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1. INTRODUCTION

Customer needs and global competition have made specialized and tailor-made
products an essential part of the economic success in the paper industry. As a result
more paper grades are manufactured nowadays than earlier. In some paper
machines this has increased the number of grade changes. On the other hand there
has been many mergers and acquisitions (M&A'’s) lately and large global
corporations have been formed. One advantage of the M&A's is that the products of
similar paper machines can be allocated effectively between several machines. The
result is that the number of grade changes per machine can be decreased. However,
this has not happened in practice. Thus an efficient grade change is still an important
competitive factor and it is of course always a competitive advantage to be able to
make large grade changes without excessive amount of off-quality product (broke).

The research leading to this thesis was started in 1991 when Technical Research
Centre of Finland (VTT) launched a joint program with other research institutes. In
the study several Finnish paper mills were surveyed on the topic of flexible
papermaking (Ranta et al. 1992, Valisuo et al. 1997). The aspects of production
control, the actions of operators and procedures of grade change automation in the
context of flexible papermaking were studied.

It was found out that production, purchase and market control should be integrated
more closely to process automation in order to increase flexibility. It was also
discovered that web breaks are a very significant source of disturbances (Kallela and
Tuominen 1992). The most important finding related to this thesis was that grade
change automation is not used extensively (Viitaméki 1993a, 1993b).

The study reported in this thesis is a continuation to the research on grade changes
mentioned above. The research on paper machine grade changes was to discover
why the grade change automation is not used even though it was installed in nearly
every paper machine. The survey was repeated to the same mills in 2001 with
almost the same results. The grade change automation was not used in large grade
changes.

1.1. Grade change on a paper machine

There are many ways to improve grade changes. As mentioned earlier, one way is to
divide production between several similar machines and thus to decrease the
number as well as the difficulty of the grade changes. Other methods to improve the
operation of paper machine are the training of operators or improvement of grade
change algorithms. The best result is achieved by using all these actions in
combination by carefully analyzing which actions will give the highest profit. Due to
the low usage of the existing grade change automatics, it was decided that to
improve the operation of automation is one of the key points of a successful grade
change.

The problem with the existing models seems to be that they predict the change of
target value inaccurately or even to the wrong direction. The challenge of the
modeling is to predict future values of paper quality variable for example moisture.
The papermaking process is known to drift and the data that is available is strongly
correlated and noisy. The problem is also that measurements do not exist for all the
variables required for the modeling, for example temperatures of web in the drying
section.



To improve the modeling the approach was to develop hybrid models that would
combine a priori knowledge and empirical data in an efficient way. The starting point
for the hybrid modeling was the Ph.D. thesis of Kemna (1993). He used canonical
variate analysis (CVA) models and simple first-principles model as the building
blocks of hybrid models. CVA is a dynamic subspace modeling method that for
example removes correlation from the modeling variables.

Most of the grade change methods presented in the literature are based on empirical
modeling. The fact that the measurements from a paper machine are correlated has
not been taken properly into account in the previous research concerning grade
changes. That is why in this thesis the partial least squares (PLS) models are used
in the empirical part of the hybrid model. PLS is known to perform well even in the
case of correlated modeling variables.

A major portion of the physical part of the hybrid model consists of the model of
drying of web because it is the dominating section due to its non-linear behavior and
long time constants. Mori et al. (2000) used a simple physical model for the modeling
of grade changes but they did not use a hybrid modeling approach. Usually first-
principles models are too complicated for the on-line or off-line use with grade
change automation. That is why simplification of the models is needed and in this
work for example the Ph.D. thesis of Heikkila (1992) forms the starting point of
modeling moisture in web and coating.

There will be new grades and changes to the paper machine machinery during its life
cycle. That is why the modeling of grade change must also perform properly with
only finite number of modeling samples. This requirement has not been taken into
account in the previous literature. The only reference where that is mentioned is
Viljamaa et al. (2001). By tuning models with a large number of parameters
compared to the number of samples with optimizing is a challenging task. In order to
successfully do modeling with finite samples the theory of learning has to be applied
(Cherkassky and Muller 1998). A conclusion of the theory can be interpreted so that
the penalty of optimizing must at same time contain the degree of freedom and the
interdependence of samples to overcome this problem. One that fulfills these
requirements is information complexity criterion (ICOMP) that was presented by
Bozdogan (2000).

There do not exist many literature references that would contain performance
statistics of grade change methods. Only Murphy and Chen (2000), Viljlamaa et al.
(2001) and Mori et al. (2000) give indication that an improvement from 15 % to 35 %
of the standard deviation of the grade change duration could be achieved.

The scope of the thesis is to model paper machine grade changes. Models are
constructed for moisture, basis weight, coat moisture and coat weight. In addition to
hybrid models also PLS model is used and these are compared with the
performance of the existing grade change system.

1.2. Objectives

The main objective of this research was to develop a model structure and a
methodology that would make faster and more reliable paper machine grade
changes possible. The approach of the modeling is to expand the existing methods
and to apply them in a new way and to a different field.

In practice the goal is to develop models that could predict the outcomes of a grade
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change accurately enough by comparing the modeling results to the actual
measurements collected from a paper machine. This would make it possible to
execute large grade changes with small amount of lost production and thus increase
the flexibility of papermaking.

The contributions of the thesis

1. An extensive presentation of grade change practice that has not been reported
earlier. The thesis contains for the first time an overall approach to the paper
machine grade change covering the process from raw materials to the on-machine
coaters. The results of grade changes in coating are completely new.

2. A new hybrid model method is developed to solve modeling problems of paper
machine grade changes.

3. A significant contribution of the thesis is an extensive reporting of the results of
prediction performances of modeling methods validated by real process data.

The prediction accuracy of the proposed hybrid model was found to be very
promising. It can be even better if slice opening is taken into the model. It was shown
that the hybrid model had the standard deviation of prediction errors over 40% lower
than PLS model for the moisture of base board. The performance of hybrid model
with coat weight and coat moisture was better that PLS only on coaters that had
many operation modes. This is partly due to the lack of proper physical models.

1.3. Thesis content

The content of the thesis is as follows. Chapter 2 reviews paper machine grade
changes and techniques discussed in the literature. Chapter 3 presents methodology
that has been applied to further develop the hybrid modeling. It also gives a short
survey of multivariable statistical subspace modeling methods that are used in the
empirical part of the hybrid modeling approach. Presentation of hybrid models of
drying of base paper, basis weight, drying of coating and coat is also included.
Chapter 4 presents the experimental methods and techniques. Chapter 5 contains
the results of the thesis and chapter 6 gives a discussion about the results. Finally,
chapter 7 closes the thesis with the conclusion.
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2. PAPER MACHINE GRADE CHANGE

A grade change is a product quality change on a paper machine. In some paper mills
the grade change is a change of a customer code even though there was no real
guality change in the produced paper. Most of the grade changes are basis weight
changes but sometimes the production concept is changed from the raw materials to
the finishing of the product.

In a wide context a grade change has an important part in the production control
environment. It acts as an intermediate task between short term scheduling and
process automation and executes the requests set by the production control task.
Thus a grade change plays a significant role also when the efficiency of a production
line is considered.

Production control

Orders

4
Order handling
. Long term scheduling .
Supply chain 1 - | snort term scheduing Product delivery
1
! 5 !
i . A4 :
Raw-materidls, X Production monitoring
purchase, ' Quality monitoring Customers
subdelivery 1 Profitability monitoring
. Efficiency monitoring
: X
! 1
! 1
! 1
b | | i
! 1
1
v I
(Grade change automatics) Automatiol
Stock preparation ? Paper machines Winders ? Packing Storage

Figure 1.1 The interaction between functions of production control and the process.

The time spent on grade changes depends much on the paper type to be produced
(Table 2.1). For example 3 % of the production time of LWC (Light Weight Coated)
paper is being used on grade changes. On the other hand grade changes take only
0.01 % in newsprint production. The lost sales income when producing 200 000 tons
of LWC can be calculated to be worth about 20 million FIM (4 million USD) per year
(Table 2.1). It was estimated that at least 50 % of the losses could be saved, if
appropriate automatic grade changes could be used (Viitamaki 1993b, Viitamaki
2001).
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Table 2.1 Estimation of lost sales income for yearly production of 200 000 ton based
on numbers from Ranta et al. (1992).

Product Price Grade Timespentfor Tota time Lost sales

FIM/ton changes  grade changes (%) (FIM)
annually (min)

News, standard 2200 30 450 0.001 4 400

News, specia 2500 400 12000 25 12 500 000

Uncoated print (SC) 2800 40 800 0.02 112 000

standard

Coated print (LWC) 3300 500 15000 3 19 800 000

special

Fine, uncoated 3500 250 7500 15 10 500 000

standard

Fine, coated special 4500 700 28000 5 45 000 000

In the following chapters first the structure of a paper machine is presented from a
grade change point of view. Then grade change methods applied in practice at paper
mills, new solutions proposed by researchers and grade change automatics of the
major vendor are surveyed. The chapter closes with a conclusion.

2.1. Paper Machine

A modern paper machine consists of series of unit processes such as a stock
preparation system, wire section, wet pressing, dryer section and often on-machine
coating units (Figure 2.2). Paper mill uses different raw materials such as chemical
pulps from pulp mills and mechanical pulp from chip refiners. Part of the pulp comes
dried so that it has to be pulped first in the stock preparation before adding into the
process. Pulps are also refined to disintegrate the flocks or to achieve the required
product quality.

Raw materials, Lineal pressures

refining enegry

Headbox pressure,
dice

Machine speed

Approach piping and
wire

Steam and condensate system

Pigment coating
Preparation of coating color

[ 11

rrrna

P

Stock pr ep'aralon, Steam pressures Blade angles,
proportioning ...
pressures
dryers power ...

Figure 2.2 Schematic presentation of a paper machine.

In the off-quality production, the broke is fed into the stock preparation system. The
excess broke is stored in a separate bin. The broke forms usually a significant
percentage of the stock composition. This backward flow of broke is part of long
circulation (Figure 2.3). After mixing, cleaning and diluting the pulp stock is fed into
the white water system of a paper machine. A white water system consists of a head
box, a wire and a circulation system of white water. White water (a filtrate from the
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wire) is used to dilute the stock to the desired consistency (0.3-1%) for the paper
web forming process. The white water system is also called short circulation. Head
box spreads the flow of stock onto the wire and paper web is formed when water is
filtered away through wire. After that water is removed first by wet pressing and then
by contact drying with steam heated cylinders. Along with these there are several
support systems such as broke system, chemical preparation plant, coating color
preparation plant, etc.

Paper machines are designed either for bulk or multiple grade production. For
example the volume of the intermediate storage chests is smaller in a paper machine
than that used to produce multiple grades than in a bulk production machine. The
volume of the chests increases the time constant of wet end system so that the
response in a grade change is slow. Also the lag in the short and long circulation of
process water has adverse effect to mass flow response during a grade change.
Grade change can be made shorter by decreasing the volume of the chests and
minimizing backward flows in the process. The newest paper machines exploit this
feature (Meinander and Olsson 1998, Pekkarinen et al. 1999).

Process Recycling

Broke and
Long Short Secondary Retention
Circulation  Circulation  Accepts Rejects losses Broke

Figure 2.3 Schematic presentation of process recycling

Modern paper machines have often also on-machine coaters that apply the pigment
coating color on the surface of the paper (Figure 2.4). The paper may be coated on
both sides and the coating can be even double or triple layered. Blade coating is the
most common method to apply coating color onto web. The coating is dried with
infrared (IR) and air dryers. Both of these are non-contact methods in order not to
impair the applied coating surface. Contact coating is used at the end of the drying
also to keep the tension of the web in control. A more comprehensive description of
the coating process is given in chapter 3 section 3.7 Hybrid model for a coating
weight.
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Air dryer 2

Air dryer 1
IR1

B g
Dyng g o, O

Coater 1

Figure 2.4 Schematic picture of two-sided coating with infrared (IR) and air dryers.

2.2. Grade Change Methods

Grade changes can be done manually and automatically. However, there are several
tasks that are not executed automatically due to their nature or insufficient
instrumentation in the paper machine. For example, the washings of coaters or the
adjustment of wet line on the wire are typical manual tasks. The tasks of an
automatic grade change are calculation of target values and dynamic coordination of
manipulated variables. For example the speed, the stock flow and steam pressures
are adjusted in a basis weight change. It is crucial to a successful manual or
automatic grade change that the new target values are accurately calculated. The
target values for steam pressures are the most important due to long time constants
and dead times in the drying process of paper web.

Basis weight is the most common quality measure to be adjusted in a grade change.
The basis weights that are in a production schedule are run in a cycle (Figure 2.5).
The cycle is usually optimized so that the basis weight changes are as small as
possible. The ideal condition is that the allowed ranges of the sequential grades
overlap. However, if large grade changes could be made with low amount of off-
guality production, the production could be more flexible.

A
|
o |
|
e | |
S
K% u |
2
m
Present grade Next grade
Time
| | ] ] New grade change sequence
I Traditional grade change sequence

Figure 2.5 Graphical presentation of traditional basis weight change sequence and a
new flexible one.

In a comprehensive grade change, several manipulated variables of the paper
machine are changed. These are for example: proportioning of raw materials, refiner
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loads, stock flows, head box settings, machine speed, lineal pressures in wet
pressing, steam pressures and coating. The elements in this table are selected to
point out that a grade change can have an effect on the whole paper production line
from pulp refiners to the coaters and in addition on the finishing department. A
detailed description of papermaking process can be found for example in Smook
(1989) and about grade change automation in Leiviska and Nyberg (2000).

A grade change can be divided into three phases: preparation, execution and
termination (Figure 2.6, Viitamaki P. et al.1995). Preparation is an interactive phase
where automation system calculates the initial values or the operators pick up the
previously used values of grade change parameters and feed them into the system.
During the execution phase the target values calculated in the preparation phase are
made active and the grade change is started. The termination phase starts, when
quality variables are inside acceptance limits but there may still be oscillation
present. These phases can be found in manual and automatic grade change
procedures.

New —— Preparation of grade change
order

Run —— Execution of grade change
ready

New —— Termination of grade change
grade

v
Figure 2.6 Phases of grade change.

A grade change is very often performed manually or after an interruption during
automatic action continued manually. That is why a manual grade change is
considered in a separate chapter. After that automatic grade change methods are
discussed in detail.

2.2.1. Manual grade change

According to the interviews of papermakers there seem to be two ways to perform
the tasks of a manual grade change. The most common is a more cautious method
than the other one. The tasks in the two procedures are almost the same but the
timing and the manner of execution is different. In the 'cautious' method the tasks
are executed in a sequential order with small changes and they are executed in an
iterative fashion. In the 'courageous' method all the changes are executed at the
same time and in one step.

The grade change effects sometimes the operation of the whole paper production
line. The adjustment of proportioning, refining, on-machine coating, etc. can make a
grade change quite extensive. Due to long dead times the timing of the proportioning
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of raw materials, chemicals and additives and the changes in the refining pulps
should be executed with care. In the following there is a simplified description of a
‘cautious' basis weight change that is based on the practice at several paper mills.

Preparation phase

The preparation phase starts when there is about an hour to go to the grade change.
Of course the availability of raw materials has to be established earlier. The machine
tender takes care of most of the tasks. First, the values of proportioning recipes are
checked and maybe some minor adjustments are done. Then the target values for
machine speed, mass flow and steam pressures are calculated.

In practice the adjustment of steam pressures is performed according to the
knowledge of the workers at the dry end (Figure 2.7). The final target speed is
calculated by assuming that the production rate can be kept constant. Sometimes
the flow of stock, the machine speed or production rate is a limiting factor and the
calculation must be changed accordingly. Some machine tenders also use the
values of the previous run with similar changes. There is also an upper and lower
limiting factor due to the flow in the headbox which has to be taken into account. This
means that besides the actions mentioned previously, perhaps, also the slice and as
a result the headbox consistency has to be adjusted. However, the change in the
slice setting is very difficult to predict and thus it has to be adjusted during the
execution phase. Finally, the time instant for the start of the grade change is
calculated from the production rate and from the size of the order.

Preparation of grade change

New ——
order

Input data
* new grade code
* speed of change for basis weight
* start time

Find target speed,
mass flow and
headbox consistency

4

Accept results

Calculate specific steam
consumption per produced
ton of paper and for

evaporated ton of water

Calculate target
steam pressures

Figure 2.7 Preparation phase of a basis weight grade change.

Execution phase
The execution phase is a team effort that is coordinated by the machine tender. The
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machine tender executes the basis weight change while the other team members
are checking out that the paper machine is functioning properly. Sometimes the web
is cut before the pope so that the quality measurements are still on-line (Figure 2.8).
In some paper mills the production during the grade change is run on top of the
tambour or the split between tambours. The production can be run also onto a new
reel or directly to the broke system.

First, the adjustment of machine speed change is started when the run is full.
Sometimes small changes are done in advance to move the manipulated variables to
the direction of the coming grade change but still staying inside the acceptance limits
of the grade. When the run is full, the speed is either decreased or increased step by
step. At the same time the slice has to be adjusted so that the headbox consistency,
the dry line on the wire and headbox flow are inside the specified values. At the dry
end, the cylinder tender adjusts the steam pressures according to his/her experience
by observing the moisture readings. The adjustment of steam pressures is difficult,
because the changes of mass flow and machine speed arrive to the dryer section at
different times. As a result the moisture may swing first to the opposite direction than
anticipated. In control literature this is called minimum phase behavior. When the
manipulated values have reached the target set points the execution phase has
ended.

—— Estimate new target speed

Start t Web cut before pope (measurements in operation)

Decrease speed

4
No Targe speed Yes

r reached —¢

Open dicelip Increase mass flow
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Figure 2.8 Execution of a basis weight grade change.

Because the basis weight change is the most common grade change, its step size is
usually minimized. Consider a paper machine that produces grades in the range of
35-55 g/m2. Then basis weight changes under 3 g/m2 can be run without broke but
over 5 g/m2 cause the production of broke for about 10 min. Basis weight changes
more than 10 g/m2 are considered very difficult and they are seldom done.

Also an increase in the brightness of a web is very difficult to achieve, when there is
a change in the raw materials. The timing of the changes in the proportioning of raw
materials is difficult. For example when the brightness is changed, the information of
the grade change must be at suppliers of chemical pulp, thermo-mechanical pulp
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(TMP) and stone groundwood pulp several hours before the start.

During a grade change the process may run into production bottlenecks or into a
regime where the process is more difficult to control than usually. Typical bottlenecks
are dewatering units and headbox. For example, drying section may become a
bottleneck when a high basis weight is run or surface sizing is started. The situation
may be deteriorated by the fact that it is preferable to run the web too dry than too
wet. This is because a wet web breaks more easily than a drier web. Also, the cross-
direction variations of moisture are smaller in quantity when the web is dry. It was
also mentioned that a manual grade change is more difficult at the highest speed
and it was stated as a rule that the extreme grades are the most difficult to run.

Headbox itself may be a limiting factor due to its design but also the capacity of a
feed pump may be too low for the required production rate. Headbox settings during
a grade change may be very important. For example a change in the felting property
of pulp fibers during the consolidating of web on the wire may cause problems with
dewatering all the way to the drying section. This is caused by a change in the
position where the jet from the headbox hits the forming board. Especially during
large grade changes the lateral position of slice has to be adjusted forward or
backward so that the jet will always hit the same position on the forming board.

Termination phase

In the beginning of the termination phase, the machine tender waits for the process
to stabilize and does final adjustments to the manipulated variables. When the
quality variables have been stabilized to the required levels, the grade change has
ended (Figure 2.9). Then the information about the used target values as well as
successfulness of the change can be stored in the records. These can be used for
further analysis or for reuse, when the same grade change is run next time.
Typically, the machine tender keeps track of the grade changes in his/her folder.
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Figure 2.9 Termination of a grade change.

2.2.2. Automatic grade change

The automation system of a paper machine consists of basic loops, quality controls,
supervisory controls and a production control system. Typical quality measurements
are basis weight, moisture, ash content, coat weight, opacity, color and caliper.
These are measured in machine and cross direction with scanning gauging
supervisory control system (Figure 2.10). Along with an automation system there
exist also separate fault and diagnostic systems for both the process and the quality
of paper. For example, the preventive maintenance system uses on-machine
vibration monitoring to detect the wear of bearings and the quality monitoring uses
an optical analyzer to detect holes and spots in the web. The grade change
automation is a part of supervisory controls that adjusts the set-points of lower level
controllers. It has tight connections also to the production control system.



20

machine
speed \L

ean, | coang
control control measurement

press gauges
section i, \L /

Stock head | Wire dryer coating |
Department box O section section m
reel finishing
flow Cross Direction (CD) |
measur- controls
ement
Machine Direction (MD) |

controls

Figure 2.10 Paper machine control, a schematic graph (Valisuo et al. 1996).

An automatic grade change can be presented in the same framework as the manual
one. Preparation, execution and termination can also be found in the automatic
change. Also the tasks are relatively similar so that the only difference is that some
of the actions are performed by automation system. The degree of automation is the
definition how the basic tasks of grade change are divided into manual and
automated tasks. These tasks interact sometimes with each other and with the
information system. The actual implementation and the automation degree depend
on the paper machine itself and on the capability of the grade change application. In
the following an automatic grade change is portrayed as it is executed in paper mills.

Preparation phase

The preparation phase is mostly performed manually. The initial values for the next
grade are either typed into the automation system or acquired directly from the
database of information system. A user can change the speed of change if needed.
The automation system then calculates the parameters to the grade change
procedure according to the tuning and settings that have been done during the
commissioning of the automation system. In the commissioning phase the models in
the automation system are tuned according the grade that is run most frequently.
Normally there are no grade specific models. The models are sometimes adapted to
different basis weights and dead times and calculated according to machine speed.

Execution phase

During the execution phase, typically, only basis weight and coat weight changes are
performed in the automatic mode. Some systems also provide color change
automation. The major interactions with the control variables (basis weight and
moisture) are decoupled at steady state. In some grade change automatics the
paper machine tender can adjust the speed of change, but all the other tuning is
done only by the vendor personnel. Automation vendors used to have so-called baby
sitter at the mills that took care of all the maintenance and tuning of the paper quality
system. Usually the tuning of grade change automatics required an expert analyst
that was not in the baby-sitting crew. Thus, the problems with the grade change
automatics took long time to be fixed.

The end of the current grade is usually calculated by the automation system. The
decision of the time instant, when the new grade is started, is on the operator. An
automatic grade change is usually started with a push of a button or a sequence
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program is started. The paper machine tender has to look after that the manual
operations are coordinated properly with the automatic actions. When the grade
change automation has finished the transition, it usually stops or waits for an
operator interaction. If the target values have not been reached at this point the
operator usually runs the rest of the grade change manually.

Termination phase

There does not exist any automatic action by the automation systems during the
termination phase. The machine tender turns the stabilizing controllers to the auto-
mode when the quality measures have reached the target zone. He then signals to
the system that the production of the next grade has begun. The paper mills do not
usually store detailed information about the success of grade changes in their
database although there has not been any technical reason why not to implement it.

Almost all the applications of automatic grade change are active in the execution
phase. At least three approaches have been presented in the literature (lhalainen
and Ritala 1996, McQuillin and Huizinga 1994, Smail et al. 1998, Viitam&ki 1993b,
Valisuo 1996). The simplest is the ramping the manipulated variables to the target
values. One of the commercial products uses model predictive control approach.
There are also reports of using optimizing controllers for the grade change. An
outline of these automatic grade change methods is given in the following chapters.

2.2.3. Automatic grade change with ramping controls

The most common method to execute a grade change is ramping in an open-loop
fashion (Figure 2.11). It is a straightforward extension to the ramping functions
already existing in the automation systems. Ramping is a natural way to automate
grade changes because it simulates the actions performed in the manual grade
change. An open loop-control method is appropriate to a grade change, because
there are no exact target values for basis weight and moisture. It is satisfactory, if the
guality values will reach the acceptance range at the end of grade change.
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Figure 2.11 Grade change by ramping the manipulated
variables.

Several timings of machine speed, thick stock flow and slice opening ramps have
been tested by Johnston and Kirk (1970) and Smail et al. (1998). The result of
Johnston and Kirk (1970) was a scheme for a sub-optimum basis weight change
numerical optimization of linear models. Smail et al. (1998) developed an
identification algorithm for the ramping responses. As a result dynamic multiple-input
multiple-output (MIMO) models could be identified for control purposes. This will
make automatic dynamic controllers for grade changes feasible.

Similar optimization could be carried out also with a benchmark model for a paper
machine (Hagberg and Isaksson 1995). Miyanishi et al. (1988) also did a simulator
study of a grade change. They pointed out that the first-pass retention plays a
significant role in a grade change. If the first-pass retention is low, the time constants
of different furnish components will be long and vary according to their retention
percentages.

The adjustment of steam pressures is used to control the moisture of the web.
However, when stock components, thick stock flow or machine speed are adjusted,
the moisture will change also. The interactions with these manipulated variables
combined with long time constants and dead times make the calculation of the target
values difficult. For example, accurate estimation of steam pressures is the key point
to a successful basis weight change also. Besides the previously mentioned function,
also the timing of all the manipulated variables is critical. Due to the spatial position
of actuators and that the speed can be manipulated only by using linear ramps, an
over- or undershoot in the moisture occurs during a grade change. The methods
mentioned in the literature handle the above situations very well but they do not take
into account the mix of different raw materials or the processing of pulp as for
example refining.

The drying rate of web depends among other things on the incoming moisture
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content to the drying section, production rate, thickness and structure of web and
hygroscopic properties of web components. Thus the calculation of target values to
the steam pressures is a very difficult task. These effects have not been estimated in
any research to my knowledge.

Dynamic grade change systems are usually based on transfer function or impulse
function models. The transfer model of the process upon which the controller is
based on is usually a first- or second-order linear dynamic model with dead time
(Koivo and Peltonen 1993). The most suitable control structure for this kind of model
is thus Smith Predictor algorithm or its variant. However, the actual control is
performed with ramps.

Due to simplified models and controllers the model mismatch is a serious problem
with the previous approach. A regime based approach could solve this problem. For
example, Sun and Kosanovich (1997) proposed a transition control method based on
variable structure control theory. The method uses a process model library
(candidate model library) and Smith predictor controllers are calculated according to
these models (Figure 2.12). Transition supervisor switches the controller into the
feedback loop that produces the smallest prediction error.
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Figure 2.12 Transition control structure according to Sun and Kosanovich (1997).

An intermediate method between dynamic and optimizing controller applications is a
method where the optimization is executed in the preparation phase. The resulting
optimal control actions are then applied in the execution phase in a dynamic control
fashion. The optimization is done usually with a simulator. lhalainen and Ritala
(1996) applied their method to optimize basis weight, ash content and moisture in a
grade change on a paper machine. Miyanishi et al. (1988) have also presented
similar ideas in the optimizing of filler response during a grade change.

In all the models and controllers presented above the common problem is the model
mismatch. If you cannot predict the target value of the controllers accurately enough
there will be a long time period before the new control actions can take place. Due to
long dead times of papermaking process this means longer grade change duration.
One approach to improve the performance of grade change controllers is to
decrease the time when the new control actions take place. This could be called
automatic grade change by optimizing controls.
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2.2.4. Automatic grade change with optimized controls

Perhaps the most straightforward method to apply optimizing controls to a grade
change, is model predictive control (MPC). It uses a mathematical model of the
process to predict the response of control actions (Figure 2.13). MPC plans optimal
future control inputs, feed-forward compensation and dead-time compensation.
Model predictive control is a promising method to be used in the grade change
automation. Its advantage compared to the Smith Predictor algorithms is to use
several controlled and feed-forward variables at the same time.

MPC context has given rise to several control configurations. In the preparation
phase the models to be used are for example retrieved from a model bank or the
models are identified from the process (McQuillin and Huizinga 1994). The control
actions can also be optimized by the dynamic programming methods with nonlinear
physical models in the preparation phase. In the actual execution phase the controls
are calculated by using MPC with linearized models (Ohshima et al. 1994). Valisuo et
al. (1996) proposed the use of simplified physical models for the implementation of a
nonlinear MPC method. In the following paragraphs the approaches made by
McQuillin and Huizinga (1994) and Valisuo et al. (1996) are discussed in more detalil.
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Figure 2.13 Schematic diagram of a state space model of a paperboard
machine. State variables x represent physical parameters some of which
usually cannot be measured, like cylinder temperatures (Valisuo et al.
1996).

Honeywell's grade change automation uses impulse function models in their MPC
scheme. The models are tuned in a single-input/single-output (SISO) fashion by so-
called bump tests (McQuillin and Huizinga 1994).
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Figure 2.14 Tuning Visualization of Model Predictive Control Method by Honeywell.

There is no need of state estimation, when linear impulse function models are used.
However, if a state space representation is chosen, it is not always possible to
measure all the states. An example of this is temperatures of dryer cylinders in the
dryer section of a paper machine. Thus certain initial states (x(0)) must be estimated
in the preparation phase of grade change (equation (2.1)). A more general optimal
control problem can be presented by the equations (2.1) - (2.3) (Valisuo et al. 1996).

x(t) =f (x(t),u(t),t), y(t) =h(x(t),u(t),t), x(0) =x, 21
L(x(t),u(t)) <0 22)

J= IOT g(x(7),u(z),7)dz + g, (X(T),u(T)) ; minimizew.r. u(z)  (23)

where Xx(t) is the state variable vector, u(t) is the control input vector and y(t) is the
output vector. Final time T is constant and represents the duration of a grade
change. Functions f and h represent the nonlinear dependencies between the state
variables and inputs. Function g in the cost function J, is a quadratic penalty that is
derived from the deviation of the predicted outputs from the reference values (for
example moisture and basis weight) and a penalty of the variations of the
manipulated variables. Function g can also contain penalties that limit selected state
variables into a certain range or the penalty can depend on the phase of grade
change or prediction horizon (from 0 to T). Vector function L represents the
constraints.

This optimization problem is solved by changing it into a two-point boundary value
problem. If the equations are linear it can be solved analytically, otherwise a
numerical solution is needed (for example shooting method). The result gives a
sequence of control inputs u(t, +1i-AT),i =0..n, where t, is the current time and

AT is the control time interval. If functions g and gt in the cost function are chosen
properly, the result of the control action is the best possible response in the sense of
the performance criterion. It will also assume that none of the constraints in L will be
severely violated. The method is very complicated but is quite effective if dynamic
optimal solutions are required. lhalainen and Ritala (1996) found that the
convergence of the optimization algorithm was best when quadratic penalty functions
were used.
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In the MPC approach the first in the sequence u(t,) is used to control the process

and the optimization is repeated after time AT . In this way the disturbances and
possible model mismatches can be compensated. Similar optimized coordination
scheme for a basis weight change is also found in Akesson and Arzén (2002) and
Kuusisto et al. (2002).

Murphy and Chen (2000) used a combination first-order plus delay models including
total head coordination model for the headbox. McQuillin and Huizinga (1994)
reported the use of a model predictive control. Kuusisto et al. (2002) used second
order transfer function models (ARX) in the MPC control.

Another approach to improve the grade change method is to estimate the target
values of manipulated variable more accurately. Yoshitatsu et al. (2000) used a
simple physical model drying of web and basis weight. One of the latest studies uses
a fuzzy system for the estimation of target values of grade changes (Viljamaa et al.
2001).

Banerjee and Arkun (1997) proposed a regime based method that combines linear
models identified in individual regimes of steady-state based on the data collected
during plant transitions. The model mismatches are compensated by a state
estimator that is evaluated before each control action.

A couple of the authors presented some performance figures of the algorithms. It
seems that the basic assumption has been that the model mismatch can be
compensated by MPC optimization. It is also probably difficult to asses the
performance improvement with MPC without extensive data or plant testing. This is
partly due to the feature that the MPC creates various future control movements in
each grade change situation. Also nonlinear control movements are not always
feasible on a paper machine due to limitations of control actuators.

Much development work has been done in the field of optimizing controllers such as
MPC and they are already in industrial use. However, if the gain of the model and
thus the target values of the manipulated variables could be estimated more
accurately, all the grade change approaches would benefit from it. For example in
the MPC, the control actions could be performed earlier than before.

When there is only a short dead time in the controlled process the significance of the
correct target values is even clearer. This kind of process is a coater that is often on-
machine with the paper machine so that it has a direct influence on the total duration
of a grade change. In the following chapter a short survey is given on the subject.

2.3. Grade change on a coater

Grade change has not been considered in the literature for coater. The grade
change on a coater was performed manually in the paper machines that were
studied but it can be done also automatically. The degree of automation is usually
lower in the coater section than in the paper machine that makes automatic grade
changes difficult to do. The operation of a coater is also greatly influenced if it is
combined with the paper machine (on-machine coater) or if it is an independent unit
(of-machine coater).

Due to many manual tasks in the operation of a coater an application of grade
change automation is difficult. For example, a runtime for a blade is 8-12 hours so
that it must be changed once a shift or during breaks. Also when there is a color
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change or some requirements due to foodstuff legislation, the coating color
circulation has to be washed. The washes take roughly 10-15 min and during that
time, as in the blade changes, the production is run to the reel. The result is that the
advantage of automation is not as obvious as during basis weight change.

An automatic change in the coating weight is done by ramping the position and the
angle of the coater blade. The direction of the change of the blade angle must not
change during the grade change or at least it must be minimized because it causes
unnecessary wear of blade (Luomi 1991). The settings in drying section of the
coaters must be adjusted so that the dewatering profile is kept the same or changed
to the new target (M&kinen et al. 1998). This is because the gloss and surface
roughness variations are formed during coating consolidation.

Because the dead times and time constants are significantly shorter in the coating
process than in the base paper, feedback from the measurements is readily
available when the web has been threaded to the pope. The problems in coating and
drying are more related to the calculation of the target values of the manipulated
variables and especially of the start-up situation (Nuyan et al. 1997).

2.4. Conclusions

A brief discussion of the subject about the units and variables of a paper machine
and its structure is reviewed. The practice of making grade changes in the Finnish
paper mills and survey the research is presented.

The practice of grade change is a summary of interviews of personnel of six paper
mills and is reported in detail. A grade change is split into preparation, execution and
termination phase. The automatics are typically intended for the execution phase. On
the other hand, there is no good tool for the preparation phase. The preparation of a
grade change is based on previously performed similar changes and the
performance is greatly dependent on the expertise of the personnel of a paper
machine.

Only small grade changes are executed with automatic grade change applications or
the change is started with automatics and then continued with manual actions.
Automatic changes are done with ramping, dynamic or optimizing controls.

It was noted that improvement in the duration of a grade change could be achieved
by calculating the target values of the manipulated variable more accurately than in
the existing approaches. A method, hybrid modeling is proposed in this thesis.
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3. MODELING OF A PAPER MACHINE FOR A GRADE
CHANGE

The availability and the low price of number crunching power has made it possible to
apply calculation intensive process control solutions in industry. Thus it is possible to
use for example larger physical models and more calculation intensive empirical
models on-line than before. It is known that long time constants and non-linearity in
the drying section are the most dominant obstacles to speed up grade changes. The
model of a paper machine presented in this thesis is intended to be used as a static
model to predict moisture, basis weight, coat moisture and coat weight. Physical and
empirical modeling is applied.

In the following chapter, the simple physical models that can be applied to various
paper or board machines are presented. The parameters of the chosen models are
found relatively easily from the literature and in addition there exists measurements
from different paper machines that can be used in tuning of the models.

Another possibility is to use empirical models. There exists a wide range of model
structures available for empirical modeling from simple regression to neuro-fuzzy
models. PLS models are used for empirical modeling due to their insensitivity to the
multicollinearity in the modeling samples.

Intuitively it would be possible that a combination of different types of models could
improve modeling results. In this work this kind of model is called a hybrid model. It
is believed that by using the existing information (for example first-principle models,
structure of paper machine) combined with empirical models a better result will be
achieved than using them separately.

The hybrid models can be used in the modeling of paper machine grade change as
shown in the Figure 3.1. Each physical model (paper machine drying section, coat
weight and coat moisture) is complemented with an empirical model. The empirical
models will use all the available data that is not included in the physical models.

The main contribution of this chapter is a new method for modeling paper machine
grade changes with a hybrid model. Contributions of this chapter include also the
survey physical and empirical modeling methods in the context of grade change
modeling.
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Figure 3.1 Overview of the hybrid model structure

In this chapter the objective is to present hybrid models that would predict static
moisture, basis weight, coat weight and coat moisture changes reasonably well. It
should catch the variability of the process that would be difficult to model solely with
empirical models. The method for tuning of hybrid model was developed that uses
special penalty for the interdependencies of the model. The use of hybrid model is
presented in chapter 4 ‘Experimental methods and techniques'.

First physical modeling of a paper machine is surveyed. Modeling of drying is
presented to show some recent modeling philosophies applied to this challenging
problem. Then in the subsequent sections, simplified modeling for drying of web,
basis weight, coat weight and drying of coating are given. A coat weight model for a
beveled and for a low angle blade coater are reviewed. In the drying of coating, both
infrared and air drying are considered. Empirical modeling is also briefly surveyed
and Partial Least Squares (PLS) method is presented after physical modeling. Then
hybrid modeling is reviewed. Finally, a conclusion ends the chapter.

Models are only surveyed in this chapter. Detailed mathematical developments are
not given because it would require very extensive treatment. Exact physical modeling
equations and references to the literature are presented for drying in Appendix B, for
drying of coating in Appendix C and for coat weight in Appendix D.
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3.1. Physical models for a grade change on a paper machine

The drying section of a paper machine presents a challenge to the modeling of a
grade change. In order to control it properly it is required at least that static gains,
time constants and dead times are known. In this work the scope is limited to static
gains so that the knowledge of dynamic parameters is only required in the sampling
of data for the modeling.

Typically physical models are used in the modeling of moisture of web, coat weight
and coat moisture (Figure 3.2). For example, Yoshitatsu et el. (2000) used simple
physical models to develop a grade change automation to a paper machine for
moisture and basis weight.

Physical model of coat moisture Physical model of coat weight
Inputs: Speed, IR temperature, air drying Inputs: Speed, blade angle, blade
temperature position

Output: Coat moisture Output: Coat weight

Physical model of moisture of web \ ~

-~ - ~ / - Blade angles, \

Inputs: Speed, basis weight, steam pressures / pressures
Output: Moisture of base paper Steam pressures ) dryers' power \
Raw materials, Slice, Jet-to- Machine Iiial Lalenda - - \
refining energy wire ratio speed presflires Steam and pressur Preparation of coating color
l I condensate system I l Pigment coating l
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Figure 3.2 Examples of physical models for the grade change on a paper machine

Moisture of web is modeled with simple heat conduction and evaporation equations.
There exists a wide collection of models available for the task. Also physical
modeling the drying of coating has been applied in Heikkila (1992) and Fisera et al.
(1998). Basis weight is modeled with a simple mass balance due to the fact that
there do not exist as many problems as for example with the modeling of moisture of
web. However, there do not exist many references in the literature about application
of physical modeling to coat weight on a paper machine.

The advantage of a physical model is that it is easy to implement the nonlinear
properties, known physical laws and to extrapolate and interpolate between the data
samples in a grade change model. This means that the tuning of a physical model
does not require many samples of data that is relevant especially in the modeling of
drying. Also it is important that the structure of the process and on and off type
operations can be expressed in the model. For example, there are several sections
in the IR dryers that can be on or off and there can be also two to three coating units
of which any combination can be used. The modeling of structure, such as number
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of drying cylinders and lengths of free draws in the drying section, will help to make
more general models.

The disadvantage of physical models is that in order to make them realizable they
have to be simple and as a result they are susceptible to modeling errors. There are
dedicated models for the diffusion of moisture inside the web but there does not exist
an on-line measurement with which to verify the model (Lehtinen 1992, Paltakari
2000). A simple physical model can be applied in a narrow area of the process. For
example, a physical moisture model does not take into account the changes in the
raw materials or in the refining of pulp.

Due to these disadvantages an empirical model is also considered in modeling grade
changes.

3.2.  Empirical Modeling

Empirical modeling has been used in most of grade change modeling references
found in the literature (Kuusisto et al. 2002, Smail et al. 1998, and Chen 1995).
There exist several empirical modeling methods available for a grade change. If
linear model is chosen the application and analysis of the system will be a
straightforward procedure. The tuning of linear models with large amount of data and
MIMO (multiple input - multiple output) structure is also a standard procedure. For
example an empirical model of moisture of web can have data from raw materials,
refining, stock preparation, head box (slice, jet-to-wire) and of course speed and
stock flows (Figure 3.3). It is also an advantage that linear empirical models can
easily be applied to dynamic modeling as in the references mentioned above.

Empirical model of moisture of web Empirical model of coat weight or moisture

Inputs: Speed, blade angle, blade position. refining
energy, jet-to-wire ratio, calendar pressures

Output: Coat weight or moisture
\F

Inputs: Speed, basis weight, steam pressures,
refiner specific load, stock mix
Output: Moisture of web

- — - angles, N
”~ , ~ / pressures
/ Steam pressures ( dryers’ power \
’Raw materials, Slice, Jet-to- Machine Lineal l:ai ler - -
refining energy wireratio speed preﬁ'es\ Steam and Preparation of coating color l
condensate system Pigment coating

A S s £V B

—1_3l

/

Approach piping and
wire I

1T 7

4

’
g
g

Stock preparation,
proportioni
o2

\~—_’

Figure 3.3 Overview of empirical modeling of a grade change

The development of an empirical model for a grade change requires to have data
from controlled testing but this is not usually possible due to high expenses of lost
production. The data has to be collected during normal grade changes instead. It is
also very typical that many variables are required in the modeling in order to get an
appropriate fit to the data. The list of variables is in Appendix A.
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As mentioned in the introduction, multicollinearity is one of the problems arising
when several variables are used in the ordinary least squares modeling. That is why
statistical multivariate methods are used for empirical modeling. The multicollinearity
means here that there are two or more highly, but not perfectly, correlated variables
in the modeling data set. For example, it is generally known that correlation
coefficients that are greater than 0.7 are significant (Grapentine 1997). Also if there
is an uneven distribution of eigenvalues, the data can be suspected to be
multicollinear. There is not a unique coefficient that could be used to determine if the
samples are multicollinear.

Linear modeling methods are often based on ordinary least squares (OLS). It should
be noted that if the modeling data set (X) has two or more perfectly correlated

variables, the inverse (X' X)™ used in OLS does not even exist. Several problems

will arise from the multicollinearity. For example the components of (X'X)™ have
large values due to high correlation of variables. Also the variance of the estimates
of regression parameters (B) increases because it is linearly dependent of (X' X)™

according to equation V() =oc?(X"X)™. As a result if the variance of the

regression parameter is high, the predictions with the regression equation will also
be inaccurate.

The model may give a good fit with the modeling data set but may give an
unexpected result when used for prediction. OLS uses all the information in the data
and in theory produces unbiased estimates of the parameters. The paradox with
OLS is that when you aim towards accuracy, you lose the robustness (Hyotyniemi
1998). The multicollinearity can be circumvented by using statistical multivariable
subspace methods that use only part of the data and project it into independent
variables (latent variables) before OLS calculation.

PLS model was introduced by Wold in late sixties and is reported extensively in
Geladi and Kowalski (1986). Therefore only a brief summary is given here. In a PLS

process, data matrix X € R™ and output matrix Y € R™™ are decomposed into

principal components (Figure 3.4). The so-called outer calculations are defined by
the following equations:

X=tp +t,p; +..+t.p. +E, (3.1)
Y=ug, +Uq,+.+ud. +F, (3.2)

where m are sampled measurements, n is the number of process variables, p, R*
and @ e R*are loadings vectors, t € R* and u € R* are score vectors, E e R™*

and F € R™" is residual matrix.

The components for both blocks are rotated simultaneously, so that the covariance is
maximized. Thus PLS finds out the variations in the process variables that are most
influential in the calculation of output values (Hoskuldsson 1988, Geladi and
Kowalski 1986, MacGregor and Kourti 1995). After the outer calculation, the score
vectors are related by a linear inner model:

u=nht +r, (3.3)
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where b is a coefficient that is determined by minimizing the residual r. .

There does not exist a stability problem in solving b by MLR because the scores are

independent. After the first dimension of scores and loading vectors have been
calculated, the residuals F, and E, are denoted as new Y and new X respectively
(Figure 3.4). Then the second dimension is calculated using these values and the
same is repeated when higher dimensions are calculated.
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Figure 3.4 Standard linear PLS algorithm (Lakshiminarayanan & al 1997).

Multivariate statistical methods have been used previously in the modeling of pulp
and paper processes for example in refiner pulp quality predictions (Tessier et al.
1998) and the fault detection of paper web (Sorsa et al. 1992). Lakshiminarayanan &
al (1997) developed a dynamic PLS model structure and used it to model a chemical
process.

By projecting the samples onto a lower dimensional subspace with orthogonal new
variables, the correlation in the input variables can be removed. This still leaves
much work for the user as for example the determination of the variables to be used
in the modeling of grade changes and the estimation of the number of principal
components in the PLS model. The methods are presented in detail in Chapter 4
‘Experimental methods and techniques’. The next chapter will give a short survey on
an approach called hybrid modeling that is used in this thesis.

3.3.  Hybrid Modeling for a Paper Machine Grade Change

Hybrid modeling is a combination of empirical and physical modeling. It is one way to
exploit a priori and experimental information in a modeling context. The term has
been defined for example by Psichogios and Ungar (1992) as a method that
combines first-principle knowledge with neural networks. Similar combination of
neural network/mechanistic models was also reported by Wilson and Zorzetto
(1997). Lindskog and Ljung (1994) called the combination of a black box model and
a physically parameterized model as semi-physical model. Sgrlie (1996) also called
his similar structure a grey-box model. Kramer et al. (1992) used the term hybrid
model and later Thompson and Kramer (1994) proposed serial and parallel
approaches in order to combine prior knowledge with neural networks. They called it



also a semiparametric design approach because it combined an empirical (neural
network) model with a fixed form parametric model. Kemna (1993) called his
approach also hybrid modeling. He also considered the use of linear and nonlinear
models in different combinations in the identification context.

The structure of a hybrid model can be either in serial or parallel connected form or
the empirical model can be used to estimate the parameters of the physical model
(Figure 3.5). The serial and parallel structure were presented for example by Kemna
(1993). Psichogios and Ungar (1992) presented a hybrid model where a neural
network estimates the process parameters, which were used as input to the first-
principle model. Hybrid modeling approach can also be used in a regime based
modeling method (Johansen 1994). A regime can be chosen according to a priori
known quality measurements in order to divide the data into suitable regions.

Physcl [———
_——

Empirica
— | Physicd Empiricdl | ——
— | Empirical Physcal | —
Physica |,
i
Empirical

Figure 3.5. Hybrid modeling approaches to combine prior knowledge with empirical
models.

The new hybrid model that is proposed in the thesis consists of a combination an
empirical model and a physical model that has adjustable parameters (Figure 3.6).
These parameters are calculated as a dot product of selection coefficients from the
genetic optimization and measurement values from the process (input 2) and forms
thus a similar structure to a feed-forward control. This improves the flexibility of the
modeling and the selection coefficients can be used in the optimization scheme.
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Figure 3.6 Structure of the proposed hybrid model

The empirical model consists of a PLS model and a physical model that is a
combination of simple models. The set of models can be chosen according to the
structure of the target paper machine. It is the task of the optimization to choose and
adjust the parameters of the physical models. This kind of hybrid modeling structure
has not been presented previously according to my knowledge. It brings in a new
way to implement a priori information in the hybrid modeling scheme.

The models are very simple, but they satisfy the requirement that there exists only a
minimum amount of unknown parameters and most of the information is available as
measurements from the dryer section. In the following chapters hybrid models for the
drying of paper, basis weight, drying of coating and coat weight are presented The
detailed equations are supplied in Appendix B, C and D.

3.4. Hybrid models for drying of paper

The hybrid model of drying of paper consists of a physical model of drying section
and an empirical model (Figure 3.7). The empirical model corrects the modeling error
of the of the physical model. The physical model uses the information of the drying
section and the empirical model uses the data from the raw materials of the stock
flows. The target values of head box settings (slice, jet-to-wire) and lineal pressures
of the press section are not usually known before grade change. However, it is
possible to include them in the static model for the evaluation of possible grade
change options.

A separate empirical model can be used to adjust the parameters of the physical
model as described in Figure 3.6. This is done similarly to a feed forward control and
it uses the same data as the other empirical model. The list of variables that are
used in the empirical modeling is given in Appendix A.
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Physical model of moisture of web

Empirical model of moisture of web Inputs: Speed, basis weight, steam pressures
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Figure 3.7 Hybrid modeling of moisture of web.

The overall physical model for the drying section of a paper machine consists of
cylinder drying units (Figure 3.8). These units are combined in the same way as in
the target machine. For example, diameters of cylinders, the lengths of free draws
and cylinder bars can be configured to the appropriate place in the drying section.
This makes it possible to tailor the drying section according to the paper machine in
question. In principle, it would also be possible to visualize the drying conditions in
the drying section assumed that the used physical models were good enough.

The sheet is in free draw.
Evaporation is increased
by turbulence of air.
Web is cooling down due

The sheet is in contact with i
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steam heated cylinder.
Web is heating up but lessened
by heat of vaporization.

Figure 3.8 Overview of a physical modeling of a drying cylinder.

Modeling is done in two areas. The area where the web is in contact with the cylinder
and where the web is in the free draw (Figure 3.8). Most of the equations that
describe the heat transfer and evaporation phenomena are given in Heikkila (1992),
and Roihuvuo (1986) and heat transfer coefficient in a free draw is in Karlsson
(1984). A large list of equations for the modeling of board machine is also given in
Lappalainen (2004). The most important equations are supplied in Appendix B.
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Figure 3.9 Overview of calculation of temperature and moisture ratio in the physical
modeling of moisture on a drying cylinder.

An overview of the calculation of temperatures and moisture ratios in the drying
cylinder is presented in Figure 3.9. Calculation of the cylinder temperature is done
without using iteration. It is assumed that this does not produce a major error
compared to the other simplifications done in the model.

It is also assumed that the material properties of the web are constant in the
thickness direction and the evaporation from the surface does not depend on a
drying wire and is evenly distributed. Because the temperatures and moisture ratios
are unknown in the ventilation pockets of the drying section, the temperature of the
evaporation zone in the pocket is assumed to be the same as in the web. Also the
moisture ratio is assumed to be a constant due to appropriate ventilation (isothermal
dryer).

The dryer section needs the initial temperature and moisture ratio of the web as an
input data (Figure 3.9). The temperature can be assumed to be the same as the
surrounding temperature. Because the incoming moisture ratio is not measured, it
has to estimated.
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3.5.  Hybrid model for basis weight

The steady state value of the basis weight can be considered to depend mostly on
the machine speed and thick stock flow (Figure 3.10). However, several variables
are included in the empirical model.

The flow from the head box is spread machine wide and the amount of dry material
per square meter in the machine direction will be determined by the wire speed. The
thick stock flow determines the production rate of the paper machine even though it
effects also the basis weight. To be exact there exist leaks and recirculation of
material so that not all of the dry material will end up to the reel. However, the leaks
from the overflow of the head box and wire pit and the reject from the cleaning
system can be considered minor compared to the total feed to the system.

The trimmings that are cut from the edge of the web during the process have to be
taken into account in the accurate mass balance calculations. The recirculated
material that is redirected to white water due to low retention will mostly effect the
dynamic response of the system. Basis weight depends also on shrinkage and
elongation of the web due to drying and winding stress.

Empirical model of basis weight Physical model of basis weight

Inputs: Refiner specific load, stock mix, steam Inputs: Speed, stock flow, stock consistency
pressures Output: Basis weight of paper

Output: Correction to the basis weight of physical

model
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Steam pressures dryers’ power

T b bl

Raw materials, Slice, Jet-to- , Machine Linea Calender K N
refining energy wire ratio speed {ESJFGS Steam and pressures Preparation of coating color

condensate system Pigment coating
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Figure 3.10 Overview of hybrid modeling of basis weight.

In this work a very simple physical basis weight model was used to predict the new
basis weight after the grade change. The same model can be used also to predict
target values for machine speed and thick stock flow. First, a basis weight coefficient
Kew that includes the losses and reformations of web was calculated at the
beginning of a grade change:

KBW = BWact * V/ qstock (3-4)

where BW, is the basis weight before grade change, v is the speed of the paper
machine and gs.ck iS the total flow of stock to the headbox(es).
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Then the prediction of the new basis weight at the end of a grade change was
calculated:

BWpred = KHYBKBanock Pred /Vpred (3-5)

where BW,q is the predicted basis weight at the end of grade change, KBW is the
basis weight coefficient, Kyyg is the tuning parameter of the hybrid model, vyeq and
Ostockpred @r€ the corresponding speed of the paper machine and the total flow of
stock to the headbox(es).

The empirical model is used to correct the gain of the physical model. The empirical
model includes for example variables from the proportioning, refining, head box
(slice, jet-to-wire ratio) and steam pressures. The steam pressures are expected to
take into account the shrinkage effects into the model. The complete list of variables
is in Appendix B.

3.6. Hybrid model for drying of coating

The hybrid model for the drying of coating has physical and empirical parts. The
input to the physical model includes machine speed, IR temperatures and air dryer
temperatures (Figure 3.11). The completing empirical model has for example refining
energy, and jet-to-wire ratio of the head box as inputs. The complete list of variables
is in Appendix A.

Physical model of coat moisture

Empirical model of coat moisture Inputs: Speed, IR temperature, air drying temperature

- . . . Output: Coat moisture
Inputs: Refining energy, jet-to-wire ratio

Output: Correction to the coat moisture of the physical
model
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Figure 3.11 Overview of hybrid modeling of coat moisture.

The drying of coating is modeled in four parts each separated by a free draw that are
modeled as in the case of paper web. First the moisture of the web is increased due
to application of coating color on the surface of web (Figure 3.12). Then IR drying
(gas burners or electric radiators) is modeled with an appropriate equation
completed with the on-off information of the IR elements. After that the drying with
heated impingement air (gas burners) is modeled including on-off information of
burners. Finally cylinder drying is modeled the same way as in the case of paper web
except that the parameters are different (Heikkila 1992). The equations of the
physical model of coat moisture are in Appendix C.
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Figure 3.12 Physical modeling of drying of coating.

3.7. Hybrid model for a coating weight

The hybrid model of coat weight consists of a physical model of a blade coater and
an empirical model (Figure 3.13). The physical model uses machine speed, blade
angle and blade pressure (position) as inputs. The empirical model uses for example
refining energy and jet-to-wire ratio of head box as inputs. The complete list of
variables is in Appendix A.

Physical model of coat weight

Empirical model of coat weight Inputs: Speed, blade angle, blade position

- . . . Output: Coat weight
Inputs: Refining energy, jet-to-wire ratio

Output: Correction to the coat weight of the physical
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Figure 3.13 Overview of hybrid modeling of coat weight.
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Figure 3.14 Physical modeling of coat weight of web

A coating unit is modeled in three parts (Figure 3.14). First the coating color is
applied on the surface of the web. Then the coating color is drained into the web and
as a result a static coating layer is formed on top of the web. Finally the excess of
coating color is removed by the blade. The dependence of the blade pressure to the
amount of coat weight is not known exactly. Qualitatively it is reported by Eklund and
Kahila (1978) that the amount is inversely proportional with a beveled blade and
directly proportional with a low angle blade (Figure 3.15).

Coat weight

Beveled . Intermediate . Low angle

Blade pressure

Figure 3.15 Relationship between coat weight and blade pressure (Eklund and
Kahila 1978).

The empirical nonlinear model that relates the blade angle and pressure to the coat
weight, dates back year 1978 and no other models exist in the literature. This means
that in the hybrid modeling the empirical part will be more important than in the other
cases. The contribution of the physical model will come from information of the on-off
modes of the coaters and method of application (beveled or low angle blade). The
most important models are presented in Appendix D.

3.8. Conclusions
The hybrid modeling method is defined as a combination of simple physical and
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empirical modeling. The objective is to get the best from both methods. If the
modeling data is collected during normal process operation, the data will contain
correlated variables or in other words the data is multicollinear.

Statistical multivariable subspace methods such as PLS can be used to avoid the
adverse effects of correlated variables. A short introduction is given about PLS in
order to present the basic properties of statistical multivariable subspace methods
and to list the most important references.

A hybrid modeling structure that combines simple physical models with PLS in
parallel and another empirical model that is used to adjust parameters of the physical
model is proposed to complicated modeling problems of grade change on a paper
machine.

An introduction to the modeling of moisture of base paper, coating and weight of
base paper and coating is presented. The emphasis is on simple models that could
be used for practical modeling of a paper machine. All the models can be tuned to fit
to a response from a paper machine if there exists detailed temperature information
of the drying and coating section. Usually a detailed study has been done in order to
improve the efficiency of a drying section and the needed temperatures can be
compiled from the results. The same cannot be necessary said about the coating
section.

A survey of structure of paper and of different drying theories gives background to
the simplified model of drying of web. A good model for drying of web is a key
element to a successful grade change because it is assumed to be the most
significant factor of performance improvement.

Modeling of coat moisture and coat weight is presented also in detail because a
successful base paper change can occur especially in an on-machine coater. It is
also noted there does not exist many studies about a grade change on a coater in
literature.

Modeling of coat moisture and coat weight is presented also in detail because a
successful base paper change can occur especially in an on-machine coater. It is
also noted there does not exist many studies about a grade change on a coater in
literature.
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4. EXPERIMENTAL METHODS AND TECHNIQUES

A good approach to start a modeling research is to clarify to oneself the operation of
the process and the practice the operators run the process. The modeling starts
already in the data collection because it is essential for the validation of models. The
collected data from the process forms the raw material for the empirical modeling
and for the estimation of parameters of physical models. Typically there is abundant
amount of collected data so that there is a need to select the most influential variable
for the modeling.

In the modeling, the predictive properties of the models are emphasized due to the
objectives of a grade change. The models should be readily applicable to different
processes and the tuning should be possible with a finite amount of samples. Due to
adaptive tuning with a large number of variables the model is explicitly defined
without losing some of its ability to generalize.

The most important contribution of this chapter is the presentation of a procedure for
adaptive tuning of hybrid models with a very large number of parameters. Also a
significant contribution is the procedure of the application of this hybrid model to the
target board machine with four on-machine coaters.

The chapter starts with a short description of the target board machine. Then the
collection and selection of grade changes, variables and samples are surveyed.
Then the procedure for the selection of the structure of PLS model is presented.
After that the hybrid modeling method is summarized. The chapter concludes with a
summary of calculation results.

4.1. Modeling methods of a grade change on a paper machine

The hybrid modeling methods are applied to a board machine. It includes 8 refiners,
3 headboxes, a drying section with 60 cylinders and 4 on-machine blade coaters
(Figure 4.1). The refiner lines are for the softwood. Hardwood lines are for the top
and bottom layer and for the middle layer of board. Broke and an extra pulp line have
also refiners of them own. The three headboxes correspond to the top, middle and
bottom layer of the board. The drying section is modeled to the first measuring frame
that is just before the sizing unit.

The coaters can apply double coating to both sides or even triple coating to one side.
The first two coaters use beveled blades and the next two low angle blades. Drying
of each coating is done with infrared (IR), air drying and cylinder drying.
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Figure 4.1 Modeling sections of a grade change on the target board machine

The modeling is done with two data sets. The first set contains dedicated detailed
data that include temperature and moisture data from the drying section and coaters
for two grades and is used to tune the physical models. Then another larger set, in
this case 30 grade changes, is used for modeling. The sampling and selection of
variables are presented in the following sections.

The modeling procedure is applied to the target board machine. The modeling
structure is defined in the following sections. The survey on modeling was given in
Chapter 3 ‘Modeling of a paper machine for a grade change’ and the list of variables
are in Appendix A. Details of physical models for moisture of base paper are given in
Appendix B, for drying of coating in Appendix C and for coat weight in Appendix D.

4.2. Collection and selection of grade change data

Data collection of the grade change modeling was done automatically from the
distributed control system (DCS) and the quality control system of a board machine.
The data collection software transferred data every 5 second from the DCS to a
personal computer. Altogether 217 grade changes were saved successfully for
further analysis during the time period of one year. Only 173 grade changes were
accepted to the hybrid modeling due to faults in the data. Table 4.2 shows a list of
measured variables from the coating section.
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Table 4.2 Examples of collected variables from the coaters to the reel.

Name

Total gas flow to IR-burners

Infrared dryer on/off (for each block)

Airfoil air temperature (for each unit)

Airfoil running on/off (for each unit)

Moisture (before coating 1)

Basis weight (before coater 1)

Caliper (before coater 1)

Moisture (before each coater)

Coat weight (before each coater)

Blade pressure (on each coater)

Blade angle (on each coater)

Basis weight (at pope)

Moisture (at pope)

Caliper (at pope)

Pope speed

Grade change on/off

The moisture of base board for example is effected by all steam pressures, machine
speed, mix of stock components, chemicals and refining of stock components
(Figure 4.2). The sampling instants are chosen just before and after the first actions
of a grade change. The first actions are denoted in this thesis to be performed by the
original automation that is a combination of the actions taken by the personnel and
automation. Samples were also taken far from the grade change after the process
response had stayed 10 to 20 min within certain range. These were used as
reference values if setpoints were not available. Modeling of moisture grade change
was also tested with this data. The efficiency of a grade change is estimated for
example by comparing standard deviations of errors at the first actions and
prediction of models. Also the standard deviations of modeling error of PLS and
hybrid models were compared.

Moisture grade change of base paperboard
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Figure 4.2 Sampling instants and actions of control variables in a grade change as
an example for the moisture of base board.

It was also found that by removing the effects of dead time and time constant from
all the variables the prediction accuracy of the models was improved greatly. For
example the error range decreased from about 1.5 % to 0.75 % just by removing the
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time effects from variables that were used in the moisture modeling (Viitamaki 2003).
The estimation of the dead time was done by calculating the transport delays. Time
constant of the drying section multiplied by three was also added to the dead time.
Similar approach was also used for basis weight and coater section modeling.

The detailed (off-line) data that are used for the physical modeling are usually made
available by the mill. The data include temperatures of web, cylinders, infrared
burners, air drying burners and temperatures inside the hood of the drying section of
a paper machine. The physical models could use also humidity but the reliability of
the measurements is not good enough. The structural data, such as lengths of free
draws, cylinder diameters, thickness of the cylinder walls and the existence of
cylinder bars must also be collected from the mill.

Selection of variables for the analysis is important because the variables that do not
have any correlation with the explained variable may not produce good results.
However, PLS is quite insensitive to the data that are not correlated with the output
data because for example PLS seeks automatically the variables that have the
highest covariance with the output data (Wise and Gallagher 1996). Each grade
change file consists of more than 269 variables ranging from the refiners to the reel.
The variables were chosen for the modeling both according to a prior knowledge and
empirical methods. The most influential variables were chosen by the prior
information that was acquired from the paper mill personnel and modeling literature.
The list of selected variables and the PLS procedure are given in Appendix A.

The selection model structure for the PLS is the same as the number of principal
components. This was done by genetic optimization and using k-fold gross-validation
combined with Subspace Information Criterion, SIC (Sugiyama and Ogawa 2001,
Appendix E) as the penalty.

4 I—

Averaged Prediction error, %

Modeling Sample Size

Figure 4.3 Prediction error of a PLS model as a function of principal components
and modeling sample size.

Three principal components were found to be the most appropriate number for the
PLS modeling in the hybrid models as well as with PLS models in itself. The result is
surprisingly low but it is supported by modeling runs with PLS that are presented in
Figure 4.3. It can be seen from the figure, that when the sample size is 30, there is
not much improvement to be gained even though the number of principal
components increased from three. Thus the SIC penalty will give the simplest
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structure of the model. It can be also seen from the plot that modeling with 30 grade
changes will give reasonably good results. The reason for this is that the span of 30
grade changes covers the range of production cycle run with the broad machine. It
was also considered important to be able to make accurate predictions quickly after
process changes or start of new board grades. Besides, it was confirmed earlier that
hybrid models worked well even with sample sizes of 10 grade changes (Viitamaki
2003).

In practice the modeling performance (standard deviation of predicted moisture
error) is independent of the index of the grade changes where the modeling samples
are extracted. This is shown in Figure 4.4 where the number of principal components
of a PLS model is 3 and the modeling sample size is 30. For convenience, the
extraction point was chosen to start from the first grade change to the 30th grade
change.
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Figure 4.4 Standard deviation of predicted moisture error of PLS model as a
function of starting point of 30 modeling samples. Number of primary
components is 3.
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4.3. Modeling procedure for the grade changes

The hybrid modeling can begin when the model structure of the empirical model is
chosen and the physical models built up as presented in the chapter 3 ‘Modeling of a
paper machine for a grade change’. First the data must be divided to input and
output variables and also to modeling and test samples. Then the physical modeling
a grade change (GC) is done with the detailed (off-line) data and after that with the
on-line data. Finally PLS modeling is applied to the error of physical modeling (Figure
4.5).

?

Detailed physical modeling

- Utilization of off-line measurements
- Calculated variables

- First principles models
- Utilization on on-line measurements

- Calculation at the start and at the end of GC

Physical modeling

- Calculation of the quantity of a GC
- Calculation of prediction errors

Data extraction for
empirical modeling

- Modeling the error of the physical models
- Utilization of PLS.
- Penalty calculation (constraints, ICOMP)

Empirical modeling

Performance

-Calculation hybrid modeling errors
analysis

- Statistical evaluations

Q

Figure 4.5 Simplified hybrid modeling procedure

The models are tuned with genetic optimization (Figure 4.6). In the optimization and
also in the prediction the process is simulated with the physical model at the start
and at the first control actions (or at the end grade change) and then the error of the
guantity of grade change is calculated. The error, the unknown part is then submitted
to empirical modeling with PLS. Finally the performances of the models are validated
by the test samples that were not used in the modeling of process.
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P: h
aper Mmachine and a the end
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Figure 4.6 Tuning of hybrid model of a grade change. The tuning is performed with
the modeling set and separate samples are fed into each model. Genetic
algorithm uses a loss function (sum of ygcer IS the empirical risk) to tune the
simple physical model. At the same time empirical model 1 (PLS) is tuned to
correct the error of the magnitude of the grade change. Z is a collection of
variables that are not measured but have influence on the output y. X1 is
empirical modeling data. X244, and X2¢,4 are data sets for the start and end of
grade change. X3 is data for tuning of the physical model.

Genetic algorithms have been used to solve difficult problems in which the objective
function is not convex or the problem is otherwise difficult to handle by classical
optimization methods. A simple genetic algorithm was first presented by Holland
(1975). The form of the algorithm used in the optimization is still basically the same.
Only a short introduction on genetic methods is given here because there exists for
example a good textbook by Goldberg (1989) and many of other books and articles
about the topic.

Genetic algorithms simulate evolution by producing populations and letting only the
fittest members to survive. The search for the best solution is diversified through
mutation, crossover and selection operations applied to individuals in the population.
The selected members reproduce and the iteration is repeated certain number of
times so that the predefined termination condition is reached and thus the final
generation is born.

The initial population is typically selected randomly and consists of binary coded
elements (genes) but the tools allow also the use of non-binary parameters. In
mutation ones and zeroes are set or reset randomly with a predefined probability. In
crossover the positions adjacent genes are switched with a predefined probability.

The power of genetic search is that it does not get trapped to a local minimum as
easily as classical optimization algorithms do. The random search path of a genetic
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algorithm alleviates the problem of getting results that depend on the initial starting
point of the optimization. Genetic optimization can handle a large number of
parameters and still find the fittest parameters to the tuning. A genetic algorithm
converges slowly and produces usually sub-optimal results. However, genetic
optimization is very suitable to be used with the grade change data that consists
easily of over 200 variables and a loss function with many local minimums.

Penalization

In order to be able to identify reliably model structures (inference) or to generate
predictions, the penalty function of an inference method must contain in addition to
lack of fit a term that addresses the model complexity (Cherkassky and Mulier 1998).
Complexity means here dependencies or correlation among the parameter estimates
(Bozdogan 2000). A generic form of the penalty (empirical risk) function could be the
following:

Loss = Lack of fit + Model complexity

The overall penalty of the hybrid model consists of error of the off-line model, error of
the physical model with on-line variable, error of PLS part and the information
complexity criterion (ICOMP). Each error is a sum of empirical error, penalty of
predicting to a wrong direction and penalty of infeasible values as for example
moisture below zero, complex values, etc. The empirical error in the PLS model is
calculated as k-fold gross-validation. The components are weighted experimentally
the most important are penalties that improve to estimate the amount and direction
of the change.

An important penalty function is the information complexity criterion (ICOMP,
Bozdogan 2000). It gives maximal covariance complexity of the covariance matrix

C.(3).
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where T is the covariance matrix, p is the rank of =, 4, is the arithmetic mean of

the eigenvalues of * and /Tg is the geometric mean of the eigenvalues of x:
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An important property of C,/(X)is that it is zero when the covariance matrix is
diagonal. That is to say that the variables of the model are independent. Thus
C,(Z) can be thought to measure the amount of dependence and correlation of the
samples.

In this work we use a combination of c, and C,(X) . Mallows' cp is a subset predictor
and is defined as (Mallows 1973):

2
> (y-y,) /sS—n+2p=RSE,/s"—n+2p (1.2)

where y, is the predicted value of y from the p regressors.
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s® is standard deviation is a finite sample estimate of error variance o©°

n is the sample size and RSE, stands for the residual square after regression of p on
the complete set of n.

In addition C,(X) will readily compensate for multicollinearity that is common in the
measured data.

4.4. Calculation of the results

The results were calculated for the original automation performance (reference
values from the collected data), PLS model, simplified physical model, combined
physical and empirical model (parallel hybrid model) and extended combined
physical and empirical model (series/parallel hybrid model) with ICOMP penalty
(Table 4.3).

Table 4.3 Summary of the basic properties of the applied modeling methods.

Modeling Physical part | Empirical Tuning method
method part
PLS Not applicable 3 principal Number of principal components by SIC
components, with k-fold gross-validation
36 variables
Hybrid Simple model 3 principal Physical part tuned first to detailed data,
as in the components, then to prediction of grade changes.
literature 36 variables PLS is the same as above.
Hybrid Simple model 3 principal Physical part tuned first to detailed data,
parameter as in the components, then to prediction of grade changes.
tuning, literature 36 variables Model parameters (heat transfer
traditional coefficients) tuned with measured data
PLS is the same as above.
Hybrid Simple model 3 principal Physical part tuned first to detailed data,
parameter as in the components, then to prediction of grade changes.
tuning, ICOMP | literature 36 variables Model parameters (heat transfer
coefficients) tuned with measured data.
Tuning is done with ICOMP in the loss
function. PLS is the same as above.

After the hybrid models were tuned they were used to predict the quantity of grade
change by using the validation set of the samples. First the physical models were
used to predict the values for example moisture of base board at the start and at the
end of the grade change. Then the difference calculated by the outputs of these
models were corrected by the PLS model output. The model outputs (y) were then
compared with the actual values from the process measurements and for example
standard deviations of the prediction errors and other statistics were calculated.

The performance of the original automation, PLS and hybrid models are presented
with the help of histograms and standard deviations. Also the percentage of the
number grade changes that start to go in the wrong direction (for example moisture
increases when it should decrease) is given. The comparison of standard deviations
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is performed with F-tests.

The used genetic algorithm and the physical models and optimization were run with
Matlab (product of the MathWorks, Inc) and the PLS model was developed with the
PLS toolbox (Eigenvector Technologies).

The results of these predictions are reported in Chapter 5 ‘Results with hybrid
models’.
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5. RESULTS WITH HYBRID MODELS

The modeled processes are moisture of board, basis weight, coat moisture and coat
weight. The results of the modeling are presented as a standard deviation of prediction
error. The modeling approaches contain the results estimated from the collected data
(first actions), PLS model and several hybrid model structures. Hybrid modeling showed
the best results in most of the cases.

The models must be validated with real data from a process in order to be able to
declare the results useful for industrial practice. This is usually neglected in the research
work. Typically only two or three selected examples are shown that support the
proposed performance of the developed model.

In this research an alternative approach has been taken. The goal was set to validate
the prediction performance of the models with a large number of measurements from a
real board mill. The data set contains 172 grade changes so that the results will have
exceptionally good statistical value compared to the other studies presented in the
literature.

The main contribution of this chapter is the report on qualitative and quantitative benefits
of using hybrid models in grade changes. The main subject is the presentation of the
prediction performance of the models and not the fitting of the models to a large set of
grade change data. For the first time an overall approach to the grade change on a
board machine from the raw materials to the on-machine coaters is presented.
Especially, the results for coat weight and coat moisture grade changes have not been
presented before in the literature. An important contribution is also the validation of the
results of the predictions of the models against real measurement data from the board
machine.

First the results of the modeling of moisture of base board are presented in detail. Then
the summary of the results of models of coat moisture, coat weight and basis weight
(Figure 5.1) follows.

Calculation of
results with hybrid
Moisture of / models \ Coat
base board moisture
Basis Coat
weight weight

Figure 5.1 Overview of the results in the chapter.
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5.1. Moisture of base board

The results are generated with models that use a large number of variables from the
board machine. For example, the physical part of the hybrid model uses measurements
from the drying section and the empirical model 34 variables from the other sections of
the board machine (Figure 5.2). A complete list of variables can be found in the
Appendix A and the modeling equations in the Appendix B. In addition to the variables
the models have many tuning parameters as described in the Appendixes.

Empirical model for hybrid model Physical model
”| of drying of board .ofdrying section
Input: several variables

Output: correction of modeling
error of the physical model

5 parameters
Empirical model for adjusting the
hybrid model of drying section

R 34 variables
A
s N Moisture of base board
Refiners and proportlonlng Wet end Drying section Coating section

Figure 5.2 Summary of the hybrid modeling of moisture of base board.
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Figure 5.3 The distribution of all 172 moisture changes of base board after the first
actions compared to the mean value (1.9 %).

The distribution of all 172 moisture changes to be modeled is presented in Figure 5.3.
The changes are calculated as a difference between the beginning of grade change and
the response values at the first control actions. The data is almost normally distributed
with a longer tail on the right side. However, there should not be problems if robust
methods are used.

Moisture grade change of base paperboard

— Flow
5r — Steam pressure|
— Speed

+ Moisture

R
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{
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Time [min]

First actions | —

Figure 5.4 The sampling instants for the modeling of moisture of base board.

Scaled values
N

First the modeling is carried out with the samples taken from the position of the first
control actions (combination of the actions of personnel and automation) as shown in
Figure 5.4.

The results are presented with two approaches. First, the physical part of the hybrid
model is tuned to predict the grade changes and then PLS is added to the model. In the
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case of ICOMP penalty all the parts of the hybrid model are optimized for prediction at
the same time. Then the best model (penalized ICOMP) model is used to predict the
moisture at the end of grade changes.

5.1.1. Results with the samples taken from the position of the first
control actions
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N
o

w
[

std 3.0

w
o

&
|

=
[¢)]

Percentage of number of grade changes
= N
o o

(&)

ﬁﬂﬂﬂﬂmﬂﬂﬂ

-6-5-4-3-2-10123456
Deviation from the target moisture value

o

Figure 5.5 Histogram of moisture grade change deviations of first actions compared to
the target values the for the moisture of base board.

The standard deviation of moisture error in the first actions case of base board was 3.0
% (Figure 5.5). The standard deviations are calculated from the difference between the
moisture values at the end of grade change and the first actions position so that it
corresponds to the predictions made with the models.
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Figure 5.6 Histogram of grade change modeling errors of the PLS model for the
moisture of base board.

In the PLS modeling number of principal components is the most important tuning
parameter. The optimal number of principal components to be held in the models was
found to be 3 with the SIC criterion (Figure 5.6). The standard deviation with the PLS
modeling error was 2.9 %.

A simple physical model was first tuned with a genetic algorithm to fit the off-line data as
for example moisture of web, temperatures of steam, cylinders and web. Then the
physical model was tuned with a help of separate parameters to the data of 30 grade
changes and the predictions were made for 142 grade changes. The method is
explained in detail in the section 4.3 ‘Modeling procedure for the grade changes’.
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Figure 5.7 Histogram of grade change modeling errors of the simple physical model
for the moisture of base board.

The mere physical model gave standard deviation of 3.3 % for the modeling error
(Figure 5.7). However, some over 15 % deviations were discovered.
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Figure 5.8 Histogram of grade change modeling errors of the simple physical + PLS
(hybrid) model for the moisture of base board.

Then the PLS model was added and the hybrid model gave good results. The standard
deviation of the modeling error was 1.7 % (Figure 5.8). There are only three values
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Physical Model with tuned parameters
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Figure 5.9 Histogram of grade change modeling errors of the physical model with tuned

parameters for the moisture of base board.

The hybrid model was then extended with adaptively tunable parameters as explained in
the section 4.2. Even though the physical model could have been fitted more accurately
with the parameter tuning, the predictive properties did not improve despite the added
parameters. The standard deviation of the modeling error for the physical part of the

model was 3.4 % (Figure 5.9).
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Physical Model with tuned parameters + PLS
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Figure 5.10 Histogram of grade change modeling errors of the hybrid model with tuned
parameters with classical nonlinear optimization for the moisture of base board.

The standard deviation for the model error was 2.2 % when PLS model was added to
the tuned physical model (Figure 5.10).
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Figure 5.11 Histogram of grade change modeling errors of the physical model with
tuned (ICOMP) parameters for the moisture of base board.

Lastly, ICOMP penalizing function was taken into the cost function of genetic
optimization. ICOMP penalized tuning was used with the approach where all the parts of
the hybrid model were tuned as a combined unit. The parameters of the physical model
were tuned so that the weight was on the final moisture error. In the other approaches
the physical model was tuned first and the residual moisture error was minimized with
PLS. In this approach the standard deviation of the error of the physical model was 3.0
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that is a little better than the physical model (3.3 %) that was tuned with more traditional
method (Figure 5.11).

Physical Model + PLS with tuned parameters (ICOMP)
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Figure 5.12 Histogram of grade change modeling errors of the hybrid model with tuned
(ICOMP) parameters for the moisture of base board.

The corresponding hybrid model gave the standard deviation of 1.6% for the modeling
error that is better than in any of the previous models (Figure 5.12). A symmetrical
histogram shows also that there are not many large errors.

The results are summarized in Table 5.1. The F-statistics, cumulative distribution
function (CDF) show high values 1.76 and 1.83 corresponding ordinary hybrid model
and hybrid model with ICOMP. This means that the assumption of equivalence of the
standard deviations can be clearly rejected with 95% confidence.
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Table 5.1 Comparison of standard deviations (std) of modeling errors of moisture of
base board to the first actions case with F-tests. Physical denotes the physical part
of the corresponding hybrid model. First actions denotes the response values due to
the first control actions done during grade changes.

Physical | Hybrid | Physical | Hybrid | CDF®
or First | or PLS | vs. First | or PLS
actions actions VS.
First
actions
M odeling method std std F-test F-test
First actions 2.99 1.00
PLS 2.92 1.02 1.29
Hybrid 3.29 1.70 1.10 1.76 1.29
Hybrid param. tuning, traditional 3.40 2.16 1.13 1.39 1.24
Hybrid param. tuning, ICOMP 2.99 1.63 1.00 1.83 1.29

YCumulative distribution function (CDF) value of the F-test statistic with assumption of
equal variances is rejected wi o confidence
qual jected with 95 % fid

5.1.2. Prediction of the grade change performance at the end of
grade change

Finally the hybrid model with ICOMP parameter tuning model (the best model) was used
to predict the moisture of base board at the end of grade change. The model was tuned
simultaneously with both the data sampled after the first actions and after the grade
change. This method was chosen due to the low excitation of moisture values at the end
of grade change (Figure 5.13).
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Figure 5.13 The distribution of amount of moisture changes of board from the beginning
to the end of grade change.

The standard deviation for the hybrid modeling error with ICOMP parameter tuning
model was 1.1% (Figure 5.14). The model performs very well compared to the first
actions case as can be seen from the plot of moisture errors (Figure 5.15 and Figure
5.16).
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Figure 5.14 Histogram of grade change modeling errors of the hybrid model with tuned
(ICOMP) parameters for the moisture of board at the end of grade change.

The modeling errors of hybrid model with ICOMP and the moisture errors at the first
actions are plotted grade change by grade change in Figure 5.15 and Figure 5.16.
Qualitatively, it can be seen that the modeling error of the hybrid model is quite small.

Comparison of modeling algorithms
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Figure 5.15 Moisture errors of first actions (Origerror) and Hybrid model with parameter

tuning with ICOMP (ICMPhyb) at the end of grade change. Considered grade
changes are those with indices from 30 to 100.
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Figure 5.16 Moisture errors of first actions (Origerror) and Hybrid model with parameter

tuning with ICOMP (ICMPhyb) at the end of grade change. Considered grade
changes are those with indices from 101 to 173.

5.2. Basis weight modeling

The results are generated with models that use a large humber of variables from the
board machine. For example, the physical part of the hybrid model uses measurements
from the drying section and the empirical model 34 variables from the other sections of

the board machine (Figure 5.17). Only the gain of the model is adjusted. A complete list
of variables can be found in Appendix A.
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Empirical model for hybrid model Physical model
”| of drying of board .of drying section
Input: several variables
Output: correction of modeling
error of the physical model
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Figure 5.17 Summary of the modeling of basis weight of the board.
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Figure 5.18 The distribution of basis weight changes of base board.

The basis weight modeling was not found very important by the mill personnel. The
adjustments during a grade change were considered easier than for the moisture of
base board. However, the basis weight changes of paperboard vary from about -120
g/m” to 100 g/m® which is quite large range (Figure 5.18). It is sometimes necessary to
turn off the automatics and to make a large change manually.

In the following the basis weight error after the first actions and the performance of the
modeling approaches are presented with the help of histograms and standard
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deviations.
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Figure 5.19 Sampling positions for the basis weight modeling.

The sampling is done in the same way as with the moisture of base board: start, first
actions and at the end of grade change (Figure 5.19).

Table 5.2 Comparison of standard deviations (std) of modeling methods of basis weight
to the first actions case with F-tests.

Base or | Hybrid | Base | Hybrid
First or First | or PLS
actions actions
Modeling method std std F-test F-test | CDF"
First actions 19.67 1.00
PLS 29.27 1.49 1.29
Hybrid param. tuning, traditional 14.44 12.82 1.36 1.53 1.29

YCumulative distribution function (CDF) value of the F-test statistic with assumption of
equal variances is rejected with 95 % confidence

The results confirm that the basis weight error after the first actions is rather small,
Except for the hybrid model, none of the other models could prove to be clearly better
than the existing grade change method. The standard deviation for the first actions case
is 19.7 g/m? that is higher than expected.

The standard deviation of PLS modeling error is high (29 g/m?) and hybrid modeling
error with tuned parameters is on the level 13 g/m”. The PLS model was tuned with
Subspace Information Criterion (SIC) and the resulting number of principal components
was one. The tuning was confirmed to be the best by running the modeling with 3 and 7
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principal components with standard deviations of 31 g/m* and 44 g/m” respectively.

5.3. Coat moisture

The results are generated with models that use large amount of variables from the
board machine. For example, the physical part of hybrid model uses measurements
from the drying section and the empirical model 36 variables from the other sections of
the board machine (Figure 5.20). Eight parameters of the physical model are adjusted.
A complete list of variables can be found in Appendix A and the modeling equations in
Appendix C.

Empirical model for hybrid model Physical model
> of drying of coating of drying coating
Input: several variables o

Output: correction of modeling
error of the physical model

8 parameters
Empirical model for adjusting the
hybrid model of drying coating

R 36 variables
/—’/ ~— Coat moistures
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Figure 5.20 Summary of the hybrid modeling of coat moisture.
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Figure 5.21 Sampling instants for the modeling of coat moisture.

The sampling for the modeling is done at the start, at first actions and at the end of
grade change (Figure 5.21).
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Figure 5.22 Histograms of coat moisture change errors after the fist control actions.

The coat moisture modeling was done with first 17 grade changes out of total number of
89. There were 172 grade changes available in the base paperboard modeling but in the
coating studies 83 grade changes were considered unfit for use. The moisture error of
the grade changes after the first actions is presented in Figure 5.22. It can be seen that
there are not great differences between coaters. The performance of hybrid model with
ICOMP tuning is presented with the help of histograms and standard deviations in
Figure 5.23.
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Figure 5.23 Histograms of coat moisture modeling error for the hybrid model with
ICOMP tuning.

The hybrid model with the parameters tuned with ICOMP is equal or better than PLS
model in the prediction of coat moisture (Table 5.3). The errors of models were
generally better than in the first actions case. However, only hybrid model had a lower
standard deviation on Coater 3 than in the first actions case.

Table 5.3 Summary of the first actions case, PLS model and the hybrid model of coat
moisture with the ICOMP tuning.

Process First actions PLS Hybrid ICOMP
STD, STD, STD,

Coat moisture | Coat moisture | Coat moisture

% % %

Coater 1 1.41 0.22 0.23
Coater 2 0.90 0.41 0.43
Coater 3 0.85 0.92 0.67
Coater 4 0.78 0.57 0.58
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5.4. Coat weight

The results are generated with models that use a large amount of variables from the
board machine. For example, the physical part of the hybrid model uses measurements
from the drying section and the empirical model 36 variables from the other sections of
the board machine (Figure 5.24). Nine parameters of the physical model are adjusted. A
complete list of variables can be found in Appendix A and the modeling equations in

Appendix D.
Empirical model for hybrid model Physical model
> of coat weight - of coat weight
Input: several variables

Output: correction of modeling
error of the physical model

9 parameters
Empirical model for adjusting the

hybrid model of coat weight

R_36 variables
/—/ — Coat weights

d proportioning Wet end Drying section Coating section

Figure 5.24 Summary of the hybrid modeling of coat weight.

Coat weight during grade change

Coating weight [g/m2]

o Coater 1
+ Coater 2

X Coater 3
\ % Coater 4

g 5 g 5
0 50 100 Ej 200

Time [rpin]

Figure 5.25 Sampling instants of coat weight modeling.

| Start || First actions |_ | End

The sampling for the modeling is done at the start, at first actions and at the end of
grade change (Figure 5.25).
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Figure 5.26 Histograms of coat weight change errors on coaters after the first control
actions.

The coat weight modeling was done with first 17 grade changes out of total number of
89 as with coat moisture. The errors in the coat weight after the first actions are
compared to the final values that are presented in Figure 5.26. It can be seen that there
are great differences between coaters 1, 2 and 3 compared to coater 4.
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Figure 5.27 Histograms of coat weight change modeling errors on coaters for the hybrid
model with ICOMP tuning.

In Figure 5.27 the performance of the hybrid model with ICOMP tuning is presented with
the help of histograms and standard deviations. The summary of all the modeling cases
is presented in Table 5.4. The hybrid modeling error with ICOMP has the lowest
standard deviation of coat weight. Especially, in the case of coater 4, the standard
deviation is 0.87 g/m? when it is 1.55 g/m?® with PLS.

Table 5.4 Summary of coat weight PLS model and hybrid model with the ICOMP tuning.

Process First actions PLS Hybrid ICOMP
STD, STD, STD,
Coat weight Coat weight Coat weight
g/m® g/m® g/m®
Coater 1 0.72 1.31 1.01
Coater 2 2.40 1.26 1.18
Coater 3 2.27 1.28 1.00
Coater 4 3.40 1.55 0.87
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6. DISSCUSSION

In this chapter the prediction accuracy of models is discussed. Especially, the
percentage of how much the standard deviations have improved and the percentage of
grade changes that have gone to the wrong direction. In addition the duration of grade
changes is estimated from the measurements and then an approximate model is used
to estimate the duration if models were used in the planning the grade changes. The
parameters of the genetic optimization and the loadings of the PLS models are also
analyzed.

Comparison of the prediction properties of modeling approaches is done by using data
of 172 grade changes that were collected from a real board machine. It is shown that a
hybrid model with ICOMP tuning is the best model with 44% improvement compared to
the PLS in the standard deviation of prediction errors. The improvement compared to
the standard deviation at the first actions is 46%. The result is very promising but it is
not comparable to the modeling approaches because the first actions deviations were
estimated from the data and the modeling results were done by predicting with the
models. The improvement at the end of the grade change can be even 63% compared
to the first actions deviations if slice opening is taken into the model.

The performance of the models in a paper mill is different compared to the modeling
results. This is due to the human interactions with the automation as well as to the
actual duration of the grade change. For example, it is important to achieve operator
acceptance for a new approach to the grade change tasks. The operator acceptance is
especially sensitive to the response time of the model system or on the number of
predictions that go to the wrong direction. If the operators do not accept the system it
does not help even if the models were excellent. However, the predictions were made
with the model almost 1.5 years forward, when in the real paper mill only the prediction
to next grade change is needed.

The discussion of the results is based on the assumption that the real board machine
would have the same response as the model. The estimated output for example
moisture, depend on many variables that would make it very difficult to estimate the
target values. In practice several assumptions had to be made on how to set all the
manipulated variables of the paper machine optimally. Testing at mill should be done to
be absolutely sure that the results presented in this thesis can be achieved in a board
machine. This would be an extensive task and is out of scope of this thesis.

In this chapter first a discussion of prediction performance of models of moisture of base
board, basis weight, coat moisture and coat weight is given. In addition to that the
parameters of the models are analyzed.

6.1. Discussion about the results of the base board moisture
model

The modeling is done with the data sampled from the beginning of the grade change, at
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the first actions and at the end of grade change. As mentioned in section 5.1, the first
actions case denotes the measured response values due to the first control actions
taken on the board machine. The error is calculated as a difference to set-point the
moisture value. The models were also evaluated at the first actions and the end of grade
changes. The analysis of the predictions is given in the following section.

6.1.1. Prediction of moisture of base board after the first control
actions

The standard deviation of the moistures at the beginning of grade change is 1.4% which
is not very wide (Figure 6.1). However, there exist also large values up to 9%. It was a
surprise that it was not possible to tune a model to a perfect fit with several grade
change samples. However, the primary goal was not to achieve the prediction of the
absolute moisture level but rather the change of moisture.

It was also considered to use local models for example by using grade specific models.
However, it was shown earlier that the use of local models did not improve the standard
deviation of moisture model significantly (Viitamaki 1998) and will not be discussed any
further.

Moisture distribution at the start of grade change
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Figure 6.1 Histogram of moisture values at the beginning of grade change.

The results shown in the previous section indicate that the hybrid model with the
parameters tuned with ICOMP was the best of the models tested for the prediction of
grade change moisture of base board. The hybrid model with tuned parameters with
ICOMP included in the loss function of the optimization had f-test value 1.83 (Table 6.1).
The value is clearly over the 95% confidence level (CDF 1.29). The ordinary hybrid
model is the second best with almost as good performance as the more complex model
with ICOMP. The statistical figures are based on predictions of more than 140 grade
changes. According to the author's knowledge, there does not exist another study where
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the performance of the grade change algorithms would have been evaluated as widely
as in this thesis.

Table 6.1 Comparison of standard deviations (std) of modeling methods of moisture of
base board to the first actions case with f-tests and percentage improvement of
hybrid models compared to PLS. Physical denotes the physical part of the
corresponding hybrid model. First actions denote the response values due to first
control actions done during grade changes.

Hybrid or Hybridor | CDF® | Hybrid
PLSvs. First PLSvs. VS.
actions First PLS
improvement actions improv
of std ement
of std
Modeling method % f-test %
PLS 2 1.02 1.29
Hybrid 43 1.76 1.29 42
Hybrid param. tuning, traditional 28 1.39 1.24 26
Hybrid param. tuning, ICOMP 46 1.83 1.29 44

YCumulative distribution function (CDF) value of the F-test statistic with assumption of
equal variances is rejected with 95% confidence

The improvement of standard deviation of moisture error from 3% to 1.6% is 46%
compared to the first actions case. It should be noted that the standard deviations of
modeling errors were better than in the first actions case in over 55% of the grade
changes. However, these results are not completely comparable due to estimations of
first actions data from the measurements. The comparison between PLS and hybrid
model is valid because both methods use the same data as an input and the output are
compared to the same data. PLS can be considered to simulate a modern regression
based grade change automation. It can be seen that the standard deviation of a hybrid
model with ICOMP is 44% better than PLS. This shows also that adding a physical
model to an empirical model is clearly better than just pure empirical model. Also, a
general observation was that the convergence of the optimization was faster with
ICOMP than that with a more standard penalty function. However, this issue was not
elaborated further.

Murphy and Chen (2000) presented results that claimed 35% improvement of reel
moisture range (Table 6.2). Viljamaa et al. (2001) have published results that the fuzzy
system based algorithm improved the error of the predicted set points of a paper
machine with about 15% in average. The model was optimized for 30 grade changes
and then validated for 11 grade changes. However, neither the exact description of the
manipulated variables nor the error statistics of the results of the extended use at the
paper mill was reported.
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Table 6.2. Performance figures of grade change automation from the literature.

M easure Initial New figure | Improv- Reference
figure of of GC ement,
GC %
Reel moisture range of a 3.55% 2.3% 35 Murphy and Chen
paper machine (2000)
Target values of aGC 15 Viljamaaet al.
(2001)

Hybrid modeling was a success because the standard deviation of prediction errors of
the hybrid modeling was significantly smaller than with PLS model. The hybrid model
was also significantly better than the ones presented in the literature although the
comparison is not totally valid. It must also be noted that the hybrid model has not been
tested in the real process use at a board mill. However, the model was able to predict
grade changes that were collected during 1.5 years. In practical use at a paper mill the
model could be tuned after each new grade change, since only the next grade change
needs to be predicted. The weakness of the model is that it is not able to predict
absolute values of the dependent variable (moisture) but only the amount of change.
However, it predicts the change very well (Figure 6.2).

Hybrid Model with tuned parameters (ICOMP) and grade changes
20 T T T T T T T

*

15+

10}

Grade change value, Moisture %

80 100 120 140 160
Moisture grade changes

180

Figure 6.2 Prediction of moisture changes with the hybrid model with tuned (ICOMP)
parameters for the moisture of base board (-) and the real measured grade changes
(*).

A simplified sensitivity of base board moisture to the most important variables is shown

in Figure 6.3. It can be seen from the graph that the most important variable is the
machine speed. Basis weight is also very important but it is dependent on the machine
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speed so that the effects are not separable in reality. The simplified sensitivity is
presented to show that the model reacts to its inputs in correct direction.

14
Sensitivity of board moisture Machine speed
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Figure 6.3 Simplified sensitivity of the base board moisture to minimum and maximum
values of machine speed, basis weight, stock flow and steam pressure 5 (last steam

group).

The prediction performance of the direction of grade changes and comparison of
physical parts and hybrid models are given in Table 6.3. The percentage of grade
changes that would start to go in the wrong direction was high in the first actions case
(44.8%). It should be remembered that this value was calculated by using the samples
from the time instant of the response of the process caused by the first control actions.

The lowest percentage of wrong directions in grade changes would have been with the
physical part of the hybrid model (16%). In this approach the physical model was tuned
first for the best prediction error and to predict the right direction. However, the standard
deviation of the physical part alone is high (3.4%). The hybrid model with the ICOMP in
the cost function, was the second best with 18.6% of the grade changes pointing to the
wrong direction.
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Table 6.3 Prediction performance of the direction of grade changes and testing the
need of the empirical part (PLS) for the hybrid models for each modeling approach.
Physical denotes the physical part of the hybrid model.

Physical PLSor Physical PLSor F-test of | CDF'
model or Hybrid model or Hybrid physical !
First model First actions model Vs
actions hybrid
Option Wrong Wrong Standard Standard
direction | direction | deviation of | deviation of
moisture moisture
error error
% % moisture % moisture %
First actions 44.8 3.0
PLS 29.1 2.9
Hybrid 36 19.8 3.3 1.7 1.76 1.29
Hybrid param. tuning, 16 22 34 22 1.39 124
traditional
Hybrid param. tuning, 24.4 18.6 3.0 16 1.83 1.29
ICOMP

YCumulative distribution function (CDF) value of the F-test statistic with assumption of
equal variances is rejected with 95% confidence

The PLS part has improved the physical model the most in the ICOMP case even
though the physical model had the lowest standard deviation (Table 6.3). All the F-test
values between the physical part and the total hybrid models are above CDF reference
values which means that PLS has improved the performance of models significantly.
This implies that by using hybrid models it is possible to achieve better performance
than with just one model.

6.1.2. Prediction of base board moisture at the end of grade change

Finally the hybrid model with ICOMP parameter tuning model (the best model) was used
to predict the moisture of base board at the end of grade change. The model was tuned
simultaneously with both the data sampled after first actions and at the end of grade
changes. The modeling was not performed at the end of a grade change alone due to
the low excitation of moisture values (Figure 6.4). Standard distribution of moisture
measurements was only 1.6% that is small compared to the 2.9% after the first actions
presented Figure 5.1 in the section 5.1.
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Moisture distribution at the end of grade change
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Figure 6.4 Distribution of board moisture at the end of grade change.

The standard deviation for the hybrid model with ICOMP parameter tuning model was
1.1% (Table 6.4). The improvement is 63% which is even better than at the first actions
situation. However, the models are not totally comparable due to the addition of the
amount of retention aid and the slice opening to the PLS part of the model.

Table 6.4 Comparison of standard deviation (std) of the best modeling method of board
moisture to the first actions case with f-tests at the end of grade change.

Option Wrong Standard F-test of CDF"
direction deviation of physical vs.
moisture error hybrid
% %
First actions 44.8 3.0
Hybrid param. tuning, 38.3 1.1 2.779 1.287
ICOMP at the end of
grade change

YCumulative distribution function (CDF) value of the F-test statistic with assumption of
equal variances is rejected with 95% confidence

It was found that the model could not be tuned to predict the board moisture unless the
change of slice opening was included in the model. Slice opening cannot typically be
adjusted before grade change but it is adjusted manually to comply with the dewatering
rate on the wire. For example, the wet-line of the middle-layer is positioned near by the
point where the layers of board are pressed together in the wire section. This is why
these measurements were excluded from the model at the first actions. This result gives
a clear indication that the hybrid model can be used to evaluate also the response of the
actions of proportioning and headbox to the moisture. However, this issue was not
elaborated. It requires an extensive amount of work and is outside of the scope of this
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thesis.

6.1.3. Efficiency of moisture grade change of board machine

It is interesting to evaluate the time saved in the grade changes because this would
directly show much it is possible to increase the saleable production. This makes it also
possible to estimate economic benefits gained trough model assisted grade changes. Of
course, it should be kept in mind that in the case of board machine with on-machine
coaters the savings potential could not be achieved if all the sections do not perform
well.

The duration of grade changes estimated from the measurements is presented in Figure
6.5. The mean grade change time to reach the target (set point value) range within 1%
range of moisture is about 38 min and to 0.5% range the time is 56 min. The accuracy
of 1% would be enough in most of the cases and the tighter 0.5% range is calculated
just to see if there is any difference in the results.

Duration of grade changes (target +/- 0.5%) Duration of grade changes (target +/- 1%)
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Figure 6.5 Histograms and cumulative graphs of the duration of grade changes on a
board machine. The end of grade change is defined here when the moisture [%] has
been 10 min inside 0.5 and 1%.

If the developed models were used to estimate the control actions, the duration of a
grade change would have been shorter. The resulting duration is estimated with an
approximate method. First, it is assumed that the duration of a grade change is
dependent on the moisture error of the first grade change actions. Then rules and
models are generated from the measurements.
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Figure 6.6 Duration of grade change estimated from the measurements as function of
moisture errors (limit 0.5 and 1%) of base board. The errors are calculated after the
first grade change actions. The lines are fitted separately for the error value below
and above zero.

The duration as a function of the moisture error, after the first grade change actions, is
presented in Figure 6.6. It is qualitatively obvious that the error is not the only factor that
effects the duration of grade change but for the purpose of this practical case a rough
estimation is used. Namely, the modeling error can be linked directly to the performance
of the models.

The duration of grade change, that was estimated from the measurements, was fitted by
adjusting the lines in Figure 6.6 in order give roughly the same mean values as was
estimated from the earlier data (Figure 6.5). The rules for the estimation of the grade
change duration from the prediction errors of the models are given in Table 6.5.

Table 6.5 Calculation rules to roughly estimate the duration of grade change from the
moisture prediction error of models.

Moisture error, ex Duration of grade Duration of grade
% change, tgc (0.5% range) change, tgc (1% range)
min min
<=-3 100 100
>-3and <0 t.e =—20e, + 20 t.c =-5.5¢ +19
>=0and <5 toc =256, + 20 t.e = 7€, +19
>=5 100 100

The results from the estimation show that the mean deduction in the duration of a grade
change time would be only 9 min (Table 6.6). For PLS this deduction is about 4 min. It is
seen from the plot that the largest possible deduction could be 18 min because 20 min
is the lowest grade change time. The improvement achieved by the hybrid models is
thus 50% of the available range if the acceptance range would be 1%. The estimate is
quite conservative because the models are evaluated with stringent constraints. For
example modeling was done with only 30 grade changes and then the model was used
to predict 142 grade changes. In practice only the next grade change needs to be
estimated and the earlier data can be used for modeling.
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Table 6.6 The estimated duration of grade changes with modeling methods for the
board moisture.

Modeling method Duration of grade Duration of grade
change (0.5% range) change (1% range)
min min
Estimation from the 56 38
measurements
PLS model 52 34
Hybrid model 47 29
Hybrid model with ICOMP 47 29

The sales value of the production of 9 min savings per grade change is 1.8 million €/a.
The calculation is based on 400 grade changes annually and on the production rate of
30 t/h as estimated from the collected data. The sales price of the board is assumed to
be 1000 € /t. This estimate is fictive because it has not been verified in the actual
production usage. It is presented only to show that the application of the grade change
modeling is economically feasible.

Table 6.7 Performance figures of grade change automation from the literature.

Measure Initial New Improv- Reference
figure of | figure of ement,
GC GC %
GC duration of aboard 6.7 min 4.4 min 35 McQuillin and
machine Huizinga (1994)
GC duration of a paper 20.4 min 16.6 min 18 Mori et al. (2000)
machine

The deduction of grade change time has been about 4 min in the literature (Table 6.7).
Murphy and Chen (2000) reported 35% improvement of a paper machine that previously
had a simpler grade change automation in use.

Even though the optimizing controllers can make corrective actions earlier than ordinary
controllers, the intrinsic problem with the mismatch of the model gains still remains.
McQuillin and Huizinga (1994) reported the results from a replacement of an open-loop
supervisory grade change system, originating from year 1982, with a model predictive
control. After the replacement, the duration of an average grade change on a board
machine decreased from 6.7 min to 4.4 min (34%). It was not reported in detail what
was the time period or the procedure that was used for the average values. It was not
reported either what was the prediction accuracy of the used impulse models at the end
of grade change.

The estimation of the target values of manipulated variables has also been done in Mori
et al. (2000). They used a simple physical model for drying of web and basis weight.
The physical model was adapted by a drying correction factor to comply the actual
moisture at the beginning of grade change and the new moisture at the end of grade
change that was predicted. Then also the steam pressures were calculated. Basis
weight was calculated by using material balance of the wet end and then the new stock
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flow at the end of grade change was predicted. Finally, a first-order lag model was
included to simulate the model in order to verify the control responses. It was estimated
that the duration of a grade change could be decreased by 18% with this method.

6.1.4. Analysis of loadings of the PLS part of hybrid models

The most influential factors in the PLS part of a hybrid model should be the variables
that were not used in the physical models. Thus, the factors can be used to analyze
effects of a process variable to the dependent variables and also the modeling
performance of the physical part of the model.

The loadings of a PLS model can be considered to show the influence of each variable
of the model to the dependent variable(s) in principal groups. The first principal group is
the most important and then the second group, etc. In the first actions case, the
loadings of variables in PLS part of the hybrid model show that most of the weight is on
soft-wood and hard-wood stock percentage in top and bottom layer (Table 6.8).

Table 6.8 Loadings of PLS part in the hybrid modeling near the grade change

Principal Loading Principal Loading Principal Loading
Component Component Component
1 2 3

1 2 3
Top and -0.40 Steam Pressure -0.55 Steam Pressure 0.39
bottom -layer 1b 1b
soft-wood %
Top and 0.37 Thick stock 0.35 Steam Pressure 0.37
bottom -layer consistency la
hard-wood %
Broke % -0.37 Steam Pressure -0.30 Steam Pressure 0.32
(middle layer) la 3
Specific energy 0.34 Steam Pressure -0.27 Steam Pressure 0.27
consumption of 2 5
broke

The broke stock percentage of middle layer and specific energy consumption refining of
broke have also high loadings values. This is in good agreement with the initial
assumption that the empirical model would supplement the physical model. These
variables are not taken into account in the physical model.

It is however interesting that the steam pressures of first cylinders in the drying section
(Steam Pressure 1a, 1b and 2) are included in the PLS part. This might indicate that the
modeling of the drying of wet web at the beginning of dryer section is not done well
enough. In this case however, the reason for the discrepancy was the malfunctioning of
steam pressure measurements of the first two steam groups.

At the end of the grade change, the loadings of variables in PLS part of the hybrid
model, show large weight on steam pressures, wire speed and production rate (Table
6.9). This means that the physical model could have been tuned more accurately. The
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physical model was mainly tuned for the first actions case and it obviously cannot model
the situation at the end of grade change equally accurately at the same time.

Table 6.9 Loadings of PLS part in the hybrid modeling at the end of grade change

Principal Loading Principal Loading Principal Loading
Component Component Component
1 2 3
1 2 3
Steam Pressure 0.34 Bonedry 0.40 Retention aid -0.49
2 production rate (middle layer)
change
Steam Pressure 0.33 Steam Pressure 0.37 Steam Pressure 0.36
1b 2 la
Wire speed -0.32 Steam Pressure 0.35 Headbox dice -0.31
3 2
Steam Pressure 0.31 Mass flow 0.33 Steam Pressure 0.29
3 1b

The amount of retention aid and the slice opening are known to effect moisture of paper.
Thus retention aid change and headbox slice opening are in the third principal
component of the model. The dynamic changes take place relatively slowly due to
retention and volume of the white water circulation. That is why their effect will take
place at the end of the grade change. In the following the duration of the grade changes
and the economic effects of the application of hybrid model is estimated.

6.1.5. Analysis of tuning parameters of hybrid models for base board
grade change of moisture

In this chapter, a short summary of the results from the tuning of most important
parameters of hybrid model is presented. These are the heat transfer coefficient
between the cylinder and the web, heat transfer coefficient between the web and air at
the free draw and initial moisture ratio at the beginning of the drying section. The
importance of each variable is shown as percentage of total sum of parameter values
(Table 6.10).

It was known from Wilhelmsson (1995) and also from the experiments of the author that
the heat transfer coefficient between cylinder and the web is the most sensitive
parameter of the physical part of the hybrid model (ocwi). It can be seen from Table
6.10 that the increase of specific energy consumption of a birch refiner for top or bottom
layer will increase also ocwi. This is in good agreement with the common knowledge of
drying of paper because refining increases the surface area that is in contact with the
drying cylinder. The dependencies of dry basis weight, production rate and broke in the
middle layer to the contact heat transfer is probably indirectly related to other variable
that are not measured. Also Paltakari (2000) shows in his doctoral thesis that the drying
time is proportional to basis weight.



85

Table 6.10 Percentage weight of the hybrid model tuning parameter Kgyo of the heat
transfer coefficient between cylinder and web, ocw;.

Variable Percentage of total
sum of parameter
values
Top+bottom layer, birch refiner, specific energy consumption 26
Base board dry basis weight 15
Bone dry production rate -14
Percentage of middle layer, broke stock flow 13

The percentage of broke should increase and not to decrease initial moisture and the
evaporation (Table 6.11). May be the inappropriate effect of broke to the heat transfer
coefficient between cylinder and the web is just in a wrong place (Table 6.10). This
problem may be due to lack of data as for example temperature of web. On the other
hand, it is known that if there is much broke in the web the lineal pressure has to be
decreased at the press section. The lineal pressures and removal of water in the press
section were not included in the model.

Table 6.11 Percentage weight of the hybrid model tuning parameter K, of the heat
transfer coefficient between web and air, O4s.

Variable Percentage of total

sum of parameter
values

Percentage of top+bottom layer, birch stock flow -30

Wire speed 16

Sum of thick stock consistencies 14

Percentage of middle layer, broke stock flow -13

Top+bottom layer, birch refiner, specific energy consumption 9

The heat transfer coefficient o, between the web and air at the free draw seems to be
inversely proportional on percentage of birch on top or bottom layer and directly
proportional to specific energy consumption of birch refining (Table 6.11). This is due to
interdependence of the variables via the operation of the process where the specific
energy consumption of birch refining is always high when the flow is low. The increase
of speed of paper machine creates more turbulence and thus also increases
evaporation. However, this was already taken into account in the physical part of the
hybrid model. This may mean that the turbulence model should be also tuned. The heat
transfer in the drying process depends on the stock mixture and pulp refining. This could
explain why it is very difficult to predict even the direction of the moisture change.

The water removal is done on wire and on press section before drying. Typically there is
no on-line sensor for the initial moisture before the drying section so that it had to be
estimated from the data (Table 6.12). As mentioned earlier, the percentage of birch on
top or bottom layer may make the structure on the surface of the web more porous and
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thus it facilitates the removal of water (Table 6.11). The specific energy consumption of
birch refiner for the top or bottom layer and basis weight is known to decrease the initial
moisture.

Table 6.12 Percentage weight of the hybrid model tuning parameter Kz0 of the initial
moisture ratio at the beginning of the drying section (zo).

Variable Percentage of total

sum of parameter
values

Percentage of top+bottom layer, birch stock flow 24

Percentage of middle layer, broke stock flow -23

Top+bottom layer, birch refiner, specific energy consumption -19

Broke refiner, specific energy consumption 13

Base board dry basis weight -9

Percentage of top+bottom layer, pine stock flow -5

6.1.6. Summary of the modeling results of the board moisture

The conclusion of the results of the modeling of board moisture is that the hybrid model
with parameter tuning with ICOMP is the best choice for the prediction from the tested
modeling methods. The prediction of the moisture at the end of a grade change could
also be performed with a very good accuracy with this model. The modeling with ICOMP
in the optimization procedure makes the models more stable and the convergence rate
is faster than with other approaches.

One of the findings was that retention aid change and slice opening had effect on the
model that predicts the moisture at the end of grade change, but not after the first
control actions. It also points out that the prediction of slice opening should be
considered in the preparation phase of the grade change by using this model. The heat
transfer in the drying process depends on the stock mixture and pulp refining. This could
explain why it is very difficult to predict even the direction of the moisture change. This
also explains at least partially why similar grade changes cannot be performed with
previously used target values such as speed, stock flow and steam pressures.
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6.2. Application of models to basis weight changes

Basis weight range has large variation in the board manufacture (Figure 6.7). In the
used data the lowest is 113 g/m* and the highest 330 g/m* with a mean 207 g/m” and
standard deviation of 51 g/m°.

Basis weight
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Figure 6.7 Basis weight distribution.

The standard deviation of the basis weight errors of hybrid models is better than in the
first actions case (Table 6.13). The improvement was from 20 g/m® to 13 g/m” that is a
35% improvement. PLS model had much worse standard deviation than in the first
actions case.

Basis weight starts to go in the wrong direction only in 5.8% of the grade changes at first
actions case. The hybrid model with tuned parameters has also quite a low percentage
of grade changes towards the wrong direction (8.1%). There does not exist a literature
that would explicitly give a performance of a grade change of basis weight.
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Table 6.13 Summary of the performance of the basis weight modeling approaches.

PLS or Hybrid | PLS or Hybrid | F-test | CDF"
model model
Option Wrong Standard
direction deviation
% improvement %

First actions 5.8
PLS 41.5 -49 1.49 1.30
Hybrid model 11.6 16 1.24 1.29
Hybrid model with 8.1 35 1.53 1.29
tuned parameters

YCumulative distribution function (CDF) value of the F-test statistic with assumption of
equal variances is rejected wi o confidence
qual jected with 95% fid

The most significant tuning parameters of the basis weight hybrid model computed with
genetic optimization are presented in Table 6.14. The output of the simple physical
model is multiplied by the sum of the product of variables and factors. These factors can
be interpreted as pseudo regression coefficients. The physical meaning of these factors
may be related for example to the basis weight through shrinkage or elongation of the
web.

Table 6.14 Tuning parameters of the physical part of the basis weight hybrid model from
the genetic optimization.

Variable Tuning
parameter,
%
Steam pressure steam group, 4 10.5
Percentage of top+bottom layer, pine stock flow 7.0
Slice opening, top-layer 6.4
Speed-to-wire speed ratio, middle layer -6.1
Wire speed 6.0
Slice opening, bottom-layer -5.9
Steam pressure group, 1B -5.4
Board moisture 4.7
Thick stock flow, top-layer -4.3
Slice opening, middle-layer -4.2

The lower the steam pressure is at the beginning (steam group 1b) and the higher the
steam pressure is near the end of the drying section (steam group 4) the larger is the
basis weight change than what the physical part of the hybrid model predicts (Table
6.14). If the steam pressure at the beginning of drying section is low then the moisture is
there also higher than usually. If there is an increase in the draw forces between the
drive groups in the drying section, there may be a larger elongation of the web and thus
the change of basis weight is also larger. This rule will only hold when the basis weight
is going downwards.

Other elongation related variables are top/bottom-layer hardwood percentage, jet-to-
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speed ratio and speed. The hardwood fibers are shorter than softwood so that the web

may be more readily elongated. Speed difference between different parts of the
machine cause also elongation.
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Figure 6.8 Histograms and cumulative graphs of the duration of basis weight grade
changes on a board machine. The end of grade change is defined here when the
basis weight has been 20 min inside 0.5 and 1% of the basis weight.

The grade change times for the basis weights are 45 min and 24 min for the acceptance
ranges 1 and 5% of basis weight (Figure 6.8). The shortest grade change is 15 min
(Figure 6.9). It is also assumed that the total grade change time could not decrease
significantly by improvement of basis weight change alone because basis weight and
board moisture are strongly dependent of each other. The grade change duration
depends only a little on the prediction error of the basis weight.
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Figure 6.9 Duration of grade change as a function of basis weight errors (limit 1% of
basis weight). The errors are calculated at the end of grade change.

Qualitatively it is deduced that there does not exist much potential to improve or shorten
the grade change of basis weight because majority of the duration values are inside
small area. This is in agreement with the opinion of paper machine operators.
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6.3. Discussion of models to coat weight and coat moisture
changes

The first two coaters (1 and 2) apply the coating color onto top and bottom side of the
base board. The coaters (3 and 4) apply a second coating color layer after that. Thus
the drying model will be different in each case. There may also be wetting with water or
coating with low concentration color application instead of the usual operation. The
models have to be able to handle all these combinations of operation modes.

6.3.1. Prediction of coat moisture

The distribution of coat moistures on each coater is rather similar (Figure 6.10). In that
sense there should not be large differences in the modeling accuracy of modeling
approaches. PLS and hybrid model on coaters number 1, 2 and 4 had lower standard
deviations than measured in the first actions case (in section 5.3). The coater 3 has a
much more complicated production mode structure than the other coaters has.
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Figure 6.10 Histograms of coat moistures at the beginning of the grade change.
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ICOMP.
Process PLS Hybrid ICOMP Hybrid ICOMP
Improvement of Improvement of Improvement of
moisture std moisture std moisture std
compared to first | compared to first compared to PLS
actions actions
% % %
Coater 1 84 84 -5
Coater 2 54 52 -5
Coater 3 -8 21 27
Coater 4 27 26 -2

The standard deviations of the predictions of coat weight and the coat moisture were
improved 26 to 84% with the hybrid models on coaters 1, 2 and 4 compared to the ones
measured in the first actions case (Table 6.15). The hybrid model could be used for the
prediction of coat moisture with good results. However, the performance of the hybrid
model was almost equal to PLS except with coater 3. This problem was anticipated
already during the tedious tuning of the physical model. Even though, there seems to
exist proper physical models, the prediction of coat moisture does not work well enough.

It can be seen that the coater operators are able to adjust the direction of the change
equally well with all the coaters (Table 6.16). Models are only better on coaters 1 and 2.

This may mean that it might be difficult to get an operator acceptance and to use the
model predictions.

Table 6.16 Prediction of grade change direction for coat moisture in the first actions
case and with PLS and hybrid ICOMP model.

Process First actions PLS Hybrid ICOMP
Wrong direction Wrong direction Wrong direction
% % %
Coater 1 24.7 2.2 5.6
Coater 2 23.6 10.1 7.9
Coater 3 21.3 30.3 20.2
Coater 4 22.5 24.7 25.8

It should be noted that the predictions in the wrong direction are not significant in the
hybrid modeling case. It was calculated that 97% of these moisture errors (wrong
direction) were between -0.5% and 0.5% (Figure 6.11).



92

Hybrid model, All coaters
60 : - -

a1
o

N
o

N
o

Percentage of grade changes
w
o

=
o

0 S *
-3 2

N3
w

a7 o T 1
Moisture percentage deviation

Figure 6.11 Histogram of coat moisture errors of all coaters of grade changes where
the predictions were in the wrong direction.

As with the board moisture, the absolute coat moistures could not be predicted well
enough from the data. It is surprising that Fisera et al. (1998) could achieve good results
with only a physical model. They even mentioned that it was possible to predict
evaporation rates or gel points of the coating. Their coater had much on-line
instrumentation such as web temperatures so that it was easy to fit the model
appropriately and they also used customized model parameters for each grade.
However, they did not present any statistical data about the performance of the system.
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6.3.2. Prediction of coat weight

The coat weight distributions for coaters 1, 2 and 4 are in the same range from 7 to 11
g/m?® (Figure 6.12). They have all two modes of coating (no coating and full coating).
Coater 3 does have in addition the other modes the light coating in the range from 2 to 4
g/m?. That is one reason why it is the most difficult to model.
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Figure 6.12 Histograms of coat weight at the beginning of grade change.
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ICOMP.
Process PLS Hybrid ICOMP Hybrid ICOMP
Improvement of Improvement of Improvement of
weight std weight std weight std
compared to first | compared to first compared to PLS
actions actions
% % %
Coater 1 -82 -40 23
Coater 2 48 51 6
Coater 3 44 56 22
Coater 4 54 74 44

The hybrid model could be used for the prediction of coat weight with good results. The
surprising result was that none of the models could compete with the values measured
at the first actions case on coater 1. There should not be much difference with the
coater 2. There is a lack of a proper physical model for coat weight but the modeling of
different operation modes seems to compensate the loss.

The prediction of the right direction was much more difficult to the PLS than for the
hybrid model (Table 6.18). It is should be noted that only the hybrid model with tuned
parameters could predict the direction of change practically equally well as measured at
the first actions case.

As a conclusion it can be stated that the hybrid model could be used for the prediction of
coat weight with good results. However, the performance of hybrid model was almost
equal to PLS with coater 2.

Table 6.18 Prediction of grade change direction for coat weight at the first actions case
and with PLS and hybrid ICOMP model.

Process First actions PLS Hybrid

ICOMP
Wrong Wrong Wrong direction
direction direction %
% %

Coater 1 12.5 23.9 11.4

Coater 2 33.3 52.3 37.5

Coater 3 23.9 34.1 21.6

Coater 4 19.3 21.6 13.6
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6.3.3. Efficiency of the grade changes on coaters

Grade change in the coating section will always be dependent on the changes done to
the base board due to the on-machine configuration of the board machine in question.
The base board change must be nearly completed before the grade change on the
coating section can start. There are also washing operations, blade changes, etc. that
cannot be shortened with the means available by the proposed model assisted
approach. The model can be used to the prediction of coat weight or the coat moisture
or alternatively by iteration, calculation of target values as for example air dryer
temperatures and blade angles.

The duration of grade changes was estimated from the measurements in the same way
as the board moisture. The average length of grade change was about 96 min if the
target range limit is 0.5% and 38 min if the range is 1% (Figure 6.13). The shortest
change was 33 min (in the 1% range).
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Figure 6.13 Histograms and cumulative graphs of the duration coat moisture grade
changes on a board machine. The end of grade change is defined here when the
coat moisture [%] has been 20 min inside 0.5 and 1% limit.

It can also be seen that duration of a grade change is not as dependent on the moisture
error as in base board case (Figure 6.14). The errors are calculated as a difference
compared to moisture at the end of grade change. It is assumed here that the duration
of grade changes on the coaters can be decreased in ratio of the deduction of standard
deviations. This was found to be roughly the case also in the board moisture. However,
it is not probable that this improvement could be added directly to the time saved
already with base board change. This is because the changes are done in sequence
with one after another.
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Figure 6.14 Duration of grade change as function of coat moisture errors (limit 0.5%) of
base board. The errors are calculated at the end of grade change.

The duration of grade change time with coat weight is 74 min when the acceptance
range is 0.5 g/m* and 46 min when the range is 1 g/m?® (Figure 6.15). Coat weight and
moisture depend of each other trough process and the coater operation by the
personnel of the mill.
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Figure 6.15 Histograms and cumulative graphs of the duration of coat weight grade
changes on a board machine. The end of grade change is defined here when the
coat weight has been 20 min inside 0.5 and 1 g/m? limit.
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It can be seen qualitatively from the plot that the grade change duration and the coat
weight prediction error are independent of each other (Figure 6.16). The errors are
calculated as a difference compared to the coat weight at the end of grade change. The
improvement of the standard deviation of the coat weight does not necessary shorten
the duration of the grade change. This is due to the fact that there are many other tasks
that increase the change time in addition to coat weight error as discussed with coat

moisture.
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Figure 6.16 Duration of grade change as function of coat weight errors (limit 0.5 g/m?).
The errors are calculated at the end of grade change.
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7. CONCLUSIONS

In this thesis a hybrid modeling concept for base board moisture, coat moisture, coat
weight and a basis weight grade change from data collection to the selection of the best
modeling method is presented.

The tuning of hybrid models was done with a genetic algorithm, because it gives global
optimum. Also a hybrid model with tuned parameters was evaluated. In this method
selected parameters of physical models were adjusted by a sum of product of tuning
parameters from the genetic optimization and selected measurements in a feed-forward
fashion.

The tuned parameters for the moisture of base board included for example heat transfer
coefficients between steam and cylinder, cylinder and web. In addition to these, also the
initial moisture ratio before drying section and the thickness of condensate layer inside
drying cylinder, was tuned the same way.

The tuned parameters for the moisture of coating are rate of drainage to the web or
coating from coating and heat transfer coefficient in the air-dryers of coating. Similarly
the tuned parameters for the coat weight model are blade loading pressure factor,
impulse pressure factor, dynamic pressure factor and dewatering coefficient to base
board or coating.

The tuning procedure with finite modeling sample size of 30 grade changes, is a
challenging task and there were large amount of tunable parameters compared with the
number of samples used in the modeling. Especially, Information Complexity Criterion
(ICOMP) was used in the loss function of the optimization scheme. It was qualitatively
found to speed up the convergence of the optimization as well as to make the model
more robust to the variation of modeling sample size. The parameters of models were
partly tuned by using leave-one-out prediction error of empirical model (PLS) in the loss
function.

The board moisture is the most important of all output variables due to the dominant
effect on the total duration of grade change. The results of the modeling studies show
that hybrid modeling with ICOMP is the best predictor for the moisture of base board
(Table 7.1). The improvement of standard deviations of errors was 46% compared to
first actions and 44% compared to PLS. The improvement at the end of grade change
can be even 63% better compared with the first actions if slice opening is taken into the
model. The improvement with ordinary hybrid model was 43% and with tuned
parameters 28%. However, even though the model has many tunable parameters it was
as easy to tune as ordinary hybrid model due to help of ICOMP in the loss function.

It was also found that the model that was tuned to predict the moisture after the first
control action of grade change could not be used directly to predict the moisture at the
end of grade change. This is due to slow dynamic changes taking place in the white
water circulation. The amount of retention aid and the opening of the slice of the
headbox had to be included in the model in order to achieve proper results.

For the coating applications hybrid modeling or hybrid modeling with tuned parameters
performed very well (Table 7.1). However, there was not a significant advantage
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compared to hybrid with ICOMP. PLS was the best for the moisture of coating except in
the third coating unit. However, ICOMP based models were at least equally good and
with coater 3 ICOMP was better than PLS.

None of the modeling approaches worked well with coat weight number 1. However,
improvement could be achieved with coater 2, 3 and 4. All the models seemed to work

equally well with coater 2.

Table 7.1 Summary of the performance of the models.

Modeled variable Best method STD Hybrid Hybrid
improvement ICOMP ICOMP
P STD STD
compared to | improvement | improvement
first actions compared to compared
first actions PLS
% % %
Moisture of base paper | Hybrid ICOMP 46 46 44
Basis weight Hybrid param. tuning, 35 not used not used
Moisture of coat 1 PLS 84 84 5
Moisture of coat 2 PLS 54 52 5
Moisture of coat 3 Hybrid model 46 21 27
Moisture of coat 4 PLS 27 26 2
Coat weight 1 First actions - 40 23
Coat weight 2 Hybrid param. tuning, 51 51 6
Coat weight 3 Hybrid param. tuning, 58 56 22
Coat weight 4 Hybrid param. tuning, 77 74 44

The continuation of the research work would be to simplify the model and apply it to the
MPC approach. For example, the drying section could be modeled only with five
combined drying units. In order to achieve better control of the drying section, it should
be possible to have more reliable on-line measurements of the incoming moisture and
temperatures inside the drying section than now. There was also an indication from the
literature that the physical modeling of coaters could be improved with additional

instrumentation.
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APPENDIX A: LIST OF VARIABLES AND PARAMETERS

In this appendix the list of variables that used for the modeling of moisture, basis weight,
coat moisture and coat weight.

Table 8.2. The scope of collected variables from the refiners to the calanders

Name

Top+bottom layer, birch refiner, specific energy consumption

Top+bottom layer, birch refiner, power

Etc...

Broke refiner, specific energy consumption

Broke refiner, power

Top+bottom layer, birch stock flow

Top+bottom layer, pine stock flow

Middle layer, birch, stock flow

Middle layer, pine stock flow

Middle layer, broke stock flow

Top+bottom layer, birch, refining consistency

Top+bottom layer, pine refining consistency

Stock starch top+bottom layer

Stock starch, white water, 1.layer

Neutral size, headbox,3.layer

Retention agent, 1-layer

Middle layer headbox consistency

Middle layer headbox slice opening

Middle layer headbox pressure

Middle layer headbox jet-to-wire ratio

Top layer-wire speed

1-press, lineal pressure ...

4-press, lineal pressure

Steam group, 1A, measurement

Steam group, 1A, setpoint

Etc....

Steam group, 5 ,measurement

Steam group, 5, setpoint

Steam group, 5, controller output

Steam group, 7 low cylinder

Steam group, 8.1 lower cylinder pressure

Condensate, total

M achine running, web broken

Break at wet pressing

Break at 1,2 drying group

Break at 3,4 drying group

Break after size press

Break at 1. Calander
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Selection of variable with PLS loadings

PLS loadings were especially useful in order to consider the significance of the variables
(Table 8.3). In addition to previously selected variables, calculated descriptors were
included in the analysis. For example estimated dry basis weight (calculated from stock
consistencies, stock flows, machine speed and machine width) and dry production rate
were chosen for further analysis. The genetic variable selection algorithms from the PLS
Toolbox were also applied to select variables (Wise and Gallagher 1996) and it
produced almost the same set as was assembled by hand.

The variables with the highest absolute values of loadings of manipulated variables in
the three first principle components are shown in (Table 8.3). The grouping done by
loadings can sometimes be interpreted to have a physical meaning as for example the
one in the first primary component could be called ‘Drying effort’. The grouping changes
if the number of variables is modified and the naming presented here is of course
subjective and has been given in order to give an interpretation of each principal group.

Table 8.3. The most important variables sorted by the loadings of the first three
principal components (pc).

Drying effort pcl [Amount of pc 2 Evaporation pc3
loadings |Water loadings |Resistance loadings
Steam Pressure 0.214 [Moisture -0.253 [Top+bottom layer 0.260
change 3 Content softwood %
Steam Pressure 0.214 |Base moisture -0.226 |top+bottom layer 0.248
change 4 % hardwood %
change
Steam Pressure 0.213 |Bonedry -0.224  |Top+bottom layer -0.247
change 5 production rate hardwood %
Steam Pressure -0.204 |Massflow -0.220 [Broke % (middle 0.232
change 3 change layer)
Steam Pressure 4 -0.199 |Production rate -0.219 |Hardwood % -0.228
change (middle layer)
Steam Pressure 5 -0.199 |Base moisture -0.218 ([Wire speed change| -0.220
setpoint
Bonedry production| 0.197 |Basisweight -0.218 [Basisweight 0.219
rate change
Wet sizing change 0.195 |Wire speed 0.218 |Dry basisweight 0.219
change
Broke % 0.190 |Wire speed -0.217 [Steam Pressure 0.210
change(middle change change 1
layer)
Steam Pressure 2 -0.190 |Dry basis -0.209 ([Wet sizing % 0.200
weight

The selection of variables by using PLS loadings of variables is an iterative process
(Figure 8.17). First PLS modeling is applied to the initial set of variables. Cross-
validation should be executed in order to discover the optimum number of latent
variables as instructed in the PLS Toolbox manual (Wise and Gallagher 1996). Then the
variable loadings and variables are sorted in descending order according to absolute
values of loadings in each primary component. Finally the set of variables are selected
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according to the loadings and the prior knowledge.

?

>

PLS modeling l

Sort variablesby loadings

| Select variables I Select variables

Vdidate

Minimum
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Q

Figure 8.17. Selection of variables by using PLS loadings
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Table 8.4. List of the selected process variables for the adaptive tuning of parameters of
the simple physical moisture model of base board.

Name Comments

Base board moisture

Base board dry basis weight Calculated from basis weight and board moisture
Wire speed

Total sum of flows to the headbox

Bone dry production rate

Percentage of top+bottom layer, pine stock flow Percentage based on total flows

Percentage of top+bottom layer, birch stock flow Percentage based on total flows

Percentage of middle layer, broke stock flow Percentage based on total flows

Sum of thick stock consistencies Summation of the consistency of each layer

Broke refiner, specific energy consumption

Top+bottom layer, birch refiner, specific energy consumption

Top+bottom layer, pine refiner, specific energy consumption

Middle layer, birch refiner, specific energy consumption

Middle layer, pine refiner, specific energy consumption

Retention agent, total Summation of the proportioning of each layer

Steam pressure group, 1A

Steam pressure group, 1B

Steam pressure steam group, 2

Steam pressure steam group, 3

Steam pressure steam group, 4

Steam pressure steam group, 5

Top layer headbox glice opening

Headbox pressure, top layer

Headbox pressure, middle layer

Headbox pressure, bottom layer

Slice opening, top-layer

Slice opening, middle-layer

Slice opening, bottom-layer

Thick stock flow, top-layer

Thick stock flow, middle-layer

Thick stock flow, bottom-layer

Speed-to-wireratio, top layer

Speed-to-wire ratio, middle layer

Speed-to-wire ratio, bottom layer

Table 8.5. List of adaptively tuned parameters of the hybrid model of board moisture.

Name

K o0 parameter of the heat transfer coefficient between cylinder and the web (oicw1)

Kwa parameter of the heat transfer coefficient between the web and air at the free draw (o)

K, parameter of the heat transfer coefficient between condensate and cylinder (o)

K4 parameter of the condensate thickness (d.)

Ko parameter of the initial moisture ratio at the beginning of the drying section (z0)
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Table 8.6. List of variables that are used for the adaptive tuning of the simple physical
models of the coat moisture and coat weight.

Name Comments

Base board moisture (before coaters)

Base board dry basis weight (before coaters) Calculated from the basis weight and moisture
Wire speed

Top layer headbox jet-to-wire ratio

Middle layer headbox jet-to-wire ratio

Bottom layer headbox jet-to-wireratio

Bone dry production rate

Percentage of top+bottom layer, pine stock flow Percentage based on total flows
Percentage of top+bottom layer, birch stock flow Percentage based on total flows
Percentage of middle layer, broke stock flow Percentage based on total flows

Top+bottom layer, birch refiner, specific energy consumption

Top+bottom layer, pine refiner, specific energy consumption

Soft calander a pressure

Soft calander b pressure

Soft calander a temperature

Soft calander b temperature

Amount of surface sizing cs0s/V where cs and gs are concentration and flow of sizing and
Vv is the machine speed

Coat dry basis weight, coaterl (before coating 1) Calculated from the coat weight and the coat moisture

Coat dry basis weight, coater2 (before coating 2) Calculated from the coat weight and the coat moisture

Coat dry basis weight, coater3 (before coating 3) Calculated from the coat weight and the coat moisture

Coat dry basis weight, coater4 (before coating 4) Calculated from the coat weight and the coat moisture

Coat moisture, coaterl (before coating 1)

Coat moaisture, coater2 (before coating 2)

Coat moisture, coater3 (before coating 3)

Coat moaisture, coater4 (before coating 4)

Burning air 1 used Binary

Burning air 2 used Binary

Burning air 3 used Binary

Burning air 4 used Binary

burning air 5 used Binary

Burning air 6 used Binary

Coating blade 1 running time

Coating blade 2 running time

Coating blade 3 running time

Coating blade 4 running time

Table 8.7. List of adaptively tuned parameters with the process variables in the hybrid
model of coat moisture.

Name Comments
K¢, parameter of the heat transfer coefficient between condensate and cylinder

(o)

K cg parameter of drainage coefficient from the coating color to the web All coater units

K parameter of convective heat transfer coefficient of the impingement air in | All coater units
the air drying of coating
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Table 8.8. List of adaptively tuned parameters with the process variables in the hybrid
model of coat weight.

Name Comments
Ko parameter of the dewatering coefficient to base board or coating All coater units
K, parameter of the blade loading pressure factor for each blade Coater units with
beveled blades
Kg parameter of the blade impul se pressure factor Coater units with
low angle blades
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APPENDIX B: MODELS OF DRYING OF PAPER

The most important heat transfer coefficients are paper web contact with cylinder o, a
condensate heat transfer coefficient os. and heat (mass) transfer coefficient from the
surface of the web o, The heat transfer coefficient through cylinder cell wall o is
assumed to be constant although it is susceptible to dirt and rust that change it. The
overall heat transfer coefficient o, can be calculated with the equation

1 1 1 1
Sl I R (1.1)

aall asc ac acw

The total heat flow from steam to the web is the calculated with

Ohor = % (T —T,,) 1.2)
where T,, is the web temperature and T is steam temperature estimated from steam
pressure with a known approximation T,=100¢/(P,+P,)/100) where Ps is steam
pressure (Pa) and P, is ambient air pressure (101.325 Pa)

The temperatures of cylinders T_at the web contact can be calculated to be in average

Tc — Ts _ qtot
1/ o, +1/ x,)
It is assumed that about 10% of the heat is loss via the heads of the cylinders or some

other way (Ojala 1993) and this is taken into account when calculating the change in the
web temperature during the contact with the cylinder

(1.3)

ATw = tc(qtot 0 — qlost) /(Vvodwaz) (14)
where t. time of contact with the cylinder, g heat transferred to the web from steam, Qe
heat lost due to the evaporation of water, s heat losses, Wqnw Oven dry basis weight
and C, density of web.

When the web moisture is calculated the evaporation from the web surface is
calculated. This means that the initial temperature and moisture of the web must be
known or estimated before this model can be used. The evaporation and heat transfer
coefficients are presented in the following chapters.

Evaporation from the surface of paper web

There exists several different theories of contact drying of a paper web. A fairly recent
review of the theories is in Nederveen & al (1991). However, a very thorough
representation of the theories and modeling methods of the drying of web is discussed
in the new book by Finnish Paper Engineer’'s Association (Heikkila and Paltakari 2000,
Heikkila et. al. 2000).

The driving force of evaporation is assumed to be a combination of several
mechanisms. The most important is assumed to be Stefan diffusion, where the average
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pore diameter is essentially higher than the free travel length of a water molecule and
the partial pressure of the water vapor is essentially below the total pressure (Heikkila
1992). When the average pore diameter is below the free travel length of a water
molecule then it is question about Knudsen diffusion. Thus the movement of molecules
is controlled mainly by the collisions with the pore walls. The driving force is assumed to
be partial of total pressure gradient (Heikkila 1992).

Other approaches include enthalpy-difference approach by Soininen (1991), Darcy-flow
induced by a pressure gradient by Lehtinen (Nederveen & al 1991), thermodynamical
surface energy and vapor or gas pressure as described by Lampinen & Ojala (1993)
and laminar (Hagen-Poiseuille) flow, when vapor partial pressure is close to or equal
with the total pressure. The driving pressure is then the total pressure gradient inside
the porous material (Heikkila 1992).

A more recent theory considers the mechanism as a heat pipe that has been proposed
by Lehtinen (1992). Also it should be remembered that actual physical reformations as
shrinkage may cause additional vapor transport (Harrmann and Schulz 1990).

Many of the theories above will lead to models with numerous parameters that are
difficult or impossible to estimate from the drying process. However, it has been shown
in Nederveen & al. (1991) that almost all the models give the same evaporation rate.
That is why the simplest of the models (Stefan diffusion) was chosen as the approach
taken in this thesis. Stefan diffusion can be modeled as a descending front model with a
modified linear Stefan equation.

% = chlcawachzK(pp - pa)

(1.5)
where % is the evaporation rate per area [kg/s/m?], .. is the heat transfer coefficient,
C is an initial tuning parameter, Ky.; is tuning parameter for the hybrid model, p, is
partial vapor pressure in the saturated air and p, is partial vapor pressure on the web

surface and K is the initial diffusion resistance of dry layer below critical moisture point
(Heikkila 1992) and Ky is the corresponding tuning parameter for the hybrid model.

When the moisture ratio of the web has reached a certain value (critical value, X.;) the
evaporation will change to a falling rate zone. It is modeled as a descending front model
with a modified linear Stefan equation.

ﬂ — chlcawachzK
A K.Ceq,+ KK

(P, — P2) (1.6)

where % is the evaporation rate per area [kg/s/m?® ], au. is the heat transfer coefficient,
C (7.03*10-4 kgH,0O °C/W/s ) is an initial tuning parameter, Ky is tuning parameter for
the hybrid model, p, is partial vapor pressure in the saturated air and p, is partial vapor
pressure on the web surface and K (0.2) is the initial diffusion resistance of dry layer
below critical moisture point (Heikkila 1992) and K. is the corresponding tuning
parameter for the hybrid model.
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The initial values for the heat transfer coefficient, o, (W/m®C) from the web to the air
at the free draw is (Karlsson 1984)

a,, = K, 5.3v* (L17)
where Ky, is the tuning parameter of the hybrid model and v is the machine speed.

Partial vapor pressure in the evaporation plane (p,) in the previous equations can be
calculated with the help of relative humidity (¢) and Antoine’s equation (Soininen & al.
1991).

where pg is vapor partial pressure for free water.

Antoine’s equation gives po as a function of temperature.

(5127-1%%)
=

p, =10 (1.9)

Because a paper web is a hygroscopic material the vapor partial pressure is a function
of local moisture, z and temperature inside the web, T’ (Heikkila and Paltakari 2000).
The relative humidity ¢(z,T) is formulated as a function of moisture and temperature.

pz,T)=1-¢™
For example, m and n are for fine paper according to Paltakari (1995).

(1.10)

m=a+bT =K,,285.65+K,,1.670T / °C

n=c+dT =K ,249-K,0.020T / °C
The conditions inside the hood (temperature, humidity, turbulence, etc.) have a great
effect on the evaporation. However, there does not exist online measurements that are
reliable enough to be used in the modeling, because for example moisture ratio
measurement drifts due to fouling. These conditions are taken into account by utilizing a
special measurements done in the paper machine earlier.

(1.11)

Heat of sorption can be calculated with Clausius-Clayperon law:

AhS =-R, M (1.12)
d(In2/T) |, _ s
When equations (1.11) and (1.12) are combined we get (Heikkila 1992).
Ah, = -R 1220 100852457705 (1.13)
2

Paper web contact with cylinder

Paper web contact heat transfer coefficient with cylinder surface o, has been found to
be a function of several variables. For example paper moisture, web tension, paper
surface smoothness, thermal conductivity of web, use of press roll and air or steam film
accumulation between the web and dryer surface have been reported to be among the
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most important factors (Heikkila and Paltakari 2000).

Moisture is one the most significant variables, because there is a direct contact from
cylinder to water when there exist water on the surface of the web. The heat transfer
coefficient between cylinder and the web o, becomes smaller, when the moisture
gradually decreases from the contact surface due to diminishing of the heat conductivity
and the contact surface area. The following equation for the heat transfer coefficient
(aew) is achieved by fitting a nonlinear function to the graph originally presented by Appel
and Hong (1969) and used also in Roihuvuo (1986):

Oy = Kgo(54.72°% + K ,102.52°% + K ,9.182°° + K ,66.6) (1.14)
where z is the moisture ratio of the web, Kgpo- Ksps are tuning parameters.

This is not a physical model but it is put in the same group because it quite widely
accepted model and there does not exits a better simple model.

Condensate heat transfer coefficient

The properties of the condensate layer on the inside surface of the cylinder mainly
determines the amount of heat that is transferred to cylinders. Especially
hydrodynamics, distribution around the cylinder and thickness of the condensate layer
are the most significant factors for the modeling of the heat transfer coefficient from
steam to cylinders. The hydrodynamics of the condensate layer are effected by machine
speed, cylinder diameter and spoiler bars installed inside cylinder. For the details of
condensate flow the reader is referred to a recent study by Wilhelmsson (1995).

Heikkila (1992) used the following empirical equations for the condensate heat transfer
coefficient:

685 10°
+ 2.79 3.39 )
K,d, 275+K_0.675v*" + K_,0.0486K ,d_v (1.15)

a,, = K e, (5700 + 60v) / 6000

where v is machine speed (m/min), Ky - Keos and Ky are tuning parameters of the hybrid
model, d. is the condensate thickness (mm) and oy, is the correction for condensate
heat transfer coefficient with cylinder bars.

ac = KcO(
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APPENDIX C: MODELS OF DRYING OF COATING
Drainage of liquid of the coating color into the web

The moisture of the web is increased during the coating due to drainage of liquid of the
coating color as explained in the modeling of coating according to Lucas-Washburn
theory (Heikkila 1992). The amount of liquid that is drained into the web is calculated
from the the amount of deposited coating by dividing with the moisture ratio of the
coating.

My _ v/ KowCa(100— X))/
A Xee
where m,, / A is drained liquid weight per unit area, c4 is the drainage coefficient, Keuq

the corresponding parameter of the hybrid modeling, X. is moisture percentage of the
coating color, X, is the moisture ratio of the coating color and v is the machine speed
(inversely proportional to time of dewatering).

(1.16)

The models are very simple, but they satisfy the requirements that there exist only a
minimum amount of unknown parameters and most of the information is available as
measurements from the coater section. Similar models have been tried to give insight
about the drying phenomena on a coater (Fisera et al. 1998).The initial parameters of
the models are taken from the literature and then fine tuned with separate parameters in
the optimization like in the paper drying.
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IR drying of coating

IR burners have been extensively modeled by Ojala (1993). The IR emitter’s radiation
spectrum, the absorption properties of dried surface and the heat losses define how
much heat is transferred to the web. Energy is lost for example with flue gas escaping
the emitter.

Gas Combustion
ar
| |
v v
4 Combustion
zone
Radiation% l / i\ Emitter, T,
Flue gases
l Ol Paper web, Tp

Figure 8.18. A schematic diagram of a gas burner

In practice the spectrums are not known on-line so that a simplified approach must be
taken. equation for the calculation of the radiative heat transfer rate (Qaps) iS given in
Heikkila (1992):

P

input

Iw

Oups = K” s | (1.17)
eff

where, Pinu is the input power to the emitter, w is unit width, leg

is the length of the emitter in machine direction, naps is the overall radiation efficiency
and K, is the corresponding tuning parameter of the hybrid model.

Moisture is assumed to follow the modified Stefan diffusion equation the same way as in
the paper web. The evaporation is assumed to be similar to the cylinder drying due to
higher turbulence conditions that is reviewed in the air drying of coating chapter.

Air drying of coating

Air drying is the phase where most of the evaporation takes place. Thus it is the most
decisive section when considering the final moisture. Heikkila (1992) studied the effect
of impingement velocity of different air dryer nozzles on heat transfer. He found the
following equation of convective heat transfer coefficient to fit to the air drying very well:

a,,, = K,Av " Pr? (1.18)

where v is kinematic viscosity, Pr is Prandtl number, A is thermal conductivity and K, is
the corresponding tuning parameter of the hybrid model.
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It is assumed that the impingement air temperature is higher than the web surface. Thus
the vapor is heated to the temperature of the turbulent bulk flow (Ty) when it diffuses
from the web surface through the laminar film (Figure 8.19). Laminar film temperature
can be calculated by T¢ = (T,+Ts)/2 or more accurately

T, T, - Zeon (T2 =T5) (1.19)
LY
AP

where m, /A is the specific air flow rate per m® of web, Cpa IS specific heat of the

impinged air, T, is temperature of the air, T is laminar film temperature and T; is the
temperature of the coating surface (Figure 8.19).

Ta
Exhaust
at T;
- T¢
m, /A
m_ /A T Laminar film

B T T T T T T T T T T T I
N s e sttt oo St e et ey s e s e Tttt oS e e ettt
risteterntoteturstetatutototatelotelatolelotetutotatotutototoralototetotetorututotatotelot Sotatetotulotes
R RSSO SHAR R HIRASRRRAHAARKIRRAARARKRASRRS

Evaporating surface

Figure 8.19. The laminar boundary film.
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APPENDIX D: MODELS OF COAT WEIGHT

First a static layer of coating is formed due to dewatering according to Lucas-Washburn
theory (Heikkila (1992). It can be stated loosely that the thickness of a coating is
proportional to a square root of application solids content and a square root of drainage
time according to equation

% = JK,C, (100— X)) Iv (1.20)

where m, / A is drained coating weight per unit area, cq is the drainage coefficient, Kqq

the corresponding parameter of the hybrid modeling, X, is moisture percentage of the
coating color and v is the machine speed (inversely proportional to time of dewatering).

Coating will start forming immediately when the coating color is applied to the surface of
the web (Figure 8.20).

Applicator
Roll

Coating
Color Coat flow in

Figure 8.20. Typical conventional and short dwell coater.

Kuni and Nordlund (1998) showed in their experimental research by non-linear
regression that the equation proposed by Gartaganis et al. (1978) is basically true. The
equations (1.21) are presented also by Booth (1990) and the last equation is the
simplified equation for the hybrid modeling.

3 3
ow, = 2p |G _ | _KeY (1.21)
3 \ F,sin(2a) F,sin(2x)

where CW,, is coat weight, b is the blade trim (length), n is the viscosity of the color, v is
the machine speed, ¢, is the blade thickness and F, the pressure on the blade, o is the
bevel angle and K, is the tuning parameter of the hybrid model

All the coefficients that are not known are assumed to be contained in the hybrid
modeling parameter, Kg,.

The Gartaganis equations (1.21) are for a beveled blade coaters. The corresponding
equations for a low angle blade (Booth 1990) are the following:
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CW, = bR&
Ets 3 F F
where CW,, is coat Weight, b is the blade trim (length), 1 is the viscosity of the color, R is
backing roll radius, 0 is the blade contact angle, L is blade extension (the distance from
the blade holder to the blade tip). t is blade thickness (caliber), E is the elastic modulus
of the blade, F; the pressure on the blade and Kg is the tuning parameter of the hybrid
model.

(1.22)

2[ NV _2V2 \/nv3R49_\/KFiv3

All the coefficients that are not known are assumed to be contained in the hybrid
modeling parameter, Kg.

Eklund (1984) presented impulse force (F) and hydrodynamic force (H,) equations that
have proven to be quite widely accepted force balance representations. According to
Eklund and Kahila (1978), hydrodynamic force (H, ) that is based on the lubrication
theory, is effective only at the blade entrance caused by the coating flow that is
deflected away from the blade nip. The equations for the forces are the following:

_ bV o
H,= (e )(In(1+r) )

0 = [Fz_(Fl + HZ)]COS(CY)

(1.23)

(1.24)
where

Fo = compressive force towards the web
Fi = impulse force

F., = mechanical force at the blade tip
H, = hydrodynamic force

m= mass flow rate of the coating

V = web speed

r = (h1/h2)-1 and hl is the coating thickness approaching the blade nip and h2 is the
blade nip gap

u = simple shear viscosity in the blade nip

o = blade angle
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The difference to the beveled blade is that in the low angle coater the blade is bent. The
tip angle is usually less than 15° (Kuni and Nordlund 1998). The blade is not in contact
with the web because the hydrodynamic forces are stronger than the mechanical force
due to low blade angle (Figure 8.21). Because the blade bends under the influence of
high dynamic forces the blade angle decreases when the mechanical force is increased.
Small changes in the blade angle cause large response in the dynamic force (Eklund
1984). It can be assumed that the equations for the forces acting on the blade remain
the same as in the beveled blade coating.

h h, Coat flow

I:i_*_Hz A(O h0

Figure 8.21. Forces in low angle blade coating.
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APPENDIX E: SIC

CV and c, are subspace selection criteria where typically the trade-off between the lack
of fit and model complexity is evaluated. The model complexity here is usually defined
as the number of free parameters as in AIC. An extension to these is Subspace
Information Criteria (SIC), (Sugiyama and Ogawa 2001).

sc=|6,-6 *_52Ar (X XT) +62r (X XTI
=1Ys U o I’( 0 o)+5tr( s s) (1.25)

A

O is estimated model parameter, © = Xy

X is pseudo inverse of data matrix A, X = (A" A" AT

2
6° is estimate of variance, 6° = M
M —tr (AX)

M is the number of training samples in the subset.
Subscript S denotes the values estimated with subset of samples.

Subscript U denotes the values estimated with large number of samples or unbiased
values.

Subscript 0 denotes difference between the values of training samples and the large
sample, X,=Xs—X, .

In SIC the complexity is measured with and that are numerical estimates of the number
of free parameters.

In SIC the complexity is measured with and that are numerical estimates of the number
of free parameters.
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