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ABSTRACT 
 
     ICA is applied to multi-channel vibration 
measurements of a 35 kW cage induction motor to fuse 
the information of several channels, and provide a robust 
and reliable fault detection routine. Independent 
components are found from the measurement data set with 
FastICA algorithm, and their PSD estimates are calculated 
with Welch’s method. A SVM based classification routine 
is applied to the PSD estimates to perform the fault 
identification. Similar classification is applied directly to 
vibration measurements. Based on the results with real 
measurement data it is shown that data fusion with ICA 
enhances the fault diagnostics routine. 
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1.   Introduction 
 
     Vibration analysis has been used in rotating machines 
fault diagnosis for decades [1-3]. In [3], it is claimed that 
vibration monitoring is the most reliable method of 
assessing the overall health of a rotor system. Machines 
have complex mechanical structures that oscillate and 
coupled parts of machines transmit these oscillations. This 
results in a machine related frequency spectrum that 
characterizes healthy machine behaviour. When a 
mechanical part of the motor either wears or breaks up, a 
frequency component in the spectrum will change. In fact, 
each fault in a rotating machine produces vibrations with 
distinctive characteristics that can be measured and 
compared with reference ones in order to perform the 
fault detection and diagnosis.  
 
     Vibration monitoring system requires storing of a large 
amount of data. Vibration is often measured with multiple 
sensors mounted on different parts of the machine. For 
each machine there are typically several vibration signals 
being analysed in addition to some static parameters like 
load. The examination of data can be tedious and sensitive 

to errors. Also, fault related machine vibration is usually 
corrupted with structural machine vibration and noise 
from interfering machinery. Further, depending on the 
sensor position, large deviations on noise may occur in 
measurements.  
 
     Due to these problems intelligent compression of the 
multichannel measurement data may aid in data 
management for fault diagnostics purpose. Independent 
component analysis (ICA) can be used to find a structure 
in large amount of multivariate data. ICA may be used to 
compress measurements from several channels into a 
smaller amount of channel combinations - statistically 
independent components of the measurements - that could 
clearly indicate faults in the machine.  
 
     In this article, independent component analysis (ICA) 
is studied to provide a robust and reliable fault diagnostics 
routine for a cage induction motor. Ypma & al. have 
successfully utilised similar approach with application to 
fault diagnostics of a submersible pump in [4] and [5]. In 
our study, resulting independent components are further 
processed with Welch’s power spectrum density (PSD) 
estimation and support vector machine (SVM) [6] based 
classification to obtain the knowledge of the motor 
condition. In literature, ICA has also been applied to 
separate machine vibrations from interfering vibration 
sources e.g. in [7]-[9]. 
 
     The content of the paper is following. In Section 2, the 
basis of ICA is explained. In Section 3, SVM based 
classification is explained. In Section 4, the vibration 
measurement system is explained as well as results from 
fault classification based on vibration monitoring with 
ICA.  In Section 5, some conclusions are made. 
 
 
2.   Independent Component Analysis [10, 11] 

 
     Independent component analysis is a method for 
finding underlying structure in multivariate data. What 
makes the difference between ICA and other multivariate 
analysis methods is that it looks for components that are

Proceedings of the IASTED International Conference  
CIRCUITS, SIGNALS, AND SYSTEMS 
May 19-21, 2003, Cancun, Mexico 

391-061 203



both statistically independent, and nongaussian. For 
example in PCA, the redundancy is measured by 
correlations between data elements, while in ICA the idea 
of independence is used. Statistical independence means 
that the value of any one of the components gives no 
information of the other components. Principal 
components of the data are statistically not correlated and 
for gaussian data uncorrelated components are also 
independent. However, real data sets often do not follow a 
gaussian distribution. For example, many data sets have 
supergaussian distribution that means that the random 
variables take relatively more often values close to zero or 
very large.  
 
     Consider a situation where there are a number of 
signals emitted some physical objects or sources (e.g. a 
rotating machine vibration and interfering vibration 
sources). Assume further that there are several sensors or 
receivers (e.g. vibration sensors). The sensors are in 
different positions so that each records a mixture of the 
original source signals with slightly different weights. Let 
us denote ith recorded mixture with xi and jth original 
source with sj. The phenomenon can be described with an 
equation x = As , where elements of x are xi and elements 
of s are sj. 
 
     The elements aij of the matrix A are constant 
coefficients that give the mixing weights that are assumed 
to be unknown. A is called a mixing matrix. A blind 
source separation problem is to separate original sources 
from observed mixtures of the sources, while blind means 
that we know very little about the original sources and 
about the mixture. It can be safely assumed that the 
mixing coefficients are different enough to make matrix A 
invertible. Thus there exists a matrix W = A-1 that reveals 
the original sources s = Wx. After this the problem is, 
how to estimate the coefficient matrix W. A simple 
solution to the problem can be found by considering the 
statistical independence of different linear combinations 
of x.  
 
     In [11], problem of finding independent components 
(IC) is formulated with the concept of mutual information. 
First differential entropy H of a random vector y = (y1, 
y2,…,yn) with density f(⋅) is defined as follows:  
 
     ( ) ( ) log ( )H f f= −∫y y y dy  .    (1) 

 
A gaussian variable has the largest entropy among all 
variables of equal variance. Differential entropy can be 
normalised to get the definition of negentropy: 
 

( ) ( ) ( )gaussJ H H= −y y y  ,   (2) 
 
where ygauss is a gaussian random vector of the same 
covariance matrix as y. Negentropy is zero for gaussian 
variable and always nonnegative. Mutual information I of 
random variables yi, i = 1,…,n can be formulated using 

negentropy J, and constraining the variables to be 
uncorrelated:  
 
               

1 2( , ,..., ) ( ) ( )n i
i

I y y y J J y= −∑y   .    (3) 

 
     Since mutual information is the information theoretic 
measure of the independence of random variables, it is 
natural to use it as a criterion for finding the ICA 
transform. Thus the matrix W is determined so that the 
mutual information of the linear combinations of mixed 
variables x is minimized. Because negentropy is invariant 
for invertible linear transforms, W that minimizes the 
mutual information is roughly equivalent to finding 
directions in which the negentropy is maximized.  
 
     To use the formulation above a simple estimate for the 
negentropy or differential entropy need to be chosen. 
There are different options for this to emphasize e.g. 
robustness or fast convergence.  
 
     The FastICA algorithm [11] is a computationally 
highly efficient method for performing the estimation of 
independent components of time series. It uses a fixed-
point iteration scheme that has been found to be 10-100 
times faster than conventional gradient descent methods 
for ICA. In this research, a FastICA MATLAB-package 
developed at Laboratory of Computer and Information 
Science in the Helsinki University of Technology was 
applied. 
 
 
3.   Classification with Support Vector 
Machines 

 
     SVM based classification [6] is a relatively new 
machine learning method based on statistical learning 
theory presented by Vapnik. In SVM, an optimal 
hyperplane is determined to maximize the generalization 
ability of the classifier by mapping the original input 
space into a high dimensional dot product space called 
feature space. The mapping is based on a so-called kernel 
function. The optimal hyperplane is found in the feature 
space with a learning algorithm from optimization theory 
that implements a learning bias derived from statistical 
learning theory.  
 
     SVM based classifier is claimed to have better 
generalisation properties than for example neural network 
based classifiers. In addition to this, SVM based 
classification is interesting, because its computational 
efficiency does not depend on the number of features of 
classified entities. This property is very useful in fault 
diagnostics, because the number of features to be chosen 
to be the base of fault classification is thus not limited. 
 
     Let n-dimensional input xi (i = 1 ,...,M) belong to Class 
I or Class II and associated labels be yi = 1 for Class I and 
yi = –1 for Class II. For linearly separable data, we can 
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determine a hyperplane f(x) that separates the data. For a 
separating hyperplane f(x) ≥ 1, if the input x belongs to 
positive class, and f(x) ≤ -1, if x belongs to the negative 
class. This results (5): 
 

1
( )

n

j j
j

f b w x b
=

= + = +∑x w xi     (4)  

  ( ) ( ) 1, for 1,...,i i i iy f y b i M= + ≥ =x w xi ,             (5) 
 

where w is an n-dimensional vector and b is a scalar. The 
weighting vector w defines the direction of the separating 
hyperplane f(x) and with w and b (bias) it is possible to 
define the hyperplane’s distance from the origin.  
 
     The separating hyperplane that has the maximum 
distance between the hyperplane and the nearest data, i.e. 
the maximum margin, is called the optimal separating 
hyperplane. An example of optimal separating hyperplane 
of two datasets is presented in Fig. 1. The optimal 
hyperplane is perpendicular to the shortest line between 
border lines of two sets, and the plane and the shortest line 
intersect each other in the halfway of the line. The 
geometrical margin γ is half of the sum of the distances 
between arbitrary separating hyperplane and the nearest 
negative and positive datum (x – and x +): 
 

2 2

2

1 (( ) ( ))
2

1 (( ) ( ))
2

γ + −

+ −

= ⋅ − ⋅

= ⋅ − ⋅

w wx x
w w

w x w x .
w

  (6) 

 
Without loss of generality the optimal separating 
hyperplane can be searched among canonical hyperplanes 
that fulfil w⋅x+ = 1-b and w⋅x-  = -1-b: 
 

2 2 2

1 1(( ) ( ))
2

γ + −= ⋅ − ⋅ =
w wx x

w w w
 . (7) 

 
The optimal hyperplane maximizes the geometrical 
margin. Thus the optimal hyperplane can be found by 
solving the following convex quadratic optimisation 
problem: 

2

i

1minimize 
2

subject to  y ( ) 1 .i b+ ≥

w

w xi
  (8) 

 
     If the number of attributes of data examples is large, 
we can considerably simplify calculations by converting 
the problem with Kuhn-Tucker conditions into the 
equivalent Lagrange dual problem, which will be: 
 

M

i=1 , 0

M

i=1

1maximize  ( )=
2

subject to  0, 0, 1,..., .

M

i i k i k i k
i k

i i i

W y y

y i M

α α α

α α

=

−

= ≥ =

∑ ∑

∑

α x xi
 (9) 

 
Figure 1. Optimal Hyperplane 

 
The number of variables of the dual problem is the 
number of training data. 
 
     Let us assume that optimal solution for the dual 
problem is α* and b*. According to the Karush-Kuhn-
Tucker theorem, the equality condition in (5) holds for the 
training input-output pair (xi,yi) only if the associated αi* 
is not 0. In this case the training example xi is a support 
vector. Solving (9) for α = (α1,…,αM), we can obtain the 
support vectors for classes I and II. Then the optimal 
separating hyperplane is placed at the equal distances 
from the support vectors for classes I and II, and b* is 
given by: 
 

*
1 2

1

1* ( )
2

M

k k k k
k

b y α
=

= − +∑ s x s xi i  ,  (10) 

 
where s1 and s2 are arbitrary support vectors for Class I 
and Class II, respectively. In Fig.1, support vectors are 
bolded. Notice, that support vectors are such training 
samples that are on the margin of two datasets. The 
optimal separating hyperplane would be the same, if only 
support vectors had been used as training data.  
 
     So far it is assumed that the training data is linearly 
separable. In the case where the training data cannot be 
linearly separated, non-negative slack variables ξi are 
introduced to (5). This corresponds to adding the upper 
bound C to α. In both cases, the decision functions are the 
same and are given by: 
 

* *

1
( )

M

i i i
i

f y bα
=

= +∑x x xi  .   (11) 

 
Then unknown data example x is classified as follows: 
 

Class  I,   if   ( )  0 
Class II,     otherwise .

f >
∈


x
x    (12) 

 
     SVM is a non-linear kernel-based classifier, which 
maps the data to be classified, X, onto a space, where the 
data can be linearly classified. Using the non-linear vector 
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function Φ(x) = (Φ1(x),…,Φl(x)) that maps the n-
dimensional input vector x into the l-dimensional feature 
space, the linear decision function in dual form is given 
by: 
 

1
( ) ( ) ( )

M

i i i
i

f yα
=

= ∑x Φ x Φ xi .  (13) 

 
     Notice that in (13) as well in the optimisation problem 
(9), the data occur only in inner products. In SVM, the 
actual mapping function, Φ, is not necessary to be known, 
but the classes optimally separating hyperplane is possible 
to calculate with inner products of the original data 
samples. If it is possible to find this kind of procedure to 
calculate inner products of feature space in original data 
space, it is called a kernel, ( , ) ( ) ( )K = Φ Φx z x zi . Then the 
learning in the feature space does not require evaluating Φ 
or even knowing it, because all the original samples are 
handled only with Gram matrices , 1(( ))M

i j i jG == x xi . Using 
a Kernel function, the decision function will be: 
 

*

support  vectors
( ) ( , )i i if sign y Kα

 
=  

 
∑x x x   ,  (14) 

 
and the unknown data example is classified as before. 
 
     However, all kernels do not correspond to inner 
products in some feature space. With a so called Mercer’s 
theorem it is possible to find out, whether a kernel K 
depicts an inner product in that space where Φ is mapped 
[6]. 
 

     Least Square Support Vector Machines (LS-SVM) are 
reformulations to the standard SVM’s [12]. The cost 
function is a regularized least squares function with 
equality constraints leading to linear Karush-Kuhn-Tucker 
systems. The solution can be found efficiently by iterative 
methods like conjugate gradient algorithm. LS-SVM’s do 
not lead sparse solutions like SVM’s but they are 
computationally very fast. In this research, LS-SVM 
MATLAB toolbox presented in [12] is used. 
 
 
4.   Results 

 
4.1   Vibration Measurements 
 
     An induction motor of 35 kW is fed from a Vacon 
inverter. A DC generator is the motor load.  The switching 
frequency of the inverter is fixed at 3 kHz.  Five 
acceleration vibration sensors are placed in different parts 
of the motor. Three of them are placed in the cooling 
surface of the motor frame. One is placed in the covering 
surface of the frontal bearing and the other one near the 
cooling fan in the back part of the motor.  
 
     The signals given by the vibration sensors are 
amplified through charge amplifiers Bruel & Kjaer 2635. 
The amplified signals are the transient recorder inputs. 
The recorded transient is calibrated using a true root mean 
square voltmeter connected in the amplifier output.  This 
calibration is made in such a way that the recorded 
measurements in the transient recorder are in acceleration 
unity. In Fig. 2, the measurement set-up is presented. 
 
 

Figure 2. Vibration Measurement Set-Up.

Grid 

Wide  Band  Power  
Analyzer 
Norma 

Inverter 
Vacon 

Voltage 

Current measurement

Isolator 
Sony A6907

Kontron WW700, 
Transient Recorder.  
PC DOS 

Load 
Resistor

Magnetizing 
Current 
Control 

Induction
Motor 

DC 
Generator

Charge Amplifiers 
    Type 2635 

Voltage measurement

Vibration measurements 

LEM 

206



 
     Measurements are carried out with motor in healthy 
condition and with motor under three rotor fault 
situations: one broken rotor bar, two broken rotor bars and 
three broken rotor bars plus end ring broken.  The 
sampling frequency is 40 kHz and the number of samples 
in a data set is 20 thousands. Three load situations are 
considered: no load, half load and full load. 
 
     In Fig. 3, vibration measurements in a healthy situation 
with no load are presented. It can be seen that one of the 
vibration measurements is considerable higher than 
measurements from the other sensors. The same 
phenomenon can be seen from Fig. 4, where 
measurements in a broken bar situation with no load are 
presented. Further in Fig. 5, measurements in two broken 
bar situation with no load are presented. Again one of the 
sensors produces the most relevant vibration signal, but it 
is surprising than in this more serious fault situation all 
vibrations are generally lower than in one broken bar 
situation.  
 
 
4.2 Broken Rotor Bar Detection with ICA 
and SVM 
 
     FastICA algorithm is used to calculate IC’s of 
vibration measurements. Before applying FastICA, the 
vibration measurements are whitened with PCA.  
 
     In Fig. 6, Welch’s PSD estimates of the first IC in 
healthy and faulty situation are presented in the same 
picture (Hanning window sized 500 samples with 250 
overlapping samples). One can see that they differ from 
each other, even if the vibration signals seem to be quite 
similar in time domain. 
 
     LS-SVM based classifier is built to discriminate 
between the healthy and broken rotor bar condition. It is 
tested also with measurements from two broken bar 
situation and three broken bar and broken end ring 
situation. LS-SVM has a kernel function that corresponds 
to the first order polynomial and the upper bound for 
Lagrange multipliers was chosen to be equal to 10. 
 
     Training data is formed by calculating Welch’s PSD 
estimates from different parts of the first IC of vibrations 
in the healthy and broken rotor bar situations. In earlier 
figures, only no load situations are plotted, but we will 
take into account also two other load situations in 
training: half load and full load. The training data consists 
of 2x3x15 = 90 samples so that from both motor 
conditions and from all load situations there exist 15 
samples. The other faults than one broken rotor bar fault 
are used only in testing the classifier, so that in total there 
are  240  samples  for  testing:   45  from healthy situation, 
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45 from one broken rotor bar situation and 90 from two 
broken rotor bars and 60 from three broken rotor bars and 
broken end ring. In the last case, full load measurements 
were not done. All of the test samples are correctly 
classified. 
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    For comparison, a classifier that uses the main vibration 
component as a fault indicator instead of the 1st IC of all 
vibrations was also trained. Training and testing data sets 
were formed in a same way as earlier. Now 5% of test 
samples were wrongly classified. All of these samples 
were two broken rotor bar samples that were wrongly 
classified to be healthy. 
 
     Further, a classifier that uses the first principal 
component (PC) of vibrations as fault indicator was 
trained. Again, all the test samples were correctly 
classified. Even if the difference between using pure 
vibrations or IC’s or PC’s of vibrations in fault detection 
is quite small, this could indicate that faults are more 
easily detected from fused vibration measurements than 
pure vibrations. IC’s and PC’s contain more information 
on all vibration measurements than any of the individual 
vibration measurements. Using all vibration components 
for classification might improve the results without any 
data fusion, but at the same time computation would 
become heavier.  
 
 
5. Conclusion 
 
     ICA was applied to multi-channel vibration 
measurements of an induction motor to fuse the 
measurement information of several channels, and 
provide robust and reliable broken rotor bar detection. 
IC’s were found from the measurement set with a 
FastICA algorithm and their PSD estimates were 
calculated with Welch’s method. A SVM based 
classification routine was applied to the PSD samples to 
perform the fault diagnosis. Similar classification was 
applied directly to PSD estimates of vibration 
measurements and to PSD’s of PC’s of the measurements. 
Results gained with the two data fusion methods were 
compared to the results gained without data fusion. Both 
methods enhance the fault diagnostics routine. 

     In this case, both data fusion methods, ICA and PCA, 
resulted in equally excellent performance of broken rotor 
bar detection. However, further studies are required with 
measurements from other faults to conclude overall 
usefulness of data fusion of vibration measurements, 
because the broken rotor bar was quite easily detected 
also based on the main vibration measurement. Also, 
building a multi-class classifier for detection of several 
faults may degrade the classification results. 
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