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Abstract

This thesis deals with flux estimators for speed-sensorless induction motor drives. To en-

hance the stability and the performance of state-of-the-art sensorless drives, new flux es-

timator designs based on the standard motor model are proposed. Theoretical and exper-

imental research methods are both used. The dynamics and stability of flux estimators

are analyzed using linearized models, and the effects of parameter errors are investigated

using steady-state relations. Performance is evaluated using computer simulations and lab-

oratory experiments. It was found that most sensorless flux estimation methods proposed

in the literature have an unstable operating region at low speeds (typically in the regener-

ating mode) and that the damping at high speeds may be insufficient. A new stable design

of the speed-adaptive full-order flux observer is proposed: the observer gain is designed

especially for nominal and high-speed operation, while the low-speed operation is sta-

bilized by modifying the speed-adaptation law. Compared to estimators proposed in the

literature, the effects of parameter errors on the proposed observer design are shown to be

small. To further improve the robustness, the speed-adaptive observer is enhanced with

a low-frequency signal-injection method, allowing long-term zero-frequency operation

under rated load torque. Furthermore, a computationally efficient version of a voltage-

model-based flux estimator and two computationally efficient digital implementations for

full-order flux observers are proposed.

Index terms: Flux estimation, induction motor, sensorless control.

3



Preface

This work was carried out in the Power Electronics Laboratory at Helsinki University

of Technology. It is part of a research project concerning sensorless control of ac motor

drives. The work has been financed in part by ABB Oy and in part by the Graduate School

in Electronics, Telecommunications and Automation (GETA).

Most of all, I would like to thank my supervisor Prof. Jorma Luomi for his encourage-

ment, guidance, and support during this work. Furthermore, his constructive and precise

comments on my manuscripts were always invaluable. I would also like to thank all those

who were my colleagues during this work. Besides being an inexhaustible source of ideas,

Dr. Veli-Matti Leppänen gave his contribution to the experimental setup used in this work

and co-authored one of the publications. I also greatly enjoyed working with Mr. Petri
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Symbols

A, B, C matrices of state-space representation

ef flux-emf vector

F, G, H matrices of state-space representation

ir rotor current vector (T model)

iR = ir/kr rotor current vector (inverse-Γ model)

is stator current vector

isa, isb, isc phase currents

isd, isq real and imaginary components of is

j imaginary unit

J total moment of inertia

kr = Lm/Lr magnetic coupling factor of rotor (not related to kr)

K = [ks kr]
T observer gain

L = [ls lr]
T observer gain

Lm magnetizing inductance (T model)

LM = krLm magnetizing inductance (inverse-Γ model)

Lr rotor inductance

Lrσ rotor leakage inductance

Ls stator inductance

L′
s = Lsσ + krLrσ stator transient inductance

Lsσ stator leakage inductance

p number of pole pairs

Rr rotor resistance (T model)

RR = k2
rRr rotor resistance (inverse-Γ model)

Rs stator resistance

t time

Te electromagnetic torque

TL load torque

udc dc-link voltage

us stator voltage vector
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x = [ψ
s
ψ
R
]T state vector of state-space representation

z = [is ψ
R
]T state vector of state-space representation

γp, γi gains of speed-adaptation law

ε error term of speed-adaptation law

ϑk angle of general reference frame

ϑs angle of rotor flux reference frame

σ = L′
s/(LM + L′

s) total leakage factor

τr = LM/RR rotor time constant

τ ′r = σLM/RR transient rotor time constant

τ ′s = L′
s/Rs transient stator time constant

τ ′σ = L′
s/(Rs +RR) time constant

ψ
r

rotor flux linkage vector (T model)

ψ
R

= krψr rotor flux linkage vector (inverse-Γ model)

ψ
s

stator flux linkage vector

ωk angular speed of general reference frame

ωm electrical angular speed of rotor

ωr = ωs − ωm angular slip frequency

ωs angular frequency of rotor flux (corresponds to angular stator fre-

quency in steady state)

Complex-valued variables are underlined and complex conjugates are marked by the sym-

bol ∗. Magnitudes of complex-valued variables are referred to by omitting the underlining,

e.g., |ψ
R
| = ψR. Matrix transposes are marked by the symbol T and estimates are marked

by the symbol ˆ. Reference values are marked by the subscript ref.
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Chapter 1

Introduction

Three-phase induction motors are the most widely used electrical motors, due to their

ruggedness and low price. The induction motor can be operated directly from the mains,

but variable speed and often better energy efficiency are achieved by means of a frequency

converter between the mains and the motor. A typical frequency converter consists of a

rectifier, a voltage-stiff dc link, and a pulse-width modulated (PWM) inverter. The inverter

is controlled using a digital signal processor.

A simple way of controlling the induction motor is to adjust the magnitude of the sta-

tor voltage proportionally to a reference frequency (Schönung and Stemmler, 1964). This

open-loop method, known as the scalar control or the constant voltage-per-hertz control,

is still used in low-cost frequency converters due to its important advantages. A speed sen-

sor (which is expensive, fragile, and requires extra cabling) is not needed. The knowledge

of motor parameters is not necessary either, implying that the method is robust. In addi-

tion, a scalar controlled frequency converter can feed several motors connected in parallel.

However, the dynamic performance and the speed accuracy are poor, even if compensa-

tion for the stator resistance voltage drop and a slip compensation are used. Furthermore,

oscillations at light loads may occur (Nelson et al., 1969).

The rotor flux orientation control by Blaschke (1972) made it possible to use induction

motors in applications requiring high-performance torque and speed control. In the refer-

ence frame fixed to the direction of the rotor flux, the flux- and torque-producing current

components can be controlled separately, resembling the control of dc motors. The rotor

flux, whose angle is needed for coordinate transformations between the stationary and ro-

tor flux reference frames, can be estimated with good accuracy if a speed sensor is used

(Bauer and Heining, 1989).

The controller’s reference frame can also be fixed to the stator flux estimate (Xu and

Novotny, 1991). The stator flux orientation control is more complicated than the rotor flux

orientation control, but the flux estimation is slightly simpler if the estimator uses only the

stator dynamics. In the direct torque control (DTC) proposed by Takahashi and Noguchi

(1986) and Depenbrock (1988), the switching functions are directly generated on the basis

of the estimates of the stator flux and the electromagnetic torque. Flux orientation control

methods and the direct torque control can be classified as vector control methods.

Advances in digital signal processors started the development of speed-sensorless vec-

tor control in the late 1980s. In spite of research carried out for more than a decade, state-

of-the-art sensorless drives still suffer from degraded performance and unstable operating

regions at low speeds. The main reason for the stability problems is the difficulty of flux

estimation without speed measurement.
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Conventional speed-sensorless flux estimators, such as the voltage model (Takahashi

and Noguchi, 1986) and the speed-adaptive full-order flux observer (Kubota et al., 1993),

are based on the standard dynamic motor model. Performance comparable to that of drives

equipped with the speed sensor can be achieved in a wide speed and load range. However,

it is well known that methods based on the standard motor model have fundamental prob-

lems at very low frequencies. In the vicinity of zero frequency, estimation is very sensitive

to errors in measurements and the stator resistance estimate. At zero stator frequency, the

flux and the speed are unobservable from the stator current and voltage.

Furthermore, the flux estimator and the motor dynamics together form a nonlinear

closed-loop system through the coordinate transformations (Harnefors, 2001). Even if the

flux estimator itself is simple, the nonlinear closed-loop system is typically complicated.

Problems can therefore also be encountered at higher speeds, unless the estimator is prop-

erly designed. For example, the system may become poorly damped or sluggish at very

high speeds, causing degraded dynamic performance. As stated by Verghese and Sanders

(1988), computationally efficient digital implementation is also a challenge at high speeds.

To improve the robustness of sensorless drives at low speeds, estimators based on a spa-

tial magnetic or electric anisotropy of the motor have been developed. A high-frequency

voltage signal, superimposed on the fundamental voltage, is typically used to excite the

anisotropic phenomena of the motor; the rotor position or the flux direction is identified

from the current response. Most of the signal-injection methods require a spatial variation

of the leakage inductance that is linked to the rotor position (Jansen and Lorenz, 1995),

or flux direction (Jansen and Lorenz, 1996). Instead of an additional test signal, Schroedl

(1996) and Holtz et al. (1997) use the PWM switching waveform for the excitation.

Unfortunately, signal-injection methods based on spatially anisotropic models have

several well-known problems (Leppänen, 2003). Anisotropies depend on the motor de-

sign, and they are usually weak in standard induction motors. A signal carrying useful

information is generally corrupted by other signals of the same kind. Furthermore, the

spatial variation of the leakage inductance depends on load and flux level, often leading

to difficulties at high loads. To circumvent the aforementioned problems, a low-frequency

current-signal injection was recently proposed by Leppänen and Luomi (2002). The low-

frequency signal-injection method uses the response of the mechanical system, and is

based on the standard motor model. The method exhibits good steady-state performance

down to zero-frequency operation, and is insensitive to parameter errors, provided that the

total moment of inertia is not too high. A common drawback of signal-injection methods

is that their dynamic response is usually only moderate.

The goal of this thesis is to develop a speed-sensorless flux estimator with the following

properties:

• Usable with a standard off-the-shelf induction motor.

• Allows high dynamic performance of the system.

• Allows robust four-quadrant operation from zero speed up to very high speeds.

• Requires only the stator current and dc-link voltage measurements.

• Digital implementation is computationally efficient.

This thesis focuses on methods based on the standard motor model. The rotor flux orienta-

tion control, popular among both academic and industrial communities, is used. Methods
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using soft computing (e.g., neural networks or fuzzy systems) or Kalman filtering are be-

yond the scope of this thesis.

This thesis consists of an overview and seven Publications, numbered corresponding

to the chronological order of their conference versions. This overview is organized as fol-

lows. Chapter 2 presents the mathematical model of the induction motor, while Chapter 3

reviews the most interesting sensorless flux estimators proposed in the literature. Chapter

4 describes the experimental setup used to obtain the experimental results of the Publica-

tions; Chapter 5 summarizes the Publications and Chapter 6 concludes the thesis.
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Chapter 2

System Model

2.1 Space Vectors

The space vector approach by Kovács and Rácz (1959a) is commonly used to model the

dynamic behaviour of ac machines. The space vector is a complex variable, whose am-

plitude and angle can vary arbitrarily in time. The current is assumed to be distributed

sinusoidally along the air gap. The space vector of the stator current in the stator reference

frame is defined by

is =
2

3

(
isa + isbe

j2π/3 + isce
j4π/3

)
(2.1)

where isa, isb, and isc are the phase currents. If zero-sequence components exist, they have

to be treated separately. The definition of the zero-sequence current is

is0 =
1

3
(isa + isb + isc) (2.2)

In practice, zero-sequence currents do not exist since the stator winding is delta-connected

or the star point is not connected. The phase currents are obtained using relations

isa = Re {is} + is0 (2.3a)

isb = Re
{
ise

j4π/3
}

+ is0 (2.3b)

isc = Re
{
ise

j2π/3
}

+ is0 (2.3c)

Coordinate transformations between the stator reference frame and the general reference

frame (indicated by superscript k) are

iks = ise
−jϑk (2.4a)

is = ikse
jϑk (2.4b)

where ϑk is the angle of the general reference frame. No superscript indicating the refer-

ence frame is used if the reference frame appears from the context. The real and imaginary

components of the stator current vector1 correspond to is = isd + jisq. The space vectors

of other currents, voltages, and flux linkages are defined similarly.

1The notation is = isα + jisβ is also used in the stator reference frame.
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2.2 Induction Motor

Two mathematically equal flux linkage models of the induction motor are shown in Fig.

2.1. The conventional T model is commonly used in the literature but the simpler inverse-Γ
model is more suitable for control purposes.

T Model

The voltage equations of the induction motor are in a general reference frame (Kovács and

Rácz, 1959b)

us = Rsis +
dψ

s

dt
+ jωkψs (2.5a)

0 = Rrir +
dψ

r

dt
+ j (ωk − ωm)ψ

r
(2.5b)

where us is the stator voltage, Rs the stator resistance, is the stator current, and ωk the

angular speed of the reference frame. The rotor resistance is Rr, the rotor current ir, and

the electrical angular speed of the rotor ωm. The stator and rotor flux linkages are

ψ
s
= Lsis + Lmir (2.6a)

ψ
r

= Lmis + Lrir (2.6b)

respectively, where Lm, Ls, and Lr are the magnetizing inductance, the stator inductance,

and the rotor inductance, respectively. The stator and rotor inductances are defined by

Ls = Lm + Lsσ and Lr = Lm + Lrσ, respectively, where Lsσ and Lrσ are the stator and

rotor leakage inductances, respectively. The flux linkage model corresponding to (2.6) is

shown in Fig. 2.1(a).

The electromagnetic torque is given by

Te =
3

2
p Im

{

isψ
∗

s

}

(2.7)

where the number of pole pairs is p and the complex conjugate is marked by the symbol ∗.

The equation of motion is
dωm
dt

=
p

J
(Te − TL) (2.8)

where the total moment of inertia of the mechanical system is J and the load torque is TL.

isis ir iR

ψ
s

ψ
s

ψ
r

ψ
R

Lsσ Lrσ

Lm LM

L′
s

(a) (b)

Figure 2.1. Flux linkage models: (a) T model; (b) inverse-Γ model.
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Inverse-Γ Model

As shown by Slemon (1989), the number of model parameters can be decreased from

five to four by scaling the rotor flux linkage ψ
R

= krψr and the rotor current iR = ir/kr,
where the magnetic coupling factor of the rotor is defined by kr = Lm/Lr. Furthermore,

the scaled magnetizing inductance LM = krLm, the scaled rotor resistance RR = k2
rRr,

and the stator transient inductance L′
s = Lsσ + krLrσ are introduced. Now the voltage

equations (2.5) become

us = Rsis +
dψ

s

dt
+ jωkψs (2.9a)

0 = RRiR +
dψ

R

dt
+ j (ωk − ωm)ψ

R
(2.9b)

and the flux linkage equations corresponding to (2.6) are

ψ
s
= (L′

s + LM) is + LM iR (2.10a)

ψ
R

= LM (is + iR) (2.10b)

The flux linkage model corresponding to (2.10) is shown in Fig. 2.1(b). Equations (2.7) and

(2.8) remain unchanged for the inverse-Γ model. The inverse-Γ model will be exclusively

used in this thesis.

State-Space Representations and Flux-EMF

When the stator flux and the rotor flux are chosen as state variables, the state-space repre-

sentation of (2.9) and (2.10) becomes

dx

dt
=

[

− 1

τ ′s
− jωk

1

τ ′s
1−σ
τ ′r

− 1

τ ′r
− j (ωk − ωm)

]

︸ ︷︷ ︸

A

x +

[
1
0

]

︸︷︷︸

B

us (2.11a)

is =
[

1

L′

s
− 1

L′

s

]

︸ ︷︷ ︸

C

x (2.11b)

where the state vector is x = [ψ
s
ψ
R
]T , the total leakage factor is σ = L′

s/(LM + L′
s),

the transient stator time constant is τ ′s = L′
s/Rs, and the transient rotor time constant is

τ ′r = σLM/RR. Another useful representation is obtained using the stator current and the

rotor flux as state variables, leading to

dz

dt
=

[

− 1

τ ′σ
− jωk

1

L′

s

(
1

τr
− jωm

)

RR − 1

τr
− j (ωk − ωm)

]

︸ ︷︷ ︸

F

z +

[
1

L′

s

0

]

︸ ︷︷ ︸

G

us (2.12a)

is =
[
1 0

]

︸ ︷︷ ︸

H

z (2.12b)

where the state vector is z = [ is ψ
R
]T , a time constant is τ ′σ = L′

s/(Rs + RR), and the

rotor time constant is τr = LM/RR.
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For future reference, the flux-emf is defined by

ef =
dψ

R

dt
+ jωkψR (2.13)

Using (2.9) and (2.10), the flux-emf can be expressed by the stator current and the rotor

flux in the following forms:

ef = us −Rsis − L′
s

dis
dt

− jωkL
′
sis (2.14)

ef =

(

−
1

τr
+ jωm

)

ψ
R

+RRis (2.15)

corresponding to the stator and rotor equations, respectively. Two conventional flux esti-

mators, the voltage model and the current model, are based on (2.14) and (2.15), respec-

tively.

2.3 Rotor Flux Orientation

The principle of rotor flux orientation is briefly described here. The reference frame fixed

to the actual rotor flux is considered, i.e.,

ωk = ωs, ψ
R

= ψR + j0 (2.16)

where ωs is the angular speed of the rotor flux. Based on (2.13), (2.15), and (2.16), the

dynamics of the rotor flux and the slip relation can be written

dψR
dt

= −
1

τr
ψR +RRisd (2.17)

ωr =
RRisq
ψR

(2.18)

respectively, where the angular slip frequency is ωr = ωs−ωm. Using (2.10) and (2.16), the

expression for the electromagnetic torque (2.7) in the rotor flux reference frame reduces to

Te =
3

2
pψRisq (2.19)

According to (2.17) and (2.19), the d and q components of the stator current can be used

to control the rotor flux magnitude and the electromagnetic torque, respectively.
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2.4 Operating Modes

Three operating modes of the induction motor are defined here based on the signs of the

air-gap power pδ and the mechanical power pm. The air-gap power transferred into the

rotor can be expressed as

pδ = −
3

2
Re{ef i

∗
R}

=
3

2

[

1

RR

(
dψR
dt

)2

+
ψ2
Rω

2
s

RR

ωr
ωs

]
(2.20)

where ωs is the angular speed of the rotor flux. In steady state, the air-gap power is negative

only if the relative slip is ωr/ωs < 0. The mechanical power

pm = Te
ωm
p

=
3

2

ψ2
Rω

2
s

RR

(
ωr
ωs

−
ω2
r

ω2
s

) (2.21)

is positive only if 0 < ωr/ωs < 1. Based on the equations, the operating modes of the

induction motor can be defined as (Leonhard, 1996):

1. regenerating mode (ωr/ωs < 0);

2. motoring mode (0 < ωr/ωs < 1);

3. plugging mode (ωr/ωs > 1).

To recognize the plugging (braking) mode more easily, the condition for it can also be

expressed as ωmωs < 0.
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Chapter 3

Sensorless Flux Estimation

This chapter reviews speed-sensorless flux estimation methods proposed in the literature.

To provide a background, examples of sensorless rotor flux orientation control systems are

firstly described in Section 3.1. Then, sensorless flux estimators based on the standard mo-

tor model are discussed. The estimators can be divided into two main groups: inherently

sensorless flux estimators (Section 3.2) and speed-adaptive flux estimators (Sections 3.3

and 3.4). Inherently sensorless flux estimators are independent of the rotor speed estima-

tion (but the speed estimation is based on the flux estimation), whereas the flux estimation

and the speed estimation are coupled in speed-adaptive flux estimators.

Both approaches are widely used and have their own merits. Inherently sensorless

methods require typically less computation whereas the speed-adaptation mechanism

seems to imply tolerance of measurement noise. The flexibility of the speed-adaptive

full-order flux observer structure is tempting: the same analysis tools and experimental

algorithms can be used for different observer designs.

The dynamics of sensorless flux estimators and the actual motor are generally cou-

pled through the coordinate transformations (Harnefors, 2001). The nonlinear closed-loop

system consisting of the flux estimator and the motor can be studied via small-signal lin-

earization in a synchronous reference frame. Unless otherwise noted, the comments on the

dynamics and the stability in this chapter are based on the linearization analysis and com-

puter simulations carried out by the author. The linearization method proposed by Harne-

fors (2001) is used for inherently sensorless flux estimators, and the linearized model for

speed-adaptive full-order flux observers can be found in Publication V. Accurate motor

parameter estimates have been assumed in the linearized models.

To make the comparison of estimators easier, they are considered mainly in the general

reference frame, and the rotor flux orientation control is assumed. Parameter errors, on-

line estimation of the stator resistance, and flux estimators combined with signal injection

are briefly discussed in Sections 3.5, 3.6, and 3.7, respectively.

3.1 Control System

Speed-sensorless flux estimators operate within the framework of sensorless control. Two

typical sensorless rotor flux orientation control systems are depicted in Fig. 3.1 as exam-

ples. In Fig. 3.1(a), the flux estimator is implemented in the stator reference frame, where

the angular frequency of the reference frame and the rotor flux estimate are

ωk = 0, ψ̂
R

= ψ̂Re
jϑ̂s (3.1)
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Figure 3.1. Rotor flux orientation control. Flux estimation in (a) stator reference frame and (b) in

estimated rotor flux reference frame. Space vectors shown on left-hand side of coordinate transfor-

mations are in the estimated rotor flux reference frame and space vectors on right-hand side are in

the stator reference frame.

respectively. The angle of the rotor flux estimate is denoted by ϑ̂s and can be calculated

from the components of ψ̂
R

, e.g., using the arctan function. The angular frequency ω̂s of

the estimated rotor flux1 can be obtained by differentiating ϑ̂s. In steady state, the elec-

trical variables vary sinusoidally in time with angular stator frequency. Therefore, digital

implementation of flux estimators in the stator reference frame may become inaccurate or

unstable at high speeds as described in Publication III.

In Fig. 3.1(b), the flux estimator is implemented in the estimated rotor flux reference

frame, where

ωk = ω̂s, ψ̂
R

= ψ̂R + j0 (3.2)

As discussed in Publication IV, an algebraic relation for the angular frequency ω̂s can be

1The angular frequency of the estimated rotor flux is denoted by ωs in Publications I. . . VI.
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obtained for a flux estimator under consideration using (3.2). The angle ϑ̂s is obtained

by integrating ω̂s. In steady state, the electrical variables are constant in the estimated

rotor flux reference frame. Consequently, the accuracy of digital implementation is usu-

ally sufficient, but the stability problems at high speeds may occur if the forward Euler

discretization is used as shown in Publication III.

The stator current is and the dc-link voltage udc are measured and used as feedback

variables in the controller. Based on the stator voltage reference us,ref and the dc-link volt-

age, the pulse-width modulator (PWM) generates the switching functions for the power

semiconductor switches of the inverter (e.g., Holtz, 1994). The stator voltage reference is

used in the flux estimator, i.e., the stator voltage us is assumed to equal its reference. This

assumption holds well if the inverter nonlinearities, mainly caused by the dead-time effect

and power device voltage drops, are compensated (Publication II and references therein).

The compensation is especially important at low stator frequencies since the amplitude of

the fundamental-wave stator voltage is low. The compensation of inverter nonlinearities is

not presented in Fig. 3.1

The voltage reference us,ref is the output of the synchronous-frame PI-type current

controller augmented with a feedforward back-emf compensation (e.g., Briz et al., 2000).

The tuning of the synchronous-frame current controller is discussed by Harnefors and Nee

(1998). The real and imaginary components of the current reference is,ref = isd,ref +jisq,ref
are the flux and speed controller outputs, respectively. The flux and speed controllers are

usually PI-type controllers, the flux controller possibly augmented with a feedforward

path (Briz et al., 2001). The flux controller can be omitted if field-weakening operation is

not required. Then isd,ref = ψR,ref/L̂M is selected, where ψR,ref is the rotor flux reference

and L̂M is the magnetizing inductance estimate. The speed reference is denoted by ωm,ref
and the speed estimate by ω̂m. For simplicity, signals corresponding to feedforward paths,

limitation, or the anti-windup of controllers are not drawn in Fig. 3.1.

The controllers are usually designed to operate in different time scales (Harnefors,

1997). The current control loop is the fastest control loop, its bandwidth corresponding

approximately to one tenth of the angular sampling frequency. The speed control loop

is usually at least as fast as the flux control loop. The dynamics of the flux and speed

estimator (or more accurately, the closed-loop dynamics of the estimator and the actual

flux) should be considerably faster than the flux and speed control loops.

3.2 Inherently Sensorless Flux Estimators

Pure Voltage Model

The voltage model was proposed by Takahashi and Noguchi (1986) and Depenbrock

(1988) in connection with direct torque control. Xu and Novotny (1991) applied the volt-

age model in stator flux orientation control, while Ohtani et al. (1992), for example, used

a modified voltage model in rotor flux orientation control.

For the rotor flux estimate, the voltage model can be written from (2.13) and (2.14) in

the general reference frame as

dψ̂
R

dt
= us − R̂sis − L̂′

s

dis
dt

− jωkL̂
′
sis

︸ ︷︷ ︸

êf

−jωkψ̂R (3.3)
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where R̂s is the stator resistance estimate and L̂′
s is the stator transient inductance estimate.

Furthermore, the estimate êf of the flux-emf is defined in (3.3) in order to shorten the

following equations. As can be seen, the rotor speed is not included in the voltage model.

Based on (2.18), the rotor speed can be estimated as (e.g., Schauder, 1992)

ω̂m = LPF

{

ω̂s −
R̂Risq

ψ̂R

}

(3.4)

where ω̂s is the angular frequency of the estimated rotor flux, isq is the q component of

the stator current in the estimated rotor flux reference frame, ψ̂R is the magnitude of the

estimated rotor flux, and R̂R is the rotor resistance estimate. In practice, low-pass filtering

(LPF) of the speed estimate is necessary. If another reference frame is preferred, (3.4) can

be generalized as

ω̂m = LPF

{

ω̂s −
R̂R Im

{
isψ̂

∗

R

}

ψ̂2
R

}

(3.5)

The dynamics of the closed-loop system consisting of an inherently sensorless flux

estimator and the motor generally differ from the dynamics of the estimator only. The pure

voltage model is an exception: the poles of both the estimator (3.3) and the corresponding

linearized closed-loop system are on the imaginary axis (Harnefors, 2001). The system

is only marginally stable and the damping is thus insufficient. Furthermore, even a small

dc offset in measured currents causes drift problems since a pure integration is used. The

voltage model also becomes highly inaccurate at low speeds due to errors in the stator

resistance estimate, as will be shown in Section 3.5.

Voltage Model Using Modified Integration

The drift problems of the pure integrator can be solved by modifying the integration pro-

cedure. The simplest modification is to replace the pure integrator with a low-pass filter

(Takahashi and Noguchi, 1986), leading to

dψ̂
R

dt
= êf − jωkψ̂R − αvψ̂R (3.6)

where αv is the bandwidth of the low-pass filter. The flux estimate becomes erroneous

even in steady state with accurate motor parameter estimates, and the estimator cannot be

used at low speeds.

Shin et al. (2000) compensated the error due to the integrator replaced with a low-pass

filter. They turned the angle and changed the magnitude of the output vector of the low-

pass filter according to the calculated steady-state error. As shown in Publication I, the

algorithm can be written in a simple form

dψ̂
R

dt
= [1 − jλ sign(ω̂s)] êf − jωkψ̂R − λ |ω̂s| ψ̂R (3.7)

where λ is a gain related to the bandwidth of the low-pass filter. The estimator (3.7) can

operate at lower frequencies than (3.6) due to the correct steady-state response. As shown

by Ottersten and Harnefors (2002) using the linearized model, the system based on the
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estimator (3.7) becomes unstable at low speeds. Harnefors et al. (2003) enhanced the esti-

mator (3.7) according to

dψ̂
R

dt
=

(

µRe{êf ψ̂
∗

R
}

ψ̂2
R

+ j
Im{êf ψ̂

∗

R
}

ψ̂2
R

− jλ sign(ω̂s)
êf

ψ̂
R

− jωk − λ |ω̂s|

)

ψ̂
R

(3.8)

by introducing an extra degree of freedom via the parameter µ. The steady-state response

is still equal to that of the pure voltage model since Re{êf ψ̂
∗

R
} is zero in steady state. By

selecting µ = 1, the estimator (3.8) reduces to (3.7). By suitably selecting µ, the damping

of the system can be made better and the unstable region at low speeds can be reduced.

Holtz and Quan (2002) compensated the effect of the modified integration using the

reference flux ψR,ref according to

dψ̂
R

dt
= êf − jωkψ̂R − αv

(

ψ̂
R
− ψ

R,ref

)

(3.9)

where ψ
R,ref

= ψR,ref exp[j(ϑ̂s − ϑk)] and ϑk is the angle of the reference frame. The orig-

inal algorithm was written for stator flux estimation. Holtz and Quan (2003) recognized

that a system using the estimator (3.9) has stability problems at low speeds when regener-

ating2.

Other modifications of the integrator of the voltage model have been proposed by, for

example, Bose and Patel (1997) and Hu and Wu (1998). Generally, these methods also

suffer from stability problems at low speeds. Furthermore, the damping of the closed-loop

system at higher speeds tends to be poor.

Voltage Model with Current-Model-Based Correction

The current model, which is the flux estimator based on (2.13) and (2.15), cannot be di-

rectly used in speed-sensorless drives since the rotor speed ωm is required. The rotor speed

in the current model can be replaced with its estimate ω̂m, leading to speed-adaptive flux

estimators discussed in Sections 3.3 and 3.4. Alternatively, the flux magnitude information

(2.17) of the current model can be used in connection with the voltage model.

Based on (2.17), a steady-state estimate for the rotor flux magnitude can be written as

ψ̂Rc = L̂M isd, where isd is the d component of the stator current in the estimated rotor flux

reference frame. Ohtani et al. (1992) used this current-model-based estimate as

dψ̂
R

dt
= êf − jωkψ̂R − αv

(

ψ̂
R
− ψ̂

Rc

)

(3.10)

where ψ̂
Rc

= ψ̂Rc exp[j(ϑ̂s − ϑk)]. It can be shown that the linearized closed-loop system

corresponding to the estimator (3.10) has an unstable region in the regenerating mode at

low speeds.

Ambrožič et al. (1999) estimated the angular speed of the rotor flux by the voltage

model and the magnitude of the rotor flux by the current model. The proposed estimator

2Fig. 20 in the paper by Holtz and Quan (2003) depicts the plugging-mode operation instead of the

regenerating-mode operation according to the definitions used in this thesis (see Section 2.4).
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written in the estimated rotor flux reference frame is

dψ̂R
dt

= −
1

τ̂r
ψ̂R + R̂Risd (3.11a)

ω̂s =
usq − R̂sisq − L̂′

s
d
dt
isq

ψ̂R + L̂′
sisd

(3.11b)

If another reference frame is preferred, (3.11) can be written in the general reference frame

as

dψ̂
R

dt
=

(

−
1

τ̂r
+ R̂R

Re
{
isψ̂

∗

R

}

ψ̂2
R

+ j
Im
{
êf ψ̂

∗

R

}

ψ̂2
R

− jωk

)

ψ̂
R

(3.12)

Ambrožič et al. recognized the regenerating-mode stability problems of the method. To

stabilize the regenerating mode, they proposed to correct ω̂s using Re{êf ψ̂
∗

R
}, which

should ideally be zero in steady state and which is not used in (3.12). However, Ambrožič

et al. did not describe the correction mechanism.

Kim et al. (2003) corrected a voltage model estimator using a current-model-based

estimate. Stator flux orientation control and the corresponding voltage and current models

were used, but the proposed estimator loosely resembles the estimator (3.10). A suitable

complex-valued gain (thus rotating the correction vector) is selected depending on the

sign of the stator frequency and the sign of the estimated torque. Impressive but very

noisy experimental results are shown in the paper, including operation at low speeds in the

regenerating mode.

3.3 MRAS Flux Estimators

Generally, all speed-adaptive flux estimators can be seen as model-reference adaptive sys-

tems (MRAS). MRAS estimators consist of a reference model (which does not include

the speed estimate ω̂m) and an adjustable model (which includes the speed estimate). As

shown in Fig. 3.2, the speed-adaptation law adjusts the speed estimate based on the outputs

of the adjustable model and the reference model. This section deals with speed-adaptive

estimators not falling into the group of full-order flux observers, which will be discussed

in Section 3.4.

ω̂m
is

ψ̂
R

ψ̂
Rvus

Adjust.
model

Ref.
model

Adapt.
law

Figure 3.2. Example of MRAS flux estimator (Schauder, 1992). The reference model is the ac-

tual motor, while the adjustable model is the current model estimator (3.14). Assuming accurate

parameter estimates, the pure voltage model (3.13) can be considered as part of the actual motor.
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Voltage and Current Models

Schauder (1992) proposed a well-known MRAS estimator that is composed of the voltage

model as a reference model and the current model as an adjustable model, i.e.,

dψ̂
Rv

dt
= êf − jωkψ̂Rv (3.13)

dψ̂
R

dt
= −

[
1

τ̂r
+ j(ωk − ω̂m)

]

ψ̂
R

+ R̂Ris (3.14)

where the voltage-model-based rotor flux estimate is marked by the subscript v. The rotor

speed is estimated using the adaptation mechanism

ω̂m = −γp ε− γi

∫

ε dt (3.15)

where γp and γi are positive adaptation gains. The error term

ε = − Im
{

ψ̂
Rv
ψ̂

∗

R

}

(3.16)

is based on the component of the voltage-model-based rotor flux estimate ψ̂
Rv

that is

perpendicular to the current-model-based estimate ψ̂
R

. In the reference frame fixed to ψ̂
R

,

the error term reduces to ε = −ψ̂Rvqψ̂R. Due to the integral action of (3.15), the error term

is driven to zero in steady state.

The speed-adaptation law consisting of (3.15) and (3.16) was designed using the Popov

hyperstability theory. The pure integration of (3.13) cannot be used in practice. Therefore,

both the voltage model and the current model were augmented with first-order high-pass

filters, and the corresponding auxiliary state variables were used in the error term (3.16).

Unfortunately, the hyperstability conditions are not met after adding the high-pass filters.

It was recognized by Schauder that adding the high-pass filters leads to instability at low

speeds.

Actually, the instability due to the high-pass filters was already solved by Tamai et al.

(1987) by taking the filters into account in the design of a speed-adaptation law. A high-

pass filtered rotor flux

ψ′

R
=

d
dt

+ jωk
d
dt

+ jωk + α
ψ
R

(3.17)

was introduced, where α is the bandwidth of the filter. By estimating ψ′

R
instead of ψ

R
,

the pure integrator of the voltage model is avoided,

dψ̂′

Rv

dt
= êf − jωkψ̂

′

Rv
− αψ̂′

Rv
(3.18)

where α = |ω̂s| was selected by Tamai et al., ω̂s being the estimated angular frequency of

the (non-filtered) rotor flux. The estimate of ψ′

R
based on the current model becomes

dψ̂′

R

dt
= R̂Ris −

(
1

τ̂r
− jω̂m

)

ψ̂
R
− jωkψ̂

′

R
− αψ̂′

R
(3.19)
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where ψ̂
R

is the estimate of the non-filtered rotor flux obtained using (3.14). The speed-

adaptation law designed using the Popov hyperstability theory is

ω̂m = γ1 Im
{(
ψ̂′

Rv
− ψ̂′

R

)
ψ̂

∗

R

}

+
γ1

τ̂r

∫

Im
{(
ψ̂′

Rv
− ψ̂′

R

)
(1 + jτ̂rω̂r) ψ̂

∗

R

}

dt
(3.20)

where γ1 is a positive adaptation gain and ω̂r = ω̂s− ω̂m is the angular slip frequency esti-

mate. Due to the factor 1+jτ̂rω̂r in the integral part of (3.20), the component of ψ̂′

Rv
− ψ̂′

R
being parallel to ψ̂

R
is also used when ω̂r is nonzero. This change in the error projection

stabilizes low speed operation if the parameter estimates are accurate. A different approach

to stabilize the estimator is to use the speed-adaptation law consisting of (3.15) and (3.16),

and to modify the filtering (3.17) as proposed by Nitayotan and Sangwongwanich (2001).

Reactive Power Models

Peng and Fukao (1994) proposed an MRAS estimator based on the variable

qf =
3

2
Im
{
ef i

∗
s

}
(3.21)

whose magnitude represents the instantaneous reactive power (stator transient inductance

L′
s excluded). Based on (2.14) and (2.15), two estimates for qf can be written

q̂fv =
3

2
Im

{(

us − L̂′
s

dis
dt

− jωkL̂
′
sis

)

i∗s

}

(3.22)

q̂f =
3

2
Im

{(

−
1

τ̂r
+ jω̂m

)

ψ̂
R
i∗s

}

(3.23)

where the voltage-model-based estimate of qf is marked by the subscript v and the rotor

flux estimate ψ̂
R

is obtained using the current model (3.14). The error term to be used in

the speed-adaptation mechanism (3.15) is

ε = q̂f − q̂fv (3.24)

An advantage of the estimator is that it does not include the stator resistance estimate.

However, according to Kubota et al. (1997), the estimator is unstable in the regenerating

mode. Harnefors (2001) proposed an inherently sensorless flux estimator based on the

instantaneous reactive power. Harnefors analyzed the stability using a linearized model

and showed that the estimator becomes unstable in the regenerating mode.

3.4 Speed-Adaptive Full-Order Flux Observers

A speed-adaptive full-order flux observer was proposed by Kubota et al. (1993) and Yang

and Chin (1993). The speed-adaptive full-order flux observer consists of a full-order flux

observer augmented with a speed-adaptation loop as depicted in Fig. 3.3. The system

can be considered as an MRAS: the actual motor behaves as a reference model and the

observer, including the rotor speed estimate ω̂m, as an adjustable model.
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Observer Structure

Originally, the stator current estimate and the rotor flux estimate have been used as state

variables, leading to

dẑ

dt
= F̂ ẑ + Ĝus + K

(
is − îs

)
(3.25a)

îs = Hẑ (3.25b)

which corresponds to (2.12). The observer state vector is ẑ = [ îs ψ̂
R
]T and estimates are

marked by the symbol ˆ. The matrix F̂ and the observer gain K are given by

F̂ =

[

− 1

τ̂ ′σ
− jωk

1

L̂′

s

(
1

τ̂r
− jω̂m

)

R̂R − 1

τ̂r
− j (ωk − ω̂m)

]

, K =

[
ks
kr

]

(3.25c)

Choosing the stator and rotor flux estimates as state variables is preferred here. The

modelling of magnetic saturation becomes simpler since no inductance derivatives are

needed. In addition, the observer could be used with stator flux orientation control or direct

torque control (Maes and Melkebeek, 2000) as well as with rotor flux orientation control.

The full-order flux observer using the flux estimates as state variables corresponding to

(2.11) is defined by

dx̂

dt
= Â x̂ + Bus + L

(
is − îs

)
(3.26a)

îs = Ĉx̂ (3.26b)

where the observer state vector is x̂ = [ψ̂
s
ψ̂
R
]T , and the matrix Â and the observer gain

L are given by

Â =

[

− 1

τ̂ ′s
− jωk

1

τ̂ ′s
1−σ̂
τ̂ ′r

− 1

τ̂ ′r
− j(ωk − ω̂m)

]

, L =

[
ls
lr

]

(3.26c)

It can easily be shown that the transformation of the observer gains

L =

[

L̂′
s 1

0 1

]

K (3.27)

ω̂m

is

ψ̂
R

îs

us

+
−

Actual
motor

Full-
order

observer

Adapt.
law

Figure 3.3. Example of speed-adaptive full-order flux observer (Kubota et al., 1993).
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gives identical behaviour to observers (3.25) and (3.26). The transformation (3.27) is used

to compare different observer gains found in the literature.

The rotor speed estimate is obtained using the adaptation mechanism (3.15). Different

observer designs (i.e., selection of the observer gain L and the error term ε of the speed-

adaptation law) lead to different behaviour of the observer. In the following, observer

designs proposed in the literature are described.

Conventional Observer Design

Kubota et al. (1993) and Yang and Chin (1993) used

ε = Im
{(
is − îs

)
ψ̂

∗

R

}

(3.28)

as the error term of the speed-adaptation law in their original design. The speed-adaptation

law is based on the component of the current estimation error that is perpendicular to

ψ̂
R

. The error term reduces to ε = (isq − îsq)ψ̂R in the reference frame of the estimated

rotor flux. Kubota et al. derived the adaptation law using the Lyapunov stability theory,

whereas Yang and Chin used the Popov hyperstability theory. However, the stability of

the adaptation law is not guaranteed. In their derivation, Kubota et al. neglected a term

including the actual rotor flux (which is not measurable) as shown by Tajima et al. (2002).

Suwankawin and Sangwongwanich (2002) showed that the positive-realness condition is

not satisfied in the derivation by Yang and Chin.

Kubota et al. (1993) and Yang and Chin (1993) proposed the observer gain

L = (k1 − 1) R̂s

[

k1 + 1

k1 −
τ̂ ′s
τ̂ ′r

+ jτ̂ ′sω̂m

]

(3.29)

where k1 is a positive parameter. Assuming constant rotor speed estimate (i.e., with the

dynamics of the speed-adaptation loop ignored), the observer gain (3.29) places the ob-

server poles in the stator reference frame in proportion to the motor poles. Kubota et al.

selected k1 = 1 leading to L = [0 0]T whereas Yang and Chin used k1 = 1.2.

It is well known that induction motor drives using the conventional observer design be-

come unstable when regenerating at low speeds (e.g., Suwankawin and Sangwongwanich,

2002). Furthermore, a poorly damped region appears at higher speeds as shown in Publi-

cation V. Evidently, the speed-adaptation loop should not be ignored when considering the

observer dynamics.

Voltage and Current Models

As shown in Publication V, the estimator by Schauder (1992) described in Section 3.3 is a

special case of the speed-adaptive full-order flux observer. By choosing the observer gain

L =

[
−R̂s

R̂R

]

(3.30)

the voltage model for the stator flux estimate and the current model for the rotor flux

estimate are obtained from (3.26). The error term (3.28) of the speed-adaptation law can

be written as

ε = −
1

L̂′
s

Im
{(
ψ̂
s
− L̂′

sis
)
ψ̂

∗

R

}

(3.31)
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based on (3.26b). Comparison of (3.31) and (3.16) shows that the error terms are identical;

only the adaptation gains need to be scaled. The factor ψ̂
s
− L̂′

sis equals the output ψ̂
Rv

of

the voltage model (3.13) whereas ψ̂
R

equals the output of the current model (3.14).

Modified Observer Gain — Conventional Speed-Adaptation Law

Kubota et al. (2002) realized the regenerating-mode stability problems in their original

design (Kubota et al., 1993). Based on the linearized model of the system, they redesigned

the observer gain (3.29) by introducing a parameter

k1 =

{
1

2

ω̂s

ω̂m

(

1 + τ̂ ′s
τ̂ ′r

)

, if ω̂sω̂r < 0

1, otherwise
(3.32)

It can be shown using the linearized model that the observer design stabilizes the regen-

erating mode at low speeds. The behaviour in the motoring mode is equal to the original

observer design.

The flux observer by Tsuji et al. (2001) can be considered as a speed-adaptive full-

order flux observer having the observer gain

L =

[
−R̂s + k2L̂

′
s

R̂R

]

(3.33)

The gain selection corresponds to the voltage model corrected with the current estimation

error due to the parameter k2 and the current model, see also (3.30). To reduce the unstable

region in the regenerating mode, Tsuji et al. selected the parameter k2 ten times smaller

in the regenerating mode than in the motoring mode.3 It can be shown that the speed-

adaptation law used by Tsuji et al. corresponds to the conventional speed-adaptation law.

Suwankawin and Sangwongwanich (2003) proposed the observer gain

L =

[

−R̂s + k3L̂
′
s

(
1

τ̂r
+ jω̂m

)

R̂R

]

(3.34)

where k3 is a positive parameter. It can be shown using the linearized model that the

observer design results in a stable system but the damping at higher speeds is poor.

Zero Observer Gain — Modified Speed-Adaptation Law

Hofmann and Sanders (1998) proposed the error term

ε = Im
{(
is − îsc

)(
îs − îsc

)∗
}

(3.35a)

where

îsc =
R̂s − jω̂s

(
L̂M

2
+ L̂′

s

)

R̂2
s + (L̂M + L̂′

s)L̂
′
sω̂

2
s

us (3.35b)

is the estimated centre point of the current locus when the slip frequency (or the rotor

speed) is varied. Therefore, the sign of the angle between vectors is − îsc and îs − îsc
3Tsuji et al. used the current references in the rotor dynamics of the observer (instead of the measured

currents) and they also assumed constant isd,ref . The parameter k2 was denoted by 1/Tc in the paper.
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depends on the sign of the speed estimation error under the assumption of electrical steady

state.

Hoffmann and Koch (1998) designed the speed-adaptation law assuming the current

estimation error in steady state.4 The proposed error term can be written as

ε = Im
{(
is − îs

)
ψ̂

∗

R
e−jφ

}

(3.36)

where the factor exp(−jφ) changes the direction of the error projection. Hoffmann and

Koch selected the factor as exp(−jφ) = (1 + jω̂r τ̂r)/
√

1 + ω̂2
r τ̂

2
r , corresponding to the

angle

φ = − arctan(ω̂r τ̂r) (3.37)

which guarantees the correct sign of the error term under the steady-state assumption. Us-

ing a linearized model, it can be shown that the observer design stabilizes the regenerating

mode at low speeds. However, there is an unstable region in the motoring mode at low

speeds (which could be stabilized by, for example, setting φ = 0 in the motoring mode).

It is worth noting that, based on (2.17) and (2.18), ωrτr = isq/isd holds in steady state in

the rotor flux reference frame.

To stabilize the regeneration mode operation, Tajima et al. (2002) proposed to augment

the conventional error term according to

ε = (isq − îsq)ψ̂R − γ2 sign(ω̂s)
(
isd − îsd

)
|̂isq| (3.38)

where γ2 is a positive gain and the estimated rotor flux reference frame is assumed. Tajima

et al. mentioned that γ2 should be adjusted according to the load level. Furthermore, γp =
0 was used in the adaptation mechanism (3.15). The error term was partly formed on

the basis of simulation analysis, and no stability analysis was given. Assuming îsq =

ω̂rψ̂R/R̂R, the error term (3.38) can be expressed in a general reference frame as

ε = Im

{
(
is − îs

)
ψ̂

∗

R

(

1 − jγ2 sign(ω̂s)
|ω̂r|

R̂R

)}

(3.39)

Comparison of (3.37) and (3.39) reveals that the error projection is changed to the same

direction only in the regenerating mode.

Rashed et al. (2003b) proposed the error term

ε = Im
{(
is − îs

)
ψ̂

∗

R
(1 − jγ3)

}

(3.40a)

where

γ3 =

{

τ̂rω̂m, if τ̂r|ω̂m| < L

sign(ω̂m)L, otherwise
(3.40b)

The limit value L was selected as

L =

{

2τ̂r|ω̂r|, if ω̂sω̂r < 0

min
{

1

2τ̂ ′r|ω̂r|
, 2τ̂r|ω̂r|

}
, otherwise

(3.40c)

The error term was designed using the linearized model of the observer, and, according

to the analysis, the speed-adaptation law stabilizes the system at low speeds. It was also

stated by Rashed et al. that the selection (3.40) is an example of stable design and that there

are other stabilizing choices of γ3. The behaviour at higher speeds was not considered in

the paper.

4The observer structure was not described in the paper, but it seems to be the full-order flux observer

with L = [0 0]T .
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Modified Observer Gain — Modified Speed-Adaptation Law

Harnefors and Nee (1997) designed an observer gain by ignoring the dynamics of the

speed-adaptation loop and using a pole placement. The poles were placed so that properties

close to the current and voltage models are obtained at low and high speeds, respectively,

and that good damping and convergence are achieved. The observer gain was

L =

[
−R̂s + L̂′

s {|ω̂s| + α + fα [−1 + j sign(ω̂s)]}

R̂R + fL̂′
sα [−1 + j sign(ω̂s)]

]

(3.41a)

where

f =

{
|ω̂s|
ω∆

, if |ω̂s| < ω∆

1, if |ω̂s| ≥ ω∆

(3.41b)

The parameter α was selected according to the bandwidth of the current controller and ω∆

is the desired transition frequency between the approximative current and voltage models.

It can be shown that the damping of the speed-adaptive observer using (3.41) with properly

selected α is comparatively good at higher speeds. Based on a simplified recursive least

squares estimation, Harnefors and Nee also proposed the error term

ε = Im
{(
is − îs

)
ψ̂

∗

R
[1 − j sign(ω̂s)]

}

(3.42)

The speed-adaptation gains were γp = 0 and γi = 0.1fα2L̂′
s/ψ̂

2
R, where f and α corre-

spond to those used in the observer gain. It can be shown that the speed-adaptation law

(3.42) reduces the unstable region in the regenerating mode but causes stability problems

in the motoring mode.

Maes and Melkebeek (2000) proposed an observer gain shifting the observer poles to

the left in the complex plane compared to the motor poles. The dynamics of the speed-

adaptation loop were ignored in the design. Furthermore, the speed-adaptation law

ε = Im
{(
is − îs

)
ψ̂

∗

s

}

(3.43)

based on the current estimation error perpendicular to the estimated stator flux was pro-

posed. However, the stability of the adaptation law is not guaranteed as shown in Pub-

lication VI, and stability problems still exist in the regenerating mode. Peterson (1996)

proposed a speed-adaptation law similar to (3.43). Peterson measured the stator voltage

and implemented the calculation of the stator dynamics using analogue integrators.

Hasegawa and Matsui (2002) modified the error term of the speed-adaptation law ac-

cording to (3.36). Under the assumption of the current estimation error being in steady

state and the angular stator frequency equalling the angular rotor speed, the angle φ was

selected so that the vectors (is − îs) exp(−jφ) and ψ̂
R

are perpendicular. The approach is

not general: it can be shown that unstable regions are encountered with, for example, the

observer gain L = [0 0]T both in the motoring and regenerating modes. Hasegawa and

Matsui designed the observer gain using an H∞ approach. Since the proposed observer

gain requires heavy calculation [minimization of parameters constrained by linear matrix

inequalities (LMI)], the method may be impractical. However, the proposed observer de-

sign may stabilize the system.

In Publication V, the simple observer gain

L = λ

[
1 + j sign(ω̂m)
−1 + j sign(ω̂m)

]

(3.44a)
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where

λ =

{

λ′ |ω̂m|
ωλ
, if |ω̂m| < ωλ

λ′, if |ω̂m| ≥ ωλ
(3.44b)

giving well-damped dynamics up to very high speeds was proposed. Parameters λ′ and

ωλ are positive constants. The observer gain (3.44) is basically constant at higher speeds.

Furthermore, a method to vary the speed-adaptation gains γp and γi in the field-weakening

region was proposed in Publication V. The observer gain is designed especially for nominal

and high-speed operation whereas the problems at low speeds are handled by modifying

the error term of the speed-adaptation law according to (3.36) as described in Publication

VI. The angle φ stabilizing the regenerating mode is selected as

φ =

{

φmax sign(ω̂s)
(

1 − |ω̂s|
ωφ

)

, if |ω̂s| < ωφ and ω̂sω̂r < 0

0, otherwise
(3.45)

where φmax and ωφ are positive constants. The steady-state relation given in Publication VI

can be applied in choosing φmax and ωφ. An advantage of (3.45) is that only the information

of sign(ω̂s) and sign(ω̂sω̂r) is crucial whereas the observer gain using (3.32), for example,

is a function of ω̂s and ω̂r.

3.5 Effect of Parameter Errors

Actual parameters of the motor vary with temperature (resistances) and magnetic satura-

tion (inductances). A model of magnetic saturation can be used, but the changes in tem-

perature are much more difficult to handle. The effect of parameter errors on the accuracy

of the flux estimator is crucial since it determines the robustness of the overall system.

As described in Publications IV and VI, the effect of parameter errors can be studied by

means of a steady-state expression for ψ̂
R
/ψ

R
. Steady-state expressions are obtained by

substituting d/dt = 0 and ωk = ωs, where ωs is the angular stator frequency (being equal

to the angular frequencies of the estimated and actual rotor fluxes in steady state). The

effects of parameter errors on four speed-adaptive full-order flux observer designs have

been compared in Publication VI. As a reference, the effects of parameter errors on two

inherently sensorless flux estimators are evaluated in the following. The parameters of a

2.2-kW motor described in Chapter 4 are used.

Voltage Model and Modified Integrators

Using (2.9), (2.10), and (3.3), the steady-state expression for ψ̂
R
/ψ

R
corresponding to the

voltage model can be derived (Jansen and Lorenz, 1994), the result being

ψ̂
R

ψ
R

= 1 +
1 + jωrτr
LM

(

L′
s − L̂′

s − j
Rs − R̂s

ωs

)

(3.46)

The solid curves in Fig. 3.4 illustrate the expression for ψ̂
R
/ψ

R
obtained using (3.46) at

low stator frequencies when erroneous parameter estimates are used. The curves in Fig.

3.4(a,b) correspond to no-load operation, and the curves in Fig. 3.4(c,d,e,f) correspond

approximately to the rated-load operation, i.e., the angular slip frequency ωr is equal to
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Figure 3.4. Effect of parameter errors on ψ̂
R
/ψ

R
: (a,b) actual slip frequency is ωr = 0; (c,d,e,f)

ωr = ωrN = 0.05 p.u. The solid line corresponds to the voltage model (and modified integrators);

the dashed line corresponds to the estimator (3.10), where αv = 1/τ̂r is used. Erroneous parameter

estimates are given in subfigures.
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the rated slip ωrN . All three operating modes of induction motors can be seen in Fig.

3.4(c,d,e,f).

Small errors in the stator resistance estimate R̂s make it impossible to operate at low

speeds, even without load. The effect of errors in the stator transient inductance L̂′
s are

almost negligible. The rotor resistance estimate R̂R and the magnetizing inductance esti-

mate L̂M are not involved in the voltage model. However, R̂R has an effect on the accuracy

of the rotor speed estimate as can be seen from (3.4).

The expression for ψ̂
R
/ψ

R
corresponding to the voltage-model-based estimators (3.7)

and (3.8) using modified integration is equal to (3.46). Therefore, problems at low speeds

are expected even in no-load operation. Since ψR,ref is included in the estimator (3.9), the

expression for ψ̂
R
/ψ

R
depends on how the flux is controlled. Based on measurements,

Holtz and Quan used a flux controller having an integral effect, leading to ψ
R,ref

= ψ̂
R

in

steady state. Consequently, the expression for ψ̂
R
/ψ

R
corresponding to (3.9) is also equal

to (3.46).

Voltage Model with Current-Model-Based Correction

When the estimator (3.10) is used, the expression

ψ̂
R

ψ
R

=
jωs +

[

Rs − R̂s + jωs
(
L′
s − L̂′

s

)]
1+jωrτr
LM

+ αv
ψ̂

Rc

ψ
R

αv + jωs
(3.47a)

holds in steady state, where ψ̂
Rc

can be written as

ψ̂
Rc

= L̂M
Re
{
isψ̂

∗

R

}

ψ̂2
R

ψ̂
R

=
L̂M
LM

(

Re
{
ψ
R
ψ̂

∗

R

}

ψ̂2
R

− ωrτr
Im
{
ψ
R
ψ̂

∗

R

}

ψ̂2
R

)

ψ̂
R

(3.47b)

To obtain the latter form of (3.47b), the steady-state expression

is =
1 + jτrωr
LM

ψ
R

(3.48)

based on (2.13) and (2.15) was used. The dashed curves in Fig. 3.4 illustrate the expres-

sion for ψ̂
R
/ψ

R
which is solved from (3.47) using iteration. Only the solutions that are

continuous with the rated-speed solution fulfilling the condition ψ̂
R
/ψ

R
≈ 1 are shown. A

similar approach is used in Publication VI.

The existence of a steady-state solution of ψ̂
R
/ψ

R
does not guarantee that the solution

is stable. On the other hand, absence, discontinuity, or significant inaccuracy of a steady-

state solution is a clear indicator of stability problems in that operating point. According

to simulations and experiments, fast transients through the unstable region are usually

possible.

It can be seen that the accuracy of the estimator (3.10) in no-load operation with an un-

derestimated stator resistance in Fig. 3.4(a) is much better than the accuracy of the voltage

model. According to Fig. 3.4(b), an overestimated stator resistance may cause problems in

no-load operation. Actually, there is a solution fulfilling the condition ψ̂
R
/ψ

R
≈ 1 at very
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low speeds, but that solution is discontinuous with the desirable rated-speed solution and,

therefore, not shown in Fig. 3.4(b). The accuracy of the estimator (3.10) in the rated-load

operation in Fig. 3.4(c,d) is slightly better in the motoring and plugging modes than the

accuracy of the voltage model. Consequently, no-load and rated-load zero-speed operation

can be achieved in practice when using the estimator (3.10). On the other hand, the accu-

racy of the estimator (3.10) in the regenerating mode at low speeds is much worse than the

accuracy of the voltage model based on Fig. 3.4(c,d,e,f). The regenerating-mode operation

could probably be enhanced using similar methods as discussed by Ambrožič et al. (1999)

or proposed by Kim et al. (2003), see p. 22.

It is interesting that the effects of parameter errors on the estimator (3.10) and on some

speed-adaptive observer designs are very similar. This can be seen by comparing Fig. 3.4 to

the results in Publication VI. Furthermore, it can be seen that the observer design proposed

in Publication VI is generally better than the voltage model or the estimator (3.10) when

parameter errors exist.

3.6 On-Line Stator Resistance Estimation

To handle the stator resistance variations, on-line stator resistance estimators have been

proposed in the literature. In connection with voltage-model-based flux estimators, the

stator resistance estimators are typically based on the fact that the flux-emf is perpendicular

to the rotor flux in steady state:5

Re
{
efψ

∗

R

}
= 0 (3.49)

The estimators by Mitronikas et al. (2001) and Holtz and Quan (2003) were derived using

the current-model-based flux-emf (2.15) in the condition (3.49), which then reduces to

ψR = LM isd in the rotor flux reference frame6. Essentially the same information is used

as a correction signal in some flux estimators, for example, in the estimator (3.10).

Ambrožič et al. (1999) used the voltage-model-based flux-emf (2.14) and the condition

(3.49) for the stator resistance estimation. The stator resistance was estimated only in the

motoring mode since the same information was used in the flux estimator for stabilizing

the regenerating mode. In connection with speed-adaptive full-order flux observers, the

stator resistance is often estimated using the term Re{(is− îs)̂i
∗

s}, which should ideally be

zero in steady state (e.g., Kubota et al., 1993).

Most of the stator resistance estimators proposed in the literature are derived under

simplifying assumptions (such as ω̂m = ωm) and the stability analysis of the system is not

carried out. It is not sufficient that the speed estimation and the stator resistance estimation

are individually stable since the interaction between the two estimators may destabilize the

overall system (Rashed et al., 2003a). The system including simultaneous estimation of the

speed and the stator resistance should be considered as a multiple-input multiple-output

(MIMO) system, as was the case in the design proposed by Rashed et al.

In this work, stator resistance estimators are not studied. In practice, stator voltage

measurement or a very accurate model of the inverter nonlinearities (using a voltage-

feedback based dead-time compensation) may be necessary if a stator resistance estimator

is used.

5Using the rotor current, the fact can be written as Re{iRψ
∗

R
} = 0.

6The equal condition appears more complicated in the stator flux reference frame used by Mitronikas

et al. and Holtz and Quan.
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3.7 Flux Estimators Combined with Signal Injection

The dynamic response of signal-injection methods (see Chapter 1) is typically only mod-

erate or they suffer from torque ripples due to unmodelled dynamics. To circumvent these

problems, Ide et al. (2002) combined a signal-injection method with the speed-adaptive

observer using the observer gain L = [0 0]T . The error term

ε = HPF
{

Im
{(
is − îs

)
ψ̂

∗

R

}}

+ LPF {γϑfϑ} (3.50)

of the speed-adaptation law was used, where HPF denotes high-pass filtering, γϑ is a gain,

and fϑ is the error signal obtained using a high-frequency signal-injection method by Ha

and Sul (1999). Due to the filters in (3.50), the conventional error term is active at tran-

sients, whereas the signal-injection term dominates in steady state. The filters are designed

so that both the conventional error term and the signal-injection term are in use at low

speeds, whereas only the conventional error term is used at higher speeds. Due to the inte-

gral action of the adaptation mechanism (3.15) and the high-pass filter in (3.50), the signal

fϑ is driven to zero in steady state at low speeds.

A method combining advantages of the low-frequency signal-injection approach by

Leppänen and Luomi (2002) and the speed-adaptive full-order flux observer is proposed

in Publication VII. A low-frequency (25 Hz for a 2.2-kW motor) alternating current is

superimposed on the flux-producing component of the stator current in the estimated rotor

flux reference frame. The response of the mechanical system is used to calculate the error

signal fϑ (having the same sign as the error angle of the rotor flux estimate) which is used

in the error term resembling (3.50). The high-pass-filter in (3.50) is modified to ensure

proper transient operation. The observer gain (3.44) is used, resulting in a wide speed

range from zero to very high speeds. Experimental results are shown in Publication VII,

including very slow speed reversals and long-term zero-frequency operation under rated

load torque, as well as fast speed and load torque transients.

To ensure the observability of the flux and the speed in the vicinity of the zero sta-

tor frequency, Rashed et al. (2003b) superimposed a low-frequency (15 Hz) alternating

current on the torque-producing component of the stator current. The speed-adaptive full-

order flux observer using the observer gain L = [0 0]T and the speed-adaptation law cor-

responding to (3.40) was used. A drawback of the method is that high torque and speed

ripples are caused.
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Chapter 4

Experimental Setup

The experimental setup depicted in Fig. 4.1 was used to investigate the methods in the

Publications. Technical data of the laboratory hardware is given in Table 4.1. The induc-

tion motor (IM) is used for the investigation of control methods, and the permanent mag-

net (PM) servo motor is used as the loading machine. The induction motor is a general-

purpose three-phase squirrel-cage induction motor. The parameters of the induction motor

are given in Table 4.2. Both motors are fed by frequency converters (Danfoss VLT5004

and ABB Bivector), which are connected to the 400-V 50-Hz three-phase supply.

Control algorithms for the induction motor are executed in a dSpace DS1103 PPC

controller board plugged in a host PC. Six PWM gate signals of the VLT5004 converter are

generated directly by the DS1103 controller board. This is possible due to the replacement

of the original controller board of the VLT5004 converter with an interface and protection

board designed for use with the DS1103 board. The interface and protection board and the

required signal conditioning have been designed and manufactured at Aalborg University

(Teodorescu et al., 2000).

PC with DS1103

IM

Brake PWM

Torque (or speed) reference

PM
servo

Freq. Freq.
converter converter

BivectorVLT5004

Encoder
Torque transducer

and coupling

LEMs

ωm

400 V,
50 Hz

PWM

Shaft torque

isa, isb, isc

udc

Figure 4.1. Experimental setup. Control of induction motor (IM) is investigated, and permanent

magnet (PM) servo motor is used as loading machine. Measured shaft torque and rotor speed are

used only for monitoring of speed-sensorless methods.
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Table 4.1. Technical data of laboratory hardware. Current and voltage values are rms values. Three-

phase voltages are phase-to-phase voltages.

Induction motor ABB M2AA 100LA 3GAA102001-ADA

Rating plate 380. . . 420 V, 50 Hz, 1 430 r/min,

2.2 kW, 5.0 A, cosϕ = 0.81

Moment of inertia 0.0069 kgm2

Freq. converter for IM Danfoss VLT5004 P T5 B20 EB R3 (modified)

Supply voltage 380. . . 500 V (50/60 Hz)

Output voltage 0. . . 100 % of supply voltage

Max. const. output current 5.6 A

Output frequency 0. . . 1 000 Hz

PM servo motor ABB 8C5 230 00YA02SL3MB

Rating plate 315 V, 3 000 r/min, cont. stall torque 21.5 Nm

(14.1 A), peak stall torque 75.3 Nm (54.6 A)

Moment of inertia 0.0040 kgm2

Freq. converter for PM servo ABB Bivector 535 “25”

Rated supply voltage 400 V (50/60 Hz)

Rated output voltage 400 V

Rated cont. output current 25.0 A

Current transducers LEM LA 55-P/SP1

Bandwidth 0. . . 200 kHz (−1 dB)

Accuracy (at 25◦C, rated current) ±0.9 %

Incremental encoder Leine & Linde 186 90311

Line counts 2 048 ppr

Moment of inertia 42 · 10−6 kgm2

Torque transducer HBM K-T10F-050Q-SU2-G-1-W1-Y

Rated torque 50 Nm

Maximum speed 15 000 r/min

Torsional stiffness 160 kNm/rad

Bandwidth 0. . . 1 kHz (−3 dB)

Moment of inertia 0.0017 kgm2

Coupling HBM BSD-MODULFLEX for K-T10F

Torsional stiffness 24 kNm/rad

Moment of inertia (incl. joint) 0.0029 kgm2

Controller board dSpace DS1103 PPC

Master processor PowerPC 604e (400 MHz, 2 MB local

SRAM, 128 MB global DRAM)

Slave processor Texas Instruments TMS320F240 DSP

(20 MHz, 3-phase PWM generation)

In speed-sensorless methods, three phase currents and the dc-link voltage udc of the

VLT5004 converter are used as feedback signals for the controller. The phase currents are

measured using external LEM current transducers. The dc-link voltage is measured using

the original internal sensor circuitry of the VLT5004 converter. The measured shaft torque

and the rotor speed ωm are available for monitoring purposes. Furthermore, the DS1103

board is used to adjust the load profile of the servo drive and to control the brake chop-

per of the VLT5004 converter. Four-quadrant operation is possible since both frequency

converters are equipped with brake resistors.
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Table 4.2. Parameters of 2.2-kW 4-pole 400-V 50-Hz induction motor and load.

Stator resistance Rs 3.67 Ω
Rotor resistance RR 2.10 Ω
Magnetizing inductance LM 0.224 H

Stator transient inductance L′
s 0.0209 H

Rated speed 1 430 r/min

Rated current 5.0 A

Rated torque 14.6 Nm

Rated power factor cosϕ 0.81

Total moment of inertia 0.0155 kgm2

Viscous friction coefficient 0.0025 Nm·s

The DS1103 board includes a PowerPC 604e RISC processor and a Texas Instruments

TMS320F240 DSP, acting as the master and slave processors, respectively. The built-

in modulator of the slave processor is used to generate three-phase PWM gate signals,

whereas the control algorithms are executed in the master processor. The PWM interrupt

of the slave processor is used to synchronize the master processor (and the sampling) to the

modulation. In the experiments, both the switching frequency and the sampling frequency

were 5 kHz. A software-based current feedforward compensation is applied for dead times

and power device voltage drops (Pedersen et al., 1993).

The control algorithms were programmed in the MATLAB/Simulink environment, us-

ing mainly S-function blocks written using the C language. Since the resulting algorithms

are discrete, the Simulink models are also implemented as discrete models. After graphi-

cally connecting all Simulink blocks, the Simulink Real-Time Workshop is used to gener-

ate the C code from the Simulink Model. Then, the dSpace Real-Time Interface is used to

build, download, and execute the code on the DS1103 board.
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Chapter 5

Summary of Publications

The abstracts of the Publications are reprinted in Section 5.1. Publication I deals with a

voltage-model-based flux estimator whereas the other Publications deal with full-order

flux observers. Publications III and IV consider mainly speed-sensored drives, but the

methods and results are partially applicable to speed-sensorless drives. The scientific con-

tribution is described in Section 5.2.

5.1 Abstracts

Publication I

This letter deals with voltage model flux estimators for sensorless induction motor drives.

In order to eliminate the drift problems, the pure integrator of the voltage model is replaced

with a first-order low-pass filter, and the error due to this replacement is compensated in a

very simple way.

Publication II

This paper deals with the flux estimation for sensorless induction motor drives. Stable

zero-speed operation is achieved by using a speed-adaptive full-order flux observer and a

simple software compensation of inverter nonlinearities. No voltage feedback is needed

for the compensation and hardware costs can be lowered. Experimental results including

stable zero-speed operation are shown.

Publication III

This paper deals with flux estimation for induction motor drives by using a full-order

flux observer. A problem of full-order flux observers is their need for computationally

demanding discretization methods in order to work stably and accurately at high speeds.

An implementation of the full-order flux observer using the stator and rotor fluxes as state

variables in the stator reference frame and in the rotor reference frame, respectively, was

recently proposed. This paper describes how an observer gain can be included in this

structure. It is shown that discretization errors of the proposed implementation are small

and that there is more freedom to choose an observer gain, even if the simple forward

Euler discretization is used.
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Publication IV

This paper deals with flux estimation for induction motor drives. The equations of the pa-

rameter sensitivity of both the rotor flux estimation and the torque production are derived

for a full-order flux observer. Based on the parameter sensitivity analysis, practical meth-

ods of designing robust observer gains combining the current model and the voltage model

are proposed. The proposed gains are easy to tune and lead to a simple observer structure.

Experimental results show that for inaccurate parameter estimates, both the steady-state

and dynamic errors in the produced torque are small as compared to the current model.

Furthermore, high-speed operation is possible without modelling the magnetic saturation

even if motor parameters are highly erroneous.

Publication V

This paper deals with the flux estimation for sensorless induction motor drives. The lin-

earized model of the speed-adaptive full-order flux observer is applied to help choosing

the observer gain and the speed-adaptation gains. It is shown that the linearized model

reveals potential instability problems that are difficult to find by other means. An observer

gain and a method to vary the speed-adaptation gains in the field-weakening region are

proposed. Experimental results show stable operation in a very wide speed range.

Publication VI

This paper deals with the full-order flux observer design for speed-sensorless induction

motor drives. An unstable region encountered in the regenerating mode at low speeds is

well known. To remedy the problem, a modified speed-adaptation law is proposed. Instead

of using only the current estimation error perpendicular to the estimated flux, the parallel

component is also exploited in the regenerating mode. Using current estimation error loci

in steady state, a linearized model, simulations, and experiments, it is shown that the ob-

server using the proposed speed-adaptation law does not have the unstable region. It is also

shown that the effect of erroneous parameter estimates on the accuracy of the observer is

comparatively small.

Publication VII

In sensorless induction motor drives, flux estimators based only on the standard motor

model work well at sufficiently high stator frequencies, but they fail at frequencies close

to zero. To solve this problem, a new observer structure is proposed, combining a speed-

adaptive full-order flux observer with a low-frequency signal-injection method. An error

signal obtained from the signal-injection method is used as an additional feedback signal

in the speed-adaptation law of the observer, resulting in a wide speed range, excellent

dynamic properties, and zero-frequency operation capability. The enhanced observer is

also robust against parameter errors. Experimental results are shown, including very slow

speed reversals and long-term zero-frequency operation under rated load torque, as well

as rated load torque steps and fast speed reversals under rated load torque.
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5.2 Scientific Contribution

To the best of the author’s knowledge, the main scientific contributions in the Publications

concerning speed-sensorless flux estimation are:

• The enhanced version (3.7) of an algorithm by Shin et al. (2000) is proposed in

Publication I.

• A computationally efficient digital implementation of full-order flux observers is

proposed in Publication III. A similar idea has been previously applied to a dif-

ferent flux estimator by Jansen and Lorenz (1994). Another, even simpler digital

implementation is given in the Appendix of Publication IV. A method of the same

kind has been applied to computer simulations of ac motors by Niiranen (1999).

The proposed implementations can also be applied to speed-adaptive full-order flux

observers.

• In Publications IV and VI, the effects of parameter errors on the regenerating-mode

operation are also analyzed. Previously, only the motoring-mode operation has been

considered.

• The stability problems at higher speeds reported in Publication V have previ-

ously been unknown. The observer gain (3.44) and the method to vary the speed-

adaptation gains in the field-weakening region are proposed. Furthermore, the un-

known relationship between speed-adaptive full-order flux observers and the esti-

mator by Schauder (1992) is clarified.

• The speed-adaptation law consisting of (3.36) and (3.45) stabilizing the regenerating

mode at low speeds is proposed in Publication VI.

• The speed-adaptive full-order flux observer enhanced with the low-frequency signal-

injection method by Leppänen and Luomi (2002) is proposed in Publication VII.

In this overview, stability problems of different flux estimators at low speeds are high-

lighted. Furthermore, the effect of parameter errors on the flux estimators described by

Ohtani et al. (1992) and by Kubota et al. (1993) are shown to be similar.
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Chapter 6

Conclusions

In this thesis, flux estimators for speed-sensorless induction motor drives were investi-

gated. A basic requirement for any motor drive control is the stability. However, most

speed-sensorless flux estimators proposed in the literature suffer from stability problems,

even if the parameter estimates are accurate. Operation at low speeds (especially in the

regenerating mode) is generally the most demanding working point of sensorless induc-

tion motor drives. Difficulties may also be encountered at higher speeds since sensorless

flux estimators tend to become more sluggish, poorly damped, and even unstable. These

problems are seldom discussed in the literature, probably because they can often be cir-

cumvented by considerably reducing the dynamic performance (bandwidths of the speed

and flux controllers) at higher speeds. As discussed in this overview, the stability problems

of inherently sensorless flux estimators and speed-adaptive flux estimators are very simi-

lar. Furthermore, there is a close resemblance between the effects of parameter errors on

some inherently sensorless flux estimators and speed-adaptive flux estimators.

The problems both at low and high speeds are remedied in the speed-adaptive full-

order flux observer design proposed in Publications V and VI. The observer gain is de-

signed especially for nominal and high-speed operation. At low speeds in the regenerating

mode, the conventional error term of the speed-adaptation law is modified. Furthermore,

the effect of parameter errors on the proposed observer was shown to be comparatively

small. The observer design achieves the goals outlined in Chapter 1, except that the ro-

bustness of the system at very low speeds may be insufficient. For example, long-term

zero-frequency operation under load torque cannot be achieved in practice. To improve

the robustness at low speeds, the speed-adaptive full-order flux observer can be augmented

with a low-frequency signal-injection method as shown in Publication VII. The combina-

tion of the methods results in a robust system with fast dynamic response.

A suitable topic for future research is to investigate whether an on-line stator resistance

estimator can be incorporated into the proposed flux observer design without impairing

stability. It might also be possible to use the low-frequency signal-injection method to

estimate the stator resistance.
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