variables (σk2t, σt/L2 etc.). Next, we will construct the
structure factor S(1)

A whose relation to C̃(1)

A is very simple:

S(1)

A (k, t) = e−2σk2t
∫ t

0
ds1

∫ t

0
ds2 e

σk2(s1+s2) C̃(1)

A (k, s1, s2) . (B.101)

Limits will be easier to consider if we transform the time variables as si = t(1−pi) (i = 1, 2).
Hence,

S(1)

A (k, t) = e−2σk2t
∫ 0

1
(−t) dp1

∫ 0

1
(−t) dp2 e

σk2t(2−p1−p2) C̃(1)

A (k, t(1 − p1), t(1 − p2)) . (B.102)

Place the dimensionfull numbers in front:

S(1)

A (k, t) = t2
∫ 1

0
dp1

∫ 1

0
dp2 e

−σk2t(p1+p2) C̃(1)

A (k, t(1 − p1), t(1 − p2)) . (B.103)

Owing to the change of variables a dimensionless combination σk2t has appeared in the
argument of the exponential making it easier for us to consider limits of this variable being
much larger or smaller than one. Writing out the arguments explicitly and substituting C̃(1)

A
from Eq. (B.100) leads to a rather lengthy expression:

S(1)

A (k, t) = −2D2π t2
∫ 1

0
dp1

∫ 1

0
dp2 e

−σk2t(p1+p2) w−3
1 (t(1 − p1))w

−1
1 (t(1 − p2))

∫ L

dx e−ıkx

∫

1
L

dk3
1 − e−σk

2
3t(1−p1)

σk2
3

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t(1−p1)

σk2
4

[

1 − S2(x, t(1 − p1), t(1 − p2))

w2
1(t(1 − p1))w2

1(t(1 − p2))

]− 3
2

(B.104)

Note that wi (i = 1, 2) always depends on the system size even though we have dropped L
from the argument list. In order to condense the notation we introduce some new notation.
The early time scaling of the correlation function S we have determined in Eq. (B.70).

S(x, t(1 − p1), t(1 − p2))

= W 2
t

∫

√
σt
L

dk1 e
ık1x/

√
σt e−ık

2
1 |p1−p2| 1 − e−2k2

1 min{1−p1,1−p2}

2k2
1

(B.105)

= W 2
t g(x/

√
σt, 1 − p1, 1 − p2,

√
σt/L) . (B.106)

We are first going to study the limit σk2t� 1 and we are further simplifying the algebra by
assuming that

√
σt/L → 0. The integrals over k3 and k4 appearing in Eq. (B.104) can be

denoted more compactly by first changing variables

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t(1−p1)

σk2
4

=
(σt)2β1

σ

∫

dk′4 e
ık′4x/

√
σt 1 − e−(k′4)2(1−p1)

(k′4)
2

, (B.107)

and then defining new scaling function R2 through

R2(x/
√
σt, p1) ≡

∫

dk′4 e
ık′4x/

√
σt 1 − e−(k′4)2(1−p1)

(k′4)
2

. (B.108)
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The other integral over k3 appearing in the expression of S (1)

A is expressed in terms of R2 in

the limit
√
σt/L→ 0:

∫

1
L

dk3
1 − e−σk

2
3t(1−p1)

σk2
3

→ (σt)2β1

σ
R2(0, p1) . (B.109)

The scaling of the width is goes as w2
1(t(1−p)) = W 2

t fw(0) for early times (σk2t(1−p)/L→ 0
if σk2t/L→ 0 and Eq. (B.72) can be used). We also note that in Eq. (B.104) the exponential
exp(−σk2t(1 − p1)) ≈ 1 in the early time regime σk2t � 1. In terms of the new scaling
functions we obtain

S(1)

A (k, t) = −2D2π t2
∫ 1

0
dp1

∫ 1

0
dp2W

−3
t f

− 3
2

w (0)W−1
t f

− 1
2

w (0)

∫ L

dx e−ıkx (B.110)

(σt)2β1

σ
R2(0, p1)

(σt)2β1

σ
R2(x/

√
σt, p1)

[

1 − W 4
t g

2(x/
√
σt, 1 − p1, 1 − p2)

W 2
t fw(0)W 2

t fw(0)

]− 3
2

(B.111)

We perform next the transformation x/
√
σt ≡ x′ to obtain a dimensionless parameter of the

correct form σk2t. Time dependent terms and constants are placed in front of the integrals:

S(1)

A (k, t) = −2D2π t2W−3
t f

− 3
2

w (0)W−1
t f

− 1
2

w (0)
(σt)4β1

σ2
(σt)

d
2

∫ 1

0
dp1

∫ 1

0
dp2

∫

dx e−ık
√
σtx′R2(0, p1)R2(x

′, p1)

[

1 − g2(x/
√
σt, 1 − p1, 1 − p2, 0)

f2
w(0)

]− 3
2

. (B.112)

Notice that the upper integration limit of the x′ integral, L/
√
σt, has been taken to infinity

which is consitent with the choice of setting the lower integration limit
√
σt/L to zero in the

definition of R2 above. Therefore, S(1)

A scales in the early time regime like

S(1)

A (k, t) ∼ −D2t2W−3
t W−1

t

(σt)4β1

σ2
(σt)

d
2 = −(F/σ)2 (σt)4−

d
2
−4β1 . (B.113)

The limit σk2t � 1 is needed to make the integral over x′ only weakly dependent on the
dimensionless variable σk2t. I.e. the leading power law behaviour of S (1)

A is not affected by
making σk2t smaller. Interestingly, the D dependence of the noise correlator vanishes at this
order of iterative approximation signalling that indeed the we cannot simply interpret the
current approach as perturbative expansion in the noise strength D. At least, the powers of D
are not the same for all moments corresponding to the same order of iteration. For example,
C(1)

0 ∝ D/Wt ∝ D1/2. However, it is clear that different powers of D will be generated by
continuing the iterations.

The scaling of the correlator in long time saturated limit will be studied next. This
means that σt/L2 � 1 which implies σk2t � 1 because kmin = 1/L. Our starting point
is Eq. (B.104). As we are assuming that M ≡ σk2t � 1, we notice that the time integrals
obtain significant contribution only from small times pi < c/M (i = 1, 2) c being some (small)
constant. Therefore the upper limits of time integrals are set to c/M where M ≡ σk2t.
Subsequent transformation of integration variables pi ≡ (c/M)p′i (i = 1, 2) gives

S(1)

A (k, t) ≈ t2 (c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2) C̃(1)

A (k, t (1 − cp′1
M ), t (1 − cp′2

M )) (B.114)
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= −2D2π t2(c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2)w−3
1 (t(1 − cp′1

M ))w−1
1 (t(1 − cp′2

M ))

∫ L

dx e−ıkx
∫

1
L

dk3
1 − e−σk

2
3t(1−

cp′1
M )

σk2
3

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t(1−

cp′1
M )

σk2
4

[

1 − S2(x, t(1 − cp′1
M ), t(1 − cp′2

M ))/(w2
1(t(1 − cp′1

M ))w2
1(t(1 − cp′2

M )))
]− 3

2
(B.115)

Determining the scaling properties is our next task. Surface width (whose explicit L depen-

dence has been suppressed above) behaves like w2
1(t (1 − cp′i

M ), L) ≈ w2
1(t, L) ∼ D

FσL
2χ1 for

times greater than the saturation time t� L2/σ. The integral over k4 scales as

∫

1
L

dk eık4x
1 − e−σk

2
4t(1−(c/M)p′1)

σk2
4

≈
∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t

σk2
4

≈
∫

1
L

dk4 e
ık4x 1

σk2
4

. (B.116)

For times greater than saturation time t � L2/σ the integral over k4 can be conveniently
expressed with the aid of a new scaling function R′

2 which is obtained by making the last
expression of Eq. (B.116) dimensionless:

σ−1L2−d
∫

1
dk′4

eık
′
4x/L

(k′4)
2

≡ σ−1L2−dR′
2(x/L) . (B.117)

Obviously, R2 → R′
2 for σt/L2 � 1. In terms of R′

2 we can also express the scaling of the
integral over k3:

∫

1
L

dk
1 − e−σk

2
3t(1−(c/M)p′1)

σk2
3

≈
∫

1
L

dk3
1 − e−σk

2
3t

σk2
3

≈
∫

1
L

dk3
1

σk2
3

= σ−1L2−dR′
2(0) , (B.118)

Thus, the scaling behaviour of these integrals is identical to that of the surface width. As
shown in previous Sect. B.5, S scales as

S(x, t(1 − cp′1
M ), t(1 − cp′2

M )) ≈W 2
L g

′(x/L, p′1, p
′
2) , (B.119)

where the definition DL2χ1/(Fσ) ≡ W 2
L was used. Substituting these scaling forms into

Eq. (B.115) gives

S(1)

A (k, t) = −2D2π t2(c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2)
(

W 2
L

)− 3
2
(

W 2
L

)− 1
2

∫ L

dxσ−1L2−dR′
2(0)σ

−1L2−dR′
2(x/L)

[

1 − W 4
L g

′2(x/L, p′1, p
′
2)

W 2
LW

2
L

]− 3
2

. (B.120)

Finally, we transform the integration variable x/L ≡ x′ and study the structure factor as a
function of the smallest wave vector kmin = 1/L. The system size dependence will come out
correctly for all modes since kn = 2πn/L in a finite system, only prefactors will change.

S(1)

A (1/L, t) = −2D2π t2 (c/ML)2
(

W 2
L

)−2
Ld

(

σ−1L2−d
)2
R′

2(0)
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2)
∫ 1

dx′R′
2(0)R

′
2(x

′)
[

1 − g′2(x′, p′1, p
′
2)
]− 3

2 , (B.121)
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where we have defined ML ≡ σt/L2 to remind us of the fact that we are in the saturated
regime. All in all,

S(1)

A (1/L, t) ∝ −D2t2M−2
L W−4

L Ld
(

σ−1L2−d
)2

= −(F/σ)2 L8−d−4χ1 (B.122)

In d = 1 we have S(1)

A ∼ L5. As a function of the system size the structure factor obeys
scaling S(1/L) ∼ L2χ2+d giving us χ2 = 2. However, the requirement Ft/Wt � 1, which
is the assumption we have made here, will actually make S (1)

0 dominant giving us a smaller
global roughness exponent χ2 = 5/4.

Structure factor S(1)

B

When Ft/Wt � 1, Eq. (B.86) reduces to

C̃(1)

B ≈ 2D2
∫

dx e−ıkx
∫

dk3 e
−σk2

3t1

∫ t1

0
ds1 e

σk2
3s1

∫

dk4 e
−σk2

4t2

∫ t2

0
ds2 e

σk2
4s2

π
√

2

w2
a
− 3

2
1

S

2w2
2

(B.123)
Performing the time integrations over si (i = 1, 2) and including the system size dependence
gives

C̃(1)

B = 2D2
∫ L

dx e−ıkx
∫

1
L

dk3
1 − e−σk

2
3t1

σk2
3

∫

1
L

dk4
1 − e−σk

2
4t2

σk2
4

π√
2

S(x, t1, t2)

w3
2 a

3/2
1

(B.124)

= 4D2π w−3
1 (t1)w

−3
1 (t2)

∫

1
L

dk3
1 − e−σk

2
3t1

σk2
3

∫

1
L

dk4
1 − e−σk

2
4t2

σk2
4

∫ L

dx e−ıkx S(x, t1, t2)
[

1 − S2(x, t1, t2)/(w
2
1(t1)w

2
1(t2))

]− 3
2 . (B.125)

As for C (1)

A it is possible to further reduce the complexity of the correlator C (1)

B by considering
various limits of dimensionless variables. We shall directly work with the structure factor in
the following. As before (Eq. (B.103)), we find it convenient to change the time variables as
si = t(1 − pi) (i = 1, 2):

S(1)

B (k, t) = e−2σk2t
∫ t

0
ds1

∫ t

0
ds2 e

σk2(s1+s2) C̃(1)

B (k, s1, s2) (B.126)

= t2
∫ 1

0
dp1

∫ 1

0
dp2 e

−σk2t(p1+p2) C̃(1)

B (k, t(1 − p1), t(1 − p2)) . (B.127)

Substitution of the noise correlator yields

S(1)

B (k, t) = 4D2π t2
∫ 1

0
dp1

∫ 1

0
dp2 e

−σk2t(p1+p2) w−3
1 (t(1 − p1))w

−3
1 (t(1 − p2))

∫

1
L

dk3
1 − e−σk

2
3t(1−p1)

σk2
3

∫

1
L

dk4
1 − e−σk

2
4t(1−p2)

σk2
4

∫ L

dx e−ıkx

S(x, t(1 − p1), t(1 − p2))

[

1 − S2(x, t(1 − p1), t(1 − p2))

w2
1(t(1 − p1))w

2
1(t(1 − p2))

]− 3
2

. (B.128)
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In the early time regime, σk2t� 1, the surface width w1(t(1−pi)) ∼Wt (i = 1, 2). Moreover,
the argument of the first exponential in Eq. (B.128) is small for early times and we set
exp(−σk2t(p1 + p2)) ≈ 1. Thus,

S(1)

B (k, t) ≈ 4D2π t2
∫ 1

0
dp1

∫ 1

0
dp2

(

W−3
t f−3/2

w (0)
)2 (σt)2β1

σ
R2(0, p1)

(σt)2β1

σ
R2(0, p2)

∫ L

dx e−ıkxW 2
t g(x/

√
σt, 1 − p1, 1 − p2)

[

1 − W 4
t g

2(x/
√
σt, 1 − p1, 1 − p2)

W 2
t fw(0)W 2

t fw(0)

]− 3
2

(B.129)

Replace x by a scaled variable x/
√
σt ≡ x′ and extract time dependent factors:

S(1)

B (k, t) ≈ 4D2π t2
(

W−3
t f−3/2

w (0)
)2 (σt)4β1

σ2
W 2
t (σt)

d
2

∫ 1

0
dp1

∫ 1

0
dp2 (B.130)

∫

dx e−ık
√
σtx′ g(x′, 1 − p1, 1 − p2)

[

1 − g2(x′, 1 − p1, 1 − p2)

f2
w(0)

]− 3
2

. (B.131)

In other words,

S(1)

B (k, t) ∝ D2t2W−6
t (σt)4β1σ−2W 2

t (σt)
d
2 = (F/σ)2 (σt)4−

d
2
−4β1 , (B.132)

which is the same as the scaling behaviour of S (1)

A in the early time regime except that the
overall sign has changed from minus to plus.

In the late time saturated regime σk2t � 1 and σt/L2 � 1. Begin with Eq (B.128) and
make a transformation of the time variables pi ≡ (c/M)p′i:

S(1)

B (k, t) = t2(c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2) C̃(1)

B (k, t(1 − cp1
M ), t(1 − cp2

M )) (B.133)

= 4D2π t2(c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2) w−3
1 (t(1 − cp′1

M ))w−3
1 (t(1 − cp′2

M ))

∫

1
L

dk3
1 − e−σk

2
3t(1−

cp′1
M )

σk2
3

∫

1
L

dk4
1 − e−σk

2
4t(1−

cp′2
M )

σk2
4

∫ L

dx e−ıkx

S(x, t(1 − cp′1
M ), t(1 − cp′2

M ))



1 − S2(x, t(1 − cp′1
M ), t(1 − cp′2

M ))

w2
1(t(1 − cp′1

M ))w2
1(t(1 − cp′2

M ))





− 3
2

. (B.134)

Plugging the scaling forms from Eqs. (B.117,B.119) into Eq. (B.134) gives

S(1)

B (k, t) = 4D2π t2 (c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2)
(

W−3
L

)2[

σ−1L2−dR′
2(0)

]2

∫ L

dx e−ıkxW 2
L g

′(x/L, p′1, p
′
2)

[

1 − W 4
L g

′2(x/L, p′1, p
′
2)

W 2
LW

2
L

]− 3
2

. (B.135)

Transforming x′ ≡ x/L we have the following behaviour for k = 1/L:

S(1)

B (1/L, t) = 4D2π t2 (c/ML)2W−6
L Ld

(

σ−1L2−dR′
2(0)

)2
W 2
L

∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2)
∫ 1

dx′ e−ıx
′
g′(x′, p′1, p

′
2)
[

1 − g′2(x′, p′1, p
′
2)
]− 3

2. (B.136)
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The apparent t dependence is cancelled by ML ≡ σt/L2, and we have

S(1)

B (1/L, t) ∝ D2t2M−2
L W−6

L Ld
(

σ−1L2−d
)2
W 2
L = (F/σ)2 L8−d−4χ1 . (B.137)

The scaling behaviour is identical to that of C (1)

A apart from the sign of the correlator.

Structure factor S(1)

C

Simplify correlator in the limit Ft/Wt � 1 (Eq. (B.95)). Performing the time integrations
over si (i = 1, 2) and including the system size dependence we have

C̃(1)

C = 2D2
∫ L

dx e−ıkx
∫

1
L

dk3 e
−ık3x 1 − e−σk

2
3t2

σk2
3

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t1

σk2
4

π S(x, t1, t2)√
2w3

2 a
3/2
1

.

(B.138)
With arguments fully shown, the previous expression reads as

C̃(1)

C = 4D2π w−3
1 (t1)w

−3
1 (t2)

∫ L

dx e−ıkx
∫

1
L

dk3 e
−ık3x 1 − e−σk

2
3t2

σk2
3

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t1

σk2
4

S(x, t1, t2)

[

1 − S2(x, t1, t2)

w2
1(t1)w

2
1(t2)

]− 3
2

. (B.139)

Calculation of the structure factor proceeds in the familiar manner:

S(1)

C (k, t) = e−2σk2t
∫ t

0
ds1

∫ t

0
ds2 e

σk2(s1+s2) C̃(1)

C (k, s1, s2) (B.140)

= t2
∫ 1

0
dp1

∫ 1

0
dp2 e

−σk2t(p1+p2) C̃(1)

C (k, t(1 − p1), t(1 − p2)) . (B.141)

Substitution of the noise correlator yields

S(1)

C (k, t) = 4D2π t2
∫ 1

0
dp1

∫ 1

0
dp2 e

−σk2t(p1+p2) w−3
1 (t(1 − p1))w

−3
1 (t(1 − p2))

∫ L

dx e−ıkx
∫

1
L

dk3 e
−ık3x 1 − e−σk

2
3t(1−p2)

σk2
3

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t(1−p1)

σk2
4

S(x, t(1 − p1), t(1 − p2))

[

1 − S2(x, t(1 − p1), t(1 − p2))

w2
1(t(1 − p1))w

2
1(t(1 − p2))

]− 3
2

. (B.142)

Surface width follows the scaling w(t(1 − pi)) ∼ Wt for small enough times t. For the same
reason we can set exp(−σk2t(p1 + p2)) ≈ 1 in Eq. (B.141). Thus,

S(1)

C (k, t) = 4D2π t2
∫ 1

0
dp1

∫ 1

0
dp2W

−3
t f−3/2

w (0) W−3
t f−3/2

w (0) (B.143)

∫ L

dx e−ıkx
(σt)2β1

σ
R2(x/

√
σt, p2)

(σt)2β1

σ
R2(x/

√
σt, p1)

W 2
t g(x/

√
σt, 1 − p1, 1 − p2)

[

1 − W 4
t g

2(x/
√
σt, 1 − p1, 1 − p2)

W 2
t fw(0)W 2

t fw(0)

]− 3
2

.
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As a final step we transform x/
√
σt ≡ x′ and pull out the time dependent terms to obtain

S(1)

C (k, t) = 4D2π t2
(

W−3
t f−3/2

w (0)
)2 (σt)4β1

σ2
W 2
t (σt)

d
2

∫ 1

0
dp1

∫ 1

0
dp2

∫

dx′ e−ık
√
σtx′

R2(x
′, p2)R2(x

′, p1) g(x
′, 1 − p1, 1 − p2)

[

1 − g2(x′, 1 − p1, 1 − p2)

f2
w(0)

]− 3
2

(B.144)

∝ D2 t2W−6
t (σt)2−d σ−2W 2

t (σt)
d
2 = (F/σ)2 (σt)4−

d
2
−4β1 . (B.145)

Again, we should take the limit σk2t � 1 in which case the function exp(−ık
√
σtx′) in the

previous formula affects the value of the integral very weakly. The time scaling of C (1)

C is seen

to be the same as that of C (1)

A and C (1)

B .
The scaling of the correlator in long time saturated limit σk2t� 1, or σt/L2 � 1, can be

obtained in the familiar manner. Starting from Eq. (B.142) we set the upper limits of time
integrals to c/M where M ≡ σk2t. Subsequent transformation pi ≡ (c/M)p′i (i = 1, 2) gives

S(1)

C (k, t) ≈ t2 (c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2) C̃(1)

C (k, t (1 − cp′1
M ), t (1 − cp′2

M )) (B.146)

= 4D2π t2 (c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2) w−3
1 (t(1 − cp′1

M ))w−3
1 (t(1 − cp′2

M ))

∫ L

dx e−ıkx
∫

1
L

dk3 e
−ık3x 1 − e−σk

2
3t(1−

cp′2
M )

σk2
3

∫

1
L

dk4 e
ık4x 1 − e−σk

2
4t(1−

cp′1
M )

σk2
4

S(x, t(1 − cp′1
M ), t(1 − cp′2

M ))



1 − S2(x, t(1 − cp′1
M ), t(1 − cp′2

M ))

w2
1(t(1 − cp′1

M ))w2
1(t(1 − cp′2

M ))





− 3
2

. (B.147)

Plugging the scaling forms from Eqs. (B.117,B.119) into Eq. (B.147) gives

S(1)

C (k, t) ≈ 4D2π t2 (c/M)2
∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2)
(

W−3
L

)2
∫ L

dx e−ıkx (B.148)

[

σ−1L2−dR′
2(x/L)

]2
W 2
L g

′(x/L, p′1, p
′
2)

[

1 − W 4
L g

′2(x/L, p′1, p
′
2)

W 2
LW

2
L

]− 3
2

(B.149)

Transform variable x′ ≡ x/L and study scaling of the smallest k-mode:

S(1)

C (1/L, t) = 4D2π t2 (c/ML)2W−6
L Ld

(

σ−1L2−d
)2
W 2
L (B.150)

∫ 1

0
dp′1

∫ 1

0
dp′2 e

−c(p′1+p′2)
∫ 1

dx′ e−ıx
′ [
R′

2(x
′)
]2
g′(x′, p′1, p

′
2)
[

1 − g′2(x′, p′1, p
′
2)
]− 3

2

Remembering that ML ≡ σt/L2 we see that

S(1)

C (1/L, t) ∝ D2 t2M−2
L W−4

L Ld
(

σ−1L2−d
)2

= (F/σ)2 L8−d−4χ1 . (B.151)

This is consistent with the system size scaling of correlators C (1)

A and C (1)

B .
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B.6 Non-Gaussian features

Using the cumulant expansion we can evaluate the noise average of the first term in Eq. (B.11)
exactly for any statistics of α, at least in principle. For white noise we have

〈eıq1∆H 〉α = 〈eıq1∆H 〉H = exp

( ∞∑

n=0

(ıq1)
n

n!
κn(∆H)

)

, (B.152)

where we have defined ∆H ≡ H(1) −H(2) and κn(x) ≡ 〈xn〉c denotes the nth cumulant of
x. To justify the first equality of Eq. (B.152) we note that having two stochastic variables α
and H related to each other implicitly as H = H(α) we can perform average of expression
R(H) in two ways:

〈R(H)〉H ≡
∫

R(H)g(H)dH =

∫

R(H(α))g(H(α))(dH/dα)dα (B.153)

≡
∫

R(H(α))f(α)dα ≡ 〈R(H(α))〉α . (B.154)

The probability densities of specific realizations of α and H have been denoted by f(α) and
g(H) respectively. They are related to each other through f(α)dα = g(H)dH. Thus, the
averaging in Eqs. (B.20,B.23) when regarded as over α gives rise to the functional determinant
when averaging over H. For example,

〈(H(α(1)) −H(α(2)))〉α =

∫

(H(1) −H(2))(dα/dH)dH = 〈(H(1) −H(2))〉H (B.155)

For practical calculations we always average over the noise field α since we its probability
distribution from the outset where as that for H has to be constructed perturbatively.

Because of the quenched noise field the full solution to Eq. (12.15) is an infinite set of
coupled nonlinear equations for the different moments (cumulants) of H. Writing the nth
cumulant of H as κn we obtain a BBGKY hierarchy of the type

κ1 = κ1[−, κ2, κ3, κ4, . . .] (B.156)

κ2 = κ2[κ1,−, κ3, κ4, . . .] (B.157)

κ3 = κ3[κ1, κ2,−, κ4, . . .] (B.158)

κ4 = κ4[κ1, κ2, κ3,−, . . .] (B.159)

...

As usual, we have to truncate the hierarchy. In all of our examples we will be closing the
moment hierarchy after the second moment. Since the higher moments are expected to
be expressible via the first and second, we are trying to mimic a very complicated nonlinear
stochastic process with a Gaussian process when we make specific computations. This limita-
tion is in principle easily lifted and higher order closures can be constructed straightforwardly
at the expense of calculational effort.

B.7 Some integrals

Performing q2-integration first,

I ≡
∫

dq1

∫

dq2 e
ıq1F (t1−s1) eıq2F (t2−s2) U(q1, q2) (B.160)
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=

∫

dq1 e
ıq1F (t1−s1)−w2

1q
2
1/2
∫

dq2 e
ıq2F (t2−s2)−w2

2q
2
2/2−Sq1q2 . (B.161)

Completing square in the latter integral gives
∫

dq2 e
−(w2

2/2)(q
2
2−2w−2

2 (ıF (t2−s2)−Sq1))

=

∫

dq2 e
−(w2

2/2)(q
2
2−2Aq2+A2−A2) = (2π/w2

2)
1
2 e(w2R)2/2 , (B.162)

where we have used R ≡ (ıF (t2 − s2) − Sq1)/w
2
2 . Gaussian integration is valid when w2

2 > 0.
Plugging the results back into Eq. (B.161) gives

I = (2π/w2
2)

1
2

∫

dq1 exp(ıq1F (t1 − s1) − w2
1q

2
1/2) exp((w2R)2/2) . (B.163)

Time differences will be abbreviated as ti − si ≡ ∆i (i = 1, 2). Regrouping the terms in the
exponential and completing the square yields

ıq1F∆1 − w2
1q

2
1/2 + [−F 2∆2

2 − 2ıF∆2Sq1 + S2q21 ]/(2w
2
2)

= −F 2∆2
2/(2w

2
2) − w2

1q
2
1/2 + ıq1F∆1 − ıF∆2Sq1/w

2
2 + s2q21/(2w

2
2) (B.164)

= −F 2∆2
2/(2w

2
2) − (w2

1 − S2/w2
2) q

2
1/2 + ıF [∆1 − ∆2S/w

2
2 ] q1 (B.165)

= −F 2∆2
2/(2w

2
2) − a1q

2
1 + 2a2q1 , (B.166)

where we define

a1 ≡ (1/2)(w2
1 − S2/w2

2) ; a2 ≡ (ıF/2)[(t1 − s1) − (t2 − s2)S/w
2
2 ] . (B.167)

The last remaining Gaussian integral gives

I = (2π/w2
2)

1/2 exp(−F 2(t2 − s2)
2/(2w2

2))

∫

dq1 exp(−a1q
2
1 + 2a2q

2
2) (B.168)

=
π
√

2

w2
√
a1

exp

(

−F
2(t2 − s2)

2

2w2
2

+
a2

2

a1

)

. (B.169)

The validity of this result obviously depends on the positivity of a1. It is easy to show that
a1 > 0 except when t1 = t2.

Next, we will rewrite the argument of the exponential in Eq. (B.169) in a more symmetrical
form to show that times t1 and t2 can be interchanged.

− F 2

2w2
2

∆2
2 +

a2
2

a1
= − F 2

2w2
2

∆2
2 −

1

a1

F 2

4

(

∆1 − ∆2
S

w2
2

)2

(B.170)

= − F 2

4a1w2
2

[

2a1∆
2
2 + w2

2

(

∆1 − ∆2
S

w2
2

)2
]

(B.171)

= − F 2

4a1w2
2

[

w2
1∆

2
2 −

S2

w2
2

∆2
2 + w2

2

(

∆2
1 − 2∆1∆2

S

w2
2

+ ∆2
2

S2

w4

)]

(B.172)

= −F
2
(
w2

1∆
2
1 + w2

2∆
2
1 − 2∆1∆2S

)

2(w2
1w

2
2 − S2)

. (B.173)

In the last line we used the definition of a1 ≡ 1
2(w2

1 − S2/w2
2).



B.7. SOME INTEGRALS 277

Finally, we take derivatives of I with respect to w2
1 (w2

2) which is need for calculation of
noise correlator CA (CD):

∂w2
1
I =

π
√

2

w2
exp

(

−F
2∆2

2

2w2
2

)

∂w2
1

[

a
− 1

2
1 exp

(

a2
2/a1

)]

. (B.174)

Performing the latter differentiation

∂w2
1

[

a
− 1

2
1 exp

(

a2
2/a1

)]

=

[

∂w2
1
(a

− 1
2

1 ) + a
− 1

2
1 ∂w2

1

(

a2
2/a1

)]

exp
(

a2
2/a1

)

(B.175)

=

[

−∂w2
1
(a1)/(2a

3
2
1 ) − (a2

2/a
5
2
1 ) ∂w2

1
(a1)

]

exp
(

a2
2/a1

)

. (B.176)

Combining the Eq. (B.174) with Eq. (B.176) yields

∂w2
1
I =

π
√

2

4w2
a
− 3

2
1

(

−1 − 2a2
2/a1

)

exp

(

−F
2∆2

2

2w2
2

+
a2

2

a1

)

. (B.177)

Differentiation of I with respect to S is needed for calculation of noise correlators CB and
CA. Instead of Eq. (B.175) we get now

∂S

[

a
− 1

2
1 exp

(

a2
2/a1

)]

=

[

∂S(a
− 1

2
1 ) + a

− 1
2

1 ∂S
(

a2
2/a1

)]

exp
(

a2
2/a1

)

(B.178)

=

[

−∂S(a1)/(2a
3
2
1 ) + a

− 1
2

1

(

2
a2

a1
∂S(a2) −

a2
2

a2
1

∂S(a1)

)]

exp
(

a2
2/a1

)

. (B.179)

Thus,

∂SI =
π
√

2

w2
a
− 3

2
1

[

S

2w2
2

− a2
ıF∆2

w2
2

+
Sa2

2

w2
2a1

]

exp

(

−F
2∆2

2

2w2
2

+
a2

2

a1

)

. (B.180)

Again, we should be able to put the result in a symmetric form since we know that the time
and spatial arguments of noise correlators CB and CC can be interchanged.

∂SI =
π
√

2

w3
2

a
−3/2
1

[

S

2
− a2ıF∆2 +

Sa2
2

a1

]

(B.181)

=
π
√

2

w3
2

a
−3/2
1

[

S

2
− a2ıF∆2 + S

(

a2
2

a1
− F 2∆2

2

2w2
2

+
F 2∆2

2

2w2
2

)]

(B.182)

=
π
√

2

w3
2

a
−3/2
1

[

S

2
− a2ıF∆2 +

SF∆2
2

2w2
2

+ S

(

a2
2

a1
− F 2∆2

2

2w2
2

)]

(B.183)

=
π
√

2

w3
2

a
−3/2
1

[

S

2
+
F 2

2
∆1∆2 + S

(

a2
2

a1
− F 2∆2

2

2w2
2

)]

(B.184)

=
4π

w2
1w

3
2

(

1 − S2

w2
1w

2
2

)−3/2 [
S

2
+
F 2

2
∆1∆2 + S

(

a2
2

a1
− F 2∆2

2

2w2
2

)]

. (B.185)

This form is clearly symmetric since the expression (a2
2/a1 − F 2∆2

2/(2w
2
2)) is the argument

of the exponential function, the symmetry of which we have demonstrated in App. B.4.
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B.8 Delta functions in correlators

We shall demonstrate below that taking the limit M ≡ Ft/Wt → ∞ noise correlator C0

reduces to a delta function correlator characteristic of Edwards-Wilkinson model. We use
the following representation of the delta function

lim
M→∞

Me−M
2x2 → δ(x) , (B.186)

where the limit is understood to be taken after integration. How to cast the correlator C (1)

0
into this form?

C̃0(k, ts1; k
′, ts2) = D[G(1)

c (0, ts1, ts2)]
−1/2 exp

(

(Ft)2(s1 − s2)
2

G(1)
c (0, ts1, ts2)

)

(B.187)

Using Eq. (12.29) and Eq. (12.30) we can write the correlation function as

G(1)
c (0, ts1, ts2) ∝

[

s2β1
1 fw(0) + s2β1

2 fw(0) − 2g(0, s1, s2, 0)
]

(B.188)

= s2β1
1

∫

dk
1 − e−2k2s1

2k2

[

1 − e−k
2(s2−s1)

]

+ s2β1
2

∫

dk
1 − e−2k2s2

2k2

[

1 − e−k
2(s1−s2)

]

where the definition of fw(0) was also utilized (Eq. (B.45)). When s1 ≈ s2, we can expand
the exponentials. This shows that G(1)

c ∼ √
s1 − s2 and the argument of the exponential goes

as
(Ft)2(s1 − s2)

2

G(1)
c (0, ts1, ts2)

∼ (s1 − s2)
1/2 (B.189)

Changing the variables in the familiar manner as s1 − s2 ≡ u and s1 + s2 ≡ 2U and con-
centrating on the limit u→ 0 we see that Eq. (B.189) goes effectively like c

√
u. Making the

argument of the emerging delta function linear in u is readily done: δ(c
√
u) = (2/c)

√
u δ(u).

The prefactor is cancelled by the term [G(1)
c (0, ts1, ts2)]

−1/2 multiplying the exponential leav-
ing us just with δ(u) = δ(s1 − s2) when s1 is very close to s2. Hence, we confirm that C (1)

0
gives rise to the annealed noise term when M � 1.

Next, we wish to demonstrate that the limit M → ∞ is well defined for noise correla-
tors Ci (i = A,B,C,D). Part of the their integrand consists of expression of the form
M2 exp(−(M 2/2)m2). First, we introduce the representation of a two dimensional delta
function:

lim
M→∞

M2e−M
2(x2+y2) = lim

M→∞
Me−M

2x2
lim
M→∞

Me−M
2y2 → δ(x)δ(y) . (B.190)

In the case of noise correlators Ci (i = A,B,C,D) we have essentially this situation. The
only thing that remains to be done is to show that we can separate the arguments of the ex-
ponentials in such a way that the quadratic combinations only contain independent variables
(like x and y). This is easily done by first defining new time variables: s′′i ≡ pi − s′i, i = 1, 2.
Then m2(x

′, p1, p2, s
′
1, s

′
2) (Eq. (B.81)) transforms as,

p2β1
1 fw(0)(p1 − s′1)

2 + p2β1
2 fw(0)(p2 − s′2)

2 − (p1 − s′1)(p2 − s′2)g(x
′, p1, p2)

p2β1
1 p2β1

2 f2
w(0) − g2(x′, p1, p2)

(B.191)

=
p2β1
1 fw(0)(s′′1)2 + p2β1

2 fw(0)(s′′2)2 − (s′′1)(s
′′
2)g(x

′, p1, p2)

p2β1
1 p2β1

2 f2
w(0) − g2(x′, p1, p2)

= a(s′′1)
2 + b(s′′2)

2 − cs′′1s
′′
2
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where the coefficients are defined as

a ≡ p2β1
1 fw(0)

p2β1
1 p2β1

2 f2
w(0) − g2(x′, p1, p2, 0)

. (B.192)

b ≡ p2β1
2 fw(0)

p2β1
1 p2β1

2 f2
w(0) − g2(x′, p1, p2, 0)

. (B.193)

c ≡ 2g(x′, p1, p2, 0)

p2β1
1 p2β1

2 f2
w(0) − g2(x′, p1, p2, 0)

. (B.194)

In terms of matrices the quadratic form is expressible as a(s′′1)
2 +b(s′′2)

2−cs′′1s′′2 = sTAs, where
sT ≡ [s′′1, s

′′
2 ], and

A ≡
(

a −c/2
−c/2 b

)

(B.195)

We find the eigenvalues λi and eigenvectors ri (i = 1, 2) of the symmetric matrix A. With
the aid of these we can construct a diagonalizing orthogonal matrix Q satisfying

(Qs)TQAQT(Qs) = (Qs)TD(Qs) , (B.196)

where D = diag{λ1, λ2} is a diagonal matrix. The eigenvalues are λ1 = (1/2)(a + b) +
(1/2)

√

(a− b)2 + c2 and λ2 = (1/2)(a + b) − (1/2)
√

(a− b)2 + c2. The diagonalizing matrix

Q =
1

2
√

(a− b)2 + c2

(

c c

(a− b) −
√

(a− b)2 + c2 (a− b) +
√

(a− b)2 + c2

)

(B.197)

In the new coordinates r = Qs we have

lim
Mw→∞

M2
w exp

(

−M2
wm2/2

)

(B.198)

= lim
Mw→∞

M2
w exp

(

−M
2
w

2

λ1r
2
1 + λ2r

2
2

p2β1
1 p2β1

2 f2
w(0) − g2(x′, p1, p2, 0)

)

(B.199)

This is of the same form as Eq. (B.190) showing that the limit can be safely taken. In other
words, the factor M 2

w ≡ (Ft/Wt)
2 multiplying the exponential doesn’t change the scaling

behaviour of C (1)

A in the limit M → ∞ since it can be absorbed into the definition of the delta

function. The powerlaw behaviour C (1)

A ∼ t2−d/2−4β1 of the regime Mw � 1 will remain the
same.
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Appendix C

Details of contact line model

C.1 Miscellanea on projection

The projection can be carried out at least in two different ways. One possibility [337] is to
use project both sides of the equation of motion for the bulk order parameter field φ after
performing the functional derivative. For Model A we have:

∫

dz ∂zφ∂tH =

∫

dz ∂zφ
[

−∇2φ+ ∂V (φ)/∂φ
]

, (C.1)

where the functional form of the free energy F3D =
∫
dV dt [ |∇φ|/2 + V (φ) ]. The other

possibility is not to perform the functional derivative with respect to φ but with respect
to a new collective coordinate H for which we first have to get an effective free energy for.
Expressing φ in terms of the collective coordinate H gives approximately

φH(r,H(r, t), t) ≈ tanh

(
H(r, t) − z

ξ

)

, (C.2)

where ξ is the width of the interface (approaches zero in the sharp interface limit) and
r = (x, y). Thus,

F3D[φH] ≡ F2D[H], (C.3)

which in terms of densities f3D and f2D reads

∫

dz f3D(φH) = f2D(H) . (C.4)

We note that the condition φH(x, y,H, t) = 0 defines H(x, y, t). Of course, we could also use
some other level set to define the position of the phase boundary: φ(x, y,H, t) = const 6= 0
would do equally well. The defining condition is nonlinear as opposed to the connection
between the meniscus H(x, y, t) and the contact line C(x, t): H(x, 0, t) ≡ C(x, t). After this
step, we can effect the projection on the functional differentiation operator in the equation
of motion as follows:

∫

dz ∂zφ∂tH =

∫

dz ∂zφ
δ

δφ(x, y, z, t)
F3D[φ] =

δ

δH(x, y, t)
F2D[H] . (C.5)

281
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Even though φ(x, y,H, t) = 0 by definition, the variation δφ(x, y,H, t) 6= 0. In other words,
projection removes the z-dependence, which is supposed to be rather non-interesting at dis-
tances larger than ξ, the correlation length, from the interface. Only the interesting interfacial
degrees of freedom survive the projection.

The same formalism goes through for both for Model A and Model B, only the form of
the Rayleigh dissipation functional, to be specified below, changes. The equation of motion
for the phase field is given by

δR3D[∂tφ]

δ(∂tφ)
= −δF3D[φ]

δφ
(C.6)

In case of the non-conserved Model A we define the Rayleigh dissipation functional as follows:

R3D ≡
∫

dV

∫

dt
1

2
(∂tφ)2 . (C.7)

When order parameter φ is conserved, Eq. (C.6) gives still the dynamics, but for the dissi-
pation functional we should write

R3D ≡
∫

dV

∫

dV ′
∫

dt

∫

dt′
1

2
∂tφG3D ∂t′φ , (C.8)

where G3D is the Green function resulting from the inversion of the Laplacian and it has
been further assumed that Green’s boundary terms vanish all together.

To obtain the equation of motion of the meniscus, we can either project the individual
terms arising from the functional differentiation in Eq. (C.6) and recast the whole equation
into the familiar variational form:

δR2D [∂tH]

δ(∂tH)
= −δF2D[H]

δH
(C.9)

The other possibility is to use functional methods briefly described at the end of this ap-
pendix. For computational purposes it is useful to go over to a curvilinear (u, s)-coordinate
system. Above (Eq. (C.5)) we approximated z ≈ u, the liquid-gas interface being almost
horizontal. Having just a single wall we can think of a curvilinear coordinate system where
u is perpendicular to all three phase boundaries (if the liquid-gas interface is just a straight
line, we could use polar coordinates (r, θ) with the identification θ = u, and place the origin
at the contact point (line) of the three phases.) For two vertical walls we have to invent a
more complicated curvilinear coordinate system such that u-axis coincides with the normal
directions of each phase boundaries at any particular boundary point, For a single wall the
intuitively clear effective free energy which doesn’t contain any bulk contribution any more
is given by

F2D =

∫

dt

∫

dV

(

σ
√

1 + |∇H|2 δLG + (σsl(x, z) − σsg(x, z)) δSF

)

(C.10)

=

∞∫

−∞
dt

∞∫

−∞
dx

∞∫

0

dy σ
√

1 + |∇H(x, y, t)|2 +

∞∫

−∞
dt

∞∫

−∞
dx

C(x,t)∫

0

dz (σsl(x, z) − σsg(x, z)) .

In the first line the delta functions δLG and δSF define where the liquid-gas and solid-fluid
(solid-gas or solid-liquid) interfaces are located. The square root contribution arises in the
capillary wave approximation. For more detailed descriptions of the effective Hamiltonian
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of the liquid-vapour interfaces one can consult Refs. [352, 353]. Taking a variation of F2D

with respect to H and keeping the contact line position C(x, t) fixed at the same time yields
the final equality in Eq. (8.43). This is analogous to the two stage minimization procedure
of Ref. [285] Notice also the obvious analogy with the wall potential of conventional wetting
theory where the free energy has the form [353]:

F [m] =

∫

dy

{∫ ∞

0
dz

[
1

2
|∇m|2 + Φ(m)

]

+
g

2
m2

1 −m1h1

}

. (C.11)

The bulk order parameter is m, bulk potential is Φ, and the parameters h1 and g denote
the surface field and enhancement respectively. The value of the order parameter at the wall
is m1(y) = m(y, 0). Integrating out the z-coordinate in Eq. (C.10) we can see the latter
term (local surface tension fluctuations) as a nonlinear analogue of the surface field term

of Eq. (C.11): Making σsl and σsg independent of z gives
∫ C dz (σsl − σsg) = h1C, where

h1 = σsl − σsg and C is the surface value of the ’bulk’ field H: C(x) = H(x, 0).
Using a more proper projection in curvilinear coordinate system for a system with one

vertical wall placed at y = 0 results in the following set of coupled equations of motion
for the different interfaces. Denoting the solid-liquid interface with HA(x, z, t), solid-gas by
HB(x, z, t) and the liquid-gas interface with H(x, y, t) gives three distinct equations, which are
produced by hitting the bulk evolution equation with projectors onto interfaces H, HA and
HB. Projection onto interface H(x, y, t) (y ≥ 0) gives

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, y,H(x, y, t);x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t) +

∫ ∞

−∞
dx1

∫ C(x1,t)

−∞
dz1G3D(x, y,H(x, y, t);x1,HA(x1, z1, t), z1) ∂tHA(x1, z1, t) +

∫ ∞

−∞
dx1

∫ ∞

C(x1,t)
dz1G3D(x, y,H(x, y, t);x1,HB(x1, z1, t), z1) ∂tHB(x1, z1, t)

=
σ

4

(

∂2
x + ∂2

y

)

H(x, y, t) + Λ̃(x, y,H(x, y, t), t) . (C.12)

Interfaces HA and HB are assumed to meet each other at z = C(x, t). Projecting onto interface
HA(x, z, t) (z ≤ C(x, t)) gives

∫ ∞

−∞
dx1

∫ C(x1,t)

−∞
dz1G3D(x,HA(x, z, t), z;x1,HA(x1, z1, t), z1) ∂tHA(x1, z1, t) +

∫ ∞

−∞
dx1

∫ ∞

C(x1,t)
dz1G3D(x,HA(x, z, t), z;x1,HB(x1, z1, t), z1) ∂tHB(x1, z1, t) +

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x,HA(x, z, t), z;x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t)

=
σsl
4

(

∂2
x + ∂2

z

)

HA(x, z, t) + Λ̃sl(x,HA(x, z, t), z, t) . (C.13)

Finally, we have the projection onto the solid-gas interface HB(x, z, t) (z > C(x, t)):
∫ ∞

−∞
dx1

∫ ∞

C(x1,t)
dz1 G3D(x,HB(x, z, t), z;x1,HB(x1, z1, t), z1) ∂tHB(x1, z1, t) +

∫ ∞

−∞
dx1

∫ C(x1,t)

−∞
dz1G3D(x,HB(x, z, t), z;x1,HA(x1, z1, t), z1) ∂tHA(x1, z1, t) +
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∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x,HB(x, z, t), z;x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t)

=
σsg
4

(

∂2
x + ∂2

z

)

HB(x, z, t) + Λ̃sg(x,HB(x, z, t), z, t) . (C.14)

To simplify things further, we assume that the boundary conditions for the chemical potential
µ have been chosen in such a way that the Green’s surface terms Λ, Λsl and Λsg vanish. In
addition, the physical fact that the normal velocities ∂tHA and ∂tHB should be zeroes since
both these boundaries are fixed by the position of the solid wall for all times. Thus, Eq. (C.12)
reduces to

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, y,H(x, y, t);x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t)

=
σ

4

(

∂2
x + ∂2

y

)

H(x, y, t) . (C.15)

This is the fundamental equation of motion (Eq. (8.43)) in the sense that the morphology of
H changes considerably in the course of time as compared to HA and HB , which are slightly
curved close to the contact line but otherwise they conform to the planar wall interface by
construction. The other phase boundaries evolution is given by

∫ ∞

−∞
dx1

∫ C(x1,t)

−∞
dz1G3D(x,HA(x, z, t), z;x1,H(x1, z1, t), z1) ∂tH(x1, z1, t)

=
σsl
4

(

∂2
x + ∂2

z

)

HA(x, z, t) . (C.16)
∫ ∞

−∞
dx1

∫ ∞

C(x1,t)
dz1G3D(x,HB(x, z, t), z;x1,H(x1, z1, t), z1) ∂tH(x1, z1, t)

=
σsg
4

(

∂2
x + ∂2

z

)

HB(x, z, t) . (C.17)

By not setting the curvature terms on the right hand side of Eq. (C.16) and Eq. (C.17)
equal to zero we are allowing for small deviation from a perfectly flat planar solution close
to the contact line. Although we are anticipating a plane like solution Hi ≈ 0 (i = A,B)
away from the contact line, it is important not to set both Hi = 0 and ∇2Hi = 0 because
then Eq. (C.16) and Eq. (C.17) reduce to a single equation which acts as an extra condition
for the meniscus H. There is no guarantee that this extra constraint is compatible with the
fundamental Eq. (C.15). Within the current approximation it is possible to solve both HA

and HB once the solution H of Eq. (C.15) is known, i.e. no extra constraint equations for H

are generated.
Based on the previous arguments we construct the functionals R2D[∂tH] and F2D[H] and

leave HA and HB out of the subsequent analysis. Extremization of these functionals with
respect to the meniscus fluctuations yields the equation of motion of the meniscus for a
fixed contact line position, which acts as a boundary condition for H. Substituting the formal
solution of H (which depends on the unknown C(x, t)) back into R2D and F2D, and extremizing
the resulting expressions with respect to the contact line C gives an equation of motion for
the contact line itself. Mathematically we can express this by projecting δF2D/δH onto plane
y = 0 with the result

δF2D[HC]

δHC(x, 0, t)
=

∫

dx′
∫

dt′
δC(x′, t′)
δHC(x, 0, t)

δF2D [HC]

δC(x′, t′)
=
δF1D [C]

δC(x, t)
, (C.18)
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where we have used the fact that δC(x′, t′)/δHC(x, 0, t) = δ(x− x′)δ(t− t′) by definition. We
have also set F2D[HC] ≡ F1D[C] where HC denotes the solution of Eq. (8.43) for the fixed
contact line C(x, t). More precisely, we should write

∫ L

0
dy f2D (HC(x, y, t)) = f1D(C(x, t)) , (C.19)

where f1D and f2D denote the free energy densities in one and two dimensions, respectively.
Similar arguments hold for the Rayleigh dissipation functional. Finally, it is pointed out that
the formal projection of meniscus equation can be cast into a form which is equivalent to
Eq. (C.18) by transforming into a curvilinear coordinate system (u, s1, s2) from the Cartesian
coordinates (x, y, z). In the new coordinates u specifies the distance from the phase boundary
(that is, condition u = 0 is equivalent to φ(x, y,H(x, y)) = 0), the vector s ≡ (s1, s2) specifies
the point on the phase boundary. We obtain

δF3D[φH]

δφ(s, t)
=

∫

ds′
∫

du′
∫

dt′
δH(s′, t′)
δφH(s, 0, t)

δF3D [φH]

δH(s′, t′)
=
δF2D[H]

δH(s, t)
, (C.20)

The previous equation enables us to see the formal similarity to Eq. (C.18) at the cost of
introduction of more complicated coordinates. What is different with Eq. (C.20) is that
unlike δC(x′, t′)/δHC(x, 0, t) = δ(x− x′)δ(t − t′) the functional derivative

δH(s′, t′)/δφH(s, 0, t) = ? . (C.21)

The reason for this is probably easier to see in the Cartesian coordinates. The contact line
and the meniscus satisfy a linear relationship: HC(x, 0, t) = C(x, t) whereas the bulk phase
field and meniscus are related through a nonlinear condition, φH(x, y,H(x, y, t), t) = 0. To
calculate the variation in Eq. (C.21) utilize the approximation in Eq. (C.2). Then,

δH(r′, t′)
δφH(r, t)

=

[

−ξ φ′H
δH(r, t)

δH(r′, t′)

]−1

(C.22)

= −ξ−1 cosh2(0)
δH(r′, t′)
δH(r, t)

= −ξ−1δ(r − r′) δ(t − t′) . (C.23)

The operation [·]−1 means the inverse operator and φ′
H = ∂zφH(z)|z=H(r,t). The factor −ξ−1

is exactly cancelled by the factor arising from the projection of the velocities on the left hand
side of the equation of motion:

δḢ(r′, t′)

δφ̇H(r, t)
=

[

−ξ φ′H
δḢ(r, t)

δḢ(r′, t′)

]−1

= −ξ−1δ(r − r′) δ(t − t′) , (C.24)

where we have used φ̇H(r, t) ≡ ∂tφH(r, t) = −ξ φ′H ∂tH(r, t). Direct projection of Cancelling
out the common factors on both sides of Eq. (C.6) which arise when changing from the collec-
tive coordinate φH(r,H(r), t), t to H(r, t) using the functional chain rule, we obtain Eq. (C.9).

A word of warning is appropriate as what comes to the apparent reduction of dimen-
sionality of the variable (field) with respect to which the variation is taken. For example, in
Eq. (C.18) we have a variation δF2D[HC]/δHC(x, 0, t) which we could have formally written
as ∫

dy δ(y)
δF2D[HC]

δHC(x, y, t)
≡ P0

δF2D[HC]

δHC(x, y, t)
(C.25)
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But we cannot interpret the projection operator P0 as the one which constrains the variation
to be performed with respect to the boundary value H(x, 0, t) instead of H(x, y, t). In other
words,

P0
δF2D [HC]

δHC(x, y, t)
6= δF2D [HC]

δHC(x, 0, t)
. (C.26)

This is easy to understand since we do not get the same result if we first perform the variation
H(x, y, t) and set y = 0, or if we perform the variation right a way with respect to H(x, 0, t).
For this purpose we have to define a new operator Pb the action of whose is to project
variational expressions in such a way that only boundary variation of the field is allowed to
vary on the boundary b, which in our case can take the values b = C or b = H corresponding
to projection onto the contact line and meniscus, respectively. Thus,

PC
δF2D [HC]

δHC(x, y, t)
≡ δF2D[HC]

δHC(x, 0, t)
; PC

δR2D[ḢC]

δḢC(x, y, t)
≡ δR2D[ḢC]

δḢC(x, 0, t)
(C.27)

Similarly, operating with PH on both sides of the phase field Eq. (C.6) yields Eq. (C.9).
Hence, we can identify

PC
δ

δH(x, y, t)
=

δ

δH(x, 0, t)
; PC

δ

δḢ(x, y, t)
=

δ

δḢ(x, 0, t)
. (C.28)

Thus, the operation of PC is the same irrespective of the type of field (velocity or position)
it acts on. Projecting the meniscus equation out of the three dimensional bulk evolution
equation for the phase field is achieved in an analogous manner:

PH
δ

δφ(x, y, z, t)
=

δ

δφ(x, y,H(x, y, t), t)
; PH

δ

δφ̇(x, y, z, t)
=

δ

δφ̇(x, y,H(x, y, t), t)
. (C.29)

By transforming the coordinate system we can make the previous definitions look similar
to those given in Eq. (C.28). In curvilinear coordinates where u denotes the normal to the
equipotential surface H(s, t) parametrized by coordinates s = (s1, s2) we obtain

PH
δ

δφ(s, u, t)
=

δ

δφ(s, 0, t)
; PH

δ

δφ̇(s, u, t)
=

δ

δφ̇(s, 0, t)
. (C.30)

Since we do not have a general procedure of determining the dynamics of lower dimensional
phase boundaries starting from the higher dimensional bulk evolution equation, we have ex-
tended the two stage extremization procedure valid in equilibrium to cover the nonequilibrium
case using the same philosophy as in the equilibrium case: the first stage of the hierarchy
(meniscus equation) can be derived in various ways, which are consistent with the variational
ansatz, so we find that reliable. The derivation of the contact line equation is based on the
fact that we can obtain nontrivial information about the system when we allow the new
degree of freedom (contact line configuration C(x, t)) to participate in the variation. At the
meniscus level we kept C fixed when performing the variation with respect to H. To focus on
the variations of the contact line we need the operator PC which hits the meniscus equation
on both sides such that only the variation of the velocity field of the meniscus at plane y = 0
(contact line velocity) in the Rayleigh functional and the variation of the meniscus at y = 0
(contact line position) in the free energy are taken into account. In other words,

P0 6= PC , (C.31)



C.2. UNITS 287

because the spaces on which the two operators are defined are quite different from each other:
P0 is defined to operate on the class of projectable functions whereas PC can be said to act
on variations directly as far as Eq. (C.28) and Eq. (C.29) are taken as mnemonic rules only.
To proceed more rigorously, we could introduce a functional projector P̃b which projects out
the parts of the functionals which do not vary in the subspace spanned by the collective
coordinate indicated by the subindex b. For example,

P̃HF3D[φ] ≡ F2D[H] . (C.32)

This is analogous to using the function projector PH to project out the degrees of freedom
of the field U3D living in 3D space which are orthogonal to ∂zφ, which is assumed to be a
sharply peaked function at z = H:

PHU3D ≡
∫

dz ∂zφ(z − H(x, y))U3D(x, y, z) ≈ U3D(x, y,H(x, y)) ≡ U2D(H) . (C.33)

The last identity defines a new function U2D analogous to functional F2D[H] above. Assuming
that the variations which are orthogonal to the new functional vanish, we are aiming at
something like

δ

δφ(x, y, z, t)
P̃HF3D[φ] ' δ

δφ(x, y, z, t)
F2D[H] ' δ

δφ(x, y,H(x, y, t), t)
F2D[H] . (C.34)

Symbol ' has been used instead of = because the meaning of the first two expressions has
to be clarified. To find out the corresponding function projector (which acts on ordinary
functions) we should solve

PH
δF3D [φ]

δφ(x, y, z, t)
=

δ

δφ(x, y,H(x, y, t), t)
F2D[H] . (C.35)

This equation can be taken to define the operator PH. Vice versa, knowing PH we can use
the previous relation to define P̃H more rigorously. For simplicity, let us approximate the
true operator P̃H with an operator which replaces the field φ and any variation of it δφ with
the mean field solutions φH and δφH, respectively. Then, the argumentation goes like

P̃H (F3D[φ+ δφ] − F3D[φ]) = P̃H

∫

dV

∫

dt F ′
3D[φ] δφ =

∫

dV

∫

dt F ′
3D[φH] δφH (C.36)

=

∫

dV

∫

dt F ′
2D[H]

∫

dV ′
∫

dt′ δH J(V, t;V ′, t′) ∝
∫

dV

∫

dt F ′
2D[H] δH . (C.37)

On the second line J denotes the Jacobian of the transformation of variables given in
Eq. (C.22). The first equality on the second line defines the mean field approximation of
the free energy functional of meniscus fluctuations. Notice that the assumption that δφ in
the argument of the free energy functional transforms into δφH means that the projector P̃H

automatically restricts the allowed variations into the right subspace.

C.2 Units

Since the units will play an important role in many of the considerations to come, let us define
our unital system properly. It should be remembered that for all numerical and analytical
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work we have used dimensionless variables by measuring time in units Mr2/K and length
in units

√

K/r [4] which is the intrinsic width of the interface, or bulk correlation length.
Since this is true for the fundamental order parameter equation (8.36) it holds true for all the
projected quantities such as H and C as well. For some idea of the size of the model parameters
of the free energy in dimensionless units one can consult Ref. [354] where the authors studied
a completely different system, namely ordering kinetics in solid alloys. Nevertheless, the form
of the Landau free energy is of φ4-type, the same as in this work.

Let us determine now the dimensions of the different quantities appearing in our theory.
In the fluid phases our free energy functional reduces to the familiar φ4-form:

F =

∫

ddx
(

(γ/2) |∇φ(x)|2 + (a/2)φ2(x) + (b/4)φ4(x)
)

. (C.38)

The physical units of F are those of energy E: [F ] = [E] = Nm. Then, the units of the
parameters of the free energy are fixed by the units of F : [γ] = m2−d[F ], [a] = [b] = m−d[F ].
For clarity’s sake, we define below another quantity A which is has the same form as F but
there is an extra integral over time as the argument fields can now depend on time, too:

A =

∫

ddx

∫

dt
(

(γ/2) |∇φ(x, t)|2 + (a/2)φ2(x, t) + (b/4)φ4(x, t)
)

. (C.39)

The units of A are those of action: [A] = [E]s = Nms. We have decorated the terms with
dimensionfull prefactors γ, a and b. Let the phase field φ be dimensionless:

[φ] = 1 . (C.40)

Using the action, we have to divide by the units of time: [γ] = m2−d[A]/s, [a] = [b] =
m−d[A]/s. These formulae still have to be modified since the contain redundant units of
density, which in our current system has been set equal to one. For further comments, see
Sect. 10.4.1. After simplification, the units become [γ] = m4/s2, [a] = [b] = m2/s2.

The units of the mobility are found from the equation of motion. Nonconserved dynamics
of the phase field is given by Model A:

∂tφ = −MA

δA[φ]

δφ
= MA

(

γ∇2φ− aφ− bφ3
)

. (C.41)

It should be noted that the use of action is mandatory when the argument of φ contains
time. Otherwise units do not match. Equating the dimensions on both sides of the previous
equation yields three equations anyone of which can be used to fix the dimension of the
mobility MA:

[φ]

s
=

[MA][γ][φ]

m2
= [MA][a][φ] = [MA][b][φ]3 . (C.42)

Choosing the first equality gives: [MA] = m2/(s[γ]) = md/[A] = s/m2, where we have
discarded the units of mass density. This means that we can not naively set [δA/δφ] = [A]/[φ].
Instead, we have

[
δA

δφ

]

=
[A]

mds
=
m2

s2
. (C.43)

That is, the units of the variational derivative of A are the units of action density. Of course,
the notation has been misused in the second equality of the previous equation: The obsolete
factor kg/md must be set equal to one to obtain the correct units of the current unit system
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where [phi] = 1. The factor of s in the denominator arises from the time integral. Let us now
see how the dimensions change if we use conserved dynamics for the phase field (Model B):

∂tφ = MB∇2 δA[φ]

δφ
= MB∇2

(

−γ∇2φ+ aφ+ bφ3
)

. (C.44)

Instead of Eq. (C.42) we now have the following set of relations

[φ]

s
=

[MB][γ][φ]

m4
=

[MB][a][φ]

m2
=

[MB][b][φ]3

m2
. (C.45)

Choosing again the first equality above to fix the dimension of MB, we obtain [MB] =
m2+d/[A] = s. In conclusion, going from Model A to Model B only changes the dimen-
sionality of the diffusive coefficient: [MA] 6= [MB].

Next we focus on the projected equation of motion for the liquid-gas interface. Upon
projection a new dimensionfull quantity, the surface tension, appears. Surface tension σ is
determined in general through the formula σ ≡ (Fint − Fpure)/L

d−1, where Fint is the free
energy of the configuration with one planar interface separating two coexisting phases, Fpure
is the reference free energy of either one of the pure phases (their free energies should be
the same in this formulation), and Ld−1 is the interfacial area. Clearly, in one dimensional
time independent situation (interface is just a point) with calibration Fpure = 0, σ = F =
∫
dx (γ|∂xφ|2/2+aφ2/2+bφ4/4). In two d-dimensional situation with translational symmetry

broken with respect to the x-direction only, we get

F = Ld−1
∫

dx (γ |∂xφ|2/2 + aφ2/2 + bφ4/4) , (C.46)

which is consistent with our definition. On the other hand, in the one dimensional case we
can utilize the special form of the free energy and write σ = γ

∫
dx (∂xφ)2. Dimensions of

σ become [σ] = [γ]m[φ]2/m2 = [F ]/md−1 with the units of γ determined from the time
independent free energy [γ] = m2−d[F ] in Eq. (C.46). Equivalently, one can have the time
integral included in the definition of the free energy, in which case we call it the action.
Mathematically speaking, the time integral should be part of the definition of the free energy
functional, because the equation of motion of the phase field involves functional differentiation
with respect to φ(x, y, z, t) which depends on time coordinate t explicitly. Eq. (C.46) gets
modified:

F = Ld−1
t

∫

dx (γ |∂xφ|2/2 + aφ2/2 + bφ4/4) , (C.47)

where t is the extent of the time interval, which we treat as an extra dimension. In fact,
we should use the symbol A instead of F but since the fields φ are only functions of the
spatial position and not time (which has been integrated out in Eq. (C.47), we continue
to use the symbol F. The dimension of γ in Eq. (C.46) is m2−d[F ] whereas in Eq. (C.47)
[γ] = m2−d[F ]/s. Consequently, in the latter case we have to define the surface tension
parameter σ ≡ F/(Ld−1t). This is to say that when using the generalized free energy having
time dependent fields as its arguments, the units σ become [F ]/(md−1s) = m3/s2.

For Model A, the interface equation of motion is obtained by hitting both sides of
Eq. (C.41) with the projection operator

∫
dz ∂zφ where z is the direction orthogonal to the

interface. After projection and linearization we obtain

σ∂th(x, t) = MAγ∂
2
xh(x, t) , (C.48)
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where the surface tensions on both sides cancel out. Dimensional consistency requires that
[MA][γ] = m2/s, which is obviously true. For Model B, we invert the Laplacian operator with
the aid of the Green’s function G after which we project:

∫

dx1

∫

dy1G3D(x, y, h(x, y, t);x1, y1, h(x1, y1, t)) ∂th(x1, y1, t) ∝
MBσ

4
∇2h(x, t) . (C.49)

The Green’s function depends on h explicitly but this does not change its dimensional-
ity. Consistency of units requires that md−1[G3D][h(x, t)]/s = [MB ][σ][h(x, t)]/m2. Since
[h(x, t)] = m, [φ(x, t)] = 1, [MB] = m2+d/[A], we can solve for the units of the Green’s
function: [G3D] = m−1. More generally, we could write the left hand side of Eq. (C.49) as
∫
ddxG∂tφ whose dimension is md[G]/s, which means that the units of the Green’s function

in general dimension is m2−d. This is readily seen to hold by computing the dimensions of
the infinite space Green’s functions: G3D ∼ 1/r, G2D ∼ ln(r/r0) and G1D ∼ |r|.

C.3 Linearization of the Green’s function

The derivation presented in Sect. 8.4 applies only to systems where the fluid-fluid (liquid-
gas) interface (H) behaves well in the sense that it possesses a normal vector whose direction
only experiences small fluctuations around some well defined reference direction. The extent
of the system perpendicular to the reference direction should be infinite, otherwise periodic
boundary conditions should be used. Clearly some of these conditions are violated if we
are modelling a system having solid wall(s). Because of the walls the system is not infinite
(liquid-gas boundary does not have infinite extent), nor can periodicity be imposed. Moreover,
when observing the three phase contact region, which is diffuse in reality and in computer
simulations, it is difficult to tell where exactly does the liquid-gas interface end and where
does the liquid-solid (or gas-solid) interface begin: dealing with several interconnected phase
boundaries can be awkward. On the other hand, if one decides to build a theory which uses
just a single interface, say the outer boundary of the liquid domain, the traditional projection
method will fail in the vicinity of the contact line where this single interface makes a rapid
turn.

These difficulties can be avoided by using the sharp interface approximation and by re-
stricting our focus only on the region where the liquid-gas interface is well-defined and mod-
elling the effect of other interfaces through the action of the contact line common to the
liquid-gas interface and the disregarded ones. In the case of a single vertical wall located at
y = 0 we should consider only the region x ∈ (−∞,∞); y ∈ [0,∞); z ∈ [0,∞). Similarly,
in the case of two vertical walls at y = 0 and y = L the restricted domain, in which the
fluid-fluid boundary is well-defined, is y ∈ [0, L]. Therefore, we should also find out what are
the boundary conditions for the chemical potential at the boundaries of the restricted do-
main to be able to invert the Laplacian properly within this domain. This is, however, easier
said than done: because of the diffusiveness of the phase boundaries the chemical potential
will not take its equilibrium bulk value immediately at the interfaces between solid and fluid
phases. Consequently, the naive choice of µ = 0 at the boundaries of the restricted domain is
not correct. Knowing the values of µ there gives us an extra term in the equation of motion
(8.39) denoted by Λ:

M−1
∫ ∞

−∞
dx1

∫ ∞

0
dy1

∫ ∞

0
dz1G3D(r; r1) ∂tφ(r1, t) = µ(r, t) + Λ(r, t) , (C.50)
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where r ≡ (x, y, z), r1 ≡ (x1, y1, z1), and the Green’s theorem fixes the form of the boundary
term

Λ ≡
∫

dS [∂nG3D µ− ∂nµG3D] . (C.51)

The normal derivative symbol is ∂n and S denotes the boundary region where the solid phase
meets the fluid phases. Notice also the lower limit of the y-integral in Eq. (C.50) signifying
the presence of a single vertical wall at y = 0 (Having another wall at y = L would also
change the upper limit of the integral). Even though it is a bit elaborate to find out what
the boundary values of µ are, we can still proceed since the explicit functional form of Λ is
not needed in the following.

To ease the extraction of the physics, we linearize the Green function G3D. Physical
condition for the validity of the linearization is derived in App. C.4. We assume that without
any random inhomogeneities on the wall(s), the meniscus takes the shape given by function
H0. It can be a function of both spatial coordinates x and y, but assuming that the wall is
completely homogeneous, H0 = H0(y, t), where y marks the coordinate perpendicular to the
wall. The fluctuating contribution caused by randomly distributed pinning centers of the
solid walls is denoted by h = h(x, y, t) and the full solution of the meniscus profile is denoted
by H. In other words,

H(x, y, t) = H0(y, t) + h(x, y, t) . (C.52)

In the following the forms of H0 and h will be kept arbitrary. Linearization means that terms
with second or higher powers of fluctuations h are dropped (such as h ∂th, for example).
First, Taylor expand the Green function of on the left hand side of the meniscus equation
(8.47):

M−1
∫ ∞

−∞
dx1

∫ ∞

0
dy1 G3D(x, y,H(x, y, t);x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t) ≈ (C.53)

M−1
∫ ∞

−∞
dx1

∫ ∞

0
dy1

[

G3D + ∂zG3D|H0 h(x, y, t) + ∂z1G3D|H0
h(x1, y1, t)

]

×
[

∂tH0(y1, t) + ∂th(x1, y1, t)
]

=
δF2D[H]

δH
+ Λ̃H(x, y, t) , (C.54)

where Λ̃H(x, y, t) ≡ Λ(x, y,H(x, y, t), t) is the projection of Λ(x, y, z, t) onto the liquid-gas
phase boundary. The short-hand notation introduced for the expansion of the Green function
G3D above is the following:

G3D = G3D(x, y,H0(y, t);x1, y1,H0(y1, t)) ; (C.55)

∂zG3D|H0 = ∂zG3D(x, y, z;x1, y1,H0(y1, t))|H0(y,t) ; (C.56)

∂z1G3D|H0 = ∂z1G3D(x, y,H0(y, t);x1, y1, z1)|H0(y1,t) . (C.57)

Expanding the product of the terms in square brackets and keeping the terms of order zero
or one in h gives

IA + IB + IC + ID = −M
4

δF2D[H]

δH
+ Λ̃H . (C.58)

The different terms appearing in Eq. (C.58) are tabulated below:

IA ≡
∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, y,H0(y, t);x1, y1,H0(y1, t)) ∂tH0(y1, t) ; (C.59)

IB ≡
∫ ∞

−∞
dx1

∫ ∞

0
dy1 ∂zG3D(x, y, z;x1, y1,H0(y1, t))|H0(y,t) h(x, y, t) ∂tH0(y1, t) ; (C.60)
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IC ≡
∫ ∞

−∞
dx1

∫ ∞

0
dy1 ∂z1G3D(x, y,H0(y, t);x1, y1, z1)|H0(y1,t) h(x1, y1, t) ∂tH0(y1, t) ; (C.61)

ID ≡
∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, y,H0(y, t);x1, y1,H0(y1, t)) ∂th(x1, y1, t) . (C.62)

Next, we can partition the terms in Eq. (C.58) into two groups based on the fact that if the
walls of our set-up are clean (no chemical inhomogeneities) we expect the fluctuation term
h to vanish. In other words, we assume that h = h(A), where A is the noise field, i.e. the
projected wall potential appearing in Eq. (8.61). In the limit of vanishing noise only the
term IA survives as it contains no fluctuation terms h. How this happens as a function of
the noise strength D can be answered using the results of App. (B). Thus, split the terms in
Eq. (C.58) as

IA = (Mσ/4) ∂2
yH0 + Λ̃H0 ; (C.63)

IB + IC + ID = −M
4

δF2D [h]

δh
+ Λ̃′

H0, h . (C.64)

The first equation corresponds to homogeneous walls, the second describes fluctuation cor-
rections arising from spatial variation of the local wetting properties. Green’s boundary term
has been split in the following way: Λ̃H ≈ Λ̃H0 + Λ̃′

H0, h
, where the first term on the right

is the equilibrium contribution and the second one contains contribution from the linearized
fluctuations. However, the physically motivated assumption of zero mass flux through the
solid walls (which will be used later on as well) renders Λ̃ rigorously zero. Thus, in practice we
set Λ̃H = 0 and use Eq. (C.63) to fix the unknown fitting factors of an ansatz like Eq. (8.52).
The form of the ansatz for H0 can be justified by numerics and the analysis of the quasi-static
limit of the present model.

C.4 Condition for linearization of Green’s function

Validity of the linearization is studied in this section. For clarity’s sake, we first find out
what are the physical units of the terms in the equation of motion. We shall not use the full
Eq. (8.58, 8.61) but a simplified representative form, which allows us to determine the units
and scaling more easily:

1 − e−C0|k|

k2
∂tc(k, t) = −σ1|k| c(k, t) +A1(k, t) , (C.65)

where we have chosen to use a simplified form of the restoring force, σ1|k| c(k, t), on the
right hand side. For infinite wall separation L the restoring force, which we have derived in
Sect. C.14.5, has a linear dependence on |k|. Thus, the scaling behaviour should be correctly
reproduced by the simplified force term on the right hand side of Eq. (C.65). The form
of the kernel σ1|k| is identical to the JdG [355] kernel for the restoring force as far as the
wave-vector behaviour is concerned: ΓJdG(k) = γ|k| with γ ≡ θ2

0σ, and σ is the bare surface
tension. Moreover, we have defined

σ1 ≡Mσ ; A1(k, t) ≡MA(k, t) . (C.66)

Redimensionalizing yields the following units (notation [f ] means the physical unit of f):

[c(k, t)] = m1+d ; [σ1] = m3/s ; [A1(k, t)] = m3+d/s ; [D] = m7+d/s2 . (C.67)
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In general dimension d the function and its Fourier transform have different units, of course.
For example, [c(x, t)] = m but [c(k, t)] = m1+d. In case of the contact line the spatial
dimensionality d = 1 and we have

[c(k, t)] = m2 ; [σ1] = m3/s ; [A1(k, t)] = m4/s ; [D] = m8/s2 . (C.68)

The units of σ1 are fixed by balancing the dimensions on both sides of Eq. (C.65). Determining
the dimensionality of the noise strength D of A requires more work. In Sect. (12.3) it is shown
that effective noise correlator 〈A1A

′
1〉 behaves like

〈A1(k, t)A1(k
′, t′)〉 ≈ δ(k + k′)

D
√

Gc(0, t, t′)
. (C.69)

The correlation function Gc is defined through

Gc(x1 − x2, t1, t2) ≡ 〈(h(x1, t1) − h(x1, t1))
2〉 − 〈(h(x1, t1) − h(x1, t1))〉2 , (C.70)

and it clearly behaves similarly to the surface width W 2 ≡ 〈(h(x, t)−〈h(x, t)〉)2〉. Therefore,
its unit is the unit of length: [Gc(x, t)] = [W ] = m. Using this result in Eq. (C.69),

[〈A1A
′
1〉] ∼ md [D]

[W ]
= [D]md−1 . (C.71)

Plugging in the known dimensions of A1(k, t) from Eq. (C.67) to the left hand side of the
previous equation and solving for the units of D gives [D] ∼ m1−dm6+2d/s2 = m7+d/s2.
Thus, we obtain the results given in Eq. (C.67).

The minimum requirement which our perturbation series should satisfy, is the smallness
of the first term dropped from the analysis compared to those kept. In other words we should
find out when

∫

dx1

∫

dy1 ∂zG3D(x, y, z;x1, y1,H0(y1, t))
∣
∣
∣
H0(y,t)

c(x, t) (C.72)

�
∫

dx1

∫

dy1 ∂2
zG3D(x, y, z;x1, y1,H0(y1, t))

∣
∣
∣
H0(y,t)

[c(x, t)]2 (C.73)

To evaluate the gross magnitude of the terms we find it convenient to replace the exact
requirement appearing in the previous equation with its dimensional equivalent:

[∫

dx1

∫

dy1 ∂zG3D

]

[c(x, t)] �
[∫

dx1

∫

dy1 ∂
2
zG3D

] [

〈c2(x, t)〉
]

, (C.74)

We will first estimate the magnitude of the contact line height c from the representative
equation of motion (C.65). In the following the calculations will be performed in the regime
where C0|k| � 1, which makes the left hand side of Eq. (C.65) equal to (C0(t)/|k|) ∂tc(k, t).
Dividing both sides with C0(t)/|k| and neglecting the time dependence of C0, we can write
the formal solution, which is sufficient to study scaling, as

c(k, t) =

∫ t

0
ds J(k, t− s)A1(k, s) ∼

Ā

σ1|k|
⇒ c(x, t) ∼ Ā

σ1
. (C.75)
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In the previous equation we defined the kernel J(k, t) ≡ (|k|/C0) exp(−σ1k
2t/C0). The average

noise field is denoted by Ā. The dimensionality of Ā is the same as that of A1(k, t) . Let us
evaluate the magnitude of c2(x, t) by computing the magnitude of 〈c2(x, t)〉:

〈c2(x, t)〉 =

∫

dk1

∫

dk2 e
−ı(k1+k2)x

∫ t

0
ds1

∫ t

0
ds2 J(k1, t− s1)J(k2, t− s2)〈A1(k1, s1)A1(k2, s2)〉

=

∫

dk
k2

C2
0

e−2(σ1k2/C0) t
∫ t

0
ds1

∫ t

0
ds2 e

(σ1k2/C0)(s1+s2) D

W
(C.76)

∼ D

W

∫

dk
1

σ2
1k

2
∼ D

Wσ2
1k

. (C.77)

The integrals over k1 and k2 are one dimensional in the previous equation. What about the
dimensionality of the derivatives of the Green’s function G3D?

∂zG3D ∼ ∂z
1

r
∼ 1

r2
; ∂2

zG3D ∼ 1

r3
, (C.78)

where we have used r ≡ [ (x − x′)2 + (y − y′)2 + (z − z′)2 ]1/2. Taking into account the
dimensionality of the integrals we get dimensionally that

[∫

dx1

∫

dy1 ∂zG3D

]

∼ 1 ;

[∫

dx1

∫

dy1 ∂
2
zG3D

]

∼ 1/[r] ∼ [k] . (C.79)

We can now express the requirement (Eq. (C.73)) dimensionally in terms of the model pa-
rameters as

Ā

σ1
� k

D

Wσ2
1k

⇒W � D

Āσ1
. (C.80)

The expansion is seen to valid when the fluctuations of the contact line width W are large
enough compared to the ratio of the noise strength to the product of the average noise and
the surface tension. Values of Ā and D must be determined from the experiment.

C.5 Variational derivation of the meniscus dynamics

We first derive the equation of motion for the liquid-gas boundary through a variational
approach. Then, we study the commutativity of linearization and variation and arrive at
separate equations for the zeroeth order meniscus solution H0 describing the effect of pure
walls and another equation for the fluctuating modes h accounting for the random impurities.

C.5.1 Derivation

Equation of motion for the meniscus can be derived through direct application of the project
operator on both sides of the bulk phase field equation (8.36). This method will be abbre-
viated as DirP. Another possibility is to define two functionals, called Rayleigh’s dissipation
functional R3D and free energy functional F3D the form of which we are already familiar with.
Analogously to Lagrange’s mechanics for point particles we write the equation of motion in
the variational form (VarF for short):

δR3D[φ̇]

δφ̇(r, t)
= −δF3D [φ]

δφ(r, t)
. (C.81)
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Let us define R3D in such a way that Eq. (8.43) will be reproduced. The domain of three
dimensional spatial integration will be called V and

∫

dVi ≡
∫ ∞

−∞
dxi

∫ L

0
dyi

∫ ∞

0
dzi , (C.82)

where i = 1, 2. This is the volume for the set-up with two vertical solid walls situated at
y = 0 and y = L. If we want to model a single wall at y = 0, we take the upper integration
limit L of the integral over yi to infinity. Time integrals are interpreted as

∫
dti ≡

∫∞
−∞dti.

With these notations we can write

R3D[φ̇] ≡ 1

2
M−1

∫

dV1

∫

dt1

∫

dV2

∫

dt2 φ̇(1, t1)G3D(1; 2)δ(t1 − t2) φ̇(2, t2) , (C.83)

where we have introduced a short hand notation for the arguments of the the functions
φ̇ and G3D: f(i, t) ≡ f(xi, yi, zi, t), i = 1, 2. Spatial and time arguments are separated
and the number of components in the spatial argument list is fixed by the available entries
of the function f . Thus, for example φ(1, t1) ≡ φ(x1, y1, z1, t1), H(2, t) ≡ H(x2, y2, t) and
G3D(1,H(1, t1); 2,H(2, t2)) ≡ G3D(x1, y1,H(x1, y1, t1);x2, y2,H(x2, y2, t2)).

It is immediately seen that performing the variations of the functionals R3D defined in
Eq. (C.83) and F3D defined in Eq. (8.37) produces the phase field equation of motion given
in Eq. (8.39). To produce the meniscus equation (8.43) substitute the approximation of the
order parameter field given in Eq. (8.42) into the expression for R3D:

R2D[Ḣ] ≡ R3D[φ̇H] =
1

2M

∫

dV1

∫

dt1

∫

dV2

∫

dt2 {2δ(H(1, t1) − z1) Ḣ(1, t1)G3D(1; 2) (C.84)

× δ(t1 − t2) 2δ(H(2, t2) − z2) Ḣ(2, t2)}
=

2

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 Ḣ(1, t1)G3D(1,H(1, t1); 2,H(1, t2)) δ(t1 − t2) Ḣ(2, t2) , (C.85)

where
∫
dAi ≡

∫∞
−∞dxi

∫ L
0 dyi, i = 1, 2. By writing φ̇H instead of just φ̇ in the first line we

want to indicate the dependence of the order parameter on the meniscus profile H defined in
a lower dimensional space, which calls for integration over the z-coordinate in the functional.
There is no guarantee in the general case that the procedure we have just employed to derive
R2D will preserve the positivity of the functional. Clearly, R3D is a positive definite quadratic
functional in the field φ̇. This is easy to see in the Fourier space where the kernel of R3D

is simply 1/k2 ≥ 0 where zero eigenvalue can be removed by proper choice of boundary
conditions. It is, however, more difficult to analyze projected expressions such as the kernel
of R2D. Luckily, we can derive the meniscus equation by the direct projection method DirP,
which confirms that our result really is the correct one. To finish the derivation of Eq. (8.43)
we write down also the free energy functional F2D, which has been derived in App. C.1.

F2D[H] =

∞∫

−∞
dt

∞∫

−∞
dx

∞∫

0

dy σ
√

1 + |∇H(x, y, t)|2 +

∞∫

−∞
dt

∞∫

−∞
dx

C(x,t)∫

0

dz (σsl(x, z) − σsg(x, z)) .

(C.86)
This form holds for a set-up with a single vertical wall situated at y = 0. Generalizations
of F2D, which go beyond capillary wave approximation have been derived in Ref. [352]. The
second term on the right hand side of Eq. (C.86) gives the interface energy of the wall due
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to random fluctuations of the surface energies arising from chemical inhomogeneities. If we
have second wall at y = L, the free energy assumes the following form

F2D[H] =

∞∫

−∞
dt

∞∫

−∞
dx

L∫

0

dy σ
√

1 + |∇H(x, y, t)|2 +

∞∫

−∞
dt

∞∫

−∞
dx

Ca(x,t)∫

0

dz
(

σasl(x, z) − σasg(x, z)
)

+

∞∫

−∞
dt

∞∫

−∞
dx

Cb(x,t)∫

0

dz
(

σbsl(x, z) − σbsg(x, z)
)

(C.87)

The contact line profiles on the walls at y = 0 and y = L are denoted as Ca and Cb, respectively.
Similar identification applies to the superscripts of the surface tensions. To make contact with
the three dimensional bulk free energy, we can associate the surface tension fluctuations with
the wall potential A, i.e.

A(x, 0, z) = σasl(x, z) − σasg(x, z) ; A(x,L, z) = σbsl(x, z) − σbsg(x, z) . (C.88)

When we are dealing with one wall only, the y-coordinate of the wall potential plays no role
and it will be dropped. Considering only such variations of the order parameter field, which
take place at the liquid-gas phase boundary, we obtain from Eq. (C.81) the meniscus equation
of motion as shown in App. C.1:

PH
δR3D [φ̇]

δφ̇(x, y, z, t)
= −PH

δF3D[φ]

δφ(x, y, z, t)
⇒ δR2D [Ḣ]

δḢ(x, y, t)
= − δF2D [H]

δH(x, y, t)
(C.89)

It is important to note that the variation with respect to H on the right hand side of the
previous equation is such that the contact line profiles, Ca and Cb, stay fixed. This enables
nontrivial information to be withdrawn from the functional F2D at the final projection stage
when the contact line equation is derived (see App. C.14.6). The variations are easily com-
puted:

δR2D[Ḣ]

δḢ(x, y, t)
=

4

M

∫

dx1

∫

dy1G3D(x, y,H(x, y, t);x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t) , (C.90)

where the factor of four arises from the combined effect of the miscibility gap (factor of two
in Eq. (8.42)) and the functional derivative hitting the field Ḣ which appears twice in R2D[Ḣ].
The variation which is taken with respect to H will always be such that it does not alter
the position of the contact line C, i.e. C stays fixed under the variation δH. Therefore, we
can leave out the random surface energy contribution to F2D (Eq. (C.86)) when discussing
meniscus dynamics. When contact line equation is formed, the random part will have to be
taken into account, of course. Variation of the free energy gives

− δF2D [H]

δH(x, y, t)
≈ σ∇2

H , (C.91)

where we have used the small slope approximation σ
√

1 + |∇H|2 ≈ const + σ|∇H|2/2. Fi-
nally, equating Eq. (C.91) with Eq. (C.90) produces the equation of motion for the meniscus
(Eq. (8.47)):

4

M

∫

dx1

∫

dy1G3D(x, y,H(x, y, t);x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t) = σ∇2
H . (C.92)
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This is our fundamental equation of motion, which has been obtained by projecting the three
dimensional bulk equation of motion onto the liquid-gas interface. Mathematically, we have
expressed this fact in Eq. (C.89) by forcing the variations of the bulk fields φ̇ and φ to live
on the interface region only.

C.5.2 Non-commutativity of variation and linearization

What we would ultimately like to do is to solve H from Eq. (C.92) as a function(al) of
the unknown contact line profile C and derive R1D[Ċ] ≡ R2D[ḢC] and F1D[C] ≡ F2D[HC]
analogously to the way the 2D meniscus dynamics was deduced from the 3D phase field
evolution equation in the previous section. Unfortunately the nonlinearities make it difficult
to find how H depends on C, so we have to resort to linearization. This, however, induces a
few extra complications which we will talk about below.

Variation after linearization

We demonstrate first what happens if we linearize the meniscus profile first and take the
variation with respect to linearized variables afterwards. We assume that the meniscus can
be represented as

H(x, y, t) = H0(y, t) + h(x, y, t) . (C.93)

The zeroeth order meniscus solution, H0, describes the profile which is confined by one or
two pure, homogeneous walls. It does not depend on the x-coordinate. The effect of random
impurities causing fluctuations of the local surface tensions (see previous section) is given by
h, which is assumed to have a small amplitude, such that we can only consider the lowest
order terms in h in the following calculations. Substitution of the decomposition given in
Eq. (C.93) into the expression of R2D gives

R2D[Ḣ0, ḣ] = 2

∫

dA1

∫

dt1

∫

dA2

∫

dt2
{

[Ḣ0(1, t1) + ḣ(1, t1)]G3D(1,H(1, t1); 2,H(1, t2))

× δ(t1 − t2) [Ḣ0(2, t2) + ḣ(2, t2)]
}

. (C.94)

Eventually H in the argument of the Green’s function will also be split into H0 + h but
at the moment this representation is more convenient. Introducing a short-hand symbols
GH

3D(1; 2) ≡ G3D(1,H(1, t1); 2,H(2, t2)) and δa|b ≡ δ(a − b), we can rewrite the previous
equation as

R2D[Ḣ0, ḣ] = 2

∫

dA1

∫

dt1

∫

dA2

∫

dt2
{

Ḣ0(1, t1)G
H
3D(1; 2)Ḣ0(2, t2)

+ ḣ(1, t1)G
H
3D(1; 2)ḣ(2, t2) + 2Ḣ0(1, t1)G

H
3D(1; 2)ḣ(2, t2)

}

δt1|t2 . (C.95)

Let us see what kind of equations of motion are generated if we treat Ḣ0 and ḣ as independent
variables. Taking first the variation with respect to Ḣ0 yields

δR2D[Ḣ0, ḣ]/δḢ0(y, t) = (C.96)

2

∫

dx1

∫

dt1

∫

dx2

∫

dt2 δt1|t2

{∫

dy1

∫

dy2 δy1|y δt1 |tG
H
3D(1; 2)Ḣ0(2, t2)
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+

∫

dy1

∫

dy2 Ḣ0(1, t1)G
H
3D(1; 2) δy2 |y δt2 |t +

∫

dy1

∫

dy2 2 δy1|y δt1|tG
H
3D(1; 2)Ḣ0(2, t2)

}

.

= 4

∫

dx1

∫

dx2

∫

dy2

{

GH
3D(1; 2)Ḣ0(2, t2) +GH

3D(1; 2)ḣ(2, t2)
}

(C.97)

The first two terms on the right hand side of Eq. (C.96) arise from taking variation of the
quadratic term in Ḣ0. Owing to the symmetry of the Green’s function, G3D(1, 2) = G3D(2, 1)
the entries can be swapped around showing that the first two terms are equal to each other.
Taking variation of R2D with respect to ḣ we obtain an equation similar to above:

δR2D[Ḣ0, ḣ]/δḣ(x, y, t) = 4

∫

dx2

∫

dy2

{

GH
3D(1; 2)ḣ(2, t2) +GH

3D(1; 2)Ḣ0(2, t2)
}

, (C.98)

where the only difference as compared to Eq. (C.97) is that the x1-integral is missing. The
reason for this is the abundance of x dependence in Ḣ0(y, t): when we take functional deriva-
tive with respect to ḣ(x, y, t) there is an extra delta function generated (δx|x1

) which kills the
x1-integral.

Having calculated the left hand sides of the equations of motion for H0 and h above, we
can compute the variations of the free energy F2D[H0, h] in order to get the right hand sides.
Leaving the random part of F2D out for simplicity, we get

F2D[H0, h] =
1

2

∫

dA1

∫

dt1

∫

dA2

∫

dt2
{

[H0(1, t1) + h(1, t1)]
(

−σ∇2 δx1|x2
δy1|y2δt1 |t2

)

× [H0(2, t2) + h(2, t2)]
}

. (C.99)

Variation F2D[H0, h] with respect to H0 and h independently gives rise to coupling between
the zeroeth order solution and the fluctuation. We notice immediately the same thing from
Eq. (C.97) and Eq. (C.98): the motion of the zeroeth order solution H0 is coupled with the
fluctuation induced contribution h and vice versa. This is a consequence of the fact that the
functional R2D (F2D) has a nonlinear dependence on its arguments. If we now linearize the
expressions δR2D[Ḣ0, ḣ]/δḢ0 and δR2D[Ḣ0, ḣ]/δḣ by expanding the Green’s function GH

2D and

throwing a way terms which are of higher than first order in fluctuations h (or ḣ), we do not
obtain the same result that we get by linearizing the equation of motion (C.92), which we
regard as the fundamental equation.

Linearization after variation

Let us now compare the results derived above to those presented in App. C.3. There we
linearized the Green’s function G3D which appeared on the left hand side of the bulk equation
of motion, which had been projected onto the interface at z = H. In Sect. C.5.1 we explained
how the projection and taking variations can be combined by introducing the concept of
restricted variation, which lives on the interface separating two phases. Linearization of the
Green’s function in Eq. (C.92) yields

IA = (Mσ/4) ∂2
yH0 ; (C.100)

IB + IC + ID = −M
4

δF2D[h]

δh
, (C.101)

where we have set the Green’s boundary Λ̃H term to zero. The rest of the abbreviations are
collected below:

IA ≡
∫

dx1

∫

dy1G3D(x, y,H0(y, t);x1, y1,H0(y1, t)) ∂tH0(y1, t) ; (C.102)
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IB ≡
∫

dx1

∫

dy1 ∂zG3D(x, y, z;x1, y1,H0(y1, t))|H0 h(x, y, t) ∂tH0(y1, t) ; (C.103)

IC ≡
∫

dx1

∫

dy1 ∂z1G3D(x, y,H0(y, t);x1, y1, z1)|H0 h(x1, y1, t) ∂tH0(y1, t) ; (C.104)

ID ≡
∫

dx1

∫

dy1G3D(x, y,H0(y, t);x1, y1,H0(y1, t)) ∂th(x1, y1, t) . (C.105)

In Eq. (C.103) the substitution |H0 ≡ |H0(y, t) and in Eq. (C.104), |H0 ≡ |H0(y1, t). As before,
the limits of the integrals depend whether we are modelling a single or double wall geometry.
Treating the linearized equations (C.100) and (C.101) as fundamental we notice that there
should be no coupling in the equation of motion of the pure system to the random one. In
other words, H0 (Eq. (C.100)) does not depend on h (Eq. (C.101)), but h does depend on H0.

How to separate the random part from the pure

Because of the quadratic (nonlinear) nature of the functionals R2D and F2D, some coupling
terms, which are not present in the linearized meniscus equations (C.100) and (C.101), will
always arise, if we write the meniscus dynamics as follows

δR2D[Ḣ0, ḣ]

δḢ0(y, t)
= −δF2D [H0, h]

δH0(y, t)
; (C.106)

δR2D[Ḣ0, ḣ]

δḣ(x, y, t)
= −δF2D [H0, h]

δh(x, y, t)
. (C.107)

Therefore, we will now design new dissipation and free energy functionals in such a way that
the zeroeth order meniscus dynamics (H0) and the dynamics of the fluctuations (h) given in
Eq. (C.100) and Eq. (C.101), are reproduced through the variational approach. This means

that we have to find Rp2D, F p2D, Rf2D, and F f2D such that Eq. (C.100) and Eq. (C.101) can be
equivalently written in the following form:

δRp2D[Ḣ0]

δḢ0(y, t)
= −δF

p
2D[H0]

δH0(y, t)
; (C.108)

δRr2D[ḣ]

δḣ(x, y, t)
= − δF r2D [h]

δh(x, y, t)
, (C.109)

where the superscripts p and r refer to the pure and fluctuating random contributions of the
functionals. The construction of the new functionals will be presented in more detail below.
It turns out that Eq. (C.109) is just the same as Eq. (C.107), which means that Rr

2D = R2D

and F r2D = F2D. The essential thing is that the fluctuations h are coupled with the zeroeth
order solution H0 through this equation. In contrary, there is no such coupling present in
Eq. (C.108) because it is missing from Eq. (C.100) which we want to reproduce. Therefore,
functionals Rp2D and F p2D are obtained from R2D and F2D by ignoring the coupling terms.
Thus, Eq. (C.108) is a self-contained equation of mean-field type for H0.

C.5.3 Pure system

There are different possibilities among which one can choose the functionals Rp
2D[Ḣ0] and

F p2D[H0] such that the correct dynamics is generated through Eq. (C.108). The Rayleigh
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dissipation functional can be presented for example in the following form:

Rp2D[Ḣ0] =
2

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 Ḣ0(1, t1)
(

GH0
3D(1; 2) δt1 |t22δ−x1|x2

)

Ḣ0(2, t2) (C.110)

The factor of two in the front is due to the miscibility gap. The Green’s function is defined
as GH0

3D(1; 2) ≡ G3D(x1, y1,H0(y1, t1);x2, y2,H0(y2, t2)). The other factor of two multiplying
the delta function δ−x1|x2

= δ(x1 + x2) inside the big parenthesis allows us to get rid of one
of the x-integrals (if H0 would be a function of x, too, it would not be needed). Let us show
this:

δRp2D[Ḣ0]

δḢ0(y, t)
=

4

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 δy|y1δt|t1
(

GH0
3D(1; 2) δt1 |t2δ−x1|x2

)

Ḣ0(2, t2)

+
4

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 Ḣ0(1, t1)
(

GH0
3D(1; 2) δt1 |t2δ−x1|x2

)

δy|y2δt|t2 (C.111)

=
8

M

∫

dx2

∫

dy2 G3D(−x2, y,H0(y, t);x2, y2,H0(y2, t))Ḣ0(y2, t) (C.112)

=
4

M

∫

dx2

∫

dy2 G3D(x, y,H0(y, t);x2, y2,H0(y2, t))Ḣ0(y2, t) . (C.113)

To obtain the Eq. (C.112) we have used the symmetry of the Green’s function. The last
equality is obtained by noticing that the single and double wall geometries are such that
G3D(x1, y1, z1;x2, y2, z2) is only dependent on the difference x1 − x2. In the last line we have
first made a change of variables (x2)new = 2(x2)old and substituted x as a dummy entry
for x1, which can always be transformed away. On the right hand side of the zeroeth order
equation of motion we have

F p2D[H0] ≡
∫

dy1

∫

dt1

∫

dy2

∫

dt2
1

2
H0(y1, t1)

(

−σ∂2
y1δy1|y2δt1 |t2

)

H0(y2, t2) . (C.114)

=

∫

dy1

∫

dt1
σ

2

(

∂y1H0(y1, t1)
)2

+ boundary terms . (C.115)

The boundary terms arise if the y-integrals have finite bounds. For example, for double wall
case they will be functions of H0(y = 0) = C0 and H0(y = L) = C0, and thus they do not
contribute to the variations with respect to H0(y, t). Taking variation of F p

2D[H0] with respect
to H0(y, t) and setting it equal to δRp

2D/δH0 given in Eq. (C.113), we get the following result:

∫

dx1

∫

dy1 G3D(x, y,H0(y, t);x1, y1,H0(y1, t)) ∂tH0(y1, t) =
Mσ

4
∂2
yH0(y, t) . (C.116)

We have thus reached our goal and been able to derive Eq. (C.100) using the variational
technique.

For future purposes, we also consider another possibility for the choice of dissipation and
free energy functionals, which in some sense requires less adjusting than the ones introduced
above. Namely, the new dissipation functional Rp2

2D[Ḣ0] is readily produced by dropping the

coupling terms from the functional R2D[Ḣ0, ḣ] given in Eq. (C.94):

Rp22D[Ḣ0] ≡
2

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 Ḣ0(1, t1)G
H0
3D(1; 2)δt1 |t2 Ḣ0(2, t2) . (C.117)
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Similarly, by leaving out the coupling terms from F2D[H0, h] given in Eq. (C.99), we straight-

forwardly obtain the following expression for the new free energy functional F p2
2D[H0]:

F p22D[H0] ≡
∫

dA1

∫

dt1

∫

dA2

∫

dt2
1

2
H0(1, t1)

(

−σ∇2 δx1|x2
δy1|y2δt1|t2

)

H0(2, t2) (C.118)

=

∫

dx1

∫

dy1

∫

dt1
σ

2

(

∂y1H0(y1, t1)
)2

. (C.119)

In the first line, ∇2 ≡ ∂2
x1

+ ∂2
y1 . Since H0 does not depend on the coordinate in the direction

of the solid wall, the x-integration just gives a trivial constant factor. It cancels against the
corresponding factor coming from the variational derivative of the dissipation functional when
forming the equation of motion. When taking the variations of these functionals according
to Eq. (C.108) we obtain the following equation of motion for the zeroeth order meniscus
solution:

∫

dx1

∫

dy1

∫

dx2

∫

dy2 G3D(x1, y1,H0(y1, t);x2, y2,H0(y2, t)) ∂tH0(y1, t)

=
Mσ

4

∫

dx1

∫

dy1 ∂
2
y1H0(y1, t) . (C.120)

Due to the smaller number of delta function constraints there will be two extra integrals
remaining on both sides of the final equation of motion as compared to Eq. (C.116). It
is easy to see that the solution of Eq. (C.116) is automatically the solution of Eq. (C.120)
as well, but not necessarily vice versa unless uniqueness can be proven by some means.
Moreover, when deriving the contact line profile of pure system using Rp2

2D (Eq. (C.117)) and

F p22D (Eq. (C.118)) it will be shown in Sect. C.12 that the solutions do not differ significantly
from the contact line profile derived using Rp

2D (Eq. (C.110)) and F p
2D (Eq. (C.114)) in the

limit of large wall separation where, roughly speaking, the effect of integration over x1 and y1

is just to produce the same constant on both sides of Eq. (C.120). Some further applications
of Eq. (C.120) can be found in droplet spreading problems, for example.

C.5.4 Random system

We will follow exactly the same procedure as we did in the previous section with the pure
system except that the coupling terms will not be dropped in the present case since they
are needed to reproduce Eq. (C.101). Actually, we could define Rr

2D[ḣ] ≡ R2D[Ḣ0, ḣ] and
F r2D[h] ≡ F2D[H0, h], but since it is futile to drag along the part of the functionals which
doesn’t contain any dependence on Ḣ0 or h, we redefine

Rr2D[ḣ] ≡ 2

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 δt1 |t2
{

ḣ(1, t1)G
H0
3D(1; 2) ḣ(2, t2)

+ 2ḣ(1, t1)
[

∂z1G
H0
3D(1; 2)h(1, t1) + ∂z2G

H0
3D(1; 2)h(2, t2)

]

Ḣ0(2, t2)
}

. (C.121)

In addition to dropping terms depending only on the zeroeth order solution Ḣ0, we have
linearized the Green’s function G3D to first order in h. Analogously to previous sections, we
have defined new two short-hand symbols for the derivatives of the Green’s function:

∂z1G
H0
3D(1; 2) ≡ ∂z1G3D(x1, y1, z1;x2, y2,H0(y2, t2))|H0(y1,t1) ; (C.122)

∂z2G
H0
3D(1; 2) ≡ ∂z2G3D(x1, y1,H0(y1, t1);x2, y2, z2)|H0(y2,t2) . (C.123)
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The variation with respect to ḣ is easily calculated:

δRr2D[ḣ]/δḣ(x, y, t) =

4

M

∫

dx2

∫

dy2

{

G3D(x, y,H0(y, t);x2, y2,H0(y2, t))ḣ(x2, y2, t)

+ ∂zG3D(x, y, z;x2, y2,H0(y2, t))|H0 h(x, y, t)Ḣ0(y2, t)

+ ∂z2G3D(x, y,H0(y, t);x2, y2, z2)|H0 h(x2, y2, t)Ḣ0(y2, t)
}

. (C.124)

On the third line the substitution |H0 ≡ |H0(y,t) and on the last line |H0 ≡ |H0(y2,t). The free

energy is constructed analogously. Contrary to construction ofRr
2D[ḣ], we can not use the full

functional given in Eq. (C.99) (with coupling term to H0) if we wish to reproduce the linearized
equation of motion (C.101). This shows that for fluctuations h it does matter whether one
linearizes after taking variation δH, or linearizes first the argument of the functional and then
takes variation δh. These operations are not commutative. To obtain the equation (C.101),
which we regard fundamental, we define

F r2D[h] ≡ 1

2

∫

dA1

∫

dt1

∫

dA2

∫

dt2 h(1, t1)
(

−σ∇2 δx1|x2
δy1|y2δt1|t2

)

h(2, t2) , (C.125)

where we have dropped the terms with no explicit dependence on h. Taking the functional
derivative yields

− δF r2D[h]

δh(x, y, t)
= σ∇2h(x, y, t) . (C.126)

As required by Eq. (C.109), setting Eq. (C.126) equal to Eq. (C.124) gives Eq. (C.101), which
describes the dynamics of the fluctuations h.

C.6 3D Green’s function for two walls

Some representations of the 3D Green function arising from the inversion of the Laplacian in
the restricted domain between two vertical walls will be derived in this section. We should
satisfy

−∇2G2W
3D (r; r1) = δ(r − r1) (C.127)

with the homogeneous boundary data (r = (x, y, z))

{

∂yG
2W
3D (r; r1)|0 = ∂yG

2W
3D (r; r1)|L = 0 .

G2W
3D (x, y, 0;x1, y1, z1) = 0 .

(C.128)

The first condition guarantees that there will be no mass flux across the solid-fluid interfaces
situated at y = 0 and y = L. The second establishes the coupling to the reservoir at z = 0. In
the numerical simulation there is actually a little bit of leakage through the walls especially
in the neighbourhood of the contact line, but all in all the no-flux condition is satisfied rather
well even though it hasn’t been imposed as a strict condition in the simulation. One should
also keep in mind that using von Neumann boundary condition at the vertical walls doesn’t
restrict in any way the choice of boundary conditions for the meniscus H. This point is
discussed more thoroughly in Sect. C.10.
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Using the cosine decomposition in the y-direction to satisfy the no-flux condition of
Eq. (C.128) we can write the Green function in the following form:

G2W
3D (r; r1) =

1

L

∞∑

n=−∞
cos(nπy/L) cos(nπy1/L) fn(x, z;x1, z1) . (C.129)

Separation of the zero component of the series turns out to be useful in making a connection
with the 2D imbibition results.

G2W
3D (r; r1) = f0(x, z;x1, z1) +

2

L

∞∑

n=1

cos(nπy/L) cos(nπy1/L) fn(x, z;x1, z1) . (C.130)

It will be shown later (Eq. (C.135)) that fn = f−n which allows us to change the summation
limit as compared to Eq. (C.129). The coefficient functions f0 and fn (n ≥ 1) satisfy

−
(

∂2
x + ∂2

z

)

f0(x, z;x1, z1) =
1

L
δ(x − x1)δ(z − z1) ; (C.131)

[

−
(

∂2
x + ∂2

z

)

+ (nπ/L)2
]

fn(x, z;x1, z1) = δ(x − x1)δ(z − z1) . (C.132)

Note the chosen normalization factors in front of the delta functions for f0. Using the defi-
nitions of fn and the representation of the delta function,

∞∑

n=1

cos(nπy/L) cos(nπy1/L) = (L/2) δ(y − y1) − 1/2 , (C.133)

it is easy to check by direct differentiation that G2W
3D indeed is a solution of Eq. (C.127).

Solution to Eq. (C.131) which respects the condition f0 = 0 at the plane z = 0 is simply
related to the Green function appearing in 2D imbibition problem [4]:

f0 =
1

L

1

4π
ln

[

(x− x1)
2 + (z − z1)

2

(x− x1)2 + (z + z1)2

]

=
1

L
GI2D(x, z;x1, z1) . (C.134)

Eq. (C.132) is also simple to solve by going over to the Fourier space. For n ≥ 1 we define
first,

f̃n(x, z) ≡
1

(2π)2

∫

dkx

∫

dkz
e−ıkxxe−ıkzz

k2
x + (πn/L)2 + k2

z

. (C.135)

This function does not respect the boundary condition fn = 0 at z = 0 whereas

fn(x, z;x1, z1) = f̃n(x− x1, z − z1) − f̃n(x− x1, z + z1) , (C.136)

does fulfil it. Other representations can be obtained by working out the integrals. In terms of
the modified Bessel function of zeroeth orderK0, f̃n = K0((πn/L)∆r), where ∆r ≡

√
x2 + z2.

To see the limiting values of G2W
3D for large wall separation L it is more convenient to stick to

the integral representation of f̃n. The same applies to the summation over n, which can be
performed by changing the integration path to run over the imaginary axis in Eq. (C.135).
However, the integration over both kx and kz cannot be done anymore in closed form in this
case.
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Next, we will study the limiting behaviour (L → ∞) of the Green’s function, which for
convenience is divided into two parts based on the results derived above.

G2W
3D (r; r1) =

1

L
GI2D(x, z;x1, z1) +GS3D(r; r1) , (C.137)

where GI2D has been defined in Eq. (C.134), and GS
3D represents the series contribution to

the full Green function:

GS3D(r; r1) ≡
2

L

∞∑

n=1

cos(nπy/L) cos(nπy1/L) fn(x, z;x1, z1) . (C.138)

In the limit L → ∞ the first term of Eq. (C.137) vanishes and the only the series part
contributes. The product of the cosine terms is represented as a sum of two terms,

cos(nπy/L) cos(nπy1/L) =
1

2
[cos(nπ(y + y1)/L) + cos(nπ(y − y1)/L)] . (C.139)

The full series is split accordingly: GS
3D = GS+

3D +GS−3D , where

GS±3D ≡ 1

(2π)2
1

L

∞∑

n=1

cos(nπ(y ± y1)/L)

(
∫

dkx

∫

dkz
e−ıkx(x−x1)e−ıkz(z−z1)

k2
x + (πn/L)2 + k2

z

−
∫

dkx

∫

dkz
e−ıkx(x−x1)e−ıkz(z+z1)

k2
x + (πn/L)2 + k2

z

)

. (C.140)

The standard limiting procedure to convert sums to integrals will be used. Let L be the
number of grid points and a is the length of the integration interval: ∆x ≡ a/L. Then,

lim
L→∞

a/∆x
∑

n=0

∆x g(n∆x) →
∫ a

0
dx g(x) . (C.141)

Using the parameters of GS
3D we identify ∆ky = π/L. The upper limit of integration will be

infinity. Going to the limit gives

lim
L→∞

GS±3D → 1

(2π)2
1

π

∫ ∞

0
dky cos(ky(y ± y1))

(
∫

dkx

∫

dkz
e−ıkx(x−x1)e−ıkz(z−z1)

k2
x + k2

y + k2
z

−
∫

dkx

∫

dkz
e−ıkx(x−x1)e−ıkz(z+z1)

k2
x + k2

y + k2
z

)

. (C.142)

The cosine function in the previous equation is traded for an exponential with lower integra-
tion limit switched from 0 to −∞:

∫ ∞

0
dky cos(kyy) g(k

2
y) =

1

2

∫ ∞

−∞
dky e

ıkyy g(k2
y) . (C.143)

Substituting Eq. (C.143) into Eq. (C.142) shows that limL→∞GS±3D → G±
3D, where the func-

tions G±
3D have been defined in real space through Eq. (C.210). Specifically,

lim
L→∞

GS±3D → 1

(2π)3

∫

dkx

∫

dky

∫

dkz

(

e−ıkx(x−x1)e−ıky(y±y1)e−ıkz(z−z1)

k2
x + k2

y + k2
z

−e
−ıkx(x−x1)e−ıky(y±y1)e−ıkz(z+z1)

k2
x + k2

y + k2
z

)

(C.144)
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Indeed, the equivalence to the real space result is immediately seen by performing the inte-
grations in spherical coordinate system. The result is

1

(2π)3

∫

dk e−ık·r
1

k2
=

1

4πr
, (C.145)

where r ≡
√

x2 + y2 + z2. There are altogether four similar terms in the expression of
limL→∞GS3D due to distinct combinations of (y± y1) with (z± z1). These correspond to the
four point charges of the Green’s function for one wall:

lim
L→∞

GS3D → G−
3D +G+

3D = G1W
3D . (C.146)

Thus, for infinite plate distance L the Green’s function of two walls reduces to that of the
one wall case.

C.7 Boundary conditions of µ and H

As pointed out in Sect. C.6, the boundary value problem for G2W
3D obeys either von Neumann

or Dirichlet boundary conditions at the solid walls (the boundary condition at reservoir
plane z = 0 is of Dirichlet form in all our calculations). Which one we are going to choose
is determined by the boundary conditions of the chemical potential µ, because G2W

3D results
from the inversion of the Laplacian operating on µ. Setting the boundary condition of the
meniscus H is does not depend on what kind of boundary condition the chemical potential
satisfies. These two issues are unrelated as far as we can think of the project equation of
motion of the meniscus to be independent, though consistent, of the bulk equation of motion
containing µ. Of course, there is a preferred choice for the boundary condition of the meniscus
given that of the chemical potential. These choices are discussed in the subsequent sections.
First, in Sect. C.7.1 we show how utilize the total mass (or volume V (t), which is easily
determined either from experiment or simulation) of fluid flown into the system at time t to
fix the dynamic contact angle θ(t). The dynamic contact angle then acts as von Neumann
boundary condition for the zeroeth order meniscus profile H0 producing a non-zero curvature
for the fluid front.

In Sect. C.7.2 the boundary condition of the chemical potential is chosen to be the non-
homogeneous Dirichlet condition instead of the homogeneous von Neumann condition. Both
of these conditions have to be compatible with each other such that they give rise to the
same chemical potential distribution within the restricted domain of the fluid phase. It is
important to note that we are not overdetermining the boundary value problem ∂tφ = M∇2µ
for µ by requiring that µ should satisfy both von Neumann and Dirichlet conditions at
the solid walls confining the restricted domain of the fluid with given boundary data. The
boundary data is not given at the edges of the restricted domain (it is only given at the
outermost boundary of the simulation box including the solid walls) but it has to be found
self-consistently. We propose only some approximations for self-consistent boundary data in
Sect. C.7.1 (∂yµ|0 = ∂yµ|L = 0) and in Sect. C.7.2 (µ|0 = µ|L = σ/R). Finally, in Sect. C.7.3
we discuss the boundary conditions of the fluctuation correction h.
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C.7.1 Experimentally fixed boundary condition

The physical requirement of no mass flux through the solid walls gives rise to homogeneous
von Neumann boundary conditions for the chemical potential:

∇nµ|0 = ∇nµ|L = 0 . (C.147)

The Green’s function, which is going to be used in Green’s boundary term Λ, satisfies homo-
geneous boundary conditions by construction:

−∇2G2W
3D (r; r1) = δ(r − r1) ;

{

∂yG
2W
3D (r; r1)|y=0 = ∂yG

2W
3D (r; r1)|y=L = 0 .

G2W
3D (r; r1)|z=0 = 0 .

(C.148)

When projecting the meniscus equation of motion no Green’s surface term Λ (Eq. (C.51))
will appear due to the homogeneity of the boundary conditions of the chemical potential. In
other words, Eq. (C.63) reads now

IA =
Mσ

4
∂2
yH0 . (C.149)

We notice immediately that with Dirichlet boundary condition for H0, that is, by fixing
the height of the contact line H0(y = 0) = H0(y = L) = C0, the meniscus will become
planer (H0(y) = C0) after the mean position H0 has equilibrated in a non-driven system (no
chemical potential gradient at the reservoir boundary). This is easy to see from Eq. (C.149):
IA ∝ ∂tH0 = 0, and therefore ∂2

yH0 = 0 if H0 satisfies the Dirichlet boundary conditions. If we
want to generate a contact angle, which is different from θ = π/2, for both moving and stopped
meniscus position H0, we have to put in the (dynamic) contact angle by hand and impose
the following von Neumann boundary condition: ∂yH0|0 = −∂yH0|L = tan(θ(t)). Obviously
this condition makes the meniscus H0 curved even in equilibrium where θ(t) = θeq, where
the equilibrium contact angle θeq is set by the surface tensions [262]. Under non-equilibrium
conditions one possible way of fixing the dynamic contact angle θ(t) is to experimentally
measure the volumetric intake of liquid V(t) and the time dependent position of the contact
line C0. Supposing the real meniscus shape is parametrized by the contact line height C0(t)
and curvature K(t), H0 ≈ C0(t)−K(t)Ly+K(t)y2, we can relate the experimental parameters
to our boundary condition via

V (t) = Lx

∫ Ly

0
dy H0(y, t) , (C.150)

where Lx is the spatial extent in x-direction and Ly is the separation of the plates in y-
direction (usually denoted just as L). It follows from Eq. (C.150) that K(t) = 6[LxLyC0(t)−
V (t)]/(LxL

3
y). On the other hand, it is easy to find the relation between the curvature K(t)

and θ(t).

C.7.2 Self-consistently fixed boundary condition

Choosing to use nonhomogeneous Dirichlet boundary condition for the chemical potential
saves us from putting in by hand the curvature by fixing the derivatives of H0 at y = 0, L.
Instead of Eq. (C.147) we now set:

µ(x, 0, z) = f1(x, z) ; µ(x,L, z) = f2(x, z) , (C.151)
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where f1 and f2 are values of the chemical potential at the wall which should be found
self-consistently. They will give rise to non-zero Green’s boundary term Λ̃ in the meniscus
equation of motion. The Green function G̃2W

3D is determined by homogeneous boundary

conditions as before. Thus, the problem is to find G̃2W
3D such that

−∇2G̃2W
3D (r; r1) = δ(r − r1) ;

{

G̃2W
3D (r; r1)|y=0 = G̃2W

3D (r; r1)|y=L = 0 .

G̃2W
3D (r; r1)|z=0 = 0 .

(C.152)

There will be a non-zero curvature created for the meniscus H0 even when it doesn’t move.
In the previous case with von Neumann boundary conditions for the chemical potential
and Dirichlet boundary conditions for the meniscus H0, the meniscus will be straight H0 =
C0 in equilibrium since IA ∝ ∂tH0 = 0 and Eq. (C.149) tells us that ∂2

yH0 = 0 ⇒ H0 =
constant. However, if we choose nonhomogeneous Dirichlet boundary conditions for the
chemical potential at the walls, the Green’s boundary term will be non-zero. Even when
∂tH0 = 0 (IA = 0) we get from Eq. (8.64) that

σ

4
∂2
yH0 + Λ̃H0 = 0 . (C.153)

Clearly, the term Λ̃H0 acts as (time dependent) curvature. It should be remembered thought
that the price we pay for automatic generation of curvature through Λ̃H0 is the self-consistent
determination of the boundary data f1 and f2 (if both walls have identical wetting properties,
then f1 = f2). As a first approximation we can just assume that µ|0 = µ|L = σ/R where R
is related to the separation of the walls and equilibrium contact angle through Young’s law.

C.7.3 Boundary conditions for fluctuations

Choosing boundary conditions for the chemical potential (G2W
3D ) and for the zeroeth order

meniscus position H0 is one thing, choosing them for the fluctuations h of the meniscus is
another. Assume that we know now the 3D Green function and the zeroeth order meniscus
configuration H0 which is a solution of either Eq. (C.149) or Eq. (C.153) depending on the
choice of the boundary conditions for µ. Leaving aside the extra complications arising from
expanding Λ̃ to first order in the fluctuations h around H0, we can proceed to study the
dynamics of the fluctuations in a unified manner irrespective of whether we want to use
Dirichlet or von Neumann boundary data for h. Choosing the latter means that we have to
provide the local contact angles α(x, t) as the boundary data. The former choice means that
we have to feed in the contact line profile c(x, t) as the boundary data. In both cases the
boundary condition is unknown to begin with, and has to be derived self-consistently. Notice,
that in both cases the boundary data is time dependent which excludes, strictly speaking,
the use of local equilibrium values as boundary conditions. The starting point will be the
projected equation of motion for fluctuations (Eq. (C.101)):

IB [h] + IC [h] + ID[h] = −M
4

δF2D[h]

δh
. (C.154)

In case we want to derive the von Neumann boundary data self consistently for the fluctua-
tions, we should substitute in Eq. (C.154) h as functional of the local contact angles h = h[α]
as given by Eq. (8.71). To derive the Dirichlet boundary data self consistently one substitutes
into Eq. (C.154) h = h[c] given by Eq. (8.72). The latter method is studied in more detail in
Sect. C.13.
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C.8 Small curvature expansion

Let us define what is meant by the small curvature approximation. When deriving explicit
representation of the terms IB, IC and ID below, we make use of the following approximations:
{

C0(t) � K(t) (y − L/2)2 , for all y ∈ [−L/2, L/2] ⇒ K � 4 C0/L
2 ;

∂tC0(t) � ∂tK(t) (y − L/2)2 , for all y ∈ [−L/2, L/2] ⇒ ∂tK � 4 ∂tC0/L
2 .

(C.155)

The same conditions for the curvature and its time derivative arise if we require y to lie inside
the interval [0, L] instead of [−L/2, L/2]. It will be shown below that satisfying these criteria
naturally leads to the definition of the dimensionless expansion parameter which characterizes
the deviation from the flat meniscus configuration:

ε ≡ KL2/C0 . (C.156)

In other words, small curvature K implies small ε. It should be also be noted that the
magnitude of ε becomes smaller and smaller in the course of time since the meniscus is
rising up and thus C0(t) becomes larger. In the non-driven case macroscopic movement of
the meniscus necessitates finite (small) curvature. Most of the formulae to be derived below
make use of the local limit C0|k| � 1 which gives us an upper limit for curvature

K � 1/C0 . (C.157)

The derivation of this condition is given in Sect. C.11.4. Basically, it derives from the require-
ment that ID � IB + IC . When this inequality is satisfied, the diffusive meniscus solution,
to be introduced later, is valid.

To obtain finite curvature corrections to the equations of motion of the meniscus and
the contact line, we need to consider two kinds of expansions in ε. First, in Sect. C.11.2
we will show that the fluctuations of the meniscus are expandable using a so-called memory
expansion which gives rise to an nth order approximation h(n) of the full solution h:

h =
∞∑

n=0

εnhn (C.158)

where the nth correction term hn is expressible in terms of the correction terms hm with index
m < n. The series representation does always have at least asymptotic relevance. Second,
the Green’s functions appearing in the expressions IB, IC and ID must be expanded, too.
Their dependence on ε derives from the the fact that the zeroeth order profile H0 is a function
of ε.

In Sect. C.8.3 we demonstrate that there are some fundamental problems in trying to
develop a consistent approximation scheme which allows a unified perturbative treatment of
both meniscus and contact line equations. Moreover, a second small parameter has to be
introduced if the initial height of the meniscus is non-zero and we wish to use the quasi-
stationary approximation to be introduced in Sect. C.11.1. This complicates things further
as discussed below. To avoid these problems we present another approach in Sect. C.8.3,
which allows explicit computation of relevant quantities.

C.8.1 Scaling

In order to use perturbation theory, we need to know how the zeroeth order meniscus and
contact line solutions along with the curvature scale in terms of the expansion parameter
ε. First we consider the case of zero initial height of the contact line, ci = 0. Later on we
generalize some of the results for ci > 0.
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Zero initial height

Let us assume that the initial height of the contact line ci = 0 and that the Washburn’s
growth law is obeyed at all times. The equation of motion (C.100) for the contact line height
in a pure system reads

IA ≈ u ∂tH0 H0 = (Mσ/4) ∂2
yH0 ⇒ u ∂tC0 C0 = MσK/2 , (C.159)

where the precise value of the constant u depends on the way we approximate the term
term IA. More details can be found in App. C.12. In the derivation of Eq. (C.159) we have
utilized the ansatz, H0 = C0 −KLy+Ky2, which fixes the meniscus to parabolic shape with
H0(0, t) = H0(L, t) = C0(t). The numerical constant u derives from the term IA. Dropping the
time derivative of the curvature will be justified based on scaling arguments below. Solution
of Eq. (C.159) is the Washburn’s law for C0:

C0(t) =
√

MσKt/u . (C.160)

Since ε = KL2/C0 ⇒ ε2 = K2L4/C2
0 = KL4u/(Mσt) by Eq. (C.160). Solving for K, we get

K = Mσtε2/(uL4). Substitution of K(ε) into Eq. (C.160) yields C0 = Mσtε/(uL2). Thus,
we see that until the cross over time

t∗ ≡
uL2

Mσ
, (C.161)

the contact line height C0 = O(ε) and K = O(ε2). The definition of t∗ given above guarantees
that when ever t ≤ t∗ the prefactor multiplying ε in the expression of C0 is always less than
or equal to unity: Mσt/(uL2) ≤ 1. Without this restriction, for times as large as t ∼ 1/ε
the contact line height C0 would not be a small number any more. As what comes to the
smallness of the curvature, the value of K saturates pretty fast to a value which is rather
close to its equilibrium value fixed by the surface tensions. By choosing the surface tensions
properly, K can be made arbitrarily small and the time restriction t ≤ t∗ is really not needed
to keep it that way.

Let us now express the rest of the quantities in terms of ε. Substitution of C0(ε) and K(ε)
into the expression of H0 gives

H0 = C0 +K(y2 − Ly) = C0

(

1 +
KL2

C0

[

y2

L2
− y

L

])

=
Mσt

uL2
ε

(

1 + ε

[

y2

L2
− y

L

])

. (C.162)

The average velocity of the contact line is ∂tC0 = (1/2)(MσK/u)1/2t−1/2. Multiplication and
division by (MσK/u)1/2 yields ∂tC0 = (1/2)(MσK/u) C

−1
0 . Finally, multiplying and dividing

by KL2 we get ∂tC0 = Mσε/(2uL2). Thus, the velocity is of first order in ε. Treating the
curvature constant we get the following dependence on ε







H0 =
Mσt

uL2
ε

(

1 + ε

[

y2

L2
− y

L

])

.

C0 =
Mσt

uL2
ε .

K =
Mσt

uL4
ε2 .







∂tH0 = ∂tC0 .

∂tC0 =
Mσ

2uL2
ε .

∂tK = 0 .

(C.163)
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It should be noted that in the constant curvature approximation K, as given by the relation
on the bottom left, is truly independent of time.

Next, we show that even if we include the time dependence of the curvature only higher
order corrections will be generated. If K = K(t) the solution of Eq. (C.159) becomes C0 =
((Mσ/u)

∫ t
0 dsK(s))1/2. By carrying out differentiation of this expression with respect to

time it is easy to show that the velocity of the contact line is still of first order in ε: ∂tC0 =
Mσε/(2uL2). Assume now that K(t) is a monotonously growing function of t, which is always
less than tζ with ζ < 1. Then ∂tK → 0 for t→ ∞. We get

C0∂tC0 =
Mσ

2u

∫ t

0
ds ∂sK(s) ≥ Mσ

2u
t ∂tK(t) ⇒ ∂tK(t) ≤ 2u

Mσt
C0 ∂tC0 . (C.164)

It is easy to convince oneself of the first inequality by comparing the area bounded by the
curve tζ (that is,

∫ t
0 ds s

ζ) with the area t ∂tK(t) of a rectangular box whose side lengths are
t and ∂tK(t). Since the final inequality in Eq. (C.164) contains C0, which on the other hand
is defined thorough the integral over K(s), it is not directly usable. Let us make use of the
upper limit of C0:

C0 =

√
(
Mσ

4

∫ t

0
dsK(s)

)

≤
√
(
Mσ

4
tK(t)

)

⇒ ∂tK(t) ≤ 2u

Mσt

√
(
Mσt

u
K(t)

)

∂tC0 .

(C.165)
The first inequality can be seen to hold by comparing the area

∫ t
0 dsK(s) with the area of

the rectangular box, tK(t): the latter is always larger. Substitution of the upper limit of C0

into to Eq. (C.164) yields the final inequality in Eq. (C.165). The remaining task is to find
an upper limit for K(t). This is readily found in terms of the upper limit of C0:

K(t) =
εC0

L2
⇒ K(t)2 =

ε2C2
0

L4
≤ ε2MσtK(t)

uL4
⇒ K(t) ≤ ε2Mσt

uL4
. (C.166)

Finally, substitution the upper limit forK(t) defined in the previous equation into Eq. (C.165)
gives the upper limit of the ∂tK(t):

∂tK(t) ≤ 2u

Mσt

√
(
Mσt

u

ε2Mσt

uL4

)

∂tC0 =
2ε

L2
∂tC0 =

Mσ

uL4
ε2 . (C.167)

Thus, we conclude that when the curvature is time dependent, its time rate of change will be
at least of order ε2. Therefore, even for K = K(t), we can approximate ∂tH0 = ∂tC0 + O(ε2).
For K = K(t) Eq. (C.163) becomes







∂tH0 = ∂tC0 + O(ε2) .

∂tC0 =
Mσ

2uL2
ε .

∂tK = O(ε2) .

(C.168)

In addition it is easy to show that K(t) = O(ε2). Use the definition of ε to write ε2 =
K(t)2L4/C0(t)

2 and replace C0(t) = ((Mσ/u)
∫ t
0 dsK(s))1/2. Since the integral is bounded by

∫ t
0 dsK(s) ≤ K(t)t we obtain immediately that K(t) ≤ ε2Mσt/(uL4).
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Non-zero initial height

The initial height of the contact line ci > 0. Washburn’s diffusive behaviour becomes visible
clearly only for times sufficiently large, which is evident from the solution of the contact line
equation

C0 =

√

MσKt

u
+ c2i . (C.169)

We only consider a constant curvature in this section. We could actually define ci to be the
height of the contact line at which the curvature can be said to have reached a constant value.
As before, we can solve the dependence of the curvature on the expansion parameter from
the definition ε = KL2/C0(K). Squaring both sides gives ε2(MσKt/u+ c2i ) = K2L4. Thus,

K =
ε2Mσt

2uL4
+

ε

L2

√

c2i +

(
εMσt

2uL2

)2

. (C.170)

Only the root of with positive root can be accepted because convex meniscus remains convex,
similarly for concave meniscus. To lowest order in ε,

K −→







Mσt

uL4
ε2 , ci = 0.

ci
L2
ε+ O(ε2) , ci > 0 .

(C.171)

The latter results sets a lower bound for ε: c2i � (εMσt/(2uL2))2. It should be noted that
if any truncated expansion is used to define the curvature, K will become dependent on t
although we initially assumed K to be a constant. The assumption of constancy only holds
if the exact form given in Eq. (C.170) is used. Substitution of the expression of K back into
Eq. (C.169) allows us to obtain the ε-dependence of C0:

C0 =

√

Mσt

u

(
ciε

L2
+ O(ε2)

)

+ c2i = ci +
Mσt

2uL2
ε+ O(ε2) . (C.172)

In other words, when ci = 0 and t < t∗, C0 = O(ε) and K = O(ε2). When ci > 0, C0 = O(1)
andK = O(ε). Hence, curvature terms are always of higher order in the expansion parameter.

C.8.2 Perturbative approach

The linearized meniscus equation is solved order by order matching the powers of ε emerging
from the expansion of the zeroeth order solution H0 contained in the Green’s functions, and
the fluctuation correction h. We can write

IB =

∫ ∞

−∞
dx1

∫ L

0
dy1

[ ∞∑

n=0

εn

n!
(∂nε GB)|0

] [ ∞∑

m=0

εmhm

]

Mσ

2uL2
ε ; (C.173)

IC =

∫ ∞

−∞
dx1

∫ L

0
dy1

[ ∞∑

n=0

εn

n!
(∂nε GC)|0

] [ ∞∑

m=0

εmhm

]

Mσ

2uL2
ε ; (C.174)

ID =

∫ ∞

−∞
dx1

∫ L

0
dy1

[ ∞∑

n=0

εn

n!
(∂nε GD)|0

] [ ∞∑

m=0

εm∂thm

]

. (C.175)
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The factor Mσε/(2uL2) in IB and IC comes from the approximation ∂tH0 ≈ ∂tC0, as we
assume a constant curvature for simplicity. The short-hand notation

GB(ε) ≡ ∂zG
2W
3D (x, y, z;x1, y1,H0(ε))|H0(ε) ; (C.176)

GC(ε) ≡ ∂z1G
2W
3D (x, y,H0(ε);x1, y1, z1)|H0(ε) ; (C.177)

GD(ε) ≡ G2W
3D (x, y,H0(ε);x1, y1,H0(ε)) . (C.178)

Based on the previous sections, we know that when the initial height ci = 0 and ε = 0
(corresponding to zero curvature for a finite system at finite time), the meniscus does not
move. Equivalently, H0 = C0 = 0, ∂tH0 = ∂tC0 = 0. Yet, there will be motion associated with
the relaxation of the fluctuations h. Therefore some non-zero contribution to the left hand
side of the equation of motion of the fluctuations of the meniscus is generated by terms IB ,
IC and ID.

Hierarchy of perturbative solutions with ci = 0

We will now evaluate some of the lowest order derivatives of the Green’s functions defined
in Eq. (C.176) - Eq. (C.178) at ε = 0 assuming that this is permissible to differentiate the
Fourier series representation of GA, GB and GC with respect to ε before carrying out the
integrals over x1 and y1. Moreover, we set ci = 0 and require that there is no driving chemical
potential gradient at the reservoir boundary. The evaluation of the perturbation expansion
begins with the term (GB)|0 = ∂zG

I
2D|0 + ∂zG

S
3D|0, where GS3D = GS+

3D + GS−3D , as shown in
Eq. (C.140). Since GI

2D is n = 0 term appearing in the expression of GS
3D, it suffices to study

the latter. We have

∂zG
S±
3D =

1

(2π)2
1

L

∞∑

n=1

cos(nπ(y ± y1)/L)

(
∫

dkx

∫

dkz
e−ıkx(x−x1)e−ıkz(z−z1)(−ıkz)

k2
x + (πn/L)2 + k2

z

−
∫

dkx

∫

dkz
e−ıkx(x−x1)e−ıkz(z+z1)(−ıkz)

k2
x + (πn/L)2 + k2

z

)

. (C.179)

Setting z = z1 = H0(ε = 0) = 0 the integrals vanish since an odd function is integrated over
an even interval. Thus, ∂zG

S±
3D |0 = 0, ∂zG

I
2D|0 = 0 and (GB)|0 = 0. The only difference

between (GB)|0 and (GC)|0 is that the differentiation is with respect to z1 for the latter.
Using expression on the right hand side of Eq. (C.179) it is easy to see that for the same
reason (oddness of integrand) (GC)|0 = 0. Obviously, (GD)|0 = 0 as can be seen right away
from Eq. (C.179) by leaving out the differentiation with respect to z.

Next order in derivatives of ε requires some more computation. Using the chain rule
we obtain (∂εGB)|0 = ∂zGB |0 ∂εz|0 + ∂z1GB |0 ∂εz1|0. It is understood that z = H0(y, t) and
z1 = H0(y1, t). Explicitly,

∂z

∂ε

∣
∣
∣
∣
0

=
∂H0(y, t)

∂ε

∣
∣
∣
∣
0

=
∂

∂ε

[

C0(ε) +K(ε)(y2 − yL)
]
∣
∣
∣
∣
0

=
∂C0

∂ε

∣
∣
∣
∣
0

=
Mσt

uL2
. (C.180)

Hence, we get ∂εz|0 = ∂εz1|0 = Mσt/(uL2). Expressing GB in terms of the derivatives of
G2W

3D , we get

(∂εGB)|0 =
(

∂zGB |0 + ∂z1GB |0
)Mσt

uL2
=
(

∂2
zG

2W
3D |0 + ∂2

zz1G
2W
3D |0

)Mσt

uL2
(C.181)
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The first term on the right hand side of the previous equation can be split as ∂ 2
zG

2W
3D |0 =

∂2
zG

I
2D|0 + ∂2

zG
S
3D|0. By a straightforward calculation, ∂2

zG
I
2D|0 = 0. The constituents of the

second term behave as

∂2
zG

S±
3D

∣
∣
∣
0

=
1

(2π)2
1

L

∞∑

n=1

cos(nπ(y ± y1)/L)

(
∫

dkx

∫

dkz
e−ıkx(x−x1)(−ıkz)2
k2
x + (πn/L)2 + k2

z

−
∫

dkx

∫

dkz
e−ıkx(x−x1)(−ıkz)2
k2
x + (πn/L)2 + k2

z

)

= 0 . (C.182)

Thus, ∂2
zG

2W
3D |0 = 0. We should be careful, though, as differentiation of the Fourier series

representation of GS±
3D termwise becomes more and more divergent as can be seen by the

increasing power of factors (ıkz) in the numerator of the integral expression in Eq. (C.182).
Keeping this in mind, what about the second term ∂2

zz1G
2W
3D |0? It turns out to be non-zero,

which can be easily confirmed by noticing that since the derivatives are taken with respect
to z and z1, in the numerator of the first fraction of the previous equation we will have
(−ıkz)(+ıkz) instead of (−ık2

z). Similarly, in the numerator of the second fraction there will
be a factor (−ıkz)2 as in Eq. (C.182). Therefore, when the two fractions are subtracted we
get a non-zero result:

∂2
zz1G

S±
3D

∣
∣
∣
0

=
2

(2π)2
1

L

∞∑

n=1

cos(nπ(y ± y1)/L)

∫

dkx

∫

dkz
e−ıkx(x−x1)k2

z

k2
x + (πn/L)2 + k2

z

(C.183)

Therefore, (∂εGB)|0 6= 0. Using similar arguments, it is easy to convince oneself that (∂εGC)|0
will also be something non-zero. Because (∂εGD)|0 = (GB)|0 ∂εz|0 + (GC)|0 ∂εz1|0, and
(GB)|0 = (GC)|0 = 0, it also follows that (∂εGD)|0 = 0. The first non-zero contribution in
the expansion of GD comes from the term (∂2

εGD)|0. The non-zero contribution comes from
terms like ∂2

zz1G
2W
3D which we have already shown to be non-zero. To summarize, termwise

evaluation of the Taylor series leads to the vanishing of the lowest order contributions in ε
assuming that it is allowed to differentiate the series representation of GS±

3D with respect to ε:

{

(GB)|0 = (GC)|0 = (GD)|0 = (∂εGD)|0 = 0 ;
(∂εGB)|0 , (∂εGC)|0 , (∂2

εGD)|0 6= 0 .
(C.184)

As will be shown below the assumption of non-zero initial height will make all of these terms
non-zero. Lower order non-zero contributions will also result if one changes the boundary
condition of the chemical potential from µ = 0 to ∂nµ = F , where F is the mass flux driven
into the system.

It is now time to sum up the contributions of equal order in ε coming from terms IB ,
IC and ID and match them with the corresponding power on the right hand side of the
equation of motion of the fluctuations of the meniscus, which contains the term (Mσ/4)∇2h =
(Mσ/4)∇2∑∞

n=0 ε
nhn. The equation of motion can be rewritten as

IB + IC =
Mσ

4
∇2h− ID . (C.185)

We moved the term ID to the right since it is not proportional to ∂tC0 ∝ ε in the current
expansion scheme. As we will see, even though the summation over powers of ε goes from 0
to ∞ on the left and from 1 to ∞ on the right, the possibility of some of the derivatives of
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the Green’s functions being zero, makes the matching of powers of ε a bit more challenging.
We have

IB + IC =
∞∑

n=0

εn+1

{

Mσ

2uL2

∫ ∞

−∞
dx1

∫ L

0
dy1

n∑

k=0

[

G
(k)
B hn−k(x, y, t) +G

(k)
C hn−k(x1, y1, t)

]
}

; (C.186)

(Mσ/4)∇2h− ID =

∞∑

n=0

εn
{

Mσ

4
∇2hn −

∫ ∞

−∞
dx1

∫ L

0
dy1

n∑

k=0

G
(k)
D ∂thn−k(x1, y1, t)

}

, (C.187)

where G
(k)
B,C ≡ (1/k!) ∂kεGB,C(x, y,H0(y, t);x1, y1,H0(y1, t))|0. Dimensionless position and

time arguments do not generate any powers of ε in the equation above, so we continue
to use dimensionfull arguments. At zeroeth order in ε we get just

Mσ

4
∇2h0 −

∫ ∞

−∞
dx1

∫ L

0
dy1G

(0)
D ∂th0(x1, y1, t) = 0 . (C.188)

Since G
(0)
D = 0, this equation reduces to ∇2h0 = 0 corresponding to the quasi-stationary

approximation discussed in Sect. C.11.1. If the result of termwise differentiation leading to
Eq. (C.184) is to be trusted, the next nontrivial contribution will be of O(ε2) given that we
fix the boundary condition as h0(x, 0, t) = c(x, t), and hn(x, 0, t) = 0 for n ≥ 1. The choice
of the boundary conditions will be discussed more thoroughly in Sect. C.8.3.

Hierarchy of perturbative solutions with ci > 0

Let us see now, how the perturbation expansion is modified, if the initial height of the contact
line is taken to be positive: ci > 0. Again, we assume that the curvature has reached its
steady state value so we can neglect the time derivative ∂tK. As before, ∂tH0 ≈ ∂tC0 ∝ ε.
Eq. (C.180) has to be modified since now there will be extra contribution to ∂tH0 due to
ci: ∂εz|0 = ∂εz1|0 = Mσt/(uL2) + ci/L

2(y2 − yL). Also, the lowest order derivatives of the
Green’s functions with respect to ε will not be zero anymore. At order n = 0, Eq. (C.186)
and Eq. (C.187) reduce to

Mσ

4
∇2h0 −

∫ ∞

−∞
dx1

∫ L

0
dy1G

(0)
D (ci) ∂th0(x1, y1, t) = 0 , (C.189)

where G
(0)
D (ci) ≡ G2W

3D (x, y, ci;x1, y1, ci) 6= 0. As will be shown in Sect. C.10.5, the Fourier
transformation of the previous equation gives ∂th(k, t) = σ̃k2h(k, t) for ci|k| � 1. The
renormalized surface tension σ̃ ≡ Mσ/(4ci). Thus, for long wave-lengths the first equation
of the perturbation series behaves like a diffusion equation, and it is possible to write the
solution of Eq. (C.189) in the form h0 ≈ L̂−1

0 c, where we have defined

L̂0 ≡ Mσ

4
∇2 −

∫ ∞

−∞
dx1

∫ L

0
dy1G

(0)
D (ci) ∂t ≈

Mσ

4
∇2 − ci∂t (C.190)
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The boundary condition h(x, 0, t) = c(x, t) has been chosen. At the next level of hierarchy

we can utilize the operator L̂0 again:

Mσ

2uL2

∫ ∞

−∞
dx1

∫ L

0
dy1

[

G
(0)
B (ci)h0(x, y, t) +G

(0)
C (ci)h0(x1, y1, t)

]

(C.191)

=
Mσ

4
∇2h1 −

∫ ∞

−∞
dx1

∫ L

0
dy1

[

G
(0)
D (ci) ∂th1(x1, y1, t) +G

(1)
D (ci) ∂th0(x1, y1, t)

]

.

This we can rewrite as L̂0h1 = S1, where S1 is acts as the source term of the diffusion
equation. The source contains only terms which contain h0, which has been already solved.
Explicitly,

S1(x, y, t) ≡ Mσ

2uL2

∫ ∞

−∞
dx1

∫ L

0
dy1

[

G
(0)
B (ci)h0(x, y, t) +G

(0)
C (ci)h0(x1, y1, t) (C.192)

+
2uL2

Mσ
G

(1)
D (ci) ∂th0(x1, y1, t)

]

.

The diffusion equation with a source term is easily solved: h ≈ h0 + εh1. Choosing a zero
boundary condition for higher order corrections, h1(x, 0, t) = 0 we get

h1(x, y, t) =

∫ t

0
dt1

∫ ∞

−∞
dx1

∫ L

0
dy1 L

−1
0 (x, y, t;x1, y1, t1)S1(x1, y1, t1) , (C.193)

where L−1
0 is the kernel of the inverse operator L̂0 given in Eq. (C.190). It is easy to see that

the same structure remains at all orders of perturbation theory. There is always a diffusion
like equation with a source term which is expressible in terms of lower order known solutions.
However, the choice of the boundary conditions is not quite unambiguous. This is the topic
of the next section.

C.8.3 Gross-order approach

In this section we will show that the whole idea of expanding the meniscus fluctuation h as
power series in ε is a bad idea, because it is not easy to fix the boundary conditions of the
terms hn at the contact line level. Taking ε = 0 limit can be done, but it only gives a trivial
flat solution for the meniscus. To keep the lowest order ε dependence of the theory sensible
and yet make it computable is a difficult goal. Below we will argue that the goal can be
achieved by approximating

H0(ε) = C0(ε) +K(ε)(y2 − Ly) ≈ C0(ε) , (C.194)

and leaving out the y-dependent part of H0 from the Green’s functions because its prefactor is
of orderK(ε) = O(ε2) when ci = 0. Thus, if we neglect the curvature contribution as indicated
by Eq. (C.194) we only make an error which is of the order of O(ε2) when computing the
expressions IB, IC and ID:

IB(H0(ε)) ≈ IB(C0(ε)) + O(ε2) , (C.195)

and similarly for IC and ID. We will also show that all the terms IB , IC and ID are of
O(ε) in the regime where |k|C0 � 1 and t ≤ t∗. These boundaries are not strict, but if the
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theory is used outside of its domain of validity, the results can only be trusted at order O(ε).
An important difference with Sect. C.8.2 is that we do not take the limit ε → 0 prior to
integration over x1 and y1. For example, even though the kernel of the IB integral vanishes
for ε = 0 as shown in the previous section, the integrated expression IB(C0(ε)) is independent
of C0 and gives a non-zero result even if we set ε = 0. These results are discussed in more
detail below.

Let us first recall the advantages and disadvantages of the perturbative method we have
described in Sect. C.8.2. Whether we choose to use the zero or non-zero initial condition
of the contact line height, a solvable perturbation series results given that there remains
some ambiguity in fixing the boundary conditions. For ci = 0 at each level of the hierarchy
a simple Laplacian operator ∇2 has to be inverted as seen from the first equation of the
hierarchy ∇2h0 = 0. Thus, using this method we are unable to see the memory effects
connecting the meniscus and the contact line motions because inversion of ∇2 does not give
rise to any dependence on the past. Perturbation theory is simple, though, owing to the fact
that there is just a single expansion parameter in the theory. It is ε ≡ KL2/C0, which is
needed for the expansion of the Green’s functions. Given that the lowest order terms of the
Green’s function expansion vanish as in Eq. (C.184) the perturbative solution of the meniscus
fluctuation goes like h ≈ h0 + ε2h2. Thus, taking into account the first non-zero correction
term h2 means that we also have to take into account the time dependence of the curvature,
which is also O(ε2). This is clearly awkward.

For ci > 0, one has to invert a diffusion like operator ci∂t − (Mσ/4)∇2 for long wave
length fluctuations. The advantage is that the lowest order terms of the Green’s function
expansion in powers of ε are not zero. Therefore, we can write h ≈ h0 + εh1. Because for long
wave lengths the operator to be inverted at each level of hierarchy is of diffusion type, this
method gives rise to memory effects as explained in Sect. C.16. In other words the history
of the contact line affects the motion of the meniscus. This is easily seen when solving for h0

from (

ci∂t − (Mσ/4)∇2
)

h0 = 0 (C.196)

with the time dependent boundary condition h0(x, 0, t) = c(x, t). We have done this (for
moving contact line) in Sect. C.11.2. The disadvantage is that due to the presence of a
new length scale ci, the memory expansion parameter will be different than the expansion
parameter ε ≡ KL2/C0. The memory expansion parameter εm can be read off from the
(non-dimensionalized) first equation of the hierarchy, Eq. (C.196): ε−1

m ≡ Mσt/(L2ci). This
is the dimensionless combination that appears in the argument of the exponential solution of
Eq. (C.196). For εm → 0 the solution h0 reduces to the quasi-stationary solution hqs to be
derived in Sect. C.11.1. The second expansion parameter of the theory is that of the Green’s
function expansion, ε ≡ KL2/C0. Since ε depends on t through C0(t) it is possible that of εm
is smaller or bigger than ε at different moments of time.

The fundamental problem with the perturbative approach, which appears in both cases
ci = 0 and ci > 0, has to do with the boundary conditions of the meniscus. What we would
like to do is to obtain h = h(c), where the contact line position is unknown. Once this solution
is used to convert the dissipation and free energy functionals of the meniscus into those of the
contact line (Sect. C.13), after taking proper variations the contact line equation of motion
results. Writing h ≈ h0 + εh1 + ε2h2 + . . . the first issue we have to settle is whether we can
treat all of these corrections as independent of (orthogonal to) each other from the point of
view of the variational technique which we are using to produce the contact line equation. If
the answer is yes (given that some suitable definition of ’orthogonality’ can be found), taking
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variations with respect to cn(x, t), n = 0, 1, 2, . . . generates a separate equation of motion for
each of the boundary conditions cn(x, t), which can not be taken zero anymore. This is due
to two things. Firstly, the free energy functional is quadratic in collective coordinates cn(x, t)
which induces mixing. Secondly, the noise term is highly nonlinear as well, which basically
makes it extremely hard to develop any kind of sensible, systematic perturbation scheme
for individual coordinates cn(x, t). To circumvent these problems, suppose that we choose to
satisfy the boundary conditions by setting h0(x, 0, t) = c(x, t) and hn(x, 0, t) = 0, n = 1, 2, . . ..
Then, we only have to deal with one collective coordinate c(x, t) instead of many cn(x, t).
Since h0(c) does not have any dependence on ε by definition, we immediately discover that
the choice of this boundary condition leads to an inconsistency if we require that the full
solution h =

∑

n ε
nhn satisfies the same boundary condition: h(x, 0, t) =

∑

n ε
nhn(x, 0, t) =

c(x, t) ⇒ c = c(ε), which can not be true since h0 = h0(c) was supposed to be independent
of ε. To summarize, choosing a separate boundary condition for all correction terms hn of
the meniscus fluctuations is impractical. On the other hand, the choice of a single non-zero
boundary condition only for the first term of the expansion, h0 leads to an inconsistency.

To make progress we device a third option, which allows for non-zero values for the
curvature (non-zero ε). Instead of developing the Green’s functions and the fluctuation h of
the meniscus systematically into power series and matching powers, we expand the terms IB ,
IC and ID in powers of ε by evaluating the gross-order of them without expanding h. The more
terms we take into account from the Green’s function expansion, the better h approximates
the actual solution. Since we do not expand h itself, we avoid the problems associated with the
choice of the boundary conditions. In this case there is just one possibility: h(x, 0, t) = c(x, t).
To illustrate why this method is different form the two failures above, we first write down
the equation of motion for the meniscus fluctuations: IB + IC + ID = (Mσ/4)∇2h, or

∂tC0 h(x, y, t)

∫

dx1

∫

dy1GB(ci) + ∂tC0

∫

dx1

∫

dy1GC(ci)h(x1, y1, t)

+

∫

dx1

∫

dy1GD(ci) ∂th(x1, y1, t) +

∫

dx1

∫

dy1G
(1)
D (ci) ∂th(x1, y1, t)

= (Mσ/4)∇2h , (C.197)

where we have assumed that ci > 0. We notice that different orders of ε appear on the left
hand side: the first and second terms on the left are obviously of order ε since ∂tC0 ∝
ε. The third is O(1) and the fourth one is again proportional to ε because G

(1)
D (ci) =

∂zG
1W
3D |ci∂εH0(y, t)|0 ε + ∂z1G

1W
3D |ci∂εH0(y1, t)|0 ε. Fourier transforming the fourth term is not

easy because of the the quantities ∂εH0(y, t)|0 (∂εH0(y1, t)|0) depends on y (y1). To be more
specific, take for example the term ∂z1G

1W
3D |ci∂εH0(y1, t)|0 ε and use ∂z1G

1W
3D = ∂z1G

+
3D+∂z1G

−
3D

(Eq. (C.211)). Let us concentrate on the behaviour of the term having ∂z1G
−
3D as one of its

factors. Specifically,

4π ∂z1G
−
3D(x, y,H0(y, t);x1, y1, z1)|H0(y1,t) = (C.198)

A−
[(x− x1)2 + (y − y1)2 +A2

−]3/2
+

A+

[(x− x1)2 + (y − y1)2 +A2
+]3/2

,

where A± ≡ H0(y1, t) ± H0(y, t). Using the ansatz H0(y, t) = C0 + K(y2 − Ly) we see that

A−|ε=0 = 0 and A+|ε=0 = 2ci. Therefore, G
(1)
D (ci) will contain a term like

∂z1G
−
3D|ci∂εH0(y1, t)|0 ε =

2ci
(
∂εC0|0 + ∂εK|0(y2

1 − Ly1)
)
ε

[(x− x1)2 + (y − y1)2 + 4c2i ]
3/2

(C.199)
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When this is multiplied with ∂th(x1, y1, t) the resulting expression is not of convolution form
in variable y1 and non-local term in Fourier space will result if cosine transformation is
attempted. More elaborate methods have to be used on linear integral equations containing
terms like the one given above.

Let us now consider ci = 0. We show below that if we use the approximation H0 ≈ C0

by neglecting the y-dependent part of H0, each of the terms IB, IC and ID will actually have
the same order in ε in the local regime |k|C0 � 1. This is to accompany the approximation
of the velocity, ∂tH0 ≈ ∂tC0 which we have already justified in Sect. C.8.1. Hence,

IB ≈ ∂tC0 h(x, y, t)

∫

dx1

∫

dy1 ∂zG3D(x, y, z;x1, y1,C0)|C0 . (C.200)

It should be noted that the Green’s function and its lowest order derivatives do not vanish
here even though they vanished when the condition ci = 0 was used together with systematic
expansion of G3D prior to integration over x1 and y1. The reason is that here we keep the
ε-dependence of c(ε) and do not set it equal to zero. In other words, even though

∂zG3D(x, y, z;x1, y1,C0)|C0 =
2C0

4π[(x− x1)2 + (y − y1)2 + 4C2
0]

= 0 (C.201)

for C0 = C0(ε = 0) = 0, the term IB as a whole is independent of C0 due to the integration.
The simplest way of seeing this is to set the integration limits in Eq. (C.200) to correspond
to those of single-wall set-up (for simplicity) whose Green’s function is given above, and
performing a change of variables (x1)old = C0(x1)new, (y1)old = C0(y1)new. Alternatively, one
can just Fourier transform IB with the single wall result

Fx/kxF cos
y/ky

{IB} =
1

2
∂tC0(t)hk(t) , (C.202)

as shown in Sect. C.9. Clearly, O(IB) = O(ε). In a similar manner one easily shows that the
Fourier transformation of the approximation

IC ≈ ∂tC0h(x, y, t)

∫

dx1

∫

dy1 ∂z1G3D(x, y,C0;x1, y1, z1)|C0h(x1, y1, t) . (C.203)

gives the result

Fx/kxF cos
y/ky{IC} =

1

2
∂tC0(t) e

−2C0|k| hk(t) , (C.204)

which goes like 1
2∂tC0(t)hk(t) for |k|C0 � 1. Thus, the order of the prefactor function of hk

is again O(ε) since ∂tC0 ∝ ε. Finally,

ID ≈
∫

dx1

∫

dy1G3D(x, y,C0;x1, y1,C0) ∂th(x1, y1, t) . (C.205)

For |k|C0 � 1 the prefactor of ∂thk goes like C0 ∝ ε for times t < t∗. Hence, the gross order
of ID as well, is O(ε):

Fx/kxF cos
y/ky

{ID} =
1

2|k|
(

1 − e−2C0|k|
)

∂thk(t) . (C.206)

As what comes to the ε-dependence of the terms, the same results are valid also for the double
wall set-up. This can be easily confirmed by looking up the corresponding expressions of the
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Fourier transforms of IB, IC and ID given in Sect. C.10. One only has to change the norm
of k from (k2

x + k2
y)

1/2 to (k2
x + (πm/L)2)1/2, where the discrete modes are induced by the

finite wall separation L.
The same approximation, H0 ≈ C0, will also be used in Sect. C.16. where we discuss the

memory effects. However, it should be remembered that the epsilonistics of the equation of
motion of the contact line becomes much more difficult to control especially if we are using
the full, history dependent solution h(c) derived in C.11.4, which contains all powers of ε.
Due to this reason the results presented in C.16 are merely suggestive, no attempt has been
made at this point to systematize the power series expansion of the contact line profile. This
is to say that even though we only keep in the evolution equation of the meniscus the term
which are at most O(ε), the solution h(c, ε) may contain higher powers of ε. Consequently,
the equation of motion of the contact line can also contain higher powers of ε since we make
use of h(c, ε) when deriving the equation of motion via the variational method.

C.9 Meniscus dynamics: one wall

Last section dealt predominantly with the contact line profile of a pure system. We assumed
a parabolic profile for the meniscus, with two fitting parameters: C0 the height of the contact
line and K, the curvature of the meniscus. These can be solved from Eq. (C.116). To gain
information about the dynamics of the fluctuations c(x, t) we first need to find out how does
the meniscus depend on the unknown contact line profile. Once we know h(c) we substitute
it back in the 2D functionals Rr

2D and F r2D and integrate out the dependence on y-direction.
Thus, we are left with effective 1D functionals Rr

1D[ċ] and F r1D[c], which generate the equation
of motion according to the recipe (C.341).

To find out h(c) we have to simplify the equations of motion of the meniscus. Ultimately,
we want to derive equations for the double wall set-up, but for simplicity we will start
with single wall case. Matching the zeroeth and first powers in fluctuation h we obtain
the following set of equations ((C.63) and (C.64)) which governs the time evolution of the
liquid-gas interface:

IA =
Mσ

4
∇2

H0 ; (C.207)

IB + IC + ID = −M
4

δF2D [h]

δh
. (C.208)

Before going on to the actual calculations, we point out that the single wall set-up (a semi-
infinite system) without gravity is a bit artificial. This can be seen by studying the zeroeth
order meniscus equation (C.207). Term IA serves to fix the equation of motion of the zeroeth
order solution H0. If there is no gravity, the meniscus tries to assume the shape of a straight
plane to minimize free energy. The contact angle at which the plane meets the solid wall is set
by the wall potential A in the free energy functional. Consequently, if the curvature K = 0,
then H0 = C0 − αy. The only linearly y-dependent that interface profile that Eq. (C.207)
admits is the trivial solution H0 = C0 = const corresponding to α = 0. Thus, the interface
does not move since the contact line height is a time independent constant. If we have gravity,
we can in principle allow for contact angle values other than ninety degrees. However, since
the resulting equation of motion for H0(y, t) is non-linear it turns out to be easier to solve for
C0(t) by assuming that H0 obeys some reasonably simple form such as parabola for double
well set-up. This will be discussed in more detail in Sect. C.10.1. The rest of this section is
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devoted to the the calculation of the terms IB , IC and ID. Any y-dependence in the profile H0

will be neglected assuming H0 ≈ C0(t). This allows comparison with the double wall results
for small enough curvatures.

First, we need to construct the Green’s function G3D. It should satisfy the same boundary
conditions as the chemical potential. Assuming no flux through the solid wall at y = 0 and
contact with reservoir at z = 0 we have

µ(x, 0, z) = 0 ; ∂yµ(x, y, z)|0 = 0 . (C.209)

The solution is easily constructed with the aid of the method of images. To satisfy the first
condition we set a positive charge at (x1, y1, z1) and a negative charge at (x1, y1,−z1). The
contribution to the full Green’s function G1W

3D from this pair of charges is denoted by G−
3D.

To fulfil the second condition in Eq. (C.209) we set another pair of charges on the opposite
side of the y-axis: a positive charge will be placed at (x1,−y1, z1) and a negative charge at
(x1,−y1,−z1). The contribution from this pair is denoted by G+

3D:

4π G±
3D(r, r1) =

1
√

(x− x1)2 + (y ± y1)2 + (z − z1)2

− 1
√

(x− x1)2 + (y ± y1)2 + (z + z1)2
. (C.210)

Thus, the only difference between G−
3D and G+

3D is that the former has (y − y1)
2 as its

argument whereas the latter has (y + y1)
2. The full Green’s function is the sum of the two

contributions:
G1W

3D = G−
3D +G+

3D . (C.211)

The following calculations are essentially the same for both G−
3D and G+

3D, which is why we
concentrate to display explicitly the behaviour of G−

3D only.
We now proceed to evaluation of IB, IC and ID. To compute the term IB requires the

derivative of the Green’s function with respect to coordinate z evaluated at the linearization
point (z = H0(y, t) = C0(t), z1 = H0(y1, t) = C0(t)). We obtain

4π ∂zG
−
3D(x, y, z;x1, y1,C0(t))|C0 =

2C0(t)
(

(x− x1)2 + (y − y1)2 + 4C2
0(t)

)3/2
. (C.212)

To compactify the forthcoming calculations, we introduce a kernel function iB related to
∂zG

−
3D|C0 given in the previous equation:

iB(x, y, t) ≡ 2C0(t)
(
x2 + y2 + 4C2

0(t)
)3/2

. (C.213)

To evaluate the term IC , we should calculate the derivative of the Green’s function with
respect to z1. In terms of a kernel function iC we can express the derivative at the linearization
point as

4π ∂z1G
−
3D(x, y,C0(t);x1, y1, z1)|C0 = iC(x− x1, y − y1, t) = iB(x− x1, y − y1, t) , (C.214)

where the last relation holds only in the approximation H0(y, t) ≈ C0(t). Next, we evaluate
the Green function at the linearization point which is needed for the evaluation of the term
ID.

4π G−
3D(x, y,C0(t);x1, y1,C0(t)) = iD1(x− x1, y − y1, t) − iD2(x− x1, y − y1, t) . (C.215)
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In the usual manner, we have introduced two new kernel functions on the right hand side of
the previous equation. They are given by

iD1(x, y) ≡
(

x2 + y2
)− 1

2 ; iD2(x, y, t) ≡
(

x2 + y2 + 4C
2
0(t)

)− 1
2 . (C.216)

We are now ready to compute the explicit representation of the terms I−B , I−C and I−D . Sub-
stitution of Eq. (C.212) and Eq. (C.214) into Eq. (C.60) and Eq. (C.61) respectively, gives

I−B ≈ ∂tC0 h(x, y, t)
1

4π

∫ ∞

−∞
dx1

∫ ∞

0
dy1

2C0(t)

((x− x1)2 + (y − y1)2 + 4C0
2(t))3/2

. (C.217)

I−C ≈ ∂tC0
1

4π

∫ ∞

−∞
dx1

∫ ∞

0
dy1

2C0(t)

((x− x1)2 + (y − y1)2 + 4C0
2(t))3/2

h(x1, y1, t) . (C.218)

The term I−D is split into two pieces based on the form of the Green function at the lineariza-
tion point as given by Eq. (C.215). We write, I−D = I−D1 − I−D2, where I−D corresponds to the
first term on the fight hand side and I+

D to the second. Substitution of these two terms into
Eq. (C.62) yields,

I−D1 ≈ 1

4π

∫ ∞

−∞
dx1

∫ ∞

0
dy1

1

((x− x1)2 + (y − y1)2)1/2
∂th(x1, y1, t) . (C.219)

I−D2 ≈ 1

4π

∫ ∞

−∞
dx1

∫ ∞

0
dy1

1

((x− x1)2 + (y − y1)2 + 4C0
2(t))1/2

∂th(x1, y1, t) . (C.220)

As explained in the beginning of this section, we need to sum up the contributions of two
pairs of mirror charges to get the full Green function of the one-wall set-up. Consequently,
the terms Is with s = B,C,D1, D2 consist of two contributions due to the structure of the
full Green function G1W

3D : we write Is ≡ I−s + I+
s . The form of the terms Is containing the

full Green function G1W
3D is expressible in terms of the integral kernels iB , iC , iD1 and iD2

defined above,

IB = ∂tC0 h(x, y, t)

∫ ∞

−∞
dx1

∫ ∞

0
dy1

1

4π

[

iB(∆, y − y1, t) + iB(∆, y + y1, t)
]

; (C.221)

IC = ∂tC0

∫ ∞

−∞
dx1

∫ ∞

0
dy1

1

4π

[

iC(∆, y − y1, t) + iC(∆, y + y1, t)
]

h(x1, y1, t) ; (C.222)

ID1 =

∫ ∞

−∞
dx1

∫ ∞

0
dy1

1

4π

[

iD1(∆, y − y1, t) + iD1(∆, y + y1, t)
]

∂th(x1, y1, t) ; (C.223)

ID2 =

∫ ∞

−∞
dx1

∫ ∞

0
dy1

1

4π

[

iD2(∆, y − y1, t) + iD2(∆, y + y1, t)
]

∂th(x1, y1, t) . (C.224)

We have used the short-hand notation ∆ ≡ x − x1 above. To get rid of the convolution
integrals appearing in the previous expressions we would like to perform an integral transfor-
mation of some sort. Remembering that our integration domain is the half plane y ≥ 0 we
can use the Fourier cosine transformation (F cos

y/ky
) to go from real space (y) to Fourier space

(ky). The definition of the cosine transformation of convolution is [356]

F cos
y/ky

{
1

2

∫ ∞

0
dy1 g(y1)[f(|y − y1|) + f(y + y1)]

}

= F cos
y/ky {f(y)} F cos

y/ky {g(y)} . (C.225)



322 APPENDIX C. DETAILS OF CONTACT LINE MODEL

It is clear that the sum of the contributions of G−
3D and G+

3D giving rise to I−s + I+
s (s =

B,C,D1, D2) is exactly of the convolution form in y-coordinate presented in Eq. (C.225).
For the x-coordinate we can use the ordinary Fourier transform (Fx/kx).

It turns out that all the other kernels can be conveniently expressed in terms of the single
kernel iD2 defined above. We obtain immediately that

iB = iC = −1

2

∂iD2

∂C0
; iD1 = lim

C0→0
iD2(C0) . (C.226)

Since the other kernels can be related to iD2, let us first consider the cosine transform of the
kernel iD2. It is readily obtained using the evenness of the kernel in y-coordinate:

Fx/kxF cos
y/ky

{iD2} ≡
∫ ∞

−∞
dx eıkxx

∫ ∞

0
dy cos(kyy) iD2(x, y, t) (C.227)

=
1

4

∫ ∞

−∞
dx eıkxx

∫ ∞

−∞
dy eıkyy iD2 +

1

4

∫ ∞

−∞
dx eıkxx

∫ ∞

−∞
dy e−ıkyy iD2 . (C.228)

On the second line we have extended the integration over the y-coordinate to cover the
negative values as well after which the cosine has been written in terms of the exponential
functions. Since the end result will be even in kx and ky, both terms of Eq. (C.228) will give
the same contribution. Computing the first one we get,

∫ ∞

−∞
dx eıkxx

∫ ∞

−∞
dy eıkyy iD2 =

∫ ∞

−∞
dx eıkxx

∫ ∞

−∞
dy eıkyy

1
√

x2 + y2 + 4C0
2

(C.229)

=

∫ ∞

0
dr r

∫ 2π

0
dθ eıkr cos θ 1√

r2 + 4C0
2

=

∫ ∞

0
dr

2πrJ0(kr)√
r2 + 4C0

2
(C.230)

=
1

k

∫ ∞

0
dr

2πrJ0(r)
√

r2 + 4(C0k)2
≡ 2π

k
e−2C0k . (C.231)

The norm k ≡
√

k2
x + k2

y and J0 is the zeroeth order Bessel function. In the last line we

performed a change of integration variables, krold = rnew. To compactify notation, we define
a new function

b(C0k) ≡ πe−2C0k . (C.232)

Taking into account the factors of 1/4 in Eq. (C.228), we can express the Fourier transform
of iD2 in terms of b:

Fx/kxF cos
y/ky

{iD2} =

∫ ∞

−∞
dx eıkxx

∫ ∞

0
dy cos(kyy)

1
√

x2 + y2 + 4(C0k)2
=

1

k
b(C0k) . (C.233)

It is easy to obtain the other kernels with the aid of Eq. (C.226) and the fact that iD2 =
k−1b(C0k). We get

iB(kx, ky, t) = iC(kx, ky, t) = b(C0k) ; iD1(kx, ky) = π/k . (C.234)

Knowing the form of the integral kernels, we will now proceed to calculate the transformations
of the terms IB , IC , ID1 and ID2. Let us begin with IB. Although I−B or I+

B alone are functions
of y, their sum is not:

IB = I−B + I+
B = ∂tC0 h(x, y, t)

∫ ∞

−∞
dx1

∫ ∞

−∞
dy1

1

4π
iB(x− x1, y − y1, t) . (C.235)
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Notice the change of the lower integration limit for y. Performing the change of variables
xold− x1 ≡ xnew, yold− y1 ≡ ynew allows us to get rid of the superficial dependence on x and
y. We obtain

∫ ∞

−∞
dx1

∫ ∞

0
dy1

1

4π
iB(x1, y1, t) =

1

4π
lim
k→0

b(C0k) =
1

4
. (C.236)

as can be confirmed from Eq. (C.232). All in all, the transformation of IB gives a simple
expression:

Fx/kxF cos
y/ky

{IB} = 2∂tC0(t)hk(t)
1

4π
lim
k→0

Fx/kxF cos
y/ky

{iB} =
1

2
∂tC0(t)hk(t) . (C.237)

The factor of two on the right hand side of the first equality comes from the definition of the
Fourier cosine transformation of the convolution (the other convoluted function above was a
constant function as indicated by the limit k → 0).

Transformation of IC is performed next. In contrast to IB, neither of the functions
convoluted is a constant. Using Eq. (C.218) we straightforwardly obtain

Fx/kxF cos
y/ky{IC} = 2∂tC0(t)hk(t)

1

4π
Fx/kxF cos

y/ky{iC} =
1

2π
∂tC0(t) b(C0k)hk(t) . (C.238)

Again, the factor of two on the far right of the first equality has to be there to respect
Eq. (C.222) where one has to take into account the factor 1/2.

Term ID1 (Eq. (C.219)) is transformed next. For the same reason as above, we have to
insert a factor of two. We also make use of Eq. (C.234):

Fx/kxF cos
y/ky{ID1} = 2 ∂thk(t)

1

4π
Fx/kxF cos

y/ky{iD1} =
1

2k
∂thk(t) . (C.239)

Finally, transformation of ID2 (Eq. (C.220)) has essentially been done already, since every-
thing was expressed with the aid of the kernel iD2. Thus,

Fx/kxF cos
y/ky

{ID2} = 2 ∂thk(t)
1

4π
Fx/kxF cos

y/ky
{iD2} =

1

2πk
b(C0k) ∂thk(t) , (C.240)

where the last equality follows from the definition of the function b in Eq. (C.233). Re-
membering that we defined ID ≡ ID1 − ID2, the right hand side of the Fourier transformed
meniscus equation of motion for h reads

Fx/kxF cos
y/ky{IB + IC + ID} = Fx/kxF cos

y/ky{IB + IC + ID1 − ID2} (C.241)

= g1(k, t) ∂thk(t) + g2(k, t)hk(t) , (C.242)

where we have grouped terms of similar kind and defined two new functions g1 and g2.

g1(k, t) ≡
1

2k
(1 − b(C0k)/π) =

1

2k

(

1 − e−2C0(t)k
)

; (C.243)

g2(k, t) ≡
1

2
∂tC0 (1 + b(C0k)/π) =

1

2
∂tC0

(

1 + e−2C0(t)k
)

. (C.244)

The evolution equation for the fluctuating modes of the meniscus becomes (Eq. (C.208))

g1(k, t) ∂thk(t) + g2(k, t)hk(t) = −M
4

δF2D[h]

δhk

= −Mσ

4
k2 hk(t) , (C.245)
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where have substituted the drumhead free energy for F2D and taken the functional deriva-
tive with respect to the Fourier modes hk instead of H. To obtain a simplified equation of
motion in the local regime C0k � 1 we Taylor expand the function b(C0k). The lowest order
approximations for g1 and g2 then read

g1(k, t) ≈ C0(t) ; g2(k, t) ≈ ∂tC0(t) . (C.246)

Assuming that we are interested in phenomena taking place close to pinning of the average
contact line position, i.e. when ∂tC0 ≈ 0 the simplified equation of motion for the meniscus
in the local regime will take the form

g̃1∂thk(t) = −Mσ

4
k2 hk(t) , (C.247)

where we have defined the stationary value g̃1 ≡ C0.

C.10 Meniscus dynamics: two walls

The goal of this section is to show that the linearized equation of motion for the fluctuations
h around the zeroeth order meniscus profile H0 follows a diffusion equation on certain time
and length scales when ∂tC0 can be neglected. The velocity of the contact line is exactly zero
when the meniscus is flat, i.e. when K = 0. Setting K = 0 (equivalently, ε = 0) leads to
certain problems, however, as discussed in Sect. C.8. Therefore we allow for non-zero contact
line profile in the calculations below, but set neglect the spatial dependence of the zeroeth
order meniscus solution via approximation H0(y, t) ≈ C0(t) as if the curvature would be zero.
This approximation does render the order of the terms IB, IC and ID the same to first
order in expansion parameter ε, as explained in Sect. C.8.3. The velocity is approximated as
∂tH0 ≈ ∂tC0 as the time variation of the curvature is argued to be negligible at least after a
relatively rapid initial period.

It is easy to see that if ε = 0 (K = 0) exactly, all terms IA, IB , IC and ID vanish. There-
fore, without any driving chemical potential gradients imposed at the reservoir boundary, the
interface does not move. However, if there is a chemical potential gradient F imposed at the
reservoir boundary, even a flat meniscus can propagate (K = 0, ∂tH0 6= 0 and consequently
IB and IC being proportional to ∂tH0 ∝ F , are non-zero and besides motion of the zeroeth
order meniscus profile H0 there can also be time evolution of the fluctuation correction h.
Finally, we point out that even if the meniscus is moving at the beginning, driven by its
curvature or imposed chemical potential gradient or both, it can become pinned by gravity
or evaporation and thus stop moving. However, in this section we do not explictly consider
a non-zero driving chemical potential gradient or pinning effects induced by gravity.

C.10.1 Term IA

We will first look at the zeroeth order equation of motion which fixes the solution H0. Owing
to the von Neumann boundary conditions for the chemical potential on the solid walls, the
Green boundary term Λ̃ will be zero. Thus, IA = (Mσ/4) ∂2

yH0, or

∫ ∞

−∞
dx1

∫ L

0
dy1G

2W
3D (x, y,H0(y, t);x1, y1,H0(y1, t)) ∂tH0(y1, t) =

Mσ

4
∂2
yH0(y, t) . (C.248)
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We have used the fact that H0 is just a function of y and t for pure walls. Being a non-
linear integro-differential equation Eq. (C.248) is not easy to solve. Instead of trying any
perturbative attack, let us postulate an ansatz for H0. As most of the numerical work has
been performed using a geometry where the solid walls are situated at y = ±L/2, we set

H0(y, t) = C0(t) −K(t)L2/4 +K(t)y2 , (C.249)

where the two parameters are the mean contact line height is C0 and curvature K(t). This
form does indeed produce a good approximation to the solution H0 of Eq. (C.248) as demon-
strated by direct numerical integration in Ref. [262]. We can fix C0 (or K) either from numer-
ics, from the approximative analytic solution presented in Sect. C.12.2, or from experimental
data as explained in Sect. C.7. For example, knowing C0 we can substitute Eq. (C.249) into
Eq. (C.248) which now becomes an ordinary (non-linear) differential equation forK which can
be solved by quadratures. Alternatively, we can use the experimentally determined volume V
to fix curvature K and solve for C0 from Eq. (C.248). The plausibility of these considerations
depends on the sensitivity of the result to the ansatz of Eq. (C.249). If we neglect the terms
proportional to curvature in Eq. (C.249), it reduces to the following form, which is utilized
to simplify the expressions of this section:

H0(y, t) = H0(y1, t) = C0 . (C.250)

The approximation above also leads to relation between the velocity of the meniscus and
the contact line: ∂tH0 = ∂tC0, which continues to hold to lowest order in ε even if the time
dependence of the curvature would be included.

C.10.2 Term IB

Term IB is obtained from Eq. (C.60). Using the approximation of Eq. (C.250) we can pull
the velocity term out of the integral:

IB ≡
∫ ∞

−∞
dx1

∫ L

0
dy1 ∂zG

2W
3D (x, y, z;x1, y1,H0(y1, t))|H0 h(x, y, t) ∂tH0(y1, t)

= ∂tC0 h(x, y, t)

∫ ∞

−∞
dx1

∫ L

0
dy1 ∂zG

2W
3D (x, y, z;x1, y1,C0)|C0 . (C.251)

The substitution in the defining equation above should be understood as |H0 = |H0(y,t). Using

the representation of G2W
3D given in Eq. (C.137) allows us to split the Green’s function into

two pieces: G2W
3D = (1/L)GI2D +GS3D. Eq. (C.136) gives for the series part

GS3D =
2

L

∞∑

n=1

cos(nπy/L) cos(nπy1/L)
[

f̃n(x− x1, z − z1) − f̃n(x− x1, z + z1)
]

. (C.252)

Evaluation of the derivative ∂zG
2W
3D at the linearization point is computed next. It is easy to

see from the definition of f̃n in Eq. (C.135) that the first term in the square bracket above
vanishes when z = z1 = C0. We obtain,

∂zG
2W
3D (x, y, z;x1, y1,C0)|C0 =

1

L
∂zG

I
2D(x, z;x1,C0)|C0

− 2

L

∞∑

n=1

cos(nπy/L) cos(nπy1/L) ∂z f̃n(x− x1, z)|2C0 . (C.253)
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The argument of the second surviving term in the square bracket in Eq. (C.252) at the
linearization point is z+ z1 giving rise to substitution of 2C0 in the previous equation instead
of just C0. Substitution of the previous expression back into Eq. (C.251) yields

IB = ∂tC0 h(x, y, t)

∫ ∞

−∞
dx1

∫ L

0
dy1

1

L
∂zG

I
2D(x, z;x1,C0)|C0 (C.254)

− ∂tC0 h(x, y, t)
2

L

∞∑

n=1

cos(nπy/L)

∫ ∞

−∞
dx1 ∂z f̃n(x− x1, z)|2C0

∫ L

0
dy1 cos(nπy1/L) .

The integration over y1 of the first term just gives a trivial factor L because the integrand is
independent of y1. The latter term on the right hand side of the previous equation vanishes
since the cosine term is integrated over the full period L. However, to keep the notation
symmetric, we do not drop it quite yet but write IB in the following form

IB = ∂tC0 h(x, y, t)

∫ ∞

−∞
dx1 JB1(x− x1,C0) (C.255)

+ 2∂tC0 h(x, y, t)
∞∑

n=1

cos(nπy/L)

∫ ∞

−∞
dx1 JB2(x− x1, n,C0) δn,0 ,

where δi,j denotes the Kronecker delta. We have introduced two new functions, JB1 and JB2.
It is shown in the next section that their partner functions JB1 and JB2 appearing in the
expression of IC are identical to them when approximation H0(y, t) = C0 is used. Explicitly,

JB1(x−x1,C0) ≡ ∂zG
I
2D(x, z;x1,C0)|C0 ; JB2(x−x1, n,C0) ≡ −∂z f̃n(x−x1, z)|2C0 . (C.256)

Further simplification results since it is easy to perform the integration over x1 in the expres-
sion for JB1. The result is ∫ ∞

−∞
dx1 JB1(x− x1,C0) = 1/2 . (C.257)

Fourier transformation with respect to x is readily performed since h(x, y, t) is the only x-
dependent quantity in the expression IB. Remembering that the second term in Eq. (C.255)
is zero, we get

Fx/kx{IB} =
1

2
∂tC0 h(kx, y, t) , (C.258)

Since the domain is restricted between 0 and L in the y-direction, we are trying to simplify
the representation in terms of Fourier series. Therefore, we multiply IB with cos(mπy/L)
and integrate from 0 to L:

∫ L

0
dy cos(mπy/L)Fx/kx{IB} =

{
1
2∂tC0 Lh̀(kx, 0, t) , for m = 0.
1
2∂tC0 Lh̀(kx,m, t) , for m ≥ 1.

(C.259)

The factor L above arises from the definition of the coefficients of the Fourier cosine series:

h̀(kx,m, t) ≡
1

L

∫ L

0
dy cos(mπy/L)h(kx, y, t) . (C.260)

In order not to overload the notation with accents, when taking the ordinary Fourier transform
with respect to a variable, such as x, which has been defined on the whole real axis, we denote
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the transformed function in k-space by the same symbol as in real space, only the argument
changes. For example,

h̀(x,m, t) ≡ 1

L

∫ L

0
dy cos(mπy/L)h(x, y, t) . (C.261)

With the aid of the Fourier coefficients defined above we can simplify the expressions of IC
and ID more than the appearances of IB , will become clear below.

C.10.3 Term IC

Using the approximation H0 = C0 in the expression of IC given in Eq. (C.61) results in the
following simplification:

IC ≡
∫ ∞

−∞
dx1

∫ L

0
dy1 ∂z1G

2W
3D (x, y,H0(y, t);x1, y1, z1)|H0 h(x1, y1, t) ∂tH0(y1, t)

= ∂tC0

∫ ∞

−∞
dx1

∫ L

0
dy1 ∂z1G

2W
3D (x, y,C0;x1, y1, z1)|C0 h(x1, y1, t) . (C.262)

The substitution symbol should be understood as |H0 = |H0(y1,t). Evaluation of the derivative

∂z1G
2W
3D at the linearization point is computed next.

∂z1G
2W
3D (x, y,C0;x1, y1, z1)|C0 =

1

L
∂z1G

I
2D(x,C0;x1, z1)|C0

− 2

L

∞∑

n=1

cos(nπy/L) cos(nπy1/L) ∂z1 f̃n(x− x1, z1)|2C0 . (C.263)

Just like in the case of IB , only the second term in the square bracket in Eq. (C.252) survives
after differentiation and substitution of the values of z and z1 at the linearization point.
Plugging the Green’s function into Eq. (C.262) yields

IC = ∂tC0

∫ ∞

−∞
dx1

1

L
∂z1G

I
2D(x,C0;x1, z1)|C0

∫ L

0
dy1 h(x1, y1, t) (C.264)

− ∂tC0
2

L

∞∑

n=1

cos(nπy/L)

∫ ∞

−∞
dx1 ∂z1 f̃n(x− x1, z1)|2C0

∫ L

0
dy1 cos(nπy1/L)h(x1, y1, t) .

Making use of the Fourier coefficients defined in Eq. (C.261) and introducing two new func-
tions, JC1 and JC2, we can simplify the previous result

IC = ∂tC0

∫ ∞

−∞
dx1 JC1(x− x1,C0) h̀(x1, 0, t) (C.265)

+ 2∂tC0

∞∑

n=1

cos(nπy/L)

∫ ∞

−∞
dx1 JC2(x− x1, n,C0) h̀(x1, n, t) .

The only difference between functions JC1 and JB1, as well as JC2 and JB2, is that the
functions associated with respect to the term IB are differentiated with respect to z, whereas
the functions associated with the term IC are differentiated with respect to z1:

JC1(x− x1,C0) ≡ ∂z1G
I
2D(x,C0;x1, z1)|C0 ; JC2(x− x1, n,C0) ≡ −∂z1 f̃n(x− x1, z1)|2C0 .

(C.266)
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It is easy to show by direct computation that due to the approximation H0 = C0, JC1 = JB1.
The fact that JC2 = JB2 is clear from Eq. (C.266): the dummy variable z has been replaced
with the dummy variable z1 as compared to Eq. (C.256). The explicit forms of these functions
in real space are the following:

JB1(∆,C0) = JC1(∆,C0) = − 1

π

C0

∆2 + 4C2
0

. (C.267)

JB2(∆, n,C0) = JC2(∆, n,C0) =
1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dkz

e−ıkx∆e−ıkz(2C0)(ıkz)

k2
x + (πn/L)2 + k2

z

, (C.268)

where ∆ ≡ x− x1. Since the expression IC has the convolution form in real variable x, it is
straightforward to switch to Fourier space:

Fx/kx{IC} = ∂tC0 JC1(kx,C0) h̀(kx, 0, t) + 2∂tC0

∞∑

n=1

cos(nπy/L)JC2(kx, n,C0) h̀(kx, n, t) .

(C.269)
As for IB, we will find the Fourier components in the y-direction by projecting with the cosine
term cos(mπy/L):
∫ L

0
dy cos(mπy/L)Fx/kx{IC} =

{

∂tC0JC1(kx,C0)Lh̀(kx, 0, t) , for m = 0.

∂tC0JC2(kx,m,C0)Lh̀(kx,m, t) , for m ≥ 1.
(C.270)

The zero mode (m = 0) projection of the sum term in Eq. (C.265) is zero by construction and
the only contribution comes from the first term (∝ JC1). When projecting with cos(mπy/L)
with m ≥ 1, the first term gives zero and in the second term (∝ JC2) the emerging product
of two cosine functions is simplified as follows:

∫ L

0
dy cos(mπy/L) cos(nπy/L) (C.271)

=
1

2

∫ L

0
dy [cos((m+ n)πy/L) + cos((m− n)πy/L)] =

L

2
(δm,−n + δm,n) .

Notice, that since only the terms with n ≥ 1 are included in the summation in Eq. (C.269),
we have effectively just a single Kronecker’s delta remaining in the previous expression: δm,n.
The other one, δm,−n is always zero as we require m ≥ 1.

C.10.4 Term ID

The approximation H0 = C0 together with Eq. (C.250) leads to the following simplification of
Eq. (C.62) defining ID:

ID ≡
∫ ∞

−∞
dx1

∫ L

0
dy1G

2W
3D (x, y,H0(y, t);x1, y1,H0(y1, t)) ∂th(x1, y1, t)

=

∫ ∞

−∞
dx1

∫ L

0
dy1G

2W
3D (x, y,C0;x1, y1,C0) ∂th(x1, y1, t) . (C.272)

Substituting of the Green function into the previous equation and effecting the integration
over the y1-coordinate on ∂th(x1, y1, t) gives

ID =

∫ ∞

−∞
dx1

1

L
GI2D(x,C0;x1,C0)

∫ L

0
dy1 ∂th(x1, y1, t) (C.273)

+
2

L

∞∑

n=1

cos(nπy/L)

∫ ∞

−∞
dx1

[

f̃n(∆, 0) − f̃n(∆, 2C0)
] ∫ L

0
dy1 cos(nπy1/L) ∂th(x1, y1, t) ,
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where ∆ ≡ x− x1. Making again use of the definition of the coefficients of the Fourier series
(Eq. (C.261)) the previous equation is casted into

ID =

∫ ∞

−∞
dx1 JD1(x− x1,C0) ∂th̀(x1, 0, t) (C.274)

+2
∞∑

n=1

cos(nπy/L)

∫ ∞

−∞
dx1 JD2(x− x1, n,C0) ∂th̀(x1, n, t) .

The new functions JD1 and JD2 are short-hand notations for the following kernels:

JD1(x− x1,C0) ≡ GI2D(x,C0;x1,C0) ; (C.275)

JD2(x− x1, n,C0) ≡ f̃n(x− x1, 0) − f̃n(x− x1, 2C0) . (C.276)

Fourier transformation of ID with respect to variable x is readily performed with the result,

Fx/kx{ID} = JD1(kx,C0) ∂th̀(kx, 0, t) + 2
∞∑

n=1

cos(nπy/L)JD2(kx, n,C0) ∂th̀(kx, n, t) (C.277)

Finally, projection of the previous equation with cos(mπy/L) yields

∫ L

0
dy cos(mπy/L)Fx/kx{ID} =

{

JD1(kx,C0)L∂th̀(kx, 0, t) , for m = 0.

JD2(kx,m,C0)L∂th̀(kx,m, t) , for m ≥ 1.
(C.278)

This result is similar to Eq. (C.270). The sum term doesn’t contribute to the zero mode
(m = 0) projection because it only contains modes with n ≥ 1. Conversely, the first term
on the right hand side of Eq. (C.277) doesn’t contribute to projection with cos(mπy/L) with
m ≥ 1 as it contains only the zero mode (n = 0) of the Green function G2W

3D .

C.10.5 Meniscus equations for zero and non-zero modes

Let us collect the results of the previous subsections. Both zero mode and non-zero mode
equations can be combined to a single equation governing the dynamics of all modes n =
0, 1, 2, . . .:

JD2(kx,m,C0) ∂th̀(kx,m, t) + ∂tC0 [1/2 + JC2(kx,m,C0)] h̀(kx,m, t) (C.279)

= −Mσ

4

(

k2 + (mπ/L)2
)

h̀(kx,m, t) .

When Fourier cosine transforming, we have dropped the Green’s boundary term, which arises
when partial integrating with respect to y an expression

∫∞
−∞ dx

∫ L
0 dy cos(mπy/L) eıkxxf(x, y).

Eq. (C.279) is the equation for non-zero modes extended to cover the case with m = 0 as
well. Indeed, it is true by construction that JC2(kx, 0,C0) = JC1(kx,C0) and JCD2(kx, 0,C0) =
JD1(kx,C0). The easiest way to see this is to notice that the zero mode limit limit fm (see
Eq. (C.135)) is well defined and yielding the correct values of JB1, JC1 and JD1. Therefore,
setting m = 0 in Eq. (C.279) produces the equation of motion of the zero mode fluctuations
in y-direction:

JD1(kx,C0) ∂th̀(kx, 0, t) + ∂tC0 [1/2 + JC1(kx,C0)] h̀(kx, 0, t) (C.280)

= −Mσ

4
k2 h̀(kx, 0, t) .

The common factor of L resulting from the definition of the Fourier coefficients has been
cancelled on both sides of the equation.
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Fourier representation of the coefficient functions

For future purposes we will now compute the Fourier representations of the various coefficient
functions appearing in the equation of motion above. We will also use the results as a consis-
tency check to confirm that we have not made errors in changing from one representation to
the other. Let us start with the coefficient function JD1 which is familiar from the imbibition
model [4]:

JD1(kx,C0) = Fx/kx
{

GI2D(x,C0;x1,C0)
}

=
1

2|kx|
(

1 − e−2C0|kx|
)

. (C.281)

Using Eq. (C.276) we can write the Fourier transform of JD2 as

JD2(kx,m,C0) = f̃m(kx, 0) − f̃m(kx, 2C0) . (C.282)

We calculate f̃m(kx, 2C0) first. Setting C0 = 0 in the result gives us f̃m(kx, 0). From
Eq. (C.135) we get

f̃m(kx, 2C0) =
1

2π

∫

dkz
e−ıkz(2C0)

k2
x + (πm/L)2 + k2

z

. (C.283)

Transformation to a dimensionless integration variable, (kz)new ≡ 2C0kz, gives

JD2(kx,m,C0) =
1

4πC0

∫

dkz
1 − e−ıkz

k2
x + (πm/L)2 + (kz/(2C0))2

. (C.284)

By introducing a new variable k̃m ≡
√

k2
x + (mπ/L)2 we can rewrite the previous equation

as

JD2(kx,m,C0) =
C0

π

∫

dkz
1 − e−ıkz

(2C0k̃m)2 + k2
z

=
(1 − e−2C0k̃m)

2k̃m
, (C.285)

where the last equality results right away from the method of residues. Indeed, whenm = 0 in
the previous equation, or, when k̃m = |kx|, we get JD2(kx, 0,C0) = JD1(kx,C0) as expected.
A similar calculation can be performed for the pair JC2 and JC1. Using the definition in
Eq. (C.266) we get

JC2(kx,m, t) = − ∂

∂z1

{

1

2π

∫

dkz
e−ıkzz1

k2
m + k2

z

}∣
∣
∣
∣
∣
2C0

=
1

2
e−2C0k̃m . (C.286)

When m = 0 we see that indeed JC2 reduces to JC1 which can be confirmed by Fourier
transforming the real space representation of JC1(x,C0) given in Eq. (C.267), or more directly
by noticing that we can represent JC1 in the form

JC1(kx,C0) =
∂

∂z1

{

1

2π

∫

dkz
e−ıkz(C0−z1)

k2
x + k2

z

− 1

2π

∫

dkz
e−ıkz(C0+z1)

k2
x + k2

z

}∣
∣
∣
∣
∣
z1=C0

= JC2(kx, 0,C0) .

(C.287)
Naturally, since the reduction holds for JC2 and JC1, it is also true that JB2(kx, 0,C0) =
JB1(kx,C0), although JB2 does not appear in the equation of motion.
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Meniscus evolution equation

Two kinds of limits are need to be considered. First of all, we show that the double wall
result for the evolution equation correctly reduces to single wall result in the limit of the wall
separation L → ∞. The second limit of small wave vectors helps us to reduce the equation
of motion to the familiar diffusion equation for the Fourier modes of the fluctuations, which
is easier to study than the original equation.

Starting with the double wall set-up we substitute the expressions derived above into
Eq. (C.281). This yields the double wall result:

(1 − e−2C0k̃m)

2k̃m
∂th̀(kx,m, t)+

1

2
∂tC0 (1+e−2C0k̃m) h̀(kx,m, t) = −Mσ

4
k̃2
m h̀(kx,m, t) , (C.288)

where k̃m ≡
√

k2
x + (πm/L)2. In the limit L → ∞ starts approaching ky. Thus, we can

simply replace k̃m by k̃ ≡
√

k2
x + k2

y and h̀(kx,m, t) by h(kx, ky, t) yielding us the single wall

result

(1 − e−2C0

√
k2
x+k

2
y)

2
√

k2
x + k2

y

∂th(kx, ky, t) +
1

2
∂tC0 (1 + e−2C0

√
k2
x+k

2
y)h(kx, ky , t)

= −Mσ

4
(k2
x + k2

y)h(kx, ky, t) , (C.289)

These results are confirmed by the observation that we can produce the integral kernels of
the single wall set-up by transforming Eq. (C.289) back into real space. Using the Hankel
transform pair,

∫∞
0 dk kJ0(kx)e

−ak = a/(a2 + x2)3/2, where J0 is the zeroeth order Bessel
function, we note that

1

(2π)2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky e

−ıkxx−ıkyy 1

2
e−2C0

√
k2
x+k

2
y =

1

4π

2C0

(x2 + y2 + 4C2
0)

=
1

4π
iB(x, y, t) .

(C.290)
The known relations between the integral kernels given in Eq. (C.226) together with the
previous equation suffice to generate the terms IB, IC and ID of the single wall problem
whose real space form has been given in Eq. (C.221) - (C.224).

Next, we show under what circumstances Eq. (C.279) (equivalently, Eq. (C.288)) reduces
to a diffusion equation. In the zero curvature case, K = 0, both IB and IC vanish being
proportional to ∂tC0 ∝

√
K. Alternatively, we can consider a non-zero curvature with some

pinning mechanism such as gravity to be present and study fluctuations around the pinned
state where ∂tC0 = 0. Thus,

JD2(kx,m,C0) ∂th̀(kx,m, t) = −Mσ

4

(

k2 + (mπ/L)2
)

h̀(kx,m, t) (C.291)

In the local limit, C0k̃m � 1, the previous equation takes a simpler form

C0 ∂th̀(kx,m, t) = −Mσ

4

(

k2
x + (mπ/L)2

)

h̀(kx,m, t) . (C.292)

If C0 is time dependent, Eq. C.292 can be considered as a diffusion equation in non-linear
time. In pinned state C0 is time independent constant and we can take it to the right hand
side. In real space

∂th(x, y, t) = σr∇2h(x, y, t) , (C.293)
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where σr ≡ Mσ/(4C0). Of course, one should remember that the inverse Fourier transform
Eq. (C.293) applies strictly speaking only to those modes which satisfy C0k̃m � 1. However,
it is correct to say that on local scales the meniscus equation starts resembling an ordinary
diffusion equation. The quick and dirty way of seeing this is just to ignore the Green function
G3D in Eq. (8.43). This, however doesn’t reveal the renormalization of the surface tension
σr.

C.11 Solution of meniscus fluctuations

Let us summarize the essential results of the meniscus dynamics which are needed for the
determination of the equation of motion of the contact line. The dynamics of the meniscus
fluctuations by Eq. (C.288). In the local limit, C0k̃m � 1 it reduces to the following form:

C0(t)∂th̀(kx,m, t) + ∂tC0(t)h̀(kx,m, t) = −Mσ

4

(

k2
x + (mπ/L)2

)

h̀(kx,m, t) . (C.294)

Inversion of this simplified equation back to real space using Fourier transform is strictly
speaking not permitted because of the wave vector restriction C0k̃m � 1, unless we regard
the theory given by

C0(t)∂th(x, y, t) + ∂tC0(t)h(x, y, t) = −Mσ

4
∇2h(x, y, t) , (C.295)

as an effective theory which is valid only on large enough scales ξ � C
−1
0 . Utilizing a nonlinear

time coordinate τ , which satisfies dτ/dt = C
−1
0 , and introducing new fluctuating meniscus

and contact line fields through f̃(τ(t)) ≡ f(t), we obtain

∂τ h̃(x, y, τ) +
1

τ
h̃(x, y, τ) = −Mσ

4
∇2h̃(x, y, τ) , (C.296)

where we have also made use of the fact that ∂τ C̃0(τ) = 1/τ . This result follows if one
assumes Washburn’s growth law to hold right from the start of the experiment and neglects
the initial time dependence of the curvature: τ =

∫ t
0 ds(MσKs/u)−1/2. To solve the partial

differential equation (C.296) we proceed in three steps. We start with the simplest case and
ignore the left hand side of the previous equation altogether. This approximation corresponds
to situation where the fluctuations have become stationary. In the next approximation we
take into account the velocity term, ∂τ h̃ on the left hand side of Eq. (C.296) but ignore the
term (1/τ) h̃. Finally, we discuss the solution of the full equation with both terms on the left
included.

C.11.1 Quasi-stationary solution

This section presents the solutions of the fluctuations of the meniscus in the the quasi station-
ary approximation where all the time dependence of the modes has vanished. We also assume
that the velocity of the contact line has slowed down so much that we can take ∂tC0 ≈ 0. Let
us first present the quasi stationary solution with finite plate separation L. We will allow for
nontrivial contact line profile on both plates. The one on the wall at y = 0 will be denoted
by c̃a and the one one the wall at y = L will be denoted by c̃b. So, mathematically we are
looking for the solutions of the Poisson equation

∇2h̃ = 0 (C.297)
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with the boundary data h̃(x, 0, τ) = c̃a(x, τ) and h̃(x,L, τ) = c̃b(x, τ). The solutions in real
space are

h̃a(x, y, τ) =
sin(πy/L)

2L

∫ ∞

−∞
dx′

1

cosh(π(x′ − x)/L) − cos(πy/L)
c̃a(x′, τ) (C.298)

h̃b(x, y, τ) =
sin(πy/L)

2L

∫ ∞

−∞
dx′

1

cosh(π(x− x′)/L) + cos(πy/L)
c̃b(x′, τ) . (C.299)

Time in the equations above is just a parameter. In Fourier space these equations simplify a
great deal. Using residue summation it is possible to show that

∫ ∞

−∞
dx eıkx

1

cosh(πx/L) − cos(πy/L)
=

2L

sin(πy/L)

sinh(|k|(L− y))

sinh(|k|L)
. (C.300)

Substituting this into the Fourier transforms of Eqs. (C.298) and (C.299) yields the result
immediately. A more convenient way to arrive at the correct result is to use an exponential
(hyperbolic) attempt kernel which satisfies the boundary conditions at y = 0, L. Thus, the
fluctuations h̃ = h̃a + h̃b can be written as:

h̃qs(x, y, τ) =

∫

dk eıkx
sinh(|k|(L− y))

sinh(|k|L)
c̃a(k, τ) +

∫

dk eıkx
sinh(|k|y)
sinh(|k|L)

c̃b(k, τ) (C.301)

Taking the limit L → ∞ obviously recovers the kernel of Ref. [355] since the contribution
from h̃b vanishes:

lim
L→∞

h̃qs →
∫

dkeıkxe−|k|y c̃a(k) . (C.302)

where the normalization factor of 1/(2π) has been dropped to make the notations consistent.
It should also be noted that the quasi-stationary solution h̃(x, τ) ≡ h(x, t) by definition. So,
the tildes above the function names can be dropped if τ is replaced with t.

C.11.2 Diffusive solution: memory expansion

In the following we will discuss the justification of making the boundary data time dependent
in the quasi stationary approximation. Including time dependence of the fluctuations means
that instead of Eq. (C.297) we should solve the diffusion type of problem, which is valid in
the regime kC0 � 1:

(

∂τ − σ̃∇2
)

h̃ = 0 (C.303)

with the same boundary conditions as above: h̃(x, 0, τ) = c̃a(x, τ) and h̃(x,L, τ) = c̃b(x, τ).
With the aid of Green function Gd of the time dependent diffusion problem we can write

h̃a(x, y, τ) = σ̃

∫ τ

0
dτ1

∫ ∞

−∞
dx1 ∂y1Gd(x, y, τ ;x1, y1, τ1)|0 c̃a(x1, τ1) + h̃ai (τ) , (C.304)

with a similar result for h̃b. The contribution from the non-zero initial profile h̃ai (τ) will be
left out in the following. For finite wall separation the Green function which satisfies

(∂τ − σ̃∇2)Gd(x, y, τ ;x1, y1, τ1) = δ(x− x1)δ(y − y1)δ(τ − τ1) , (C.305)
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is expressible via the eigenfunction expansion of the form

Gd(x, y, τ ;x1, y1, τ1) = (C.306)

θ(τ − τ1)

∫ ∞

−∞
dkx

2

L

∞∑

n=1

e−σ̃[k2
x+(πn/L)2](τ−τ1) eıkx(x−x1) sin(nπy/L) sin(nπy1/L) ,

where θ is the Heaviside step function. Substitution of the Green function Gd into Eq. (C.304)
gives in the single wall case

h̃a(x, y, τ) = σ̃

∫ τ

0
dτ1

∫ ∞

−∞
dkx

2

L

∞∑

n=1

e−σ̃[k2
x+(nπ/L)2](τ−τ1)(nπ/L) sin(nπy/L) c̃a(kx, τ1) e

ıkxx ,

(C.307)
where we performed the integration over x1 resulting in the Fourier transform of c̃(x1, τ1). The
memory expansion parameter will be made explicitly through introduction of dimensionless
time coordinate s: τ1 ≡ τs. Eq. (C.307) takes the form

h̃a(x, y, τ) = σ̃τ

∫ 1

0
ds

∫ ∞

−∞
dkx

{

2

L

∞∑

n=1

e−(σ̃τ/L2)[(kxL)2+(nπ)2](1−s)

× (nπ/L) sin(nπy/L) c̃a(kx, τs) e
ıkxx

}

. (C.308)

The prefactor of the argument of the exponential function is calculated by using the definitions
of σ̃ = Mσ/4 and τ =

∫ t
0 ds 1/C0(s) with C0(t) given in Eq. (C.160). Hence,

σ̃τ/L2 = Mστ/(4L2) = uC0/(2KL
2) = u/(2ε) , (C.309)

where the small curvature expansion parameter ε ≡ KL2/C0. Thus, we can Taylor expand
the solution as power series in ε. In order to do this, we shift the origin of the time integration
through 1 − sold = snew and define ũ ≡ u/2. Eq. (C.308) becomes

h̃a(x, y, τ) = σ̃τ

∫ 1

0
ds

∫ ∞

−∞
dkx

{

2

L

∞∑

n=1

e−(ũ/ε)[(kxL)2+(nπ)2]s

× (nπ/L) sin(nπy/L) c̃a(kx, τ(1 − s)) eıkxx
}

. (C.310)

We notice that because ε goes to zero, only the values of s around zero will contribute
significantly to the integral because the larger values are exponentially damped. Therefore,
it makes sense to expand c̃a around s = 0:

c̃a(kx, τ(1 − s)) = c̃a(kx, τ) + ∂sc̃
a(kx, τ(1 − s))|0 s+

1

2
∂2
s c̃
a(kx, τ(1 − s))|0 + . . . (C.311)

=
∞∑

n=0

1

n!
∂nτ c̃

a(kx, τ)(−τs)n . (C.312)

At this point, we introduce a short-hand symbol Y ≡ (ũ/ε)[(kxL)2 + (nπ)2]. Obviously
Y → ∞ when ε → 0 because n ≥ 1. Substitution of the Taylor series into Eq. (C.310) and
shifting the order of the time integration and summation yields

h̃a(x, y, τ) = σ̃τ

∫ ∞

−∞
dkx

2

L

∞∑

n=1

{∫ 1

0
ds e−Y s (nπ/L) sin(nπy/L)

×
∞∑

m=0

1

m!
∂mτ c̃

a(kx, τ)(−τs)m eıkxx
}

. (C.313)
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Collecting the time dependent quantities in the previous expression leads us to study the
properties of the integral

∫ 1
0 ds exp(−Y s) sm, which can be conveniently represented as

(−∂Y )m
∫ 1

0
ds exp(−Y s) = (−∂Y )m

[

Y −1(1 − e−Y )
]

≈ (−1)mm!Y −1−p , (C.314)

where the last relation holds for Y sufficiently large. Thus, we could work out the derivatives
and write down the full solution h̃ in terms of them. However, to simplify the result we will
drop all the terms proportional to e−Y from the expression of Eq. (C.314) and keep only the
largest term, (−1)mm!Y −1−p:

h̃a(x, y, τ) ≈ σ̃τ

∫ ∞

−∞
dkx

2

L

∞∑

n=1

∞∑

m=0

{

(−1)mm!Y −1−m(nπ/L) sin(nπy/L)

× 1

m!
∂mτ c̃

a(kx, τ)(−τ)m eıkxx
}

. (C.315)

Next, we cancel out the factorials m! and the powers of (−1). Extraction of a factor of Y −1

allows us to write:

h̃a(x, y, τ) ≈
∫ ∞

−∞
dkx

2

L

∞∑

n=1

σ̃τ

Y

∞∑

m=0

(τ/Y )m(nπ/L) sin(nπy/L) ∂mτ c̃
a(kx, τ) e

ıkxx . (C.316)

Plugging in the definitions of Y and τ , we obtain σ̃τ/Y = L2/[(kxL)2 + (nπ)2]. The powers
of the expansion parameter emerge from the factor (τ/Y )m ∝ εm:

h̃a(x, y, τ) ≈
∞∑

m=0

εm
∫ ∞

−∞
dkx

2

L

∞∑

n=1

(nπ/L) sin(nπy/L)

(kx)2 + (nπ/L)2
τm ∂mτ c̃

a(kx, τ)

[(kxL)2 + (nπ)2]m
eıkxx . (C.317)

In the limit ε→ 0 only the first term of the sum over m survives. We denote it h̃qs because
it is exactly the same solution which we will find in Sect. C.11.3 to be the solution of the
Laplace’s equation ∇2h̃ = 0:

h̃aqs(x, y, τ) =

∫ ∞

−∞
dkx e

ıkxx 2

L

∞∑

n=1

(nπ/L) sin(nπy/L)

(kx)2 + (nπ/L)2
c̃a(kx, τ) . (C.318)

For small enough ε we can approximate the full solution by the quasi-stationary solution and
a first order correction term. Then, h̃a ≈ h̃aqs + εh̃a1, where

h̃a1(x, y, τ) =

∫ ∞

−∞
dx1 g1(x− x1, y, τ) ∂τ c̃

a(x1, τ) , (C.319)

where the kernel function g1 does not depend on the history (times prior to τ) in any way.
There is a factor τ multiplying the time derivative of the contact line position, though. In
Fourier space the new kernel function is given by

g1(kx, y, τ) ≡
2

L

∞∑

n=1

(nπ/L) sin(nπy/L)

(kx)2 + (nπ/L)2
τ

ũ[(kxL)2 + (nπ)2]
. (C.320)

Of course, an infinite series of time derivatives can give rise to history dependence. In this
particular case an exact summation over allm would reproduce the history dependent solution
given in Eq. (C.307). The particular representation given of Eq. (C.319) will be needed later
on in Sect. C.16 when trying to justify the chosen variational scheme for producing the
equation of motion of the contact line.
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C.11.3 Diffusive solution: reduction to quasi-stationary solution

Next, we will rewrite the results of the quasi stationary approximation in similar form as above
in order to see better, if the the time dependent problem reduces to the quasi stationary one
in some limit. The Green function in the quasi-stationary approximation can be written as

gqs(x, y;x1, y1) =

∫ ∞

−∞
dkx

2

L

∞∑

n=1

eıkx(x−x1) sin(nπy/L) sin(nπy1/L)

k2
x + (nπ/L)2

. (C.321)

In terms of gaqs, the fluctuations of the meniscus are expressible as

h̃aqs(x, y, τ) =

∫ ∞

−∞
dx1∂yigqs(x, y;x1, y1)|0 c̃a(x1, τ) (C.322)

=

∫ ∞

−∞
dkx

2

L

∞∑

n=1

1

k2
x + (nπ/L)2

(nπ/L) sin(nπy/L) c̃a(kx, τ)e
ıkxx .(C.323)

Comparing this with Eq. (C.307) suggests that we should check if it is possible to make the
exponential term approach a delta function in time. We first note that if the contact line c̃a

is not time dependent, we can integrate

∫ τ

0
dτ1 e

−σ̃[k2
x+(nπ/L)2](τ−τ1) =

1 − e−σ̃[k2
x+(nπ/L)2]τ

σ̃[k2
x + (nπ/L)2]

(C.324)

We notice that the denominator has the correct form appearing in the expression of the quasi
stationary Green function gqs. To get rid of the exponentially decaying time dependent term
in the numerator in Eq. (C.324), we can set t → ∞. Alternatively, in the limit ε → 0, or
σ̃τ/L2 ∝ 1/ε→ ∞,

σ̃

∫ τ

0
dτ1 e

−σ̃[k2
x+(nπ/L)2](τ−τ1) =

σ̃τ

L2

∫ 1

0
ds1 L

2 e−(σ̃τ/L2)[(Lkx)2+(nπ)2](1−s1) (C.325)

→ 1

k2
x + (nπ/L)2

. (C.326)

Based on this observation we construct the representation of the one-sided delta function.
For x ≥ 0,

lim
σ̃→∞

σ̃e−σ̃x → δ(x) . (C.327)

In case the argument of the exponential being more complicated, we will use the usual rules
to simplify the argument of the delta function. In particular,

lim
σ̃→∞

σ̃e−σ̃[k2
x+(nπ/L)2](τ−τ1) → 1

k2
x + (nπ/L)2

δ(τ − τ1) . (C.328)

Thus, for large values of σ̃ the system looses its memory and we have the relation

lim
σ̃→∞

h̃a(x, y, τ) → h̃aqs(x, y, τ) . (C.329)

In conclusion, we have given an intuitive explanation for the use of h̃aqs(x, y, τ) instead of

h̃a(x, y, τ) in the limit ε very small. As shown in the previous section, h̃qs is just the beginning
of a systematic expansion in powers of ε.
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C.11.4 Full solution

The full solution of this equation is expressible in terms of the kernel functions ga and gb

when there are two walls present in the system. In other words,

h̃(x, y, τ) =

∫ τ

0
dτ1

∫ ∞

−∞
dx1 g

a(x− x1, y, τ, τ1) c̃
a(x1, τ1)

+

∫ τ

0
dτ1

∫ ∞

−∞
dx1 g

b(x− x1, y, τ, τ1) c̃
b(x1, τ1) , (C.330)

where superscripts a and b refer to the two walls situated at y = 0 and y = L, respectively.
A straightforward generalization of Eq. (C.307) yields

ga(x, y, τ, τ1) ≡
Mσ

4
F−1
x/kx

{

2

L

∞∑

m=1

e−(Mσ/4) k̃2
m(τ−τ1)+ln(τ/τ1)

(
mπ

L

)

sin

(
mπy

L

)}

, (C.331)

where k̃m =
√

k2
x + (mπ/L)2. Next, we will derive the criterion that allows us to reduce the

full solution to the diffusive one. The condition for ignoring the second term on the right
hand side of Eq. (C.295) can be obtained by comparing it to the diffusive term on the right.
The condition is (Mσ/4)k2 � ∂tC0, which can be also expressed as

(Mσ/4) k2 � ∂tC0 = Mσε/(2uL2) ⇒ k � [2ε/(uL2)]1/2 = [2KL2/(C0uL
2)]1/2 (C.332)

⇒ 1/C0 � k � (K/C0)
1/2 ⇒ K � 1/C0 . (C.333)

The first equality in Eq. (C.332) has been obtained by substituting the Washburn’s growth
law for C0. The next equality is due to definition of ε ≡ KL2/C0. Finally, in Eq. (C.333) we
have taken into account the wave number restriction kC0 � 1. Hence, when the second term
in the equation of motion of the meniscus can be ignored, the kernel function ga reduces to

ga(x, y, τ, τ1) ≡
Mσ

4
F−1
x/kx

{

2

L

∞∑

m=1

e−(Mσ/4) k̃2
m(τ−τ1)

(
mπ

L

)

sin

(
mπy

L

)}

, (C.334)

This result can be immediately obtained by comparing it with the integral kernel presented
in Eq. (C.304). For double wall set-up

ga(x− x1, y, τ, τ1) ≡ ∂y1Gd(x, y, τ ;x1, y1, τ1)|0 ; (C.335)

gb(x− x1, y, τ, τ1) ≡ ∂y1Gd(x, y, τ ;x1, y1, τ1)|L . (C.336)

Finally, in the limit of vanishing curvature we can reduce the diffusive solution to the quasi-
stationary one. That is, when ε � 1 we can replace the kernel functions of the previous
equation with the corresponding ones of the quasi-stationary kernels:

ga(x− x1, y) ≡ ∂y1G0(x, y;x1, y1)|0 ; (C.337)

gb(x− x1, y) ≡ ∂y1G0(x, y;x1, y1)|L , (C.338)

where the homogeneous Green’s function G0 has been defined in Eq. (C.507). Naturally, the
time integrals are not needed any more as in Eq. (C.330) and we simply have

h̃(x, y, τ) =

∫ ∞

−∞
dx1 g

a(x− x1, y) c̃
a(x1, τ) +

∫ ∞

−∞
dx1 g

b(x− x1, y) c̃
b(x1, τ) . (C.339)

Thus, we have shown how the different approximations can be generated by the full solution
of the meniscus fluctuations. When deriving the contact line equation we will first use the
quasi-stationary solution, and later on, when discussing memory effects, the diffusive solution.
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C.12 Contact line dynamics of pure system

In Sect. C.5 we separated the zeroeth order meniscus motion (H0) of a system with pure
walls from the fluctuating part (h) which accounts for the effect of random surface tensions
of impure walls. Consequently, we constructed two variational equations, Eq. (C.108) and
Eq. (C.109) which in this section will be further projected to produce the contact line equa-
tions of motion. Specifically, acting with projection operator PC on both sides of the meniscus
equations of motion, we obtain

δRp1D[Ċ0]

δĊ0(t)
= −δF

p
1D [C0]

δC0(t)
; (C.340)

δRr1D[ċ]

δċ(x, t)
= −δF

r
1D [c]

δc(x, t)
, (C.341)

where the new 1D functionals are obtained from the 2D meniscus functionals by substituting
H0(C0) and h(c) into the 2D functionals and integrating out the y-coordinate. This will be
demonstrated in Sect. C.12.2. In the following we will concentrate the pure part C0 and
discuss two different representations.

C.12.1 VarF derivation for pure system

As shown in Sect. C.5.3, there are two different constructions for the functionals (VarF1 given
by Eq. (C.116) and VarF2 given by Eq. (C.120)) which produce almost the same equation of
motion for the zeroeth order meniscus profile H0; the only difference is that VarF2 contains two
extra integrals on both sides of the equation of motion as compared to the other. This means
that the exact solution H0(C0) of Eq. (C.120)) will also be the exact solution of Eq. (C.116).
Moreover, due to its construction, the equation of motion of H0 as given by VarF1 is identical
with the equation motion produced by the direct projection method DirP in Eq. (C.100).

We will now study if the same conclusion, equivalence of VarF1 and DirP that is, holds also
at the contact line level C0. At the meniscus level H0 we were able to design our functionals
in such a way that the variational formulation VarF1 reduced to the direct projection of the
bulk equation of motion, which can be derived in various ways. At contact line level we do not
know the correct answer in beforehand. However, since it is possible to use DirP to produce
the equation of motion of C0 owing to the ansatz H0 = C0 + K(y2 − Ly), as a consistency
check we want to show that DirP and VarF applied to C0 do give similar results. If they did
not, we could not trust the variational formulation to give a sensible result for the contact
line fluctuations c for which there is no DirP available due to the lack of the analogue of
H0 = C0 +K(y2 − Ly) for h.

Our starting point is the assumption that the pure meniscus profile is a parabolic one (let
us concentrate on double wall case for simplicity):

H0(C0) = C0(t) +K(t)(y2 − Ly) , (C.342)

where the contact line height C0(t) and the curvature K(t) are unknown functions of time
to be determined from Eq. (C.340). In the following we assume that the curvature and the
contact line can be independently varied. This assumption is not crucial for δRp

1D, where we
can additionally require that we are in a regime where the curvature has reached its stationary
value and therefore K̇(t) ≈ 0. However, this requirement is not used in the following.

Rp1D[Ċ0] ≡
4

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2
(

Ċ0(t1) + K̇(t1)(y
2
1 − Ly1)

)
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×
(

GH0
3D(1; 2)δt1 |t2 δ−x1|x2

) (

Ċ0(t2) + K̇(t2)(y
2
2 − Ly2)

)

. (C.343)

The variation with respect to contact line velocity is obtained at once. Integrating out the
time coordinates we obtain

δRp1D [Ċ0]/δĊ0(t) = (C.344)

8

M

∫

dA1

∫

dA2G3D(x1, y1,H0(y1, t);x2, y2,H0(y2, t))δ−x1|x2

(

Ċ0(t) + K̇(t)(y2
2 − Ly2)

)

=
4

M

∫

dy1

∫

dx2

∫

dy2 G3D(0, y1,H0(y1, t);x2, y2,H0(y2, t))
(

Ċ0(t) + K̇(t)(y2
2 − Ly2)

)

=
4

M

∫

dy

∫

dx1

∫

dy1 G3D(x, y,H0(y, t);x1, y1,H0(y1, t))
(

Ċ0(t) + K̇(t)(y2
1 − Ly1)

)

In the third line we made a change of variables, (x2)new = 2(x2)old and in the last line we
renamed the arguments and added a dummy argument x. Adding a dummy argument is
possible if G3D(1; 2) depends on the difference x1 − x2 only. In addition, the x1 integration
must run from −∞ to ∞.

The right hand side of the equation of motion of the contact line is based on the functional
F p2D[H0] given in Eq. (C.114):

F p1D[C0] ≡
∫

dy1

∫

dt1

∫

dy2

∫

dt2
1

2

{(

C0(t1) +K(t1)(y
2
1 − Ly1)

)

×
(

−σ∂2
y1δy1|y2δt1 |t2

)(

C0(t2) +K(t2)(y
2
2 − Ly2)

)}

. (C.345)

It is noted that if one uses the other representation of F p
2D[H0] given in Eq. (C.115) to

generate F p1D[C0] one fails if the boundary terms are not taken into account: the derivatives
with respect to y1 destroy constant C0. Variation yields

−δF
p
1D [C0]

δC0(t)
=

∫

dy1

∫

dy2

(

σ∂2
y2δy1|y2

) (

C0(t) +K(t)(y2
2 − Ly2)

)

=

∫

dy1 2σK = 2σKL .

(C.346)
The first equality is obtained by removing the delta functions of time coordinates. Next, we
have integrated by parts twice with respect to variable y2. Finally, the integral over y1 goes
from 0 to L in the double wall set-up.

Let us now collect the results and see what the equation of motion for the contact line
profile, C0, of the pure system looks like. Setting Eq. (C.344) equal to Eq. (C.346) gives the
VarF equation of motion for C0:

∫

dy

∫

dx1

∫

dy1

{

G3D

(

x, y,C0(t) +K(t)(y2 − Ly) ; x1, y1,C0(t) +K(t)(y2
1 − Ly1)

)

×
(

Ċ0(t) + K̇(t)(y2
1 − Ly1)

)}

=
1

2
MσKL . (C.347)

The previous equation obtained through variational method (VarF) will be compared below
with the equation of motion which can be obtained from directly projecting the zeroeth order
meniscus equation.

C.12.2 Comparison of VarF and DirP: Washburn’s law

In this section we show that both variational and direct projection methods yield a solu-
tion which goes like C0 ∼ t1/2 consistent with Washburn’s law, which states that the mean
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meniscus height (contact line height) should grow like t1/2 for large times without pinning
mechanisms. Direct projection of Eq. (C.100), which is the same as Eq. (C.116), onto the
plane y = 0 gives the following DirP equation of motion for C0:

∫ ∞

−∞
dx1

∫ L

0
dy1

{

G2W
3D

(

x, 0,C0(t);x1, y1,C0(t) +K(t)(y2
1 − Ly1)

)

×
(

Ċ0(t) + K̇(t)(y2
1 − Ly1)

)}

=
1

2
MσK , (C.348)

where we have used the fact that H0(0, t) = C0(t) and ∂2
yH0(y, t)|0 = 2K. As compared

to VarF equation (C.347), there is the factor L missing from the right hand side (due to
integration over y1) and likewise, there is an integral over y missing on the left hand side.
In addition the argument z of the Green’s function G2W

3D (x, y, z;x1, y1, z1) is H0(0, t) for DirP
where as for VarF it is H0(y, t). The question is, whether these two equations give the same
physics for some parameter range or not.

Let us simplify the problem by requiring that the curvature of the meniscus is small. The
small parameter of the theory is the dimensionless number ε ≡ KL2/C0 � 1. We will also
assume that the rise of the meniscus follows Washburn’s diffusive t1/2 law from the beginning
which allows us to ignore the time variation of the curvature: K̇ = O(ε2). Thus, Eq. (C.348)
reduces to ∫ ∞

−∞
dx1

∫ L

0
dy1 G

2W
3D (x, 0,C0(t);x1, y1,C0(t)) Ċ0(t) ≈

1

2
MσK , (C.349)

Correspondingly, Eq. (C.347) yields to order O(ε)

∫ L

0
dy

∫ ∞

−∞
dx1

∫ L

0
dy1G

2W
3D (x, y,C0(t);x1, y1,C0(t)) Ċ0(t) ≈

1

2
MσKL . (C.350)

In the new coordinate frame it becomes easier to study the limit of the wall separation L
becoming large. To further simplify the computational task, we make use of the fact that the
larger the separation of the two walls, the more the Green’s function G2W

3D starts resembling
the Green function G1W

3D . This can be seen directly through mirror charge technique as shown
in Sect. C.6. Thus, we replace G2W

3D with G1W
3D yet keeping the upper integration limit L finite.

Let

w(x, y) ≡ 1

4π




1

√

x2 + y2
− 1
√

x2 + y2 + 4C2
0



 . (C.351)

With G1W
3D replaced by G1W

3D (x, y,C0;x1, y1,C0) = w(x − x1, y − y1) + w(x − x1, y + y1), the
DirP equation. (C.349) reads

∫ ∞

−∞
dx1

∫ L

0
dy1 w(x1, y1) Ċ0(t) +

∫ ∞

−∞
dx1

∫ L

0
dy1 w(x1, y1) Ċ0(t) ≈

1

2
MσK , (C.352)

Expressing G1W
3D in terms of the new function u and plugging it into Eq. (C.350) reveals the

difference the y-argument of u as compared to DirP:

∫ L

0
dy

∫ ∞

−∞
dx1

∫ L

0
dy1 w(x1, y − y1) Ċ0(t) +

∫ L

0
dy

∫ ∞

−∞
dx1

∫ L

0
dy1 w(x1, y + y1) Ċ0(t) ≈

1

2
MσKL ,

(C.353)
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The integrals can be explicitly computed for both cases and the final result is the VarF and
Dirp equations of motion differ by terms of the order L−1. Therefore, in the single wall limit
they both reduce to the form

uC0∂tC0 =
MσK

2
, (C.354)

where u = 4π. In the bulk of the text we will use just the general coefficient u, as for finite L
we should include also higher order correction terms of the Green’s function given in a mirror
charge series representation, not just the single wall contribution corresponding to summand
m = 0 used in the calculation above. From Eq. (C.354) it follows that

C0(t) =

√

MσKt

u
+ c2i , (C.355)

where ci = C0(0) is the initial height of the contact line at time t = 0. When ci is zero, the
Washburn’s law is seen to hold for all times. The choice of a non-zero value for the initial
height ci is discussed in Sect. C.8. Yet another factor which can affect the dynamics of C0

is a non-zero projected boundary term Λ̃H0 which modifies the equation of motion to the
following form

u ∂t(C
2
0/2) = MσK/2 + Λ̃H0 , (C.356)

where we have neglected possible spatial dependence of Λ̃ for simplicity. Even if K = 0 some
nontrivial C0(t) will be generated depending on the time dependence of Λ̃H0 . For K 6= 0,
Washburn’s behaviour can change. However, for present boundary conditions Λ̃H0 = 0 and
it will be excluded from the analysis to follow.

C.13 Variational derivation of contact line fluctuations

Variational derivation of the fluctuations of the contact line dynamics is presented in this
section. We derive the dynamics of the double wall set-up and show that the result reduce
to those corresponding to single wall when the wall separation L → ∞. Our approach is
to project the meniscus functionals defined in a 2D space into one dimensional functionals
containing the contact line as collective coordinate. The full meniscus solution H = H0 +
h, where the pure meniscus solution is assumed to be parabolic, H0(y, t) = C0 − KLy +
Ky2, and the fluctuation correction h(x, y, t) = ha(x, y, t) +hb(x, y, t) describing the effect of
nonhomogeneous surface tension of the walls a and b. In this section we will use the quasi-
stationary solutions haqs and hbqs. Inclusion of memory effects will be discussed in Sect. C.16.
Specifically,

hiqs(x, y, t) =

∫ ∞

−∞
dx1 g

i
qs(x− x1, y) c

i(x1, t) , (C.357)

where i = a, b. We have made use of the fact that h̃(x, y, τ(t)) = h(x, y, t) and c̃(x, τ(t)) =
c(x, t). In the memoryless case the Rayleigh dissipation functional can be written down
immediately. We first use the definition of Rr

2D in Eq. (C.121), where we replace ḣ = ḣa+ ḣb:

Rr1D[ ċa, ċb ] ≡ 2

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 δt1|t2
{

[

ḣaC(1, t1) + ḣbC(1, t1)
]

GH0
3D(1; 2)

[

ḣaC(2, t2) + ḣbC(2, t2)
]

(C.358)

+ 2
[

ḣaC(1, t1) + ḣbC(1, t1)
] [

∂z1G
H0
3D(1; 2)hC(1, t1) + ∂z2G

H0
3D(1; 2)hC(2, t2)

]

Ḣ0(2, t2)
}

.
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The limit specification reads
∫
dAi =

∫∞
−∞ dxi

∫ L
0 dyi, i = 1, 2. The notation ḣiC means that

the actual variable is not ḣi but velocity of the contact line at wall i. There is an obvious
relation between these two in the quasi-stationary approximation where we take hiC = hiqs.
Thus,

ḣiC(x, y, t) ≡ ∂

∂t

∫ ∞

−∞
dx1 g

i(x− x1, y) c
i(x1, t) =

∫ ∞

−∞
dx1 g

i(x− x1, y) ċ
i(x1, t) (C.359)

for i = a, b. It should also be noted that h is not taken to depend on the velocities ċi. For this
reason, and because it saves some space, we do not single out the contributions h = ha + hb

inside the square brackets of Eq. (C.359) until right at the end. This point will be further
discussed later on in Sect. C.16. Next, we isolate terms depending on ċa into a functional of
their own which we call:

Ra1D[ ċa, ċb ] ≡ 2

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 δt1|t2
{

ḣaC(1, t1)G
H0
3D(1; 2) ḣaC(2, t2) + 2ḣaC(1, t1)G

H0
3D(1; 2) ḣbC(2, t2) (C.360)

+ 2ḣaC(1, t1)
[

∂z1G
H0
3D(1; 2)hC(1, t1) + ∂z2G

H0
3D(1; 2)hC(2, t2)

]

Ḣ0(2, t2)
}

.

Next, we substitute Eq. (C.359) into the previous equation and take functional differentials
of the terms ḣa with respect to ċa to produce the contact line equation for ca:

δRa1D[ ċa, ċb ]

δċa(x, t)
≡ 2

M

∫

dA1

∫

dt1

∫

dA2

∫

dt2 δt1|t2

{

(C.361)

∫

dx′1 g
a(x1 − x′1, y1) δx|x′1δt|t1 G

H0
3D(1; 2)

∫

dx′2 g
a(x2 − x′2, y2) ċ

a(x′2, t2)

+

∫

dx′1 g
a(x1 − x′1, y1) ċ

a(x′1, t1)G
H0
3D(1; 2)

∫

dx′2 g
a(x2 − x′2, y2) δx|x′2δt|t2

+2

∫

dx′1 g
a(x1 − x′1, y1) δx|x′1δt|t1 G

H0
3D(1; 2)

∫

dx′2 g
b(x2 − x′2, y2) ċ

b(x′2, t2)

+ 2

∫

dx′1 g
a(x1 − x′1, y1) δx|x′1δt|t1

[

∂z1G
H0
3D hC(1, t1) + ∂z2G

H0
3D hC(2, t2)

]

Ḣ0(2, t2)

}

.

The arguments of the Green’s functions in brackets on the last line are ∂ziG
H0
3D = ∂ziG

H0
3D(1; 2),

for i = 1, 2. Next, we perform the integrals associated with the delta functions. The symmetry
of the Green’s functions shows that the expressions in the first two terms are the same and
can be combined. Eq. (C.361) reduces to

δRa1D[ ċa, ċb ]

δċa(x, t)
≡ 4

M

∫

dx1

∫

dx2

∫

dy1

∫

dy2

{

(C.362)

ga(x1 − x, y1)G3D(x1, y1,H0(y1, t);x2, y2,H0(y2, t))

∫

dx′2 g
a(x2 − x′2, y2) ċ

a(x′2, t)

+ ga(x1 − x, y1)G3D(x1, y1,H0(y1, t);x2, y2,H0(y2, t))

∫

dx′2 g
b(x2 − x′2, y2) ċ

b(x′2, t2)

+ ga(x1 − x, y1)
[

∂z1G3D(x1, y1, z1;x2, y2,H0(y2, t))|H0 hC(x1, y1, t)

+ ∂z2G3D(x1, y1,H0(y1, t);x2, y2, z2))|H0 hC(x2, y2, t)
]

Ḣ0(y2, t2)
}

.
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The substitution symbols in the previous equation are to be interpreted as ∂z1G3D|H0 ≡
∂z1G3D|H0(y1,t) and ∂z2G3D|H0 ≡ ∂z2G3D|H0(y2,t). This completes the derivation of the left
hand side of the equation of motion of the contact line in real space.

Let us now move on to derive the right hand side, too. The free energy functional of the
fluctuations, F r2D[ha, hb], is given in Eq. (C.125). We first simplify the functional by removing
some integrals:

F r2D[h] =
1

2

∫

dA1

∫

dt1

∫

dA2

∫

dt2 h(1, t1)
[

−σ δt1|t2(∂2
x1
δx1|x2

)δy1|y2

−σ δt1 |t2δx1|x2
(∂2
y1δy1|y2)

]

h(2, t2) , (C.363)

Delta functions δt1 |t2 serve just to make the kernel symmetric, and they can be integrated
out right away. Assuming that h(x, y, t) dies off at x = ±∞, we can transfer the derivative
of the delta function into derivative of the meniscus without any surface terms arising from
partial integration. Since the domain is restricted in y-direction, we have to be more careful:

∫ L

0
dy1

∫ L

0
dy2 h(x1, y1)(∂

2
y1δy1|y2)h(x2, y2) =

∫ L

0
dy1

∫ L

0
dy2 ∂y1h(x1, y1) δy1|y2∂y2h(x2, y2)

+ boundary terms (C.364)

Time arguments were dropped for simplicity. The boundary terms will be functions of C0

and therefore irrelevant when taking variations with respect to the contact line fluctuations
ca or cb. Therefore, we are left with

F r2D[h] =

∫

dA1

∫

dA2

∫

dt1
[

∂x1h(x1, y1, t1) δx1|x2
δy1|y2 ∂x2h(x2, y2, t1) (C.365)

+ ∂y1h(x1, y1, t1) δx1|x2
δy1|y2 ∂y2h(x2, y2, t1)

]

=

∫

dx1

∫

dy1

∫

dt
[

(∂x1h(x1, y1, t1))
2 + (∂y1h(x1, y1, t1))

2
]

(C.366)

Following the same recipe as for the Rayleigh dissipation functional, we substitute hC =
haC + hbC. Again, the subscript C refers to the fact that h is a function of the contact line
profile, given by Eq. (C.357). Thus,

F r1D[ca, cb] ≡
∫

dx1

∫

dy1

∫

dt1
{

(∂x1[h
a
C(1, t1) + hbC(1, t1)])

2 + (∂y1[h
a
C(1, t1) + hbC(1, t1)])

2
}

(C.367)
When taking functional derivative with respect to ca we can ignore those parts of the func-
tional which depend solely on cb. Therefore, we define a reduced free energy functional:

F a1D[ca, cb] ≡
∫

dx1

∫

dy1

∫

dt1
{

|∇haC(1, t1)|2 + 2∇haC(1, t1)∇hbC(1, t1)
}

, (C.368)

where ∇ ≡ ex∂x+ey∂y is the two dimensional gradient operator. After setting hiC = hiqs and

expressing hqs in terms of ci according to Eq. (C.357), the variation with respect to ca gives

−δF
a
1D[ca, cb]

δca(x, t)
= −

∫

dA1

∫

dt1

{

(C.369)

2

∫

dx′1 ∂x1g
a(x1 − x′1, y1) δx|x′1δt|t1

∫

dx′′1 ∂x1g
a(x1 − x′′1 , y1) c

a(x′′1, t1)
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+2

∫

dx′1 ∂y1g
a(x1 − x′1, y1) δx|x′1δt|t1

∫

dx′′1 ∂y1g
a(x1 − x′′1, y1) c

a(x′′1 , t1)

+ 2

∫

dx′1 ∂x1g
a(x1 − x′1, y1) δx|x′1δt|t1

∫

dx′′1 ∂x1g
b(x1 − x′′1 , y1) c

b(x′′1 , t1)

+ 2

∫

dx′1 ∂y1g
a(x1 − x′1, y1) δx|x′1δt|t1

∫

dx′′1 ∂y1g
b(x1 − x′′1, y1) c

b(x′′1, t1)
}

The factor of two on the first two lines is due to the fact that ca appears twice in the expression
|∇haC|2 = (∂x1h

a
C)2 +(∂y1h

a
C)2. On the last two lines it derives from the expression 2∇haC∇hbC.

Removal of delta functions and regrouping gives

−δF
a
1D[ca, cb]

δca(x, t)
= −2

∫

dy1

{∫

dx1 ∂x1g
a(x1 − x, y1)

∫

dx′′1 ∂x1g
a(x1 − x′′1, y1) c

a(x′′1 , t) (C.370)

+

∫

dx1 ∂y1g
a(x1 − x, y1)

∫

dx′′1 ∂y1g
a(x1 − x′′1, y1) c

a(x′′1 , t)

+

∫

dx1 ∂x1g
a(x1 − x, y1)

∫

dx′′1 ∂x1g
b(x1 − x′′1 , y1) c

b(x′′1 , t)

+

∫

dx1 ∂y1g
a(x1 − x, y1)

∫

dx′′1 ∂y1g
b(x1 − x′′1, y1) c

b(x′′1, t)
}

.

Together with Eq. (C.362) the previous equation constitutes the real space equation of motion
of the contact line fluctuations.

C.14 Fourier components of contact line fluctuations

The equation of motion for the fluctuations derived in the previous section will be simplified
below by performing a spatial Fourier transformation and by integrating out the dependence
on the y-coordinate. Processing the left hand side of the equation,

Fx/kx
{

δRa1D[ċa, ċb]

δċa(x, t)

}

= Fx/kx
{

−δF
a
1D[ ca, cb ]

δca(x, t)

}

, (C.371)

with the Rayleigh dissipation functional will take considerably more effort than transforming
the free energy. Thus, let us begin simplification of expression (C.362). We write

Fx/kx
{

δRa1D[ċa, ċb]

δċa(x, t)

}

= Fx/kx
{
I ′B
}

+ Fx/kx
{
I ′C
}

+ Fx/kx
{
I ′D
}
, (C.372)

where the different terms on the right hand side can be immediately read off from Eq. (C.362).
The time derivative terms (which are dependent on ċa or ċb) contribute to I ′D, the rest are
grouped into I ′B and I ′C .

Fx/kx
{
I ′B
} ≡ Fx/kx

{∫

dA1

∫

dA2 g
a(x− x1, y1)hC(x1, y1, t) ∂z1G3D(1; 2; t) ∂tH0(y2, t)

}

=

∫ L

0
dy1

∫ L

0
dy2

{

ga(kx, y1)
(

ga(kx, y1)c
a(kx, t) + gb(kx, y1)c

b(kx, t)
)

×
∫

dx2 ∂z1G3D(1; 2; t) ∂tH0(y2, t)

}

(C.373)
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where ∂z1G3D(1; 2; t) ≡ ∂z1G3D(x1, y1, z1;x2, y2,H0(y2, t))|H0(y1,t). It should be noted that
∫
dx2 ∂z1G3D(1; 2; t) is not a function of x1 because G3D is translationally invariant object in

the x-direction.

Fx/kx
{
I ′C
} ≡ Fx/kx

{∫

dA1

∫

dA2 g
a(x− x1, y1) ∂z2G3D(1; 2; t)hC(x2, y2, t) ∂tH0(y2, t)

}

=

∫ L

0
dy1

∫ L

0
dy2

{

ga(kx, y1)Fx1/kx

{

∂z2G3D(1; 2; t)
}

×
(

ga(kx, y2)c
a(kx, t) + gb(kx, y2)c

b(kx, t)
)

∂tH0(y2, t)

}

. (C.374)

The short-hand notation ∂z2G3D(1; 2; t)∂z2G3D(x1, y1,H0(y1, t);x2, y2, z2)|H0(y2,t). In contrast
to I ′B , there is a true convolution between hC(2, t) and the derivative of the Green’s function
∂z2G3D(1; 2; t).

Fx/kx
{
I ′D
} ≡ Fx/kx

{∫

dA1

∫

dA2 g
a(x− x1, y1)G3D(1; 2; t) ∂thC(x2, y2, t)

}

=

∫ L

0
dy1

∫ L

0
dy2

{

ga(kx, y1)Fx1/kx

{

G3D(1; 2; t)
}

×
(

ga(kx, y2)∂tc
a(kx, t) + gb(kx, y2)∂tc

b(kx, t)
) }

. (C.375)

We have denoted G3D(1; 2; t) ≡ G3D(x1, y1,H0(y1, t);x2, y2,H0(y2, t)). Having now Fourier
transformed the left hand side of the contact line equation of motion we proceed to perform
the integrals over y1 and y2. For this purpose we present the Fourier transforms of the
quasi-stationary kernels

ga(kx, y1) =
sinh(|kx|(L− y1))

sinh(|kx|L)
; gb(kx, y1) =

sinh(|kx|y1)

sinh(|kx|L)
. (C.376)

It should be kept in mind that due to the fact that the contact line equation should be Fourier
transformed only in variable x (y1 and y2 being integrated over), the contact line equation
of motion can be obtained for arbitrary H0(y, t): we do not need to use the approximation
H0(y, t) ≈ C0(t) which was needed to make the left hand side of the meniscus equation of
motion both Fourier transformable and all the terms (IB , IC and ID) of the same order in
expansion parameter ε. However, since the solution of the meniscus equation is needed to
produce the equation of motion of the contact line, it is consistent to keep on using the same
approximation H0(y, t) ≈ C0(t) also here.

The treatment of all the terms Fx/kxI ′s, s = B,C,D, will be similar to each other. For
clarity we consider them in separate subsections below. To summarize before going into the
actual calculations, the left hand side of the contact line equation of motion for double wall
set-up takes the following form:

Fx/kx
{

δRa1D[ċa, ċb]

δċa(x, t)

}

= Fx/kx
{

I ′B
}

+ Fx/kx
{

I ′C
}

+ Fx/kx
{

I ′D
}

=
(

paB c
a + pbB c

b
)

+
(

paC c
a + pbC c

b
)

+
(

paD ∂tc
a + pbD ∂tc

b
)

, (C.377)

where the explicit representations of the coefficient functions pa,bs (s = B,C,D) will be derived
in the following sections.
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C.14.1 Term I ′
B

To avoid overly lengthy expressions we will consider separately the two contributions coming
from contact line profiles a and b:

Fx/kx
{
I ′B
}

= paB(kx, t)c
a(kx, t) + pbB(kx, t)c

b(kx, t) , (C.378)

where we have defined the coefficient functions

paB(kx, t) ≡
∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)g
a(kx, y1)

∫ ∞

−∞
dx2 ∂z1G3D(1; 2; t) ∂tH0(y2, t) ; (C.379)

pbB(kx, t) ≡
∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)g
b(kx, y1)

∫ ∞

−∞
dx2 ∂z1G3D(1; 2; t) ∂tH0(y2, t) . (C.380)

Since the Green’s function G3D = (1/L)GI2D+GS3D can be further split in two, corresponding
to the zeroeth order Fourier mode and the sum over the nonzero modes due to the finite wall
separation in the y-direction, we can further subdivide the coefficient functions paB and pbB
accordingly. The definition of the Green’s function leads to

∂z1G
2W
3D (x1, y1, z1;x2, y2,C0)|C0 =

1

L
∂z1G

I
2D(x1, z1;x2,C0)|C0 (C.381)

− 2

L

∞∑

n=1

cos(nπy1/L) cos(nπy2/L) ∂z1 f̃n(x1 − x2, z1)|2C0

=
1

L
JB1(x1 − x2,C0) +

2

L

∞∑

n=1

cos(nπy1/L) cos(nπy2/L) JB2(x1 − x2, n,C0) . (C.382)

We have dropped out the y-dependence of H0 and approximated H0 ≈ C0. The definitions of
JB1 and JB2 have been given in Eq. (C.256). Substitution of the previous equation into the
definition of paB (Eq. (C.379)) gives rise to the following terms:

paB(kx, t) = paIB (kx, t) + paSB (kx, t) , (C.383)

where the superscripts I and S refer to the contribution of the n = 0 term of the sum over
Fourier components in y-direction and S contains the sum over all non-zero components.
Specifically,

paIB (kx, t) ≡
1

L

∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)g
a(kx, y1)

∫ ∞

−∞
dx2 JB1(x2,C0)∂tC0 , (C.384)

where we have removed the dummy argument x1 from the integral over x2 by shifting the
origin.

paSB (kx, t) ≡
2

L

∫ L

0
dy1

∫ L

0
dy2

{

ga(kx, y1)g
a(kx, y1) (C.385)

×
∫ ∞

−∞
dx2

∞∑

n=1

cos

(
nπy1

L

)

cos

(
nπy2

L

)

JB2(x2, n,C0) ∂tC0

}

.

Again, the dummy variable x1 vanishes by shifting the origin of x2. Because the integral
∫ L
0 dy2 cos(nπy2/L) = 0, we get that paSB (kx, t) = 0 in the current approximation. For paIB we
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get

paIB (kx, t) = ∂tC0
1

L

∫ L

0
dy1 g

a(kx, y1)g
a(kx, y1)

∫ L

0
dy2

∫ ∞

−∞
dx2 JB1(x2,C0) (C.386)

=
1

2
∂tC0

∫ L

0
dy1 g

a(kx, y1)g
a(kx, y1) , (C.387)

The second equality above follows from the fact that
∫∞
−∞ dx2JB1(x2,C0) = 1/2. Performing

the integral over y1 yields

paIB (kx, t) =
1

2
∂tC0

sinh(2|kx|L) − 2|kx|L
4|kx| sinh2(|kx|L)

. (C.388)

In the limit L → ∞ the expression simplifies, paIB → ∂tC0/(4|kx|). There is also another
limit which has physical relevance and yields an expression for paIB which does not diverge for
kx → 0. Keeping L finite but letting |kx|L approach zero, we get paIB → L∂tC0/3.

The results for the contact line profile cb will be derived similarily. The main difference
as can be seen by comparing Eq. (C.379) with Eq. (C.380) is that one of the two Green’s
function ga present is replaced with gb. Therefore, we can immediately write down the terms
in the decomposition pbB = pbIB + pbSB , where

pbIB (kx, t) ≡
1

L

∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)g
b(kx, y1)

∫ ∞

−∞
dx2 JB1(x2,C0)∂tC0 , (C.389)

where the dummy argument x1 from the integral over x2 has been removed. The second term
of the decomposition,

pbSB (kx, t) ≡
2

L

∫ L

0
dy1

∫ L

0
dy2

{

ga(kx, y1)g
b(kx, y1) (C.390)

×
∫ ∞

−∞
dx2

∞∑

n=1

cos

(
nπy1

L

)

cos

(
nπy2

L

)

JB2(x2, n,C0) ∂tC0

}

= 0 ,

For the same reason paSB (kx, t) = 0. The evaluation of pbIB is equally easy as it was for paIB ,
the integrals of the hyperbolic argument functions are easy to perform. The result is

pbIB (kx, t) =
1

2
∂tC0

∫ L

0
dy1 g

a(kx, y1)g
b(kx, y1) =

1

2
∂tC0

L|kx| cosh(|kx|L) − sinh(|kx|L)

2|kx| sinh2(|kx|L)
.

(C.391)
In the limit L → ∞ corresponding to single wall set-up, pbIB → 0 exponentially fast. In the
other limit |kx|L→ 0, pbIB → L∂tC0/24.

C.14.2 Term I ′
C

The decomposition of the Fourier transform of I ′C follows the same lines as that of I ′B .
Separation of the two contact line profiles yields

Fx/kx
{
I ′C
}

= paC(kx, t)c
a(kx, t) + pbC(kx, t)c

b(kx, t) , (C.392)
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where we have defined the coefficient functions

paC(kx, t) ≡
∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)Fx1/kx{∂z2G3D(1; 2; t)} ga(kx, y2) ∂tH0(y2, t) ; (C.393)

pbC(kx, t) ≡
∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)Fx1/kx{∂z2G3D(1; 2; t)} gb(kx, y2) ∂tH0(y2, t) ; (C.394)

The only difference in Eq. (C.393) and Eq. (C.394) is that in the former there are two Green’s
functions of type ga whereas in the latter one of the Green’s functions has changed to gb.

In the approximation we are using, H0 ≈ C0, the derivatives of G3D evaluated at the lin-
earization point are the same: ∂z1G3D(1; 2; t) = ∂z2G3D(1; 2; t) where the short-hand symbols
were defined in the beginning of Sect. C.14. Therefore, when writing

∂z2G
2W
3D (x1, y1,C0;x2, y2, z2)|C0 =

1

L
∂z2G

I
2D(x1,C0;x2, z2)|C0 (C.395)

− 2

L

∞∑

n=1

cos(nπy1/L) cos(nπy2/L) ∂z2 f̃n(x1 − x2, z2)|2C0

=
1

L
JC1(x1 − x2,C0) +

2

L

∞∑

n=1

cos(nπy1/L) cos(nπy2/L) JC2(x1 − x2, n,C0) , (C.396)

analogously to Eq. (C.382), we have to keep in mind that JB1 = JC1 and JB2 = JC2 in
this approximation (see Sect. C.10.3). We shall continue using different symbols for these
coefficient functions to sustain certain degree of symmetry in the notation. Separation of
∂z2G3D into two parts gives rise to

paC(kx, t) = paIC (kx, t) + paSC (kx, t) . (C.397)

The resulting expressions for paIC and paSC are a bit more complicated than their counterparts
paIB and paSB because the integration over x2 is part of the convolution integral.

paIC (kx, t) ≡
1

L

∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)g
a(kx, y2)Fx1/kx{JC1(x1,C0)} ∂tC0 . (C.398)

It should be noted that the arguments of the two Green’s functions ga are different from each
other. For paSC we obtain

paSC (kx, t) ≡
2

L

∫ L

0
dy1

∫ L

0
dy2

{

ga(kx, y1)g
a(kx, y2) (C.399)

× Fx1/kx

{ ∞∑

n=1

cos

(
nπy1

L

)

cos

(
nπy2

L

)

JC2(x1, n,C0)

}

∂tC0

}

.

This time the contribution to the Fourier series from the sum over the non-zero modes does
not vanish because of the term ga(kx, y2). Let us start simplifying the previous equations.

paIC (kx, t) = ∂tC0
1

L
JC1(kx,C0)

∫ L

0
dy1 g

a(kx, y1)

∫ L

0
dy2 g

a(kx, y2) . (C.400)

The Fourier transform of JC1 is easily obtained from the defining Eq. (C.267):

JC1(kx,C0) = exp(−2|kx|C0)/2 . (C.401)
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It is easy to check that
∫ L
0 dy1 g

a(kx, y1) = (cosh(|kx|L) − 1)/(|kx| sinh(|kx|L)). Combining
this result with Eq. (C.401) we obtain

paIC (kx, t) =
1

2L
∂tC0 e

−2|kx|C0

[
cosh(|kx|L) − 1

|kx| sinh(|kx|L)

]2

. (C.402)

Both limits L → ∞ and |kx| → 0 are well defined just as they were for paIB . Assuming that
the Fourier transform and the integrals over y1 and y2 commute, Eq. (C.399) yields

paSC (kx, t) = ∂tC0
2

L

∞∑

n=1

JC2(kx, n,C0)

∫ L

0
dy1 g

a(kx, y1) cos

(
nπy1

L

)

(C.403)

×
∫ L

0
dy2 g

a(kx, y2) cos

(
nπy2

L

)

. (C.404)

The Fourier transform of JC2 is given by Eq. (C.286). It remains to compute the value of
the integral

∫ L

0
dy1 g

a(kx, y1) cos

(
nπy1

L

)

=
cosh(|kxL|) − cos(nπ)

sinh(|kx|L)

|kx|
(nπ/L)2 + k2

x

≡ U(kx, n, L) , (C.405)

where we have defined a new function U . The integral over y1 was done by using the expo-
nential representation of sinh-function in Eq. (C.376) and the cosine term. In terms of U we
can express

paSC (kx, t) = ∂tC0
1

L

∞∑

n=1

e−2C0

√
k2
x+(nπ/L)2U2(kx, n, L) . (C.406)

For L going to infinity, only the latter fraction in the expression defining U will be important:
U → |kx|/(k2

x + (nπ/L)2) for large L.
Below we determine the expressions for pbC = pbIC + pbSC , where the only difference as

compared to calculation of paIC and paSC is that the Green’s function ga(kx, y2) is replaced by
gb(kx, y2) which is readily seen by comparing the definitions (C.393) and (C.394). Thus,

pbIC (kx, t) = ∂tC0 JC1(kx, t)

∫ L

0
dy1 g

a(kx, y1) cos

(
nπy1

L

)∫ L

0
dy2 g

b(kx, y2) cos

(
nπy2

L

)

(C.407)

=
1

2L
∂tC0 e

−2|kx|C0

[
cosh(|kx|L) − 1

|kx| sinh(|kx|L)

]2

. (C.408)

The result is the same as for paIC because
∫ L
0 dy2 g

b(kx, y2) =
∫ L
0 dy2 g

a(kx, y2). Contribution
from the non-zero modes is

pbSC (kx, t) = ∂tC0
2

L

∞∑

n=1

JC2(kx, n,C0)

∫ L

0
dy1 g

a(kx, y1) cos

(
nπy1

L

)

(C.409)

×
∫ L

0
dy2 g

b(kx, y2) cos

(
nπy2

L

)

.

= ∂tC0
1

L

∞∑

n=1

e−2C0

√
k2
x+(nπ/L)2 cos(nπ)U 2(kx, n, L) , (C.410)
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where we used the fact that
∫ L
0 dy2 g

b(kx, y2) cos(nπy2/L) = cos(nπ)U(kx, n, L). When L
approaches infinity, pbSC goes to zero. This is easily seen by noticing that

∞∑

n=1

(−1)nf(n∆ky)∆ky =
∞∑

n=0

f((2n+ 1)∆ky)∆ky −
∞∑

n=1

f((2n)∆ky)∆ky → 0 (C.411)

for ∆ky → 0. In other words, in the continuum limit the sum of the alternating series
presented in Eq. (C.410) approaches zero.

C.14.3 Term I ′
D

The decomposition of the Fourier transform of I ′D is standard. Separation of the two contact
line profiles yields

Fx/kx
{
I ′D
}

= paD(kx, t)∂tc
a(kx, t) + pbD(kx, t)∂tc

b(kx, t) . (C.412)

Thanks to the similarity of the terms I ′D and I ′C , the coefficient functions are easily calculated
based on the results of the previous section. We define

paD(kx, t) ≡
∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)Fx1/kx{G3D(1; 2; t)} ga(kx, y2) ; (C.413)

pbD(kx, t) ≡
∫ L

0
dy1

∫ L

0
dy2 g

a(kx, y1)Fx1/kx{G3D(1; 2; t)} gb(kx, y2) ; (C.414)

The decomposition of the Green’s function G3D into the zero mode and non-zero mode
contributions gives rise to the functions JD1 and JD2, which in the current approximation
H0 ≈ C0 become

G2W
3D (x1, y1,C0;x2, y2,C0) =

1

L
GI2D(x1,C0;x2,C0) (C.415)

− 2

L

∞∑

n=1

cos(nπy1/L) cos(nπy2/L)
[

f̃n(x1 − x2, 0) − f̃n(x1 − x2, 2C0)
]

=
1

L
JD1(x1 − x2,C0) +

2

L

∞∑

n=1

cos(nπy1/L) cos(nπy2/L) JD2(x1 − x2, n,C0) , (C.416)

where JD1 and JD2 have been introduced in Sect. C.10.4. Separation of G3D into two parts
according to Eq. (C.416) gives rise to the zero mode contribution paID and non-zero mode
contribution paSD :

paD(kx, t) = paID (kx, t) + paSD (kx, t) . (C.417)

Functions paID and paSD can be obtained immediately now that we have knowledge of the
behaviour of the terms I ′B and I ′C . Substitution of Eq. (C.416) into Eq. (C.413) gives for the
zero mode term

paID (kx, t) =
1

L
JD1(kx,C0)

∫ L

0
dy1 g

a(kx, y1)

∫ L

0
dy1 g

a(kx, y1) (C.418)

=
1

L

(1 − e−2C0|kx|)
2|kx|

[
cosh(|kx|L) − 1

|kx| sinh(|kx|L)

]2

. (C.419)
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The Fourier transform, JD1(kx,C0) has been calculated in Sect. C.10.5. In the limit L→ ∞
the contribution from this term vanishes because of the factor 1/L. For paSD we obtain

paSD (kx, t) ≡
2

L

∫ L

0
dy1

∫ L

0
dy2

{

ga(kx, y1)g
a(kx, y2) (C.420)

× Fx1/kx

{ ∞∑

n=1

cos

(
nπy1

L

)

cos

(
nπy2

L

)

JD2(x1, n,C0)

}}

.

Interchanging the order of the Fourier transformation, and summation over n gives the fol-
lowing expression

paSD (kx, t) =
2

L

∞∑

n=1

JD2(kx, n,C0)

[
∫ L

0
dy1 g

a(kx, y1) cos

(
nπy1

L

)]2

. (C.421)

The integral over y1 (y2) is familiar from previous sections and the JD2(kx, n,C0) is given in
Eq. (C.285). Plugging these into the previous equation gives

paSD (kx, t) =
2

L

∞∑

n=1

1 − e−2C0

√
k2
x+(nπ/L)2

2
√

k2
x + (nπ/L)2

U2(kx, n, L) . (C.422)

This term does not vanish in the limit of large L but gives something finite, which will be
later on shown to be the single wall result.

The remaining expressions pbID and pbSD appearing in the decomposition of the coefficient
function pbD = pbID +pbID are readily obtained since the corresponding expression of the contact
line profile ca are known:

pbID (kx, t) =
1

L
JD1(kx,C0)

∫ L

0
dy1 g

a(kx, y1)

∫ L

0
dy2 g

b(kx, y1) (C.423)

=
1

L

(1 − e−2|kx|C0)

2|kx|

[
cosh(|kx|L) − 1

|kx| sinh(|kx|L)

]2

. (C.424)

The only difference as compared to Eq. (C.418) is that in the latter integral ga has changed
to gb. Due to the prefactor 1/L pbID vanishes for large L unlike the term pbSD which reads

pbSD (kx, t) =
2

L

∞∑

n=1

JD2(kx, n,C0)

∫ L

0
dy1 g

a(kx, y1) cos

(
nπy1

L

)

(C.425)

×
∫ L

0
dy2 g

b(kx, y2) cos

(
nπy2

L

)

=
2

L

∞∑

n=1

1 − e−2C0

√
k2
x+(nπ/L)2

2
√

k2
x + (nπ/L)2

cos(nπ)U 2(kx, n, L) . (C.426)

The Fourier transformation and integrals over y1 and y2 were performed prior to the sum-
mation over n as in the case of paSD . As expected, this term vanishes in the limit L→ ∞.
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C.14.4 Single wall limit

Let us collect the results of the three previous sections. The Fourier transform of I ′B can be
decomposed as Fx/kx{I ′B} = paBc

a + pbBc
b, where paB = paIB + paSB . The explicit representation

of the coefficient functions is given below.







paIB (kx, t) =
1

2
∂tC0

sinh(2|kx|L) − 2|kx|L
4|kx| sinh2(|kx|L)

;

paSB (kx, t) = 0 .
(C.427)







pbIB (kx, t) =
1

2
∂tC0

L|kx| cosh(|kx|L) − sinh(|kx|L)

2|kx| sinh2(|kx|L)
;

pbSB (kx, t) = 0 .
(C.428)

The Fourier transform of I ′C can be decomposed as Fx/kx{I ′C} = paCc
a + pbCc

b, where paC =

paIC + paSC . Explicitly,







paIC (kx, t) = ∂tC0
1

2L
e−2C0|kx| U2(kx, 0, L) ;

paSC (kx, t) = ∂tC0
1

L

∞∑

n=1

e−2C0

√
k2
x+(nπ/L)2 U2(kx, n, L) .

(C.429)







pbIC (kx, t) = ∂tC0
1

2L
e−2C0|kx| U2(kx, 0, L) ;

pbSC (kx, t) = ∂tC0
1

L

∞∑

n=1

e−2C0

√
k2
x+(nπ/L)2 cos(nπ)U 2(kx, n, L) .

(C.430)

The Fourier transform of I ′D can be decomposed as Fx/kx{I ′D} = paDc
a + pbDc

b, where paD =

paID + paSD . Explicitly,







paID (kx, t) =
1

L

(1 − e−2C0|kx|)
2|kx|

U2(kx, 0, L) ;

paSD (kx, t) =
2

L

∞∑

n=1

(1 − e−2C0

√
k2
x+(nπ/L)2)

2
√

k2
x + (nπ/L)2

U2(kx, n, L) .

(C.431)







pbID (kx, t) =
1

L

(1 − e−2C0|kx|)
2|kx|

U2(kx, 0, L) ;

pbSD (kx, t) =
2

L

∞∑

n=1

(1 − e−2C0

√
k2
x+(nπ/L)2)

2
√

k2
x + (nπ/L)2

cos(nπ)U 2(kx, n, L) .

(C.432)

Let us extract the scaling behaviour of the various functions above. For |kx|L → 0, paIB →
L∂tC0/3. For L → ∞, paIB → ∂tC0/(4|kx|). The contact line of the other wall situated
at y = L does not contribute in the infinite wall separation limit. Therefore pbIB → 0 for
L → ∞. In the opposite limit, |kx|L → 0 there is a finite contribution pbIB → ∂tC0/24.
To study the behaviour of the coefficient functions originated from the Fourier transforms
of terms I ′C and I ′D it suffices to study the limiting behaviour of the function U defined in
Eq. (C.405). For infinite wall separation L→ ∞, U(kx, n, L) → |kx|/(k2

x + (nπ/L)2) and we
can replace (nπ/L) with ky. Obviously, U(kx, 0, L) → 1/|kx| in this limit. When |kx|L → 0,
U(kx, n, L) → L(1 − cos(nπ))/(nπ)2.
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In the single wall limit, L → ∞ all terms associated with the contact line profile cb

vanish, as they should. Terms pbIC and pbID vanish being proportional to 1/L. Terms pbSC
and pbSD disappear because they contain summation over an alternating factor cos(nπ) which
renders the limit of the sum zero. From the coefficient functions associated with the contact
line ca only the terms paIB , paSC and paSD survive for L→ ∞; terms paIC and paID vanish because
of their proportionality to 1/L. Thus,

Fx/kx
{
I ′B
} −→ 1

4|kx|
∂tC0 c

a(kx, t) ; (C.433)

Fx/kx
{
I ′C
} −→ ∂tC0

1

π

∫ ∞

0
dky e

−2C0

√
k2
x+k

2
y

k2
x

(k2
x + k2

y)
2
ca(kx, t) ; (C.434)

Fx/kx
{
I ′D
} −→ 2

π

∫ ∞

0
dky

(1 − e−2C0

√
k2
x+k

2
y)

2
√

k2
x + k2

y

k2
x

(k2
x + k2

y)
2
∂tc

a(kx, t) . (C.435)

The summation has been replaced with integration, (1/L)
∑∞
n=1 → (1/π)

∫∞
0 dky and the

variable nπ/L has been replaced with ky. The results of Eq. (C.433) – Eq. (C.435) should
be compared with those presented in Sect. C.15

C.14.5 Restoring forces for double wall system

In this section we derive the right hand side of the contact line equation of motion. Eq. (C.370)
contains the deterministic forces acting on the contact line ca. The random contribution will
be taken into account in the Sect. C.14.6. Fourier transformation gives

−MFx/k
{

δF a1D [ca, cb]
/

δca(x, t)
}

= (C.436)

−2M

∫ L

0
dy1

{

(+ık)ga(k, y1) (−ık)ga(k, y1) c
a(k, t) + ∂y1g

a(k, y1) ∂y1g
a(k, y1) c

a(k, t)

+ (+ık)ga(k, y1) (−ık)gb(k, y1) c
b(k, t) + ∂y1g

a(k, y1) ∂y1g
b(k, y1) c

a(k, t)
}

For shortness, we write k instead of kx in this section. The signs of the factors in the expression
(±ık) appear because in the real space convolution product the argument of the first Green’s
function is ga,b(x1 − x, y1) instead of ga,b(x − x1, y1), see Eq. (C.370). By grouping similar
terms

−MFx/k
{

δF a1D [ca, cb]

δca(x, t)

}

= −2M
[

g̃a(k, t, L) ca(k, t) + g̃b(k, t, L) cb(k, t)
]

(C.437)

The new coefficient functions g̃a and g̃a are expressed in terms of the Green’s functions as

g̃a(k, t, L) ≡
∫ L

0
dy1

(

k2ga(k, y1)g
a(k, y1) + ∂y1g

a(k, y1)∂y1g
a(k, y1)

)

; (C.438)

g̃b(k, t, L) ≡
∫ L

0
dy1

(

k2ga(k, y1)g
b(k, y1) + ∂y1g

a(k, y1)∂y1g
b(k, y1)

)

. (C.439)

Contributions to g̃a will be calculated first. Integrals can be decomposed to elementary
ones by representing the integrands with the aid of exponential functions. Substitution of
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Eq. (C.376) results in
∫ L

0
dy1 k

2ga(k, y1)g
a(k, y1) = k2

(

sinh(2|k|L) − 2|k|L
)/(

4|k| sinh2(|k|L)
)

; (C.440)

∫ L

0
dy1 ∂y1g

a(k, y1)∂y1g
a(k, y1) = k2

(

sinh(2|k|L) + 2|k|L
)/(

4|k| sinh2(|k|L)
)

. (C.441)

Thus, we get g̃a = σ|k| coth(|k|L). In the limit of infinite wall separation g̃a → σ|k|, which is
the familiar single wall result of Ref. [355]. Performing the integrals of g̃b gives

∫ L

0
dy1 k

2ga(k, y1)g
b(k, y1) = k2

(

L|k| cosh(|k|L) − sinh(|k|L)
)/(

2|k| sinh2(|k|L)
)

; (C.442)

∫ L

0
dy1 ∂y1g

a(k, y1)∂y1g
a(k, y1) = −k2

(

L|k| cosh(|k|L) + sinh(|k|L)
)/(

2|k| sinh2(|k|L)
)

. (C.443)

Combining the right hand sides of the previous equations yields g̃b = −|k|/ sinh(|k|L). Since
the denominator goes like e−|k|L for large L, the coefficient function g̃b of the second wall
vanishes for large separation as it should.

C.14.6 Two interacting contact lines

In the previous section we computed the deterministic forces acting on the line ca. Inclusion
of random contribution due to the fluctuating surface tensions of the walls gives rise to a
stochastic force. The full free energy containing the random part has been presented in
Sect. C.5.1. Variation with respect to ca gives

δ

δca(x, t)

∞∫

−∞
dt

∞∫

−∞
dx

Ca(x,t)∫

0

dz (σsl(x, z) − σsg(x, z)) = A(x, 0,C0(t) + ca(x, t)) , (C.444)

where we have defined A(x, 0, z) ≡ σsl(x, z) − σsg(x, z) to be the noise field evaluated at the
wall. Notice that the other wall does not contribute since the variation of the last term in
Eq. (C.86) with respect to ca is zero. Denoting the Fourier transform

Fx/k{A(x, 0,C0(t) + ca(x, t))} ≡ Ak(c
a) , (C.445)

we obtain the full equation of motion for the contact line ca by setting the sum of the
stochastic (Eq. (C.444)) and deterministic forces (Eq. (C.437)) equal to the Rayleigh terms
(Eq. (C.377)):

paD(k, t) ∂tc
a(k, t) + pbD(k, t) ∂tc

b(k, t)

+
(

paB(k, t) + paC(k, t)
)

ca(k, t) +
(

pbB(k, t) + pbC(k, t)
)

cb(k, t) (C.446)

= −(M/2)g̃a(k, t, L) ca(k, t) − (M/2)g̃b(k, t, L) cb(k, t) + (M/4)Ak(c
a) .

Naturally, there is also a similar equation for the contact line cb. With Green’s functions ga

and gb defined in Eq. (C.376) the values of the integrals over y1 stay the same even though
we exchange ga and gb in the defining expressions. Therefore,

paD(k, t) ∂tc
a(k, t) + pbD(k, t) ∂tc

b(k, t)

+
(

paB(k, t) + paC(k, t)
)

ca(k, t) +
(

pbB(k, t) + pbC(k, t)
)

cb(k, t) (C.447)

= −(M/2)g̃a(k, t, L) ca(k, t) − (M/2)g̃b(k, t, L) cb(k, t) + (M/4)Ak(c
b) .
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Thus, the only difference between Eq. (C.446) and Eq. (C.447) is lies in the quenched noise
term. This set of coupled equations is too difficult to solve for general purposes and therefore
we will concentrate more effort in understanding the single wall, L→ ∞, limit. In this limit
the equations decouple as explained in Sect. C.15.2.

C.15 Contact line dynamics: single wall

Let us first derive the term on the left hand side of the equation of motion of the contact
line for the single wall set-up and compare the results with those of the double wall set-up
in the limit of wall separation approaching infinity. Thanks to the formulation we are using,
it is easy to change the physical set-up of the system we are modelling just by altering the
form of the relevant Green’s functions in the dissipation and free energy functionals. All
we have to do now is to take Eq. (C.373) – Eq. (C.375) and replace G3D with G1W

3D and
ga with g1W leaving out gb which is irrelevant when focusing on contact line ca. We define
Fx/kx{I ′B} ≡ p1W

B (kx, t) c(kx, t), and

p1W
B (kx, t) ≈

∫ ∞

0
dy1

∫ ∞

0
dy2G

1W(kx, y1)G
1W(kx, y1)

∫ ∞

−∞
dx2 ∂z1G

1W
3D (1; 2; t) ∂tC0 . (C.448)

We have used the approximation H0 ≈ C0. The contact line profile is denoted by c(kx, t). In
terms of the kernel function iB presented in Eq. (C.213) we can express

∂z1G
1W
3D(1; 2; t) = (iB(x− x1, y − y1, t) + iB(x− x1, y + y1, t)) /(4π) . (C.449)

As explained in Sect. C.11.1, the quasi-stationary meniscus solution is related to the contact
line profile through hqs(kx, y1, t) =

∫
dkx e

−ıkxxe−|kx|y1c(kx, t), which leads to the identification

G1W(kx, y1) = e−|kx|y1 . Substitution of these results back into Eq. (C.448) gives

p1W
B (kx, t) = ∂tC0

∫ ∞

0
dy1

∫ ∞

0
dy2 e

−2|kx|y1 1

4π

∫ ∞

−∞
dx2

(

iB(x2, y1 − y2, t) (C.450)

+ iB(x2, y1 + y2, t)
)

= ∂tC0
1

4π

∫ ∞

−∞
dx2

∫ ∞

0
dy2 cos(ky2)

∫ ∞

0
dy1 e

−2|kx|y1
(

iB(x2, y1 − y2, t) (C.451)

+ iB(x2, y1 + y2, t)
)∣
∣
∣
k=0

.

The second equality follows from switching the order of the integrals and setting k = 0 in the
argument of the term cos(ky2) which has been added to make the expression appear as the
cosine transform of the convolution. Indeed, we can write

p1W
B = ∂tC0

1

4π

∫ ∞

−∞
dx2

{

2

∫ ∞

0
dy′2 cos(ky′2) e

−2|kx|y′2
∫ ∞

0
dy2 cos(ky2) iB(x2, y2, t)

}∣
∣
∣
∣
k=0

(C.452)

= 2∂tC0
1

4π

∫ ∞

−∞
dx2

1

2|kx|

∫ ∞

0
dy2 iB(x2, y2, t) =

1

4|kx|
∂tC0 . (C.453)

The integrals over x2 and y2 of iB can be easily done in polar coordinates. We see that the
final result is consistent with Eq. (C.433), which was derived for double wall set-up letting
the separation of the walls to go to infinity.
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The Fourier transform of the term I ′C in the single wall case defines a new coefficient
function: Fx/kx{I ′C} ≡ p1W

C (kx, t) c(kx, t). Using the approximation H0 ≈ C0 leads to

p1W
C (kx, t) ≈

∫ ∞

0
dy1

∫ ∞

0
dy2G

1W(kx, y1)G
1W(kx, y2)Fx1/kx

{

∂z2G
1W
3D (1; 2; t)

}

∂tC0 . (C.454)

The Fourier integral representation is found most convenient for manipulation of the expres-
sion ∂z2G

1W
3D (1; 2; t):

Fx1/kx

{

∂z2G
1W
3D (1; 2; t)

}

= − 1

(2π)2

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

(

e−ıky(y1−y2)e−ıkz2C0 (−ıkz)
k2
x + k2

y + k2
z

(C.455)

+
e−ıky(y1+y2)e−ıkz2C0 (−ıkz)

k2
x + k2

y + k2
z

)

.

It should be noted that we are using the same representation of the Green’s function as given
in Sect. C.6 which means that in addition to kx also integrals over ky and kz run from −∞
to ∞. Integration over kz gives rise to a familiar looking exponential function:

Fx1/kx

{

∂z2G
1W
3D (1; 2; t)

}

=
1

4π

∫ ∞

−∞
dky

(

e−ıky(y1−y2) + e−ıky(y1+y2)
)

e−2C0

√
k2
x+k

2
y . (C.456)

Substituting this result into Eq. (C.454) and performing the integrals over y1 and y2 prior to
ky-integration we obtain

p1W
C (kx, t) =

1

4π
∂tC0

∫ ∞

−∞
dky e

−2C0

√
k2
x+k

2
y

2k2
x − 2ıkxky

(k2
x + k2

y)
2

(C.457)

Since we are integrating over symmetric interval, the monomial −2ıkxky in the numerator of
the integrand gives zero contribution to the integral. Thus, we see that we have arrived at
the same result as in Eq. (C.434).

Precisely in the same manner as in the previous case, we compute the Fourier transform
of the term I ′D. We introduce a coefficient function Fx/kx{I ′D} ≡ p1W

D (kx, t) ∂tc(kx, t). Using
the approximation H0 ≈ C0 leads to

p1W
D (kx, t) ≈

∫ ∞

0
dy1

∫ ∞

0
dy2G

1W(kx, y1)G
1W(kx, y2)Fx1/kx

{

G1W
3D (1; 2; t)

}

. (C.458)

The Fourier integral representation is similar to the one that appeared above except that
there are more terms involved:

Fx1/kx

{

G1W
3D (1; 2; t)

}

= (C.459)

1

(2π)2

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

(

e−ıky(y1−y2)e−ıkz(z1−z2)

k2
x + k2

y + k2
z

− e−ıky(y1−y2)e−ıkz(z1+z2)

k2
x + k2

y + k2
z

)∣
∣
∣
∣
∣
C0

+
1

(2π)2

∫ ∞

−∞
dky

∫ ∞

−∞
dkz

(

e−ıky(y1+y2)e−ıkz(z1−z2)

k2
x + k2

y + k2
z

− e−ıky(y1+y2)e−ıkz(z1+z2)

k2
x + k2

y + k2
z

)∣
∣
∣
∣
∣
C0

.

The substitution symbol |C0 means that the expression is evaluated at the linearization point
z1 = z2 = C0. Once this has been done and the integral over ky performed, we obtain after
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substitution of the resulting expression into Eq. (C.458),

p1W
D (kx, t) =

1

2π

∫ ∞

0
dy1

∫ ∞

0
dy2 e

−|kx|(y1+y2)
∫ ∞

−∞
dky

{

( e−ıky(y1−y2) + e−ıky(y1+y2) ) (C.460)

× (1 − e−2C0

√
k2
x+k

2
y)
/

( 2
√

k2
x + k2

y )
}

.

Assuming that the integrals over y1 and y2 can be done before the integration over ky, we
get

p1W
D (kx, t) =

2

π

∫ ∞

0
dky

1 − e−2C0

√
k2
x+k

2
y

2
√

k2
x + k2

y

k2
x

(k2
x + k2

y)
2
. (C.461)

This is the same result as in Eq. (C.435). All in all, we conclude that the double wall results
reduce to those of the single wall set-up in the limit L→ ∞.

C.15.1 Representation of coefficient functions

Let us try to cast the functions p1W
B , p1W

C and p1W
D into simple form which facilitates further

analytic investigations. We concentrate on p1W
D with the aid of which we construct the others.

Eq. (C.461) yields

p1W
D =

2

πk2
x

∫ ∞

1
ds

1√
s2 − 1

1 − e−2Us

s4
, (C.462)

where we have defined U ≡ |kx|C0. We have also changed to dimensionless variable of
integration: s = (k2

x+k2
y)

1/2/|kx|. The integral is well defined, of course, as the divergence at
s = 1 is integrable. For physics purposes it suffices to know how the integral in Eq. (C.462)
behaves in the limits U very large or small. For U � 1 we can drop the exponential and we
get

p1W
D ≈ 2

πk2
x

∫ ∞

1
ds

1

s4
√
s2 − 1

≡ 1

k2
x

I> . (C.463)

To get the behaviour in the limit U � 1 we split the integral into two parts. Choose a
constant E such that U � E � 1. It holds that Us � 1 for all s < sm ≡ E/U . Then,
p1W
D = (2/πk2

x)(A1 +A2), where

A1 ≡
∫ sm

1
ds

1√
s2 − 1

1 − e−2Us

s4
≈ 2U

∫ sm

1
ds

1

s3
√
s2 − 1

(C.464)

where we Taylor expanded the exponential as its argument is always small in the given
domain. The other term,

A2 ≡
∫ ∞

sm
ds

1√
s2 − 1

1 − e−2Us

s4
= s−3

m

∫ ∞

1
dr

1
√

(smr)2 − 1

1 − e−2Er

r4
. (C.465)

The second equality was obtained by making the variable transformation s ≡ smr. Because
sm � 1 and the lower limit of integration is one, it holds for all r that smr � 1. Therefore,
we can approximate the factor ((smr)

2 − 1)−1/2 ≈ smr.

A2 ≤ s−3
m

∫ ∞

1
dr

1

smr

1

r4
∝ s−4

m , (C.466)
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which means that A2 vanishes much faster than A1 ∝ s−1
m . Leaving it out, we can write for

U � 1,

p1W
D ≈ 2

πk2
x

A1 ≈ 4U

πk2
x

∫ ∞

1
ds s−3(s2 − 1)−1/2 ≡ C0

|kx|
I< , (C.467)

where we have defined a new constant I<. Combination of the limiting behaviours of
Eq. (C.467) and Eq. (C.463) gives rise to an interpolating expression,

p1W
D ≈ 2I>

πk2
x

(

1 − e−(I</I>)C0|kx|
)

≈ 1 − e−2C0|kx|

4k2
x

. (C.468)

There will be small error induced via replacement of I</I> by factor of 2 and 2I>/π by 1/4
but the limiting behaviour in powers of |kx| stays intact, which is important for large scale
analysis. With the aid of Eq. (C.468) we also obtain an approximation for the coefficient

p1W
C =

1

2
∂tC0

∂p1W
D

∂C0
≈ ∂tC0

e−2C0|kx|

4|kx|
, (C.469)

where the second approximative equality was obtained by differentiating the expression of
far right of Eq. (C.468). Since p1W

B calls for no approximations, we have been able calculate
all the terms on the left hand side of the equation of motion of the contact line in the single
wall case.

C.15.2 Contact line equation for single wall

Explicit expressions for the coefficient functions arising from the Rayleigh dissipation func-
tional have been derived in Sect. C.15.1. The right hand side of the equation of motion of
the contact line can be generated by substituting the single wall Green’s functions into the
free energy functional F1D and taking the variation with respect to the contact line profile c.
However, since the resulting expressions are more trivial than in the case of the dissipation
functional, we will not perform a similar analysis as in Sect. C.15.1 but instead we make use of
the results of Sect. C.14.5 where the restoring forces were derived for double wall set-up. Tak-
ing the limit L → ∞ of Eq. (C.446) and setting it equal to expression Fx/kx{I ′B + I ′C + I ′D}
yields

p1W
D (k, t) ∂tc(k, t) +

(

p1W
B (k, t) + p1W

C (k, t)
)

c(k, t) = −M
2
σ|k| c(k, t) +

M

4
Ak(c) , (C.470)

where we use k instead of kx. Substitution of the approximative coefficient functions given
in Eq. (C.468) and Eq. (C.469) together with the representation of p1W

B given in Eq. (C.453)
yields

1 − e−2C0|k|

4k2
∂tc(k, t) +

∂tC0

4|k|
(

1 + e−2C0|k|
)

c(k, t) = −M
2
σ|k| c(k, t) +

M

4
Ak(c) , (C.471)

As compared to the meniscus equation of motion (C.289) the coefficient functions on the left
hand side are divergent when k → 0. This observation does not render the theory useless,
however. Divergent terms in the equation of motion are familiar from other fields of physics,
think of Schrödinger equation with Coulomb potential, for example. Of course, differences
remain since the coefficient function of the time derivative term is also divergent in the contact
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line equation. We could have avoided the divergences had we multiplied both sides of the 3D
phase field evolution equation not by operator (∇2)−1 but by something else which would
have made the left hand side of the contact line equation not divergent, if only we had known
how to project the meniscus equation in this case. However, we can still remove the apparent
divergence for small wave vectors by multiplying both sides of Eq. (C.471) by 2|k|:

1 − e−2C0|k|

2|k| ∂tc(k, t) +
∂tC0

2

(

1 + e−2C0|k|
)

c(k, t) = −Mσk2 c(k, t) + Ãk(c) , (C.472)

where Ãk ≡ (M/2)|k|Ak behaves like conserved quenched noise. Apart from the noise, the
equation is similar to the equation of motion of the meniscus with finite coefficient functions
for all values of k. Moreover, if the original noise Ak is split into its constant average (Āδ(k))
and fluctuating parts (∆Ak ≡ Ak − Āδ(k)), the new noise Ãk = (M/2)|k|(Āδ(k) + ∆Ak) will
effectively have zero average, because |k| δ(k) = 0.

Problems with direct projection

For comparison, let us demonstrate what kind of dimensional problems arise if, instead of
using the Rayleigh dissipation functional to derive the equation of motion for the noise induced
fluctuations of the contact line, we try to generate the contact line equation of motion by
applying the direct projection method on the left hand side of the equation of motion of
the meniscus fluctuations (C.64). This procedure can not be ruled out right away since it
produces a sensible equation of motion in the case of a pure system as shown in Sect. C.12.1.
To obtain the contact line equation of motion we define a projector which casts out the bulk
dynamics of the fluids and only takes into account what happens at the walls bounding the
fluids., Therefore, we define a new projection operator, which is rather trivial in form:

Py(·) ≡
∫

dy′ δ(y′ − y) . (C.473)

Projecting Eq. (C.63) and Eq. (C.64) onto the wall(s) at y = 0 (y = L) and setting Λ̃ = 0,
leads to the equations of motion of the contact line:

P0IA = (Mσ/4)P0∂
2
yH0 = (Mσ/4) ∂2

yH0|0 ; (C.474)

P0IB + P0IC + P0ID
?
=
δF1D [c]

δc
. (C.475)

Later on we show what destroys the validity of Eq. (C.475). To be able to do this, we have to
consider the units and scaling of the four integral expressions resulting from first linearizing
and then applying the projection operator on the left hand side of the equation of motion of
the meniscus fluctuations:

P0IA =

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, 0,C0(t);x1, y1,H0(y1, t)) ∂tH0(y1, t) ; (C.476)

P0IB =

∫ ∞

−∞
dx1

∫ ∞

0
dy1 ∂zG3D(x, 0, z;x1, y1,H0(y1, t))|C0(t) c(x, t) ∂tH0(y1, t) ; (C.477)

P0IC =

∫ ∞

−∞
dx1

∫ ∞

0
dy1 ∂z1G3D(x, 0,C0(t);x1, y1, z1)|H0(y1,t) h(x1, y1, t) ∂tH0(y1, t) ; (C.478)

P0ID =

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, 0,C0(t);x1, y1,H0(y1, t)) ∂th(x1, y1, t) . (C.479)
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In deriving these expressions we have used the facts that P0H0(y, t) will be equal to H0(0, t) =
C0(t), and ∂tH0(y, t) = ∂tC0(t). In case the curvature is time dependent, the present derivation
shows that depending on whether we first linearize and the project, or vice versa, the results
will be different. However, for constant curvature these operations commute, which is proved
below by by interchanging the order of the projection and linearization

Project the left hand side of Eq. (8.47) first and then linearize around both C0 and H0.
To get a condition for the validity of the expansion, it suffices to require h � H0. If this
holds for all x and y, then h(x, y = 0, t) � H0(y = 0, t) ⇔ c(x, t) � C0(t). Next, let us
concentrate on deriving the contact line equation of motion using the variations c and h as
small variations around the zeroeth order solutions. The right hand side of the equation of
motion of the meniscus stays the same irrespective of the order of linearization and projections
when Λ̃ = 0. Projection of the left hand side yields:

P0

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D(x, y,H(x, y, t);x1, y1,H(x1, y1, t)) ∂tH(x1, y1, t) (C.480)

=

∫ ∞

−∞
dx1

∫ ∞

0
dy1

{

G3D(x, y,C0(t) + c(x, t);x1, y1,H0(y1, t) + h(x1, y1, t))

×
[

∂tH0(y1, t) + ∂th(x1, y1, t)
]}

. (C.481)

As before, we expand the Green function to first order in the fluctuations h and c. Thus, the
last two lines of the previous equation become

∫ ∞

−∞
dx1

∫ ∞

0
dy1

{[

G3D + ∂zG3D|C0 c(x, t) + ∂z1G3D|H0 h(x1, y1, t)
]

×
[

∂tH0(y1, t) + ∂th(x1, y1, t)
]}

. (C.482)

Analogously to equations (C.55) – (C.57), the following short-hand symbols were introduced:

G3D = G3D(x, 0,C0(t);x1, y1,H0(y1, t)) ; (C.483)

∂zG3D|C0 = ∂zG3D(x, 0, z;x1, y1,H0(y1, t))|C0(t) ; (C.484)

∂z1G3D|H0 = ∂z1G3D(x, 0,C0(t);x1, y1, z1)|H0(y1,t) . (C.485)

Expansion of the square brackets in expression (C.482) gives rise to a term h∂th which is of
second order in the fluctuations h. Neglecting it, the previous expression reduces to

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D ∂tH0(y1, t) +

∫ ∞

−∞
dx1

∫ ∞

0
dy1 ∂zG3D|C0 c(x, t) ∂tH0(y1, t)+

∫ ∞

−∞
dx1

∫ ∞

0
dy1 ∂z1G3D|H0 h(x1, y1, t) ∂tH0(y1, t) +

∫ ∞

−∞
dx1

∫ ∞

0
dy1G3D ∂th(x1, y1, t)

= P0IA + P0IB + P0IC + P0ID , (C.486)

where the terms P0Is, s = A,B,C,D coincide with those given in Eq. (C.476) - (C.479).
Hence, we observe that for time independent curvature linearization and projection commute.

Even though we have shown that the direct projection method has to convenient feature
of being commutative with respect to linearization of the Green’s function, we encounter
problems when setting the projected left hand side of the meniscus equation of motion equal to
−MδF1D[c]/δc: the two sides of the equation have different dimensionality. In other words, if
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we assume (erroneously) that P0(IB+IC+ID) = −MδF1D[c]/δc, where P0 is a projector which
basically sets the y-coordinate of any function equal to zero: P0f ≡ ∫

dy′ δ(y′)f(y′) = f(0),
we obtain essentially something like

1 − e−2C0|k|

4k
∂tc(k, t) +

∂tC0

4

(

1 + e−2C0|k|
)

c(k, t)
?
= −2Mσ|k| c(k, t) +MAk(c) , (C.487)

which should be compared with the dimensionally correct Eq. (C.471). On the left there
is one power of length missing. If one compares the equations of motion for the double
wall set-up, the main difference in addition to the the factor 1/|k| is that the dimensionally
correct equation contains more terms as the projection onto the plane y = 0 makes some
of them to vanish. The only possibility to fix the problem with units is to assume that on
the right hand side of the equation of motion the dimensionality of the dissipative coefficient
M changes when going from two dimensions to one: −MδF2D[h]/δh → −M ′δF1D[c]/δc,
such that [M ] = m3/s and [M ′] = m2/s. However, this is not very good idea because the
number of parameters of the theory increases and there is no obvious way of relating M ′ to
M , not to mention any attempts to derive its value from microscopics. Also the reduction of
dimensionality of the right hand side of the equation of motion remains more mysterious than
in the present derivation utilizing the dissipation and free energy functionals. Therefore, we
prefer to stick to the present variational derivation, which seems to give at least the units
correctly.

C.16 Contact line dynamics: memory effects

The results of the previous section have been derived using the quasi-stationary approxima-
tion which means that the meniscus follows the movement of the contact line instantaneously
without any delays. In reality this assumption becomes progressively worse the smaller the
effective surface tension σ̃ is in Eq. (C.303). Alternatively, we can use the curvature expan-
sion parameter ε ≡ KL2/C0 ∝ L2/(σ̃τ) defined in Sect. C.11.2: the bigger the curvature, the
more important memory effects become.

The approximation we have used, namely the replacement of H0 ≈ C0 in the Green’s
functions, would suggest to use only the first order terms in ε of the memory expansion of
the meniscus presented in Sect. C.11.2. Substitution of h̃ ≈ h̃qs+εh̃1 into the dissipation and
free energy functionals according to the recipe given in Sect. C.13 would produce the history
dependent equation of motion for the contact line. However, the memory kernels would have
no interesting time dependence due to the truncation of the perturbation series. Therefore,
to make closer contact with memory functions of generalized Langevin equations, we prefer
to use the full time dependent solution of the (linearized) meniscus fluctuations. Using the
single wall theory,

h(x1, y1, t1) =

∫ t1

0
dt′1

∫ ∞

−∞
dx′1R1(x1 − x′1, y1, t1, t

′
1) c(x

′
1, t

′
1) , (C.488)

For simplicity one can use the kernel R1(x1, y1, t1, t
′
1) ≡ (∂τ(t′1)/∂t

′
1) g

a(x1, y1, τ(t1) − τ(t′1))
where ga is defined in Eq. (C.334). For the single wall set-up, the superscript a plays no
role, of course. To take into account all terms of the linearized theory, one should use
R1(x1, y1, t1, t

′
1) ≡ (∂τ(t′1)/∂t

′
1) g

a(x1, y1, τ(t1), τ(t
′
1)) where this time the definition of ga is

given in Eq. (C.331). Assuming that we can differentiate the integral representation of h
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with respect to t1 in the elementary manner (with contributions generated by the fact that
the upper limit of time integration is dependent on t1 and the fact that the kernel R1 is also
dependent on t1), we get the following results in the Fourier space:

h(kx, y1, t1) =

∫ t1

0
dt′1R1(k, y1, t1, t

′
1) c(k, t

′
1) (C.489)

∂t1h(kx, y1, t1) =

∫ t1

0
dt′1R2(k, y1, t1, t

′
1) ∂t′1c(k, t

′
1) , (C.490)

where R2 can be straightforwardly related to R1. The following prescription can be used for
taking the functional derivative of R1D (cf. Eq. (C.360)) with respect to ċ:

δḣ(x1, y1, t1)

δċ(x, t)
= θ(t1 − t)R2(x1 − x, y1, t1, t) ≡ R̃2(x1 − x, y1, t1, t) . (C.491)

The Heaviside’s step function is denoted by θ. To compactify notation we defined a new
function R̃2. The left hand side of the equation of motion of the contact line is readily
obtained with the aid of the previous result and Eq. (C.360) from which we drop the coupling
terms to hb which are irrelevant for the single-wall set-up we are considering:

δRa1D [ ċa ]

δċa(x, t)
≡ 4

M

∫

dA1

∫

dt1

∫

dA2

{

R̃2(x1 − x, y1, t1, t)G
H0
3D(1; 2; t1)ḣ

a
C(2, t2) (C.492)

+ R̃2(x1 − x, y1, t1, t)
[

∂z1G
H0
3D(1; 2; t1)hC(1, t1) + ∂z2G

H0
3D(1; 2; t1)hC(2, t2)

]

Ḣ0(2, t2)
}

,

where we have used the same short-hand notation for the arguments of the Green’s function
and its derivatives as in Sect. C.14. It is important to notice that in principle we can define
haC to be a function of the contact line velocity ∂tc

a through

haC(x1, y1, t1) =

∫ t1

0
dt′1

∫ ∞

−∞
dx′1R1(x1 − x′1, y1, t1, t

′
1)

∫ t′1

0
dt′2 ∂t′2c(x

′
1, t

′
2) , (C.493)

thus making it legitimate to generate new terms in the equation of motion by taking functional
derivative of haC with respect to ċa in addition to functional differentiation of ḣaC, which led to
Eq. (C.492). However, it is easy to show by substituting the memory expansion hC ≈ hqs+εh1

into the dissipation functional that allowing the functional differentiation of the functions hqs
and h1 with respect to contact line velocity based on the representation of Eq. (C.493),
we do not recover the correct quasi-stationary limit when we take ε to zero. Restricting
the functional differentiation only to terms ḣa appearing in Ra1D, we do recover the quasi-
stationary limit correctly when taking ε → 0. The situation is analogous to the fact that
on should not act on the position coordinate when taking variation of the Lagrangian with
respect to momentum coordinate even though the latter can be represented as the time
integral of the former. In the field theoretical setting this needed to be clarified a bit further
as we did above by setting the requirement of the correct quasi-stationary limit. After all
this said and done we obtain

Fx/kx
{
δRa1D[ ċa(x, t) ]

δċa(x, t)

}

=

∫ ∞

−∞
dt′1 S1(kx, t, t

′
1)∂t′1c

a(kx, t
′
1) +

∫ ∞

−∞
dt′1 S2(kx, t, t

′
1)c

a(kx, t
′
1) ,

(C.494)
where S1 and S2 are new integral kernels whose lengthy expressions are not shown explicitly as
only their dependence on the time arguments is important here. Even though the integration
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limits run from −∞ to ∞ it does not automatically mean that the resulting equation of
motion would be non-causal. For example, if we have a non-causal looking equation of motion,
∂tc

a − γ1c
a =

∫∞
−∞ dt′1 S1(t, t

′
1)c

a(t′1), where S1 = −γ2θ(t
′
1 − t), differentiating with respect

to time brings it back into the typical causal Langevin type of form: ∂2
t c
a − γ1∂tc

a = γ2c
a,

where γ1,2 are some constants.
The right hand side of the equation of motion is obtained in an analogous manner. We

substitute Eq. (C.488) into the free energy Eq. (C.368), neglect the terms related to the
second wall and take the variational derivative with respect to ca. After Fourier transform
we obtain

Fx/kx
{
δF a1D[ ċa(x, t) ]

δca(x, t)

}

=

∫ ∞

−∞
dt′1 S3(kx, t, t

′
1) c

a(kx, t
′
1) , (C.495)

where S3 is another new kernel function. Assuming that the operator with kernel S1 is
invertible, we can formally write the full contact line equation of motion in the following
form

∂tc
a(kx, t) +

∫

dt′ S(kx, t, t
′) ca(kx, t

′) = fr . (C.496)

We have added to the right hand side the stochastic force fr due to the fluctuations of the
surface tensions of the wall. It is a function of the old noise Akx(c

a): fr = Ŝ−1
1 Akx . The

kernel S(kx, t, t
′) ≡ ∫

dt′ S−1
1 (kx, t, t

′
1)(S2(kx, t

′
1, t

′)−S3(kx, t
′
1, t

′)), where S−1
1 is the kernel of

the inverse operator Ŝ−1
1 . The remarkable thing is that Eq. (C.496) looks like a generalized

Langevin equation. In principle such an equation could be obtained by projecting out the
microscopic details, but in practice it would be very difficult to do. We have arrived at a
similar looking equation via a different route. Of course there are important differences like
the wave vector dependence typical of spatially extended objects and the quenched nature
of the noise. However, for pure systems with only thermal noise Eq. (C.496) is exactly the
generalized Langevin equation if S can be shown to be a causal kernel. Fluctuation-dissipation
theorem in the context of this type of complicated quenched process are not guaranteed to
hold but more generally, steady states can be produced as pointed out in Sect. 12.3.

C.17 Meniscus shape for regular defects

In this section we study the equilibrium shape of a meniscus whose shape is distorted from
the parabolic due to the effect of a regular domain on the wall at y = 0 having different
wetting properties than the rest of the wall. Typically, we are thinking of a stripe like defect
with no variation in the wetting properties in z-direction. Neglecting the time dependence of
the phase field in Eq. (8.43) leads to de Gennes’s theory in the limit of small slopes ∇H � 1:

σ∇ · ∇H
√

1 + |∇H|2 ≈ σ∇2
H = 0 . (C.497)

This is a straightforward consequence of the free energy minimization of the free energy of
the meniscus (drumhead free energy [337]), which is given by

F2D = σ

∫

dS
√

1 + |∇H|2 . (C.498)

The surface element is denoted by dS. Extension of the free energy to account for gravity
would have an additional term in the free energy of the liquid-gas interface:

F g2D ≡ σ

∫

dS
√

1 + |∇H|2 +

∫

dS
1

2
H

2 . (C.499)
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In Eq. (C.499) we have expressed the free energy in the units of capillary length lc ≡ σlv/(ρg).
Use of F g2D leads to the result of Pomeau and Vannimenus for the kernel Γ mentioned in
Sect. 8.5. The presence of the gravitational interaction guarantees that Γ−1 is not singular
on large scales k → 0, which is a problem in the basic theory of de Gennes. We will see next
how Γ can be made well-defined for all wave vectors even without gravity. This is achieved
by confinement of the fluid between two vertical walls.

C.17.1 Equilibrium derivation

We’ll show first that in the quasi-stationary approximation with no connection to external
fluid reservoir the meniscus satisfies Poisson’s equation having the contact line position as
the boundary value. We assume that we have no-flux boundary conditions for the chemical
potential which means that the global mass of the fluid between the walls is conserved. To
incorporate this into the expression of free energy, we introduce a Lagrange multiplier Υ:

F 2W
2D ≡ σ

∫ ∞

−∞
dx

∫ L

0
dy

1

2
|∇H(x, y)|2 + Υ

∫ ∞

−∞
dx

∫ L

0
dy H(x, y) , (C.500)

where we have subtracted the constant bulk contribution from the first term on the right hand
side and kept only the leading contribution for small slopes. Had the boundary condition
been chosen as the usual one µ = 0 at the reservoir boundary, the Lagrange’s term would be
missing because the global mass would not be conserved. It should also be noted that we have
not derived the Lagrange’s term here through projection starting from F 2W

3D and keeping only
such order parameter profiles which satisfy global mass conservation requirements producing
a linear term in H in the expression of F 2W

2D .
Since there is no macroscopic motion in equilibrium we leave out the Rayleigh dissipation

functional. Minimizing F 2W
2D [H] with respect to the shape H yields Poisson equation for the

height field:
σ∇2

H = Υ . (C.501)

The Poisson equation is supplemented with Dirichlet boundary conditions.

{

H(x,L) = B = const ;
H(x, 0) = c(x) .

(C.502)

In the x-direction the solution should be well-behaved for x → ±∞, or periodic boundaries
can be used as in the computer simulations. The boundary conditions have been tailored to
model a situation where one of the walls at y = L is pure and the other one at y = 0 has
spatially varying wetting conditions reflected in the x-dependence of the contact line height
c. This choice is useful for discussion of stripe defects, for example. In case both walls are
chemically inhomogeneous the first condition just has to be replaced by H(x,L) = c2(x) where
c2(x) is the spatially varying contact line configuration at y = L. The physics regarding the
form of the restoring force, which we are going to derive, doesn’t change, though. Therefore
we stick the simpler choice of Eq. (C.502) for now. To get rid of the Lagrange multiplier, set

H ≡ h+ H0 (C.503)

where H0 = Υy2/(2σ). In this case h(x, y, t) is induced by the surface tension change of the
wall-liquid and wall-gas tensions in the x-direction.
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It would be more consistent with the notation of the rest of the work to choose H0 = C0 −
KLy+Ky2, where the curvature K = Υ/(2σ). Moreover, since we have set the global height
H(x,L) = B in Eq. (C.502) we should set C0 = 0. Thus, H reduces to Υy2/(2σ)−ΥLy/(2σ).
Despite the ambiguity in the choice of H0, the unique global solution H does not change since
it is a sum of h and H0: Adding something to H0 results in subtraction of the same thing from
h. For simplicity, we stick to the definition H0 = Υy2/(2σ) in the subsequent sections. The
new function h satisfies Laplace’s equation with modified boundary conditions:

∇2h = 0 ;

{

h(x,L) = B ′ = const ;
h(x, 0) = c(x) .

(C.504)

The constant B ′ is related to the other parameters of the problem throughB ′ = B−ΥL2/(2σ).
Solution of the inhomogeneous problem of Eq. (C.504) is expressible with the aid of the Green
function G0 of the corresponding homogeneous problem:

h(x, y) = −
∫

S
dS′ ∂y′G0(r, r

′)hS(r′) (C.505)

= −
∫ ∞

−∞
dx′ ∂y′G0(r; r

′)|0 c(x′) +

∫ ∞

−∞
dx′ ∂y′G0(r; r

′)|LB′ , (C.506)

where r = (x, y) and S denotes the boundary coordinates.
Let us next study the Green function G0 of the homogeneous problem. It can be con-

structed using the method of images. Summing over an infinite alternating series of mirror
charge potentials one obtains [357]

G0(r; r
′) =

1

4π
ln

[
cosh(π(x′ − x)/L) − cos(π(y′ − y)/L)

cosh(π(x′ − x)/L) − cos(π(y′ + y)/L)

]

. (C.507)

In the limit of the wall separation L going to infinity we correctly recover the good old
half-plane propagator which we have been using in our imbibition model. Evaluation of
∂y′G0(r; r

′) is performed at the wall positions y ′ = 0 and y′ = L. We obtain

∂y′G0(x, y;x
′, y′)|0 = −sin(πy/L)

2L

1

cosh(π(x′ − x)/L) − cos(πy/L)
; (C.508)

∂y′G0(x, y;x
′, y′)|L =

sin(πy/L)

2L

1

cosh(π(x′ − x)/L) + cos(πy/L)
. (C.509)

In the next section we will compute the Fourier transforms of the two kernels above and
confirm with explicit calculation that the boundary values set for h are respected.

C.17.2 Validation of the boundary conditions

The explicit form of the meniscus in Eq. (C.506) defines two new functions ha(x, y) and hb(y),
which should not be confused with the average meniscus position and the fluctuations around
it.

h(x, y) = ha(x, y) + hb(y) . (C.510)

ha(x, y) ≡ sin(πy/L)

2L

∫ ∞

−∞
dx′

1

cosh(π(x′ − x)/L) − cos(πy/L)
c(x′) (C.511)

hb(y) ≡ B′ sin(πy/L)

2L

∫ ∞

−∞
dx′

1

cosh(πx′/L) + cos(πy/L)
. (C.512)
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First, consider the limiting limiting values of ha. The dominant contribution to the convolu-
tion come from the neighbourhood of x ≈ x′ for y = 0. Therefore,

lim
y→0

ha = lim
y→0

sin(πy/L)

2L

∫ ∞

−∞
dx′

1

1 + 1
2 ( πL)2(x− x′)2 − 1 + 1

2( πL)2y2
c(x′) (C.513)

= lim
y→0

(πy/L)

2L

∫ ∞

−∞
dx′

1
1
2( πL )2 [(x− x′)2 + y2]

c(x′) (C.514)

= lim
y→0

∫ ∞

−∞
dx′

1

π

y

(x− x′)2 + y2
c(x′) (C.515)

=

∫ ∞

−∞
dx′ δ(x − x′) c(x′) = c(x) . (C.516)

In the first line we Taylor expand cosh(π(x−x′)/L), and the last line follows from the Poisson
representation of the delta function. The correct boundary condition is revived at y = 0. For
y → L,

lim
y→L

ha ∝ sin(πL/L)

2L
= 0 . (C.517)

Thus, the effect of ha vanishes at the other boundary as it should; the correct boundary value
B′ at y = L is produced by the other term hb.

It turns out that the expression of hb can be reduced to a much less complicated form
which allows us to see the limiting behaviour immediately. We first remove the redundant
coordinate x In Eq. (C.512) from the integral kernel of hb by shifting x′old − x ≡ x′new. The
integration can be readily performed:

∫ ∞

−∞
dx′

1

cosh(πx′/L) +A

=
L

π

∫ ∞

−∞
dx1

1

cosh(x1) +A
=

2L

π

∫ ∞

−∞
dx1

1

ex1 + e−x1 + 2A
(C.518)

=
2L

π

∫ ∞

0

dz

z

1

z + z−1 + 2A
=

2L

π

∫ ∞

0
dz

1

z2 + 2Az + 1
, (C.519)

where we have used the short-hand notation A ≡ cos(πy/L). In the last line we performed
the change of variables exp(x) ≡ z. The last integral can be done in a closed form with the
result,

∫ ∞

−∞
dx′

1

cosh(πx′/L) +A
=

2L

π
√

1 −A2

[
π

2
− arctan

(
A√

1 −A2

)]

(C.520)

=
2L

π sin(πy/L)

[
π

2
− arctan(cot(πy/L))

]

(C.521)

=
2L

sin(πy/L)

y

L
. (C.522)

The second equality follows from the fact that
√

1 −A2 = | sin(πy/L)| = sin(πy/L) for
y ∈ [0, L]. The last line is obtained by shifting the argument of the cotangent by π/2:
cot(x+ π/2) = − tan(x). Therefore,

hb(y) = B′ y
L
. (C.523)
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The linear relationship was to be expected since the curvature should be zero for the solution
satisfying a constant boundary condition. The limits are obviously correct:

lim
y→0

hb(y) = 0 ; lim
y→L

hb(y) = B′ . (C.524)

We notice that the desired boundary value c(x) is produced by the term ha(x, 0) = c(x)
whereas hb(0) = 0 . At the other boundary the situation is reversed: ha(x,L) = 0 and
hb(L) = B′.

C.18 Force kernel and mass conservation

In the quasi stationary approximation with constant contact line profile at y = L we obtain
the following decomposition of the meniscus after taking the Fourier transform of h with
respect to variable x:

H(x, y, t) = h(x, y, t) + Υy2/(2σ) ; (C.525)

h(k, y, t) = ha(k, y, t) + hb(k, y, t) , (C.526)

where we have split h into two parts named ha and hb the superscripts of whom indicate at
which wall they are fulfil the boundary condition. In the Fourier space

ha(k, y, t) =
sinh(|k|(L− y))

sinh(|k|L)
ck(t) ; (C.527)

hb(k, y, t) = δ(k)B ′y/L . (C.528)

Expressions for ha and hb have been derived in Sect. C.17.2 and Sect. C.11. As mentioned
in the previous section, instead of H0 = Υy2/(2σ) which leads to Eq. (C.525), choosing
H0 = Υy2/(2σ) − ΥLy/(2σ) gives H = ha + hb + H0, where hb = δ(k)By/L instead of
Eq. (C.528).

The force fCL density per unit length on the contact line is by definition given by the
expression

fCL ≡ δ

δc
(F − F0) , (C.529)

F0 being a reference free energy which absorbs factors independent of the contact line position
c. To eliminate unnecessary terms from Eq. (C.529) we shall use the real space representation
first, and switch over to Fourier space only after things have simplified enough. The force fCL
is then given by

fCL =
∂

∂c

{
∫ ∞

−∞
dx

∫ L

0
dy

[
σ

2
|∇H(x, y)|2 + ΥH(x, y) − f0

]}

, (C.530)

where f0 is the density of F0. The gradient of the meniscus H is ∇H = ∇h+ ey (Υ/σ)y, and
∇ ≡ ex ∂x + ey ∂y. Therefore,

|∇H|2 = |∇h|2 + 2(Υ/σ)y ∂yh+ (Υy/σ)2 . (C.531)

After substitution of the expansion h = ha(x, y) + hb(y) into the expression we can write the
free energy density f as

f =
σ

2
|∇ha|2 + σ∂yh

a ∂yh
b +

σ

2
(∂yh

b)2 + Υy ∂yh+
σ

2
(Υy/σ)2 + ΥH − f0 . (C.532)
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Somewhat surprisingly, all the terms on the right hand side of the previous equation except
for the first one will turn out to have no effect on the restoring force fCL. Let us prove this
term by term in Fourier space. Starting with σ∂yh

a ∂yh
b, we get

∂

∂ck

∫ L

0
dy σ∂yh

a(k = 0, y) ∂yh
b(y) = 0 , (C.533)

where we have utilized the fact that hb(y) is a function of y only (and therefore proportional
to δ(k)). Thus, the integral of ha over x can be represented as

∫
dxha(x, y) = ha(k = 0, y).

As the functional derivative is taken with respect to ck, Eq. (C.533) holds since there is no
dependence on c in ∂yh

a ∂yh
b for k 6= 0. This term will not vanish if the contact line fluctua-

tions cbk on the second wall at y = L are non-zero. In that case hb = sinh(|k|y)/ sinh(|k|L)cbk
instead of hb = δ(k)B′y/L, and consequently there will be non-zero modes.

The next term on the right hand side of Eq. (C.532) is (σ/2)(∂yh
b(y))2. When integrated

over x and y it gives a constant (no dependence on c) which can be absorbed into f0 (infinities
cancel out). Similar argument holds for the fifth term (σ/2)(Υy/σ)2. The fourth term on
the right hand side of the free energy density, 2Υy ∂yh, requires a bit more work. By partial
integration we get,

Υ

∫ ∞

−∞
dx

∫ L

0
dy y ∂yh = Υ

∫ ∞

−∞
dx [y h]L0 − Υ

∫ ∞

−∞
dx

∫ L

0
dy h(x, y) (C.534)

= Υ

∫ ∞

−∞
dxLB′ − Υ

∫ ∞

−∞
dx

∫ L

0
dy
(

H(x, y) − Υy2/(2σ)
)

. (C.535)

In the first line we used the boundary condition for h to evaluate the substitution term
[y h]L0 ≡ 0h(x, 0) − Lh(x,L), and in the second line we expanded H = h + Υy2/(2σ). The
first and third terms in Eq. (C.535) are just constants. The second term is seen to exactly
cancel out the mass conservation term

+

∫ ∞

−∞
dx

∫ L

0
dyΥH(x, y) , (C.536)

which also appears in Eq. (C.532). The mass conservation term could also be forced to
vanish by considering no-flux boundary conditions and by setting the initial height of the
fluid between the walls properly. This situation is relevant for defect studies discussed in
Sect. 8.8.

We have now shown that the only nontrivial dependence on the contact line position of
the restoring force fCL originates from the first term on the right hand side of Eq. (C.532).
Thus,

fCL(k) = Fx/k
{

∂

∂c(x)

∫ ∞

−∞
dx

∫ L

0
dy

σ

2
|∇ha|2

}

(C.537)

=
σ

2

∂

∂ck

∫ ∞

−∞
dk

∫ L

0
dy
[

k2|ha(k, y)|2 + |∂yha(k, y)|2
]

(C.538)

Substitution of ha(k, y) given in Eq. (C.527) yields

fCL(k) =
σ

2

∂

∂ck

∫ ∞

−∞
dk

∫ L

0
dy k2|ck|2 Γ′(k, y) . (C.539)
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In the previous equation we have defined a new function

Γ′(k, y) ≡
(

sinh(|k|(L − y))

sinh(|k|L)

)2

+

(
cosh(|K|(L− y))

sinh(|k|L)

)2

=
cosh(2|k|(L − y))

sinh2(|k|L)
. (C.540)

To relate Γ′(k, y) with Γ2W (k) appearing in evolution equation of the contact line, we consider
the integral of Γ′(k, y) over y:

∫ L

0
dy Γ′(k, y) =

∫ L

0
dy

cosh(2|k|(L − y))

sinh2(|k|L)
=

1

sinh2(|k|L)

∫ L

0
dy cosh(2|k|y) (C.541)

=
1

2|k|
sinh(2|k|L)

sinh2(|k|L)
=

1

|k| coth(|k|L) . (C.542)

The restoring force (cf. Eq (C.539)) can now be conveniently represented as

fCL(k) =
∂

∂ck

∫ ∞

−∞
dk 1

2Γ2W (k) |ck |2 , (C.543)

where we have defined the kernel

Γ2W (k) ≡ σk2
∫ L

0
dy Γ′(k, y) = σ|k| coth(|k|L) . (C.544)

The inverse of Γ2W (k) is needed in Sect. 8.8 to relate the fluctuations of the local wetting
properties to the shape of the contact line. Let us therefore study the behaviour of the inverse
for k → 0.

lim
k→0

Γ−1
2W (k) =

L

σ
. (C.545)

The limiting value of Γ−1
2W is finite for finite plate separation L and the inverse is well-defined

for all values of k. Consideration of very large values of kL, or more precisely kxLy, leads us
back to de Gennes’s result if the walls have finite length in x-direction: Γ2W → σ|kx| when
kxLy � 1, or (2π/Lx)Ly � 1.

C.19 Dynamic critical properties of contact line

In this section we study dynamic critical properties (kinetic roughening) of the contact line
the kinetic roughening of the contact line and compute the lowest order approximation to
roughness exponents in different scaling regimes. In Sect. 8.8 we have shown that the restoring
force for the two wall set-up (Eq. (8.80)) can be approximated with de Gennes’s result of
Eq. (8.78) for large enough k-vectors: Γ(k) ≈ σ|k| for |k| � 1/Ly. Let us rewrite the evolution
equation of the contact line in a simplified form (reminiscent of imbibition), which we will
use for the fluctuation analysis:

1 − e−C0|k|

|k| ∂tck(t) = −σ1k
2 ck(t) + Ãk(t) . (C.546)

There appears a new constant in Eq. (C.546), σ1, which is defined with the aid of the mobility
M and the liquid-gas surface tension σ: σ1 ≡ Mσ. The quenched noise field Ãk ≡ M |k|Ak
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represents the Fourier transform of the projection of the random field A(x, y, z) present in
the bulk free energy of the model:

Ak(t) =

∫

dx eıkxA(x, 0,C(x, t)) . (C.547)

Redefine the time to simplify the subsequent calculations:

τ(k, t) ≡
∫ t

0
dt′

|k|
1 − e−C0(t′)|k| . (C.548)

Depending on whether we are in the local or nonlocal regime, τ takes on the values

τ →
{

2
√

t/(MσK) , for C0|k| � 1 (local regime) .
|k|t , for C0|k| � 1 (nonlocal regime) .

(C.549)

The constant K appearing above is the curvature of the zeroeth order meniscus position
H0(y, t) = c(t) + K(t)(y − L/2)2. The explicit formula for C0(t) used in Eq. (C.548) is,
C0(t) =

√
MσKt which should hold for larger times when the curvature K doesn’t depend

on time so strongly. In terms of the redefined time we have

∂τ ck(τ) = −σ1k
2 ck(τ) + Ãk(τ) . (C.550)

The formal solution is simply

ck(τ) =

∫ τ

0
ds e−σ1k2(t−s) Ãk(s) . (C.551)

Using the effective noise approximation for the quenched noise we can write the first approx-
imation of the noise correlator as

〈ÃkÃk′〉 ≈ k2δ(k + k′)D/W , (C.552)

where D is the (constant) strength of the impurity correlations on the wall and W is the
r.m.s. width of the fluctuating contact line. The structure factor is given by

S(k, τ) = e−2σ1k2τ
∫ τ

0
ds1 e

σ1k2s1

∫ τ

0
ds2 e

σ1k2s1 Dk2/W . (C.553)

Roughness exponent χ and the time correlation exponent β can be obtained by studying
the time-like and length-like scaling of the structure factor in the limits σ1τk

2 � 1 and
σ1τk

2 � 1.

For σ1τk
2 � 1, S(k, t) ∼ k−2W−1 ∼ k−2L−χ ∼ kχ−2 ∼ k−(2χ+d) . (C.554)

For σ1τk
2 � 1, S(k, t) ∼ k2τ2W−1 ∼ τ2τ−2β ∼ t1−β ∼ t2β+d/z . (C.555)

The last scaling relations on the right in Eq. (C.554) and Eq. (C.555) are the self-consistency
requirements based on the definitions of exponents χ and β. The dynamic exponent z is
defined through z = χ/β. Substituting this together with d = 1 into the last scaling relation
of Eq. (C.555) yields β = χ/(3χ + 1). The roughness exponent is solved from Eq. (C.554)
with the result χ = 1/3 in d = 1. Therefore, β = 1/6 and z = 2.
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In the nonlocal regime where τ → kt we can similarly divide the analysis into two parts:

For σ1τk
2 � 1, S(k, t) ∼ k−2W−1 ∼ k−2L−χ ∼ kχ−2 ∼ k−(2χ+d) . (C.556)

For σ1τk
2 � 1, S(k, t) ∼ k2τ2W−1 ∼ k2τ2(τ/k)−β ∼ t2−β ∼ t2β+d/z . (C.557)

Matching aging the powers in scaling relation of Eq. (C.556) gives χ = 1/3. From the
lengthwise scaling we obtain β = 2χ/(3χ + 1). Substitution of χ = 1/3 gives β = 1/3 and
z = 1.

Another possibility to perform the analysis is to work with the real time and consider
the nonlocal and local limits of Eq. (C.546) separately. This leads to the same results as
the method above. It remains to be checked more thoroughly if the simple power counting
arguments can be applied to the noise correlator of quenched ’conserved’ noise field Ãk =
M |k|Ak. For other models with simpler noise Ak (no factor of |k|) we have found good
correspondence between analytic results obtained in the manner described above and direct
numerical integration (Sect. 12.3). However, the dynamic critical properties of the contact
line are more difficult to determine because of the non-linear mean velocity of the line (in
the non-driven case) in addition to the different noise properties. Preliminary numerics
contradicts strongly the analytic prediction for the roughness exponent χ. Numerically, there
should be a regime where the line is super-rough with χ ≈ 1.25.
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Appendix D

Details of hydrodynamics

D.1 Evaluation of Poisson brackets

Let us start with the simplest possible system with one chemical species of molecules (parti-
cles) in the fluid state. The microscopic expressions of the conserved observables which are
the mass density φ, the momentum density j and the internal energy density E are:

φ(x, t) ≡
∑

α

mδ(x − xα(t)) . (D.1)

j(x, t) ≡
∑

α

pα(t) δ(x − xα(t)) . (D.2)

E(x, t) ≡
(
∑

α(pα)2/(2m) + (1/2)
∑

α6=βV (xαβ)
)

δ(x − xα(t)) . (D.3)

The mass of the fluid molecule is m and the instantaneous position and momenta are xα(t)
and pα(t). The superscript α runs over all fluid particles in the system. In the argument of the
interparticle potential energy V we have abbreviated xαβ ≡ xα−xβ. Finally, the component
notation of the momentum vector is given by pα ≡ (pαx , p

α
y , p

α
z ), where instead of subscripts

x, y, z numbers 1, 2, 3 is used. Angular momentum density, L =
∑

α(xα ∧ pα) δ(x − xα) (∧
denotes the vector product), is also a conserved quantity. However, it does not give rise to
any new hydrodynamic modes (p. 441, Ref. [5]). This is generally true for theories with
symmetric stress tensor.

The value of the Poisson bracket is a function of the arguments of the observables:
Qµν(x,x

′) ≡ {ψµ(x), ψν(x
′)}. This equation can be interpreted either as a time indepen-

dent Poisson bracket for static fields ψµ(x) and ψν(x
′), or as an equal time Poisson bracket

for time dependent fields ψµ(x, t) and ψν(x
′, t) with time dependence suppressed. To be able

to interpret the meaning of the Poisson bracket of two fields evaluated at different times,
{ψµ(x, t), ψν(x′, t′)} we first note that there are two equivalent ways of obtaining the evolu-
tion equations for the coarse-grained variables ψµ. As explained in App. D.4, the Langevin
equation of the macro variables is given by

∂tψµ(x) = Nµ(x) − Γµν
δF [ψ]

δψν(x)
+ ηµ(x, t) . (D.4)

Because this equation utilizes the stationary probability distribution Peq, the field ψν ap-
pearing in the term δF [ψ]/δψν (x) is only a function of x. This is due to the fact that
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Peq(ψ(x), t|ψ0(x), t0) tells the probability of the macro variable operator ψ̂(x, t) obtaining
the value ψ(x) at time t (given that it had the value ψ0(x) at the initial time t0). Thus, for
static free energy,

F [ψ] =

∫

dx f(ψ(x)) , (D.5)

the variational derivative becomes a function of x only: δF [ψ]/δψ(x) = f ′(ψ(x)). Therefore,
in Eq. (D.4), we have to add the time dependence to the argument of ψ by hand. In other
words, we replace f ′(ψ(x)) with f ′(ψ(x, t)) to justify the time differentiation on the left hand
side of Eq. (D.4). Using this method it suffices to compute the static Poisson brackets without
any time dependence in the fields. Moreover, the integrals included in the expression of the
force Nµ (see Eq. (D.134) and Eq. (D.119)) are over the x′-coordinate only:

Nµ = Uµ + T

∫

dx′ δQµν
δψν(x′)

= −
∫

dx′Qµν(x,x
′)
δF [ψ]

δψν(x′)
+ T

∫

dx′ δQµν
δψν(x′)

. (D.6)

The second possibility, which gives identical results with the procedure explained above, is
to generalize the free energy, which only had static fields as its arguments before, in such a
way that its argument functions can be time dependent:

F =

∫

dx

∫

dt f(ψ(x, t)) ≡
∫

dx f(ψ(x)) , (D.7)

where dx ≡ dx dt and x = (x, t). With this generalization, it would be more appropriate to
talk about action instead of free energy since the units of F given in Eq. (D.7) are the unit
of energy times the unit of time. Naturally, the integrals in the expression of the force Nµ

include also time integration:

Nµ = −
∫

dx′
∫

dt Qµν(x, t;x
′, t′)

δFt[ψ]

δψν(x′, t′)
+ T

∫

dx′
∫

dt
δQµν

δψν(x′, t′)
. (D.8)

If we choose to use the time dependent arguments of fields and wish to obtain the same result
as with time independent arguments, the Poisson brackets will acquire an additional delta
function factor as compared to the time independent case:

{
A(x, t), B(x′, t′)

} ≡
∑

α,j

[

∂A(x, t)

∂pαj (t)

∂B(x′, t′)
∂xαj (t)

− ∂A(x, t)

∂xαj (t)

∂B(x′, t′)
∂pαj (t)

]

(D.9)

−→
∑

α,j

[

∂A(x)

∂pαj

∂B(x′)
∂xαj

− ∂A(x)

∂xαj

∂B(x′)
∂pαj

]

δ(t− t′) . (D.10)

In Eq. (D.10) we have suppressed the time dependence of all functions as the delta func-
tion forces the time arguments to be the same. So, as a mnemonical rule we can use
{A(x, t), B(x′, t′)} = {A(x), B(x′)} δ(t− t′). The delta function δ(t− t′) takes care of the ex-
tra time integral present in Eq. (D.8) making the results of the time independent theory and
the functional derivative calculus with time dependent arguments identical. To summarize,
at the level of the Langevin equation there is no difference, which method we use, if replace
the unequal time commutator with the form (D.10). This is just a trick, however. Strictly
speaking our mnemonic rule contradicts the correct definition of the unequal time commu-
tator, which must be calculated from the time-dependent solutions of evolution equations of
motion of the dynamic variables A and B [70]. For classical variables we should write

A(x, t) = eıtL̂A(x, 0) ≡
∞∑

n=0

tn

n!
(ıL̂)nA(x, 0) , (D.11)
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where A(x, 0) is the given initial value of A. Similar relation holds for the variable B. The
action of the Liouville operator is defined in terms of the microscopic Hamiltonian H:

ıL̂A = {A,H} . (D.12)

Constructing A(x, t) and B(x, t′) in this manner and computing their Poisson bracket will
obviously produce a more complicated time dependence than given by the replacement rule
of Eq. (D.10). This result seems to indicate that when constructing the Langevin equation
for macro variables it is fundamentally more correct to use the time independent fields which
can be read of from the stationary free energy to compute the (equal time) commutators.
Once the Poisson brackets have been computed, one should put in the time dependence by
hand through replacement φ(x) −→ φ(x, t). One should be careful with the dimensional
analysis, though. In the equation of motion the free energy should have units of action.

D.1.1 Mass and momentum density

First we compute the Poisson brackets between the mass density and momentum density. As
pointed out above, when all the fields and variables are determined at the same instant of
time, we do not have to write down the time arguments explicitly. Therefore, suppressing
time arguments in Eq. (D.10) and substituting A = φ(x) and B = ji(x

′) we get

{
φ(x), ji(x

′)
} ≡

∑

α,j

[

∂φ(x)

∂pαj

∂ji(x
′)

∂xαj
− ∂φ(x)

∂xαj

∂ji(x
′)

∂pαj

]

= −
∑

α,j

∂φ(x)

∂xαj

∂ji(x
′)

∂pαj
, (D.13)

because the mass density is independent of momenta, ∂φ(x)/∂pαj = 0. Next, we use the fact

that ∂ji(x)/∂pαj = (∂/∂pαj )
∑

β p
β
i δ(x

′ − xβ) = δijδ(x
′ − xβ):

{
φ(x), ji(x

′)
}

= −
∑

α,j

∂φ(x)

∂xαj
δijδ(x

′ −xβ) = −
∑

α

(
∂

∂xαi

∑

β

mδ(x−xβ)

)

δ(x−xβ) , (D.14)

The action of the derivative on the multidimensional delta function can be easily seen. For

i = 1, (∂/∂xαi )δ(x − xβ) = (∂δ(x1 − xβ1 )/∂xα1 ) δ(x2 − xβ2 )δ(x3 − xβ3 ) δαβ , and so on. Keeping
the index i = 1 fixed, we obtain

{
φ(x), j1(x

′)
}

=

∑

α

mδ′(x1 − xα1 )δ(x2 − xα2 )δ(x3 − xα3 )
[
δ(x′1 − xα1 )δ(x′2 − xα2 )δ(x′3 − xα3 )

]
(D.15)

=
∑

α

mδ′(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3) δ(x
′ − xα) (D.16)

= δ′(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3)
∑

α

mδ(x′ − xα) , (D.17)

where the delta function δ(x′−xα), which is expanded in the square brackets on the first line,
was used to replace the variables xαs with x′s, s = 1, 2, 3. The previous calculation was done
for index i = 1 but similar argumentation holds for the remaining indices, too. Therefore,

{
φ(x), ji(x

′)
}

= ∂iδ(x − x′)φ(x′) , (D.18)
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which is seen from Eq. (D.17) by pulling out the delta factors which do not depend on the
summation index α and using the definition of the density φ. By interchanging arguments x

and x′ and multiplying the previous equation by −1 gives

{
ji(x), φ(x′)

}
= −∂i′δ(x′ − x)φ(x) = ∂iδ(x

′ − x)φ(x) . (D.19)

The fact that the argument of φ has changed has an effect of the action of the Poisson bracket
kernels on a function f as demonstrated below:







∫

dx′ {φ(x), j(x′)
}
f(x′) = ∇ (φ(x)f(x)) .

∫

dx′ {j(x), φ(x′)
}
f(x′) = φ(x)∇f(x) .

(D.20)

As will be shown later, the upper equation enables us to compute the Poisson bracket of
the velocity (not momentum) field and the density field φ which is needed in evaluation of
Eq. (9.31).

D.1.2 Components of momentum density

Unlike the Poisson brackets of the density field, {φ(x), φ(x′)} = 0, the Poisson brackets of the
different momentum field components do not vanish since the fields ji (i = 1, 2, 3) do depend
on the microscopic momenta. Starting from the defining equation,

{

js(x), ji(x
′)
} ≡

∑

αj

[

∂js(x)

∂pαj

∂ji(x
′)

∂xαj
− ∂js(x)

∂xαj

∂ji(x
′)

∂pαj

]

(D.21)

=
∑

αj

[

∂

∂pαj

(
∑

β1
pβ1
s δ(x − xβ1)

) ∂

∂xαj

(
∑

β2
pβ2
i δ(x

′ − xβ2)
)

(D.22)

− ∂

∂xαj

(
∑

β1
pβ1
s δ(x − xβ1)

) ∂

∂pαj

(
∑

β2
pβ2
i δ(x

′ − xβ2)
)
]

.

The first factor on the right hand side of Eq. (D.22) is readily obtained: (∂/∂pαj )(
∑

β1
pβ1
s δ(x−

xβ1)) = δjsδ(x−x′). In the same way we can compute the last factor on the right in the second

line of Eq. (D.22). Let us now concentrate on the factors in the middle: (∂/∂xαj )(
∑

β2
pβ2
i δ(x

′−
xβ2)) = (

∑

β2
pβ2
i (∂/∂xαj )δ(x′ − xβ2)). The differentiation of the delta function gives

∂

∂xαj

3∏

k=1

δ(x′k − xβ2

k ) =
3∑

k=1

δ ′(x′k − xβ2

k )(−1) δjkδαβ2

∏

r 6=k
δ(x′r − xβ2

r ) (D.23)

The expression (∂/∂xαj )(
∑

β1
pβ1
s δ(x−xβ1)) is treated similarly. Substitution of the previous

results back into Eq. (D.22) yields

{
js(x), ji(x

′)
} ≡

∑

αj

[(

δjsδ(x − xα)
)∑

β2

pβ2
i (−1)δ ′(x′j − xβ2

j )δαβ2

∏

r 6=j
δ(x′r − xβ2

r ) (D.24)

−
∑

β1

pβ1
s (−1)δ ′(x′j − xβ1

j )δαβ1

∏

r 6=j
δ(x′r − xβ1

r )
(

δijδ(x
′ − xα)

)]

.
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Summation over indices β1 and β2 is carried out next. Due to the Dirac deltas δjs and δij
we can also perform the summation over j:

{
js(x), ji(x

′)
}

=
∑

α

[

δ(x − xα)(−pαi )δ ′(x′s − xαs )
∏

r 6=s
δ(x′r − xαr ) (D.25)

+ pαs δ
′(xi − xαi )

∏

r 6=i
δ(xr − xαr ) δ(x′ − xα)

]

.

We can again use the same trick which was introduced in the context of Eq. (D.15). Thanks
to the delta function δ(x − xα) in the first line of Eq. (D.25), we can replace the particle
coordinates xαs and xαr appearing in the consecutive terms δ ′(x′s − xαs )

∏

r 6=s δ(x
′
r − xαr ) with

the components of x. Similar arguments apply the the second line of the right hand side of
Eq. (D.25) as well:

{
js(x), ji(x

′)
}

=
∑

α

[

δ(x − xα)(−pαi )δ ′(x′s − xs)
∏

r 6=s
δ(xr − x′r) (D.26)

+ pαs δ
′(xi − x′i)

∏

r 6=i
δ(xr − x′r) δ(x

′ − xα)

]

.

The summation over index α can now be performed. In the first and the second term of the
previous equation this gives rise to factors ji(x) and js(x

′), respectively:

{
js(x), ji(x

′)
}

= −ji(x) δ ′(x′s− xs)
∏

r 6=s
δ(x′r − xr) + δ ′(xi− x′i)

∏

r 6=i
δ(xr − x′r) js(x

′) . (D.27)

Both terms can be further simplified by extracting the derivative operator as shown for the
first term on the right: δ ′(x′s − xs)

∏

r 6=s δ(x
′
r − xr) = ∂′sδ(x

′ − x). Hence,

{
js(x), ji(x

′)
}

= −ji(x) ∂s
′δ(x′ − x) + ∂iδ(x − x′) js(x

′) , (D.28)

where the order of the arguments x and x′ in the arguments of the delta functions should be
noted. The abbreviations ∂s

′ ≡ ∂/∂x′s and ∂i ≡ ∂/∂xi.
What remains to be calculated is the action of the Poisson bracket kernels on an arbitrary

function f(x). By partial integration it is easy to show that

∫

dx′ {js(x), ji(x
′)
}
f(x′) = ji(x) ∂sf(x) + ∂i

(

js (x)f(x)
)

. (D.29)

It is particularly interesting to apply this result to the case f = δFk/δji(x) where the mo-
mentum density dependent part of Fk =

∫
dx j2(x)/(2φ) where φ = const is the average

density, which does not have any spatial dependence. Since φ is just a constant, we can scale
it away as far as the following calculation goes. Substitution of f(x) = δFk[j]/δji(x) = ji(x)
into Eq. (D.29) gives

∫

dx′ {js(x), ji(x
′)
} δFk[j]

δji(x)
= ji(x) ∂sji(x) + ∂i

(

js (x)ji(x)
)

(D.30)

=
1

2
∂sj

2(x) + js(x)∇ · j(x) + (j(x) · ∇) js(x) . (D.31)
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The last equality follows by expanding the Einstein summation in Eq. (D.30). The first term
on the right hand side of Eq. (D.30) is ji∂sji = (1/2) ∂sj

2 with j2 = j21 + j22 + j23 . The second
term on the right is ∂i(jsji) = ∂1(jsj1)+∂2(jsj2)+∂3(jsj3) = js∇· j+(j ·∇) js. Summing up
these contributions gives Eq. (D.31). The result of Eq. (D.31) should be compared with the
same calculation performed with a spatially varying density field in the expression of the free
energy: Fk =

∫
dx j2(x)/(2φ(x)). As will be demonstrated later on, there will be no term

present in the final equation of motion of the momentum density (or velocity) which would
be proportional to the divergence of momentum density (js∇ · j). To obtain the model H
of critical dynamics [297], where φ is replaced with the average constant critical density of
the fluids one should make the additional assumption that ∇ · j = 0. This condition cannot
be derived in the present formalism as an additional constraint independent of the mass
conservations equation. Though, it is true that the latter reduces to the incompressibility
condition if we assume that the density is constant everywhere and that there is no diffusive
nor random mass flux.

D.1.3 From momentum to velocity representation

Since the equations of fluid dynamics are more frequently written using velocity field as the
primary variable, we re-derive the Poisson bracket relations of the previous sections in terms
of v. This cannot be done directly since we do not know what is the form of the velocity field
in terms of the microscopic coordinate and momenta. We have to use the identification,

φ(x)v(x) ≡ j(x) , (D.32)

which is a nontrivial relation as it relates the product of two macroscopic (averaged) fields to
a third one [244]. In far from equilibrium situation it is not obvious that such a relation holds
(p. 50, Ref. [45]). It should also be noted that v is a function all microscopic coordinate
and momenta of the fluid particles and in that sense a macroscopic quantity. In the single
particle limit it obviously reduces to the standard form mv(t) = p(t) relating the momentum
of the particle to its velocity. Since we know the microscopic expressions of φ and j, we can
formally solve for the velocity:

v(x) ≡ j(x)

φ(x)
. (D.33)

Despite the delta function nature of the denominator the quotient on the right should be
well defined formally, since both j and φ have their zeroes at the same places thereby ’ they
cancel each other out’. Using Eq. (D.33) and the identity of Poisson brackets, {A,BC} =
B{A,C} + {A,B}C, gives

{
φ(x), vi(x

′)
}

=

{

φ(x),
1

φ(x′)
ji(x

′)
}

=
1

φ(x′)

{
φ(x), ji(x

′)
}
, (D.34)

because {φ(x), 1/φ(x′)} = 0 as there is no dependence on the microscopic momenta in φ.
The bracket between φ and ji has been computed in Eq. (D.18). Thus,

{

{φ(x), vi(x
′)} = ∂iδ(x − x′) .

{vi(x), φ(x′)} = −∂i′δ(x′ − x) .
(D.35)

The latter equation follows directly from the first one by interchanging x, x ′ and by multi-
plying both sides of the equation with (−1). When operating on an arbitrary function f , we
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get






∫

dx′ {φ(x), vi(x
′)
}

f(x′) = ∂if(x) .
∫

dx′ {vi(x), φ(x′)
}
f(x′) = ∂if(x) .

(D.36)

Irrespective of the order of the fields φ and vi, the operation of both kernels on f gives the
same result. Next, we produce the Poisson brackets between two components of the velocity
field. Using the identity for the brackets we can write

{
vs(x), vi(x

′)
}

=

{
1

φ(x)
js(x),

1

φ(x′)
ji(x

′)
}

= (D.37)

js(x)

{
1

φ(x)
, ji(x

′)
}

1

φ(x′)
+ ji(x

′)
{

js(x),
1

φ(x′)

}
1

φ(x)
+
{
js(x), ji(x

′)
} 1

φ(x′)
1

φ(x)
.(D.38)

In Eq. (D.38) there is also a fourth term which vanishes since it is proportional to the Poisson
bracket of the inverse densities {1/φ(x), 1/φ(x′)} = 0. Let us start working on the two bracket
expressions whose value we do not know yet. First, by definition

{
1

φ(x)
, ji(x

′)
}

≡
∑

αj

[

∂φ−1(x)

∂pαj

∂ji(x
′)

∂xαj
− ∂φ−1(x)

∂xαj

∂ji(x
′)

∂pαj

]

(D.39)

=
1

φ2(x)

∑

αj

∂φ(x)

∂xαj

∂ji(x
′)

∂pαj
= − 1

φ2(x)

{
φ(x), ji(x

′)
}

= − 1

φ2(x)
∂iδ(x − x′)φ(x′) , (D.40)

where we used Eq. (D.18). Since the density φ does not contain microscopic momenta, the
first term in the square brackets on the right hand side of the Eq. (D.39) vanishes. We have
also used the chain rule: ∂φ−1(x)/∂xαj = (−1)φ−2(x)∂φ(x)/∂xαj . Similarly we obtain

{

ji(x),
1

φ(x′)

}

=
1

φ2(x′)
φ(x) ∂s

′δ(x′ − x) . (D.41)

Now all the Poisson brackets appearing in Eq. (D.38) are known. Substitution gives

{

vs(x), vi(x
′)
}

=
js(x)

φ(x′)

[

− φ(x′)
φ2(x)

∂iδ(x − x′)
]

+
ji(x

′)
φ(x)

[

− φ(x)

φ2(x′)
∂s

′δ(x′ − x)

]

(D.42)

+
1

φ(x)φ(x′)

[−ji(x)∂s
′δ(x′ − x) + ∂i

′δ(x − x′) js(x
′)
]
.

Using the definition ji(x) = φ(x)vi(x) and cancelling out the common factors we simplify the
previous equation and obtain

{
vs(x), vi(x

′)
}

= (D.43)

= −vs(x)

φ(x)
∂iδ(x − x′) +

vi(x
′)

φ(x′)
∂s

′δ(x′ − x) − vi(x)

φ(x′)
∂s

′δ(x′ − x) +
vs(x

′)
φ(x)

∂iδ(x − x′) .

Grouping the terms finally gives the result which has been quoted in Eq. (9.18). The action
of this kernel on δFk/δvj has been given in Eq. (9.22). Indeed, it should be noticed that there
is no term which is proportional to ∇·v as there is a term ∇· j in Eq. (D.31). This is because
in the latter case the density φ in the free energy functional Fk =

∫
dx j2(x)/2 was assumed

to be a constant, so it can be scaled out. Contrary to that, in the former case we allowed φ(x)
to vary spatially, which leads to Fk =

∫
dx j2(x)/(2φ(x)) =

∫
dxφ(x)v2(x)/2. In Sect. D.2.1

we demonstrate in more detail that both variables v and j are good macroscopic variables in
the sense that they produce the same deterministic part of the equation of motion for mass
and momentum densities.



380 APPENDIX D. DETAILS OF HYDRODYNAMICS

D.1.4 Poisson brackets involving energy density

Let us first work out the Poisson bracket of the energy density and the mass density. We divide
the internal energy, given by Eq. (D.3), into two parts: E = Ek+Ep where Ek ≡

∑

α(p
α)2/(2m)

and Ep(x) ≡ (1/2)
∑

α6=β V (xαβ) δ(x − xα(t)). First, we notice that {Ep(x), φ(x′)} = 0 as
there is no dependence on the microscopic momenta in either of the functions. The bracket
including the Ek gives:

{Ek(x), φ(x′)
} ≡

∑

αj

[

∂Ek(x)

∂pαj

∂φ(x′)
∂xαj

− ∂φ(x′)
∂pαj

∂Ek(x)

∂xαj

]

=
∑

αj

∂Ek(x)

∂pαj

∂φ(x′)
∂xαj

(D.44)

=
∑

αj

1

m
pαj δ(x − xα) (−m)∂j

′δ(x′ − xα) = −
∑

j

∑

α

pαj δ(x − xα)∂j
′δ(x′ − x) , (D.45)

where we have used the fact that ∂φ/∂pαj = 0. Combining the results for Ek and Ep, we write
in vector notation

{E(x), φ(x′)
}

= −j(x) · ∇′δ(x′ − x) , (D.46)

where ∇′ ≡∑3
i=1 ei∂i

′. Similarly, one obtains {φ(x), E(x′)} = j(x′) · ∇δ(x−x′). The Poisson
bracket of the mass and energy density is expressible in terms of the coarse-grained variables
(j) but this is not true for the Poisson bracket of energy and momentum density.

Next, we calculate {E(x), ji(x
′)} = {Ek(x), ji(x

′)} + {Ep(x), ji(x
′)}. As in the previous

case, we compute the first bracket on the right hand side yielding

{Ek(x), ji(x
′)
} ≡

∑

αj

[

∂Ek(x)

∂pαj

∂ji(x
′)

∂xαj
− ∂ji(x

′)
∂pαj

∂Ek(x)

∂xαj

]

(D.47)

=
∑

αj

1

m
pαj δ(x − xα)

∂ji(x
′)

∂xαj
+
∂ji(x

′)
∂pαj

1

2m
(pα)2 ∂jδ(x − xα) . (D.48)

where we used ∂Ek(x)/∂pαj = (1/m)pαj δ(x − xα) and ∂Ek(x)/∂xαj = −(1/2m)(pα)2 ∂jδ(x −
xα). Substitution of the expressions, ∂ji(x

′)/∂xαj = −pαi ∂j′δ(x′ − xα) and ∂ji(x
′)/∂pαj =

δijδ(x
′ − xα) into Eq. (D.48) gives

{Ek(x), ji(x
′)
}

= −
∑

j

∂j
′δ(x′ − x)

∑

α

1

m
pαj p

α
i δ(x − xα) + Ek(x′) ∂iδ(x − x′) . (D.49)

The first term on the right hand side is not representable in terms of the fields (φ, j, E).
Similar thing happens for the Poisson bracket of Ep and ji, which we calculate next.

{Ep(x), ji(x
′)
} ≡

∑

αj

[

∂Ep(x)

∂pαj

∂ji(x
′)

∂xαj
− ∂ji(x

′)
∂pαj

∂Ep(x)

∂xαj

]

= −
∑

αj

∂ji(x
′)

∂pαj

∂Ep(x)

∂xαj
(D.50)

The first equality follows because Ep is only a function of the coordinates xα. The first factor,
∂ji(x

′)/∂pαj has been given above. Concentrating on the second,

∂Ep(x)

∂xαj
=




∂

∂xαj

1

2

∑

α1 6=α2

V (xα1α2)



 δ(x − xα) +
1

2

∑

α1 6=α2

V (xα1α2)
∂δ(x − xα1)

∂xαj
. (D.51)
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The derivative appearing in the second term on the right is given by ∂δ(x − xα1)/∂xαj =
(−1)δαα1∂jδ(x − xα1). The derivative of the potential term gives the total force on particle
at xα:

∂

∂xαj
(1/2)

∑

α1 6=α2

V (xα1α2) =
∑

α1(6=α2)

Ṽ ′
j (x

αα1) , (D.52)

where we have defined Ṽ ′
j (x

αα1) ≡ (xαj −xα1
j )[(dV (r)/dr)r−1]r=|xα1α2 |. Therefore, the Poisson

bracket can be written as

{Ep(x), ji(x
′)
}

= −δ(x′ − x)
∑

α1 6=α2

Ṽ ′
i (x

α1α2)δ(x − xα1) + Ep(x′) ∂iδ(x − x′) . (D.53)

Combining the previous equation with Eq. (D.49) gives the final answer

{E(x), j(x′)
}

= −P‡(x) · ∇′δ(x′ − x) −W(x) δ(x′ − x) + E(x′)∇δ(x − x′) , (D.54)

where we have defined the momentum flux density tensor P‡ (which is a function of the
microscopic coordinate and momenta as opposed to P introduced in Eq. (D.72)) and a vector
quantity W(x) which represents the total force acting on all the molecules inside the (in-
finitesimal) fluid element situated at x arising from the pairwise interaction with the other
molecules outside of the element:

P
‡
ij(x) ≡

∑

α

1

m
pαi p

α
j δ(x − xα) ; Wi(x) ≡

∑

α1 6=α2

Ṽ ′
i (x

α1α2) δ(x − xα1) . (D.55)

Thus, we have introduced two new macro fields P‡ and W whose microscopic expressions
given in Eq. (D.55) are not directly expressible in terms of the other macroscopic variables
(φ, j, E).

D.2 Comparison of momentum and velocity representations

First we show that the same equations of motion are generated in both the momentum and
velocity representations if the dissipative and stochastic terms are left out. Inclusion of them
makes the two representations inequivalent. In other words, starting from the momentum
balance equation (which we consider more fundamental than the velocity) and using the
identification j = φv leads to a different equation of motion for the velocity as compared to
the equation, which emerges when we treat velocity as the fundamental variable and apply
the Poisson bracket formalism to it.

D.2.1 Galilean invariant part of the equation of motion

We derive the deterministic part of the momentum and mass balance equations. Eq. (9.10)
reduces to the form ∂tψµ(x, t) = Nµ, where Nµ = − ∫ dx′Qµν(x,x′)δFk[ψ]/δψµ(x

′) when the
dissipative and random fluxes are left out. In terms of variable j the kinetic part of the free
energy is

Fk[φ, j] ≡
∫

dx
1

2φ(x)
j2(x) . (D.56)
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The deterministic part of the equation of motion of mass density, ψu = φ, becomes

∂tφ+

∫

dx′ {φ(x), js(x
′)
} δFk[φ, j]

δjs(x′)
= ∂tφ+

∫

dx′ {φ(x), js(x
′)
}
(

1

φ(x)
js(x)

)

(D.57)

= ∂tφ+ ∂s

[

φ(x)

(
1

φ(x)
js(x)

)]

= 0 , (D.58)

where we have used Eq. (D.18). In other words,

∂tφ+ ∇ · j = 0 . (D.59)

Changing the fundamental variable of the free energy from j to v means that the form of the
kinetic part of the free energy functional changes. Instead of Eq. (D.56) we must use

Fk[φ,v] =

∫

dx
1

2
φ(x)v2(x) . (D.60)

The equation of motion, ∂tψµ −Nµ = 0, now reads

∂tφ+

∫

dx′ {φ(x), vs(x
′)
} δFk[φ,v]

δvs(x′)
= ∂tφ+

∫

dx′ {φ(x), vs(x
′)
} (
φ(x′)vs(x

′)
)

(D.61)

= ∂tφ+ ∂s (φ(x)vs(x)) = 0 , (D.62)

where we used Eq. (D.35). In the vector notation we can express the previous relation as

∂tφ+ ∇ · (φv) = 0 , (D.63)

which is the same as the equation of motion (D.59) in terms of the momentum density
variable.

Let us now turn to the momentum balance equation. Using first the momentum density j

as the basic variable we start with the equation of motion ∂tψµ(x, t)−Nµ = 0 where ψµ = js.
Then,

∂tjs +

∫

dx′ {js(x), φ(x′)
} δFk[φ, j]

φ(x′)
+

∫

dx′ {js(x), ji(x
′)
} δFk[φ, j]

ji(x′)
= 0 . (D.64)

Let us first compute the second term on the left hand side. Using Eq. (D.56) and the fact
that δFk[φ, j]/δφ(x′) = (−1/2)(j2(x′)/φ2(x′)) it can be written as

∫

dx′ {js(x), φ(x′)
} δFk[φ, j]

φ(x′)
= −1

2
φ(x) ∂s

(
1

φ2(x)
j2(x)

)

. (D.65)

Since δFk[φ, j]/δji(x
′) = ji(x

′)/φ(x′) the third term on the left hand side of Eq. (D.64)
becomes

∫

dx′ {js(x), ji(x
′)
} δFk[φ, j]

ji(x′)
= ji(x) ∂s

(
1

φ(x)
ji(x)

)

+ ∂i

(

js(x)
1

φ(x)
ji(x)

)

. (D.66)

Substitution of Eq. (D.65) and Eq. (D.66) into Eq. (D.64) gives the deterministic part of the
momentum balance equation expressed in variable j. It can be recast into the more familiar
form by substituting j = φv. We obtain

∂t(φvs) −
1

2
φ∂s(v

2) + φvi ∂svi + ∂i(φvsvi) = 0 , (D.67)
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where v2 ≡ v2
1 + v2

2 + v2
3 . Using the deterministic part of the equation of motion of the mass

density, which we have shown to be the same in both j and v representations, we can rewrite
the first term on the left as ∂t(φvs) = −∂i(φvi) + φ∂tvs. Substitution of this result back into
Eq. (D.67) and cancelling out a few terms it becomes

φ
(

∂tvs + vi ∂ivs
)

= 0 . (D.68)

This says just that the acceleration of the fluid element is zero when there are no forces acting
on it. If we prefer to use Fk[φ,v] given in Eq. (D.60) instead of Fk[φ, j], we obtain

∂tvs +

∫

dx′ {vs(x), φ(x′)
} δFk[φ,v]

φ(x′)
+

∫

dx′ {vs(x), vi(x
′)
} δFk[φ,v]

vi(x′)
= 0 . (D.69)

as compared to Eq. (D.64). Because δFk[φ,v]/φ(x′) = (1/2) v2(x), the second term on the
left hand side becomes

∫

dx′ {vs(x), φ(x′)
} δFk[φ,v]

φ(x′)
=

1

2
∂sv

2(x) , (D.70)

where we have also used Eq. (D.36). Based on Eq. (9.20) we can write the third term on the
left hand side of Eq. (D.69) as

∫

dx′ {vs(x), vi(x
′)
} δFk[φ,v]

vi(x′)
= −vs

1

φ
∂i(φvi) − ∂sv

2 + vi∂svi +
1

φ
∂i(vs φvi) . (D.71)

Finally, substitution of Eq. (D.70) and Eq. (D.71) into Eq. (D.69) gives again the zero force
condition of Eq. (D.68). All in all we have established the momentum density and velocity
representations are tied together through

∂tj + ∇ ·P = φ (∂tv + (v · ∇)v) , (D.72)

where P is the (macroscopic) momentum flux density tensor: Pij = (1/φ)jijj . It is very
important to note that the macroscopic fields are replaced directly with their expectation
values when forming the final equations of motion. All cross correlations present in nonlinear
product terms are neglected in the process of coarse-graining through averaging over a suitable
ensemble. There are situations, though, where this type of procedure can be justified. This
happens can happen if the density matrix can be factorized for mutually commuting operators
representing the relevant variables (cf. Sect. 3.2). Constitutive equations of hydrodynamics [1]
are formed in such a way that the cross correlations do not have to be considered. It should
also be noted that the constitutive equation j = φv, which we have used in this section and
in Sect. D.1.3 can be derived using macroscopic arguments based on zero entropy production
(p. 445 in Ref. [5]). This argument cannot be used, of course, when the fluids are viscous
and there is dissipation. Alternatively, one can use Galilean invariance to fix the relationship
between velocity and momentum.

D.2.2 Incompatibility of velocity and momentum density

We use the method of macroscopic Poisson brackets to derive the mass and momentum bal-
ance equations, as well as the equation of motion for the velocity field to make a quantitative
comparison between the latter two. As we will see, there are considerable discrepancies,
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which call attention to the choice of the fundamental coarse-grained variables. The set (φ, j)
is better suited for some purposes than (φ,v) but they cannot be made totally equivalent
through identification φv = j except in the simplest cases, as far as the Poisson bracket
formalism is used to construct the hydrodynamic equations. Retaining just the mass and
momentum density variables and leaving out energy, Eq. (9.35) gives

∂tφ = −
∫

dx′ {φ(x), js(x
′)
} δFt
δjs(x′)

+ Γ00∇2 δFt
δφ(x)

+ η0 . (D.73)

The dissipative couplings Γ0i (i = 1, 2, 3) to momentum density have been set to zero. Using
Eq. (D.20) and

δFt
δφ

= − 1

2φ2
j2 + µ2 , (D.74)

where we have defined µ2 ≡ µf + VS , the mass balance equation becomes

∂tφ = −∇ · j + Γ00∇2
(

− 1

2φ2
j2 + µ2

)

+ η0 . (D.75)

From the momentum balance equation (9.36) the Poisson bracket with energy density is
dropped and the dissipative coefficient Γi0 is set to zero. The operator ∇2 in front of the
dissipative momentum term with coefficient Γii implies certain properties of the momentum
field. For simplicity, we retain it here, but for more general discussion the reader is referred
to Sect. 9.5.2. Hence,

∂tji = (D.76)

−
∫

dx′ {ji(x), φ(x′)
} δFt
δφ(x′)

−
∫

dx′ {ji(x), js(x
′)
} δFt
δjs(x′)

+ Γiν∇2 δFt
δjν(x)

+ ηi .

Plugging in the relevant brackets from Sect. D.2.1 we can rewrite the momentum equation:

∂tji = −∇s

(
1

φ
jijs

)

− φ∇iµ2 + Γiν∇2 δFt
δjν(x)

+ ηi . (D.77)

If Γiν = Γδiν (i, ν = 1, 2, 3), then we can express the dissipative term as Γiν∇2δFt/δjν(x) =
Γ∇2(ji/φ). Let us first consider the situation where continuity equation holds by dropping
the the dissipative and stochastic terms from Eq. (D.75) which becomes ∂tφ = −∇ · j. Using
this and the identification j = φv, we can cast the momentum balance equation into the
following form:

φ
(

∂tvi + (v · ∇)vi
)

= −φ∇iµ2 + Γ∇2vi + ηi (D.78)

If v is taken to the fundamental coarse-grained variable instead of the momentum density,
we have to repeat the derivation and replace ji with vi in Eq. (D.76). Of coarse, the Poisson
brackets will still have to be calculated with the aid of the momentum density as shown in
App. D.1.3. The outcome is

∂tvi + (v · ∇)vi = −∇iµ2 + Γ̂∇2(φvi) + η̃i . (D.79)

Clearly the dissipative terms are different as compared to Eq. (D.78) unless the dissipative

coefficient Γ̂ is defined to be a non-local operator dependent on the density field φ in such
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a way that Γ̂(φ)∇2(φvi) = (1/φ)Γ∇2vi. However, this leads to multiplicative noise η̃i in
order not to violate fluctuation-dissipation theorem. Thus, we clearly see that even when the
mass balance equation reduces to the standard continuity equation, it does make a difference
whether one first takes j to be the fundamental variable and later on obtains the evolution
equation for v via substitution j = φv, or one treats v as the fundamental variable, and
uses j = φv only to be able to calculate the Poisson brackets of the velocity field with other
relevant coarse-grained fields. When dissipation is left out of the description, everything
works fine as shown in App. D.2.1.

We clearly see that when v is taken to be the fundamental variable, there will be no
other interesting terms generated in the equation of motion except for those appearing in
Eq. (D.79). However, if we treat j as the fundamental quantity (after all, we should, since it
is the conserved variable), and derive an equation of motion for v as we did above, we do get
new terms if the full form of the mass balance equation is used. In other words, the left hand
side of the momentum balance equation gives ∂tji = ∂t(φvi) = (∂tφ)vi + φ∂tvi. Substitution
of the right hand side of mass balance Eq. (D.75) for ∂tφ gives the following equation for the
velocity field

φ
(

∂tvi + (v · ∇)vi
)

= −φ∇iµ2 − Γ00

[

∇2
(

− 1

2φ2
j2 + µ2

)]

vi − η0vi + Γ∇2vi + ηi (D.80)

What we have done here is exactly opposite to Ref. [303], where the momentum balance equa-
tion was used to give an expression for j(φ), which was substituted back into the continuity
equation ∂tφ = −∇· j(φ). The point is that the dissipative and stochastic elements contained
in the momentum equation were transformed into corresponding elements of the order pa-
rameter (φ) equation. Going the other way around, we have managed to bring in some new
dissipative and stochastic structure in the equation of motion of the velocity field. Of course,
the structure of the stochastic and dissipative terms has changed, it is not easy to see by
inspection if the fluctuation-dissipation theorem holds any more. In Ref. [303] the theorem
was approximately shown to be true. However, the extra complication in the present case is
that we have also utilized the identification j(x) = φ(x)v(x), which complicates things. The
properties of the term in square brackets are analyzed in Sect. 11.3.2.

D.3 Comparison with Hamiltonian formalisms

Having derived the necessary Poisson bracket relations in the previous sections we derive
the reactive part of the equation of motion based on the representation given in Eq. (9.10):
∂ψµ = Nµ when no dissipation or stochastic fluctuation is allowed. The full set of equations
of motion for gross variables is given by

∂tφ = −
∫

dx′ {φ(x), φ(x′)
} δFt
δφ(x′)

−
∫

dx′ {φ(x), js(x
′)
} δFt
δjs(x′)

(D.81)

−
∫

dx′ {φ(x), E(x′)
} δFt
δE(x′)

.

∂tji = −
∫

dx′ {ji(x), φ(x′)
} δFt
δφ(x′)

−
∫

dx′ {ji(x), js(x
′)
} δFt
δjs(x′)

(D.82)

−
∫

dx′ {ji(x), E(x′)
} δFt
δE(x′)

.
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∂tE = −
∫

dx′ {E(x), φ(x′)
} δFt
δφ(x′)

−
∫

dx′ {E(x), js(x
′)
} δFt
δjs(x′)

(D.83)

−
∫

dx′ {E(x), E(x′)
} δFt
δE(x′)

.

These relations make only sense when the total free energy functional Ft[φ, j, E ] has the correct
dependence on all of its arguments. So far, the free energy, which we have derived and used in
Sect. 9.1 has been of the form Ft[φ, j], which means that none of the terms involving δFt/δE
can be evaluated at this point. Below we will settle for studying properties where we can
make use of the microscopic expression of the energy density. For more discussion on how to
obtain the correct energy dependence of the free energy, we refer the reader to Sect. 6.5.

In App. D.2.1 we have shown that if we replace Ft with Fk[φ, j] ≡ ∫
dxj2(x)/(2φ(x)),

the correct reactive contributions to the equations of motion of the mass and momentum
densities are recovered. All terms (Eq. (D.83) entirely) involving E above vanish in this case.
To get an idea about the theory with five gross variables we can in the first approximation
write

Ft[φ, j, Ep] ≡
∫

dx (Ek(x) + Ep(x)) ≡
∫

dx

(
1

2φ(x)
j2(x) + Ep(x)

)

. (D.84)

One possible approximation is such that we set Ep(x) = (1/2)
∑

α1 6=α2
V (xα1α2)δ(x − xα1).

More appropriately, the dependence of Ft on Ep is likely to be something more complicated
than linear relationship of Eq. (D.84) but we can use this to start with. In a sense, it is
not completely unjustified to choose the potential energy to be the primary coarse-grained
variable of the theory instead of the full energy density E which also contains the kinetic
energy. Even though, Ep is not conserved unlike E , it is possible to express it as a function
of the conserved variables: Ep(x) = E(x) − j2(x)/(2φ(x)). In this sense the situation is
analogous to the use of the velocity field determined with the aid of the conserved momentum
field: v(x) ≡ j(x)/φ(x). However, one should keep in mind that just like v and j can be
noncompatible in the sense discussed in Sect. D.2.2, so are E and Ep. Replacing E by Ep in
the set of evolution equations above gives a fully reasonable result, though:

∂tφ = −∇ · j(x) . (D.85)

∂tj = −∇ ·
(

1

φ(x)
j(x)j(x)

)

−
∑

α1 6=α2

Ṽ′(xα1α2) δ(x − xα1) . (D.86)

∂tEp = ∇ ·



∑

α1 6=α2

1

2
V (|xα1α2 |)δ(x − xα1)

pα1

m



+
∑

α1 6=α2

Ṽ′(xα1α2) δ(x − xα1) · pα2

m
. (D.87)

To obtain the first equation notice that {φ(x), φ(x′)} = {Ep(x), Ep(x′)} = 0. Eq. (D.86) can
also be written as ∂tj = −∇ · P − W, where P is the pressure tensor expressed in macro
variables j and φ. Finally, in Eq. (D.87) the first term is the internal energy flux vector
and the second describes the changes in internal energy due to the interaction forces. If
we replace the macroscopic pressure tensor P in Eq. (D.86) with its microscopic counter

part P
‡
ij ≡

∑

α(1/m) pαi p
α
j δ(x− xα), we obtain exactly the correct Hamiltonian equations of

motion for the fields (φ, j, Ep). In other words, with the replacements mentioned, Eq. (D.85)
- Eq. (D.87) are exactly the same as the ones below:

∂tφ = {φ(x),H} . (D.88)
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∂tj = {j(x),H} . (D.89)

∂tEp = {Ep(x),H} . (D.90)

The Hamiltonian is not a function of position above as compared to the energy density given
in Eq. (D.3):

H ≡
∑

α

1

2m
(pα)2 +

1

2

∑

α6=β
V (|xαβ |) . (D.91)

The reason why it is necessary to replace the P with P‡ derives from the mixed represen-
tation used in the definition of the free energy (Eq. (D.84)): The kinetic energy part is
given in terms of the macroscopic fields Ek(x) = j2(x)/(2φ(x)) whereas the potential en-
ergy part has its exact microscopic form decorated by an additional delta function: Ep(x) =
(1/2)

∑

α1 6=α2
V (|xα1α2 |)δ(x − xα1).

Thus, with proper interpretation of the macroscopic fields, we can regenerate the equations
of motion obtained from Hamiltonian formalism. If we want to obtain the Hamilton’s equation
of motion directly, without worrying about interpretation, we can redefine a non-coarse-
grained free energy to be equal to the microscopic Hamiltonian,

Ft[E ] =

∫

dx
∑

α

[
1

2m
(pα)2 +

1

2

∑

α(6=β)

V (|xαβ |)
]

δ(x − xα) ≡
∫

dx E(x) , (D.92)

where we have used the energy density defined in Eq. (D.3). Writing now the equations of
motion for field variables (φ, j, E) we are going to show that the choice made in Eq. (D.92)
leads to

∂tφ = −
∫

dx′ {φ(x), E(x′)
} δFt[E ]

δE(x′)
= {φ(x),H} . (D.93)

∂tji = −
∫

dx′ {ji(x), E(x′)
} δFt[E ]

δE(x′)
= {ji(x),H} . (D.94)

∂tE = −
∫

dx′ {E(x), E(x′)
} δFt[E ]

δE(x′)
= {E(x),H} . (D.95)

Thus, for the special case where the free energy is just a (linear) functional of the energy
density (zero temperature limit), the Poisson bracket formalism is identical to the Hamilto-
nian formalism, as it should. As opposed to Eqs. (D.81) - (D.83), no other Poisson brackets
emerge in Eqs. (D.93) - (D.95), except those with energy density, since it is the only variable
in the free energy. Eqs. (D.93) - (D.95) can be easily confirmed since δFt[E ]/δE(x′) = 1
and in the remaining expressions the integration over x′ destroys unwanted terms. Explicit
computation based on the results of App. D.1.4 gives

∂tφ = −∇ ·
(∑

α

pαδ(x − xα)
)

. (D.96)

∂tji = −∇ ·
(
∑

α

1

m
pαi p

α
j δ(x − xα)

)

−
∑

α1α2

Ṽ′(xα1α2)δ(x − xα1) . (D.97)

∂tE = −∇ ·
(
∑

α1

[
(pα1)2

2m
+

1

2

∑

α2(6=α1)

V (|xα1α2 |)
]
pα1

m
δ(x − xα1)

)

+
∑

α1 6=α2

Ṽ′(xα1α2)

(
pα1

m
+

pα2

m

)

δ(x − xα1) . (D.98)
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This result coincides with the Hamiltonian equations of motion which has been derived e.g.
in Ref. [1]. In terms of the mass (j), momentum (Π) and energy fluxes (jε) we can rewrite
the Hamilton’s equations of motion (Eq. (D.93) - (D.95)) as

∂tφ = {φ(x),H} ≡ −∇ · j . (D.99)

∂tji = {ji(x),H} ≡ −∇ ·Π . (D.100)

∂tE = {E(x),H} ≡ −∇ · jε . (D.101)

Extraction of the divergence operator leads to the emergence of the delta function factor,

∆(x,xα,xβ) ≡
∫ 1

−1
dλ δ

(

x − 1

2
(xα + xβ) − λ

2
xαβ

)

, (D.102)

which is present in the expressions of the momentum and energy fluxes. From Ref. [1] we get

Πij(x, t) ≡
∑

α

1

m
pαi p

α
j δ(x − xα) − 1

2

∑

α6=β
xαβj Ṽ ′

i (x
αβ)∆(x,xα,xβ) . (D.103)

jεi (x, t) ≡
∑

α

[
(pα)2

2m
+

1

2

∑

β(6=α)

V (xαβ)

]
pαi
m
δ(x − xα)

− 1

4m

∑

α6=β
xαβi Ṽ ′

j (x
αβ)(pαi + pβi )∆(x,xα,xβ) . (D.104)

The momentum flux is given by Eq. (D.2) as in our case. Thus, we have been able to generate
the correct Hamilton’s equation of motion from the Poisson bracket formalism by defining
the free energy to the integral over the internal energy density (Eq. (D.92)).

We conclude this section by considering the quantum mechanical equivalent of the equa-
tions of motion presented in Eq. (D.99) - (D.101). Use of the Heisenberg equation of motion

for general observable Â, ıh̄∂tÂ =
[

Â, Ĥ
]

, leads to

∂tφ̂(x, t) = − ı

h̄

[

φ̂(x, t), Ĥ
]

= −∇ · ĵ(x, t) . (D.105)

∂tĵi(x, t) = − ı

h̄

[

ĵi(x, t), Ĥ
]

= −∇ · Π̂(x, t) . (D.106)

∂tÊ(x, t) = − ı

h̄

[

Ê(x, t), Ĥ
]

= −∇ · ĵε . (D.107)

The Hamiltonian is connected with the energy density through Ĥ =
∫
dxÊ(x, t), which is the

quantum analogue of the non-coarse-grained classical relation of Eq. (D.92). The forms of
the conserved observables are given by

φ̂(x, t) ≡ ψ†(x, t)ψ(x, t) ; (D.108)

ĵ(x, t) ≡ ıh̄

2m

[

(∇ψ̂†)ψ̂ − ψ̂†(∇ψ̂)
]

; (D.109)

Ê(x, t) ≡ h̄2

2m
(∇ψ̂†) · (∇ψ̂) +

1

2

∫

dx′ V (|x − x′|)ψ̂†(x, t)φ̂(x′, t)ψ̂(x, t) . (D.110)
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where ψ̂ and ψ̂† are the field annihilation and creation operators. The momentum flux density
operator appearing in Eq. (D.106) is [245, 188]

Π̂ij(x, t) ≡ (D.111)

− h̄2

4m

[

(∇i −∇′
i)(∇j −∇′

j) ψ̂
†(x′)ψ̂(x)

]

x=x′
− 1

4

∫

dx′
[

x′ix
′
j

x′
dV (x′)
dx′

]

∆̂(x,x′, φ̂) .

The current flux density operator given in Eq. (D.107) is [245]

ĵεi (x, t) ≡ (D.112)

− ı

h̄
(h̄2/(2m))2

[

(∇i −∇′
i)∇′ · ∇ψ̂†(x′)ψ̂(x)

]

x=x′

+
1

2

∫

dx′ V (|x − x′|) ψ̂†(x′)ĵi(x)ψ̂(x′) − 1

4

∑

s

∫

dx′
[
x′ix

′
s

x′
dV (x′)
dx′

]

∆̂(x,x′, ĵs) .

In both of the previous equations we have used an operator ∆̂ which for a general operator
(Â = φ̂ or Â = ĵs) is defined through

∆̂(x,x′, Â) ≡
∫ 1

−1
dλ ψ̂†

(

x +
1

2
(1 + λ)x′

)

Â
(

x − 1

2
(1 − λ)x′

)

ψ̂
(

x +
1

2
(1 + λ)x′

)

. (D.113)

The results given above have direct relevance not only for quantum objects, such as superfluids
but also for classical fluids and many-body systems in general.

D.4 Fokker-Planck and Langevin descriptions

The fundamental equation of motion of the order parameter formalism given in Eq. (9.10).
We will show that the requirement of relaxation to Gibbsian equilibrium state through a
white noise process fixes the form of the evolution equation of the coarse-grained variables.
Since the evolution equation will be of Langevin equation type the time evolution of the
probability distribution of the system is given by a Fokker-Planck equation.

We start from microscopics and make use of the Hamilton’s equation of motion, which for

any component ψµ of the classical vector ψ‡ ≡ (ψ‡
1, . . . , ψ

‡
N ), is given in terms of the Poisson

bracket with the Hamiltonian H:

∂tψ
‡
µ =

{

H,ψ‡
µ

}

. (D.114)

Both ψ‡
µ and H are non-coarse-grained functions of the microscopic coordinate and momenta,

which is indicated explictly by the use of the symbol ‡. If, for simplicity, we neglect all
correlations arising upon averaging 〈·〉m over the probability density (non-equilibrium average
in general) we can average all terms in the previous equation separately and obtain a coarse-
grained evolution equation for the order parameter field ψ ≡ 〈ψ‡〉m:

∂tψµ = {F [ψ], ψµ} , (D.115)

where F [ψ] ≡ 〈H〉m is the coarse-grained Hamiltonian or (generalized) free energy functional
as we usually call it. As the Poisson bracket with the Hamiltonian (free energy functional)



390 APPENDIX D. DETAILS OF HYDRODYNAMICS

might be tedious to compute directly, it is advantageous to perform it with the aid of the
Poisson brackets related to other components of the order parameter vector. Starting from
microscopics we obtain

∂tψ
‡(x) =

{

H[ψ‡], ψ‡
µ(x)

}

≡
∑

αj

[

∂H[ψ‡]
∂pαj

∂ψ‡
µ(x)

∂xαj
− ∂H[ψ‡]

∂xαj

∂ψ‡
µ(x)

∂pαj

]

(D.116)

=
∑

αj

∫

dx′
[

δH[ψ‡]

δψ‡
ν(x′)

∂ψ‡
ν(x

′)
∂pαj

∂ψ‡
µ(x)

∂xαj
− δH[ψ‡]

δψ‡
ν(x′)

∂ψ‡
ν(x

′)
∂xαj

∂ψ‡
µ(x)

∂pαj

]

. (D.117)

In the last line we can separate out the the common factor δH/δψ‡
ν which leads to

∂tψ
‡
µ(x) = −

∫

dx′Q‡
µν(x,x

′)
δH[ψ‡]

δψ‡
ν(x′)

≡ U ‡
µ(x) , (D.118)

where Q‡
µν(x,x

′) ≡ {ψ‡
µ(x), ψ‡

ν(x
′)}. The entire Poisson bracket contribution to time rate of

change of the order operator ψ‡
µ is denoted with U ‡

µ(x). As far as it is possible to present

the microscopic Hamiltonian as a functional of the order field operators ψ‡(x) the resulting
Eq. (D.118) is exact. Depending on the choice of ψ‡ this may not always be possible. If the
system is in contact with its surroundings the determination of hydrodynamically relevant
variables valid for large length and time scales is discussed in Sect. 3.2. If we assume further
that averages over an appropriate ensemble 〈·〉m can be factorized and the cross correlations
between various ψ‡

µ neglected, we can then rewrite Eq. (D.118) as

∂tψµ(x) = −
∫

dx′Qµν(x,x
′)
δF [ψ]

δψν(x′)
≡ Uµ(x) , (D.119)

where we have indicated the averages 〈Q‡
µν〉m = Qµν and 〈U ‡

µ〉m = Uµ. As such, Eq. (D.119)
does not describe the physical fact that left on their own devices many-body systems relax
towards equilibrium state, the Gibbs equilibrium. To facilitate this we have to decorate
Eq. (D.119) with dissipative and stochastic force terms:

∂tψµ(x) = Uµ(x) − Γµν
δF [ψ]

δψν(x)
+ ηµ(x, t) . (D.120)

The second term on the right represents the coarse-grained relaxational force with dissipative
coefficient Γµν and the last term ηµ describes interaction with the heat bath. The properties
of the white noise term are given by

{

〈ηµ(x, t)〉 = 0 .
〈ηµ(x, t)ην(x′, t′)〉 = 2TΓµνδ(x − x′)δ(t − t′) .

(D.121)

It is important to keep in mind that 〈·〉 is the average over the white noise process ηµ, which is
different than the (nonequilibrium) average 〈·〉m introduced when going from the microscopic
representation ψ‡ to ψ.

The justification of Eq. (D.120) presented below is based on Ref. [5] with some interme-
diate steps added. The probability Pψ of the macro variable field ψµ(x, t) takes on the value
ψµ(x) at time t, given that its initial value at t0 was ψ0

µ(x), is by definition

Pψ
(

{ψµ(x)}, t | {ψ0
µ(x)}, t0

)

≡ 〈∏
xµ

δ(ψµ(x, t) − ψµ(x))〉
ψ0
µ
, (D.122)
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where the curly brackets around the field ({ψµ(x)}) in the argument list of Pψ denote the
values of field ψµ at all points x. The averaging 〈·〉ψ0

µ
is again different from the averages

〈·〉m and 〈·〉 introduced above. When represented as functional integral it means that only
the paths ψµ(x, t) which obey the initial condition ψµ(x, t0) = ψ0

µ(x) are to be included in
the average. The average 〈·〉ψ0

µ
constrains in no way the final value the field ψµ takes at time

t, contrary to the distribution Pψ. The time evolution of Pψ is given by the Smoluchowski
equation,

Pψ
(

{ψµ(x)}, t + ∆t | {ψ0
µ(x)}, t0

)

(D.123)

=

∫

Dψ′
µ Pψ

(

{ψµ(x)}, t + ∆t | {ψ′
µ(x)}, t

)

Pψ
(

{ψ′
µ(x)}, t | {ψ0

µ(x)}, t0
)

.

Functional integration measure is denoted with Dψµ. Based on Eq. (D.122) we can express
the first factor appearing on the right hand side of the Smoluchowski equation in the following
way:

Pψ
(

{ψµ(x)}, t + ∆t | {ψ′
µ(x)}, t

)

= 〈∏
xµ

δ(ψµ(x, t+ ∆t) − ψµ(x))〉
ψ′
µ
, (D.124)

where the subscript ψ′
µ means initial condition {ψ′

µ(x)} at time t. Next, we make use of our
ansatz, Eq. (D.120). Integrating it from time t to time t+ ∆t we get

ψµ(x, t+ ∆t) = ψ′
µ(x) +

(

U ′
µ − Γµν

δF [ψ′]
δψ′

µ(x)

)

∆t+

∫ t+∆t

t
ds ηµ(x, s) , (D.125)

where U ′
µ denotes a functional that depends on ψ ′

µ. A slight misuse of notation allows us
to write directly ψ′

µ(x) instead of ψ′
µ(x, t) as the first term on the right. Substitution of

Eq. (D.125) into Eq. (D.124) yields

〈∏
xµ

δ(ψµ(x, t+ ∆t) − ψµ(x))〉
ψ′
µ

= 〈∏
xµ

δ(ψ′
µ(x) − ψµ(x) + ∆ψµ(x))〉

ψ′
µ

(D.126)

where we have defined the change, which contains contributions that are essentially propor-
tional to ∆t and

√
∆t,

∆ψµ(x) ≡
(

U ′
µ − Γµν

δF [ψ′]
δψ′

µ(x)

)

∆t+

∫ t+∆t

t
ds ηµ(x, s) . (D.127)

In terms of ∆ψµ we can now expand the functional delta function to first order in time

difference. Because the time integral of the noise term is effectively proportional to
√

∆t we
have to go to second order in ∆ψµ to get a first order correct result in ∆t when expanding
the delta function in Eq. (D.126):

〈∏
xµ

δ(ψµ(x, t+ ∆t) − ψµ(x))〉
ψ′
µ
≈ (D.128)

〈 [
∏

xµ

δ(ψ′
µ(x) − ψµ(x))

]

+

∫

dx1
δ

δψ′
µ(x1)

[
∏

xµ

δ(ψ′
µ(x) − ψµ(x))

]

∆ψµ(x1)

+
1

2

∫

dx1

∫

dx2
δ

δψ′
µ(x1)

δ

δψ′
ν(x2)

[
∏

xµ

δ(ψ′
µ(x) − ψµ(x))

]

∆ψµ(x1)∆ψν(x2) 〉
ψ′
µ

.
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To proceed, we have to change the stochastic variable from ∆ψµ(x) to ηµ(x, t). Assuming
that the Jacobian resulting from the change of variables gives us no trouble (this should be
true for stochastic PDEs which are first order in time derivatives and have additive noise), we
can simply average over ηµ in Eq. (D.128). When the average is performed all terms which
have odd power of noise fields will vanish because of Eq. (D.121). Thus, to first order in ∆t,

Pψ
(

{ψµ(x)}, t+ ∆t | {ψ′
µ(x)}, t

)

≈
[

1 + ∆t

∫

dx

(

U ′
µ(x) − Γµν

δF [ψ′]
δψ′

ν(x)

)
δ

δψ′
µ(x)

(D.129)

+ ∆t T Γµν

∫

dx
δ

δψ′
µ(x)

δ

δψ′
ν(x)

]
∏

xµ

δ(ψ′
µ(x) − ψµ(x)) .

Substitution of this result back into the Smoluchowski equation (D.123) allows us to perform
the functional integral immediately thanks to the functional delta function appearing it the
previous formula. We obtain

Pψ
(

{ψµ(x)}, t + ∆t | {ψ0
µ(x)}, t0

)

≈
[

1 + ∆t

∫

dx

(

Uµ(x) − Γµν
δF [ψ]

δψν(x)

)
δ

δψµ(x)
(D.130)

+ ∆t TΓµν

∫

dx
δ

δψµ(x)

δ

δψν(x)

]

Pψ
(

{ψµ(x)}, t | {ψ0
µ(x)}, t0

)

.

Notice that all ψ′
µ dependence has been replaced with ψµ which means that U ′

µ has become
Uµ, and so on. Dividing both sides by ∆t it is easy to see that the previous equation gives

∂tPψ = T

∫

dxΓµν
δ

δψµ(x)

[(
δ

δψν(x)
+

1

T

δF [ψ]

δψν(x)

)

Pψ

]

−
∫

dx
δ

δψµ(x)
[Uµ(x)Pψ ] . (D.131)

Derivation of this form assumes that when partial integration is performed, the substitution
terms [UµPψ]∞−∞ and [Pψ δF/δψµ]

∞
−∞ vanish.

Let us check now the validity of the Gibbsian equilibrium assumption. Substitution of
Pψ = Peq ≡ exp(−F/T ) clearly renders the first term on the right hand side of Eq. (D.131)
zero. What about the second term? It gives

∫

dx
δ

δψµ(x)
[Uµ(x)Peq] =

∫

dx

[

− 1

T

δF [ψ]

δψµ(x)
Uµ +

δUµ
δψµ(x)

]

Peq 6= 0, (D.132)

if we substitute the expression for Uµ defined in Eq. (D.119). To fulfil the requirement of
Gibbs distribution as the equilibrium distribution, we repeat the analysis from Eq. (D.120)
on. First we write

∂tψµ(x) = Nµ(x) − Γµν
δF [ψ]

δψν(x)
+ ηµ(x, t) . (D.133)

The difference between Eq. (D.120) and Eq. (D.133) is that in the former the expression of
Nµ is unknown. We only know that it should make the integral in Eq. (D.132) vanish when
Uµ is replaced with Nµ. We can also assume that Uµ forms part of the correct expression Nµ

but there is an extra term the form of which is justified below. Substitution of

Nµ = Uµ + T

∫

dx′ δQµν(x,x
′)

δψν(x′)
(D.134)
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yields the desired result [5],
∫
dx δ[Nµ(x)Peq]/δψµ(x) = 0. This can be seen in the following

way:

∫

dx
δ

δψµ(x)

[

Nµ(x)Peq[ψ]
]

=

∫

dx

∫

dx′
{

1

T

δF [ψ]

δψµ(x)

[

Qµν(x,x
′)

δF

δψν(x′)
− T

δQµν(x,x
′)

δψν(x′)

]

(D.135)

− δQµν(x,x
′)

δψµ(x)

δF [ψ]

δψν(x′)
+Qµν(x,x

′)
δ2F [ψ]

δψµ(x)δψν(x′)
− T

δ2Qµν(x,x
′)

δψµ(x)δψν(x′)

}

Peq[ψ] .

Using the symmetry property of the Poisson bracket term, Qµν(x,x
′) = −Qµν(x

′,x) it is
easy to show that the last term on the second line and the first of the last line cancel each
other out. The remaining terms all vanish individually.
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[4] M. Dubé, M. Rost, K. R. Elder, M. Alava, S. Majaniemi, and T. Ala-Nissila, Conserved
dynamics and interface roughening in spontaneous imbibition: A phase field model, Eur.
Phys. J. B 15, 701 (2000).

[5] P. M. Chaikin and T. C. Lubensky, Principles of condensed matter physics (Cambridge
University Press, Cambridge, 1995).

[6] L. Onsager, Reciprocal relations in irreversible processes I, Phys. Rev. 37, 405 (1931).

[7] L. Onsager, Reciprocal relations in irreversible processes II, Phys. Rev. 38, 2265 (1931).

[8] S. R. de Groot and P. Mazur, Non-equilibrium thermodynamics (Dover Publications,
Inc., New York, 1984).

[9] C. Truesdell, Rational thermodynamics (McGraw-Hill, New York, 1969).

[10] P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluc-
tuations (Wiley-Interscience, New York, 1971).

[11] B. H. Lavenda, Thermodynamics of Irreversible Processes (Dover Publications, Inc.,
New York, 1978).

[12] W. Muschik, C. Papenfuss, and H. Ehrentraut, A sketch of continuum thermodynamics,
J. Non-Newtonian Fluid Mech. 96, 255 (2001).
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[163] J. M. Dixon, J. A. Tuszyński, and P. A. Clarkson, From Nonlinearity to Coherence
(Clarendon Press, Oxford, 1997).

[164] S. Peletminskii and A. Yatsenko, Contribution to the quantum theory of kinetic and
relaxation processes, Sov. Phys. JETP 26, 773 (1968).

[165] J. E. Marsden and T. J. Ratiu, Introduction to Mechanics and Symmety (Springer-
Verlag, Berlin, 2003).

[166] W.-M. Zhang, D. H. Feng, J.-M. Yuan, and S.-J. Wang, Integrability and nonintegra-
bility of quantum systems: Quantum integrability and dynamical symmetry, Phys. Rev.
A 40, 438 (1989).

[167] W.-M. Zhang and D. H. Feng, Quantum nonintegrability in finite systems, Phys. Rep.
252, 1 (1995).

[168] R. F. Casten and D. D. Warner, The interacting boson approximation, Rev. Mod. Phys.
60, 389 (1988).

[169] H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod.
Phys. 53, 569 (1980).

[170] W.-M. Zhang, D. H. Feng, and R. Gilmore, Coherent states: Theory and some appli-
cations, Rev. Mod. Phys. 62, 867 (1990).

[171] L.-A. Wu, M. Guidry, Y. Sun, and C.-L. Wu, SO(5) as a Critical Dynamica Symmetry
in the SU(4) Model of High-Temperature Superconductivity, Phys. Rev. B 67, 014515
(2003), (cond-mat/0208329).

[172] W.-M. Zhang, D. H. Feng, and J. N. Ginocchio, Geometrical structure and critical
phenomena in the fermion dynamical symmetry model: SO(8), Phys. Rev. A 37, 1281
(1988).

[173] G. Bilbro and W. L. McMillan, Theoretical model of superconductivity and the marten-
sitic transformation in A15 compounds, Phys. Rev. B 14, 1887 (1976).

[174] C. A. Balseiro and L. M. Falicov, Superconductivity and charge-density waves, Phys.
Rev. B 20, 4457 (1979).



BIBLIOGRAPHY 405

[175] J. L. Birman and M. Weger, Theory of coexistence of superconductivity and ferroelec-
tricity: A dynamical symmetry model, Phys. Rev. B 64, 174503 (200).

[176] R. V. Lange, Goldstone theorem in nonrelativistic theories, Phys. Rev. Lett. 14, 3
(1965).

[177] V. A. Miransky, Dynamical Symmetry Breaking in Quantum Field theories (World
Scientific, Singapore, 1993).

[178] R. Balescu, Statistical Dynamics, Matter out of Equilibrium (Imperial College Press,
London, 1997).
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[193] V. G. Morozov and G. Röpke, The ”Mixed” Green’s Function Approach to Quan-
tum Kinetics with Initial Correlations, Ann. Phys. (N.Y.) 278, 127 (1999), (cond-
mat/9904273).

[194] T. M. Bibilashvili, Real-time quantum field theory at finite temperature in an inhomo-
geneous media, Mod. Phys. Lett. A 11, 525 (1996), (hep-ph/9503267).

[195] H.-P. Breurer and F. Petruccione, The theory of open quantum systems (Oxford Uni-
versity Press, Oxford, 2002).

[196] W. T. Grandy, Jr., Time Evolution in Macroscopic Systems I: Equations of Motion,
Found. Phys. 34, 1 (2004), (cond-mat/0303290).

[197] L. E. Reichl, A Modern Course in Statistical Physics (University of Texas Press, Austin,
Texas, 1980).

[198] P. Jizba, Equilibrium and Non-equilibrium Quantum Field Theory, Ph.D. thesis, Uni-
versity of Cambridge (1999), hep-th/9910259.

[199] C. Shannon, Mathematical theory of communication, Bell System Tech. J. 27, 379
(1948).

[200] A. I. Khinchin, Mathematical Foundations of Information Theory (Dover Publications,
Inc., New York, 1957).

[201] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, Part 2 (Pergamon Press, Oxford,
1980).

[202] G. Rickayzen, Theory of Superconductivity (Interscience Publishers, New York, 1965).

[203] E. Abrahams and T. Tsuneto, Time Variation of the Ginzburg-Landau Order Param-
eter, Phys. Rev. 152, 416 (1966).

[204] N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Clarendon Press, Oxford,
2001).

[205] W. Jones and N. H. March, Theoretical Solid State Physics, Non-equilibrium and dis-
order, vol. 2 (Dover Publications, Inc., New York, 1973).

[206] J.-C. Tolédano and P. Tolédano, The Landau Theory of Phase Transitions (World
Scientific, Singapore, 1987).

[207] A. Zippelius, B. I. Halperin, and D. R. Nelson, Dynamics of two-dimensional melting,
Phys. Rev. B 22, 2514 (1980).
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[225] L. Rosso, P. Mináry, and Z. Zhu, On the use of the adiabatic molecular dynamics
technique in the calculation of free energy profiles, J. Chem. Phys. 116, 4389 (2002).

[226] J. D. Gunton and M. Droz, Introduction to the theory of metastable and unstable states,
in Lecture Notes in Physics, edited by H. Araki, J. Ehlers, K. Hepp, R. Kippenhahn,
H. A. Weidenmüller, and J. Zittartz (Springer-Verlag, Berlin, 1983), vol. 183.

[227] N. Argaman and G. Makov, Density Functional Theory – an introduction, Am. J. Phys.
68, 69 (2000), (physics/9806013).

[228] R. Evans, The nature of the liquid-vapour interface and other topics in the statistical
mechanics of non-uniform, classical fluids, Adv. Phys. 28, 143 (1979).



408 BIBLIOGRAPHY

[229] V. I. Kalikmanov, Statistical physics of fluids, Basic concepts and applications (Springer
Verlag, Berlin, 2001).

[230] H. T. Davis, Statistical Mechanics of Phases, Interfaces and Thin Films (VCH Pub-
lishers, Inc., New York, 1996).

[231] J. S. Rowlinson and B. Widom, Molecular theory of capillarity (Clarendon Press, Ox-
ford, 1982).

[232] S. R. de Groot and L. G. Suttorp, Foundations of Electrodynamics (North-Holland,
Amsterdam, 1972).

[233] I. Napari, Density functional theory of nucleation and phase behaviour in binary fluid
systems, Ph.D. thesis, University of Helsinki (2000), report series in Aerosol Science
49, ISSN 0784-3496, ISBN 952-5027-25-2.

[234] P. Tarazona, Free-energy density functional for hard spheres, Phys. Rev. A 31, 2672
(1985).
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