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Abstract 

The number of power electronic appliances is growing. Power electronic converters 

can be used to convert the ac line voltage to a dc voltage, and further through dc-dc 

conversion stages to desired dc voltages for different loads. This Thesis deals with 

three single-stage power factor correction converters and a forward type dc-dc 

converter. 

Single-stage converters can be considered as low cost solutions for power factor 

correction. This is because only one active switching stage is used in the converters. 

Small signal and steady state analysis are performed for the dither converter. A 

resonant type snubber is analyzed for the BIFRED and BIBRED converters and a new 

type of clamp circuit is developed for the BIFRED converter. 

The dc-dc conversion part of the Thesis deals with a forward converter with 

active clamp circuit and self-driven synchronous rectifiers. Resonant transition of the 

converter is analyzed in detail. Emphasis of the research is on improving the 

efficiency of the converter. Findings show that the minimization of the turn-on losses 

in the converter is not necessarily advantageous. The analysis is verified with a 3.4 V 

and 30 A prototype converter. 
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1 Introduction 

The number of switched mode power supplies (SMPSs) and other power electronic 

appliances is growing. SMPSs are needed to convert electrical energy from one form 

to another. Since electrical sources can be either dc or ac, there are four basic types of 

converters; namely, conversion can be from ac to ac, dc to ac, ac to dc, and dc to dc. 

We will consider in this Thesis the two latter directions of conversion of electrical 

energy. For this reason, the Thesis is roughly divided into two parts. The first part 

deals with power factor correction converters, i.e. ac to dc conversion, and the second 

part deals with dc to dc conversion. It should be noted, also, that only relatively low 

power equipment fed from a dc or a single-phase ac source are considered in the 

Thesis. 

The Thesis is composed of an introductory part and eight publications: P[1], P[2], 

P[3], P[4], P[5], P[6], P[7] and P[8], which have been presented in international 

conferences. The introductory part gives background information on the power factor 

correction and dc-dc conversion with forward converter. 

1.1 Ac-dc conversion 

Ac to dc rectifiers usually interface with the mains. These devices convert the 

sinusoidal line voltage to a dc voltage. It is a well-known fact that the input current of 

a SMPS tends to have a non-sinusoidal, distorted waveform. The distorted line current 

of a power converter is composed of the line frequency component and higher 

frequency harmonic components of the current. It should be noted that only the line 

frequency component of the current is carrying power when voltage is sinusoidal. 

As use of energy is growing, the requirements for the quality of the supplied 

electrical energy are becoming stricter. This means that power electronic converters 

are used, or have to be used, to convert the input voltage to a precisely regulated dc 

voltage for the load. 
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Since the number of electronic appliances that are fed by power converters is 

soaring, an increasing amount of non-sinusoidal current is drawn from the distribution 

network. Consequently, due to the increasing amount of harmonic currents drawn, the 

distribution network becomes more and more polluted. As a direct consequence, 

available power from the grid becomes less. This is because unnecessary current 

components, which contribute to the rms value of the line current, are drawn from the 

grid. On the other hand, the harmonic currents distort the line voltage waveform and 

may cause malfunction in sensitive electrical equipment connected to the grid, Redl et 

al. 1995b, Redl 1996 and Redl et al. 1997. 

Standard IEC 61000-3-2 (IEC 1995, IEC 2000 and IEC 2001) and its European 

version EN 61000-3-2, set limits for the allowed harmonic content of the line current 

of a power supply. Because of the standards and because of the problems related to 

the distorted line current, power supply manufacturers most probably have to equip 

their products with power factor correction (PFC) circuits. The main task for a PFC 

circuit is to shape the input current to resemble the waveform of the sinusoidal line 

voltage, i.e. to reduce the harmonic content of the line current of a power converter. 

An additional PFC circuit in front of a power supply, however, adds to the cost 

and size of the device. This cost depends naturally on the chosen topology and the 

complexity of the circuit. Tolerance for any additional cost, however, in low power 

supply manufacturing is relatively low, owing to the fact that low power SMPSs tend 

to be mass production devices and sold in an extremely competitive market, Redl et 

al. 1995b. For this reason, there may well be a niche for low-cost power factor 

correction converters in which for example the component count is minimized. 

As mentioned earlier, the standard and the harmful effects of the line current 

harmonics, Redl et al. 1995b, Redl 1996 and Redl et al. 1997, bring about a growing 

need for PFC converters. Single-stage converters combine the two desired objectives, 

line current shaping and output voltage regulation, into a single power processing 

stage. This means that power is processed only by one active switching stage, albeit 

that two separate goals are to be met. Therefore, at least one switch and the control 

circuitry for it are saved with this arrangement compared to two-stage PFC converters 

in which two separate converters are cascaded, Zhang et al. 1999. Single-stage 
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converters offer thus a reduction in the component count and they can be considered 

as a low-cost alternative for PFC. 

In this Thesis three single-stage power factor correction circuits are investigated: 

the dither converter with a tapped transformer, the BIFRED converter and the 

BIBRED converter. It should be mentioned, however, that power factor correction 

properties of these three converters are not investigated in detail in this Thesis. This is 

because it is assumed, based on earlier research, that these converters can be designed 

to achieve a line current that satisfies the requirements set by the standard. Instead, the 

research reported here is concentrated on giving more insight into the operation and 

design of the converters or on improving the performance of the converters. 

For the dither converter we have performed a steady state and small signal 

analyses. For the BIFRED and BIBRED converters a resonant type non-dissipative 

snubber is analyzed in detail. Additionally, we have developed and analyzed a passive 

clamp circuit for the BIFRED converter. 

These three power factor correction converters are presented in Chapter 3 and in 

publications P[1], P[2], P[3] and P[4]. 

1.2 Dc-dc conversion 

Switched mode supplies are widely used in dc-dc conversion. Input voltage for these 

converters is, as the name indicates, a dc voltage source. The input dc voltage source 

for a dc-dc converter can be, for example, rectified line voltage, output voltage of a 

PFC circuit, battery or fuel cell voltage. 

A relatively high switching frequency that is used in these power converters 

enables the use of small reactive components, which reduces the overall size of the 

power supply. Also, a high switching frequency and small reactive components 

improve the converter’s dynamic behavior, i.e. it is able to cope rapidly to changes in 

the load and input voltage. 

One additional advantage of switched mode power supplies is a relatively high 

efficiency. Ideally, the energy conversion process would be without losses. However, 

in practice the components that are used to implement a converter are non-ideal and 

these non-idealities cause losses in the energy conversion process. Therefore, the 

efficiency of the conversion process is less than 100 percent. However, although the 
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perfect efficiency seems to be unattainable, it is well worth striving to get as close as 

possible to that goal, i.e. to minimize losses. 

Efficiency of a power supply is an important design factor. The small but 

inevitable amount of electric losses transforms to thermal energy, i.e. to heat, in the 

power supply. Heating due to these losses has to be taken into account in the design 

process and adequate cooling should be provided for the device. Cooling or heat 

removal from the power supply is needed in order to ensure that the temperature of 

the device, and its individual components, do not exceed their maximum allowable 

operating temperatures. Also, additional cooling may be needed in order to ensure that 

the components actually do operate somewhat below their maximum limits since 

operating in a relatively high temperature affects adversely to the expected life-time 

of a component, for example Stevens et al. 2002. 

A small size for a power supply is desirable. As mentioned earlier, a small size is 

attainable by using a relatively high switching frequency. However, because of the 

conversion losses there should be a way to conduct the heat out of the device. This 

means that, for example, a heat sink should be attached to the heat-generating 

component or components of the converter in order to prevent overheating. This, 

naturally, increases the physical size of the power supply. 

However, even a seemingly small improvement in the efficiency of the 

conversion process can lead to a somewhat noticeable reduction in the need for 

cooling. For example, if the efficiency of a power supply is increased from 90 % to 

91 %, this means that in other words that the losses are cut by approximately 10 %. 

A high efficiency in low voltage dc-dc conversion is a challenge. For example, 

state-of-the-art electronic devices require relatively low operating voltages, for 

example 3.3 V, 2.5 V, 1.8 V, 1.5 V, and even sub-1V output voltages can be expected 

in the future, Lidow et al. 2003. However, the load current for these low voltage 

outputs should be of several tens of amperes. The high load current can easily cause 

considerable voltage drops in the rectifying stage and in the power carrying leads of 

the printed circuit board (PCB). A considerable voltage drop means here that the 

voltage drop, which together with the current defines the loss of energy, is 

considerable in relation to the load voltage. This means that, if the load current flows 



 19

through a noteworthy voltage-drop somewhere else than in the actual load, the 

efficiency cannot be very good. 

Rectification losses of a power converter can be reduced with synchronous 

rectifiers, Chryssis 1989. This means that rectifier diodes are replaced with 

MOSFETs. These MOSFET synchronous rectifiers need, however, synchronized 

control signals and some energy in order to be driven appropriately. A cost-effective 

arrangement is to use self-driven synchronous rectifiers in which the control signals 

for the rectifiers are taken from the windings of the converter's transformer or the 

output inductor. 

The single switch forward dc-dc converter is discussed in Chapter 4. Four 

passive and one active reset method for the transformer of the forward converter are 

presented and the suitability of the reset circuits for self-driven synchronous 

rectification are assessed. Further background information on forward converter with 

active clamp reset circuit and with self-driven synchronous rectifiers is given in the 

chapter. The research results on the active clamp forward converter are reported in 

publications P[5], P[6], P[7] and P[8].  

The research reported in P[5], P[6], P[7] and P[8] is concentrated on giving more 

insight in to the operation of the active clamp converter and on techniques to improve 

the efficiency of the converter topology. The research results in the publications have 

been verified with a 3.4 V and 30 A prototype converter. 
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2  Background of power factor correction 

2.1 Standard IEC 61000-3-2 

The introduction of the standard IEC 61000-3-2, IEC 1995, IEC 2000 and IEC 2001, 

set limits for the harmonic content of the line current of a power converter and 

prompted a need for power factor correction circuits. The IEC (International 

Electrotechnical Committee) standard has also been adopted by the European 

Committee for Electrotechnical Standardization (CENELEC) as standard EN 61000-

3-2. 

The standard divides electrical equipment into four classes: A, B, C and D. The 

four classes include electrical equipment as follows, IEC 2001: 

Class A: Balanced three-phase equipment, household appliances (excluding 

equipment identified as class D), tools (excluding portable tools), dimmers for 

incandescent lamps and audio equipment. 

Class B: portable tools and arc welding equipment which is not professional 

equipment. 

Class C: lighting equipment. 

Class D: personal computers and personal computer monitors, and television receivers 

(active input power equal or less than 600 W). 

Additionally, class D limits are reserved, according to IEC 2001, to equipment that 

can be shown to have a pronounced effect on the public electricity supply system. 

Limits for class A and class D equipment are shown in Table 2.1 and 2.2, 

respectively. Class A limits are in absolute values whereas the class D limits are given 

in power related terms. Therefore, for a low power converter, class D limits seem to 

be stricter. Also, class D applies to equipment with input power Pin ≤ 600 W that can 

be shown to have a pronounced effect on the public supply system. 
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Table 2.1. Harmonic limits for class A devices, IEC 2000. 

Harmonic order 

 

n 

Maximum permissible 

harmonic current 

A 

Odd harmonics 

3 2.30 

5 1.14 

7 0.77 

9 0.40 

11 0.33 

13 0.21 

15 ≤ n ≤ 39 150.15
n

 

Even harmonics 

2 1.08 

4 0.43 

6 0.30 

8 ≤ n ≤ 40 
80.23
n

 

 

 

Table 2.2. Limits for class D equipment, IEC 2000. 

Harmonic order 

 

n 

Maximum permissible 

harmonic current per watt 

mA/W 

Maximum 

permissible harmonic 

current  

A 

3 3.4 2.30 

5 1.9 1.14 

7 1.0 0.77 

9 0.5 0.40 

11 0.35 0.33 

13 ≤ n ≤ 39 

(odd harmonics) 

3.85
n

 See Table 2.1 
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2.2 Line harmonics in switched mode power supplies 

Switched mode power supplies are notorious for having a distorted input current, 

which is rich in harmonic currents. A high harmonic content of the input current of a 

power converter reduces the available power, which can be drawn from the utility 

grid. The harmonic components of the current also pollute the utility grid, Redl et al. 

1995b, which can cause malfunction in sensitive electrical equipment connected to the 

same grid.  

A typical non-power factor corrected front-end power converter is depicted in 

Fig. 2.1. 

The input side of the converter in Fig. 2.1 presents a combination of a large 

energy storage capacitor and a diode bridge. The diode bridge is composed of the 

four rectifier diodes, DR1, DR2, DR3 and DR4, and it is the power supplies’ interface to 

the mains. 

Capacitor voltage vC of capacitor C1 is the input voltage for the high frequency 

dc-dc conversion stage of the converter. This stage consists of the transformer, switch 

and the whole secondary side of the circuit. The bulk capacitor, C1, should be able 

store enough energy to cover a momentary blackout of the power grid, Mohan et al. 

1995 page 347, and it should also be able to balance the fluctuation of input power at 

twice the line frequency. Therefore, the bulk capacitor, C1, usually has a relatively 

high capacitance. 

The combination of a large capacitor and the diode bridge is the cause for the 

distortion in the line current. This is because the diodes in the bridge are able to 

conduct and deliver energy from the mains to the circuit only when the rectified 

sinusoidal line voltage, |vin|, has a greater value than capacitor voltage vC. Since C1 

 

Figure 2.1. A forward type SMPS used as a front-end converter. 
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has a relatively high capacitance, the voltage of it does not drop considerably during 

two consecutive peaks of the line voltage, i.e. during a half line cycle. The time 

interval during which the rectified sinusoidal line voltage has a higher value than the 

capacitor voltage is, therefore, rather short.  

Simulated waveforms of line current iin, capacitor voltage vC and rectified line 

voltage ⏐vin⏐in the case of a non-power factor corrected converter is shown in 

Fig. 2.2. Simulation parameters were: Vin,rms = 230V, C1 = 330 µF and the load was 

modeled as a 235 W constant power load.  

The simulation result clearly shows that the current has a non-sinusoidal, 

distorted waveform. Rms values of the line frequency component and the six first 

odd harmonics of the line current, depicted in Fig. 2.2, are shown along with class D 

limits of standard IEC 61000-3-2 in the bar chart of Fig. 2.3. It is obvious that the 

device does not meet the limits set by the standard. 

The harmonic components of the line current are at frequencies that are odd 

multiples of the line frequency. The harmonics are denoted as Iin,rms,n where the letter 

n marks the frequency of the harmonic, which is the n:th multiple of the line 

frequency. 

 

Figure 2.2. Rectified sinusoidal line voltage and the bulk capacitor voltage in the upper part 
and resulting line current in the lower part of the picture. 
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Figure 2.3. Line frequency component and the six first odd harmonics of the line current 
depicted in Fig. 2.2. Class D limits of standard IEC 61000-3-2 are also shown. 

2.3 Basic definitions in power factor correction 

The distorted line current, depicted in Fig. 2.2, has a relatively rich content of 

harmonics. The current is also said to have a high crest factor, Mohan et al. 1995, a 

quantity that describes the ratio of the peak value of the current to the total rms value 

of the current. 

in,peak

in,rms

Crest factor =
I
I

        ( 2.1) 

The rich content of harmonics leads to a poor power factor (PF). Quantity PF is used 

to measure the ratio of power P to apparent power S drawn from the utility grid. PF is 

defined as follows, Mohan et al. 1995. 

in,rms,1 in,rms,1 in,rms,1
1 1

in,rms in,rms in,rms

cos cos
V I IPPF

S V I I
φ φ= = ≈      ( 2.2) 

In Eq. (2.2) Vin,rms and Vin,rms,1 are the rms values of the line voltage and line frequency 

component of the line voltage, respectively, and Iin,rms and Iin,rms,1 are defined 

correspondingly. Parameter φ1 depicts the difference in phase between the 

fundamental components of the line voltage and line current, that is between vin,1 and 

iin,1. It is assumed in Eq. (2.2) that the line voltage is not distorted. 

The cosine of the phase difference φ1 is called displacement power factor DPF, 

Mohan et al. 1995. 
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1cosDPF φ=          ( 2.3) 

In power supply applications, the displacement φ1 between the line frequency 

components is usually close to zero. Quantity PF can hence be approximated with 

good accuracy in power supply applications by the ratio of the two currents in 

Eq.(2.2). Therefore, a good PF is achieved if the harmonic content is reduced in 

relation to the line frequency component of the line current. 

Total harmonic distortion (THD) measures the ratio of the total rms value of the 

harmonic currents to the rms value of the line frequency component, Mohan et al. 

1995.  

2
in,rms,

2

in,rms,1

n
n

I
THD

I

∞

==
∑

 3,5,7...n =       (2.4) 

If the line voltage is not distorted, PF and THD share the following relationship, 

Mohan et al. 1995. 

2

1
(1 )

PF DPF
THD

=
+

       ( 2.5) 
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3 Single-stage power factor correction circuits 

3.1 General 

The family of single-stage converters is an interesting alternative to low-cost power 

factor correction. A variety of suitable topologies of single-stage converters can be 

found from literature, for example: Cha et al. 1998, Garcia et al. 1999, Garcia et al. 

2000, Jin et al. 2001, Lee et al. 1996, Lee et al. 1997, Madigan et al. 1992, Oba et al. 

1998, Redl et al. 1994, Brkovic et al. 1992 and Takahashi et al. 1991.  

Properties of and design considerations for a number of single-stage converters 

have been reported in literature, for example: Jovanović 1994, Newton 2000, 

Simonetti 1992 and Redl 1995a. 

The distinctive property of a single-stage converter is that it has only one active 

switching element. The active element is used, on one side, to regulate the isolated 

output voltage as in a normal power supply. The other task for the active element is to 

shape the line current to resemble as closely as possible the sinusoidal line voltage 

waveform. There are, hence, two tasks for the one switching element. This means that 

the other goal has to be reached more or less inherently. 

Single-stage converters, in most cases, utilize the fact that the envelope of a 

discontinuous conduction mode (DCM) inductor current automatically follows the 

feeding voltage waveform, Liu et al. 1989, Lazar et al. 1995 and Wang et al. 1996. 

There are also reports of discontinuous capacitor voltage mode PFC circuits, Grigore 

et al. 1999a, Grigore et al. 1999b and Grigore 2001. 

Line current shaping in single-stage converters can, therefore, be dealt with by 

allowing the input side reactive element to operate in the DCM. The one degree of 

freedom, duty ratio of the active switch in constant frequency applications, is used to 

regulate the output voltage. We will assume in the following analyses of the three 

single-stage converters that they operate, in steady state, with constant duty ratio D1. 
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We do not go into detail of the power factor correction properties of the single-

stage converters presented in this Thesis. Instead, we assume that a fairly good line 

current, that satisfies the requirements of the standard, is reachable with these three 

single-stage converters. 

As an example of the PFC properties of a single-stage converter, the line current 

of a constant duty ratio BIFRED converter, with input power Pin ≈ 235 W, is shown in 

Fig. 3.1 a). It can be seen from the figure that the current resembles closely the desired 

sinusoidal waveform. The fundamental component and the first six harmonics of the 

current, shown in Fig. 3.1 a), are shown along with class D limits of standard IEC 

61000-3-2 in Fig. 3.2, Tuomainen 1999. It is easy to see that the converter fulfills the 

requirements set by the standard. Fig. 3.1 b) shows the current of the BIFRED’s DCM 

boost inductor. 

 

Figure 3.1. Line current in a) and boost inductor current in b) of constant duty ratio BIFRED 
converter, Tuomainen 1999. Scale in a) 1 A/div and in b) 2 A/div. 

 

Figure 3.2. Line frequency component and six first harmonics of the line current in 
Fig. 3.1. a), Tuomainen 1999. 
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3.2 Dither converter 

3.2.1 General 

The dither converter, Oba et al. 1998, is an interesting candidate for a single-stage 

power factor correction converter. A schematic of the converter is shown in Fig. 3.3. 

The converter is a buck-boost type single-stage converter in which the power factor 

correction is dealt with by allowing inductor L1 to operate in the DCM. 

The converter can be designed so that the forward part of the converter operates 

in the continuous conduction mode (CCM). This is due to the fact that capacitor C1 is 

not charged directly from the mains and, therefore, the steady state voltage of the 

capacitor can be considerably lower than the peak of the line voltage.  

Usually, in single-stage converters in which the isolation part of the converter 

operates in the CCM the bulk capacitor voltage has a strong dependence on the load. 

That means that the voltage may reach a relatively high level at light loads, which 

means that the energy storage capacitor has to sustain the voltage stress. Naturally, a 

high initial voltage on the capacitor aggravates the situation. 

The capacitor voltage in the dither converter is, also, dependent on the load but 

since the voltage can have low steady state values at high loads, there is room for it to 

rise as a consequence of load reductions. This situation is difficult to achieve, for 

example, in the BIFRED and BIBRED single-stage converters, in which the minimum 

primary side energy storage capacitor voltage has to be greater than the peak line 

voltage. This will be discussed later in Section 3.3. 

As mentioned above, the dither converter can be designed to operate in the DCM 

– CCM operation mode. This allows for smaller current ripple as well as smaller high 

 

Figure 3.3. Dither converter with a tapped transformer, Oba et al. 1998. 
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frequency flux swinging in the output inductor. This eventually reduces conduction 

losses in the transformer and in the secondary side and core losses in the inductor. 

Also, a current with lower ripple reduces the need for filtering capacity. 

The research reported in this Thesis, concerning the dither converter with a 

tapped transformer, is concentrated on finding a steady state representation and a 

small signal model for the converter. In the following two sections the principles and 

derivation of the steady state and small signal models of the dither converter, are 

presented respectively. 

3.2.2 Steady state analysis 

The tapping in the transformer of the converter disables the diode bridge at low 

instantaneous line voltage values. This introduces zero crossing distortion to the line 

current. The diode bridge is able to conduct, and power flow to the circuit is enabled, 

when the instantaneous line voltage is above the following limit: 

1B 1B
in C1 C1

1 1A 1B

N Nv V V
N N N

> =
+

       ( 3.1) 

Line voltage, during a half line cycle, is illustrated in Fig. 3.4. Angles α and (π - α), 

which denote the points at which the line voltage crosses the level that 

enables/disables diode bridge are also drawn in the figure. The sine of angle α can be 

defined as follows: 

 

Figure 3.4. Line voltage during a half line cycle. Black areas indicate the portions of a half 
line cycle during which the diode bridge is not able to conduct. 
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( ) C1 out1B 1B

1 in 2 in 1

1sin V VN N
N V N V D

α = =        ( 3.2) 

D1 in Eq.(3.2) denotes the duty ratio of the switch.  

Some principles of the steady state operation of the dither converter were 

reported in Oba et al. 1998, Tuomainen 1999 and Tuomainen et al. 1999. There was, 

however, no accurate and complete analysis available on this topic in the literature. 

Therefore, the steady state operation of this converter was investigated and the results 

of the analysis are reported in publication P[1]. 

The steady state analysis was made for an ideal converter, therefore the following 

assumptions were made: the switch, diodes and reactive components were treated as 

ideal components. Additionally, it was assumed that the capacitances of the two 

energy storage capacitors of the circuit, C1 and C2, were large enough so that the 

voltage over them was considered a ripple free dc voltage and that the output inductor 

current iL2 was constant. It should be noted that despite these assumptions the 

simulations that were made with non-ideal semi-conductor component models and 

capacitor and inductor models with finite capacitances and inductance returned results 

that were very close to the computed results based on the analysis. 

The idea behind the analysis was to average the operation of the converter over a 

switching cycle, i.e. to define the current that was taken from and brought to capacitor 

C1 during switching cycle Ts. The average current that is taken from the capacitor can 

be expressed as follows: 

s

2
C1,- 0 1

1
T

Ni I D
N

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
     line0 tω α≤ ≤   ( 3.3) 

s

2 1B
C1,- 0 1 L1 1

1 1

1
2T

N Ni I D I D
N N

⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
   line 2

t πα ω< ≤   ( 3.4) 

Similarly, the current that is brought to the capacitor during a switching cycle can 

formulated as follows: 

s
C1,+ 0

T
i =       line0 tω α≤ ≤   ( 3.5) 

s
C1,+ L1 2

1
2T

i I D=      line 2
t πα ω< ≤   ( 3.6) 
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Both of the two currents have to be expressed in two parts. The reason for this is the 

disabled diode bridge at low instantaneous line voltage values. 

It can be noted from Eqs. (3.3 – 3.6) that the average currents that charge and 

discharge the capacitor are not equal from switching cycle to switching cycle. 

Therefore, the steady state operating point had to be defined by averaging the 

operation of the converter over a line cycle. 

Calculated behavior of the bulk capacitor voltage of the dither converter is shown 

in Fig. 3.5. The capacitor voltage was determined as a function of load in eight 

different winding arrangements, which are listed in Table 3.1. Additionally, fifteen 

simulated points have been added to the figure. As can be seen from Fig. 3.5 the 

calculated and simulated results are in good agreement. 

Details and results of the steady state analysis are presented in publication P[1]. 

Table 3.1. Turns ratios of the transformer used in the simulations. 

Model a b c d e f g h 

N2 / N1 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25 

N1B / N1 0 0.25 0.35 0.42 0.50 0.57 0.63 0.69 

N2 / N1B - 5.00 3.57 3.00 2.50 2.19 2.00 1.80 

 

 

Figure 3.5. Calculated behavior of the bulk capacitor voltage in eight cases. Fifteen simulated 
points have been added. 



 33

3.2.3 Small signal analysis 

Once the steady state operation of the converter had been investigated, the next step 

was to find a small signal description for the converter. The need for the dynamic 

model of the converter stemmed from the fact that there were no reports of the 

dynamic behavior of the converter available in literature. 

The small signal analysis was made for an ideal converter model. The only 

parasitic element that was included in the analysis was the equivalent series resistance 

(ESR) of the output capacitor. 

It should be noted, that the small signal model was analyzed only for the case 

when the line voltage is as in Eq. (3.1), i.e. the diode bridge is able to conduct. This 

decision was made since firstly, the converter operates most of the time in this 

operation mode and secondly, the small signal model of the converter at low 

instantaneous values of the line voltage resembles a normal forward converter fed by 

a large dc capacitor, which does not, however, receive any charge to compensate for 

the energy delivered to the load. 

The chosen method for the small signal analysis was state space averaging, Cúk 

et al. 1977a. Due to the discontinuity of the input side inductor we had to use state 

space averaging for converters in discontinuous mode, Cúk et al. 1977b. State space 

averaging and derivation of a small signal model for single-stage converters with 

multiple discontinuous conduction modes are reported in Schenk et al. 1997 and 

Schenk et al. 1998. 

We identified four reactive components in the circuit, magnetizing inductance of 

the transformer was omitted, and voltages of the two capacitors and currents of the 

two inductors were chosen as state variables.  

1

2

1

2

,    

i
i d
v dt
v

•

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

x x x         ( 3.7) 

The matrices that describe the three states, depicted in Fig. 3.6, of the converter 

during a switching cycle can be written as follows: 
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The following markings were used in Eqs. (3.8 – 3.11) in order to simplify the 

representation: 

1B 2
B p

1 1 s

,   ,   
+

N N RN N r
N N R R

= = =       ( 3.12) 

The relative lengths of the three different states during a switching cycle can be 

denoted as d1, d2, and d3 and they are defined as follows: 
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The small signal state space representation for the converter can be written as 

follows, Cúk et al. 1977b: 

( ) ( ) ( ) ( )
^

^ ^ ^ ^

in 1 21 3 1 3 in 2 3 2 3 inv d V d V
•

⎡ ⎤ ⎡ ⎤= + + − + − + − + −⎣ ⎦ ⎣ ⎦x A x B A A X B B A A X B B ( 3.14) 

in which matrices A and B are defined as: 

1 1 2 2 3 3

1 1 2 2 3 3

 = 
 = 

d d d
d d d
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+ +

A A A A
B B B B

       ( 3.15) 

The analysis resulted in control-to-output open-loop transfer function for the 

converter, which has the following form: 
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Coefficients for Eq. (3.16) are as follows: 
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Figure 3.6. Equivalent circuits of the dither converter during a switching cycle. Line voltage 
vin is sufficiently high. a) switch on, b) switch off and c) switch off and i1 = 0. 

Derivation of the small signal model for the dither converter is given in 

publication P[2]. 

Simulation setup for determining the small signal transfer function 

The small signal analysis was verified with simulations in a PSpice simulation 

environment. A converter model was built using near ideal components, i.e. the 

diodes and the switch had a voltage drop when conducting but not, for example, 

parasitic capacitances. Additionally, small resistances had to be added in series with 

the reactive components in order to run the simulations properly. 

Due to the time-varying line voltage and due to the limited simulation time, a 

noise component at the target frequency was observed at the simulated output even 

without any disturbance in the control voltage. Therefore, for each simulated point 

shown in publication P[2] six separate simulations were carried out: one without 

control disturbance and five with a control disturbance with five different initial 

angles of φC = 0o, 45o, 90o, 135o and 180o. 

Simulation setup for the case without a control disturbance is depicted in 

Fig. 3.7 a). In this case, a constant control voltage VC was used to generate constant 

duty ratio D1. Simulation setup for the case with a control disturbance is depicted in 

Fig. 3.7 b), in which a low-amplitude control disturbance was added on the top of the 

control voltage. 

Generation of the duty ratio from the control voltage with the help of a sawtooth 

waveform is shown in Fig. 3.8.  
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Figure 3.7. a) Simulation setup without a control disturbance and b) setup with a control 
disturbance. 

 

Figure 3.8. Sawtooth waveform, control voltage and the resulting duty ratio. 

The control disturbance and the disturbance in the duty ratio share the following 

relation, Erickson et al. 2001 pp. 255. 

^
^

C C
1 1

M

V vD d
V
+

+ =         ( 3.18) 
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Amplitude of the sawtooth waveform, VM, was in the simulated case VM = 1V, which 

means that the control disturbance and the disturbance in the duty ratio shared the 

same magnitude. 

When the control disturbance was present, the observed, simulated output at the 

disturbance frequency was a sum of the noise observed without the disturbance and 

the component that was due to the disturbance for the control signal. The propagation 

of the control-to-output disturbance could then be extracted from the simulation data 

by finding a suitable angle and amplitude, φL and L, for the control-to-output 

disturbance component. 

M K Lsin( ) sin( ) sin( )M x K x L xφ φ φ+ = + + +      ( 3.19) 

In Eq. (3.19) K and M are the amplitudes of the noise at the output without and with 

the control disturbance. Angles φK and φM are the corresponding phases for the two 

components observed at the output. The amplitude and angle for the disturbance at the 

output was obtained graphically, i.e. by matching two sinusoidal waveforms. 

An example of the extraction of the control-to-output disturbance at frequency 

1721 Hz is presented in Table 3.2. The first column of Table 3.2 gives the initial 

settings for the simulation, the second, third and fourth column gives the data obtained 

from the simulations. The fifth and sixth columns give the wanted data that was 

extracted by trial and error from the simulation data. 

It should be noted that the control-to-output phase difference, which is given in 

the seventh column, is obtained by subtracting the extracted phase φL (sixth column) 

from the phase of the simulated control disturbance (second column). The reason for 

this is that the fourier analysis of PSpice program, despite the initial settings (given in 

the first column), returned, in this simulation example, the initial phase for the control 

disturbance –66,61o degrees shifted (second column).  

By using this method to determine the propagation of a small disturbance in the 

control signal to the output voltage we were able to verify the analysis. As can be seen 

from Fig. 3.9, the obtained simulation results correspond to the computed and 

expected behavior of the converter with good accuracy. 
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The computed gains and phases of the transfer function in Fig. 3.9 have been 

determined for six different instantaneous values of the line voltage, which are listed 

in Table 3.3. 

Table 3.2. Simulation results for determining control-to-output gain and phase of the dither 
converter at frequency 1721 Hz.  

^

Cv / mV φC,sim. M / mV φM L = 
^

2v / mV φL φv2 * 

0.5 (φC = 0o) -66,61o 80,2 105,8 118 -235 -168,39 

0.5(φC = 45o) -21,61 o 56,74 165,5 106,8 -199 -177,39 

0.5 (φC = 90o) 23,39 o 98,13 -113,6 110 -140 -163,39 

0.5 (φC = 135o) 68,39 o 121,1 -69,89 93,5 -92 -160,39 

0.5 (φC = 180o) 113,4 o 170,5 -34,11 121,5 -38,5 -151,9 o 

Average of L and φv2 were used Avg. 110 mV ⇒ 46,8db - -164,3 o 

*φv2 = φL -φC,sim 

K = 50,23 mV,  φK = -23,11o 

 

 

Figure 3.9. Computed gain and phase of the control-to-output transfer function, D1 = 0.25. 
Nine simulated points have been added to the figure. 

 

Table 3.3. Instantaneous line voltage values used in the calculations. 

Symbol a b c d e f 
Vin / V 325 265 165 145 115 85 
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3.3 BIFRED and BIBRED converters 

3.3.1 General 

The BIFRED (Boost Integrated with Flyback Recitifier/Energy storage/Dc-dc 

converter) and BIBRED (Boost Integrated with Buck Rectifier/Energy storage /Dc-dc 

converter) are two single-stage converters, first presented by Madigan et al. 1992 and 

1999.  Both converters are capable of producing an input current with a low harmonic 

content and, also, a regulated and isolated output voltage. Line current shaping, i.e. 

power factor correction, and the output voltage regulation are attained in these two 

converters by using only one switch.  

As mentioned in Section 3.2, the dither converter can be designed to operate in 

the DCM – CCM and that it is difficult to achieve the same situation with the 

BIFRED and BIBRED. For example, for European line voltage, the peak of the line 

voltage is Vin ≈ 325 V, above which the bulk capacitor voltage of the BIFRED and 

BIBRED should be. Electrolytic capacitors for power electronic equipment, however, 

tend to have a limit for maximum voltage at around 450 - 500 V, Sarjeant et al. 2001 

and Stevens et al. 2002. This voltage limit for the electrolytic capacitors is easily 

exceeded with European line voltage and with DCM – CCM BIFRED and BIBRED 

converters.  

It is, therefore, reasonable to design the BIFRED and BIBRED converters to 

operate in the DCM – DCM mode, which means that the input inductor and the output 

inductive element both operate in the DCM mode. For this reason, we have assumed 

in our analyses that these two converters operate in the DCM – DCM operation mode. 

It should be noted here, that the BIFRED converter bears a strong resemblance 

with the isolated version of the SEPIC converter. Also, the BIBRED converter 

resembles the isolated version of the Cúk converter. 

Design considerations for the BIFRED converter were reported, for example, in 

Willers et al. 1994 and Willers et al. 1999. Small signal analysis of the SEPIC 

(BIFRED) converter was reported in Schenk et al. 1997. 

Variable frequency control was researched for the BIBRED converter in 

Jovanović et al. 1994. Small signal dynamics of the isolated version of the Cúk 

converter (BIBRED) were reported in Vorperian 1996. Small signal considerations for 
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Cúk and SEPIC converters as power factor correction circuits were reported in 

Simonetti et al. 1992. 

3.3.2 Research background 

The BIFRED and BIBRED converters actually include two converters, which are 

integrated so that both of them utilize the same switch. The BIFRED converter is an 

integration of a discontinuous conduction mode (DCM) boost converter and a flyback 

converter. In the BIBRED, the corresponding parts are a DCM boost converter and a 

forward converter. Schematics of the BIFRED and BIBRED converters are shown in 

Fig. 3.10 a) and b), respectively. 

The tight integration of the two sub-converters in these two single-stage 

converters causes some problems. One of them arises from the leakage inductance of 

the transformer, which has, in both converters, a pronounced effect on the voltage 

stress on the switch. Namely, the current in the leakage inductance has to be changed 

at turn-off instant of the switch from a positive peak value, i.e. the peak current of the 

transformer, to a negative peak value in a short period of time. The negative peak 

value means here the peak value of the DCM boost inductor current which is to be 

directed to flow through the primary winding of the transformer after the switch has 

been opened. 

 

Figure 3.10. a) Schematic of the BIFRED converter and b) schematic of the BIBRED 
converter. 
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However, the boost inductor current cannot be immediately rerouted to flow 

through the winding due to the presence of the leakage inductance. Therefore, it is 

necessary to apply a voltage across the leakage inductance in order to achieve the 

desired change in the magnitude and flowing direction of the current. For that purpose 

a snubber circuit has to be employed, on one side, to provide the needed voltage and, 

on the other side, to provide an alternative path for the two inductive currents for the 

duration of the process of changing the direction of the current. 

3.3.3 Resonant type snubber 

A resonant type non-dissipative snubber was presented and analyzed for flyback 

converter in Shaughnessy 1980, Domb et al. 1982, Ninomiya et al. 1985 and 

Ninomiya et al. 1988, and for the forward converter in Tanaka et al. 1988. The 

references contain detailed analyses of the snubber for flyback and forward 

converters. 

The same snubber circuit was proposed for BIFRED in Willers et al. 1999 and 

for BIBRED in Jovanović et al. 1994. The proposed snubber is, without doubt, a 

suitable circuit for the BIFRED and BIBRED topologies.  

Previous studies, however, do not provide a detailed analysis of the circuit in 

these two single-stage converters, despite the fact that these two converters, due to the 

tight integration, pose a tougher challenge for the snubber than, for example, a flyback 

converter. Moreover, there are some differences in the operation of the snubber circuit 

in the BIFRED and BIBRED applications at turn-off instant of the switching device, 

which are due to the presence of the boost inductor and, therefore, two inductive 

currents. 

The voltage produced by the snubber circuit is directly linked to the voltage 

stress on the switching device, and, consequently, the switch has to be selected so that 

it is able to withstand the expected voltage stress. However, a switch that can sustain 

high voltages tends to be more expensive or, at least, it tends to have a higher on-

resistance than a switch with a lower voltage rating. Therefore, a switch with a lower 

voltage rating saves in the costs or improves the efficiency of the converter, or both. It 

was, therefore, important to analyze the operation of the non-dissipative snubber in 

the two single-stage converters and to find out the expected maximum voltage stress 

as a function of the circuit parameters.  
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The BIFRED and BIBRED converters with resonant type non-dissipative 

snubber circuits are presented in Figs. 3.11 a) and b), respectively. 

Turn-off transition in BIFRED converter 

The snubber circuit protects the switch from voltage spikes and provides a path for the 

two inductive currents right after the switch has been turned off. During a period that 

we call here turn-off transition, a voltage is developed in the snubber capacitor, which 

allows for the current in the leakage inductance to change appropriately. The turn-off 

transition initiates from the turn-off of the switch and ends when the current in the 

leakage inductance has changed its direction and magnitude appropriately. 

The turn-off transition is divided into two phases that we call here the first and 

the second phase. The first phase begins when the main switch is turned off and it 

ends when the snubber capacitor has been charged to a voltage level that allows for 

the secondary side diode, D2, to become forward biased. The equivalent circuit of the 

BIFRED converter during the first phase is shown in Fig. 3.12 a). 

The second phase of the turn-off transition begins, naturally, at the end of the 

first phase and it ends when snubber diode Dsn1 becomes reverse biased. Equivalent 

circuit of the BIFRED converter during the second phase is shown in Fig. 3.12 b). 

 

Figure 3.11. a) BIFRED and b) BIBRED with non-dissipative snubber circuit. 
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Simulated waveforms of the voltage and current of the snubber capacitor and 

current of the leakage inductance during the first phase (0 ≤ t ≤ t1) and second phase 

(t1 ≤ t ≤ t2) of the turn-off transition are depicted in Figs. 3.13 a) and b). 

It can be seen from the figure that the bulk of the needed change in the current of 

the leakage inductance, iL,lk, takes place during the second phase. On the other hand, 

the snubber capacitor is being charged with a nearly constant current during the whole 

of the first phase. 

A simulated example of the voltage stress over the switch of the BIFRED 

converter is shown in Fig. 3.14. The figure shows the voltage stress in four different 

cases. Line voltage vin in Fig 3.14 a) is approximately zero and in b) in the vicinity of 

the peak line voltage.  

It can be seen from Fig. 3.14 that a rapid turn-off transition requires small 

capacitance Csn. A small capacitance, however, causes a relatively high voltage stress 

over the switch. On the other hand, a lower voltage stress is attainable with a larger 

Csn. This, however, lengthens the duration of the turn-off transition, which can 

become relatively long, especially at low line voltages.  

A detailed analysis of the non-dissipative snubber for the BIFRED and BIBRED 

converters can be found from publication P[3]. 

 

Figure 3.12. a) Equivalent circuit of BIFRED: a) during the first phase, and b) during the 
second phase of the turn-off transition. 
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Figure 3.13. a) Simulated voltage of the snubber capacitor and b) simulated current of the 
snubber capacitor and the leakage inductance during the turn-off transition. 

 

Figure 3.14. Simulated voltage over the switch of BIFRED at turn-off: a) vin ≈ 0 V and b) 
vin ≈ 325 V . Snubber capacitances: Csn = 0.3 nF, 0.5 nF, 1 nF, and 2 nF. 

3.3.4 Passive clamp circuit for BIFRED 

As mentioned above, the BIFRED converter poses a tougher challenge for the snubber 

circuit than, for example, a flyback converter. This is due to the fact the direction of 

the current in the leakage inductance of the transformer has to be changed rather than 

to merely suppress it to zero after the switch has been turned off. For this reason, the 

voltage stress on the switching device may become unnecessarily high.  

With the resonant type non-dissipative snubber, a switch with a relatively high 

voltage rating has to be used and this degrades the efficiency of the converter as 

explained above.  

It might be, therefore, advantageous to clamp the voltage over the switch at turn-

off to a known dc voltage rather than to charge the resonant snubber, from a negative 

initial voltage, to a high and somewhat unknown positive voltage at every turn-off. 
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We developed and presented in publication P[4] a passive clamp circuit for the 

BIFRED converter. It should be mentioned, however, that the circuit could be used 

for the BIBRED converter as well.  

The BIFRED converter with the passive clamp circuit is presented in Fig. 3.15. 

The schematic of the passive clamp circuit is similar to that of the resonant snubber 

circuit.  

The idea in the passive clamp solution is that the circuit is designed so that clamp 

capacitor Csn retains a steady dc voltage. Therefore, the voltage over the switch 

becomes clamped at every turn-off to a voltage level defined by the sum of the 

voltages of capacitors Csn and C1. 

Voltage of the clamp capacitor can be determined from charge balance. The 

current brought to the capacitor comprises the current that flows through the capacitor 

during the time the current changes direction in the leakage inductance right after the 

switch has been turned off. The current, and therefore, the charge that is taken from 

the capacitor during a switching cycle is determined by inductance Lsn. Since the 

voltage over the clamp capacitor is a dc voltage, the current rises linearly in the clamp 

circuit inductor during the time the switch is conducting. Therefore, the size of the 

inductance determines the average current taken from the capacitor and the dc voltage 

in the capacitor. This is the opposite of the resonant type snubber in which the size of 

the snubber capacitance determines the voltage stress on the switch and the inductor is 

merely chosen to provide a high enough resonance frequency for the resonant circuit, 

publication P[3].  

Simulated waveforms of current of the passive clamp capacitor and voltage 

across the passive clamp inductor during two successive switching cycles are depicted 

 

Figure 3.15. BIFRED converter with a non-dissipative protective circuit for the switch. 
Leakage inductance of the transformer is shown as Llk. 
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in Fig. 3.16. The positive direction of clamp capacitor current iCsn is shown in 

Fig. 3.15. 

Switching cycle Ts in Fig. 3.16 is divided into four intervals, A, B, C and D, and 

from which the passive clamp circuit is active during the three first intervals. 

Equivalent circuits of the converter for the four intervals are shown in Fig. 3.17. 

In the derivation of the operation of the passive clamp circuit we assumed that 

voltage VC1 of capacitor C1, output voltage Vo and clamp capacitor voltage Vsn are 

constants. We also assumed that the converter operates in the DCM – DCM operation 

mode with a constant duty ratio. 

Voltage stress over the switch of the BIFRED converter at turn-off is shown in 

five different cases in Fig. 3.18. Three of the cases shown are simulated with resonant 

type snubber and the two other cases are attained with the passive clamp circuit.  

 

Figure 3.16. Current and voltage of the passive clamp circuit. 
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Figure 3.17. Equivalent circuits of the BIFRED with the passive clamp. Intervals A, B, C and 
D are depicted in a), b), c) and d), respectively. 

 

Figure 3.18. Simulated voltage stress over the switch at turn-off. Passive clamp: Lsn = 1 mH 
and 3.25 mH and Csn = 2.2 µF. Resonant snubber: Csn = 500, 1500 and 2500 pF and Lsn = 
50 µH. 

It can be seen from the simulation result that in the case of the passive clamp circuit 

the voltage over the switch becomes clamped to a dc voltage immediately after the 

switch has been turned off. Additionally, the voltage remains constant throughout the 

turn-off transition. 

The advantage of the passive clamp circuit becomes obvious if the simulation 

results of the passive clamp circuit are compared with the corresponding results from 

the resonant type snubber circuit. Clearly, the passive clamp circuit can be designed 
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so that the voltage stress over the switch is lower than in the case of the resonant type 

snubber and/or so that the turn-off transition is shorter than in the resonant type 

snubber. Additionally, it can be shown that the voltage stress is not dependent on the 

load in the case of the passive clamp circuit. On the contrary, the voltage stress is 

dependent on the load in the case of the resonant snubber.  

A prototype of the BIFRED converter was built to verify the analysis. Details of 

the prototype are given in publication P[4].  

Measured waveforms of the voltage over the switch of the BIFRED prototype 

with the passive clamp circuit are shown in Fig. 3.19. In each figure the lower part 

shows the voltage during the off time of the switch, toff, and the upper part shows a 

detail from the lower part of the respective figure. It is easy to see that the circuit 

clamps the voltage over the switch, after turn-off, to a certain voltage level.  

The measurement results correspond well with the simulated and expected 

behavior of the circuit. The obtained voltage levels for the clamp capacitor voltage, 

Vsn, in the measurements were 10 - 14 % lower than the calculated and expected 

values. This is mainly due to the losses in the circuit and due to the fact that the 

parasitic drain-source capacitance of the switch has to be charged before voltage over 

the switch becomes clamped to the desired level. This additional charging of the 

parasitic capacitance and the losses in the circuit slightly reduce the peak current that 

flows to the clamp capacitor, and hence, reduce the charging current of the capacitor. 

Therefore, the obtained dc voltage in the clamp capacitor in practice is a little bit 

lower than the theoretical and expected value. It can be said, therefore, that the 

analysis gives the means to determine the upper limit for the dc voltage in the clamp 

capacitor.  

The small oscillation in the voltage after the turn-off transition, visible in Fig. 

3.19, is caused by the parasitic drain-source capacitance of the switch and the leakage 

inductance of the flyback transformer. 

Measured voltage over the switch with the resonant type snubber is presented in 

Fig. 3.20. The peak voltage is clearly higher than what it was in the case of the 

passive clamp. Also, it can be seen from Fig. 3.20 b) that if a relatively large resonant 

snubber capacitance is used, the time required for charging the capacitance to a 
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certain voltage, which allows for the change to take place in the leakage inductance 

current, becomes longer.  

It is also evident that the oscillation, caused by the parasitic capacitance and the 

leakage inductance, is much stronger, because of a high voltage level, than what it 

was in the case of the passive clamp.  

It should be noted, also, that the peak voltage over the switch does depend on the 

load in this case since the voltage generated by the resonant snubber capacitor 

depends on the magnitude of the currents of the boost inductor and the flyback 

inductance, publication P[3]. Additionally, load and line transients do also affect the 

 

Figure 3.19. Voltage over the switch in the BIFRED prototype with the passive clamp circuit. 
In a) Lsn = 1 mH, b) 1.8 mH. Scale 100 V/div. 

 

Figure 3.20. Voltage over the switch in the BIFRED prototype over the switch with a resonant 
type snubber. In a) 1000pF, scale 100V/div in the lower and 200 V/div in the upper figure, 
and in b) 2500 pF, scale 100 V/div. 
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voltage stress, and consequently, the voltage rating of the switch has to be designed 

accordingly. As mentioned earlier, the passive clamp voltage does not depend on the 

load. 

Publication P[4] contains a detailed analysis of the passive clamp circuit in the 

BIFRED converter. 
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4 Forward type dc-dc converter 

Forward type switched mode power supply topology is a derivation from buck 

topology, which is perhaps the most basic switcher circuit. Forward topology is 

widely used in low and medium power level converters mainly due to its simple 

structure and non-pulsating output current. A schematic of the forward converter is 

presented in Fig. 4.1.  

Forward topology exhibits a few advantages. It is a simple construction with 

relatively low component count and it is able to provide an isolated output voltage. 

Also, the transformer allows for, besides the isolation, the input voltage to be 

considerably higher than the output voltage. The last named feature is especially 

interesting when the converter is designed to generate a low output voltage, Alou et 

al. 2000. 

4.1 Passive reset methods for forward transformer 

The transformer of the forward topology has a certain magnetizing inductance, and 

consequently, there has to be a way to demagnetize it after every on period, during 

which the inductance is magnetized, of the active switch. 

In the following paragraphs, we will briefly analyze four passive reset circuits for 

a single switch forward converter. 

 

Figure 4.1. Schematic of the forward converter. 
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4.1.1 Third winding scheme 

A traditional way to demagnetize the inductance in a single-switch forward converter 

is to add a third winding in the transformer, Erickson et al. 2001 pp. 154. A diode is 

also needed in series with the winding as shown in Fig. 4.2. 

 

Figure 4.2. Forward with third winding reset. 

Simulated waveforms of primary winding current iN1, demagnetizing winding 

current iN3, and output inductor current iL1
’, referred to the primary side, are shown in 

the upper part of Fig. 4.3. The lower part of the figure shows the voltage over the 

primary winding, vN1.  

It should be noted that the magnetizing current builds up during the on period of 

the switch. For example, in Fig 4.3 the magnetizing current would be the difference 

between iN1 and iL
, during the on period of the switch.  

During the off period of the switch, the demagnetizing winding, N3, offers a path 

for the inductive current to flow. The only direction the current can flow is back to the 

input, and therefore, the magnetizing energy is recycled to the input voltage source.  

The magnetizing current flows towards the input as long as a volt-second balance 

across the inductance has been reached, i.e. the two hatched boxes, above and below 

zero, in the lower part of Fig 4.3 should have the same area.  

Voltage over the primary winding during the off period of the switch can be 

determined from the following: 

1
N1 in on s

3

    Nv V t t T
N

= < ≤        ( 4.1) 

It should be noted that in this demagnetizing scheme only the magnetizing energy 

is recycled and the energy stored in the leakage inductance of the transformer is not. 

Moreover, the switch in this configuration most probably needs an additional 
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protection circuit, i.e. a snubber, against a voltage spike caused by the leakage 

inductance at the turn-off moment, Leu et al. 1992. 

With the third winding reset scheme the transformer of the forward converter is 

magnetized only into one direction and it therefore operates in the first quadrant of the 

B-H curve. Also, the reset scheme limits the duty ratio of the switch typically to half, 

i.e. D1 ≤ 0.5. 

 

Figure 4.3. Third winding scheme. 

4.1.2 RCD-clamp 

Another passive way to demagnetize the inductance is to employ an RCD clamp 

circuit. The demagnetizing circuit is composed of a diode and a parallel connection of 

a resistor and capacitor, which in turn are parallel with the transformer, Leu et al. 

1992 and Bridge 2000. The RCD clamp demagnetizing scheme in forward topology is 

depicted in Fig 4.4. 

 

Figure 4.4. Forward with RCD clamp reset circuit. 
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Simulated waveforms of the primary winding current, reflected output inductor 

current and the voltage over the primary winding are shown in Fig. 4.5. It can be seen 

from the simulated result that the primary winding carries the magnetizing current 

during the on and off periods of the switch.  

After the switch has been turned off, the diode in the clamp circuit starts to 

conduct. This means that the clamp capacitor becomes connected across the primary 

winding and it demagnetizes the transformer. As in the previous reset scheme, the 

magnetizing current cannot, in principle, become negative. However, as reported in 

Leu et al. 1992 and Bridge 2000, a resonance between the magnetizing inductance and 

parasitic capacitances of the circuit at the end of the off period may force the 

magnetizing current slightly on the negative side. This resonance also recycles some 

of the magnetizing and leakage energy. 

The RCD clamp reset circuit is able to protect the switch from voltage spikes due 

to the leakage inductance of the transformer. This means that there is not necessarily a 

need for an additional snubber for the switch.  

It should be noted, however, that the RCD clamp circuit does not recycle the 

charge stored in the clamp capacitor. Instead, charge balance in the capacitor is 

maintained with the dissipative clamp resistor. This arrangement naturally causes 

losses and inevitably decreases the efficiency of the converter. 

The voltage of the clamp capacitor in the RCD clamp can be determined by the 

means reported in literature. Bridge and Leu found out that the clamp voltage is 

independent of the input voltage, Bridge 2000 and Leu et al. 1992. Additionally, 

Bridge reported that the clamp voltage is also independent of the load current, Bridge 

2000. 
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Figure 4.5. Waveforms of the RCD clamp demagnetizing scheme. 

4.1.3 Non-dissipative snubber 

A lossless or non-dissipative snubber circuit, Domb et al. 1982 and Tanaka et al. 

1988, is shown in Fig. 4.6. The snubber consists of two diodes, a capacitor and an 

inductor.  

This reset method is able to recycle energy that is stored in the magnetizing and 

leakage inductance of the transformer. Since it is able to deal with the leakage energy, 

and as the name of the reset circuit indicates, there is no need for an additional 

snubber circuit for the switch. 

A non-dissipative snubber can be designed so that it is able not only to 

demagnetize the transformer but also able to magnetize it in the negative direction, 

Tanaka et al. 1988. This can be seen from the simulated waveforms shown in Fig. 4.7, 

where the magnetizing current is clearly negative at the end of the off period. As a 

result, the core of the forward transformer is better utilized since it operates in the first 

and third quadrants of the B-H curve. 

 

Figure 4.6. Forward with non-dissipative snubber circuit. 
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Figure 4.7. Simulated waveforms of the forward converter with non-dissipative snubber. 

4.1.4 Resonant reset 

The resonant reset demagnetization scheme is shown in Fig 4.8, Murakami et al. 

1988. This reset scheme utilizes the parasitic capacitance that is seen across the main 

switch. One of the advantages of the reset scheme is that it does not necessarily need 

any additional components. 

Capacitance Cp and magnetizing inductance LM are drawn as discrete 

components in the figure in order to illustrate the principle of the reset scheme. 

 

Figure 4.8. Forward with resonant reset. Magnetizing inductance LM and parasitic capacitance 
Cp are drawn in the figure. 

Right after the switch has been turned off the magnetizing current starts to flow 

through the parasitic capacitance of the switch. Because of the current, voltage starts 

to build up in the capacitance.  

After the voltage has risen to the level of the input voltage, the difference 

between the input voltage and the capacitor voltage demagnetizes the inductance and 

eventually magnetizes it towards the negative direction. This means that the initial and 
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the remaining voltage of the capacitor is Vin and that the magnetizing current changes 

its flowing direction but not the magnitude during the resonance. This, of course, 

requires that there is enough time for the resonant circuit, i.e. LM and Cp, to complete 

a half of their mutual resonance cycle during the off period of the switch. The length 

of a half of the resonance cycle between the two components can be determined from 

the following: 

( )p Mπt C L=         ( 4.2) 

It should be noted that the duration of the resonance does not depend on the 

magnitude of the magnetizing current. This is indicated in Eq. (4.2) and in the 

simulated waveforms of the resonant reset shown in Fig. 4.9. 

In conclusion, the resonant reset recycles the magnetizing energy as well as the 

leakage energy. Additionally, the transformer is magnetized, if the off time is long 

enough, symmetrically around zero. 

 

 

Figure 4.9. Simulated waveforms of forward converter with resonant reset. 

4.2 Forward with active clamp 

An active reset circuit for demagnetization of the transformer is depicted in Fig. 4.10. 

This reset circuit comprises of a switch and a capacitor and it is called an active 

clamp. 
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The active clamp reset circuit can be implemented in the primary side in two 

ways: either with a P-channel MOSFET (for example Cobos et al. 1993) or with an N-

channel MOSFET (for example Ji et al. 1994), as shown in Figs. 4.10 a) and b), 

respectively. We will consider, however, in this Thesis the circuit that is shown in 

Fig. 4.10 a).  

The active clamp circuit clamps the voltage over the transformer, after the switch 

has been turned off, to the level that equals the clamp capacitor voltage. It should be 

noted that the voltage in the capacitor is a dc voltage with only a relatively small 

ripple at the switching frequency imposed on it, i.e. the resonance frequency of LM 

and CR is much lower than the switching frequency.  

The capacitor voltage is across the switch, in principle, during the whole off 

period of the switch. This means that there is a voltage over the primary winding of 

the transformer all the time. Consequently, the magnetizing current is continuous and 

it is, in principle, symmetric around zero, Jitaru 1991. This can be seen from the 

simulated waveforms of the forward with active clamp in Fig. 4.11. Additionally, the 

duty ratio can be above 50%, Carsten 1990. 

 

Figure 4.10. Forward with active clamp. Active clamp implemented with a P-channel 
MOSFET in a) and with an N-channel MOSFET in b). 
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Figure 4.11. Simulated waveforms of the forward with active clamp. 

The clamp capacitor voltage can be obtained from the following, Jitaru 1991: 

in
C

11
VV

D
=

−
          ( 4.3) 

The active clamp circuit recycles the magnetizing and leakage energy. It also acts 

as a snubber circuit protecting the switch from voltage spikes due to the switching 

action.  

Downsides of the active clamp are, compared to the passive methods, that it 

requires an active switch and control circuitry. 

4.3 Reset circuits and self-driven synchronous rectification 

4.3.1 Introduction 

Reset method for the transformer in the forward converter is an important design 

aspect. For forward converters with self-driven synchronous rectifiers it is especially 

important. This is because the voltage that is generated over the windings of the 

transformer is used to drive the synchronous rectifiers at the secondary side, Chryssis 

1989.  

A forward converter with self-driven synchronous rectifiers is depicted in 

Fig. 4.12. It should be noted that it is possible to also take the control signals from 

additional secondary windings or from the output inductor, Chryssis 1989.  
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Figure 4.12. Forward converter with self-driven synchronous rectifiers. 

If the voltage over the windings of the transformer is zero during a part of the off 

period of the main switch, it will disable the control from synchronous rectifier M4. 

This ‘dead time’ in the voltage increases losses, since without a control signal the 

body diode of the MOSFET takes over to carry the load current. 

An example of an ideal-like voltage waveform over the primary winding of the 

forward transformer for driving self-driven synchronous rectifiers is shown in Fig. 

4.13. The two key points in the voltage waveform is that firstly, there are no dead 

times and secondly, the voltage stays above the threshold voltage VGS of a MOSFET. 

 

Figure 4.13. An example of a suitable voltage waveform to drive self-driven synchronous 
rectifiers. 

4.3.2 Summary of the reset schemes 

The four passive methods to demagnetize the transformer are simple, reliable and easy 

to implement. However, they have some shortcomings from the point of view of self-

driven synchronous rectification. 

In the third winding scheme the magnetizing current cannot become negative. It 

is desirable to bring the current down to zero before the beginning of a new switching 

cycle. This should be done in order to prevent the magnetizing current from 

accumulating and eventually causing the transformer to saturate. This means that 

there is a dead time in the voltage over the windings of the transformer at the end of 
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every off period, i.e. the voltage over the windings is zero during the time that the 

current is zero. Also, voltage stress over the switch is in this case relatively high, Leu 

et al. 1992. 

It is also desirable to completely reset the transformer in the case of the RCD 

clamp scheme, Leu et al. 1992. To ensure a complete reset, the circuit should be 

designed so that it is able to reset completely with the lowest input voltage and 

maximum output current, Leu et al. 1992. This means, however, that with higher 

output voltages there inevitably exists a dead time in the winding voltage. This is 

because the clamp capacitor voltage is independent of the input voltage. Advantage of 

the RCD clamp circuit is a relatively low voltage stress over the switch. However, the 

dissipative nature of the RCD clamp is a drawback for the reset scheme. A study of 

the RCD-clamp reset scheme in forward converter with self-driven synchronous 

rectifiers was reported in Cobos et al. 1993.  

The non-dissipative snubber circuit and the resonant reset circuit both rely on 

resonance between the magnetizing inductance and the capacitive element. Therefore, 

the voltage has a curved waveform and at least at the beginning of the off period the 

winding voltage lingers below the threshold voltage for some time. This means that 

the secondary side MOSFET does not receive a appropriate control signal 

immediately at the beginning of the off period. This time can shortened by, for 

example, reducing the capacitance of the capacitive element. This in turn, however, 

increases the voltage stress over the switch and decreases the duration of the 

resonance period, which may easily lead to a considerable dead time at the end of the 

off period.  

However, the resonant reset method has been used for self-driven synchronous 

rectification and studies of its use have been reported in literature. For example, Blanc 

1991, Cobos 1994 and Alou 1997 have shown that this scheme can be used with some 

success for self-driven synchronous rectification. However, Alou 1997 concluded that 

it is very difficult to optimize the overall performance of the converter with large 

input voltage variations. 

The forward with active clamp, on the other hand, provides a voltage waveform 

over the windings of the transformer that is closest to the desired one. Moreover, the 

voltage of the active clamp capacitor is able to adapt to changes in the duty ratio so 
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that the voltage over the windings is without dead times. This means that the control 

voltage for the synchronous rectifiers is without dead times despite input voltage 

and/or load changes. Also, voltage stress over the switch in the case of FAC converter 

is relatively low. For these reasons, we selected the active clamp circuit for further 

research. 

4.4 Low voltage conversion with forward with active clamp 

4.4.1 Introduction 

Operating voltages in many electronic appliances are getting lower, Lidow 2003. This 

means that power supplies, which provide the operating voltages, have to be designed 

to produce lower output voltages and higher output currents. Higher output current is 

needed if we assume that there are no considerable reductions in the power demand.  

A combination of a high output current and a low output voltage sets a tough 

challenge for the power supply designer. This is because a small overall size, low-cost 

and high efficiency have to be maintained or even improved.  

In low voltage power supplies the secondary side rectification loss is the major 

contributor to poor efficiency, de la Cruz et al. 1993. Synchronous rectifiers can be 

used in the secondary rectification, instead of rectifier diodes, to improve the 

efficiency, Chryssis 1989, de la Cruz et al. 1993, Blanc 1991, Ji et al. 1994, Chen et 

al. 1995 and Xuefei et al. 1999.  

The forward with active clamp (FAC) is a well-known converter. The schematic 

of the converter was first developed and presented, according to Carsten 1990, in 

1977 by Carsten. However, the active clamp reset circuit was patented in 1984 by 

Vinciarelli, Vinciarelli 1984. A modification, which allows for zero voltage switching 

(ZVS) for the main switch, to the active clamp circuit in forward topology was 

presented and patented by Jitaru, Jitaru 1991 and Jitaru 1992. 

The FAC converter has been widely reported in literature. Li et al. 1999 

considered the dc bias that is present in the magnetizing current due to the leakage 

inductance of the transformer and the parasitic capacitances of the converter. Large 

signal transient analysis of the FAC converter with output-voltage feedback control 

was reported by Li et al. 1998 and 2002. Design consideration for large signal 

transient behavior of the converter with current mode control was reported in Li et al. 
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2000 and 2003. These reports point out that there might exist problems with excessive 

voltage over the switch, diode reverse recovery problems of the body diode of the 

clamp switch or transformer core saturation due to large signal transients if the 

converter is not properly designed. 

A remedy for the excessive switch voltage, during transients, of the FAC 

converter was reported by Jitaru 2003. This method however, introduces a dead time 

in the primary winding voltage and therefore degrades the performance of the 

converter from the point of view of self-driven synchronous rectification. 

A self-driven driving method for the N-channel construction of the FAC 

converter was reported by Lim et al. 2002. In this scheme, the active clamp switch is 

driven from an auxiliary winding rather than from a control IC. 

Small signal analysis of the FAC converter with peak current mode control was 

reported in Fontán et al. 1998. 

Reports about the FAC converter with self-driven synchronous rectifiers were 

given, for example, in Cobos et al. 1993, Ji et al. 1994, Chen et al. 1995 and Xie 1999. 

A study of the ZVS FAC converter with self-driven synchronous rectifiers was 

reported in Acik et al. 2003. 

4.4.2 Research background 

The FAC is a convenient topology for a low output voltage converter because the 

active clamp circuit enables an easy use of self-driven synchronous rectification. This 

is because the converter’s reset circuit provides a voltage over the windings of the 

forward transformer that is without dead times. The FAC converter with SRs that are 

driven from auxiliary secondary windings is depicted in Fig. 4.14. 

One additional advantage of the FAC converter is that the turn-on loss of the 

main switch can be reduced or even virtually removed. This is due to the fact that  
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Figure 4.14. Forward with active clamp (FAC) and self-driven synchronous rectifiers that are 
driven from auxiliary windings N3 and N4. 

switch M2 has to be turned off before switch M1 can be turned on. This should be 

done in order to avoid short-circuiting the clamp capacitor. When, at the end of off 

period, neither of the switches is conducting, the magnetizing current flows toward 

the input through the parasitic drain-source capacitance of the main switch. This, of 

course, reduces the voltage over the switch right before it should be turned on. 

In an FAC converter without self-driven synchronous rectification, minimization 

of turn-on losses (Jitaru 1991) for the main switch is without doubt an advantageous 

solution, at least to some extent. However, if self-driven synchronous rectifiers are 

used, instead of diodes, the situation is more complicated. Namely, if the voltage over 

the switch before turn-on is lowered below a certain level, the control signal for 

synchronous rectifier M4 is lost and the body diode of it is turned on. This, naturally, 

increases rectification loss, which is not necessarily insignificant with a high load 

current. 

Turn-on at input voltage level 

In the FAC converter depicted in Fig. 4.14, the lowest possible voltage level for turn-

on of M1, in theory, is the input voltage level, which corresponds with a zero voltage 

over the primary winding. Therefore, the voltage over the switch that does not remove 

control from the synchronous rectifier is: 

'1
DS in GS in GS

4

NV V V V V
N

= + = +         ( 4.4) 

This voltage is, or at least it should be, lower than the clamp capacitor voltage, 

Eq. (4.3), which in turn is the maximum voltage over the switch. In high output 

current applications it might be advantageous to lower the voltage over the switch to 

the level given in Eq. (4.4) and not to the input voltage level. This turn-on strategy 
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would increase the turn-on loss for M1 a little bit, but on the other hand it would keep 

rectifier M4 turned on to the end of the off period of M1.  

During the time between the turn-off and turn-on of switches M2 and M1, 

respectively, the magnetizing current flows through the parasitic drain-source 

capacitance of M1, toward the input voltage removing charge from the capacitance 

prior to turning M1 on. Reduction in the voltage level, during the resonant transition 

(Jitaru 1991), is therefore determined by the length of the delay between the switches 

and the magnitude of the magnetizing current during the transition. This means that a 

low voltage over switch M1, prior to turning on, is obtained by increasing the delay or 

by increasing the magnetizing current or both. 

The current of switch M1 in three different cases is shown in Fig. 4.15 a). The 

current is the sum of the reflected load current Io’ and the magnetizing current im. A 

low magnetizing inductance yields a high magnetizing current and gives the 

possibility to lower the voltage over the switch to the input voltage level rapidly. This 

is depicted in Fig. 4.15 b), where the shortest delay between the two switches, ∆t = (Ts 

– tc), is achievable in the case where the magnetizing current has the highest 

amplitude. On the contrary, the longest delay, ∆t = (Ts – ta), is required in the case in 

which the current has the lowest amplitude. Parameter ∆t (∆t1 in publication P[5]) can 

be defined as follows: 

( )o o 1

1 2arctan
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t
T Dω ω

⎡ ⎤
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ω =     ( 4.5) 

Derivation of Eq. (4.5) can be found from publication P [5]. It should be noted 

that the time delay can also be determined by means reported in Ji et al. 1994. 

However, if a shorter time delay is applied, the switch will be turned on at a 

higher voltage level. This is depicted in Fig. 4.15 c), where delay ∆t = (Ts – ta) results 

in turn on at level vDS = Vin and shorter delays (Ts – ta’) and  (Ts – ta’’) result in a turn 

on at the higher voltage levels, denoted as v3 and v2, respectively. Here, vDS means the 

drain-source voltage of M1. 
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Figure 4.15. a) Current of switch M1, b) and c) voltage over M1. 

For example, if we define level v2 to correspond with level VDS in Eq. (4.4), then 

some of the inevitable turn-on loss is reduced, i.e. the voltage is lowered from VC to 

VDS, and, at the same time, rectifier M4 is kept on until a new switching cycle begins. 

A measurement example of the drain-source voltage of the FAC converter in two 

cases is shown in Fig. 4.16. In Fig. 4.16 a), the time delay is set to 240 ns and the 

voltage over the switch is lowered to Vin = 48 V level. In Fig. 4.16 b), a time delay of 

140 ns is used and the voltage drops only to level VDS = 66 V before turn-on of the 

main switch.  

Selection of a suitable turn-on voltage level for the main switch is therefore a 

trade-off between switching losses in the primary side and rectification losses in the 

secondary side. 

An additional parameter is, naturally, the magnetizing current that defines the 

needed time to achieve the desired voltage level. A low magnetizing current reduces 

conduction losses in the primary side but it might not be enough to reach the desired 

voltage over the switch, unless an unreasonable long time delay is used. On the other 

hand, a shorter time delay can be used if the magnetizing current is increased, which 

in turn increases conduction losses. Increase in the magnetizing current in this case 

can be achieved by reducing the value of the magnetizing inductance, Chen et al. 

1995 and Jitaru 1991. 
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Figure 4.16. Measured voltage over switch M1 with two different time delays, 
a) vDS = Vin = 48 V and b) vDS = VDS = 66 V. fs = 200 kHz, Lm = 165µH and Io = 25 A. 

For this type of FAC converter, in which SRs are driven either from auxiliary 

windings or straight from the secondary winding, it has been suggested in literature 

that the turn-on loss for the main switch should be minimized. For example, Lim et al. 

2002, Zhang et al. 1996, Chen et al. 1995 and Ji et al. 1994 suggested that the voltage 

over the main switch should be lowered to the input voltage level before turning on 

the switch. It should be noted, however, that in Cobos et al. 1993, there was a brief 

mention that it might be better to turn on the main switch before the voltage over it 

lowers to Vin. 

In publication P[7], the effect of the voltage level over the switch on the 

efficiency of the FAC converter with self-driven synchronous rectifiers is 

investigated. It was found that at high loads it would be more advantageous to turn-on 

the switch at the level given in Eq. (4.4) in order to maximize the efficiency of the 

converter. This can be seen from Fig. 4.17 where the efficiency of the FAC prototype 

is depicted in the two cases. In the measured cases, voltage levels vDS = 48 and 66 V 

were used. The first one, 48 V, corresponds with the input voltage and the second, 66 

V, with the level given in Eq. (4.4). 

It can be seen from Fig. 4.17 that turn-on at high voltage returns a clearly lower 

efficiency than the lower voltage level turn-on. At high loads however, turn-on at the 

higher level returns a better efficiency. 
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Figure 4.17. Efficiency of the FAC prototype as a function of the load current. 

Zero voltage switching 

As mentioned earlier, it is also possible to turn-on the main switch of the FAC 

converter from zero level (Jitaru 1991). This would virtually remove the turn on loss 

for the main switch. In order to achieve ZVS, i.e. turn-on at zero level, an additional 

component is needed, as shown in Fig. 4.18. This additional component can be a 

switch or a saturable reactor, Jitaru 1992. The purpose of the component is to prevent 

the body diode of M3 turning on prematurely. Without the additional component, the 

diode would shunt the secondary of the transformer after the voltage over M1 has 

descended to Vin level preventing any further reduction in the switch voltage. 

 

Figure 4.18. FAC with self-driven SRs and an additional component for enabling ZVS. 

The required time delay between switches M1 and M2 for ZVS can be obtained 

from the following: 
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A detailed derivation of Eq. (4.6) can be found from publication P[5].  

The ZVS strategy reduces turn-on losses for the main switch to virtually zero. 

This is without doubt advantageous, at least at high switching frequencies. It should 

be noted that in high output current applications the efficiency of the converter is, 

however, also strongly dependent on the on-resistance of the additional element. 

In publication P[7] a comparison between expected losses with and without the 

ZVS strategy in the FAC converter with self-driven synchronous rectifiers is reported.  
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5 Description of the laboratory setup 

5.1 Laboratory equipment 

In the case of the BIFRED prototype measurements were committed with a resistive 

load. With the FAC prototype measurements an electronic load, Agilent 6051A, was 

used. 

Measurements were carried out with Tektronix TDS 714L oscilloscope and with 

Tektronix P5200 and P5205 high voltage differential probes. Numerical values for the 

input and output voltages and currents were obtained with NORMA D6000 wide band 

power analyzer system. 

Input voltage for the BIFRED converter was taken from the mains. Input voltage 

for the FAC converter and supply voltages (VCC) for the PWM ICs of the two 

prototypes were taken from two TTi EX354T laboratory power supplies. A 

photograph of the measurement setup is shown in Fig 5.1. 

5.2 BIFRED prototype 

Schematic of the prototype is shown in Fig. A.1 in Appendix A. In this prototype 

converter a constant duty ratio was used and there were no feedback from the output 

voltage. The duty ratio was adjusted manually with trimmer R7 (see Fig. A.1 in 

Appendix A). The measurements for the BIFRED equipped with either resonant type 

snubber or passive clamp were committed with the same converter. Only the capacitor 

and the inductor in the snubber circuit were changed to form the desired construction.  

5.3 FAC prototype 

Measurements with the FAC prototype converter were done with closed feedback 

loop. Peak current mode control with slope compensation was used and the used 

PWM IC was UC2842. As can be seen from Fig. A.2 in Appendix A, the supply 

voltage for the secondary side electronics were obtained from the auxiliary secondary 

windings. The delay between the turn-off of M2 and turn on off M1 was adjusted with 
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trimmer R24. (see Fig. A.2 in Appendix A). A photograph of the FAC prototype is 

shown in Fig. 5.2. 

 

Figure 5.1. Photograph of the laboratory setup. FAC prototype converter in the middle on the 
table. 

 

Figure 5.2. Close-up photograph of the FAC prototype converter.  
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6 Summaries of the publications 

Publication P[1] 

Publication P[1] presents a detailed steady state analysis of the dither converter with a 

tapped transformer. It should be noted that the analysis is valid for a dither converter 

even without a tapping in the transformer.  

The analysis gives accurate means to define the steady state operation point of 

the converter. Also, it gives useful information for a designer to determine the needed 

inductance for inductor L1 for a certain rated power as well as means to determine 

maximum duty ratio and the minimum and maximum voltage stresses on the bulk 

capacitor. 

Publication P[2] 

Publication P[2] presents a detailed small signal analysis of the dither converter with a 

tapped transformer. Propagation of a control-to-output disturbance can be obtained 

with the small signal model presented in the paper.  

The dynamic behavior of the converter and the applicability of the model were 

verified with a set of simulations in a PSpice simulation environment. 

Publication P[3] 

Publication P[3] considers a resonant type non-dissipative snubber for the BIFRED 

and BIBRED converters. A detailed analysis of the snubber circuit is performed for 

the two converters. The study presented in the publication gives means to determine 

the expected voltage stress over the switch of the two converters. 

Publication P[4] 

A passive clamp circuit for the BIFRED converter is presented in this publication. 

The passive clamp circuit clamps the voltage over the switch to a relatively low and 
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predictable value at turn-off. This allows for the use of a switching device of a lower 

voltage rating, and therefore, a device with lower on-resistance and conduction losses. 

A detailed analysis of the clamp circuit is given in the publication. An equation 

to determine the clamp voltage as a function of the circuit parameters is given. The 

validity of the clamp circuit and the analysis was verified with simulations and 

measurements. 

Publication P[5] 

The operation principle of the forward converter with active clamp is discussed in 

publication P[5]. The publication contains a detailed study of the behavior of the FAC 

converter during the resonant transition. Analytical equations to determine the voltage 

over the switch, voltage over the primary winding, current in the drain-source 

capacitance of the switch and current in the parasitic capacitances across the primary 

winding are derived for the resonant transition period.  

Requirements for low-voltage on switching for the primary switch of the 

converter are determined. Equations to determine suitable time delays between the 

switches for turn-on at the input voltage level and for ZVS are deduced and presented. 

It is also noted that the most suitable parameter to alter the required delay is the 

magnetizing inductance of the converter. Validity of the equations for determining the 

time delays is verified with simulations. 

Publication P[6] 

Publication P[6] contains a study of the effect of the magnetizing inductance on the 

performance of the forward with active clamp and self-driven synchronous rectifiers. 

It is noted that the magnetizing inductance can be used to alter the required time delay 

if a low-voltage turn on is desired for the main switch.  

Voltage ripple on the clamp capacitor voltage is also determined. The ripple is 

dependent on the magnetizing inductance, and moreover, the ripple is visible in the 

control voltage for one of the two self-driven synchronous rectifiers.  

The publication includes measurement results from a 3.4 V 30 A FAC converter 

with self-driven synchronous rectifiers. Measurements show the effect of the 

magnetizing inductance on the drain-source voltage during the resonant transition and 
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on the control voltage for the self-driven synchronous rectifiers. Also, the effect of a 

too lengthy time delay between the primary side switches is shown in the measured 

figures. 

Publication P[7] 

This paper presents a study of the applicability and advantage of the use of the 

resonant transition in forward with active clamp and self-driven synchronous 

rectifiers. The emphasis is on the comparison of the achieved efficiency with different 

voltage levels over the primary switch prior to turning on. A comparison between 

expected losses with different turn-on voltage levels for the main switch is performed. 

Calculations and measurements show that, at low loads, a reduced voltage level 

improves the efficiency but, on the other hand, at high loads the advantage is not so 

significant or it may be totally lost, mainly due to the increased losses of the self-

driven synchronous rectifiers. The publication includes discussion on the effect of the 

magnetizing inductance on the efficiency of the converter and the optimal voltage 

level at which the primary switch should be turned on. 

Publication P[8] 

In publication P[8], an analysis of the impact of the turn-on voltage level on the 

efficiency of the FAC converter with self-driven synchronous rectifiers is given. The 

study reported in the publication is similar to that of publication P[7]. However, ZVS, 

i.e. zero voltage switching was included in this analysis and the loss comparison was 

performed for the ZVS and the normal construction of the FAC converter. It was 

found out that at relatively high switching frequencies ZVS strategy could return the 

best efficiency. However, it was noted that the efficiency of the ZVS FAC converter 

depends strongly on the on-resistance of the additional component, which is needed in 

ZVS. 
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7 Contribution of this Thesis 

The work presented in this Thesis had two main directions: single-stage PFC circuits 

and low output voltage dc-dc conversion. The motivation behind the research was to 

find ways to improve the performance of the presented converter topologies. Main 

contributions of this Thesis are summarized as follows: 

• One of the main results in the field of single-stage PFC converters was the 

steady state and small signal analyses that were performed for the dither 

converter. 

• The other main result in the same area was the development of the passive 

clamp circuit for the BIFRED converter. It was shown that the passive clamp 

reduces voltage stress over the switch. 

• Equations for determining the delay for turn-on at the input voltage level and 

for ZVS were determined for the FAC converter. The analysis was verified 

with a set of simulations. 

• A method of loss comparison was developed to assess the effect of different 

voltage levels over the main switch at turn-on on the efficiency of the FAC 

converter. Additionally, the loss contributors were determined.  

• It was shown that the minimization of the turn-on losses for the main switch of 

the FAC converter with synchronous rectifiers is not necessarily advantageous 

from the point of view of overall efficiency of the converter. Careful 

measurements were performed to verify the analysis. 

This Thesis contributes new ideas and methods to improve the performance of the 

researched switched mode converters. 
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8 Conclusions 

Three single-stage power factor correction converters and a forward type dc-dc 

converter were considered in this Thesis. The power factor correction converters are 

used to shape the line current to resemble the line voltage waveform. On the other 

hand, dc-dc converters are used to provide regulated load voltages. 

Stricter requirements and harmful effects of distorted line current have prompted 

a need for power factor correction converters. An additional power processing stage in 

a power supply increases the cost of the product. Low power supplies are, however, 

mass production devices, and are therefore sensitive to any additional increase in the 

manufacturing cost. Single-stage power factor correction converters offer an 

interesting alternative to the two-stage PFC solution. This is due to the fact that in a 

single-stage converter only one active switching stage is used, and therefore, the 

component count is lower than in a two-stage power supply topology. 

Steady state and small signal analyses were performed for the dither converter. 

The converter is an interesting single-stage converter since it does not suffer from 

high initial bulk capacitor voltage. The analyses were verified with simulations and 

good agreement between the analyses and simulations were obtained. For further 

research, the steady state and small signal analyses could be verified with 

measurements from a dither prototype. 

The BIFRED and BIBRED converters are two well-known single-stage 

converters. The two converters resemble isolated versions of SEPIC and Cúk 

converters, respectively. In these two converters the leakage inductance of the 

transformer causes, with a traditional kind of resonant snubber, a relatively high 

voltage stress on the switch at turn-off. The turn-off transition for these two 

converters with a resonant type of snubber was analyzed. It was concluded that with a 

short resonant transition the voltage stress is high. In order to relieve the problem the 

duration of the transition period has to be made longer. Moreover, voltage stress over 
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the switch is determined by the boost inductor and transformer current at every turn-

off. Therefore, the voltage stress is dependent on load and line transients. 

A passive clamp circuit was developed for the BIFRED converter. A detailed 

description of the operation principles of the circuit was given. The idea of the passive 

clamp circuit is to clamp the switch voltage to a known dc voltage at every turn-off. 

With this clamp circuit, the voltage stress on the switch can be reduced or the duration 

of the resonant transition can be made shorter with a moderate voltage stress. A lower 

voltage stress allows for the use of a switch with a lower voltage rating. This may 

reflect in savings in the manufacturing cost or reduced conduction losses. Only the 

DCM – DCM operation mode of the BIFRED with passive clamp circuit was 

analyzed. For further research, analysis of the DCM – CCM behavior of the converter 

would be interesting. Also, a comparison of achieved efficiencies between a BIFRED 

converter with passive clamp and with resonant snubber could be of interest. 

A forward converter with active clamp was analyzed in the dc-dc part of this 

Thesis. The active clamp circuit is used to demagnetize the transformer after every on 

period of the main switch. The active clamp circuit also acts as a snubber circuit for 

the main switch and is able to recycle the magnetizing and leakage energy. This 

converter is particularly interesting for low voltage conversion. This is because the 

active clamp circuit provides a voltage waveform over the windings of the 

transformer that is virtually without dead times, i.e. the voltage is not zero during the 

off period of the main switch. The FAC converter can therefore be used with self-

driven synchronous rectification, which is more or less mandatory in low voltage and 

high current conversion, without causing excessive body diode conduction on the 

secondary side. 

The time intervals that are required for turn-on of the main switch at input 

voltage and at zero voltage level were determined. The analysis was verified with 

simulations. Also, the effect of the turn-on voltage level over the main switch on the 

efficiency of the converter with self-driven synchronous rectifiers was investigated. It 

was found that it is not necessarily advantageous to try to minimize the turn-on loss 

for the main switch, a feature that is attainable with the FAC converter relatively easy. 

The reason for this is that the control signal will be lost for the synchronous rectifier 

for a small period of time at the end of the off period and that causes additional 
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rectification losses. The analysis was verified with a FAC prototype converter. A 

topic for further research could investigate the comparison of achieved efficiencies 

with different turn-on voltage levels over the main switch so that zero voltage 

switching is also included. 
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Appendix A 

Schematics of the BIFRED and FAC prototype converters 

 

Figure A.1 Schematic of the BIFRED prototype converter. 
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Figure A. 2 Schematic of the FAC prototype converter. 
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