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Nomenclature 
 
Mathematical notations 
 
ωs  the synchronous speed of the revolving field 
ωr   the slip speed 
ωm  the rotor speed 
P  the number of poles 
f  the frequency of the current in the stator winding 
s  the slip of the motor 
V1   the applied voltage on a per-phase basis 
R1   a per-phase stator winding resistance 
X1    a per-phase stator winding reactance 
Rr   a per-phase rotor winding resistance 
Xb   a per-phase rotor winding leakage reactance at s = 1  
Xr    a per-phase rotor winding leakage reactance at any slip s 
Xm   a per-phase magnetization reactance 
Rc   a per-phase equivalent core-loss resistance 
E1   the per-phase induced EMF in the stator winding 
Eb   the per-phase induced EMF in the rotor winding at s = 1 
Er   the per-phase induced EMF in the rotor winding at slip s 
Ir   the per-phase rotor winding current 
I1    the per-phase current supplied by the source 
IФ   the per-phase excitation current 
Ic   the per-phase core loss current 
Im   the per-phase magnetization current 
a  a transformation ratio 
kw1   the winding factor of the stator winding 
kw2   the winding factor of the rotor winding 
N1   turns per phase of the stator winding 
N2   turns per phase of the rotor winding. 
ν  the reluctivity of the material 
J  the current density  
Φ   the electric scalar potential: 
A   the magnetic vector potential 
σ  the conductivity of the material 
u   the potential difference induced between the ends of the conductor 
l   the length of the conductor  
i  the total induced current 
R  the d.c. resistance of the conductor 
∆t  a short time interval 
n  the dimension of the classified vector, i.e. the number of features 

T
1( ,..., )nx x=x  a sample vector to be classified 

K  the number of classes 
M  the number of the training samples 
pi = P(Ci)  a probability that x belongs to class i  
pij a conditional probability that x belongs to class i when x belongs either 

to i or j 
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P(x|Ci)   a conditional probability for getting an observation x from class i P(Ci|x) 
  an a posteriori probability for sample to belong to class i.  
P(x)     the unconditional probability for occurrence of x 
yi  a label for a sample vector xi, y = +1 or y = -1 
w = (w1,�,wn )T a weighting vector 
f(x)  the function defining a separating hyperplane 
h(x)  h(x)=sign(f(x)), the decision rule 
b  a bias of the separating hyperplane 
λ +∈!   a learning rate of a linear learning machine 
d  the VC dimension 
R  the risk for misclassification in the test set 
Remp  the empirical risk for misclassification in the test set 
Perror  the probability of test error 
η   the bound for risk of misclassification holds with probability 1 � η,  

0 ≤ η ≤1 
∆  the margin of ∆-margin separating hyperplanes 
x+  a sample belonging to positive class 
x-  a sample belonging to negative class 
xo  a sample on a separating hyperplane   
γ   the geometrical margin between positive and negative class 
L  Lagrange function 
W a cost function in the dual representation of the Lagrange optimisation 

problem 
T

1( ,..., )Mα α=α  Lagrange multipliers for all samples 
#SV the number of support vectors 
xs = (xs1, xs2,�xs#SV)T  a group of support vectors 
ξi  a slack variable introduced to the ith inequality condition, ξi > 0,  

i = 1,�,M 
C  the upper bound for elements ofα , error penalty for SVM training 

T
1( ) ( ( ),..., ( ))lϕ ϕ=φ x x x  a nonlinear vector function that maps x into the l-dimensional feature 

space 
T( , ) ( ) ( )K =x z φ x φ z  a Kernel function that calculates inner products of feature space in 

original data space 
G  Gram matrix 
gn  a vector containing outputs of n classifiers 
M  K n×  mixture matrix   
gmixed = Mgn  1K × vector containing fusion of the outputs of the classifiers  
Q  an accuracy measure 
σ  the width of the radial basis function 
M  a polyspectral measure with magnitude |M| and phase M∠ , the phase 

being bound by �π and π 
Menh an enhanced polyspectral measure 
a1,�,an coefficients of the nth order autoregressive model 
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Abbreviations 
 
ANFIS  Adaptive Neuro-Fuzzy Inference System  
     (or Adaptive Network based Fuzzy Inference System) 
AR  AutoRegressive 
BB  Broken rotor Bar 
BR  Broken end Ring 
BSS  Blind Signal Separation 
DE   Dynamic rotor Eccentricity 
EMF  ElectroMotive Force 
FALCON  Fuzzy Adaptive Learning Control Network 
FEM  Finite Element Method 
FFT  Fast Fourier Transform  
HOS  Higher Order Spectrum 
HV  High Voltage 
IC  Independent Component 
ICA  Independent Component Analysis 
IM  Induction Motor 
k-NN  k-Nearest Neighbor 
LV  Low Voltage 
MANOVA  Multivariate ANalysis Of VAriance 
MCSA  Motor Current Signature Analysis 
MDA   Multiple Discriminant Analysis 
MLP  MultiLayer Perceptron 
MV  Medium Voltage 
MVDA  MultiVariate Data Analysis 
NF  No Fault 
NN  Neural Network 
PD   Partial Discharge 
PC  Principal Component 
PCA  Principal Component Analysis 
PNN  Probabilistic Neural Network 
PRPD  Phase Resolved Partial Discharge (diagram) 
PSD  Power Spectrum Density 
RC  shorted Coil in Rotor winding 
RMS  Root Mean Square 
RT  shorted Turn in Rotor winding 
SC  shorted Coil in Stator winding  
SE  Static rotor Eccentricity 
ST  shorted Turn in Stator winding 
STFT  Short Time Fourier Transform 
SV  Support Vector 
SVC  Support Vector Classification 
SVM  Support Vector Machine 
VA  Voltage Asymmetry 
VC  Vapnik-Chervonenkis 
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1.   Introduction 
 

1.1 Background and motivation 
 

Induction motors are widely used in the industry, and there is a strong demand for their reliable and 
safe operation. Faults and failures of critical electro-mechanical parts can lead to excessive 
downtimes and generate costs of millions of euros in reduced output, emergency maintenance and 
lost revenues. Thus, finding efficient and reliable fault diagnostics methods, especially for induction 
motors, is extremely important. In the industry, methods based on analytical models of the motor 
systems are still the most common choices for condition monitoring of electrical machinery. 
However, during the last decade also applications of different kinds of data-based models such as 
Neural Networks (NN) have established a firm position. 

     Support Vector Machine (SVM) is a modern computational learning method based on statistical 
learning theory presented by V. N. Vapnik [Vapnik00]. In SVM, the original input space is mapped 
into a high dimensional dot product space called feature space, and in the feature space the optimal 
hyperplane is determined to maximize the generalisation ability of the classifier. The optimal 
hyperplane is found by exploiting optimisation theory, and respecting insights provided by the 
statistical learning theory.  

          SVMs have several benefits compared to traditional classifiers. Their most important 
characteristic is that they can handle very large feature spaces. Their generalisation ability and 
computational efficiency are both independent of the dimension of the input space. That is why, it 
has been found to be especially efficient in high dimensional classification problems. Concerning 
fault classification this is a great benefit, because the number of fault features does not have to be 
limited. Aggressive feature selection could result in a loss of information. The other benefit 
compared to conventional algorithms is that the SVM results in a globally optimal solution for the 
problem under study. As a comparison one could consider the NNs, which may have many local 
minima leading to a not trustworthy solution. Further benefit is sparseness of the solution that 
enables efficient and fast computation. 

       In this thesis, the induction motor fault diagnostics is investigated using SVMs in co-operation 
with various signal processing tools. Different aspects of motor fault diagnostics are considered, 
concentrating especially on motor current signature analysis (MCSA), vibration monitoring and 
insulation system condition monitoring with partial discharge (PD) analysis. Vibration monitoring 
is a classic tool for induction motor fault diagnostics, but recently a great amount of research is 
oriented towards application of MCSA, because monitoring the motor current is a non-invasive 
method and it does not require any additional instrumentation such as vibration sensors. In some 
studies, it is claimed that motor current contains equal information on motor faults as the motor 
vibrations, which seems to justify the efforts put on the research of the subject [Benbouzid00]. In 
this thesis, several variables will be compared as fault indicators including the motor current and 
forces related to motor vibrations.  

      SVMs have been successfully applied in various classification and pattern recognition tasks, but 
in the area of fault diagnostics they have not been widely studied. Especially, in fault diagnostics of 
induction motors they do not seem to have been documented before this research. As stated above 
they are highly competitive with, e.g., NNs which are widely studied also in induction motor 
condition monitoring. 
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1.2 Summary of articles 
 

The thesis consists of seven articles that consider different aspects of the fault diagnostics of 
electrical machines. MCSA, vibration monitoring and PD analysis are studied, and data-based 
analysis receives special attention. SVM based classification is applied in fault classification tasks 
and various feature extraction methods are considered in each motor condition monitoring 
approach. The methods are tested with both virtual measurement data generated with numerical 
magnetic field analysis and real measurements. Numerical magnetic field analysis has been carried 
out in the Laboratory of Electromechanis, HUT, for this study.  

     In [P1] and [P2], the MCSA approach is followed. In both articles, the estimates of power 
spectrum density (PSD) of the stator line current of a 15 kW induction motor are used as a medium 
of fault detection. In [P1], novel SVM based classifiers are trained to distinguish healthy spectrum 
from faulty spectra and faulty spectra from each other. In [P2], the outputs of pairwise SVMs are 
fused with a simple majority voting approach. The application of SVM made possible the utilisation 
of the whole PSD estimate as the feature vector in classification despite of the small number of 
measurements, and feature selection is not needed before training the classifier. Six different faults 
are studied in addition to the healthy operation of the motor. Numerical magnetic field analysis is 
used to provide virtual measurement data from the motor operation. PSD estimates of the stator 
current of the motor are calculated with Welch�s method [Welch67]. The results are promising. 
Most of the faults can be separated correctly from each other. One can also see from the support 
vector percentages that the classification is successful in most of the fault cases. In [P2], also the 
influence of noise was studied. SVM had not been applied in induction motor fault diagnostics 
before these studies. 

     Without noise the classification structure performs well, but noise degrades the total 
classification rate. With noise filtering, the fault detection rate increases only slightly. This raises 
the question, whether the stator line current is the best choice for a fault detection medium. It is 
widely used, because the current measurements do not require access to the motor, but nevertheless 
the current may not contain enough information on motor faults to be applied as an efficient 
medium of fault diagnostics.  However, some faults can easily be detected from stator line current 
regardless of the noise. With 3-class classification structure, detection rate of shorted coil and 
shorted turn operation are adequate even in noisy situations. 

     It is noticed that also in noiseless case, the errors in outputs of 2-class classifiers are cumulated 
in reconstruction of the final multi-class solution. The malfunction of some 2-class classifiers 
should be taken into account while reconstructing the final classification solution. In [P3], four 
different coupling techniques of the 2-class classifiers are studied to get the global decision of the 
motor condition. A properly tuned NN coupling results in the most accurate multi-class 
classification result, but with a much simpler reconstruction approach relying on a mixture matrix 
almost equal classification performance is obtained. In this application, linear coupling is a practical 
choice for the reconstruction scheme, because training and tuning a NN is an exhausting task, and 
the benefits of applying a nonlinear approach are marginal. Comparison of different coupling 
techniques of 2-class classifiers is important concerning the research of classification methods in 
general, and the mixture matrix approach had not been earlier applied exactly in this form. 

    In [P4], SVM based classification is applied to fault diagnostics of a 35 kW cage induction motor 
and a slip-ring generator. A mixture matrix coupling scheme is used to combine 2-class SVMs. 
Stator line current, circulating currents between parallel branches and forces acting on the 
machine�s rotors are compared as fault indicators. Forces on the rotor and circulating currents 
between parallel branches are found to be superior indicators of faults compared to the stator 
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current. Measurement of the forces is difficult, but they are directly related to measurable motor 
vibrations that are widely used in the condition monitoring of induction motor. 

     In [P5], vibration monitoring is studied instead of MCSA. Several features of vibration signals 
are compared as indicators of broken rotor bar of a 35 kW induction motor. Regular fast Fourier 
transform (FFT) based PSD estimation is compared to signal processing with higher order spectra, 
cepstrum analysis and signal description with autoregressive (AR) modelling. The fault detection 
routine and feature comparison is carried out with SVM based classification. The best method for 
feature extraction seems to be the application of coefficients of AR model. The results are 
discovered from real measurement data from several motor conditions and load situations. It is 
noteworthy that the independent test set contains measurements from rotor faulted motor operation 
that are not exactly the same as the data used in the training of the classifier. This further ensures 
the generalisation of the fault classification when AR-coefficients are used as classification features. 

     Also [P6] deals with the vibration monitoring. Vibrations of the motor are measured with 
multiple sensors, and it is studied, whether the fault classification rate improves, if the information 
of measurements is fused and possible interference removed before the classification. This is carried 
out with independent component analysis (ICA). Only the PSD estimation is used as a feature 
extraction tool, but with the data fusion also this results in excellent fault classification: all test 
samples are correctly classified. For comparison, regular principal component analysis (PCA) is 
applied for data fusion and it also improves the results. It is obvious that the vibration data fusion 
benefits the fault classification, but it cannot be concluded that a broken rotor bar generates an 
independent component to the vibrations that could be detected and utilised in fault diagnostics. 
ICA could be more successfully applied in situations, where independent interference should be 
separated from vibrations before fault diagnostics. 

     In [P7], another aspect of induction motor fault diagnostics is studied: the condition monitoring 
of insulation systems. Partial discharge (PD) measurements are widely used for diagnosis of 
insulation condition in different high or medium voltage apparatus. This study does not cover the 
whole PD analysis process, but only a PD generating defect localization task is considered.  Firstly, 
various parameters are extracted from PD distributions and statistical analysis is carried out to find 
good parameters for insulation defect localization. Then numerical classification is applied to build 
an automated localization tool. Because the most important features concerning the localization are 
found beforehand, also other classification tools can be applied in addition to SVM. When 
comparing k-nearest neighbor classifier (k-NN), probabilistic neural network and SVM, the best 
results are achieved with SVM. However, the application of a simple tool such as k-NN 
classification may be justified when considering tuning, updating and computational aspects. These 
are considerable simpler tasks with k-NN classifier than with SVM. SVM had not been studied 
regarding PD analysis before this research.  

 

1.3 Contributions of the author 
 
The author�s contributions can be summarized as follows: 

� SVM based classification routine for fault diagnostics of induction motors is implemented in a 
simulation environment using stator line current, motor vibrations or forces on the rotor as fault 
indicators. As far as the author knows SVM has not been used in induction motor condition 
monitoring earlier. 

� Various measurements are compared for fault diagnostics of an induction motor, and the stator 
line current is found to be a poor indicator of faults unlike, for example, forces on the rotor. The 
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result is interesting, because recently a great part of induction motor fault diagnostics research has 
concentrated on using the current as the main information source.  

� Various coupling schemes of pairwise classifiers are implemented and compared to solve a multi-
class classification problem. The best scheme, mixture matrix coupling, was not applied in the 
literature in this form before this thesis. 

� Of various signal processing tools, AR modelling was showed to reveal the influence of a broken 
rotor bar in a 35 kW induction motor in the best way, when vibrations are used as fault indicators. 
AR modelling as well as other signal processing tools considered has been documented in the 
literature before, but their comparison is new. 

� Information fusion of multi-channel vibration measurements with multivariate data analysis was 
shown to enhance the fault detection rate of a 35 kW induction motor. Similar results can be 
found in the literature for other kinds of rotating machines. 

� Partial discharge distribution parameters were analysed to find the quantities, which can be used in 
automated localization of defects of insulation systems. Various numerical classification methods 
for automated localization of the defects were implemented in software and compared. SVM 
based classification routine was shown to give the best results. SVM has not been documented in 
the partial discharge analysis earlier. 

 
1.4 Structure and organisation of this thesis 
 

     The thesis consists of a summary and seven articles mentioned before. In Chapter 2, the 
performance of the induction motor is clarified. In Chapter 3, fault diagnostics of the induction 
motor is reviewed. Existing fault diagnostics methods are first considered in general and then three 
common aspects of induction motor condition monitoring are presented: vibration monitoring, 
MCSA and PD analysis. In Chapter 4, the performance of SVM in classification is presented 
starting from the influence of Vapnik-Chervonenkis dimension on the classifier�s generalisation 
performance. Then the ∆-margin separating hyperplane is explained, and the maximal margin 
classification is considered in addition to application of kernel functions in nonlinear classification 
tasks. In Chapter 4, also the design and tuning of SVM are considered, and comparison of different 
methods of using SVM in multi-class classification tasks is carried out. The comparison of the 
multi-class classification methods is based on the publication [P3]. Further, enhanced version of 
SVM, least squares SVM (LS-SVM) algorithm is described. Chapter 5 summarizes the results of 
the publications [P1] and [P2], where the motor current signal analysis is carried out for a 15 kW 
induction motor with SVM. Chapter 6 bases on the publication [P4], where using the motor current 
as a fault indicator is compared to using two other variables: forces on the rotor and the circulating 
currents in the parallel branches. Chapter 7 summarizes the results from [P5] and [P6], where 
vibration monitoring is considered in the broken rotor bar detection of a 35 kW induction motor. 
Several signal processing methods are compared in revealing the influence of broken rotor bar on 
the motor vibrations. Then information fusion of the multi-channel vibration measurements is 
considered for improving the fault detection rate. Chapter 8 summarizes results of the publication 
[P7], where the partial discharge measurements and numerical classification are applied for the 
localization of defects in insulation systems that are also important part of the structure of induction 
motors. In Chapter 9, conclusions are made.  
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2. Induction motor  
 
In this chapter, the performance of induction motor is presented. In addition to the general structure 
and the principle of operation (Chapter 2.1), a per-phase equivalent circuit of a balanced three-phase 
induction motor is clarified in Chapter 2.2. The balanced equivalent circuit is widely used to model 
the motor performance, but it is valid only for symmetric induction motors fed from a sinusoidal 
power source. Faults generate asymmetries to the motor, and therefore, the equivalent circuit cannot 
be used to imitate the behaviour of faulted machine. For faulted motors and non-sinusoidal power 
sources, more enhanced models are required. An example of numerical models for the induction 
motor is the analysis of magnetic field with finite element method (FEM), which is explained in 
Chapter 2.3. In Chapter 2.4, faults of the induction motor are reviewed in addition to the most 
common measurements used for the fault diagnostics. 

 

2.1 Structure and the principle of operation 
 
Of all the electrical machines, induction motors are the most common in industry due to their 
simplicity, rugged structure, cheapness and easy maintainability. Induction motors receive their 
power by induction. There are two basic types of induction motors: single-phase induction motors 
and polyphase induction motors. Polyphase induction motors cover a variety of horsepower ratings 
and their use is preferred, if a polyphase power source is available [Guru01].   

     A three-phase induction motor is the most popular polyphase induction motor. It has two main 
parts: stationary stator and a revolving rotor, which is separated from stator by a small air-gap. The 
induction motors studied in this thesis have a stator, which consists of an aluminium frame that 
supports a hollow, cylindrical core made up of stacked laminations. A number of evenly spaced 
slots, punched out of the laminations, provide the space for the stator winding. The rotor is also 
composed of punched laminations. These are stacked to create a series of rotor slots to provide 
space for rotor winding. When considering the squirrel cage induction motors the rotor is composed 
of bars, which are pushed into the slots. The opposite ends are welded to two end rings, so that all 
bars are short circuit together. The entire construction resembles a squirrel cage, which the motor 
has got its name from.  An exploded view of a cage induction motor is presented in Fig. 2.1 
[Wildi97].  

 

 
Figure 2.1. Construction of a squirrel cage motor showing the stator (1), rotor (2), end-caps (3), cooling fan (4), ball 

bearings (5) and terminal box (6) [Wildi97]. 
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     Another type of induction motors is the wound-rotor induction motor. It is, however, more 
expensive and less efficient than a squirrel-cage induction motor, and it is used only when a 
squirrel-cage induction motor cannot deliver the high enough starting torque [Guru01].  

     When the stator winding of a three-phase induction motor is connected to a three-phase power 
source, it produces a magnetic field that is a constant in magnitude and revolves around the rotor at 
the synchronous speed. If f is the frequency of the current in the stator winding and P is the number 
of poles, the synchronous speed of the revolving field is: 

                    4
s

f
P
πω =     (2.1) 

The revolving field induces electromotive force (EMF) in the rotor winding. Since the rotor 
winding forms a closed loop, the induced EMF in each coil gives rise to an induced current in that 
coil. When a current-carrying coil is in a magnetic field, it experiences a force that tends to rotate it. 
The rotor receives its power by induction only when there is a relative motion between the rotor 
speed and the revolving field. Since the rotor rotates at a speed lower than the synchronous speed of 
the revolving field, an induction motor is also called an asynchronous motor [Guru01]. 

     The relative speed between stator and rotor is also called slip speed. If the rotor speed is ωm, the 
slip speed is ωr = ωs - ωm. A common practice is to express the slip speed in terms of the slip, s, 
which is a ratio of the slip speed to the synchronous speed: 

r

s

s ω
ω

=  .     (2.2) 

 

2.2 An equivalent circuit 

 

The performance of an induction motor is often described with a simple equivalent electrical circuit 
model. For example, a phase equivalent circuit of a balanced three-phase induction motor from 
[Guru01] is represented in Fig. 2.2. The induction motor is assumed to be symmetric, i.e. all phases 
are similar.  

     In the figure, V1 is applied voltage on a per-phase basis, R1 is a per-phase stator winding 
resistance, X1 is a per-phase stator winding reactance, Rr is a per-phase rotor winding resistance, Xb 
is a per-phase rotor winding leakage reactance at s = 1 (i.e. the rotor is at rest), Xr = s Xb is a per-
phase rotor winding leakage reactance at any slip s, Xm is a per-phase magnetization reactance, Rc is 
a per-phase equivalent core-loss resistance, E1 is a per-phase induced EMF in the stator winding, Eb 
is a per-phase induced EMF in the rotor winding at s = 1, Er = sEb is a per-phase induced EMF in 
the rotor winding at slip s, Ir is a per-phase rotor winding current, I1 is a per-phase current supplied 
by the source, IФ = Ic + Im is a per-phase excitation current, Ic is a per-phase core loss current, and Im 
is a per-phase magnetization current. 
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Figure 2.2. Per-phase equivalent circuit of a balanced three-phase induction motor [Guru01]. 

 

Let us define the ratio of transformation: 

1 1

2 2

w

w

N ka
N k

=     (2.3) 

where kw1 is the winding factor of the stator winding, kw2 the winding factor of the rotor winding, N1 
turns per phase of the stator winding, and N2 turns per phase of the rotor winding. With the ratio of 
transformation the equivalent circuit in the Fig. 2.2 can be transformed to the circuit presented in 
Fig. 2.3. This circuit is called the exact equivalent circuit of a balanced three-phase induction motor 
on a per-phase basis. In Fig. 2.3:  
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r
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X a X

II
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=

=

=

 .   (2.4) 

In the circuit, R2 represents the actual resistance of the rotor and R2/s(1-s) is called the load 
resistance or dynamic resistance. It depends on the speed of the motor and is said to be the electrical 
equivalent of a mechanical load on the motor. 

      A more detailed derivation of the exact equivalent circuit can be found in [Guru01]. 

 

 
Figure 2.3. The exact equivalent circuit of a balanced three-phase induction motor on a per-phase basis [Guru01] 
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2.3 Finite element analysis of the magnetic field 
 

Induction motor modelling based on the equivalent circuit is useful only, when the motor is healthy 
and fed with the sinusoidal power. If faulty models are needed or frequency converters are used 
between the power source and the motor, the equivalent circuit is not valid, and more enhanced 
models are required. An alternative for the equivalent circuit is calculation of the motor based on 
the finite element analysis (FEM) of the magnetic field. The approach is computationally 
challenging, but it allows highly accurate imitation of the motor performance.  

     The following is strongly based on [Arkkio90], where FEM of the magnetic field of the cage 
induction motor fed by static frequency converters is presented. The field is assumed to be two-
dimensional, and the time-dependence of the field and the motion of the rotor are modelled by the 
Crank-Nicholson time-stepping method.  

     Magnetic vector potential A satisfies the equation: 

( )ν∇× ∇× =A J    (2.5) 

where ν is the reluctivity of the material and J is the current density. The current density can be 
expressed as a function of the vector potential and the electric scalar potential Φ: 

t
σ σ∂

= − − ∇Φ
∂
AJ    (2.6) 

where σ is the conductivity of the material. In the two-dimensional model, the vector potential and 
the current density have only the z-components: 

  
( , , )

( , , )
z

z

A x y t
J x y t
=
=

A e
J e

  .   (2.7) 

The scalar potential Φ has a constant value on the cross-section of a two-dimensional conductor and 
it is a linear function of the z-coordinate. The gradient of the scalar potential can be expressed by 
the aid of the potential difference u induced between the ends of the conductor. By substituting (2.6) 
in (2.5), the field equation becomes: 

               ( ) zu
t l

σν σ ∂
∇× ∇× + =

∂
AA e  ,   (2.8) 

where l is the length of the conductor. A relation between the total current i and the potential 
difference u is obtained by integrating the current density (2.6) over the cross-section of the 
conductor: 

                    u Ri R d
t

σ ∂
= + ⋅

∂∫
S

A S   ,   (2.9) 

where R is the DC resistance of the conductor. The circuit equations for the rotor cage are 
constructed by applying Kirchhoff�s laws and (2.8) for the potential difference. The end-region 
fields are modelled by constant end-winding impedances in the circuit equations. The equations of 
the stator winding are simplified by assuming constant current densities on the cross-sections of the 
coil sides. 

     A time-dependent field is solved by discretizing the time at short time intervals ∆t and 
evaluating the field at times t1, t2, t3,� (tk+1 = tk + ∆t). In the Crank-Nicholson method, the vector 
potential at time tk+1 is approximated: 
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     1 1
1
2k k k kt

t t+ +
∂ ∂ 

= + ∆ + ∂ ∂ 

A AA A .                                           (2.10) 

By adding the field equations written at times tk and tk+1 together and substituting the sum of 
derivatives from (2.10), the equation: 

                   1 1 1 1
2 2( ) ( )k k k k z k k k k zu u

t l t l
σ σ σ σν ν+ + + +

 ∇× ∇× + = − ∇× ∇× − − ∆ ∆ 
A A e A A e           (2.11) 

is obtained. The potential difference vector in (2.9) is discretized in the same way as the field 
equation, the result being: 

                  1
1 1

1 1( ) ( )
2 2

k k
k k k ku u R i i R d

t
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+ +

−
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∆∫
S

A A S .                     (2.12) 

     Equations (2.11) and (2.12) form the basic system of equations in the step-by-step formulation. 
Starting from the initial values and successively evaluating the potentials and currents of the next 
time steps, the time-variation of the quantities is worked out. The magnetic field, the currents and 
the potential differences of the windings are obtained from the equations, and most of the other 
machine characteristics can be derived from these quantities. The electromagnetic force acting 
between the stator and rotor is computed from the air-gap field using the method developed by 
Coulomb [Coulomb83]. 

     In a general time-stepping analysis of a running motor the equations for rotor and stator fields 
are written in their own coordinate systems. The solutions of the two field equations are matched 
each other in the air gap. The rotor is rotated at each time-step by an angle corresponding to the 
mechanical angular frequency. The rotation is accomplished by changing the finite element mesh in 
the air gap. 

     The finite element discretization leads to a large nonlinear system of equations in which the 
unknown variables are the nodal values of the vector potential and the currents or potential 
differences of the windings. The equations can be solved by the Newton-Raphson method. 

     In this thesis, FEM models are used to generate virtual measurement data for construction of the 
fault diagnostics system of induction motors. In addition to simulated currents and forces, also 
vibrations are studied as fault indicators. However, due to complexity of the interaction between 
forces on the rotor and vibration signals, vibrations are not included to the numeric model. Their 
behaviour in fault diagnostics is studied with real measurement signals from artificially damaged 
motors. 

 

2.4 Faults and measurements for diagnostics 
 

The faults in induction motors can occur in any of the three components of the motor: stator, rotor 
or bearings. In [Epri82], a large survey on faults in the motors is carried out. The survey contains 
5000 motors, 97% of those three-phase squirrel cage induction motors.  In Fig. 2.4, the occurrence 
of the individual faults is presented based on the survey. The most common fault is related to worn 
motor bearings, and it will generate extra vibrations, noise and possible misalignment of the rotor 
shaft. Most of the stator related faults are due to degraded insulation in stator windings causing an 
inter-turn, phase-to-phase or phase-to-ground short circuits. These are serious faults that result in a 
complete machine failure. Rotor faults can be divided into faults related to rotor eccentricity and 
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physical damage of the rotor, and they usually develop slowly although in the end the broken bars 
may damage the stator windings.  

     In this study, only rotor and stator related faults are considered. The bearing faults were left out, 
because there were neither simulation nor measurement data available for studying these fault types. 
This is a drawback for a developed fault diagnostics system, because bearing faults are common 
induction motor faults. However, trustworthy methods for detection of bearing faults based on 
motor vibrations are already reported. For example, in [Lindh03] such a method is presented. 

     The physical damages of the rotor are studied in the form of broken rotor bar (BB) and broken 
rotor end ring (BR), whereas dynamic and static eccentricity (DE, SE) of the rotor represent the 
eccentricity faults. Shorted turn (ST) and shorted coil (SC) in stator windings represent the stator 
related faults. In addition to these, the insulation system condition monitoring is considered in 
general. Small defects in insulation systems may give rise to small electrical discharges (partial 
discharges, PD), which cause electrical treeing and finally destroy the insulation. Successful 
detection and analysis of the small insulation flaws aids to prevent the more severe fault situations. 

     It is found out that a variety of measurements can be applied to collect information that is useful 
in the detection of induction motor faults. In this thesis, three of them are elaborated on: stator 
current of the motor, vibrations of the motor and PD in the insulation system of the motor. 
Vibration analysis has been used in motor fault detection for decades. Each fault in a rotating 
machine produces vibrations with distinctive characteristics that can be measured and compared 
with reference ones in order to perform the fault detection and diagnosis. Motor current monitoring 
is also called motor current signature analysis (MCSA) and it is widely studied, because no extra 
instrumentation is needed, if the faults can be detected based on the current. It is also claimed that 
MCSA give the same information on motor condition as vibration measurements [Benbouzid00]. 
PD analysis is applied in the detection of faults in motor insulation. Defects in the insulation system 
cause characteristic PD distributions that can be measured and analysed. The measurement system 
is presented in Chapter 3.4. Certain PD types are harmful and cause electrical treeing that finally 
breaks the insulation. In addition to these, also other sensors appear in the fault diagnostics of 
motors e.g. air-gap and external magnetic flux densities, rotor position and speed, internal and 
external temperatures or output torque [Benbouzid00]. 

 

Bearing 
related faults

41%

Rotor related faults 10% Other faults 12%

Stator insulation 
related faults 

27%

Other stator 
related faults10%

 
Figure 2.4. Occurrence of motor faults [Epri82]. Bearing related faults occur most often followed by stator insulation 

related faults. 
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3.   Fault diagnostics and condition monitoring of the 
induction motor 
 

Fault diagnostics of the induction motor is a wide subject of research. However, despite of the 
efforts invested to the subject a condition monitoring system is still missing, which could show 
various different faults in a trustworthy way and preferable in advance before complete failure. In 
this chapter, fault diagnostics and condition monitoring of the induction motor is considered. 
Firstly, the strategies for fault diagnostics are reviewed in general. It is noticed that data-based 
diagnostic strategies are the most interesting approaches for the induction motor fault diagnostics, 
and, especially, of all data-based modelling methods, support vector machine offers great benefits. 
Finally, the three induction motor monitoring approaches considered in the thesis: vibration 
monitoring, MCSA and PD diagnostics, and existing fault diagnostics strategies based on these 
measurements are reviewed. 

 

3.1 Fault diagnostics methods in general 
 

Automated fault diagnostics and condition monitoring are important parts of most of the world�s 
industrial processes. Uncontrollable faults in the processes may cause considerable economical 
losses, degrade the quality of the process performance or even cause serious damage for human life 
or health and the environment.  The fault diagnostics is usually divided in two parts: fault detection 
and fault identification. Early detection of faults prevents performance and quality degradation and 
damage of machinery or danger to human life. Identification of faults enables the right decisions for 
further repair or alarm actions. There exists a wide variety of techniques for carrying out the fault 
diagnostics tasks, and there are also several ways to categorize these techniques. In this section, the 
fault diagnostics techniques are divided in signal-based and model-based methods. Signal-based 
methods build the fundamentals for condition monitoring systems, and usually their performance 
can be enhanced with various model-based techniques. 

      When applying signal-based methods, the condition monitoring of a process is carried out just 
by monitoring process signals. One of the simplest examples is the measurement of liquid level in a 
tank and alarming, when it rises above or decreases below a certain limit. These kinds of fault 
diagnostics systems are implemented even in many technical devices that are in people�s everyday 
use. In large industrial processes, the measured signals can be much more sophisticated, and they 
can be manipulated to distinctly reveal the characteristics of the process operation. 

     Signal monitoring can be carried out either in time domain, frequency domain or time-frequency 
domain. In time-domain, the fault related features of the signals may be extracted by calculation of 
various statistical figures such as means, variances or kurtosis of the signals. In frequency domain 
spectral analysis of signals are made and fault related frequencies are monitored. This is a common 
approach for example in condition monitoring of rotating electrical machines. In addition to 
traditional spectral analysis, higher order spectral (HOS) analysis can be carried out. Analysing the 
signal in frequency domain often gives valuable information of the process operation, but when 
transforming the signal from time domain into frequency domain information may be lost. For 
example, in frequency domain one cannot detect transients of process operation. To overcome this 
problem, signal monitoring methods in time-frequency domain are developed. Applying the short-
time Fourier transform (STFT) or wavelet analysis suitable measures can be calculated to combine 
the information of the signal behaviour in both time and frequency domain. 
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     Modern fault detection and identification usually start from signal monitoring, and various 
model-based methods are applied to create fully independent and intelligent condition monitoring 
systems. Model-based fault diagnosis methods take advantage of the plant models, and the idea is to 
calculate such quantities from the models that reflect inconsistencies between nominal and faulty 
system operation. The models can be divided into three classes: analytical [Isermann93], data-based 
[Patton99] and knowledge-based [Isermann98] models. Analytical models base on the known 
physical interactions in the diagnosed plant, whereas data-based models are built based on the data 
retrieved from the process under study. Knowledge-based models rely on human-like knowledge of 
the process and its faults.  

     Usually, the application of model-based methods can be divided in two parts: residual generation 
and decision making. In Fig. 3.1, a fault diagnostics scheme is presented. In the first part, process 
models in healthy and faulty operation are applied with real process measurements to generate 
residuals describing the current condition of the process. In the second part, the condition is decided 
based on the residuals. Both parts apply individual models that can be either data-based, 
knowledge-based or based on analytical models. The residual generation in the fault diagnostics 
scheme presented in Fig. 3.1 is based on model and process outputs, but residuals can be generated 
in several ways like with model parameters estimated from process measurements.  

     A typical example of complete fault diagnostics system is application of a data-based method to 
create the process models and residuals in different conditions, and application of a knowledge-
based model in decision making. It is also possible to utilise simple signal manipulation methods to 
generate residuals, and apply more enhanced models only in the decision making part of the system. 
Basic signal monitoring is actually this kind of approach. A simple knowledge-based model is 
required for making conclusions on the process condition even if the diagnosis is based on process 
signals. In this thesis, the fault diagnostics system is built with various residual generation 
approaches, but the decision making part relies on a data-based classification model.  
 
3.1.1 Analytical models 
 

Analytical models are built based on known physical interactions in the process. Analytical models 
can be applied using observers (e.g., [Liu97]), parameter estimation (e.g., [Isermann93]) or parity 
equations (e.g., [Gertler92]). Using observers, the underlying idea is to estimate the system outputs 
with the system model from the available inputs and outputs of the system. Then the difference 
between the estimated and the actual outputs is calculated and fault diagnosis is based on this 
measure. If the difference is small, the model can be considered to describe the process operation. 
Parameter estimation approach makes use of the assumption that faults of a dynamic system reflect 
on the physical parameters of the process (e.g. friction, mass velocity resistance) and thus also on 
the model parameters. Faults are detected through the estimation or identification of model 
parameters. As described by [Gertler92], parity equations are mathematical relationships linking a 
number of variables, arranged in such a way that all terms appear on the same side of the equation. 
Parity equations can be statistical or dynamical, and the fault diagnostics bases on the output pattern 
of the equations. 
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Figure 3.1.  Model-based fault diagnostics scheme can be divided into residual generation and decision making tasks. 

 

3.1.2 Knowledge-based models 
 
Knowledge-based models like expert systems or decision trees apply human-like knowledge of the 
process for fault diagnosis. In fault diagnostics, the human expert could be a person who operates 
the diagnosed machine or process and who is very well aware of different kinds of faults occurring 
in it. Building the knowledge base can be done interviewing the human operator on faults occurring 
in the diagnosed machine and on their symptoms.  
     Traditional expert systems can be enhanced with fuzzy logic [Wang97]. Expert systems are 
usually suitable for problems, where a human expert can linguistically describe the solution. 
Typical human knowledge is vague and inexact, and handling this kind of information has often 
been a problem with traditional expert systems. For example, the limit, when the temperature in a 
sauna is too high, is vague in human mind. Fuzzy logic provides a systematic framework to process 
vague, qualitative knowledge. It is speculated that in the future, most of the expert systems use 
fuzzy sets and fuzzy logic instead of traditional crisp sets.   

     Considering fault diagnosis, fuzzy systems are useful, because fault diagnosis often needs a 
knowledge-based treatment. In practice, it is very difficult to obtain adequate representations of the 
complex and highly non-linear behaviour of faulty plants using quantitative models. The use of 
fuzzy qualitative models can also take account of the uncertainties associated with describing the 
system [Isermann98] [Dexter95].  
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3.1.3 Data-based models 
 

When considering fault diagnostics of the induction motor it is difficult to develop an analytical 
model that adequately describes the motor performance in its all operation points with any power 
source. Knowledge-based models may be utilised together with a simple signal-based diagnostics, if 
the expert knowledge of the process is available. However, it is often impossible even for a human 
expert to distinguish faults from the healthy operation, and, also, multiple information sources may 
need to be used for trustworthy decision making. Thus, the data-based models are the most 
interesting approach for the induction motor diagnostics.  
     Data-based models are applied when the process model is not known in the analytical form and 
expert knowledge of the process performance under faults is not available. The data-based models 
can be created in numerous ways. The most traditional approach is time series analysis. The 
resulting models can be utilised in the same way as analytical models, although model parameters 
do not necessarily equal to any physical parameters of the process. Time series analysis results in 
linear models. Time series models can also be extended to nonlinear case, e.g. using Hammerstein 
models, neural networks (NN) or fuzzy systems. 

     During the last years NN based models like multilayer perceptrons (MLP), radial basis function 
(RBF) networks or self organising maps have been a popular research subject [Haykin99], and also 
their application in the data-based fault diagnosis is widely studied [Sorsa95] [Patton99]. With NN 
models it is possible to estimate a nonlinear function without requiring a mathematical description 
of how the output functionally depends on the input � NNs learn from examples.  The most 
commonly mentioned advantages of NNs are their ability to model any non-linear system, the 
ability to learn, the highly parallel structure and the ability to deal with inconsistent or noisy data.  

     In the fault diagnostics, some of the difficulties of using analytical models can be overcome, and 
fault diagnosis algorithms can be made more applicable to real systems using NNs. NNs can be 
used both to generate residuals and to make a fault decision. One of the main features of NNs is 
their ability to learn from examples. Thus, NNs are often used in situations, where it is possible to 
get plenty of measurement data of the system. The large amount of numerical data from the system 
is also an essential requirement for training a NN. Difficulties occur in creating a reliable network, 
if there are not enough measurements available from all operation states of the process. Another 
disadvantage of NNs is that the net architecture with weighting factors is difficult to figure out by 
human. This may be a problem in tuning the system, or explaining the diagnosis results to a system 
operator. 

     Application of a NN in the decision making part of the fault diagnostics system is also called NN 
based fault classification or pattern recognition. Classification and pattern recognition are general 
names for data-based algorithms that classify or categorize things based on multiple numerical 
measurements, i.e. features. The classification methods can be applied in the fault diagnostics also 
without a distinct residual generation and decision making parts. The classifiers can be trained to 
represent direct relationships between measurement data of the system and certain fault conditions. 
In addition to NN based classification models, there exist numerous other classification algorithms 
such as the traditional Bayesian classifier, linear and quadratic discriminant analysis, simple 
distance based classifiers or the SVM [Duda01].  

     SVM gives refreshing views on conventional pattern recognition and classification systems. It 
has several benefits compared to e.g. statistical classifiers or MLPs. The most important benefit is 
its efficiency in high dimensional classification problems, where statistical classifiers often fail. 
Linear and quadratic discriminant analyses apply the inverse of covariance matrix of the vectors to 
be classified requiring estimation of the covariance matrix with high accuracy. To estimate high 
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dimensional covariance matrices well one needs an unpredictably large number of observations.  
When applying SVM, the generalisation ability of the classifier can be measured only with the 
number of samples locating on the border of two classes regardless of the dimension of the input 
space. Also the computations are independent of the dimension of the input space, because they are 
handled through Gram matrices of the input data. The other benefit of SVM compared to statistical 
classifiers is its general applicability to nonlinear problems. MLPs or RBF networks can also be 
applied in nonlinear problems, but SVM outperforms them when considering the globality of 
solution. Training of the SVM results in a global solution for the problem under study, whereas 
MLPs and RBF networks may have many local minima leading to not a trustworthy solution. 
Further benefit of SVM is the sparseness of solution. With a low number of samples near the class 
border, the actual classification task can be carried out very efficiently and fast. Due to these 
reasons, in this thesis, the SVM is chosen to build the data-based induction motor fault diagnostics. 

     SVMs have been successfully applied to various classification problems. For example to: 

� text categorization e.g. in [Joachims97] 
� image recognition e.g. in [Pontil98] 
� phoneme classification e.g. in [Salomon01] 
� hand written digit recognition e.g. in [Boser92] 
� medicine, breast cancer prognosis e.g. in [Freiss98] 
� bioinformatics, protein fold recognition e.g. in [Ding01] 
� gene expression e.g. in [Brown97] 
 

     However, SVM based classification seems not to have been applied to the fault diagnostics of 
induction motors before this research. Although, SVM has shown good performance in different 
kinds of classification applications, its appropriateness even to fault diagnosis in general has not 
been widely studied. In addition to this thesis, the first studies on SVM for fault diagnosis have 
been published just recently. For example, Saunders & al. examine SVM to determine correct 
repairs for faults from past production history [Saunders00]. One of the first diagnostics 
applications is [Ypma992], where support vector data description is used in condition monitoring of 
a submersible pump. In [Rychetsky99], engine knock detection is carried out with SVM. Feng & al. 
[Feng02] apply SVMs to quality monitoring in robotized arc welding. In [Zöllner02], SVM is used 
in the diagnosis of large inspection datasets. In [Gao02] SVM is used in the valve fault diagnosis. 
Further, Yu & al. study SVM in the fault diagnosis of chemical process in [Yu02], and in 
[Ribeiro02], the injection molding machine diagnosis is carried out with SVM. In [Batur02] SVMs 
are applied in the fault detection of heat exchangers. In many of the studies, SVM is compared to 
MLPs or RBF networks and it seems to give very promising results. 

           

3.2   Vibration monitoring 
 

3.2.1 Spectral analysis 
 

Spectral analysis of vibrations has been used in rotating machines fault diagnosis for decades 
[Betta01][Marcal00][Laggan99]. It is claimed that vibration monitoring is the most reliable method 
of assessing the overall health of a rotor system. Machines have complex mechanical structures that 
oscillate and coupled parts of machines transmit these oscillations. This results in a machine related 
frequency spectrum that characterizes healthy machine behaviour. When a mechanical part of the 
machine either wears or breaks up, a frequency component in the spectrum will change. In fact, 
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each fault in a rotating machine produces vibrations with distinctive characteristics that can be 
measured and compared with reference ones in order to perform the fault detection and diagnosis. 
Influence of different faults on the vibration spectrum are presented e.g. in [Betta01].  

     Examples of using neural networks in classification of faults based on vibration signals are 
presented in [Yang00], [Alguindigue93], [Penman94], and [Li00]. In these articles, NNs have been 
used as pattern recognition tools, and the training is carried out in frequency domain.  

     In addition to spectrum analysis, other signal processing tools are applied on vibrations to reveal 
influence of faults in the machine. For example applications of higher order spectrum (HOS) 
analysis, cepstrum analysis or regular time series analysis have given good results. 

 

3.2.2 Higher order spectrum and cepstrum analysis 
 

Higher order spectra (also known as polyspectra) are defined in terms of higher order statistics and 
they have attractive properties considering signal processing for purpose of condition monitoring.  
Firstly, in the HOS analysis, additive Gaussian noise is automatically suppressed. Secondly, 
information due to deviations from Gaussianity can be extracted, and finally, nonlinear systems as 
well as nonminumum phase systems can be identified [Nikias93]. In Fig. 3.2, the computation of 
HOS is presented. Notice that second order HOS equals to power spectrum of a signal. The third 
order HOS is also called bispectrum and the fourth order HOS is called trispectrum.  

     In [Arthur00], HOS has been studied in vibration monitoring of rotating machines. The authors 
also suggest an enhancement to HOS that summaries both magnitude and phase information of the 
original time series. Given a polyspectral measure M with magnitude |M| and phase M∠ , the phase 
being bound by �π and π, the enhanced measure Menh is defined to be: 

                                 enh

M
M M

π
π
−∠

= ×   .    (3.1) 

      

 
 

Figure 3.2. Calculus of higher order spectra. Fn[ ] denotes n-dimensional Fourier transform [Nikias93]. 

 

. 

. 
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     HOS and fuzzy logic based models have been applied in [Lasurt00], where HOS analysis is used 
as a pre-processing of a machine vibration signal. Due to complexity of HOS signatures data 
reduction and parameterization are carried out first, and fuzzy logic procedure is then applied to 
enable diagnosis of the machine fault.  

     One of the rare applications of genetic algorithms in condition monitoring of electrical machines 
can be found in [Jack00], where a genetic algorithm is used to isolate the features of input space 
that are able to indicate faults. The preliminary feature set contained HOS estimates with different 
time constants. 

     Cepstrum analysis has been utilised in vibration monitoring e.g. in [Merwe02]. One of its most 
important characteristics is the fact that any periodicities in a frequency spectrum will be shown as 
one or two specific components in the cepstrum. The cepstrum is the forward Fourier transform of 
logarithm of the spectrum of the signal. The real cepstrum of a signal z is defined as:  

        ( )1( ) log( ( ) )RCEPS z real F F z−= ,    (3.2) 

where F denotes Fourier transform and F-1 inversed Fourier transform.  

 

3.2.3 Analysis in time domain 
 

When carrying out vibration analysis in time domain, some simple quantities can be utilised such as 
root mean square (RMS), crest factor, kurtosis and other statistical moments, but often they do not 
offer enough information on the vibrations for thorough diagnosis. A traditional tool for more 
enhanced signal description in time domain is time series analysis. Whereas HOS and cepstrum 
analyses are static signal description tools, the time series analysis is suitable for description of 
dynamic phenomenon � such as the behaviour of induction motor. For example in [Ypma992], AR 
modelling for vibration signal description is studied, although there the authors study condition 
monitoring of a submersible pump. The model of vibration signal is estimated in time domain and 
the model coefficients are used as indicators for the motor condition. 

     The general form of an nth order autoregressive (AR) model of a time series x(t) is following: 

                         1 2

1 2

( ) ( 1) ( 2) ... ( ) ( )
( ) ( 1) ( 2) ... ( ) ( )

n

n

x t a x t a x t a x t n e t
x t a x t a x t a x t n e t
= − + − + + − +

⇒ − − − − − − − =
     ,     (3.3) 

where e(t) is noise and the parameters a1,�,an are called AR coefficients. The coefficients can be 
estimated from a time series, for example, with the least squares method.  

     Another example of analysis in time domain can be found in [Loparo00], where analytical 
models are applied in vibration monitoring. A multiple model framework is used to develop 
monitoring, fault detection and diagnosis system in rotating machines. Each fault to be identified is 
associated with a certain vibrations and rolling element bearing model structure and parameters in 
the rotating machinery model. Fault diagnosis is based on statistical testing of residuals of the bank 
of stochastic non-linear observers. The residuals of the filters are monitored, and the conditional 
probability that each filter model is the process model is computed, and the filter with the highest 
probability is declared to match the current operating condition.  
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3.2.4 Information fusion of multi-channel vibration measurements 
 
Vibration monitoring system requires storing of a large amount of data. Vibration is often measured 
with multiple sensors mounted on different parts of the machine. For each machine there are 
typically several vibration signals being analysed in addition to static parameters such as load. The 
examination of data can be tedious and sensitive to errors. Also, fault related machine vibration is 
usually corrupted with structural machine vibration and noise from interfering machinery. Further, 
depending on the sensor position, large deviations on noise may occur in measurements.  

     Due to these problems intelligent compression of the multi-channel measurement data may aid in 
the data management for fault diagnostics purpose. Multivariate data analysis (MVDA) is a general 
name for various methods that aim to find structure in large amount of multivariate data. 
Independent component analysis (ICA) is one of those methods. ICA may be used to compress 
measurements from several channels into a smaller amount of channel combinations that are 
statistically independent sources of the original vibration measurements, and that could clearly 
indicate faults in the machine. Calculations for finding the independent components are relatively 
straight-forward. The only assumptions of applying the method are that the original sources are 
statistically independent of each other and they are linearly mixed. Also, ICA or other blind source 
separation (BSS) methods may aid in separating machine related vibration signal from interfering 
vibration sources.  

     Methods closely related to ICA are e.g. projection pursuit and beamforming. Projection pursuit 
aims at finding �interesting� projections in data by assuming nongaussian distributions of a 
projection as more interesting than gaussian, whereas in ICA, the interestingness criteria may vary. 
The main difference between beamforming and blind source separation methods is the criterion 
they use for separating a source signal: beamforming needs the direction of the main source while 
blind source separation algorithms do not. 

     ICA and other BSS methods are studied to provide a robust and reliable fault diagnostics routine 
for rotating machines e.g. in [Ypma991], [Ypma992], [Ypma02], [Knaak01], [Knaak02] and 
[Gelle01]. The existing research can be divided into two categories. The first one is applying BSS to 
compress vibration measurements into independent components, which could indicate a fault in a 
more reliable way than pure vibrations such as in [Ypma991] and [Ypma992], where ICA of 
multiple vibration signals is successfully utilised in fault diagnostics of a submersible pump.  The 
second category is using BSS on separating machine signature for fault diagnosis purpose from 
interfering sources or from other machine signals such as in [Knaak01], [Knaak02] and [Gelle01]. 
In [Knaak01] and [Knaak02], BSS is applied to acoustic signals instead of vibrations, but the 
behaviour of vibrations and acoustic signals are quite similar.  

     The second category is much more widely studied than the first one. This is probably due to 
assumption of independence: it is more likely that separate machines or interference sources are 
independent from each other than fault related signal component is independent from normal 
machine vibrations. However, even application of ICA or other BSS method to preprocess 
measurement data before fault diagnosis routine has shown to improve the performance of the fault 
diagnosis system. 

     Some articles (e.g. [Ypma02]) discuss assumptions valid for the mixing process in rotating 
machine applications. Instantaneous mixing means that sources are assumed to linearly mix into 
measurements without time delays. When using convolutive models, time delays in mixing are 
allowed. This leads to linear mixing in frequency domain and to a solvable separation problem 
despite of more complex calculations.  Convolutive models should be used, if sources are physically 
far away from each other or severe reflections or distortions of signal may happen. This is 
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especially the case, when signatures of two separated machines or signature of a machine and a 
distant interfering source are aimed to separate. If BSS is used to compress vibration measurements 
of one machine, instantaneous mixing model should be true enough. 

 

3.3   Motor current signature analysis (MCSA) 
 

During last years, MCSA has been widely studied in addition to vibration analysis for induction 
motor fault detection. It has been claimed that electrical measures contain the same information on 
the faults of motor as the vibration measurement [Kliman92]. The main benefit of using motor 
current as the basis of fault detection system instead of vibrations is that no extra instrumentation is 
needed for measurements. In particular, a large amount of research has been directed towards 
detecting broken rotor bars and mechanical unbalance from the spectrum of stator current. This is 
an ironic fact, because the rotor related faults are actually quite rare compared to e.g. bearing faults. 
However, in many cases these specific faults can be quite easily detected from characteristic 
frequencies of the stator current. 

     In monitoring the stator current, quite similar signal processing tools are applied with the 
vibration monitoring tools. The traditional way to produce the current signature is the calculation of 
frequency spectrum with an FFT based method, but in addition to this there exist detection schemes 
in literature that apply cepstrum analysis, HOS or wavelets [Benbouzid00]. 

     Various model-based MCSA fault diagnostics systems can be found in literature. An example is 
[Wieser98], where the sensitivity and robustness of the on-line model based Vienna monitoring 
method is addressed. The proposed condition monitoring method compares the outputs of a 
reference model, which represents an ideal machine, to a measurement model. Observing the 
deviations of these two models makes it possible to detect and even locate rotor faults. The method 
utilises a voltage and a current model structure, which respond differently to the faulty rotor bar. 
Differences of the model outputs are evaluated and clustered. The same researchers have studied the 
method also in [Kral00] and in [Wieser97]. 

     A NN based MCSA method can be found e.g. in [Filippetti95], where an example of using NNs 
for modelling an induction motor is presented. There the faulted machine models used to formalize 
the knowledge base of the diagnostic system are formed with NNs.  

     In [Schoen95], an interesting NN based clustering approach for fault diagnostics of an electrical 
machine is presented. There NNs are used to learn on-line the spectral characteristics of a healthy 
motor current. A special frequency filter is used to pass only those harmonics, which are known to 
be of importance in fault detection, to a NN clustering algorithm. After a sufficient training period, 
the NN signals a potential failure condition, when a new cluster is formed and persisted for some 
time. 

     Also, in MCSA, fuzzy logic has become common, especially, in the decision making part of the 
diagnostics scheme. For example, in [Nejjari99], fuzzy logic is applied to induction motor�s 
condition monitoring and its stator and phase conditions through the amplitude features of the stator 
currents. Further, in [Altug99], ANFIS (Adaptive Neuro Fuzzy Inference System) -based fault 
diagnostics system of an induction motor is compared with another adaptive neuro-fuzzy system 
FALCON (Fuzzy Adaptive Learning Control Network). Altug & al. have found out that both 
structures provide good fault diagnostics framework under varying operation conditions.  
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3.4   Partial discharge (PD) analysis 
 

3.4.1 Description of the phenomenon 
 

Partial discharge (PD) is defined by the standards [IEC01] as a localised electrical discharge that 
partially bridges the insulation between conductors and which may or may not occur adjacent to a 
conductor. The phenomenon manifests itself in a wide range of ways; for example, internal 
discharges within the bulk of the insulation, surface discharges at the surface or at the interfaces of 
two dielectric media or as corona in air. The role of PDs in degradation and eventual failure of 
electrical insulation systems at high or medium voltage (HV, MV) is a well-established fact, but the 
severity of the effect that PD has on the insulation depends on the nature and the location of the PD 
generating defect. Therefore, a key step in PD analysis is the identification of the defect, through 
the characterization of its PD activity.  

     PDs may be detected with different techniques, that is, with electrical, acoustic or optical 
sensors. In this thesis, electrical detection is considered. A PD event consists of a charge transfer in 
a limited portion of the insulation, causing a current pulse to flow through the electrodes. To detect 
such pulses, a circuit such as the one of Fig. 3.3 is used. 
 

Zm 

CX CK Power supply PD signal 

Propagation path for the pulses 
originated in the test object (CX) 

 
Figure 3.3. A direct PD measurement circuit [IEC01]. The capacitor Cx represents the test object, CK is the coupling 

capacitor, and Zm is the measurement impedance. The high frequency PD pulse flows only through the two capacitors. 

 

In Fig. 3.3, the test object is represented by capacitor CX, the coupling capacitor by CK and the 
measurement impedance by Zm. PD pulse, being a high frequency signal, flows through the two 
capacitors and does not travel toward the power supply, which is characterized by a strong inductive 
component. PD signal is actually the voltage drop of the PD current pulse at the measurement 
impedance. The coupling capacitor CK is used to separate the PD signal from the test voltage.  In the 
measurements used in this study Zm is a 50 Ohm resistor and CK = 1 nF, 80 pF� depending on the 
type of measurement object.  

     The circuit shown in Fig. 3.3 is called �direct�, because Zm is in series to CX. In alternative, an 
�indirect� circuit can be used [IEC01], with Zm in series to Ck. In the latter case, pulses are detected 
with a sign that is opposite with respect to that of the supply voltage driving the discharges.  

     The PD acquisition provides four kinds of information: 

� Pulse amplitude 
� Pulse phase 
� Pulse time of occurrence 
� Pulse waveform 
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The shape of the PD pulse depends on the transfer function that the pulse faces when it travels from 
the PD source to the sensor. Hence, the pulse shape depends on the circuit. For this reason, PD 
pulse shape itself does not have any diagnostic meaning. However, within the same acquisition, the 
fact that groups of pulses show different shapes, thus facing different transfer functions, would 
mean that multiple sources are present, characterized by different nature and/or different location. 

     Partial discharge is essentially a stochastic phenomenon. Thus, statistical analysis needs to be 
carried out on phase, amplitude and time of occurrence of the discharges in order to characterize the 
discharge process. Each one of these three data sets is presented as a histogram. Usually, phase and 
amplitude histograms are summarized in a three dimensional representation, called phase resolved 
PD (PRPD) pattern (Fig.3.4), where the number of discharges is represented by means of colour. 
Note that, as regards the time of occurrence, a quantity called �intertime� is used for the histogram. 
Being tk the time of occurrence of the kth PD, the kth intertime is (tk � tk-1). 

     Different sources may generate PD pulse signals with variety shapes and rise times as short as 
nanoseconds. In measurements, the sampling frequency should be larger than half of the equivalent 
frequency to avoid frequency aliasing. Also, the phenomenon is a stochastic process and a large 
amount of pulses needs to be stored to reveal the statistical features of the process. Further, the 
possible presence of multiple PD phenomena makes the required amount of pulses even larger. Due 
to these issues a considerable amount of data needs to be acquired, to accomplish a trustworthy 
condition monitoring process based on PDs. A great part of the PD research concentrates on 
developing measurement techniques that decrease the required memory buffer. For example, in 
[Contin02], instrumentation with a triggerable partitioned on-line memory buffer is used to limit the 
amount of data compared to using constant sampling frequency. Also packing data with different 
wavelet analysis based techniques has been widely studied in the literature. For example in [Ma02], 
the data from PD activity is compressed to approximately 5% of the original volume using wavelet 
and wavelet packet based analysis. 

 

3.4.2 PD diagnostic strategy 
 

Insulation systems diagnostic based on PDs can be divided in four subtasks: classification process 
and identification process with three levels. Classification is required for separating PD pulses to 
different homogeneous groups based on their sources. The steps of identification process are: 
identification of PD type, identification of defect characteristics, and, finally, the outputs of these 
are combined with the information available about the application under study (such as generator 
windings, high voltage cable etc.) to return the insulation condition.  

 
Figure 3.4. Phase and amplitude histograms are summarized in a three dimensional representation, called phase 

resolved PD (PRPD) pattern. The number of discharges is represented with colour. 
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The classification or separation of PD signals is needed to divide pulses into different groups 
according to their shapes. Noise signal should be separated from pulses originating from a defect 
and pulses from different defects should be separated from each other to achieve a homogeneous 
data set for further analysis. This can be done for example assuming that signals from different 
sources produce pulses that have different shapes such as in [Cavallini031] and [Cavallini032]. The 
classification is often carried out with a special classification map that is formed by mapping the PD 
pulses into the time-frequency plane by calculating so-called equivalent time-lengths and equivalent 
band-widths of the PD pulses; see e.g. [Contin02]. Each cluster in the classification map represents 
a certain PD generating phenomenon, and they are further analysed separately. The classification 
process is depicted in Fig. 3.5.  

     The first level of identification provides an indication about the nature of the PD with respect to 
five categories [Cavallini032]:  

� Internal discharges are pulses which occur in air gaps delimited by dielectric 
surfaces, or solid dielectric and metallic electrodes, involving significant 
components of electric field orthogonal to the defect surface. 

� Surface PDs are defined as discharges that develop on surfaces of solid 
insulating materials, involving significant field component tangential to the 
defect surface. 

� Corona discharges are the PD generated in open air (gas) from a sharp edge.  

� Noise can be either background noise or external disturbances, and it can be 
recognized by statistical tests. 

� PD data that have no physical meaning or have not been successfully identified 
are categorized as invalid. 

The three first categories correspond to the main defect types. Hence, a combination of these 
outputs identifies the basic nature of the defect. It is noteworthy that a defect may constitute an 
intermediate situation with respect to those basic categories. 

     The second level of identification provides a more detailed description of the defect. The defect 
is localized with respect to the electrodes, its shape is defined with respect to the electric field 
direction, the field distribution inside the defect is identified, and possible presence of electrical 
treeing is detected. As for the first level, output categories do not depend on the equipment under 
test.  

     The third level provides a detailed description of the defect for a specific class of equipment. A 
certain insulation defect may be severe for some electrical equipment and only a small drawback for 
some other. Therefore, the third level output is not generally valid for insulation system of any 
electrical apparatus, but a great deal of expertise is required at this level of the identification process 
to achieve trustworthy information of the insulation condition.  

     In addition to typical statistical measures such as means, minimums and maximums, skewness 
and kurtosis derived from PD diagrams, the Weibull function has been found to be important in 
analysis of the PD amplitude distribution. The scale and shape factors of Weibull function that fit 
the amplitude distribution data are found to be consistent when the PDs have the same nature 
[Contin94].  Also, modern analysis methods can be found from the literature. For example, in 
[Abdul00], different texture analysis methods are applied to three-dimensional PRPD diagram, and 
in [Satish95] fractal features of the distribution are applied. 
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     During last years also different soft computing methods have been applied to PD monitoring. 
Different kinds of fuzzy logic based systems have shown to be suitable for PD diagnosis, because 
the PD phenomenon is very complex, and it often requires knowledge of a human expert to be 
analysed [Cavallini02], [Cavallini032], [Wenzel94], [Salama00]. It should also be noted that 
usually the categories defined as output of the various identification tasks are essentially fuzzy, in 
the sense that any situation intermediate among the PD categories is possible.  

     Also, a lot of research is done applying artificial neural networks on PD diagnosis. In 
[Danikas03], a review of using different kinds of NN models on PD monitoring can be found. The 
authors conclude that high recognition rates with NN methods are reported in literature, although 
these are often obtained either in small sample sets with well-defined artificial defects or in the 
absence of interference. Authors make four important observations on applying NNs for PD pattern 
recognition. Firstly, they note that the PD parameters with which a NN is trained or adopted are of 
paramount importance concerning the success of classification in addition to the NN type and 
structure. Secondly, they argue that stochastic behaviour of PD may lead to misclassifications, if 
one does not look closely at the physical processes of PD and related parameters during 
classification process. Thirdly, they emphasize that the problem of multiple defects should be taken 
into account when training a NN for PD monitoring, because in reality there hardly exists isolated 
defects. Finally, they suggest that separate NNs should be considered and trained for different 
applications instead of trying to build a universal model for monitoring PD in any possible 
application.  

     In this thesis, a task of the second level PD identification is considered: localization of the PD 
generating defect with respect to the electrodes. Various numerical classification methods are 
studied for the automated localization concentrating on SVM based classification.  

 

 
Figure 3.5. Example of the PD classification process [Contin02]. 
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4.   Support vector machine (SVM) for classification 
 

In this thesis, support vector machine based classification is applied in three induction motor 
condition monitoring approaches: MCSA, vibration monitoring, and PD analysis. SVM is used to 
classify electromechanical faults of the motor based on motor vibrations or motor current. In 
addition to this, the automated insulation system defect localization is designed with application of 
PD measurements and SVM. In this chapter, the theory of SVM is explained, and its application in 
multi-class classification problems is clarified. In Chapter 4.3, also results from the publication [P3] 
are summarized. 

 

4.1 Introduction to SVM  
 

4.1.1 Vapnik-Chervonenkis dimension 
 
It was already in the 14th century, when a logician and Franciscan friar; William of Occam stated 
that: "Plurality should not be posited without necessity." This issue is often referred as Occam�s 
razor. In machine learning, Occam's razor means that the simplest hypothesis that fits the data is the 
best. Generally, as the model complexity grows the fit improves in the training set, but over-
learning with a loss of generalization may occur in the test set. Alternatives for model selection 
instead of simple cross validation methods are e.g. application of Akaike information criterion, 
Bayesian information criterion or Vapnik-Chervonenkis dimension. The last one reveals important 
aspects on the classification with SVMs, and it will be considered here in more detail. 

    Consider a set of continuous, classifying functions h(x,w), which learn to map x → y by adjusting 
w. Vapnik-Chervonenkis (VC) dimension, d, is a property of h(x,w). VC dimension measures the 
capacity of the classifying functions i.e. how much complexity in the data the function is able to 
model. The VC dimension for a set of functions is defined as the maximum number of training 
samples that can be shattered by h. Function h(x,w) can shatter a set of points x1, x2,�,xM if and 
only if for every possible training set of the form (x1,y1), (x2,y2)�(xM,yM) there exists a value w that 
results in zero for training error [Vapnik00]. For linear learning machines the VC dimension is 
equal to n + 1, where n is the dimension of the space, but it should be noted that this is not the case 
with all sets of classifying functions. Consider, for example, the family of one-parameter functions 
defined by h(x,w) = sign[(sin(wx))], w, 1x∈! . The set of functions has an infinite VC dimension 
although it has only one free parameter [Vapnik00].  

     Let us study the influence of the capacity of the classifier through the risk of misclassification in 
the test set. If the testing and training data are independently drawn and identically distributed with 
cumulative probability distribution P(x,y), the expected risk for misclassification in the test set is 
[Vapnik00]: 

              1( ) ( , ) ( , )
2

R y h dP y= −∫w x w x .  (4.1) 

In typical cases, P(x,y) is not available and most conventional training algorithms for learning 
machines aim to minimise the empirical risk, Remp, instead of the expected risk when adjusting w:  
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i
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M =

= −∑w x w ,   (4.2) 

where M is the number of training samples. These kinds of algorithms do not consider the capacity 
of the learning machine, and this can result in overfitting, i.e. using a learning machine with too 
much capacity for a particular problem. The structural risk minimization principle is developed to 
overcome this problem. Instead of minimizing the empirical risk, the goal of structural risk 
minimization is to find a classifier that compromises between low empirical risk and small capacity. 
With 0 ≤ η ≤1 the following bound holds with probability 1 - η [Vapnik00]: 

                   (log(2 / ) 1) log( / 4)( ) ( )emp
d M dR R

M
η+ − ≤ +  

 
w w ,  (4.3) 

where d is the VC dimension of the classifier. The right hand side of the equation is also called �risk 
bound� and the second term is called �VC confidence�. Notice that the equation does not contain 
P(x,y) and it is easy to calculate if d is known. Hence, if a sufficiently small η is chosen and a 
classifier that minimizes the right hand side is found, the classifier is the one that gives the lowest 
upper bound on the actual risk. This is the fundamental of structural risk minimization. 

     Notice that the VC confidence increases when the VC dimension increases and it decreases 
when the number of samples increase; see Fig. 4.1. Hence, when considering linear leaning 
machines, the higher is the dimension of the feature space the more training data should exist to 
achieve good generalisation of the classifier. The computational difficulties resulting from high 
dimensional feature vectors are obvious, but this result shows that they also influence on the 
generalisation ability of the classifier. The phenomenon is called the curse of dimensionality. 

     Support vector machines are learning machines that are able to avoid the curse of dimensionality 
in both computationally and in generalisation. The SVM theory is presented thoroughly e.g. in the 
books [Vapnik00], [Cristianini00], [Kecman01], and in a tutorial [Burges98]. Their application in 
classification is briefly summarized in the next chapter. 
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Figure 4.1. VC confidence decreases with the increasing number of samples and increases with the increasing VC 
dimension: a) varying VC dimension (M=100) and b) varying number of samples (d=10). 
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4.1.2 ∆-margin separating hyperplane 
 

Let xi = (x1i , x2i ,� , xni)T, i = 1,�,M, be a sample of n∈x ! and belong to Class I or Class II. For 
linearly separable data, it is possible to determine a hyperplane that separates the data leaving one 
class on one side of the hyperplane, the other on the other side. This plane can be described by the 
equation: 

            T

1

( ) 0 ,
n

j j
j

f b w x b
=

= + = + =∑x w x    (4.4) 

where n∈w !  is a weight vector and b is a scalar. The vector w and the scalar b determine the 
position of the separating hyperplane.  

      Let us define the label yi associated to xi as yi = 1 if xi belongs to Class I, yi = �1 for Class II. A 
separating hyperplane satisfies the constraints f(xi) ≥ 0 , if yi = +1, and, f(xi) < 0, if yi = -1. A 
separating hyperplane is called a ∆-margin separating hyperplane, if it satisfies ||w|| = 1 and: 
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w x
w x

 .  (4.5) 

In the previous chapter, it was noted that the VC dimension of the set of hyperplanes is equal to n + 
1, where n is the dimension of the space. However, Vapnik has shown [Vapnik00] that, if n∈x !  
belong to a sphere of radius R, the VC dimension of ∆-margin separating hyperplanes is bounded 
by following: 

                   
2

2min , 1Rd n
  

≤ +  ∆  
   .                              (4.6) 

     This is an important result, because this states that the VC dimension of ∆-margin separating 
hyperplanes can be considerably less than n + 1, if the margin ∆ is large. Further, this means that 
the VC confidence in the equation of structural risk (4.3) decreases with increasing ∆, when 
considering separating hyperplanes. 

 

4.1.3 Maximal margin classification 
 

When formulating SVMs, ∆-margin separating hyperplanes are considered with aim to maximize 
the margin and setting ∆ = 1/||w||, so that f(xi) ≥ +1, if yi = +1, and f(xi) ≤ -1, if yi = -1. The 
inequalities can be combined with (4.4) so that: 

       T( ) ( ) 1, for 1,...,i i i iy f y b i M= + ≥ =x w x .     (4.7) 

     The margin can also be calculated through the geometrical margin γ, which is defined as half of 
the sum of the distances between arbitrary separating hyperplane and the nearest negative and 
positive datum (x� and x+):  
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   ,  (4.8) 

where xo is a point on a hyperplane. The separating hyperplane that maximizes the margin is called 
the optimal separating hyperplane. An example of optimal separating hyperplane of two datasets is 
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presented in Fig. 4.2. The optimal separating hyperplane can be searched among the so-called 
canonical hyperplanes, which fulfil wTx++ b = 1 and wTx- + b = -1 [Cristianini00], leading to the 
following simplified expression for the geometrical margin: 

                             
2

1γ =
w

    .    (4.9) 

Since the optimal hyperplane maximizes the margin, it can be found by solving the following 
convex quadratic optimisation problem: 

                           
2
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2
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w

w x
                      (4.10) 

     Notice that the solution for this optimization problem is global. This is a great benefit compared 
to e.g. MLPs or RBF networks that may have many local minima meaning that the globally optimal 
solution is not usually guaranteed.  
     If the number of attributes of data examples is large, the calculations can be considerably 
simplified by converting the problem to the equivalent Lagrange dual problem. The Lagrange 
function for (4.10) is: 
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where α = (α1,�, αM)T is the Lagrange multiplier. The dual problem is: 
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By differentiating (4.11) with respect to w and b and imposing stationarity, we get: 
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From (4.11)-(4.13) the dual representation of the optimisation problem is achieved: 
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where α is the Lagrange multiplier vector.  Let us assume that optimal solution for the dual problem 
is α* and b*. According to the Karush-Kuhn-Tucker theorem, the equality condition in (4.10) holds 
for the training input-output pair (xi,yi) only if the associated αi* is not 0. In this case, the training 
example xi is called a support vector (SV), i.e. the SVs are such training samples that are on the 
margin of two datasets. In Fig.4.2, SVs are bolded. These samples give the name to this learning 
machine, because they show to be very important in the classification both computationally and 
concerning the generalisation. Firstly, they provide a sparse solution to the classification problem, 
and, secondly, Vapnik has presented a simple and powerful result that connects the number of SVs 
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and the generalisation ability of the classifier [Vapnik00]. If the training data set contains M 
samples that are separated by the maximal margin hyperplane, the bound for expectation of the 
probability of test error can be calculated as: 

                    #[ ]error
SVE P
M

≤   ,                                          (4.15) 

where #SV is the number of SVs. This gives an easy way to estimate the generalisation ability of the 
classifier with a bound that is independent on the dimensionality of the input space.  

     The optimal Lagrange multipliers α* can also be used for outlier detection in the training data 
set. The larger is a specific element *

iα  in the multiplier vector, the more difficult a sample xi has 
been concerning the classification.  If *

iα  is considerable large compared to other multipliers, xi 
should be removed from the data set. 

     Solving (4.14) for α, the SVs are obtained for classes I and II. The optimal separating 
hyperplane situates at equal distance from the SVs for classes I and II, and b* is given by: 

      
T T* 1 2

Support vectors

1* ( )
2

s s
i i i ib yα=− +∑ x x x x  ,                      (4.16) 

where 1 1 1 1 T
1 2( , ,..., )s s s s

nx x x=x and 2 2 2 2 T
1 2( , ,..., )s s s s

nx x x=x are arbitrary SVs for Class I and Class II, 
respectively. Notice that only the terms associated with the SVs are summed, because the elements 
of optimal Lagrange multiplier α* corresponding to other samples are equal to zero.  
     So far it has been assumed that the training data is linearly separable. In the case, where the 
training data cannot be linearly separated, non-negative slack variables ξi are introduced to 
inequality conditions in (4.10), and the sum of the slack variables multiplied by the parameter C is 
added to the objective function given in (4.10). This corresponds to adding the upper bound C to the 
elements of α. The optimization problem will be:  
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      In both separable and nonseparable cases, the form of the decision function is the same and 
given by: 

              
T* *

Support vectors
( ) i i if y bα= +∑x x x  .                      (4.18) 

Then unknown data example x is classified as follows: 

             
Class  I,   if   ( )  0 
Class II,     otherwise .

f >
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x
x                       (4.19) 
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Figure 4.2. The optimal separating hyperplane maximizes generalisation ability of the classifier. 

 
4.1.4 Nonlinear classification 
 

In addition to linear classification, SVM can be applied to non-linear classification problems. When 
applying SVM in nonlinear problems, nonlinear mapping is used to generate the classification 
features from the original data. The nonlinearly separable data to be classified is mapped onto a 
high-dimensional feature space, where the data can be linearly classified; see Fig. 4.3. 
[Cristianini00].  

     Using a non-linear vector function φ(x) = (φ1(x),�, φl(x))T (l >> n) to map the n-dimensional 
input vector x into the l-dimensional feature space, the linear decision function in dual form is given 
by (compare Eq.(4.18)): 

    * T *

Support vectors

( ) ( ) ( )i i if y bα= +∑x φ x φ x .                        (4.20) 

     Working in the high-dimensional feature space enables the expression of complex functions, but 
it also generates problems. Computational problems occur due to large vectors and the danger of 
overfitting also exists due to high dimensionality. The latter problem is solved above with 
application of the maximal margin classifier, and so-called kernels give solution to the first 
problem. Notice that in (4.20) as well in the optimisation problem (4.14), the data occur only in 
inner products. A function that returns a dot product of the feature space mappings of original data 
points is called a kernel, T( , ) ( ) ( )K =x z φ x φ z . When applying a kernel function, the learning in the 
feature space does not require explicit evaluation of φ. Using a kernel function, the decision 
function will be: 

                       
*

Support  vectors
( ) ( , )i i if y Kα= ∑x x x   ,                                     (4.21) 

and the unknown data example is classified as before. The values of K(xi,xj) over all training 
samples, i, j = 1 ,�, M, form the kernel matrix, which is a central structure in the kernel theory.  
Mercer�s theorem states that any symmetric positive definite matrix can be regarded as a kernel 
matrix that is an inner product matrix in some space [Cristianini00]. For example, polynomial 
learning machines  of  degree  q  have inner product kernel  ( )T( , ) 1

q
K = +x z x z , and RBF machines 
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Figure 4.3. Mapping the input space to the feature space, where linear classification is possible. 

have the inner product kernel 
2

2( , ) exp
2

K
σ

 − = − 
  

x z
x z , where σ defines the width. When applying the 

first order polynomial kernel an ordinary linear classifier is achieved. Application of RBF kernel 
results in a similar classifier structure with RBF networks, but most of the tuning is carried out 
during the training in contrast to classical RBF methods which require heuristic tuning e.g. in the 
determination of the number of RBF centers in the hidden layer. 

 
4.2 Design and tuning  
 
Design of SVM for a classification task consists of two tasks: choosing the kernel function and 
setting a value for the parameter C [Chin98]. The parameter C is also called an error penalty, 
because it deals with the trade-off between maximum margin and the classification error during 
training. A high error penalty will force the SVM training to avoid classification errors. It is clear 
that with high error penalty, the optimiser gives a boundary that classifies all the training points 
correctly. This, however, can give very irregular boundaries that may not lead good performance of 
the classifier in the test set. The selection of kernel function has also influence on the decision 
boundary. Usually RBFs are favored instead of polynomial kernel functions, because they are not 
sensitive to outliers and do not require inputs to have equal variances. However, in some cases 
polynomial kernels result in an excellent classification performance. In addition to the choice of the 
kernel function, various tuning parameters of the kernel should be chosen. When using polynomial 
kernel function, the order of the polynomial needs to be chosen, and when using RBF the spread, σ, 
needs to be decided. A large σ-value will give a smooth decision surface and regular decision 
boundary. 

     In Fig. 4.4 a) � e), the performance of various kernel functions is shown in a same classification 
problem. A two-dimensional problem is studied to be able to graphically depict the different cases. 
The considered noisy data set is generated artificially. In the figures, points represent decision 
regions and training data is plotted with circles and crosses. One can see that the more complex 
kernel function is the more irregular decision boundary results from training. The number of 
support vectors is an important measure of generalisation when choosing the kernel. The less SVs 
the  better  generalisation.    In  this  case,  a  second  order  polynomial  results  in  the  smallest  SV   
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a) b) 

       
c)                                                                       d) 

      
                 e)         f) 

 
Figure 4.4. The choice of the kernel function has a strong impact on the complexity of the decision boundary. Solutions 

for a  two-dimensional classification problem with various kernels: a) first order polynomial, b) second order 
polynomial, c) fourth order polynomial, d) RBF with σ = 0.5, e) RBF with σ = 5 and f) RBF with σ = 0.1 in another 

classification problem. In all cases, C=0.5.  
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percentage (44%). A sample was considered to be a SV if the corresponding element of α* was 
smaller than 10-6. Even the smallest number of SVs is large, because the classes are not easily 
separated due to noise. However, also kernel function corresponding the first order polynomial 
results in only 46% SVs of all data. The more complex kernels result in higher percentage of SVs 
(78% in c), 92% in d), and 62% in e)), and when looking at the decision boundaries, especially in c) 
and d), one can also clearly see that they would not perform well in the presence of noise. However, 
RBF kernel with large value for σ, seems to result in a quite regular boundary, although it is very 
close to the one achieved with the simple first order kernel function. Based on this analysis, the 
kernel corresponding to the first order polynomial should be chosen for the kernel function.  

     In Fig. 4.4 f), a solution for another classification problem is shown. The problem is more 
complex than the first one, because the classes to be separated are merged into each other. 
However, with RBF kernel function with σ = 0.1 and C = 1, an adequately performing decision 
boundary can be found (SV percentage 53%). This example shows that with proper tuning SVM 
can solve very difficult classification problems, but one should always pay attention to real 
complexity of the problem, before applying very complicated kernel functions. 

     Choosing a kernel function is an application dependent task, and thorough guidelines do not 
exist. Usually the kernel function is chosen based on trial and error or a cross validation method. If 
there is any a priori knowledge on the problem under study that should be taken account when 
tuning the SVM based classifier. Selection of the kernel function is similar task with the selection of 
the network architecture when applying NNs. 

 

4.3 Least squares support vector machine (LS-SVM) 
 

One of the drawbacks of SVMs is tedious computation in the training phase due to the quadratic 
optimization problem. Suykens & al. have reformulated the standard SVMs to avoid this problem 
and developed Least Squares Support Vector Machines (LS-SVM) [Suykens02]. The cost function 
is a regularized least squares function with equality constraints leading to linear Karush-Kuhn-
Tucker systems. The solution can be found efficiently by iterative methods such as conjugate 
gradient algorithm. LS-SVMs do not lead sparse solutions such as SVMs but a solution for the 
optimization problem is found very fast, and pruning techniques can be easily applied to enhance 
the sparsity.  

     LS-SVM algorithm is derived in a following way [Suykens02]. The classification problem can 
be solved from optimization problem with equality constraints: 

2

, , 1

1 1min ( , , )
2 2

subject to [ ( ) ] 1 , 1,...,

M
T

iw b e i
T

i i i

J b e e

y b e i M

γ
=

= +

+ = − =

∑w w w

w φ x
     .                     (4.22) 

Denotation corresponds to Chapter 4.1, but ei denotes the error in the classification of the sample xi. 
One defines the Lagrangian: 
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where αi are Lagrange multipliers, which can be either positive or negative due to equality 
constraints. The conditions for optimality: 
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can be written as the solution to the following set of linear equations: 
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where    Z = (φ(x1)Ty1, �, φ(xM)TyM)T,    Y = (y1, �, yM)T,    T(1, ..., 1)=1
"

,    e = (e1, �, eM)    and  
α = (α1, �, αM)T. The solution is also given by: 
 

  
T

T 1

00 b
γ −

  −  
=     +     

Y
αY ZZ I 1

"        .                      (4.26) 

Mercer�s theoremcan be applied again to matrix Ω = ZZT where: 
T

, ( ) ( ) ( , )i l i l i l i l i ly y y y KΩ = =φ x φ x x x  .                     (4.27) 

Hence the classifier (4.22) is found by solving the linear set of equations (4.26)-(4.27) instead of 
quadratic programming. The support values αi are proportional to the errors at the data points, while 
in standard SVM most values are equal to zero. This is a drawback of LS-SVM, but application of 
pruning techniques is relatively easy because of the globally optimal solution and very short 
computation time.   

 

4.4 Multi-class classification 
 

4.4.1 Coupling schemes 
 

SVMs are essentially binary classifiers. They are designed to separate only two classes from each 
other. However, in most of the real applications, multi-class classification is required. For example, 
in the fault classification of an induction motor, there exist several fault classes in addition to 
healthy operation.  

     A solution is to decompose a multi-class problem to several 2-class problems, train classifiers to 
solve these problems, and then couple the classifiers to reconstruct the solution of the multi-class 
problem from outputs of the individual classifiers. One of the simplest multi-class classification 
structures is the so-called one-against-others approach. In this method, K classifiers are built in the 
way that each classifier separates one class from all the others. However, in many applications, this 
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approach has been found to be inferior to a pairwise coupling approach, where 1 ( 1)
2

K K −  2-class 

classifiers are built, each separating one class from another ignoring all the other classes. Outputs of 
the pairwise classifiers are then fused to find the global solution to the K-class problem. In this 
approach, more 2-class classifiers are needed than in the former case, but using it, the total 
classification performance can usually be highly improved. For example, in [Suykens02], various 
multi-class extensions of SVM are compared in several classification problems. 

     There exist numerous schemes to reconstruct the final classification solution from the outputs of 
pairwise classifiers� solutions. The simplest methods are based on majority voting [Friedman96]. 
Pairwise classifiers give votes for classes and the class that gets most of the votes is selected to be a 
final class decision for a sample considered. If rough reconstruction is used, the classifiers can only 
give binary votes (-1 or 1), but in soft reconstruction the exact outputs of the classifiers are 
considered as votes. The higher is the exact output of a SVM based classifier, the more likely the 
specific sample to be classified belongs to the positive class, and correspondingly, the smaller is the 
output, the more likely the sample belongs to the negative class. If the output is close to zero, the 
classification decision is unreliable. 

     An important problem occurs when applying majority voting. For a given sample x, the voting 
scheme weights equally the outputs of all pairwise classifiers, without considering their 
significance. Of course, the relevant classifiers concerning the success of the classification are not 
known in advance. However, redundancy of some pairwise classifiers may be considered with a so 
called mixture matrix. With this approach, the outputs of classifiers are linearly combined with the 
mixture matrix created, for example, with least squares estimation, to minimize the error between 
the correct class decision and the linear combination of the pairwise classifiers� outputs. The 
mixture matrix approach is proposed in [Mayoraz99], but it has been considered there in scaling the 
outputs of one-against-others type of classifiers. An interesting question also is, whether a nonlinear 
coupling � e.g. with a NN � can improve the performance of the classification structure. 

     Other coupling schemes suggested in the literature are, for example, binary trees [Schwenker00] 
and a fuzzy logic based method [Inoue01]. When applying binary trees, a proper hierarchy of 
classifiers should be known before training the classifiers. This requires a priori knowledge of the 
solution of the classification problem or implementation of sophisticated clustering or vector 
quantisation algorithms. When using the fuzzy logic approach, choosing and tuning of the 
membership functions is an application dependent task, and may sometimes be quite time-
consuming. 

 

4.4.2 Comparison of the coupling schemes 
 
In the publication [P3], the performance of four coupling schemes is tested in the fault classification 
of a 35 kW induction motor: majority voting with soft and rough reconstruction, mixture matrix, 
and a NN. The results are summarized here. The classification of faults is based on spectral 
information of circulating currents in parallel branches of the motor. Virtual measurement data is 
used, and the simulations are based on time-stepping, finite-element analysis. The studied machine 
is an inverter-fed 35 kW squirrel cage induction motor with a star connection of the stator winding. 
The main frequency of the input voltage is 100 Hz. Three load conditions are studied: no load, half 
load and full load. The circuit equations of the stator and rotor windings are modified to implement 
the faults (Table 4.1). 
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Table 4.1 Division of faults to classes 

Class 1 Healthy machine (NF) 
Class 2 Broken rotor bar (BB) 
Class 3 Broken end-ring in rotor cage (BR) 
Class 4 Shorted coil in stator winding (SC) 
Class 5 Shorted turn in stator winding (ST) 
Class 6 Static eccentricity in rotor (SE) 
Class 7 Dynamic eccentricity in rotor (DE) 

 

     Welch�s method [Welch67] is used to calculate the PSD estimates of circulating currents of the 
induction motor. Hanning window is used with 500 samples window, and number of overlapping 
samples is 250.  Before applying PSD estimation, measurement noise is imitated by adding 
normally distributed noise to the current. Mean value of noise is equal to zero and its standard 
deviation is 5% of the amplitude of current. PSD estimates were calculated 32 times from different 
parts of a circulating current signal in each fault case. Thus, a spectrum sample set with 224 
samples is achieved for three different load cases. Half of the samples were chosen for training the 
classifier, and half of the samples were left for testing the generalisation ability of the classifier. An 
average healthy spectrum from the training set was chosen to be a reference, and all the other 
spectra were scaled with it. The difference values from the reference created the sample set.  

     All pairwise SVM classifiers were designed with the same simple inner product kernel function 
corresponding to a first order polynomial in the feature space. Practically, similar results were 
achieved with a kernel function corresponding a properly parametrized radial basis function and 
higher order polynomials, whose degree was an odd number. The error penalty C was equal to 1.  

     As a nonlinear approach a NN is studied. A regular feed-forward MLP network is trained to 
minimize the error between the correct class decision and the non-linear combination of outputs of 
pairwise classifiers. The network is chosen to have one hidden layer and log-sigmoid transfer 
functions. The log-sigmoid transfer function is chosen because its output range (from zero to one) 
suits to output Boolean values. The number of neurons in a hidden layer has a strong impact on the 
performance of the network. With a large number of hidden neurons, it is possible to achieve 
excellent performance in the training set, but this does not necessarily lead to good generalisation 
ability and high accuracy in the evaluation set. After numerous tests, the number of hidden neurons 
that gave the best overall accuracy was chosen. For no load classification structure the number was 
12, for half load classification structure 18 and for full load classification structure 8.  

     The classification results with these structures are presented in Fig. 4.5.a). These are the best 
results achieved, but with arbitrarily chosen number of hidden neurons, the results could be much 
worse. In Fig. 4.5.b), correct classification percentages are presented, when majority voting with 
rough reconstruction is used. In Fig. 4.5.c), classification results are shown, when soft 
reconstruction is used. In Fig. 4.5.d), the results with linear coupling are displayed. The best total 
classification results over all load situations and over all classes are gained with NN coupling 
(95.8%) and the worst results with majority voting with rough reconstruction (87.6%). Majority 
voting with soft reconstruction (93.9%), mixture matrix coupling (95.5%) and NN coupling were 
highly competitive compared to it. The difference between the coupling methods can especially be 
seen in detection of SE faults. With majority voting and rough reconstruction, SE fault samples tend 
to get equal amount of votes with ST fault class. Thus, the total accuracy of the classifier degrades. 
In no load situation, problems occur also in detection of other faults in addition to SE, and these 
problems cannot be totally solved by changing the coupling scheme. It is obvious that faults are 
more easily detected from a motor that is working under load. If differences in a faulty spectrum 
sample compared to the average healthy sample are hidden due to noise, classification does not 
succeed.  
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     The NN approach and the mixture matrix approach resulted in a classification structure with 
almost the same accuracy. When comparing the results, it should be taken into account that with 
arbitrarily chosen number of hidden neurons, the NN could result in much worse classification 
results. Also, training and tuning the NN is an exhausting task. A linear combination of SVMs with 
a mixture matrix already gives excellent results, so using nonlinear reconstruction is not necessary 
in this application.  
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Figure 4.5.  Correct classification percentages in a testing set with a) neural network coupling, b) majority voting and 
rough reconstruction c) majority voting and soft reconstruction and with d) mixture matrix coupling. Each group of bars 
represents accuracies Qi for each class, and in each group, the first bar represents full load situation, the second bar half 

load situation and the third bar no load situation. 
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5. Motor current signature analysis of a 15 kW 
induction motor 
 
In this chapter, the results from the publications [P1] and [P2] are summarized. MCSA of a 15 kW 
induction motor is carried out with PSD estimation and SVM based classification. The machine 
studied is an inverter-fed four-pole cage induction motor. The stator winding is delta connected, and 
the coils of a stator phase are all connected in series (no parallel branches). Three different load 
conditions are considered: no load, half load, and full load.  The method is tested with virtual 
measurement data retrieved from finite-element analysis of the motor [Arkkio90]. In the finite-
element analysis, the circuit equations of the stator and rotor windings are modified to implement 
the faults (Table 5.1). A shorted coil in stator winding is obtained by extracting a coil from the 
series connected coils forming a healthy phase and forcing the voltage of the extracted coil to be 
zero. A shorted turn is constructed in a similar manner. A broken bar or end-ring in the rotor cage is 
obtained by adding a large resistance properly in the circuit equations of the rotor. 
 

Table 5.1. The motor states studied 

NF No fault 

BB Broken rotor bar 

BR Broken end-ring in rotor cage 

SC Shorted coil in stator winding 

ST Shorted turn in stator winding 

 
     PSD estimates of the stator currents have often been used as a medium of fault detection of 
induction motors [Benbouzid00].  Main disadvantage of classical spectral estimation techniques, 
such as FFT, is the impact of side lobe leakage due to windowing of finite data sets. Window 
weighting decreases the effect of side lobes. Further, in order to improve statistical stability of the 
spectral estimate, averaging by segmenting the data can be applied. The more segments are used the 
more stable the estimate is. However, the signal length limits the number of segments used, but with 
overlapping segments the number of segments can be increased. In this thesis, Welch�s method is 
used to calculate the PSD estimates of a stator current of the induction motor. The method applies 
both the window weighting and the averaging over overlapping segments to estimate the PSD. In 
this study, Hanning window sized 500 samples is used, and number of overlapping samples is 250. 
The length of resulting PSD estimate vector is 257 and the whole vector is considered as an entity to 
be classified. 

     The PSD estimates are calculated 80 times from different parts of a stator current signal in each 
fault case. Thus, we got a spectra sample set with 400 samples for three different load cases. SVMs 
were trained and tested separately in different load situations. The first 200 samples form the 
training data set and the rest are left for testing the generalisation ability of the classifier. An 
average healthy spectrum from the training set is chosen to be a reference, and all the other spectra 
are scaled with it. The difference values from the reference create the sample set. As an example, 
the sample set of shorted coil fault is plotted in no load situation in Fig. 5.1.a). In the first picture, 
PSD estimates of a stator current in healthy operation and in shorted coil operation are plotted. In 
the second picture, the difference between the average healthy spectrum and shorted coil spectra are 
plotted. 
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Figure 5.1. Sample set of Welch�s PSD estimates of a stator current in a) healthy and in shorted coil operation and b) 
in healthy and in broken rotor bar operation. 

 
     Of all the faults, the shorted coil has the most distinct impact on the stator current. For 
comparison, a sample set of PSD estimates of a stator current in broken rotor ring operation is 
shown in Fig. 5.1.b). The differences between PSD estimates in broken rotor bar operation and in 
average healthy operation are less than 10% from the differences between estimates in shorted coil 
operation and in average healthy operation. Also, the peaks of differences do not always occur in 
same frequencies, which may make the classification difficult. 

     When applying pairwise coupling scheme, ten 2-class classifiers need to be designed. All the 
classifiers are designed with a kernel function corresponding to a first order polynomial. Almost 
similar results are achieved with a radial basis function and with higher order polynomials, whose 
degree is an odd number. The upper bound C for the Lagrange multipliers is chosen to be 10.  

     In Table 5.2, the correct classification percentages between different classes in the test set are 
presented in full load situation. Shorted turn and shorted coil in stator windings are always 
distinguished from other faults and healthy situation, but there are difficulties in distinguishing 
broken rotor bar from broken end ring and the healthy operation. 

     In Table 5.3, the percentages of SVs in the training set are presented in different classification 
cases in full load operation. A sample is chosen to be a SV, if the corresponding Lagrange 
multiplier is larger than 10-3. The shorted coil operation has been easy to distinguish from other 
fault classes: the numbers of SVs in these classification cases are relatively small.  
 

Table 5.2. Correct classification percentages in a testing set and in full load operation 

% BB BR ST SC 

NF 63 100 100 100 

BB - 94 100 100 

BR - - 100 100 

ST - - - 100 
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Table 5.3. Percentages of support vectors of the training set in full load operation 

% BB BR ST SC 

NF 85 68 50 25 

BB - 63 41 16 

BR - - 28 16 

ST - - - 26 

 
     Training of the pairwise classifiers also shows the appropriateness of SVM in high dimensional 
classification problems. The number of training samples is only 80 in each classification case, 
whereas the whole PSD estimate creates the feature set. However, one can see from the SV 
percentages that especially the cases, where shorted coil fault is involved, the training of the 
classifier is highly successful. The correct classification rates in the test set are congruent with the 
SV percentages. 

     After training the 10 pair-wise classifiers for each load situation (30 classifiers in total), their co-
operation is tested. The majority voting approach is used. 200 samples (40 representatives from 
each fault case and from the healthy case) are tested. In Table 5.4, the correct classification 
percentages of each class are presented in each load situation. 
 

Table 5.4. Correct classification percentages in a testing set with combined classifiers 

% NF BB BR ST SC Total 

Full Load 50 65 98 100 100 83 

Half Load 83 100 50 100 100 87 

No Load 100 100 100 100 100 100 

 
     In reconstruction the final class decision, faults in pairwise classifiers performance are 
cumulated. In no load operation, results are excellent, but on other load levels, some fault classes 
cannot be perfectly separated from the healthy class and from each other. However, in total, over 80 
% of all samples are correctly classified in all load situations. 

     Next random measurement noise is added to the stator current before training the classifiers. The 
standard deviation of normally distributed measurement error is assumed to be 1% of the amplitude 
of line current and its mean value is set to zero. In Table 5.5, the classification results in the 
presence of noise in all load situations are showed. Classification results degrade considerably. 
Only shorted coil fault is always correctly classified regardless of noise. 

 
Table 5.5. Correct classification percentages in a testing set with combined classifiers, while noise is present. 

% NF BB BR ST SC Total 

Full Load 33 20 35 28 100 43 

Half Load 38 40 38 30 100 49 

No Load 13 45 53 7.5 100 44 
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Dropping such pairwise classifiers whose performance is not adequate out of the classification 
structure, the detection rate of certain faults can be increased also in noisy situation (see Table 5.6).  

 
Table 5.6. Correct classification percentages in a testing set with 3-class classification structure 

% NF ST SC Total 

Full Load 73 88 100 87 

Half Load 83 98 100 93 

No Load 95 38 100 78 

 

This indicates that the malfunction of some pairwise classifiers should be able to be taken into 
account in the reconstruction of the final classification solution. Mixture matrix coupling is a better 
choice for the reconstruction instead of majority voting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 45

6. Comparison of motor variables as fault indicators 
 
The results of the previous chapter indicate that the stator current is not a good indicator of all 
faults. In the publication [P4], three motor variables are compared as the medium of induction 
motor fault detection: the stator line current, the circulating currents in parallel branches and the 
force on the rotor. The results are summarized in Tables 6.1-6.3. In addition to previous fault cases, 
also static eccentricity (SE) and dynamic eccentricity (DE) of the rotor are studied. The results are 
based on the performance of a 35 kW induction motor, which is simulated with finite element 
analysis. The standard deviation of normally distributed measurement error is assumed to be 3% of 
the amplitude of the signal and its mean value is set to zero. A simple predictive noise filtering is 
also applied. The training and testing data sets are generated in a similar way as before, and various 
SVM tunings are considered to find the best classifier. All classifiers are designed with a radial 
basis kernel function width equal to 11 except when studying forces as indicators of faults. In those 
cases, the first order polynomial kernel function is used.     
   

Table 6.1. Correct classification percentages in a testing set, stator line current as a medium of fault detection 

% NF BB BR ST SC SE DE Total
Full Load 20 45 23 100 100 5.0 7.5 43 
Half Load 28 18 20 100 100 38 38 49 
No Load 70 85 70 100 100 50 68 78 

Total 39 49 38 100 100 31 38 57 
 
Table 6.2. Correct classification percentages in a testing set, circulating currents between parallel branches as media 

of fault detection 

% NF BB BR ST SC SE DE Total
Full Load 100 100 100 100 100 100 100 100 
Half Load 100 100 100 100 100 100 100 100 
No Load 83 75 100 100 100 100 100 94 

Total 94 92 100 100 100 100 100 98 
 

Table 6.3. Correct classification percentages in a testing set, force on the rotor as a medium of fault detection 

% NF BB BR ST SC SE DE Total 
Full Load 100 100 100 100 100 100 100 100 
Half Load 100 100 100 100 100 100 100 100 
No Load 100 100 100 100 100 100 100 100 

Total 100 100 100 100 100 100 100 100 

 

The results indicate that the circulating currents and the force on the rotor are superior media for 
fault detection compared to the stator line current. The application of stator current is widely studied 
only because its monitoring does not require extra instrumentation and it is non-invasive method.  

     The force on the rotor is the best fault indicator. The measurement of forces is difficult, but they 
are directly related to vibrations that are measurable and used in condition monitoring of rotating 
machines for decades. Because of these results, the vibrations are studied more thoroughly in fault 
diagnostics of a 35 kW cage induction motor. 
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7. Broken rotor bar detection of a 35 kW induction 
motor with vibration monitoring 
 

In this chapter, results of the publications [P5] and [P6] are summarized. Firstly, signal processing 
of motor vibrations is studied for detection of broken rotor bar in a 35 kW induction motor. Then, 
information fusion of multi-channel vibration measurements is considered to improve the broken 
rotor bar detection.  

 

7.1 Signal processing of vibrations 
 

In this chapter, signal processing of vibrations is studied for revealing broken rotor bar faults in an 
induction motor. Real measurement data from an artificially damaged 35 kW cage induction motor 
is used. The motor is fed from a Vacon inverter, and a DC generator is the motor load. The 
switching frequency of the inverter is fixed at 3 kHz.  The signal given by the vibration sensor 
mounted on the back part of the motor is amplified through charge amplifiers Bruel & Kjaer 2635. 
The amplified signals are the transient recorder inputs. The recorded transient is calibrated using a 
true root mean square voltmeter connected in the amplifier output. This calibration is made in such 
a way that the recorded measurements in the transient recorder are in acceleration units.   

       Measurements are carried out with motor in healthy condition and with motor under three rotor 
fault situations: one broken rotor bar, two broken rotor bars and three broken rotor bars plus end 
ring broken. In addition to these, one broken rotor bar operation is also measured with external 
interference present. The sampling frequency is 40 kHz and the number of samples in each data set 
is 20 thousands. Three load situations are considered: no load, half load and full load. The feature 
samples are calculated 30 times from each motor condition and each load situation � in total 450 
samples. Half of the samples from healthy situation and broken rotor bar situation are used in 
training the classifier (90 samples) and half are left for testing the classifier�s generalization ability 
in addition to the all samples of more serious fault situations (360 samples). The latter samples are 
important to be included to the test set, because success of the classification with these samples 
implies, whether the selected features are able to indicate a broken rotor bar fault despite of the 
interference due to variations in measurement installation and variations in the nature of the rotor 
bar fault. 

     Four feature extraction techniques are applied to various sections of the vibration signals. In Fig. 
7.1.a), examples of real cepstra in healthy motor operation and in broken rotor bar operation are 
presented. In the figure, also the difference of the cepstra is presented, and there is a distinct 
difference between the signals. In Fig. 7.1.b), the 13th order AR model coefficients of the vibration 
signals are presented in the same motor conditions. The biggest difference can be seen in the 3rd and 
4th coefficients. Such a high model order was chosen, because it resulted in the best classification 
performance. When applying HOS analysis, the enhanced PSD, bispectrum and trispectrum 
measures are calculated at the critical frequencies, and their concatenation is the feature vector to be 
classified. 

     In SVM classification, radial basis kernel functions with various widths from 0.05 to 10 were 
considered in addition to a kernel function corresponding to the first order polynomial. Error 
penalty C was varied from 0.1 to 10. A proper SVM tuning varied depending on the features under 
study. The best classification results (100%) were achieved with application of AR coefficients, a 
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kernel function corresponding to the first order polynomial, and C = 2. The second best results were 
achieved with application of Welch�s PSD estimates or cepstrum analysis (81.8%). With the latter 
approaches, the results degrade, because the three broken rotor bar and broken end ring fault was 
mostly not detected. In this study, the enhanced HOS analysis was not a competitive feature 
generation approach (14.2%). This may be due to inaccurate estimation of the critical frequencies.  

     The number of SVs also influence on the generalization ability of the classifier. The 
generalization is the better the less SVs there are. When AR signal description was applied the SV 
percentage of all training samples was only 11.1%, when Welch�s PSD estimates were applied the 
percentage was 82.7%, and when cepstrum analysis was applied 74.4%. It is possible that the 
results gained with the cepstrum analysis and Welch�s PSD estimates might be improved, if feature 
selection algorithms were applied before classification. 

    In [P5], the order of AR-model was chosen to be 13, because that seemed to result in the best 
classification performance, when detecting the broken rotor bar. Also some lower degrees resulted 
in the 100% correct classification rate, but with lower degrees the number of SVs increased. 
However, after publication of [P5] a robustness analysis was carried out in the presence of noise, 
and it showed that coefficients of the third order model are more robust features for the broken rotor 
bar detection than coefficients of the 13th order model. When applying the 13th order model 
coefficients, the correct classification rate started to decrease, if noise was included to vibrations 
measurements with the variance 2% of the maximum value of vibration signal and the mean of 
zero. When applying the coefficients of the third order model, the correct classification rate did not 
decrease until the variance of noise was over 12% of the maximum value of original vibration. 
Although the vibration measurements did not originally contain much noise, they will very likely 
vary between measurement sessions, and, thus, the more robust model is a practical choice for 
feature extraction. 

     It should be noticed that the fault detection rate of 100% with the features generated by AR 
modelling is an excellent result, because most of the test samples were totally independent from the 
training data set. The reinstallation of the measurement system always influences on the vibration 
signals. Also, some rotor bar fault types that were included to the test set were not shown to the 
classifier in its training phase. This indicates that the selected features are very likely able to show 
the rotor bar fault of induction motor even despite of more severe interference than noise. However, 
the study concentrated on the detection of rotor bar faults of an induction motor. For detection of 
other kinds of faults additional features of vibration signal may show to be relevant.  
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Figure 7.1. a) Real cepstra of vibration signals in healthy and broken rotor bar operation. b) AR-coefficients of 
vibration signals in healthy and broken rotor bar operation. (▫: healthy, *: broken rotor bar). 
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7.2 Data fusion and interference removal with ICA 
      

In the previous chapter, only one sensor was used to measure the motor vibrations. An interesting 
question is how the multiple sensors influence on the diagnostics process. In this chapter, vibrations 
are measured with five sensors and their fusion is used as the fault indicator. The chapter bases on 
the publication [P6].  

     The measurement set-up is similar with the one in the previous chapter, but now five 
acceleration vibration sensors are placed in different parts of the motor. Three of them are placed in 
the cooling surface of the motor frame. One is placed in the covering surface of the frontal bearing 
and the other one near the cooling fan in the back part of the motor. The last sensor placement 
equals the one used in the last chapter. As an example, the vibration measurements in a healthy 
situation with no load are presented in Fig. 7.2.a). One of the vibration measurements is 
considerably higher than measurements from the other sensors. This signal is measured with the 
sensor placed in the back part of the motor. 

     FastICA algorithm [Hyvärinen99] is used to calculate independent components (IC) of vibration 
measurements. A FastICA MATLAB-package developed at the Laboratory of Computer and 
Information Science in the Helsinki University of Technology was applied. Before applying 
FastICA, the vibration measurements are whitened with PCA.  In Fig. 7.b), Welch�s PSD estimates 
of the first IC in healthy and broken rotor bar situation are presented in the same picture (Hanning 
window sized 500 samples with 250 overlapping samples). There is a distinct difference between 
them. 

     LS-SVM based classifier is built to discriminate between the healthy and broken rotor bar 
condition. It is also tested with measurements from two broken bar situation and three broken bar 
and broken end ring situation. LS-SVM has a kernel function that corresponds to the first order 
polynomial and the upper bound for Lagrange multipliers was chosen to be equal to 10. Due to 
another classification algorithm the results presented in this chapter are not fully comparable with 
the results in Chapter 7.1. 

     Training data is formed by calculating Welch�s PSD estimates from different parts of the first IC 
of vibrations in the healthy and broken rotor bar situations. In the earlier figures, only no load 
situations are plotted, but also two other load situations are taken into account in training: half load 
and full load. The training data consists of 2x3x15 = 90 samples so that from both motor conditions 
and from all load situations there exist 15 samples. The other faults than one broken rotor bar fault 
are used only in testing the classifier, so that in total there are 240 samples for testing: 45 from 
healthy situation, 45 from one broken rotor bar situation and 90 from two broken rotor bars and 60 
from three broken rotor bars and broken end ring. In the last case, full load measurements were not 
available. All of the test samples are correctly classified. 
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                                      a)              b) 
Figure 7.2. a) Vibration measurements (m/s2) in a healthy situation with no load. The sensor placed in the back part of 

the motor measures considerable bigger vibration than the others. The main vibration signal is depicted in the first plot. 
b) Welch�s PSD estimates of the first IC of vibrations are different in healthy situation and in broken rotor bar situation 

(no load). 
 

For comparison, a classifier that uses the main vibration component as a fault indicator instead of 
the first IC of all vibrations was also trained. Training and testing data sets were formed in a same 
way as earlier. At this time 5% of test samples were wrongly classified. All of these samples were 
two broken rotor bar samples that were wrongly classified to be healthy. 

     Further, a classifier that uses the first principal component (PC) of vibrations as fault indicator 
was trained. Again, all the test samples were correctly classified. Even if the difference between 
using pure vibrations or ICs or PCs of vibrations in fault detection is quite small, this could indicate 
that faults are more easily detected from fused vibration measurements than pure vibrations. ICs 
and PCs contain more information on all vibration measurements than any of the individual 
vibration measurements. Using all vibration components for classification might improve the results 
without any data fusion, but at the same time computation would become heavier.  
     In this case, both data fusion methods, ICA and PCA, resulted in equally excellent performance 
of broken rotor bar detection. However, further studies are required with measurements from other 
faults to conclude overall usefulness of data fusion of vibration measurements, because the broken 
rotor bar was quite easily detected also based on the main vibration measurement. Also, building a 
multi-class classifier for detection of several faults may degrade the classification results. 
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8. Insulation defect localization with PD analysis and 
numerical classification 
 

In this chapter, the results from the publication [P7] are summarized. The publication considers 
analysis of PD signals to localize defects in insulation systems. The task of automatic defect 
localization with respect to electrodes has a wide range of industrial applications. In fact, depending 
on the apparatus type, risk assessment is remarkably affected by defect location with respect to the 
electrodes. In this study, various parameters are first extracted from PD distributions, and statistical 
analysis is performed to select the most significant parameters concerning localization. Then, the 
localization process is carried out through numerical classification. Three different classification 
methods are compared to find the best approach for this application: a k-nearest neighbour classifier 
(k-NN), a probabilistic neural network (PNN) and a SVM based classifier.  

     Two types of samples were under study: artificial specimens and HV apparatus with artificial 
defects. The first set of samples is important because the defect characteristics (geometry, materials, 
etc.) are well known, therefore the target likelihood is large. The drawback of these samples is that 
they are poor representatives of real situations. The second set of specimens is important because it 
represents quite well real situations, although the likelihood of its targets is sometimes small. The 
latter set contained samples from HV and MV cables and rotating machine insulations systems. In 
total, 17 samples with defect close to the high voltage electrode (denoted �HV samples�) and 26 
with defect close to the low voltage electrode (denoted �LV samples�) were under study. 
Measurements were performed with an ultra wide band digital instrument that allows automatic 
noise rejection and separation of simultaneous PD activities. 

     The majority of the parameters were extracted from amplitude, phase and time of occurrence 
histograms. In particular, parameters were first defined for a single polarity distribution, i.e. the set 
of discharges occurred when the electric field internal to the defect had a positive or negative sign. 
As an example, consider Fig. 8.1, which shows a schematic PRPD pattern (i.e. a graphical 
representation of PD density in the phase-amplitude plane): positive distribution is constituted by 
discharges occurred in the first half period of the applied voltage, and negative distribution is 
constituted by discharges occurred in the second half period. Afterwards, the parameters relevant to 
each polarity were combined and normalized, in order to account for the dissymmetry of the PD 
activity. In fact, the location of a defect in proximity of a metal surface produces, in general, a 
dissymmetry in the PD activity. In addition, a new parameter from the intertime distribution was 
considered. The parameter is related to the dissymmetry of PD activity in terms of intertimes. It 
takes into account both PD polarity, which is determined by the phase of the pulses, and the pulses 
chronological order, which determines the intertime distribution. 
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Figure 8.1. Schematization of the discharge process with respect to PD polarity, for a defect localised close to LV 

electrode. Most of the parameters are first calculated independently for each polarity, and then combined to indicate 
the dissymmetry between the polarities.  

 

     For the localization process, 17 parameters were taken in consideration: 

• Combined minimum phase of a PD distribution. 
• Combined mean phase of a PD distribution. 
• Combined phase interval of a PD distribution. 
• Combined skewness of the amplitude distribution. 
• Shape factor of the Weibull function that fits the positive amplitude distribution data. 
• Shape factor of the Weibull function that fits the negative amplitude distribution data. 
• Combined shape factor of the Weibull function that fits the amplitude distribution data. 
• Combined scale factor of the Weibull function that fits the amplitude distribution data. 
• Combined skewness of the phase distribution. 
• Combined minimum absolute value for an amplitude distribution. 
• Fuzzy membership to the �Internal� category (first identification level output). 
• Fuzzy membership to the �Surface� category (first identification level output). 
• Fuzzy membership to the �Corona� category (first identification level output). 
• Combined number of discharges of a distribution. 
• Combined maximum absolute value for an amplitude distribution. 
• Combined standard deviation of an amplitude distribution. 
• Combined mean value of the intertime distribution, with reference to polarity. 

 

     Multivariate analysis of variance (MANOVA) [Krzanowski88] is a statistical multivariate 
method that can be applied to a set of grouped data to determine, whether there are significant 
differences between the independent variables depending on the groups. MANOVA can be divided 
in two tasks: significance tests and canonical correlation. The significance test is usually carried out 

A 

ϕ 

First half period: the grounded 
(LV) electrode is the cathode. 

Second half period: the HV 
electrode is the cathode. 
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with Wilks� lambda, which is a direct measure of group difference of the centroids of means of 
independent variables. The smaller is the lambda, the greater is the difference. Bartlett's 
transformation can be used to compute the significance of lambda. 

     The significance test often gives the only results one is interested in, but an optional step in 
MANOVA is the canonical correlation that can be used to better understand the nature of group 
differences. In order to test the hypothesis that groups differ significantly on weighted combinations 
of the observed independent variables, MANOVA carries out a multiple discriminant analysis 
(MDA). With MDA the variance of dependent variables is partitioned into components also called 
canonical roots. The canonical roots correspond to principal components in PCA, except they seek 
to maximize the variance between the groups.  

     Some assumptions should be noticed when applying MANOVA: 

• Observations should be independent of one another.  
• Group sizes should not be very unequal. 
• There should be adequate number of samples. At a minimum, every group should have 

more cases than there are variables. 
• The variance-covariance matrix is the same for each group. Also within group variances 

should be similar. 
• Variables should follow multivariate normal distributions  
• No outliers should be in the data. 
 

     There are several ways to utilize MANOVA. Firstly, it can be used to compare the 
characteristics of the groups formed by multiple variables. Secondly, it can be used for reducing a 
set of variables to a smaller, more easily modelled number of variables. Thirdly, it can be used to 
identify the variables, which differentiate the groups most. In this study, MANOVA was applied to 
find parameters that differentiate two sample sets: PD samples from a defect attached to the LV 
electrode and samples from a defect attached to the HV electrode. MATLAB function manova1 is 
applied for the analysis. The sample set is carefully formed by normalising the variables and 
removing the outliers, so the assumptions of MANOVA are mostly fulfilled, although the number 
of observations could be larger. The normality of the distributions cannot be guaranteed due to the 
small number of observations, but the test should give adequate results even if the distributions are 
not purely normal. 

     The 17 parameters described before were extracted from the measurements, and MANOVA was 
applied to find a combination of parameters that gives the best separation between the HV and LV 
samples. The database was too small to perform multivariate analysis for all parameters at the same 
time. Thus, all possible combinations of parameter pairs were tested. The couple of parameters that 
gave the best combination were chosen to be the first in the parameter set. Then, other parameters 
were added to the set depending on their influence on the separation process. According to the test, 
most of the parameters did not seem to give any information concerning the separation of HV and 
LV samples. However, there were three parameters that always made the mean values of the groups 
significantly different. The first parameter was the new quantity that takes into account the 
dissymmetry of the PD activity in terms of time between discharges. The second parameter was a 
combination of minimum phase of occurrence for positive and negative polarity distributions. The 
third parameter was the shape factor of the Weibull function that fits the distribution of positive 
discharge amplitude. 

     Three classification algorithms were trained and tested to classify samples to be either in the 
vicinity of HV electrode or LV electrode. Inputs of the classifiers were the three parameters that 
seemed to be the best separators of the classes. In addition to the classifier input selection, the 
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classification performance depends on tuning the classifier. Each of the classifiers has several 
tuning parameters that have influence on the results.  

     Some of the simplest and accurate classification algorithms are based on k-NN rule [Cover67]. 
In this approach, each training data vector is labelled with the class it belongs, and treated as a 
reference vector, when a new sample is to be classified. During classification process, k nearest 
reference vectors of the new sample are found based on a distance measure (e.g. Euclidean 
distance) and the class of the sample under study is defined by voting among nearest reference 
vectors. There are several benefits on using k-NN classification approach. It is simple to implement 
and easy to update, because it actually does not require training. It also outputs a measure that is 
related to the probability that the classification decision is correct, i.e. the number of votes divided 
by k. If the sample to be classified is on the border of two classes, it gets somewhat equal amount of 
votes from each class. However, problems occur when applying k-NN classification, if the entity to 
be classified has redundant features concerning the classification. That is why a careful feature 
selection is important when applying this approach unlike when applying SVM. In this thesis, 
various features were studied for defect classification based on location, and the best features were 
chosen with careful analysis. Regarding k-NN classifier, the distance function and the size of the 
neighbourhood, k, are chosen while tuning the classifier. Here only Euclidean distance function is 
used and k is varied. 

     PNNs [Specht88] are radial basis networks suitable for classification problems. The network 
consists of two layers. When an input is presented, the first layer computes distances from the input 
vector to the training input vectors, and produces a vector, whose elements indicate how close the 
input is to a training input. The second layer sums these contributions for each class of inputs to 
output a vector of probabilities. Finally, in the output of the second layer, the maximum of these 
probabilities is picked up, and the class decision is made based on such a maximum.  The activation 
function in the second layer neurons is a radial basis function (RBF): 
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Its maximum value is one, and when x grows, it approaches to zero. If the spread σ is near zero, the 
network should act as a nearest neighbour classifier.  As the spread becomes larger, the designed 
network will take into account several nearby training samples in classification. The optimum value 
for σ should be between [0,∞].  
      When considering SVM, the kernel function and the error penalty C need to be chosen. Usually 
radial basis kernel functions are favoured instead of polynomial kernel functions, because they are 
not so sensitive to outliers and do not require inputs to have equal variances. However, in this study 
also polynomial kernels are studied, because the data is normalised and do not contain outliers. 
When using polynomial kernel function, the order of the polynomial has to be chosen, and when 
using RBF the spread, σ, has to be decided. A large σ -value will give a smooth decision surface 
and regular decision boundary. 

     5-fold cross validation results, obtained by the above-discussed classifiers and with different 
tunings, are presented in Table 8.1. Almost equally good performance is achieved by several 
different structures, but the best results (correct classification rate 78.4%) are gained with SVM that 
has the fourth order polynomial kernel function and error penalty equal to 0.5. The second best 
results (correct classification rate 73.4%) are achieved with several different SVM classifiers and a 
k-NN classifier with k equal to 13. PNN was not competitive with two others. 

     In Table 8.1, also the comparison of computation times in MATLAB is presented. The 
computation times should be considered indicative only, because they are highly dependent on the 
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software and implementation details. The time for set-up corresponds to the training time of SVMs 
and the time for setting up a new neural network structure when considering PNNs. The 
classification time of a sample is an average over various test sets in the 5-fold cross validation.  
The classification of samples is relatively fast with all classification methods, although PNN gives 
the shortest times. The time required for the set-up is the largest when applying SVM and the 
shortest when applying the k-NN classifier. 

     Although the SVM based classifiers gave the best classification results, it should be emphasized 
that the k-NN classifier is much simpler to implement and update than SVM, and it also outputs an 
estimate of the probability that a sample belongs to a certain class. Thus, it is easy to neglect such 
classification decisions that are not trustworthy enough. For example, if we use a k-NN classifier 
with k = 14 and ignore such classification results that have probability equal to 0.5, there will be 
26.1% unclassified samples in addition to 59.1% correct classification decisions. By setting a 
threshold for probability, it is possible to influence on sensitivity and reliability of the monitoring 
system. With high treshold the classification is more trustworthy but less sensitive and with low 
treshold opposite. Although SVM also outputs a measure that has increasing value as the likelihood 
of the sample to be correctly classified increases, it is not as easy to set the threshold that indicates 
trustworthy classification decision for this measure as it is for the output of the k-NN classifier.  

      
Table 8.1. Classification results with different techniques: SVM (support vector machine), k-NN (k-nearest neighbour), 

PNN (probabilistic neural network) 

Classifier Correct classification rate Time for set-up Time for classification 
SVM, poly 1, C = 4 70.9% 0.30 s 0.0020 s 
SVM, poly 4, C = 0.5 78.4% 0.26 s 0.0020 s 
SVM, poly 3, C = 0.5 73.4% 0.20 s 0.0020 s 
SVM, rbf σ = 0.5, C = 1 73.4% 0.29 s 0.0020 s 
SVM, rbf σ = 0.75, C = 2 73.4% 0.27 s 0.0020 s 
k-NN, k = 11 70.2% - 0.0026 s 
k-NN, k = 12 61.6% - 0.0026 s 
k-NN, k = 13 73.4% - 0.0020 s 
k-NN, k = 14 59.1% - 0.0033 s 
PNN, σ = 0.01 55.9% 0.10 s 0.0013 s 
PNN, σ = 0.1 68.4% 0.10 s 0.0013 s 
PNN, σ = 0.13 70.9% 0.11 s 0.0013 s 
PNN, σ = 1 60.2% 0.10 s 0.0013 s 

 

 

It can be stated that the results with either SVM or k-NN are fairly good. The benefits of SVM are 
the slightly better classification results, and non-requirement of the feature selection before building 
up the classifier. The benefits of k-NN are the non-existence of training phase, and the better 
usability in practise. It could be concluded that both numerical classification methods can be used in 
insulation systems PD analysis as a defect localization tool, if classification is based on properly 
selected features of PD distributions. 
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9. Conclusions 
 

Induction motors play an important part in the world�s industry. Their fault diagnostics and 
condition monitoring is a widely researched subject. In addition to traditional fault diagnostics 
methods that are based on analytical models of the diagnosed plant, different kinds of data-based 
methods have become popular in the area of fault diagnostics of electrical machinery. For example, 
a wide variety of artificial neural network based applications can be found from the literature. 
Support vector machine is a modern and highly promising machine learning method, and although 
it has been successfully applied to numerous classification and pattern recognition problems, its 
utilization in fault diagnostics is low. In fault diagnostics of induction motors, SVM does not seem 
to have been applied before this research, even if it showed to be an efficient and reliable way to do 
the classification of motor faults. 

     This thesis considered different aspects of induction motor condition monitoring. The developed 
methods could be applied in on-line condition monitoring of induction motors, but also in testing of 
recently manufactured motors. In the testing phase, more extensive measurement instrumentation 
can be applied compared to on-line monitoring. Data based classification tools are especially 
appropriate for testing motors that are manufactured in large series, because in those cases, a large 
amount of measurement data can be collected from numerous motor individuals. When considering 
motors that are manufactured in small series, accurate simulation models need to be used instead to 
generate virtual measurement data. However, most of the results presented in this thesis are 
qualitative. Good parameters are found to indicate the motor condition, and various appropriate 
signal processing tools are considered to further reveal the faults from specific motor variables.  

     Firstly, a popular motor current signature analysis was studied. Current signatures were formed 
with FFT based PSD estimation and SVM was applied as a pattern recognition tool to categorize 
the signatures according to the fault situation. The success of the fault detection was good in 
noiseless situation, but after a thorough comparison of several motor variables as media of fault 
diagnostics, it was found out that for example forces on the rotor were more trustworthy indicators 
of faults than the current. This is an interesting result, because a great deal of all induction motor 
fault diagnostics research is oriented towards application of the motor current as the indicator of 
faults. 

      The forces are difficult to measure, but they are directly related to vibrations that are 
traditionally used in rotating machines condition monitoring in addition to acoustic signals. 
Vibration monitoring based induction motor fault diagnostics was further enhanced with various 
signal processing tools such as calculation of higher order spectra, signal description with 
autoregressive modeling and cepstrum analysis. Also, information fusion of multi-channel vibration 
measurements was considered with multivariate data analysis. The vibration based fault diagnostics 
was tested with real measurement data from healthy and rotor faulted motors, and the results further 
ensured the suitability of vibrations for induction motor condition monitoring. The best signal 
processing tool before application of SVM seemed to be the signal description with autoregressive 
modelling, but it is possible that other faults require other kinds of tools to be revealed. 

     In addition to detection of faults in electromechanical parts of the motor, condition monitoring of 
the motor insulation system was considered, and the results presented in the thesis can be extended 
to other HV and MV apparatus such as cables or generators. The role of partial discharges in 
degradation and eventual failure of electrical insulation systems at high or medium voltage is a 
well-established fact, and thus the condition monitoring of insulation is often based on PD analysis. 
The severity of the effect that PD has on the insulation depends on the nature and the location of the 
PD generating defect. The PD studies in this thesis did not cover the whole PD diagnostic process, 
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but it was concentrated on localization of the defects to the vicinity of either of the electrodes. 
Firstly, feature selection was carried out among various parameters describing the PD distributions, 
and the most important parameters were chosen to be the basis of the automated localization. The 
final localization was carried out with several numerical classification methods, and SVM was 
found to give the best classification results. However, it was noticed that, if the number of 
classification features can be decreased to only few important parameters, also simpler 
classification methods such as a k-nearest neighbor classifier can be used. The SVMs were not 
applied neither in PD analysis research before this thesis. 

     Although SVMs have given excellent results in various classification tasks, one of their 
drawbacks is that they are essentially 2-class classifiers. In many real applications, such as in fault 
classification of an induction motor, a multi-class classification problem needs to be solved. In the 
thesis, also this problem was considered. Four different coupling techniques of the 2-class 
classifiers were studied to get the global decision of the motor condition. A mixture matrix coupling 
was found to be the best technique in this application. In this thesis, the coupling schemes are 
considered with SVMs, but they can also be used with any other pairwise classifiers. Comparison of 
different coupling techniques is important knowledge concerning the research of classification 
methods in general, and the mixture matrix approach had not been earlier applied in this form. 

     In this thesis, data-based models were chosen to be the basis of the fault diagnostics, because 
simple analytical models of induction motors are not usually accurate enough for description of 
various motor faults. Enhanced numerical models of the motor, such as the finite element analysis 
of the magnetic field, can accurately imitate the motor performance, but despite of the increasing 
efficiency of the computational hardware, the required computation times for detailed numerical 
models are still too long for on-line implementation. Knowledge-based models were also left out 
from this thesis, because their construction requires reliable expert knowledge of the motor 
performance and the influence of faults. Induction motor faults may also manifest themselves in 
such a complex way that it is difficult even for a highly skilled expert to diagnose all the faults. 

     SVMs were chosen for building the data-based fault classification models, because they have 
several benefits compared to conventional data-based modeling methods. Firstly, SVMs are claimed 
to have better generalisation properties than traditional classifiers. Further, application of SVM 
results in the global solution for a classification problem. Thirdly, SVM based classification is 
attractive, because it is very efficient in high dimensional problems: neither its generalisation ability 
nor computational efficiency is dependent on the dimension of the problem. This property is very 
useful in fault diagnostics, because the number of utilised features does not have to be drastically 
limited. It is also easy to remove outliers from the training data sets based on the optimal Lagrange 
multipliers resulting from SVM training. 

     At the first glimpse, SVMs seem to give a perfect approach for carrying out classification and 
pattern recognition tasks, but there also exist drawbacks. Perhaps the most important drawback is 
that a formal proof that SVMs really minimize the structural risk in high dimensional spaces is still 
missing, although Vapnik has presented plausible reasons that this happens for example by 
bounding the generalisation ability with the number of support vectors (Eq. (4.15)). See more on 
this e.g. in [Burges98]. Second drawback is that SVMs are essentially binary classifiers despite of 
the wide research done to cope with this problem. Finally, it should be pointed out that choosing the 
kernel function and setting parameters for SVM is not a straightforward task. Choosing the kernel 
function is related to choosing the network structure when applying NNs, and one should have prior 
knowledge on the problem under study to have the best kernel. Usually, the kernel function is 
chosen by trial and error or cross validation. However, SVM is still an evolving machine learning 
technique, and the basic SVM method presented in this thesis is continuously studied and improved.  
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     Although, SVM has many benefits compared to for example statistical classifiers, MLPs or RBF 
networks, it is still a purely data-based modelling method. The success of all data-based methods is 
highly dependent of the data they are based on. To build a trustworthy data-based model, there 
should be representative data available from the whole operation area. Especially, in construction of 
the fault diagnostics system, this may be a problem, because often reliable data lack from the faulty 
process operation. In many cases, fault models have to be built to generate virtual measurement data 
from abnormal process operation.  

     Also, the results of this thesis are discovered without the data from naturally developing fault 
situations. Simulated data from enhanced numerical induction motor models and real measurement 
data from artificially damaged motors are used instead. The lack of entirely reliable data may 
degrade the diagnostics performance in real operation. In implementation of the method for on-line 
condition monitoring of induction motors of real industrial processes, also model calibration and 
updating issues may cause problems. Some differences may occur in behaviour of individual 
motors, and utilised models should be calibrated for each motor. It would also be very useful to 
update the models after occurrence of any fault, but this is not possible in most of the applications.  

     This thesis did not cover all possible faults of an induction motor. Although bearing faults are 
the most common induction motor faults, they were not considered because of the lack of data from 
bearing faulted machines. Also, in vibration monitoring only rotor related faults were studied. The 
considerations of wider variety of faults are left for future study. In PD analysis, only a part of the 
third level identification was considered. Construction of a thorough PD identification system is 
also left for future study. Further, the complete testing of the developed diagnostics method in real 
on-line operation of an induction motor will be carried out in the future.  
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