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Chapter One Introduction 1 

CHAPTER ONE 
 

INTRODUCTION 
 
 
Less than fifteen years ago, the main challenges in mobile communications were how to 

connect people wherever they were and providing cheap services as well as cheap and 

small handsets. Since ambition is one of human characteristics, these challenges have 

gradually been met and surpassed. The current challenges are how to provide multimedia 

communication, exploring the unlimited information of the Internet, watching TV 

channels, and many other services on small and handy mobile phones. The services to the 

customers should be cheap and of high quality. To reach these novel services, the first 

step is to use a multiple access method that can support high data rate transmission over 

wireless and mobile channels. Wideband Code Division Multiple Access (WCDMA) has 

been chosen to be the multiple access technique for the 3G mobile communication 

system. The reasons of selecting WCDMA will be discussed in section 1.3.  

To achieve cheap services, the mobile communication systems should be able to support a 

large number of users simultaneously. The users in WCDMA systems are usually sending 

messages at the same time and with the same bandwidth but with different codes. The 

main noise source of each user is the interference signals from other users due to the 

imperfect orthogonalization of the spreading codes and the channel dispersion 

characteristics such as multi-path and Doppler shift. This interference limits the capacity 

of the mobile communication system. To increase the capacity and to enhance the system 

performance one should optimize the usage of the available radio resources. The system 

performance can further be enhanced by exploiting the spatial distribution of users to 

reduce the interference using smart antennas.  

In CDMA cellular systems, the base stations (BS) represent the access points of the 

mobile stations (MS). The communication from the BS to the MS is called downlink (DL) 

and from MS to BS is uplink (UL). Without loss of generality only the uplink 

communication is considered in this thesis. The radio resource management is very 

important in multi-user communication systems. It regulates the sharing of the radio 

resource between users. There are two main controllable radio resources: the transmitted 
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power and data rate. The transmitted power should be adjusted to the minimum power 

required to achieve the target Quality of Service (QoS). The target QoS is a list of 

conditions which should be fulfilled to obtain successful communication. The transmitted 

data rate, maximum packet delay, and the packet loss probability are examples of the QoS 

list. The adjusting process of power is called power control. Power control is not an easy 

task due to the time-varying fluctuations in the channel gain as well as the lag in 

information about the total channel situation. If the data rate can be adjusted as well, we 

should use a combined power and rate control algorithm. Spatial filtering is an important 

interference management item which can considerably enhance the communication 

system performance. The transmitted signals from mobile stations arrive to the base 

station antenna in multi-path fashion and in different directions of arrivals (DoA). The 

DoA of each multipath component of each MS depends on its location as well as the 

multi-path characteristics. Using spatial filtering, one can enhance the reception of the 

receiving antenna from certain DoAs and attenuate the others. This means, if the DoA of 

the required user can be estimated, we can enhance the Signal to Interference Ratio (SIR) 

by reducing the interference signals which have different DoAs.  Spatial filtering is 

possible by using multi-antenna arrays with adaptive weights (smart antennas). Multi-user 

detection methods are utilized as well to further enhance the system performance. The 

code structures of the users are employed to reduce the co-channel interference. It should 

be noticed that for a large number of users the optimum multi-user detection method is 

computationally very intensive.  

In this thesis, we will focus on the radio resource management and smart antennas. 

Although the topics are treated in a general way, more attention is given to the UMTS 

standards.   

  

1.1 Network Architecture of 3G mobile communication system 

A simplified network architecture of the Universal Mobile Telecommunication System 

(UMTS) is shown in Figure 1.1 [64]. As seen in Figure 1.1 the UMTS Terrestrial Radio 

Access Network (UTRAN) has two interfaces. The first interface is with User Equipment 

(UE) using WCDMA. The second interface is with the Core Network (CN). The UTRAN 

consists of Base Stations (BS) and Radio Network Controllers (RNC).  The core network 

is the interface between UTRAN and the External Network (EN). It consists of two 
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networks, the Circuit Switched Network (CSN), which is the same as the old GSM 

switching network and the packet switched network (PSN), which is based on Internet 

Protocol (IP) address. The CSN is connected to the conventional switching systems, such 

as Public Switched Telephone Network (PSTN) and Integrated Services Digital Network 

(ISDN). 

 

 

EN
PSTN,
ISDN,.. INTERNET

CN
Circuit Switched

Network
Packet Switched

Network

UTRAN

RNC RNC

User Equipment1

DL    UL

BS BS

 
 

 
Figure 1.1 UMTS network architecture 
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The PSN, on the other hand, is connected to the Internet network [64]. The transmitted 

power controls in uplink and downlink are very important issues in CDMA systems. Two 

main types of power control are used with UMTS networks. The closed (fast) loop power 

control regulates the transmitted power of all UE to minimize the interference between 

them. The control command is updated at the rate of 1500 Hz. The outer (slow) loop 

power control updates the target Signal to Interference and Noise Ratio (SINR), which is 

determined by Radio Network Controller (RNC). Detailed description of the power 

control concept and algorithms will be introduced in Chapter 2.  The data rate can be 

updated as well as explained in Chapter 3. 

 

1.2 Radio Resource Management (RRM) 

In the UMTS architecture, each BS has a radio resource management module that 

attempts to preserve the traffic’s QoS requirements across the radio access network 

(RAN) [82]. The QoS attributes are usually specified in terms of bit error rate (BER), data 

rate, delay, and so on. The main role of the RRM is to assign resources to users according 

to their QoS requirements. As shown in Figure 1.2, the RRM mission starts by performing 

connection admission control (CAC). Since the decision is based on resource availability, 

CAC consults the Radio Resource Scheduler (RRS) before accepting or rejecting the 

requested call [82]. Upon call acceptance, the traffic classifier (TC), another RRM 

component, categorizes the incoming traffic according to its QoS specification, which is 

typically included in each packet header. Data flows are then directed to a corresponding 

queue according to its QoS field. Each QoS class (QoSc) is represented by at least one 

queue. Finally, the traffic dispatcher (TD) drains the multiple queues according to some 

priority logic after getting the assigned radio resources from the RRS, which relies on the 

channel conditions and the requested QoS in its response. Based on the above, it is 

evident that RRS bears a great responsibility in having a successful RRM [82].  

In a CDMA network the RRM has two important radio resources to control: MS 

transmitting power and data rate. Combining the transmitted power control and data rate 

control in an optimum way is a very important issue as will be shown in Chapter 3.  One 

of the important goals of the multiple access systems, such as in the UMTS, is to 

maximize the number of simultaneous users. If each MS is assigned the minimum 

resources necessary for meeting or exceeding its QoS requirements, the capacity of the 
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system will be maximized [82]. Another important goal for non-voice users is to 

maximize their data rates. All these issues will be discussed in more details in Chapters 2 

and 3. 

 

CAC TC

QoSc1

QoSc3

QoSc2

QoSc4

TD

RRS

 
                         Figure 1.2. Block diagram of the Radio Resource Manager [82]. 

 

1.3 Wideband Code Division Multiple Access 

In multi-user environment, it is very important to separate the users, so that they are not 

interfering with one another. For example, users of Frequency Division Multiple Access 

(FDMA) are separated by allocating certain frequency bands for each user. In Time 

Division Multiple Access (TDMA), each user has a repeated time slot. In CDMA all users 

share simultaneously the same bandwidth, but with different codes, as is illustrated in 

Figure 1.3. CDMA has many advantages over TDMA or FDMA technologies. CDMA 

techniques are wideband in the sense that the entire transmission bandwidth is shared 

between all users at all times. This is accomplished by spreading the baseband signals 

onto a bandwidth much larger than its actual bandwidth. This spreading is achieved by 

using spreading codes. The spreading leads to simpler statistical multiplexing without the 

explicit scheduling of time or frequency slots, universal frequency reuse between cells, 

and graceful degradation of quality near congestion. It exploits the frequency selectivity 

of the channel (which uses a rake receiver that resolves individual multi-path components 
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and then coherently combines them) to avoid the harmful effects of deep fades that afflict 

narrowband systems, and the exploitation of silence periods in voice conversations. 

 

 

     

 
 
It is then possible in the CDMA environment to provide unique benefits for cellular 

applications [61], [63]. There is no single, universally accepted, definition of Wideband 

CDMA [41]. In fact, one may find two commonly accepted definitions. One is based on 

system parameters such as chip rate, or bandwidth expressed as a fraction of the center 

frequency; and the other is based on the characteristics of the channel. If the bandwidth of 

the signal exceeds the coherence bandwidth of the channel, the term Wideband CDMA is 

used. Yet there is no distinct bandwidth threshold that separates the narrowband CDMA 

from the Wideband CDMA [41]. Currently the term WCDMA is used for the UMTS 

standard. 

  

1.4 Channel characteristics of mobile radio systems 

The modulation type, the carrier frequency and the coding/decoding methods depend on 

the characteristics of the channel. The channel is the media between the transmitter and 

the receiver. We need to know, or at least to estimate, its behaviour to design successful 

communication system. Unfortunately, most of radio channels have characteristics that 

vary over time, i.e. they are time-varying channels. This complicates channel parameter 

estimation. The problem is much more acute in mobile channels due to the nature of the 

Figure 1.3.  Principle time and frequency division in FDMA, TDMA and CDMA.  
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mobility of the mobile terminals.  Figure 1.4 shows an overview of fading channel 

manifestations [65]. From Figure 1.4, the large-scale fading manifestation is shown in 

blocks 1, 2, and 3. This phenomenon is affected by prominent terrain contours (hills, 

forests, billboards, buildings, etc.) between the transmitter and the receiver. The receiver 

is often represented as being shadowed by such obstacles. This phenomenon can be 

modelled as a mean-power loss using a path loss exponent n, and a random variable with 

log-normal distribution. The small-scale fading refers to a rapid fluctuation in the 

received signal due to very small movement of the mobile. The reason is that the received 

signal is usually coming through different paths. Every path causes a time delay, which 

changes the phase. The received signal is the complex sum of the signals from all paths. 

Then if the path signals are in-phase, the received signal power will achieve its highest 

value. If the path signals are out of phase, the received signal power will be at the lowest 

value. The received signal power may vary as much as 40 dB, when the mobile moves 

only a fraction of a wavelength [12]. A more detailed description of Figure 1.4 is 

presented in [65].  

 
Figure 1.4. Overview of fading channel.  
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1.5 Contributions 
 
In this thesis we focus on power control algorithms, combined power and rate control, 

smart antennas and joining radio resource scheduler and smart antenna. The contributions 

can be classified from the methodology point of view under three main categories as 

follows: 

 

A. The Multi-Objective Optimization 

  

I. Multi-objective distributed power control (MODPC) algorithm. Power 

control problem is first formulated in a new way, as a multi-objective (MO) 

optimization problem. In the formulation, dynamical behaviour of the mobile 

communication channel is also taken into consideration. The problem is then 

transformed into a single-objective optimization problem and solved. Certain 

properties of the convergence are proved. Simulation studies show the 

superiority of the proposed power control algorithm over several other well-

known power control algorithms. These topics are presented in Section 2.4.8 

II. Mathematical formulation of the RRM problem in Multi-Objective 

framework. New mathematical formulation of the RRM problem is proposed. In 

the literature the RRM problem is treated as a single optimization problem with 

constraints. We propose to use multi-objective optimization to solve the RRM. 

More flexible and sophisticated solutions can be obtained. These topics are 

covered in Section 3.8.    

III. Multi-Objective distributed power and rate control (MODPRC) algorithm. 

This topic is an application of the MO optimization in RRM. The (MODPRC) 

algorithm is a distributed algorithm and the simulations show that its 

performance outperforms many other combined power and rate control 

algorithms. The algorithm is based on minimizing a multi-objective definition of 

an error function. Three objectives are defined. The objectives are 1) minimizing 

the transmitted power, 2) achieving at least the target CIR which is defined at the 

minimum data rate, and 3) achieving the maximum CIR which is defined at the 

maximum data rate. The topic is covered in Section 3.8.1. 
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IV. Centralized algorithm for the tradeoff between total throughput 

maximization and total power minimization (MTMPC) algorithm. This 

algorithm is another application of the MO optimization in RRM field. Power 

control algorithm for total throughput maximization is proposed in [74]. In the 

proposed algorithm, we use the same throughput maximization objective, but an 

added objective for power minimization is used.  The Multi-objective 

optimization problem is solved using the weighting method. A centralized power 

control algorithm is obtained. This topic is treated in Section 3.8.3.  

V. Multi-Objective Totally Distributed Power Control (MOTDPC) algorithm. 

In reality, only a quantized version of the estimated CIR is available at the 

mobile station. Therefore, MODPC is modified to take into consideration the 

quantized CIR. This algorithm uses the concept of ESPC algorithm to estimate 

the CIR. The topic is presented in Section 2.4.8.1 

VI. Multi-objective totally distributed power and rate control (MOTDPRC) 

algorithm. This algorithm is the same as MODPRC algorithm but with 

estimated CIR. We use the same concept as in ESPC to estimate the CIR from 

the ON-OFF commands of power control. The performance of the system is 

investigated by simulations. The topic is covered in Section 3.8.2  

VII. Soft dropping power control. If the CIR target cannot be achieved for every 

user, then power control becomes infeasible. In this case some connections 

should be dropped from the current link. The MODPC is modified to be used for 

connection dropping. The topic is presented in Section 2.4.8.2 

VIII. Joining algorithms for smart antenna and RRS. The main concept of joining 

smart antenna and RRS using MO optimization is summarized in Section 5.3. 

 

B. Kalman Filters 

 

IX. Kalman distributed power control. Kalman filter is proposed to be used in 

power control of CDMA mobile communication systems. The motivation to use 

Kalman filter is the known fact that Kalman filter is the optimum linear tracking 

device on the basis of second order statistics [20]. The topic is presented in 

Section 2.4.9. 
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X. Multi-rate distributed power control using Kalman filters. We propose a new 

multi-rate distributed power control algorithm based on Kalman filter. The 

algorithm is a direct extension of the Kalman power control algorithm. This topic 

is treated in Section 3.9 

XI. Minimum variance distributed power and rate control. This algorithm is a 

different formulation to solve the RRM problem using Kalman filters. The topic 

is discussed in Section 3.9.1. 

XII. Joining smart antenna and RRS using Kalman filters. Simple method to join 

smart antenna and power control using Kalman filter is proposed in Section 

5.3.1. 

 

C. Others 

 

XIII. Estimated step power control (ESPC) algorithm. We propose a new method 

to estimate the uplink Carrier to Interference Ratio (CIR) using the power control 

ON-OFF commands at the MS. The estimated CIR is used to adjust the 

transmitted power from the mobile terminal using the Distributed Constrained 

Power Control (DCPC) algorithm. The main advantage of the proposed 

algorithm is that it can improve the performance of power control without any 

increase in power control signalling. This method has been used with other 

algorithms throughout this thesis. The algorithm is explained in Section 2.4.7 

XIV. General MVDR algorithm for frequency selective channels. The minimum 

variance distortionless response (MVDR) is a very well known algorithm to 

obtain the optimum weight vector which maximizes the output signal to 

interference and noise ratio (SINR) of multiple antennas. In this part we 

generalize the algorithm to be used in multi-path and frequency selective 

channels to capture the different path signal components. The topic is covered in 

Section 4.3.1. Also the influence of using GMVDR algorithm on the upper 

channel capacity is treated in Section 4.4.4. 

XV. Convergence speed comparison of power control algorithms.  The 

convergence speed is an important factor in the selection of the optimum power 

control algorithm for a wireless communication system. In this part we introduce 
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a simple method to compare the convergence speed of power control algorithms. 

So far most of the studies on power control have used spectral radius of the 

corresponding iteration matrix as a convergence speed measure. However, this 

method is only applicable to linear algorithms. In addition, although always 

possible, finding the spectral radius can sometimes be tedious. We show in 

Section 2.5 that a simple differentiation of the power control algorithm can be 

used to compare the convergence speed of algorithms. 

XVI. Influence of smart antenna systems on the performance of radio resource 

scheduling in CDMA cellular systems. In this part the joining procedure 

between the RRS and the adaptive antenna is explained. A pseudo-code 

algorithm to join the smart antenna with RRS is introduced.  Chip level 

simulations are performed to evaluate the influence of a smart antenna on 

CDMA cellular systems. More details are given in Section 5.3.2. 

 

 

1.6 Outline of the thesis 

The concepts of power control theory in cellular communication systems are explained in 

Chapter 2. Different algorithms from literature as well as the new proposed algorithms 

and intensive simulations are presented also in Chapter 2. Combined algorithms of power 

and rate control are presented in Chapter 3. The smart antenna concept and different 

adaptation algorithms are introduced in Chapter 4. The joining procedures of radio 

resource scheduler algorithms and smart antennas are discussed in Chapter 5. Finally, our 

conclusions and remarks are given in Chapter 6. Appendix 1 summarizes basics of multi-

objective optimization. Some extra proofs for the spectral radius comparisons are 

presented in Appendix 2. 



Chapter Two Power Control Algorithms 12 
 

CHAPTER TWO 

POWER CONTROL ALGORITHMS 
 
2.1 Introduction 

Power control is essential in mobile communication systems, because it can mitigate the 

near-far problem, increase the system capacity, improve the quality of service, increase 

the battery life of the mobile terminal, and decrease the biological effects of 

electromagnetic radiation. 

The objective of the power control algorithm is to keep the transmitted power (for the 

mobile station in the uplink power control and for base-station in downlink power 

control) at the minimum power required to achieve the target Quality of Service (QoS) in 

the system. 

The QoS of a communication system is a list of requirements to be fulfilled by the 

operator. Some of these terms are the bit error rate (BER) , the data rate, the packet delay, 

the outage probability, etc. In this Chapter we will consider only the BER as an indication 

of the QoS. The BER is directly mapped (depends on modulation type) to the CIR. The 

mapping of fixed CIR to BER is well known and can be found in classical digital 

communication books such as [24] and [50]. For more real situation when the CIR is 

random variable, one should average the BER over the probability density function (pdf) 

of the CIR. The resultant mapping is usually rather difficult [107]. There are different 

approximations for CDMA channels [107],[111].  To generalize as well as to simplify the 

analysis we will use CIR as an indication of the QoS. Multi-rate power control will be 

covered in the next Chapter.    

Before giving a precise mathematical formulation for the optimum power control prob-

lem, some notations and definitions are given. Let the transmitted power control vector be 

a Q-dimensional column vector 1 2[ , ,.., ]QP P P ′=P , where Pi is the transmitted power of 

user i. CIR of user i is denoted by Γi . 

Mathematically the power control problem is formulated as follows:     

Find the power control vector P that minimizes the cost function   
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( )
1

Q

i
i

J P
=

′= = ∑P 1 P                     (2.1)    

subject to              

min

1

,  1,..., ,  1,..., ,i ki
ki Q

j kj i
j
j i

PG i Q k M
P G N

=
≠

Γ = ≥ Γ = =
+∑

        (2.2) 

  and 

min max ,   1, , ,iP P P i Q≤ ≤ ∀ =                                                                  (2.3)

where  

1´ = [1, …, 1] , 

Q =  Number of mobile stations.  

M    = Number of base stations.  

Gkj  =  Channel gain between mobile station j and base-station k, as shown in Figure 

2.1. 

Ni =  The average power of the additive noise at receiver i. Because it results from    

   many sources, it is convenient to represent it as Gaussian white noise with zero 

mean.   

Pmax =   Maximum power, which can be handled by the transmitter. 

Pmin =  Minimum power, which can be handled by the transmitter. 

Γmin
 =  Minimum predefined CIR.  

 

For simplicity, we will refer to user i without using the subscript of its assigned base 

station. For example, we will use iΓ  instead of kiΓ . If the CIR of user i, miniΓ < Γ , and 

the transmitted power Pi = Pmax, then user i (or some other users) has to be dropped from 

this link. Another important factor is the target CIR ( )TΓ . It should be noted that the 

superscript (T) means (Target). The dash (´) is used to indicate transpose operation. The 

difference between the target CIR and the minimum predefined CIR is called CIR margin. 

The target CIR value is determined by the outer-loop power control to achieve certain 

QoS in the cell. The target CIR could be different from user to user because it depends on 

the type of service requested by the user. The multi-services power control will be 

covered in the next chapter.    
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The optimization problem of (2.1)-(2.3) seems to be a simple linear programming 

problem, but this is not totally true due to the fact that the channel gain Gkj and the 

additive noise Ni are not accurately known. The parameters, such as the channel gain, the 

noise and the number of users are time varying, and they change in a random manner. 

Since the power control algorithm should be able to regulate the transmitted power in real 

time, it should be fast convergent and robust. Power control subject is classified in the 

literature into open-loop and closed-loop power control, signal-strength based and CIR-

based power control, centralized and distributed power control, deterministic and stochas-

tic power control, and so on. A brief review of the most well-known power control 

algorithms is given next. 

 

 

2.2 Centralized power control 

If the information of the link gains and the noise levels are available for all users, then the 

centralized power control algorithm can be applied to solve the power control problem 

given in (2.1)-(2.3) perfectly [56].  For noiseless case, Ni = 0, (2.2) becomes 

Figure 2.1. Link geometry and link gain model 

MS i 
MS j 

BS a 
BS b 

Gaj 

Gai 

Gbi 

Gbj 
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i min

1

,     1,..., ,     1,..., .i ki
Q

j kj
j
j i

PG i Q k M
P G

=
≠

Γ = ≥ Γ = =

∑
   (2.4)                        

Equation (2.4) can be written in a matrix form as 

min≥ ΓP HP  (2.5) 

where H is a nonnegative matrix with the following elements 

( )
0          i j

0   i jkjij

ki

G
G

=⎧
⎪= ⎨ > ≠⎪
⎩

H  (2.6) 

 

The problem is how to find the power vector P>0 such that (2.5) is satisfied. Equation 

(2.5) can be written as  

min

1
Γ

⎡ ⎤
− =⎢ ⎥

⎣ ⎦
I H P 0  (2.7) 

The inequality is dropped in (2.7), since equality sign holds for the minimum power 

vector. It is known from linear algebra that a nontrivial solution of (2.7) exists if and only 

if 
min

1
Γ

⎡ ⎤
−⎢ ⎥

⎣ ⎦
I H  is a singular matrix. It is seen from (2.7) that this happens, if 

min

1
Γ

 is an 

eigenvalue of H, and the optimum power vector P is the corresponding eigenvector. The 

power vector P should be positive. Perron-Frobenius theorem [5] says that for a 

nonnegative and irreducible QxQ matrix H there exists a positive vector P associated with 

the maximum eigenvalue 
* ( ) max ,   1,..., ,ii

i Qλ ρ λ= = =H   (2.8) 

where λi is the ith eigenvalue of the matrix H, and ρ(H) is the spectral radius of matrix H. 

Based on this the maximum achievable CIR can be expressed as 

         ( )Hρ
=

λ
=γ

11
*

*  (2.9) 

Now by considering the additive white noise at the receivers, (2.2) can be written in a 

matrix form as 

[ ]T− Γ ≥I H P u                                                                                        (2.10) 

where u is a vector with positive elements ui specified by    
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T

i
i

ki

Nu
G

Γ
= ,    i = 1, …,Q, k = 1, …, M.         (2.11)  

It can be shown [5] that if 
( )
1T

ρ
Γ <

H
, then the matrix [ ]T− ΓI H  is invertible and 

positive.  

In this case, the power vector P*  

 
1* T −

⎡ ⎤= − Γ⎣ ⎦P I H u  (2.12) 

is the solution of the optimization problem posed in (2.1)-(2.3). 

There are neither guarantees that *T γ≥Γ  nor guarantees that the power vector P* is 

within the constraints (2.3). In this case a removal algorithm will be needed to reduce the 

number of users in the cell like the Stepwise Removal Algorithm (SRA) [1]. 

Power control in CDMA mobile communication system will be illustrated by the 

following example. In the example we assume additive Gaussian white noise radio 

channel with propagation loss and shadowing. The received signal power at base station j 

due to user i is assumed to follow power law 

  
10ˆ

jiS

ji i
ji

P P
d α= , (2.13) 

where Sji is the shadowing variable in the path from i-th mobile station to j-th base station 

and it is assumed to be a random variable with log-normal distribution and 5 dB variance. 

dji is the distance between user i and base station j. We assume that all the users are 

uniformly distributed in a circular cell with radius of r = 500 m. The loss factor α is 

assumed to be constant for all users with α=4. Also the variance of the additive white 

noise is assumed to be -120dBm. In the simulations we have calculated the number of 

users, which can achieve the specified CIR. Figure 2.2 shows the number of users (y-axis) 

with the achieved CIR (x-axis) in two cases. In the first case centralized power control 

and in the second case no power control is used. The improvement in the channel capacity 

is clear, when power control has been used. If the target CIR is –15 dB in Figure 2.2, then 

the number of users, which can be supported using centralized power control, is 33. Only 

3 users can be supported, when no power control is used. 
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The result of this example can not be generalized because it shows one scenario of the 

mobile communication system. It gives only a general impression of the importance of 

using power control in CDMA cellular communication systems.  
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The computation of the optimum power vector using the centralized power control 

algorithm needs the link gains of all users. This is computationally intensive; moreover it 

is not feasible particularly in multi-cell cases. Therefore it is common in practice to use a 

distributed power control technique. Centralized power control can be applied to test the 

upper bound performance using a distributed technique in simulation. 

 

2.3 Two-User power control 

The power control problem can be described graphically for a simple case. Consider two 

users within one cell. The first user has the link gain G1(t) and the second user the link 

gain G2(t). The link gains are functions in time due to the dynamical behavior of the 

mobile communication system. Assume that N is the average noise power. Recall the 

optimum power control problem (2.1)-(2.3). The problem is to determine the minimum 

transmitted power vector that satisfies the required QoS. Then, we can write 

Figure 2.2. System capacity with and without power control   
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( ) ( )
( ) ( )

1 1

2 2

TP t G t
P t G t N

≥ Γ
+

 for the first user and 
( ) ( )

( ) ( )
2 2

1 1

TP t G t
P t G t N

≥ Γ
+

 for the second user. 

Solving the previous inequalities we obtain 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

2
1 2

1 1

1
2 1

2 2

T
T

T
T

G t NP t P t
G t G t

G t NP t P t
G t G t

Γ
≥ Γ +

Γ
≥ Γ +

 (2.14) 

In practice, the gains are random variables due to slow fading, and fast fading behavior.  

To solve the system of linear equations (2.14), it is easier to assume that the gains are 

constant, i.e. they are frozen at time t. This is termed snapshot assumption. With that 

assumption the problem can be solved by centralized or distributed linear techniques, as 

we will describe later. Figure 2.3 illustrates the graphical interpretation of power control 

with the snapshot assumption. The shaded area shows the set of feasible power pair 

values to achieve the required QoS. 

  

2.4 Distributed Power Control Algorithms 

For distributed power control, only local information is needed for a specific transmitter 

to transmit the optimum power. The transmitted power of all users can be described 

mathematically as  

P1 

P2 

P1
* 

P2
* 

Figure 2.3. Black area consists of feasible power pair 
values satisfying QoS. 
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  ( ) ( )( )1t t+ =P Ψ P  t=0,1,… (2.15) 

where ( )( ) ( )( ) ( )( )1 ,..., Qt t t ′⎡ ⎤= Ψ Ψ⎣ ⎦Ψ P P P  is the interference function. There are 

different types of interference functions in the literature as we will see later. 

The interference function Ψ(•) is called standard when the following properties are 

satisfied for all components of the nonnegative power vector P [7]: 

• Positivity  ( ) 0>Ψ P ; 

• Monotonicity,  if ( ) ( )  then 0≥ ≥ >P P Ψ P Ψ P ; 

• Scalability, for all ( ) ( )1,   α α α> >Ψ P Ψ P . 

Theorem (1) 

If the standard power control algorithm (2.15) has a fixed point, then that fixed point is 

unique. 

Proof: See [7]. 

Theorem (2) 

If Ψ(P) is feasible, then for any initial power vector Po, the standard power control 

algorithm converges to a unique fixed point *P . 

Proof: See [7]. 

Theorem (3) 

If Ψ(P) is feasible, then from any initial power vector Po, the asynchronous standard 

power control algorithm converges to a unique fixed point *P . 

Proof: See [7]. 

 

2.4.1 Distributed Balancing Algorithm (DBA) 

Zander has proposed a Distributed Balancing Algorithm [1]. The method is based on the 

power method for finding the dominant eigenvalue (spectral radius) and its corresponding 

eigenvector. 

The DBA algorithm is as follows 

 
( )

( ) ( ) ( )

0       

11 1 ,       0,  t=0,1,...,  i=1,...,Qi i
i

P t P t
t

β β

= >

⎛ ⎞
+ = + >⎜ ⎟⎜ ⎟Γ⎝ ⎠

0 0P P   P 0

 (2.16) 

The algorithm starts with an arbitrary positive vector P(0). The CIR level Γi(t) is 
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measured in link i. If the power control is for downlink, then the measurement of the CIR 

is made at the mobile. The result is to be reported back to the base station. The transmitter 

power at the base station is then adjusted according to the DBA in (2.16). If the power 

control is for uplink, then the measurement of the CIR has to be made at the base station. 

The result has to be reported back to the mobile, and each mobile station will adjust its 

transmitted power according to the DBA. Practically, to reduce the feedback bandwidth 

as well as the signaling data, only quantized (one or few bits) CIR is reported. We call 

power control algorithms based on the quantized CIR as totally distributed power control 

algorithms. These types of algorithms will be discussed later.   

Proposition (2.1) 

Using the DBA algorithm (2.16) the system will converge to CIR balance with 

probability one, i.e.,    

( )
( )

*

t

*
it

lim t         t 0,1,...

lim t        i 1,...,Q
→∞

→∞

= =

Γ = γ =

P P
 (2.17) 

where *γ  is the maximum achievable CIR, which is equal to *1 λ . As before, *λ  is the 

spectral radius of the nonnegative matrix H, and *P is the corresponding eigenvector 

representing the optimum transmitted power. 

Proof: See [1] 

It is clear that the DBA uses only local CIR information and utilizes an iterative scheme 

to control the transmitted power. The main disadvantage of the DBA is that its 

convergence speed is not satisfactory. If the allowed speed of the iterations is not high 

enough, then the distributed algorithm may result in an outage probability much greater 

than the optimum value [3]. 

The DBA requires a normalization procedure after each iteration (in noiseless case) to 

determine the transmitted power; hence it is not fully distributed [3].  

 

2.4.2 The Distributed Power Control (DPC) 

It has been shown that the distributed power control scheme for satellite systems can be 

applied to cellular systems [2]. The results presented in [2] indicate that the DPC scheme 

has the potential to converge faster than the DBA scheme at high CIR’s. 

The power adjustment made by the ith mobile at the tth time slot is given by 
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 ( ) ( ) ( )
( )

1                i=1,...,Q,     t 0,1,...i
i

i

P t
P t t

t
β+ = =

Γ
 (2.18) 

where β(t) is some positive coefficient chosen to achieve the proper power control vector 

(not too large or too small). In additive noise environment, it is very common to select 

β(t)= TΓ .  

Proposition (2.2) 

For a system with M ≥ 3 (necessary condition for convergence) that uses the DPC scheme 

of (2.18) with β(t), t ≥ 0 chosen so that  

( ) ( )*

0

lim
tt

t
k

kλ β
→∞

=

< ∞∏ ,                                            (2.19) 

we have  

( ) ( ) ( )* *

0

lim lim
tt

t t
k

t b kλ β
→∞ →∞

=

= ∏P P  (2.20) 

 

( ) *lim ,        i 1, ,Q,it
t γ

→∞
Γ = =  (2.21) 

 

where  b is a positive constant determined by P(0).  

Proof : See [2] 

We can see from proposition (2.2) that as t increases we approach the optimum power 

control *P  multiplied by a common factor.  It is clear that *P  is the eigenvector of the 

gain matrix associated with the largest eigenvalue. β(t) can be selected as follows (in 

noiseless case) 

 ( )
( ){ }Q

1ii tPmax
1t

=

=β  (2.22) 

Equation (2.22) further shows that the DPC algorithm is not a fully distributed algorithm. 

 

2.4.3 Distributed Constrained Power Control (DCPC) 

The transmitted power of a mobile station or a base station is limited by some maximum 

value Pmax. The constrained power control generally takes the following form 
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 ( ) ( )( ){ }max1 min , ,     0,1, 2,...;      1,...,       i iP t P t t i Q+ = Ψ = =P  (2.23) 

where ( ) ,   1,...,i i QΨ ⋅ =  is the standard interference function. The distributed constrained 

power control DCPC algorithm suggested in [6] has the following form 

 ( ) ( )
( )max1 min , ,     0,1, 2,...;      1,...,iT

i
i

P t
P t P t i Q

t
⎧ ⎫⎪ ⎪+ = Γ = =⎨ ⎬Γ⎪ ⎪⎩ ⎭

 (2.24) 

Proposition (2.3) 

Starting with any nonnegative power vector P(0), the DCPC scheme described in (2.24) 

converges to the fixed point *P  of  

 ( ) ( )( ){ }max1 min , ,    0,1, 2,...   Tt t t+ = Γ + =P P HP u  (2.25) 

where u is a vector with positive elements ui specified by (2.11). If the target CIR is 

greater than the maximum achievable CIR, i.e., *T γ≥Γ  then the fixed point *P will 

converge to Pmax. 

Proof : see [6]. 

 

2.4.4 Fully Distributed Power Control (FDPC) Algorithm 

The Fully Distributed Power Control (FDPC) has been proposed in [3]. The FDPC 

algorithm can be specified as follows:  

 

( )

( )
( )( )

( ) ( )

0 1

min ,
1         0 ,  t=0,1,...i

i i
i

t
P t P t

t
ξ

ξ

=

Γ
+ = < < ∞

Γ

P

 (2.26) 

Note that there is one parameter ξ in the above FDPC algorithm. 

Clearly, when ξ → ∞, the FDPC algorithm becomes the fixed power control algorithm 

(i.e., without power control). For very small values of ξ the proposed FDPC reduces to 

the distributed power control DPC algorithm (in noiseless case). The main advantage of 

this algorithm is that no normalization is required as is the case in the other distributed 

algorithms. In simulation part we show that the FDPC fails to converge in dynamical 

channel environment. 

Proposition (2.4) 

If ,*γ≤ξ  then ( ) *
it

tlim γ=Γ
∞→

 for all i. 

Proof: See [3]. 



Chapter Two Power Control Algorithms 23 
 

 

2.4.5 Foschini’s and Miljanic’s Algorithm (FMA) 

Foschini and Miljanic have proposed a simple and efficient distributed power control 

algorithm [4]. The proposed algorithm is based on the following continuous time 

differential equation: 

 ( ) ( )[ ]    , 0,   0T
i iτ β τ β τΓ = − Γ −Γ > ≥  (2.27) 

The steady state solution of the above differential equation for user i is T
iΓ = Γ . 

The speed of the convergence depends on the coefficient β.  

Define the total interference of user i: 

( ) ( ) ( ) ( )
Q

i kj j
j i

I G P Nτ τ τ τ
≠

= +∑  (2.28) 

Then Γi from (2.2) becomes 

 ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

,  1,..., ,  1,..., .ki i ki i
i Q

i
kj j

j i

G P G P
i Q k M

IG P N

τ τ τ τ
τ

ττ τ τ
≠

Γ = = = =
+∑

 (2.29) 

Assuming that Ii(τ) and Gki(τ) are constant, substituting (2.29) into (2.27) gives 

 ( ) ( ) ,     1,..., ,  1,..., .
⎡ ⎤

= − − Γ = =⎢ ⎥
⎣ ⎦

ki i ki i T

i i

G P G P
i Q k M

I I
τ τ

β  (2.30) 

Using (2.28) becomes 

( ) ( ) ( ) ( ) ,  1,..., ,  1,..., .
≠

⎡ ⎤⎛ ⎞Γ
= − − + = =⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑

T Q

i i kj j
j iki

P P G P N i Q k M
G

τ β τ τ τ         (2.31)       

Using matrix notation one can write (2.31) as 

( ) ( )[ ]   .Tτ β τ β= − − Γ +P I H P u  (2.32) 

At the steady state, we have  

 
1* .T −

⎡ ⎤= − Γ⎣ ⎦P I H u  (2.33) 

Proposition (2.5) 

If there is a power vector *P , for which the target TΓ  values are attained, then no matter 

what is the initial ( )0Pi , each of the ( )τiP  evolving according to (2.31) will converge to 
*P  of (2.33). 

Proof: see [4]. 
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The discrete form of (2.31) is  

 ( ) ( )11 1  ,     0,1,...Tt t tβ β
β

⎡ ⎤⎛ ⎞
+ = − + + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
P I Γ H P u  (2.34) 

 and the iterative power control for each user i  is  

 ( ) ( ) ( ) ( ) ( )
1 1 1 ,     0,1, 2,...;      1,...,

1

T

i i
i

P t P t t i Q
t

ββ
β

⎡ ⎤⎛ ⎞Γ
+ = − + = =⎢ ⎥⎜ ⎟⎜ ⎟− Γ⎢ ⎥⎝ ⎠⎣ ⎦

 (2.35) 

 

Proposition (2.6) 

Whenever a centralized “genie” can find a power vector *P  meeting the desired criterion, 

then for ( ],1,0∈β  the solution of (2.35) starting from any initial vector ( )0Pi , converges 

to *P . 

Proof: See [4] 

Actually, the Foschini and Miljanic algorithm is a special case of the general linear 

iterative method of numerical linear algebra, which has been used to solve the distributed 

power control problem [56].  

The power control problem with considerable additive white noise can be described as

 [ ]− =I Γ H P uT  (2.36) 

Now define   

 ,⎡ ⎤− = −⎣ ⎦I Γ H M NT  (2.37) 

  

where M and N are Q×Q matrices, M nonsingular. Then (2.37) could be solved iteratively 

as 

 ( ) ( )1 11 .t t− −+ = +P M NP M u  (2.38) 

This leads to 

 ( ) ( ) ( ) ( )
1

1 1 1 .
tt k

t t
−

− − −

=

= + ∑
k 0

P M N P M N M u  (2.39) 

If ( ) ( )1 1

t
1     then   lim

t
ρ − −

→∞
< →M N M N 0  and since ( ) ( )

1 11 1

0

lim
t k

t k

M N I M N
− −− −

→∞
=

→ −∑ , 

then 
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( ) ( ) ( )1 11 1 Tt
− −− −→ − = −P I M N M u I Γ H u , (2.40) 

which is the solution of power control problem. 

The foregoing analysis shows that for any initial power vector ( )0P , the linear iterative 

method converges with probability one to the fixed point solution *P , providing that the 

spectral radius of ( )NM 1−  is less than one, and that there is a feasible positive solution 

( )
1. ., Ti e

ρ
⎛ ⎞

Γ <⎜ ⎟⎜ ⎟
⎝ ⎠H

. 

Setting  

 1 1,   1 T

β β
⎛ ⎞

= = − +⎜ ⎟
⎝ ⎠

M I N I Γ Η  (2.41) 

in (2.38) results in FMA in (2.34). 

 

2.4.6 Constrained Second Order Power Control (CSOPC) 

Jäntti and Kim have proposed a second order algorithm, which significantly enhances the 

convergence speed of power control [9]. The algorithm is based on the framework of the 

general iterative method shown in (2.38). What differs of the existing algorithms, 

however, is that it has a second –order iterative form given by 

 

( ) ( ) ( ) ( ) ( )( ) ( )max1 min ,max 0, 1 1 ,     1, 2,
T
i

i i i
i

P t P a t P t a t P t t
t

⎧ ⎫⎧ ⎫Γ⎪ ⎪ ⎪⎪+ = + − − = …⎨ ⎨ ⎬⎬Γ⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
 (2.42) 

 

where Pi(0) and Pi(1) are chosen arbitrarily in the range max[0, ]P . The term a(t) is a 

nonincreasing sequence of control parameters, where ( ) 21a1 <<   and ( )lim 1
t

a t
→∞

= . In 

simulations of [9], the following relaxation factor is employed 

 ( ) 11
1.5ta t = +  (2.43) 

Proposition (2.7) If the system is feasible, CSOPC converges to *P . 

Proposition (2.8) If the system is feasible, CSOPC is asymptotically faster than DCPC. 

Proofs: See [9]. 
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2.4.7 Estimated Step Power Control Algorithm (ESPC) 

Perfect estimation of the mobile’s CIR at the base station is assumed in the previous 

distributed power control algorithms. In the existing cellular communication system only 

quantized version of the CIR is available at the mobile station. To reduce the bandwidth 

of the feedback channel only one bit is used to represent the CIR (two or three bits are 

used as repetitive code). In the existing CDMA cellular system, the power control is 

performed as follows:    

1) Measure and estimate the CIR of user i at its assigned BS. 

2) Compare the estimated CIR with the target. 

3) If the estimated CIR is less than the target CIR, then send (+) command to ask the 

mobile to increase its transmitted power by one step. 

4) If the estimated CIR is larger than the target CIR, then send (-) command to ask 

the mobile to decrease its transmitted power by one step. 

From the above steps, it is clear that the MS does not know the actual CIR value at the 

BS. The MS transmitted power follow the instructions of the BS blindly. This type of 

power control is called bang-bang power control or Fixed Step Power Control (FSPC). 

Mathematically, this is represented as (all the values are in dB) 

 ( ), ,( 1) ( ) ( ) ,     0,1,2,...;     1,...,T
i FSPC i FSPC iP t P t sign t t i Qδ+ = + Γ −Γ = =  (2.44) 

where maxmin )( PtPP FSPC ≤≤  is the transmitted power at time slot t, minP  and maxP are the 

minimum and maximum transmitted powers respectively, δ is the step size of the power 

update, TΓ  is the target CIR which is determined by the outer loop power control, and 

)(tΓ  is the measured CIR at time slot t. The sign function is given by 

 ( )
1, 0
1, 0

x
sign x

x
+ ≥⎧

= ⎨− <⎩
 (2.45) 

It is clear from (2.44) that the MS is commanded to increase or decrease its transmitted 

power without detailed information about the channel situation, i.e., the MS does not 

know how large is the difference between the target CIR and the measured CIR.  If the 

measured CIR is much greater than the target CIR then it will take a relatively long time 

to adjust the transmitted power to the proper value to make the actual CIR close to the 

target CIR. This can reduce the performance and the capacity of the system. 

The DCPC algorithm (2.24) can be rewritten in dB scale as 
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 ( ), ,( 1) ( ) ( ) ,     0,1, 2,...;      1,...,T
i DPC i DPC iP t P t t t i Q+ = + Γ − Γ = =  (2.46) 

where min , max( )i DPCP P t P≤ ≤ , and all the values are in decibels. 

It is clear that the DCPC algorithm assumes no quantization distortion so more 

information about the channel is available. For this reason the DCPC performance is 

better than the FSPC algorithm. In this section we introduce a new power control 

algorithm based on the estimation of the difference ( )( )T
i tΓ − Γ  by using one bit 

signaling. We call it Estimated Step Power Control (ESPC) algorithm [93]-[94].  

In what follows we consider only uplink, but the proposed method is applicable also to 

downlink. The ESPC algorithm is based on a simple tracking method, which uses one 

memory location for the previous BS power command.  

Define for all users i=1,…,Q, and t=0,1,2,… 

( ) ( )T
i ie t t= Γ − Γ , (2.47) 

( ), ( ) sign ( )tr i it e tν = ,  (2.48) 

 , ,( ) ( ) ( )i tr i PC it t E tν ν= ,                                                                                       (2.49) 

where  , ( )PC iE t  is 1 with probability , ( )PCE iP t  and -1 with probability ,1 ( )PCE iP t− . 

, ( )PCE iP t  is the probability of bit error in power control command transmission at time t. 

Let the estimate of the error signal ( )ie t  be ( )ie t . We propose a simple form for the 

estimate: 

 [ ]1( ) 1 ( ) ( 1) ( 1) ( )
2i i i i i ie t t t e t tν ν δ ν= + − − + , (2.50) 

where δi is the adaptation step size of user i. The ESPC algorithm is given by 

 , ,( 1) ( ) ( )ESPC i ESPC iP t P t e t+ = + , (2.51) 

where min , max( )ESPC iP P t P≤ ≤ , and all the values are in decibels. Figure 2.4 shows the 

block diagram of the suggested algorithm.  

 



Chapter Two Power Control Algorithms 28 
 

CIR
estimation Σ

Z-1

Z-1

ΣΣ

iδ

1
1
2

( )i tν

( 1)i tν −

Channel losses,
additive noise

and interference

Error

Quantizer

( )ie t
Σ

Z-1
( 1)ie t −

TΓ

( )i tΓ ,tr iν

, ( 1)ESPC iP t +

+
-

, ( )PC iE t

BS

CHANNEL

MS

 
Figure 2.4. Block diagram of the ESPC algorithm 

If we define  

 [ ]
1, ( ) ( 1)1( ) 1 ( ) ( 1)
0, ( ) ( 1)2

i i
i i i

i i

t t
a t t t

t t
ν ν

ν ν
ν ν

= −⎧
= + − = ⎨ ≠ −⎩

 (2.52) 

then, solving (2.50) recursively, we obtain 

 
11

11 0

( ) ( ) (0) ( ) ( ) ( )
t kt

i i i i i i i i
km n

e t a m e t k a t n tδ ν δν
−−

== =

= + − − +∑∏ ∏ . (2.53) 

It is clear that the first term will be zero (after any zero crossing of ( )ie t  or if (0) 0ie = ). 

Then (2.53) can be rewritten as 

 
11

1 0

( ) ( ) ( ) ( )
kt

i i i i i
k n

e t t k a t n tδ ν ν
−−

= =

⎡ ⎤
= − − +⎢ ⎥

⎣ ⎦
∑ ∏  (2.54) 

Define  

 
1

0

( , ) ( )
k

i i
n

c t k a t n
−

=

= −∏  (2.55) 

Substitute (2.55) in (2.54) to obtain 

 
1

1

( ) ( ) ( , ) ( )
t

i i i i i
k

e t t k c t k tδ ν ν
−

=

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
∑  (2.56) 

The first part of (2.56) can be seen as the convolution between the input ( )i tν  and a time-

varying system ( , )ic t k . The statistical properties of ( )ie t  depend on the statistical 
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properties of the channel, interference and the additive noise. The performance of the 

ESPC algorithm can be further improved by using variable step size. The idea is to 

increase the step size if the same command is received 3 consequence times. The 

algorithm is called modified ESPC or ESPC-M. To show the performance of our 

algorithm we introduce the following simulation example. 

2.4.7.1 Simulation Example 
 
As an example, Figure 2.5 shows the estimated error signal versus the actual error signal. 

It is clear that the estimated error signal is close enough to the actual, keeping in mind 

that this estimation is after one bit quantization. More simulations will be given in Section 

2.6.
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 Figure 2.5. Estimated error signal versus actual error signal. 

 

2.4.8 Multi-Objective Distributed Power Control Algorithm (MODPC) 

One of the main contributions in this thesis is a novel power control algorithm based on 

multi-objective optimization in the radio resource management. A brief overview of the 
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multi-objective optimization and its application to fixed rate power control will be given 

in this Section.  

The MO optimization technique is a method to optimize between different (usually) 

conflicting objectives. In the MO optimization problem we have a vector of objective 

functions instead of one scalar objective. Each objective function is a function of the 

decision (variable) vector. The mathematical formulation of a MO optimization problem 

becomes [77]:  

Find x which achieves 

 
( ) ( ) ( ){ }1 2 mmin f , f ,..., f ,

subject to ,∈

x x x

x S
   (2.57) 

where we have m ( ≥ 2 ) objective functions n
if : ℜ → ℜ , x is the decision (variable) 

vector, x ∈ S, S is (nonempty) feasible region (set). The abbreviation min{.} means that 

we want to minimize all the objectives simultaneously. Since usually the objectives are at 

least partially conflicting and possibly incommensurable then there is no single vector x 

minimizing all the objectives. In the MO optimization we have different optimal solutions 

in different sense, and they are called Pareto optimal solutions (see the Appendix for more 

details).  

Definition 1 [77] 

A decision vector S• ∈x  is Pareto optimal if there does not exist another decision vector 

S∈x  such that ( ) ( )i if f ∗≤x x  for all i=1,2,..,m and ( ) ( )j jf f ∗<x x  for at least one index j. 

The Pareto optimal set is the set of all possible Pareto optimal solutions. This set can be 

nonconvex and nonconnected.  

 After the generation of the Pareto set, we are usually interested in one solution of this set. 

This solution is selected by a decision maker. There are different techniques to solve the 

MO optimization problems. One way to solve this kind of problems is to use soft-

computing methods such as genetic algorithms [89]. In this thesis we will concentrate on 

the analytical solutions of the MO optimization problems. One of the techniques to solve 

the MO optimization problem is to convert it to a single objective optimization problem 

as in the Weighting Method [77].  The weighting method transforms the problem posed in 

(2.57) into 
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( )

1

min ,

subject to ,

m

i i
i

fλ
=

∈

∑ x

x S
 (2.58) 

where the tradeoff factors 
m

i=1

0 , i=1,..,m and 1i iλ λ≥ ∀ =∑ .            

The Pareto set can be obtained by solving the single objective (SO) optimization problem 

(2.58) for different tradeoff factor values [77].  

Another important method which is of special interest in the applications of MO 

optimization in RRS is the method of Weighted Metrics [77].  If the optimum solution of 

each objective is known in advance then problem (2.57) can be formulated as 

   ( )
1

1

min ,

subject to ,

m pp

i i i
i

f zλ ∗

=

⎛ ⎞−⎜ ⎟
⎝ ⎠

∈

∑ x

x S

 (2.59) 

where 1 p≤ ≤ ∞ , iz∗  is the desired solution of the objective i, and the tradeoff factors 

m

i i
i=1

0 , i=1,..,m and 1λ ≥ ∀ λ =∑ .            

In this section, we propose to use the MO optimization techniques to solve the single rate 

power control problem (2.1)-(2.3).  

The power control algorithms, which have been described so far are based on a snapshot 

assumption, i.e. the channel parameters as well as the mobile location are assumed to be 

fixed. This assumption is not valid for mobile communication systems due to their 

dynamic behavior. Actually, studying the convergence behavior and the performance of 

the distributed power control algorithms based on the snapshot assumption does not give 

enough information about their behavior in real systems. The reason is that for dynamical 

systems channel parameters, "simply the link gains", changes fast. In some cases, channel 

parameters become uncorrelated after a fraction of a millisecond [12]. These 

characteristics of mobile channels reduce the significance of the snapshot convergence 

property of the power control algorithms.   The work in [100],[101] do not assume the 

snapshot analysis but the resultant power control is relatively difficult to implement in a 

very limited processing power handset. The target QoS is not usually strict but it has 

some margin which is the difference between the target QoS and the minimum allowed 

QoS as described in Section 2.1.  We call any QoS level inside the margin by accepted 
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QoS level. The preferred power control is that can achieve an accepted QoS level very 

fast at low power consumption. The proposed power control algorithm fast achieves an 

accepted QoS level at very low power consumption. The distributed power control 

algorithms use the estimated SINR to update the power. The proposed algorithm in this 

work achieves two objectives by applying multi-objective optimization method. The first 

objective is minimizing the transmitted power and the second objective is achieving the 

target QoS which is represented here by the target CIR. In the next formulation, the power 

control problem has been represented by two objectives as follows: a) Minimizing the 

transmitted power. b) Keeping the SINR as close as possible to some target CIR value. In 

other words, the MO power control algorithm tracks the target CIR, while minimizing the 

transmitted power. The above statement could be interpreted mathematically for user i, 

i=1,…,Q, by the following error function 

( ) ( ) ( )1, min 2, ,    t=0,1,...T
i i i i i ie t P t P tλ λ= − + Γ − Γ  (2.60) 

where 1,0 1iλ≤ ≤  ; 2, 1,1i iλ λ= −  are tradeoff factors of user i, T
iΓ is the target CIR of user i, 

minP  is the minimum transmitted power of the mobile station. The user’s subscript i will 

be dropped from the tradeoff factors and the target CIR for simplicity. But generally each 

user can have different values of tradeoff factors as well as target CIR. Users with 

different values of target CIR (multi-level QoS) will be discussed in next Chapter.  

The above error function (2.60) has been constructed from two objectives. The first 

objective is to keep the transmitted power ( )iP t  as close as possible to the minimum 

power minP . The second objective is to keep the CIR ( )i tΓ  as close as possible to the 

target CIR. It is clear that (2.60) has the form of Weighted Metrics (2.59) method with 

p=1.   

To generalize the optimization over all users and for time window of N slots we define 

the optimization problem as: 

Find the minimum of the cost function 

 ( ) ( )2

1 1

,
Q N

N t
i

i t

J e tς −

= =

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∑∑P  (2.61) 

with respect to the power vector P, where ς  is an adaptation factor, and 1 2 Q = [P ,P ,..,P ]′P .  

Problem (2.60)-(2.61) is a non-smooth optimization problem because of the absolute 

function in (2.60). One of the advantages of using the cost function (2.60) is that it can be 
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used for different tasks, for example, it can be applied to reduce transmitted power, 

achieve some target QoS, increase the throughput, reduce the packet delay, and increase 

the fairness levels as will be shown in next Chapter. 

The absolute function of the first term in (2.60) is not needed because the transmitted 

power can not be less than the minimum. The error function can be modified such as 

( ) ( )( ) ( ) ( )( )1 min 2̂ ,    0,1,...T
i i ie t P t P t t tλ λ= − + Γ − Γ =  (2.62) 

 

where ( ) ( )( )2 2
ˆ T

it sign tλ λ= Γ − Γ , the sign function is defined in (2.45). 

Next we will show how to derive a new power control algorithm, by solving the 

minimization problem of (2.61). Suppose further that the power Pi(t) is described by a 

linear autoregressive model as shown in Figure 2.6 [19]. The transmitted power is  

 ( ) ( ) ( ) ( )
1

,    0,1,...
n

i i i i i
k

P t w k P t k t t
=

′= − = =∑ w X  (2.63) 

where ( ) ( ) ( ) ( ) ( )1  ,  1i i i i i iw w n t P t P t n′ ′= = − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦w X  (2.64) 

′w  means the transpose of w . Observe that Xi(t) contains known, measured values of 

transmitted power. 

 

Substitute (2.63) into (2.62)  and (2.29). Then error ei(t) can be written as 

( )( ) ( ) ( ) ( )
( )1 min 2̂( ) ki i i T

i i i
i

G t t
e t t P t

I t
λ λ

⎛ ⎞′
′= − + − Γ⎜ ⎟⎜ ⎟

⎝ ⎠

w X
w X  (2.65) 

Denote 

Figure 2.6. The autoregressive model of power control
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 ( ) ( )
( )1 2̂: ii

t
i

G t
t

I t
α λ λ

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
 (2.66) 

and using this in (2.65), ei(t) becomes 

 ( ) ( )1 min 2̂( ) T
i t i ie t t P tα λ λ′= − − Γw X  (2.67) 

Minimization of the cost function (2.61) with respect to Pi is now transformed into mini-

mizing with respect to parameter vector w.   

Necessary condition for minimum is for all i=1,…,Q: 

( ) ( )
1

2 0
N

iN t
i

t

e t
e tς −

=

∂
=

∂∑ w
 (2.68) 

From (2.67) 

 ( ) ( )i
t i

e t
tα

∂
′=

∂
X

w
 (2.69) 

Substituting (2.67) and (2.69) into (2.68) we obtain 

 ( ) ( ) ( )( ) ( )1 min 2
1 1

ˆ 0
N N

iN t N t T
i t i i t i

t t

e t
e t t P tς ς α λ λ α− −

= =

∂
′ ′= − − Γ =

∂∑ ∑ w X X
w

 (2.70) 

Solving for wi  

 ( ) ( )( ) ( ) ( )2
1 min 2

1 1

ˆ
N N

N t N t T
t i i i t i

t t

t t P tς α ς α λ λ− −

= =

⎛ ⎞′ = + Γ⎜ ⎟
⎝ ⎠
∑ ∑X X w X  (2.71) 

or 

 ( ) ( ) ( )1 ,  1,...,i xx xN N N i Q−= =w R R  (2.72) 

where 

 ( ) ( ) ( )2

1

:
N

N t
xx t i i

t

N t tς α−

=

′= ∑R X X  (2.73) 

 

 ( ) ( ) ( )1 min 2
1

ˆ:
N

N t T
x t i

t
N P tς α λ λ−

=

= + Γ∑R X  (2.74) 

Formulae (2.72)-(2.74) are well-known from least squares techniques.  

Equation (2.72) can be solved using the Recursive Least Square (RLS) method. To avoid 

the matrix inversion, Rxx(N) may be computed recursively as 
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 ( ) ( ) ( ) ( )21xx xx N i iN N N Nς α ′= − +R R X X  (2.75) 

Since the inverse of Rxx(N) is needed we can use the matrix inverse identity to obtain 

[24], 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 1
1 1

2 1

1 11 1
1

T
xx N i i xx

xx xx T
N i xx i

N N N N
N N

N N N
α

ς ς α

− −
− −

−

⎡ ⎤− −
= − −⎢ ⎥+ −⎣ ⎦

R X X R
R R

X R X
 (2.76) 

Also Rx(N) can be computed recursively as  

 ( ) ( ) ( ) ( )1 min 2̂1 T
x x N iN N P Nς α λ λ= − + + ΓR R X  (2.77) 

The power control algorithm is easy to implement and is also computationally light to be 

applicable for existing wireless communication systems. Next the simplest case, where 

n=1 in (2.63) and N=1, is considered. Solving (2.72) we obtain: 

 ( ) ( )
( ) ( ) ( )

1 min 2

1 2

ˆ
,  1,..., ;  t=1,2,...ˆ1 1

T

i
i i

P t
w t i Q

P t t t
λ λ

λ λ
+ Γ

= =
− + Γ −

 (2.78) 

From (2.63), the transmitted power of user i at time t is given by 

( ) ( )
( ) ( ) ( )

( )1 min 2

1 2

ˆ
1 ,   1,..., ;  1, 2,...ˆ1 1

T

i i
i i

P t
P t P t i Q t

P t t t
λ λ

λ λ
+ Γ

= − = =
− + Γ −

 (2.79) 

Due to the sharp changes in ( )2̂ tλ  sign, the transmitted power in  (2.79) may take 

negative values as well as very large power values which are not part of the power 

feasible subspace. To overcome these problems only the positive values of ( )2̂ tλ  are 

considered, i.e. ( )2 2
ˆ tλ λ= . This simplification has considerably reduced the complexity 

of the MODPC algorithm at slight degradation in the convergence speed. The effect of 

this simplification is shown in Figure 2.37 in Section 2.6.  The MODPC algorithm 

becomes 

( ) ( ) ( ) ( )1 min 2

1 2

1 ,   1,..., ;  1, 2,...
1 1

T

i i
i i

PP t P t i Q t
P t t

λ λ
λ λ

+ Γ
= − = =

− + Γ −
 (2.80) 

It is clear that setting 1 and  0 21 =λ=λ  in (2.79), the DPC algorithm of (2.18) is 

obtained. This means that the DPC algorithm is special case of the MODPC algorithm. At 

the other extreme case where 1 1λ =  and 2 0λ = , the handset transmits at the minimum 

power regardless of SINR situation (no power control). The proper values of the tradeoff 

factors, which could be adaptive, can greatly enhance the performance of the algorithm 
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depending on the scenario. The adaptation of the tradeoff factors makes the system more 

cooperative in a distributed manner as will be shown in Section 2.4.8.2. In terms of MO 

optimization the proper values of the tradeoff factors for certain network condition is 

selected by a decision maker, which determines the optimum point from a Pareto optimal 

set. Simple but efficient decision maker is proposed in this thesis.  

At steady state (i.e. ( ) ( )1 ss
i i iP t P t P+ = = ), Equation (2.80) results in the steady state CIR 

of user i ( )ss
iΓ , which is given by  

( )1
min

2

ss T ss
i iP Pλ

λ
Γ = Γ − −    (2.81) 

One of the key features of the MODPC algorithm can be observed in the steady state 

solution given in (2.81). It is clear that the steady state CIR equals the target CIR when 

the steady state power equals the minimum power. The penalty to be applied of using any 

excessive power is to reduce the steady state CIR. Decision maker should select the 

values of the tradeoff factors in order to guarantee that all users can achieve at least the 

minimum allowed CIR level. In the worst case situation the steady state power is the 

maximum allowed power ( )maxP . The maximum allowed power is determined by the 

power amplifier of the handset. The MODPC algorithm with maximum power constraint 

is given by  

( ) ( ) ( ) ( )1 min 2
max

1 2

min , 1 ,   1,..., ;  1, 2,...
1 1

T
i

i i
i i

PP t P P t i Q t
P t t

λ λ
λ λ

⎧ ⎫+ Γ⎪ ⎪= − = =⎨ ⎬− + Γ −⎪ ⎪⎩ ⎭
 (2.82) 

It is interesting to observe that the transmitted power of MODPC algorithm (2.80) is 

naturally upper bounded such as 

( ) 2
min

1

,   1,...,T
iP t P i Qλ

λ
≤ + Γ =  (2.83) 

We assume that the maximum allowed power ( )maxP  is less than the natural upper bound 

of the MODPC algorithm(2.83). 

Solving for ( 1λ  and 2λ ) using (2.81) and the fact that 1 2 1λ λ+ = (two equations in two 

unknowns) , the values of tradeoff factors are derived such as (assuming minP 0= ) 

T
max min

2 1T T
max min max min

P    ,  
P P

Γ − Γ
λ = λ =

+ Γ − Γ + Γ − Γ
      (2.84) 
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The convergence properties of the MODPC algorithm are discussed in the next. 

 

Proposition (2.9) 

For any P(0)>0, the MODPC  algorithm (2.80) with 1 0λ >  will always converge to a 

unique fixed point P̂ . At 1 0λ =  the feasibility condition is necessary for convergence. 

Proof: 

We will prove that the MODPC algorithm is a standard power control algorithm. Then by 

Theorems 1 and 2 (in Section 2.4) the MODPC algorithm converges to a unique fixed 

point. The interference function ( )( )i tΨ P of the MODPC algorithm for user i is given by 

 ( )( ) ( ) ( ) ( )1 min 2

1 2

1 ,   1,..., ,  t=0,1,...
1 1

T

i i
i i

Pt P t i Q
P t t

λ λ
λ λ

+ Γ
Ψ = − =

− + Γ −
P  (2.85) 

Define the normalized total interference of user i as 

 ( ) ( )
( ) ( ) ( )1

ˆ ,
Q

kj i
i j

j ki ki
j i

G t NI t P t
G t G t=

≠

= +∑P  (2.86) 

The CIR of user i can now be stated as  

 ( ) ( )
( )ˆ ,
i

i
i

P t
t

I t
Γ =

P
 (2.87) 

By dropping t (for simplicity), (2.85)  can be represented as 

 ( ) ( )
( )1 2

ˆ
ˆ

i
i

i

I a
Iλ λ

Ψ =
+

P
P

P
 (2.88) 

where 1 min 2 0Ta Pλ λ= + Γ > .  

From (2.28), it is clear that, for any 

( )i0,      I 0   ≥ ≥P P  (2.89) 

And also if  

 ( ) ( )i i 1 Q
ˆ ˆ  I I ,  where q ,...,q ′⎡ ⎤≥ ⇒ ≥ = ⎣ ⎦P P .   (2.90) 

Since 1 2 10 1; 1≤ λ ≤ λ = − λ  and from (2.88), (2.89) then for any  

 ( )0 0,    1,...,i i Q≥ ⇒ Ψ ≥ ∀ =P P  (2.91) 

So the positivity condition has been proven. 
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The monotonicity condition will be proven by contradiction. Assume that for 

some ( ) ( )i i    ,   1,...,i Q≥ Ψ < Ψ =P P . Then from (2.88) 

( )
( )

( )
( )1 2 1 2

ˆ ˆ
,   i=1,...,Qˆ ˆ

i i

i i

I a I a
I Iλ λ λ λ

<
+ +

P
P

 (2.92) 

( )
( ) ( )

( )
1 2

1 2

ˆ ˆ
ˆ ,   i=1,...,Qˆ

i i
i

i

I a I
I a

I

λ λ

λ λ

⎡ ⎤+⎣ ⎦<
+

P
P  (2.93) 

( ) ( )
( ) ( )

( )
( )

1 2

1 2

ˆ
ˆ

ˆ
ˆ ˆ ,   i=1,...,Qˆ

i
i

i
i i

i

I
I

I
I a I a

I

λ λ

λ λ

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦<
+

P
P P  (2.94) 

But from (2.90) 

 
( ) ( )

( )
( )

1 2

1 2

ˆ
ˆ

ˆ
0 1,   i=1,...,Qˆ

i
i

i

i

I
I

I
I

λ λ

λ λ

⎡ ⎤
+⎢ ⎥

⎢ ⎥⎣ ⎦< <
+

P
 (2.95) 

 

and (2.94) does not hold. Thus the assumption (2.92) is not true. Therefore for any P 

( ) ( )i i  ,   i=1,...,Q≥ ⇒ Ψ ≥ ΨP P       (2.96) 

So the monotonicity condition has been proven. 

Next we prove scalability. 

From (2.86), for any  

( ) ( )ˆ ˆ1 ,    1,...,i iI I i Qα α α> ⇒ ≥ =P P  (2.97) 

The equality is achieved if the additive noise is zero. From (2.88) we get 

 ( ) ( )
( )

( )
( )1 2 1 2

ˆ ˆ
,    1,...,ˆ ˆ

i i

i i

I a I a
i Q

I I
α

α α
λ λ λ λ

Ψ = ≥ =
+ +

P P
P

P P
 (2.98) 

From (2.86), it follows that for 1,α >   ( ) ( )ˆ ˆ ,     i=1,...,Qi iI Iα >P P  thus  

 ( ) ( )
( )

( )
1 2

ˆ
,     i=1,...,Qˆ

i
i i

i

I a
I

α
α α

λ α λ
Ψ > = Ψ

+

P
P P

P
 (2.99) 

Then the scalability condition has been proven.  

From (2.91),(2.96) and (2.99) one can say that the MODPC algorithm is a standard 

interference function. This means that the MODPC algorithm converges to a unique fixed 
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point. If 1 0λ =  the MODPC algorithm is reduced to DPC algorithm. The feasibility 

condition is necessary for DPC algorithm to converge [6]. 

 

Proposition (2.10) 

In the noiseless case, for any P(0)>0 and with proper selection of λ1 and λ2, the MODPC 

algorithm will converge to the CIR balance, i.e. 

 
( )
( )

*

*

lim       0,1,...

lim      0,1,...,  1,...,
t

it

t t

t t i Qγ
→∞

→∞

= =

Γ = = =

P P
 (2.100) 

where γ* is the maximum achievable CIR, and P* is the corresponding eigenvector. 

Proof: 

From (2.88) 

        ( )
( ) ( )

( ) ( ) ( )
1 2 1 2

ˆ ˆ1  ,  i=1,...,Qˆ ˆi i i i
i i

a aP t I t t I t
I t I t

β
λ λ λ λ

+ = = =
+ +

 (2.101) 

Now we have obtained the same form as the DPC algorithm [2]. The convergence proof 

of this algorithm is presented in [2]. For convergence, λ1 and λ2 are chosen so that  

( ) ( )
*

0 1 2

lim ˆ
kk

k
k i

a
I t

λ
λ λ→∞

=

⎛ ⎞
< ∞⎜ ⎟⎜ ⎟+⎝ ⎠

∏  (2.102) 

where λ* is the spectral radius of the non-negative matrix H (see Equation (2.6)). 

 

As indicated in (2.60) and (2.81) there is a penalty to use the power. For this reason the 

MODPC algorithm goes through fewer numbers of iterations than other conventional 

algorithms to converge to the accepted solution. Figure 2.7 shows this property of 

MODPC algorithm. The power path trajectory of the MODPC algorithm and DPC 

algorithm for two users are shown in Figure 2.7. It is clear that the MODPC algorithm 

converges faster than the DPC algorithm to reach to the feasible region. It is indicated in 

Section 2.5 that the MODPC algorithm has less spectral radius than the DPC algorithm. 

This means that the MODPC algorithm is asymptotically faster than the DPC algorithm. 
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Figure 2.7. Comparison of convergence rates of DPC and MODPC. 

 

2.4.8.1 Multi-Objective Totally Distributed Power Control (MOTDPC) algorithm  

The MODPC algorithm, as other distributed algorithms, assumes the availability of the 

actual CIR at the MS. In this section we modify the MODPC algorithm to use an 

estimated CIR rather than the actual CIR. The estimation should be based on few 

quantization bits (worst case one bit) in the feedback channel. The same algorithm as in 

Section 2.4.7 has been applied to estimate the CIR.  

From (2.47)-(2.49) and (2.56), the MOTDPC algorithm is given by 

( )
1

1

( ) ( , ) ( ) ,  t=0,1,...,    i=1,...,Q
t

T
i i i i i

k

t t k c t k tδ ν ν
−

=

⎡ ⎤
Γ = Γ − − +⎢ ⎥

⎣ ⎦
∑  (2.103) 

( ) ( ) ( ) ( )1 min 2

1 2

1 ,   1,..., .
1 1

T

i i
i i

PP t P t i Q
P t t

λ λ
λ λ

+ Γ
= − =

− + Γ −
 (2.104) 

 

where ( )i tΓ  is the estimated CIR. Note that the target CIR is assumed to be known.  This 

is one disadvantage of the MOTDPC algorithm because the target CIR is not fixed but 

adapted by the outer loop power control.  
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2.4.8.2 Soft Dropping Power Control 

If the CIR target can not be achieved for every active user in the cell, i.e. the network is 

overloaded or congested, then the power control problem becomes infeasible. This means 

that no power vector in the allowed power subspace can achieve the required QoS for all 

users. If distributed power control techniques are applied for infeasible systems, then the 

transmitted power of some users will diverge to its maximum value without achieving the 

target CIR. This leads to a high interference in the cell and also in neighbor cells. This 

problem can be mitigated if some connections are dropped (transferred to another less-

loaded cell or switched off). The main challenge here is how to find user terminals which 

have the worst impact on the system capacity. In other words, how to minimize the 

number of dropped connections. The optimal dropping algorithm is NP problem [1][102]. 

Some sub-optimal techniques for connection dropping have been proposed in [1], [25], 

[26],[102],[103].  Some removal algorithms assume a variable CIR target [25]. This is 

called soft dropping power control. In the soft dropping power control minimum and 

maximum target CIR is defined. In this work we have modified the MODPC algorithm 

(2.80) by using adaptive tradeoff parameters (λ1 and λ2) instead of fixed values. If the 

transmitted power of some users reaches the maximum value, then increasing the value of 

λ1 (λ2  =1-λ1) of those users will decrease their targeted CIR. If the achieved CIR of a user 

is less than the minimum target CIR, then that connection will be dropped.  

Define 

( ) ( ) ( ) ( )2, 1,: ;  1 ,     t=0,1,...i i i it t t tξ λ λ ξ= = −  (2.105) 

where ( )i tξ is the tradeoff parameter of user i.  

The algorithm (2.80) could be rewritten as 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )min1 1

1 ,     t=0,1,...
1 1 1 1

T
i i

i i
i i i i

t P t
P t P t

t P t t t
ξ ξ

ξ ξ
− − + Γ⎡ ⎤⎣ ⎦= −

− − − + Γ −⎡ ⎤⎣ ⎦
, (2.106) 

The parameter ( )i tξ  can be updated with the following algorithm:  

( )
( ) ( )
( ) ( )

( )

1 i 1 min

2 i 2 max

1 ,      if P 1 ,
1 ,      if P 1 ,

1 ,       else where,                

i

i i

i

t t P
t t t P

t

α ξ ρ
ξ α ξ ρ

ξ

− − ≤⎧
⎪= − − ≥⎨
⎪ −⎩

 (2.107) 

where α1 is an increasing factor, α2 is a decreasing factor, and ρ1, ρ2 are power factors. 
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If ( )i mintξ < ξ , the connection is dropped. Moreover, if ( )i maxtξ > ξ , then 

choose ( )i maxtξ = ξ .   

Example  

In this example we have simulated the operation of the soft dropping procedure 

represented by (2.106),(2.107). Four linear cells and 130 users uniformly distributed in 4 

km2 are assumed. The following typical values of the coefficients, α1 =1.03, α2  =0.99, ρ1 

=10, and  ρ2 =1 are assumed. The minimum allowed CIR is -16 dB and the target is -14 

dB. The additive noise level is -130 dBm. The dropped connections of this simulation are 

shown in Figure 2.8. It is clear from the figure that the dropped connections are 

distributed around the cell border as expected. 
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Figure 2.8. Dropped connections in highly congested network are marked with diamond. 

 

2.4.9 Kalman Filter Distributed Power Control 

In this Section we propose a novel distributed power control algorithm using Kalman 

filters. It is a well known fact that the Kalman filter is the optimum linear tracking device 

on the basis of second order statistics. This feature motivates us to apply the Kalman filter 
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in this type of applications. Kalman filter has been proposed in the literature recently in 

different applications related to the power control such as in interference estimation and 

prediction [105],[106]; power estimation [104]; and channel gain prediction for power 

control [106]. In this Section we use Kalman filter directly to estimate the best transmitted 

power in a distributed way.  

Although the MODPC algorithm outperforms Kalman filter based power control in terms 

of convergence speed (as shown in Section 2.6), Kalman filter power control has a well-

known linear behaviour which may make it preferred in some applications.  

The power control is considered as linear time-variant first-order Markov model [19]. The 

transmitted  power of user i at time slot t is given by 

( ) ( ) ( )1 1i i iP t w t P t= − −                                                                             (2.108) 

where the weight vector (states)  ( ) ( ) ( )1 ,..., Qt w t w t ′⎡ ⎤= ⎣ ⎦w   can be estimated by solving 

the following state-space equations 

( ) ( ) ( ) ( )1 1 1t t t t= − − + −w F w q , (2.109) 

( ) ( ) ( ) ( )t t t t= +y G w v ,                                                                                (2.110) 

where F(t) is the transition matrix, the state vector w(t) represents the tap-weight vector at 

time slot t,  q(t) is the process noise, y(t)  is the desired QoS response, G(t) is the 

measurement matrix, and  v(t) is the measurement noise. q(t) and v(t) are assumed to be 

zero-mean white noise with covariance matrices ( ) ( ),  and o ot q t ν= =Q I R I  respectively.  

To solve the problem in a distributed manner (i.e. each user updates its power based on 

local information), we have designed the matrices F and G in diagonal forms, such as 

 ( )

( )
( )

( )

1

2

0 0
0 0

0 0
0 0 Q

g t
g t

t

g t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

G  (2.111) 

where gi(t) is the CIR of user i at time slot t, i.e. ( ) ( )
( )ˆ

i
i

i

P t
g t

I t
= .  

The transition matrix F(t) is given by 
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 ( )

( )
( )

( )

1

2

0 0
0 0

0 0
0 0 Q

f t
f t

t

f t

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

F  (2.112) 

where ( ) ( )
( )

1
1 i

i
i

g t
f t

g t
−

− = .  

Assuming that all users have the same QoS, the desired system response is given by  

 ( ) '
, , ,T T Tt ⎡ ⎤= Γ Γ Γ⎣ ⎦y  (2.113) 

To explain the proposed state space representation of the power control, assume the 

measurement noise and the process noise equal to zero.  For one user i (scalar form), 

(2.109) and (2.110) are given by 

( ) ( )
( ) ( )1

1i
i i

i

g t
w t w t

g t
−

= −  (2.114) 

( ) ( )T
i ig t w tΓ =                                 (2.115) 

In power control, the optimum transmitted power is determined to achieve the target CIR 

in the next time slot. From (2.108), the next time slot CIR can be predicted as   

( )( 1) ( )i i ig t g t w t+ =   (2.116) 

From (2.114)-(2.116), the adaptation weight is computed to achieve the target CIR in the 

next time slot. The modeling error (process noise) and the measurement noise should be 

taken into consideration to complete the state space modeling. Kalman filter is used to 

estimate the optimum adaptation weight ( )iw t  in order to make the next time slot CIR 

very close to the target CIR.  

A. Kalman filter algorithm 

Kalman filter algorithm is specified by the following equations [20]: 

Let C(0) be the initial error covariance and w(0) the initial weight vector. Then for 

t=0,1,2,….   

( ) ( ) ( ) ( )ˆ ˆ1 1   weight extrapolation ,t t t− += − −w F w  (2.117) 

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1  error covariance extrapolation ,t t t t t− + ′= − − − + −C F C F Q  (2.118) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1
Kalman gain ,t t t t t t t

−− −′ ′⎡ ⎤= +⎣ ⎦K C G G C G R  (2.119) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ  weight update ,t t t t t t+ − −⎡ ⎤= + −⎣ ⎦w w K y G w  (2.120) 

( ) ( ) ( ) ( ) ( )  error covariance update ,t t t t+ −= −⎡ ⎤⎣ ⎦C I K G C  (2.121) 

The algorithms in (2.117)-(2.121) can be solved in scalar form, since all the matrices are 

in diagonal form. 

Proposition (2.11) 

In feasible systems with snapshot assumption, using the proposed Kalman filter power 

control, all users will approach their CIR targets. 

Proof. 

From (2.117), (2.120) , the weight update equation for user i can be represented as 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ1 1 1 1

ˆ ˆ          1 1 1 1 .

T
i i i i i i i

T
i i i i i

w t f t w t K t g t f t w t

f t w t K t g t w t

+ + +

+ +

⎡ ⎤= − − + Γ − − −⎣ ⎦
⎡ ⎤= − − + Γ − − −⎣ ⎦

 (2.122) 

At steady state, let  

( ) ( ) ( ) ( )i i iˆ ˆ ,    K ,  g ,  and fs s s s
i i i i iw t w t K t g t f+ = = = =  . (2.123) 

Then 
s
i

s
i

Kˆ ˆ ˆ .
1 K

T
s s s s T s s
i i i i i i s s

i i

w f w K g w
f g

Γ⎡ ⎤= + Γ − =⎣ ⎦ − +
 (2.124) 

Since at steady state, 1s
if = , the steady-state weight becomes 

 ˆ .
T

s
i s

i

w
g
Γ

=  (2.125) 

For user i, the CIR becomes 

 
ˆ

.
s s

s Ti i
i s

i

w P
I

Γ = = Γ  (2.126) 

 

The convergence properties of the Kalman filter depend on the values of the covariance 

matrices. From (2.121) the error covariance equation can be represented as  

 ( ) ( ) ( )( ) ( ) ( )( )2
01 1i i i i iC t K t g t f t C t q+ += − − + , (2.127) 

where the Kalman gain (2.119) in scalar form is represented as 

 ( )
( ) ( )( ) ( )

( ) ( ) ( )

2

2 2

1 1
1 1

i i o i
i

i i i o o

f t C t q g t
K t

g t C t g t q v

+

+

− − +
=

− − + +
 (2.128) 

By substituting (2.128) into (2.127), one obtains 
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( ) ( ) ( )
( ) ( ) ( )

2

2 2

1 1
1 1

i i o o o
i

i i i o o

f t C t v q v
C t

g t C t g t q v

+
+

+

− − +
=

− − + +
 (2.129) 

At steady state, one obtains  

( )
s
i 2C 1 4

2 2
o o o

s
o i

q q v

q g
= − + +  (2.130) 

We are interested in the nonnegative solution, because the variance ( )iC t+  of uncertainty 

is, by definition, nonnegative [20]. From(2.130), if the factor vo/qo is small then faster 

convergence can be achieved [20]. 

B. Convergence 

The convergence properties of the Kalman filter depend on the values of the covariance 

matrices. The convergence speed is important issue in power control due to the dynamical 

behavior of the mobile communication system. Unfortunately, it is rather difficult to find 

an analytical expression for the convergence speed of the Kalman filter because of the 

time varying nature of the system. The performance analysis of the Kalman filter depends 

on solving the Riccati equations. It is possible to simulate the Riccati equations without 

computing the state estimates themselves. This gives us a good indication of the 

convergence speed of the algorithm. The discrete-time Riccati equation is the solution of 

the following equation [20] 

( ) ( ) ( )11 1 1t t t− −+ = + +C A B , (2.131) 

where  

( )
( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( )( )

( )
( )

1 1 1

1 1 1

1
1

t t t t t t t tt t
t t

t t t t t

− − −

− − −

⎡ ⎤⎛ ⎞′ ′′+⎜ ⎟⎢ ⎥+⎡ ⎤ ⎡ ⎤⎝ ⎠= ⎢ ⎥⎢ ⎥ ⎢ ⎥+ ⎢ ⎥⎣ ⎦ ⎣ ⎦′ ′′⎢ ⎥⎣ ⎦

F Q F G R G Q FA A
B B

F G R G F

 (2.132) 

 

2.5 Convergence Speed Comparison of Power Control Algorithms 

The convergence speed of a power control algorithm is an important factor in the 

selection of the optimum power control algorithm for a wireless communication system. 

In this section, the power control algorithm will be defined as a contraction mapping. 

Equation (2.15) is in the form of contraction mapping. The convergence analysis of 

contraction mapping can be applied to (2.15).  Suppose that, the power control algorithm 



Chapter Two Power Control Algorithms 47 
 

is feasible, i.e. ( )* *=P Ψ P  and      1, . . . ,T
i i QΓ = Γ ∀ = , where 

* * *
1 ,...., QP P ′⎡ ⎤= ⎣ ⎦P  is the optimum power vector, and that the partial derivatives  

( ) ( )i i i
ij

j

P ,
d           1 i,j Q

P
∂Ψ Γ

= ≤ ≤
∂

P  (2.133) 

exist for { }*  where = :∈ℜ ℜ − < ρP P P P and ρ  is a positive constant. Let D(P) be 

Q×Q matrix with elements ( )ijd P . A necessary condition for (2.15) to converge is that 

the spectral radius of  D(P*), ( ){ }*D⎡ ⎤ρ ⎣ ⎦P ,   is less than or equal to 1.  Define a constant 

m >0 such that  

( )D m 1      ρ ≤ < ∈ℜ⎡ ⎤⎣ ⎦P P  (2.134) 

The rate of convergence depends linearly on m, and we have [87] 

( ) ( )* *1t m t+ − ≤ −P P P P  (2.135) 

From (2.134) and (2.135), we may use the spectral radius of the matrix D(P) as an 

indication of the asymptotic average rate of convergence. Similar results with different 

methodology are presented in [56]. 

We will compare the convergence speeds of four different power control algorithms: 

DBA, DPC, FMA, and MODPC algorithms. 

Starting with DBA algorithm, it is clear that (2.16) has the form of contraction mapping 

represented by (2.15). The elements of matrix D(P) are defined in (2.133). By taking 

partial derivatives of the right hand side of (2.16) we obtain  

( ) { }
DBA

kjij

ki

                          i=j
Gd

   i j , k 1,2,..M
G

β⎧
⎪= ⎨β ≠ ∈⎪
⎩

P   (2.136) 

In the case of DPC algorithm (2.18), The elements of matrix D(P) are 

( ) { }
DPC

kjij T

ki

0                          i=j
Gd

   i j , k 1,2,..M
G

⎧
⎪= ⎨Γ ≠ ∈⎪
⎩

P  (2.137) 

In the case of FMA algorithm (2.35), The elements of matrix D(P) are 
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( )
( )

{ }
FMA
ij kjT

ki

1-                           i=j
d G

   i j , k 1,2,..M
G

⎧ β
⎪

= ⎨
βΓ ≠ ∈⎪

⎩

P  (2.138) 

In the case of MODPC algorithm (2.80), The elements of matrix D(P) are 

( )
( )

{ }2

1

2

0                        i=j
1   i j , k 1,2,..M

ˆ 1

kjTMODPC
ij

ki
i

G
d G

I tλ
λ

⎧
⎪
⎪Γ ≠ ∈= ⎨

⎡ ⎤⎪ +⎢ ⎥⎪ ⎣ ⎦⎩

P  (2.139) 

Note that in (2.139) we have put Pmin=0 for simplicity. 

The spectral radius of a nonnegative matrix A is less than the spectral radius of a 

nonnegative matrix B if A<B. The convergence rates of the algorithms can be analyzed 

by comparing the matrix elements in (2.136), (2.137), (2.138) and (2.139). From (2.136) 

and (2.137), one can say that if 
T

T1
Γ

β =
+ Γ

 then ( ) ( )DBA DPC>D P D P  which means that 

DPC algorithm is faster than DBA algorithm (different proof for this result is given in 

Appendix 2).  From (2.138), if β =1, we get the same convergence rate as DPC. For 

( )0,1β∈ , the DPC algorithm will be faster than FMA algorithm. The comparison 

between the convergence rates of DBA and FMA algorithms depends on the selection of 

the parameters β  and β . Finally, from (2.139), it is clear that 

( ) ( )MODPC DPC
ij ijd d   1<i,j<Q≤P P  with equality at 1 0λ = . Thus we can conclude that 

MODPC algorithm is faster than the DPC algorithm. 

To compare the convergence speed by simulation, consider 20 randomly distributed users 

in 1 Km2 area with one base station. The average additive noise power is -90 dBm, the  
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DBA parameter 
T

T1
Γ

β =
+ Γ

 and the FMA parameter β =0.9. The average transmitted 

power using the described algorithms is shown in Figure 2.9. 

 

2.6 Simulation Results 

To show the effectiveness of the proposed algorithms, we will compare our algorithms 

with different power control algorithms summarized in the beginning of this Chapter by 

simulation. Two scenarios have been performed by simulations. We assumed 120 users 

uniformly distributed in an area of 4 km2 with four base stations. Perfect handover is 

assumed where each user is assigned to the base station with the least gain loss. An 

additive white Gaussian noise is assumed with zero mean and -120dBw variance. The 

channel is assumed static. In the second scenario, the same parameters as the first 

scenario are assumed with more realistic mobile channel including slow fading and the 

fast fading.  
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Figure 2.9. Convergence speed comparison of different power control 
algorithms 
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The first scenario shows the convergence behaviors of different power control algorithms. 

Since we will compare 10 different power control algorithms, it will be difficult to put the 

results together in the same Figure. The results of each power control algorithm will be 

given in a separate Figure. We will join more than one result in one Figure to clarify 

certain properties. The results of each algorithm have been represented by the norm of the 

error and the outage percentage. The error is defined as the difference between actual 

transmitted power vector of the power control algorithm and the optimum power vector. 

The optimum power vector is calculated using the centralized power control algorithm. 

The outage percentage is computed by counting the number of slots when the CIR of a 

user is less than the minimum allowed CIR (CIR threshold). The minimum allowed CIR 

has been set to 3 dB less than the target CIR. The target CIR is set to 18T dBΓ = − . Also 

the average transmitted power in dB is given for each power control algorithm in Tables 

2.1 and 2.2. The power control algorithms that have been discussed are classified to 

distributed algorithms and totally distributed algorithms. The first group of results will be 

for the distributed algorithms and the second group is for the totally distributed 

algorithms.  

Figure 2.10 shows a sample of the mobile-base stations distribution of the scenarios. 

Figure 2.11 displays the error norm and the outage of the system using distributed power 

control algorithm.  It is clear that the power has converged to the optimum power at about 

time slot number 10. The outage is zero after time slot number 3. In this scenario, the 

distributed balancing algorithm and the fully distributed algorithm have very close 

characteristics of the DPC. Figure 2.14 presents the convergence behavior of the Foschini 

and Miljanic power control algorithm which is slower than the DPC. The coefficient β 

has been set to 0.75. Figure 2.15 shows the results of second order power control 

algorithm. The power of SOPC converges faster than the DPC but slower from outage 

point of view. Figure 2.16 displays the proposed multi-objective distributed power control 

algorithm. It is clear that the MODPC algorithm has faster convergence than the DPC in 

both power and outage. Figure 2.17 presents both DPC and MODPC algorithms for easier 

comparison. Figure 2.18 shows the second proposed Kalman power control algorithm. 

The KDPC has close characteristics to DPC algorithm. The simulation results of the 

totally distributed power control algorithms are (as expected) worse than the distributed 

power control algorithms. Figure 2.19 displays the convergence behavior of the 
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conventional fixed-step power control FSPC algorithm. Figure 2.20 displays the 

convergence behavior of the ESPC algorithm. The steady state adaptation size is 0.3. It is 

clear that the proposed Estimated Step Power Control ESPC algorithm outperforms the 

FSPC algorithm in both power and outage convergence characteristics. Figure 2.21 shows 

the convergence behavior of the fourth proposed algorithm which is an extension of the 

MODPC algorithm. 

 

It is clear that the transmitted power converges in a very fast manner compared with other 

totally distributed algorithms. Table 1 indicates the average transmitted power of the 

different studied power control algorithms.  

Table 2.1 indicates that the average consumption power of the proposed algorithms is less 

than the average consumption power of the other algorithms. In distributed algorithms the 

average consumption power of MODPC algorithm is -13.08 dBw whereas in DPC it is     

-10.07dBw. There is also tremendous power saving when we compare MOTDPC (-11.46 

dBw) and FSPC (-2.33 dBw). 

More realistic dynamic channel characteristics are assumed in the second scenario. To 

show the dynamics of transmitted power, we show the optimum power as well as the 

actual power of a randomly selected user. Figure 2.22 shows an error norm, a transmitted 

power and an outage using DPC algorithm. The fluctuations in the outage are due to the 

channel dynamics. Figure 2.23 displays the results of the DBA algorithm. As expected the 

results are close to the DPC algorithm results. The FDPC algorithm fails to converge to 

the optimum transmitted power in dynamically fluctuated channels as presented in Figure 

Power  

Control 

Algorithm 

DPC DBA FDPC FMA SOPC MODPC KDPC FSPC ESPC MOTD

PC 

Average 

transmitted 

power 

(dBw) 

-10.07 -9.89 -10.07 -7.95 -10.27 -13.81 -12.08 -2.33 -5.88 -11.46 

Table 2.1. Transmitted power comparisons for the first scenario 
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2.24. It is clear that the outage approaches 90% in this case. Figures 2.25, 2.26 show the 

results of the SOPC and F&MPC algorithms respectively. Figure 2.27 displays the results 

of the MODPC algorithm. It is clear that the MODPC algorithm converges to the 

optimum solution. The Kalman distributed power control algorithm can converge to the 

optimum solution in a dynamic channel case suggested in Figure 2.28. In this scenario, 

the DPC algorithm has the fastest convergence rate of the conventional algorithms 

(Figures 2.22-2.26). Kalman distributed power control algorithm has almost the same 

convergence rate as the DPC algorithm. The MODPC algorithm converges considerably 

faster than the DPC algorithm in terms of Error norm and transmitted power. In terms of 

outage the MODPC performs as well as DPC. Figure 2.29 shows these comparison 

results.   The results of the totally distributed algorithms are shown in Figures 2.30-2.32. 

From the results it is clear that both proposed totally distributed algorithms (MOTDPC 

and ESPC) converge faster than the conventional FSPC algorithm in terms of transmitted 

power and Error norm. Considering outage, the FSPC performs better than the proposed 

algorithms.  Direct comparison is shown in Figure 2.33.  Table 2.2 indicates another very 

important term of comparison which is the average consumption power. The MODPC has 

the least power consumption compared with all other power control algorithms. Also the 

proposed algorithms for the totally distributed power control consume considerably less 

average power than the conventional FSPC algorithm. From these results we can 

conclude that for distributed algorithms the MODPC algorithms outperform the other 

studied algorithms in terms of convergence speed and power consumption. The second 

advantage of the MODPC algorithm is that it needs no more resources than the 

conventional DPC algorithm. The MODPC is also simple to realize and to test. For the 

totally distributed systems, the MOTDPC algorithm outperforms the conventional FSPC 

algorithm in terms of convergence rate of power and power consumption. But it suffers 

from higher outage compared with the FSPC.  

More simulations have been carried out on the ESPC algorithm. As described in Section 

2.4.7 the ESPC tries to estimate the error signal from the ON-OFF power commands. 

Figures 2.34 and 2.35 show the cumulative distribution function (CDF) of Eb/No, at the 

receiver for three different power control algorithms.  The algorithms are the FSPC, 

DCPC and the suggested ESPC. The target SNR is 6 dB. The maximum speed of users in 

Figures 2.34 is 5 km/h, and the adaptation factor δ = 0.1. It is clear that the ESPC 
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algorithm performance is considerably better than that of the FSPC algorithm. The 

interesting feature of the ESPC algorithm is that it uses the same signaling information of 

the FSPC algorithm. In Figure 2.35, we present the situation in a fast fading environment 

where the maximum speed of users is 30 km/h. It is clear that the performance of the 

ESPC degrades (as expected) with fast fading environment.  More detailed analysis can 

be found in [94]. The power control command errors impact on the totally distributed 

power control algorithms have not been considered in this Section. To see the impact of 

power control errors on the MOTDPC algorithm, one simulation example is shown in 

Figure 2.36. Different command error probabilities are used to investigate the MOTDPC 

algorithm robustness. It is clear that as the power control error probability increases the 

performance of the MOTDPC algorithm decreases, but still converges to the correct 

direction.  The original MODPC algorithm (2.79) has been simplified to (2.80) by 

removing sharp changes in the sign of 2λ . Figure 2.37 shows a comparison between the 

original MODPC and the simplified version. It is interesting to see that the simplified 

MODPC performs generally better than the original one. The reason is that, in the original 

MODPC one may obtain a negative sign of the power or even very large values, these 

values are removed because the power values are limited between minimum and 

maximum values. This removing of the undesired power values reduces the performance 

of the original MODPC algorithm. 

 

Power  

Control 

Algorithm 

DPC DBA FDPC FMA SOPC MODPC KDPC FSPC ESPC MOTDPC 

Average 

transmitted 

power 

(dBw) 

-15.66 -15.56 -16.11 -14.00 -16.08 -19.82 -15.75 -8.40 -10.21 -11.15 

Table 2.2. Transmitted power comparisons for the second scenario 
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Figure 2.10. The MS-BS configuration. 

Figure 2.11. Error norm and the outage of DPC algorithm. 
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Figure 2.12. Error norm and outage of DBA algorithm. 

Figure 2.13. Error norm and outage of FDPC algorithm. 
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Figure 2.14. Error norm and the outage of FMA algorithm. 

Figure 2.15. Error norm and the outage of SOPC algorithm. 
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Figure 2.16. Error norm and the outage of MODPC algorithm. 

Figure 2.17. Error norm and the outage of DPC and MODPC algorithms. 
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Figure 2.18. Error norm and the outage of KDPC algorithm. 

Figure 2.19. Error norm and outage of FSPC algorithm. 
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Figure 2.20. Error norm and outage of ESPC algorithm. 

Figure 2.21. Error norm and outage of MOTDPC algorithm. 
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Figure 2.22. Error norm, transmitted power and outage of DPC algorithm. 

Figure 2.23. Error norm, transmitted power and outage of DBA algorithm. 
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Figure 2.24. Error norm, transmitted power and outage of FDPC algorithm. 

Figure 2.25. Error norm, transmitted power and outage of SOPC algorithm. 
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Figure 2.26. Error norm, transmitted power and outage of FMA algorithm. 

Figure 2.27. Error norm, transmitted power and outage of MODPC algorithm. 
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Figure 2.28. Error norm, transmitted power and outage of KDPC algorithm. 

Figure 2.29. Error norm, transmitted power and outage comparison. 
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Figure 2.30. Error norm, transmitted power and outage of FSPC algorithm. 

Figure 2.31. Error norm, transmitted power and outage of MOTDPC algorithm. 
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Figure 2.32. Error norm, transmitted power and outage of ESPC algorithm. 

Figure 2.33. Error norm, transmitted power and outage comparison. 
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Figure 2.34. Cumulative distribution function (CDF) of the Eb/I0 at the receiver, max. 

mobile speed is 5 km/h. 
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Figure 2.35. Cumulative distibution function (CDF) of the Eb/I0 at the receiver, max. 

mobile speed is 30 km/h. 
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               Figure 2.36. The MOTDPC algorithm with different PC error probabilities 
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Figure 2.37.  Comparison between the original and the simplified MODPC algorithms. 
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CHAPTER THREE 
 
COMBINING POWER AND RATE CONTROL IN 

WIRELESS COMMUNICATION SYSTEMS 
 
 
 

3.1 Introduction 

The radio resource management (RRM) is a very essential component in wireless 

communication network. The RRM contains many sub-blocks like the connection 

admission controller, the traffic classifier, the radio resource scheduler, and the 

interference and noise measurements [82]. The main operation of the RRM is to manage 

the different available resources to achieve a list of target Quality of Services (QoS). The 

Radio Resource Scheduler (RRS) is an essential part of the RRM (see Section 1.2). The 

RRS has two important radio resources to control: mobile station (MS) transmitting 

power and transmitted data rate. The RRS uses those two resources to achieve different 

objectives like maximizing the number of simultaneous users, reducing the total 

transmitting power, and increasing the total throughput. The conventional way to achieve 

these objectives is to select one of them as a target to optimize and use other objectives as 

constraints. Novel algorithms based on Multi-Objective (MO) optimization and Kalman 

Filter techniques are proposed in this Chapter. Here we address the problem as how to 

combine both the power and the rate in an optimum way. 

Shannon shows by his famous equation that the information rate is an increasing function 

in the signal to interference and noise ratio (see (4.89)). Increasing the information rate is 

generally very desirable in data communication systems but it is restricted by the SINR. 

Increasing the SINR can be achieved in two ways. The first way is by reducing the total 

interference and noise affected by that user. This depends on some characteristics of the 

noise and the interference. For example, if the structure of the interference from other 

users is known at the receiver then by applying one of the multi-user detection methods, 

that interference can be reduced.  Also if the users are spatially distributed then the 

interference can be reduced by using a multi-antenna system (see Chapter 4).  If the users 

concurrently use the channel (as in DS-CDMA) then the interference can be reduced by 
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using power control techniques. From previous studies we can see that some 

characteristics of the interference are assumed to be known or can be controlled. There 

are many sources of interference and noises that can not be reduced by the first way such 

as thermal noise, interference from other cells and many other sources of noise.  The 

second way of increasing the SINR is simply by increasing the transmitted power. In a 

single user communication (point to point) or in broadcasting, this can be an acceptable 

solution and the main disadvantages are the cost and the nonlinearities in the power 

amplifiers. But in multi-user communication environment increasing the transmitted 

power means more co-channel and cross-channel interference problems. 

Controlling the data rate as well as the transmitted power is an important topic in modern 

communication systems. The adaptive rate features are not needed for communication 

systems which are designed mainly for voice communication as in 1G and 2G cellular 

systems. In these systems the target SINR is specified, and the data rate is fixed and only 

the power is controlled as in IS-95. The modern communication systems (2.5G, 3G) are 

supporting the multi-rate data communication because they are designed not only for 

voice communication but also for data and multimedia communication. An efficient 

combining algorithm for the power control and the rate control is required for these 

systems. The term efficient here means how one can optimize between the transmitted 

power and data rate to meet the required specifications. 

There are many proposed combining algorithms for the power and rate control in the 

literature. The specifications of those algorithms are quite varied. Some algorithms 

suggest maximizing the throughput; others minimizing the packet delay or minimizing the 

total power consumption.  

Although our analysis in this Chapter can be applied for different communication 

schemes, we will concentrate mostly on the UMTS specifications.  

The 3G mobile communication systems support the multi-rate transmission. There are 

mainly two methods to achieve the multi-rate transmission, the multi-code (MC) scheme 

and the variable-spreading length (VSL) scheme [73].  In UMTS the VSL scheme is 

called orthogonal variable spreading factor (OVSF) scheme. In MC-CDMA system, all 

the data signals over the radio channel are transmitted at a basic rate, Rb. Any connection 

can only transmit at rates mRb, referred to as m-rate, where m is a positive integer. When 

a terminal needs to transmit at m-rate, it converts its data stream, serial-to-parallel, into m 
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basic-rate streams. Then each stream is spread by using different and orthogonal codes 

[72]. In VSL-CDMA system, the chip rate is fixed at a specified value (3.84 Mcps/s for 

UMTS) and the data rate can take different values. This means that the processing gain 

(PG) is variable. The processing gain can be defined as the number of chips per symbol. 

In UMTS, the processing gain (or the spreading factor) in the uplink can take one of the 

following values {4,8,16,32,64,128,256}[64]. The smallest spreading factor is equivalent 

to channel bit rate 960 Kb/s and the largest spreading factor is equivalent to channel bit 

rate 15Kb/s [64]. In many situations the performance of VLS-CDMA systems is preferred 

to MC-CDMA systems [73].  

3.2 Optimal Centralized Power and Rate Control 

In this Section, we will introduce an optimal methodology to find rate and the power 

values which achieve certain requirements. Since the computational cost of this method is 

very intensive, it is not possible to be implemented practically. In small dimensional 

problems it can be used for comparison purposes.  Consider an uplink cellular cell with Q 

number of users.  Each user has a set of m transmission rates { }1 2, ,...., mr r r=Μ , ri≥0, 

i=1,2,….,Q,  to choose from. The space of the achieved rates in the cell can be denoted as 

{ }1 2, ,...., κ=Ν n n n , where nj is the jth vector of allocated rates of users, 

{ }1 2, ,...,j j j j
Qn n n=n , { } { }  1,...,  1,...,j

in i Q and j κ∈Μ ∀ ∈ ∈ , where Qmκ ≤ .  Each rate 

vector can be associated with power vector which contains the transmitted power values 

required to achieve the rates. By defining the objective we can select the optimum power 

and rate vector. For example, if the objective is to maximize the total transmission rates, 

then the optimum rate vector is the maximum sum vector in the space N. For 20 users and 

8 data rates values, there are more than 1810 possible rate combinations that can be 

obtained in the set N (NP problem). This number is only for one time slot. One can see 

the complexity to find the optimal solution even when an efficient searching technique is 

used. 

Example 

To explain the optimal algorithm and how the solutions could be computed, assume a 

mobile communication system with two users. Each user can send at one of three 

available data rates. Assume snapshot assumption with channel gain of  -80 dB and -95 

dB, respectively. The data rates which each user can select from are {15,60,180}Kb/s. 
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The target SINR is fixed for both users at 7dB. The additive noise has zero mean value 

with -80 dB variance. The modulation type is assumed to be VLS-CDMA. 

The space of the achieved rates of users contains 23 9=  pairs, namely 

N={(15,15),(15,60),(15,180),(60,15),(60,60),(60,180),(180,15),(180,60),(180,180)} kb/s. 

The required transmitting power of users to meet these rates can be easily computed using 

a modified version of equation of (2.12) with different target CIR values (see Section 

3.4). The space of transmitted power pairs needed to achieve the data rate space N is 

Tp={(0.020,0.633),(0.021,2.529),(0.024,7.609),(0.080,0.669),(0.085,2.687),(0.098,8.161)

,(0.241,0.768),(0.258,3.115),(0.307,9.711)}. Now we can select the optimum solution 

based on the required objectives. If there are no power constraints and the objective is to 

get the highest data rate then the 9th solution is the optimum one. If the maximum 

transmitted power is 1 Watt, and the objective is to get the highest total data rate, then the 

7th solution is the optimum one. If there is no power constraint but the objectives are the 

minimum total power and the data rate of second user should be greater than 20 Kb/s, 

then the 2nd solution is the optimum.  

   

3.3 Maximum Throughput Power Control (MTPC) Algorithm 

 This algorithm has been suggested in [74]. The algorithm is based on the maximization 

of the total throughput in a cellular system. There is no need to generate all solutions in 

this method. Since the link gains and the interference of other users are required to 

calculate the transmitted power of each user, the MTPC algorithm is a centralized 

algorithm. The throughput of user i can be approximated when M-QAM modulation is 

used by  

 ( )2logi iT = Θ+ Γ  (3.1) 

where Ti is the throughput of user i, Θ  is a constant, and iΓ  is the CIR of user i, which is 

given by (2.2).       
The total throughput T is given by 

 2
1 1

log
QQ

i i
i i

T T Q
= =

⎛ ⎞
= = Θ+ Γ⎜ ⎟

⎝ ⎠
∑ ∏  (3.2) 

where Q is the number of users.  
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Now the problem can be defined as follows:  Given the link gains Gij of the users, what is 

the power vector 
'

1 2 QP ,P ,..., P⎡ ⎤= ⎣ ⎦P  which maximizes the total throughput (3.2)? Since 

the first term in (3.2) is constant and the logarithmic function is an increasing function, 

then maximizing the multiplicative term (
1

Q

i
i=

Γ∏ ) will lead to maximizing the total 

throughput T. The problem considered in [74] is  

 ( )
1

max  s.t.   
Q

i
i=

⎡ ⎤
Γ ∈Ω⎢ ⎥

⎣ ⎦
∏P

P P  (3.3) 

where { }min max= , 1,..., Q
iP P P i QΩ ≤ ≤ = ⊂ℜP . 

The MTPC algorithm to solve (3.3) is given by 

( )

( )

( )min max

11 ,      0,1,...,    1,...,

1

k Q
rk

Q
r k

rj j
j r

k

P t t k Q
G

G P t N

P P t P

≠

≠

+ = = =

⎛ ⎞
+⎜ ⎟

⎝ ⎠
≤ + ≤

∑
∑  (3.4) 

where Gij is the channel gain between user j and base station i and N is an additive noise.. 

Without loss of generality user i is assumed to be assigned to base station i.  

Proposition (3.1) [74] 

Starting from any initial vector ( )0 ∈ΩP , the iteration specified by (3.4) converges to a 

unique point ∗ ∈ΩP , which achieves the global maximum. 

 

3.4 Centralized Minimum Total Transmitted Power (CMTTP) Algorithm 

This algorithm is the logical extension of the fixed rate centralized power control 

algorithm described in section (2.2).  The mathematical formulation of the CMTTP 

problem is  

Find the power vector 
'

1,..., QP P⎡ ⎤= ⎣ ⎦P and the rate vector 
'

1,..., QR R⎡ ⎤= ⎣ ⎦R  minimizing the 

cost function  

 ( ) '

1

Q

i
i

J P
=

= =∑P 1 P  (3.5) 

subject to 
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 *

1

,       1,..., ,s i ki
iQ

i
j kj i

j
j i

R PG i Q
R P G N

δ

=
≠

≥ ∀ =
+∑

 (3.6) 

 min max i ,  R  ,     1,...,i iP P P r i Q≤ ≤ ≥ ∀ =  (3.7) 

where  *
iδ  is the minimum required SINR for user i, ir is the minimum rate limit for i, 

and Rs is the chip rate. The problem presented in (3.5)-(3.7) can be reduced to a system of 

linear equations. If the constraints(3.6),(3.7) can not be achieved then the problem is 

called infeasible. In this case either some users have to be dropped from this link or some 

of the constraints have to be relaxed [78].  

Proposition (3.2) [78] 

 

1. At the optimal solution all QoS constraints are met with equality. 

2. The optimal power vector is the one that achieves all rate constraints 

with equality. 

From Proposition (3.2) the optimum rate vector is 
'*

1,..., Qr r⎡ ⎤= ⎣ ⎦R . The corresponding 

power vector can be obtained by solving the QoS equation. This is a system of linear 

equations in power. From (3.6) we have [78] 

    

1

,       1,...,Ts i ki
iQ

i
j kj i

j
j Q

R PG i Q
r P G N

δ

=
≠

= ∀ =
+∑

 (3.8) 

where T
iδ  is the target SINR for user i.  

Let 
T
i i

i
s

rr
R
δ

=  and substitute it into (3.8). We obtain 

1

Q
kj i

i i j
j ki ki
j i

G NP r P
G G=

≠

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦
∑  (3.9) 

In matrix form  

=P rHP + ru  (3.10) 

where 
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( )
0          i j

0   i jkjij

ki

G
G

=⎧
⎪= ⎨ > ≠⎪
⎩

H  (3.11) 

( ) i
i

ki

N
G

=u  (3.12) 

and  

{ }1 Qdiag r r=r  (3.13) 

Then the optimum power vector is 

[ ]* -1P = I - rH ru  (3.14) 

In order to obtain a non-negative solution of (3.14), the following condition should hold 

(see Section 2.2) 

 ( ) 1ρ <rH  (3.15) 

where ( )ρ A  is the spectral radius of matrix A (see Chapter 2). 

 

3.5 Statistical Distributed Multi-rate Power Control (SDMPC) Algorithm 

A distributed solution of the optimization problem given by (3.5)-(3.7) is proposed for 

one cell case in [79]. It is assumed that every user has two states ON or OFF. The state 

ON refers to active state, i.e. the user sends data. The state OFF refers to idle state, where 

the transmitted power is zero. The transition probabilities of the ith user from idle to 

active state at any packet slot is iυ , and from active to idle state is iζ . The durations of 

the active and idle periods are geometrically distributed with a mean of 1/ iζ  and 1/ iυ (in 

packet slots), respectively.  The optimization problem (3.5)-(3.7) is slightly modified to  

Find 

 ( )( ) ( ) ( )
1

min  
Q

i i
i

J t t P tβ
=

=∑P
P  (3.16) 

subject to 
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( )

*

1

,       1,..., ,s i ki
iQ

i
j j kj i

j
j Q

R PG i Q
R P t G N

δ
β

=
≠

≥ ∀ =
+∑

 (3.17) 

 min max i ,  R ,      1,..., ,i iP P P r i Q≤ ≤ = ∀ =  (3.18) 

One parameter has been added to the original optimization problem which is the indicator 

function ( )j tβ . The indicator function is equal to one if the jth user is currently active, and 

zero otherwise. It is assumed in [79] that the random process ( )ˆ tβ  has Markovian 

property since geometric distribution is memoryless over the duration of traffic. 

The centralized solution (if the system is feasible) is given by 

 ( ) ( )

( )
1

1

i i i
i Q

ki
j j

j

t NP t
G t

β γ

β γ
=

= ×
−∑

 (3.19) 

where 

 
T
i

i
T s
i

i

R
R

δγ
δ

=
+

 (3.20) 

The main idea behind the SDMPC algorithm is to estimate the other users’ information 

part.  Therefore the term ( ( )
1

Q

j j
j

tβ γ
=
∑ ) is estimated. The Markovian property of the 

random process ( )j tβ   has been exploited to obtain a good estimate of the other users’ 

information part. 

The SDMPC algorithm is given by 

 ( ) ( )
( )ˆ1

i i i
i

ki

t NP t
G t

β γ
β

= ×
−

 (3.21) 

 

where ( )ˆ tβ  is the estimation of ( )
Q

j j
j 1

t
=

β γ∑ . 

The estimated parameter ( )ˆ tβ  has been derived in [79] for two cases: (i) there is no 

“collision” at t, and (ii) a “collision” occurs at t. There are at least three drawbacks in this 

algorithm, 
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(1) In the cellular CDMA system there is a control channel always active 

(when the mobile phone is ON). 

(2) In SDMPC algorithm, the channel gain and the average power of the 

additive noise are assumed to be known. But in reality they should be 

estimated as well. Good estimation of the channel gain and the noise 

variance is usually difficult. In practice it is easer to estimate CIR or 

SINR because they have direct impact on BER [82]. 

(3) They assume that the durations of active and idle periods are 

geometrically distributed. This assumption is oversimplified and far of 

the reality.   

 

3.6 Lagrangian Multiplier Power Control (LRPC) Algorithm 

As mentioned previously, the data rates which can be achieved belong to a set of integers. 

In the formulation of the optimization problem, to maximize the data rate we assume that 

the data rate is continuous. This assumption can be relaxed in the simulation by rounding 

the optimum data rate to the nearest floor of the data rate set. It can be proven that the 

solution of the optimization problem with continuity assumption is not necessarily the 

same as the solution of the actual discrete problem [95]. The advantage of the LRPC 

algorithm is that the optimization problem has been formulated without the continuity 

assumption of the data rates [80]. It has been assumed that each user has a set of m 

transmission rates { }1 2 mr , r ,...., rΜ =  to choose from. Let the rates be ordered in ascent 

way, i.e. 1 2 mr r .. r< < < . To properly receive messages at transmission rate rk, mobile i is 

expected to attain ( ) T
i i,kΓ ≥ ΓP .  

Define k
iy⎡ ⎤= ⎣ ⎦Y  to be a 0-1 matrix such that, for every mobile i and rate rk 

kk
i

1,  if mobile i is transmitting with rate r
y

0,  otherwise                                          
⎧

= ⎨
⎩

  (3.22) 

The combined rate and power control is formulated as the following optimization 

problem [80] 

 
Q m

k
k iY,P i 1 k 1

max r y
= =
∑∑R  (3.23) 

subject to the following constraints 
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 { }
m

k k
i i i max

k 1

y 1,  y 0,1 ,and 0 P P
=

≤ ∈ ≤ ≤∑  (3.24) 

 ( ) ( )

T
i i,kk k

i i i
i

P
P 1 y B

Γ
+ − ≥

Γ P
 (3.25) 

where k
iB  is an arbitrary large number satisfying  

( )

T
i i,kk

i P
i

P
B max

Γ
≥

Γ P
 (3.26) 

The above optimization problem is solved using Lagrangian multiplier method. The main 

goal of LRPC algorithm is to maximize the total throughput of the system. Although the 

LRPC improves the system throughput, its power consumption for supported users as 

well as the outage probability are rather high. So it is not recommended to be used in the 

systems where the fairness is an important issue.  

 

3.7 Selective Power Control (SPC) Algorithm 

The SPC algorithm has been suggested in [80]. The SPC algorithm is a logical extension 

of the DCPC algorithm [6]. The main idea of the SPC algorithm is to adapt the target CIR 

of each user to utilize any available resources. The suggested SPC algorithm is given by 

         ( ) ( )
( )

( )
( )

, ,
max1 max ,    0,1,...,   1,...,

T T
i i k i i k

i k
i i

P t P t
P t P t i Qχ

⎧ ⎫⎛ ⎞Γ Γ⎪ ⎪+ = × ≤ = =⎜ ⎟⎨ ⎬⎜ ⎟Γ Γ⎪ ⎪⎝ ⎠⎩ ⎭P P
 (3.27) 

where ( )Eχ is the indicator function of the event E. Although the SPC algorithm 

improves the outage probability compared with LRPC algorithm, its outage is still high. 

The convergence speed of the SPC algorithm is slow [83].    

Jäntti in [81] proposed an improved version of the SPC algorithm. It is called Selective 

Power Control with Active Link Protection (SPC-ALP) Algorithm [81]. The SPC-ALP 

algorithm has less outage probability and better performance than the SPC algorithm. The 

main idea of the SPC-ALP algorithm is to admit the new users into the network with at 

least the minimum data rate and also if possible allow old users to choose higher data 

rates. This is done by defining three different modes of operation for each user, 

o Standard mode, where the user updates its power using SPC algorithm. In 

this mode the rate can not be increased but it could be decreased if needed. 
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If there are more resources to be utilized by increasing the rate, the used 

mode is changed to the transition mode.  

o Transition mode, where the user updates its power using ALP algorithm. 

Also the rate is adapted to the maximum rate that can be supported. 

o Passive mode, where the user stops its transmission. 

More details about the SPC-ALP algorithm can be found in [81]. 

 

3.8 Mathematical formulation of the RRM problem in MO framework  

The application of MO optimization method in RRM is introduced in this section. As 

stated in the introduction of this Chapter, the QoS can be defined for a set of factors. In 

this Section we will consider only the Bit Error Rate (BER) and the user data rate in the 

uplink. The objectives of the RRS could be defined as 

a) Minimize the total transmitting power.                                        

b) Achieve the target SINR in order to achieve a certain BER level (depends on the 

application). 

c) Maximize the fairness between the users. In our definition, the system is fair as 

long as each user is supported by at least its minimum required QoS. In this sense, 

minimizing the outage probability leads to maximizing the fairness.   

d) Maximize the total transmitted data rate or at least achieve the minimum required 

data rate.   

It is clear that objective (a) is totally conflicting with objective (d) and partially 

conflicting with objective (b). Objective (c) is totally incompatible with objective (d). 

Objective (b) is partially contradictory to the objective (d).  

In the literature (e.g. Section 3.2-3.6), the RRM problem is usually formulated as a single 

objective (SO) optimization problem considering the others as constraints. Two very 

common formulations for solving the RRM problem in the literature are given. The first 

one is (e.g. MTPC and LRPC), 

Find the rate vector 
'

1,..., QR R⎡ ⎤= ⎣ ⎦R  and the power vector 
'

1,..., QP P⎡ ⎤= ⎣ ⎦P which 

maximize the following objective function  

( )
1

max
Q

i
i

R
=

ϒ∑   (3.28) 

subject to the constraints  
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,mini iδ δ≥   (3.29) 

min max i,min ,max , R ,  1,.., ,i i iP P P R R i Q≤ ≤ ≤ ≤ =   (3.30) 

 

where ( ).ϒ  is a rate function, Ri  is the data rate of user i, Pi is the transmitted power of 

user i, Q is the number of users, iδ  is the Signal to Interference and Noise Ratio (SINR) 

for user i, ,miniδ  is the minimum allowed SINR of user i, min max,  P P  are the minimum and 

maximum transmitted power of the mobile terminal, respectively, and ,min ,max,  i iR R  are the 

minimum and maximum transmitted data rate of user i, respectively. The rate function is 

generally an increasing function of the user data rate Ri. In the literature, the rate function 

has been defined as the throughput [74], [84]. In [85], it has also been defined as a utility 

function, which is used to achieve certain QoS requirements. The allowed BER for user i 

is determined by the value of ,miniδ .  

There is another different SO optimization definition of the RRS problem in the literature. 

In this formulation, the total transmitted power is minimized (objective (a)) and the other 

objectives are defined as constraints.  This formulation is widely used in the literature as 

e.g. in CMTTP and SDMPC, and see also [78]: 

Find the rate vector 
'

1,..., QR R⎡ ⎤= ⎣ ⎦R  and the power vector 
'

1,..., QP P⎡ ⎤= ⎣ ⎦P which solves 

the following optimization problem for all i = 1,…,Q 

1

min
Q

i
i

P
=
∑  (3.31) 

subject to the constraints 

i i,minδ ≥ δ  (3.32) 

min i maxP P P  ,≤ ≤  (3.33) 

i,min i i,maxR R R≤ ≤  (3.34) 

 

We can see from the above two formulations (3.28)-(3.30) and (3.31)-(3.34) that the 

objectives (a)-(d) are optimized by a single objective and number of constraints. 
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Solving the objectives (a)-(d) at the same time using MO optimization technique, leads to 

a more general solution than the conventional methods. In this Section we propose an MO 

optimization method to solve the RRM problem. In subsequent subsections we will 

suggest some new radio resource scheduler algorithms based on the MO optimization. 

The field is very wide and many different algorithms and methods can be derived based 

on the MO optimization. One formulation of the RRS optimization problem can be 

defined as: 

 ( )
, 1 1

min , , _ ,    1,...,
i i

Q Q

i iP R i i

P R O P i Q
= =

⎧ ⎫
− Ψ =⎨ ⎬

⎩ ⎭
∑ ∑  (3.35) 

subject to 

 min max ,min ,max , i i i iP P P R R R≤ ≤ ≤ ≤  (3.36) 

where O_P is the outage probability. The outage probability is defined as the probability 

that a user can not achieve at least the minimum required QoS. We can see that the O_P 

reflects the fairness situation in the communication system. The minus sign associated 

with the sum of the rate function in (3.35) refers to the maximization process of the total 

utility functions.  

Defining the objectives and the constraints is the first step.  Selecting the proper MO 

optimization method to solve the problem is the second step. Then the (weakly) Pareto 

optimal set of solutions is generated, where every solution is optimal in different sense 

(see the Appendix).  Finally, the decision maker selects the optimum solution from the 

optimal set which best achieves the required specifications. In this Section we propose a 

framework to use the MO optimization techniques in RRM. Two new different algorithms 

based on the Multi-Objective optimization are introduced in the next subsections. 

   

3.8.1 Multi-Objective Distributed Power and Rate Control (MODPRC) Algorithm 

The MODPRC algorithm is a logical extension of the MODPC algorithm proposed in 

Chapter 2. The algorithm is based on minimizing a multi-objective definition of an error 

function. In this algorithm we defined three objectives. The objectives are 1) minimize the 

transmitted power, 2) achieve at least the minimum CIR, which is defined at the 

minimum data rate, and 3) achieve the maximum CIR, which is defined at maximum data 

rate. An optimized solution can be obtained by using an MO optimization. The 
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simulations indicated that our algorithm gives an optimistic performance in terms of data 

rate, outage probability, convergence speed and transmission power consumption.  

The derivations of the algorithms are based on VSL-CDMA communication system. 

After the dispreading process at the receiver, the SINR is [24] 

( ) ( ) ( ) ,    t=0,1,..s
i i

i

Rt t
R t

δ = Γ  (3.37) 

where 

( )i tδ  is the SINR of user i at  t, 

Rs is the fixed chip rate (=3.84 Mcps/s for UMTS), 

( )iR t is the data rate for user i at  t, and 

( )i tΓ  is the CIR of user i at t. 

In wireless and digital communication, it is well known that the BER is a decreasing 

function in the SINR. In case of coherent binary PSK, the BER can be approximated by 

(when the interference assumed additive white Gaussian) [50] 

( )PSK
1BER erfc
2

= δ  (3.38) 

For example, if the BER should not be more than 410−  then the target SINR would be 

obtained from (3.38) as T 8.3 dBδ ≥ . In case of fixed data rate power control there is one 

target CIR corresponding to the target SINR, because we have only one spreading factor 

value. In the case of multi-rate services there are different target CIR values 

corresponding to the target SINR. From (3.37) it is clear that, in case of constant target 

SINR maximizing CIR leads to maximizing data rate as follows: 

( ) ( ) ,    t=0,1,..s
i iT

i

RR t t
δ

= Γ  (3.39) 

Trying to achieve the maximum CIR for all users will end up in high outage probability. 

If there is a reasonable dropping algorithm then only one or a few number of users will be 

supported [103]. To reduce the outage probability, we define the target CIR at the 

minimum transmitted rate as 
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,min
,min

i T
i i

s

R
R

δΓ =  (3.40) 

Also we will define the maximum CIR which is defined at the maximum transmitted rate 

as 

,max
,max

i T
i i

s

R
R

δΓ =  (3.41) 

The target SINR, the minimum/ maximum CIR, and the minimum/ maximum data rate 

are time dependent. We dropped the time symbol (t) for simplicity. In UMTS 

specifications the power is updated in slot by slot basis. The data rate is updated in frame 

by frame basis (see Chapter 4). To generalize the analysis we use the same time symbol 

for power and rate.    

To increase the fairness, the users should achieve at least the minimum target CIR, which 

corresponds to the minimum transmitted rate (e.g. 15 Kb/s in UMTS). 

The multi-rate power control problem is defined as:  

Given the target SINR vector 
'

1 2, ,...,T T T
Qδ δ δ⎡ ⎤= ⎣ ⎦δ , the minimum requested data rate 

vector 
'

min 1,min 2,min ,min, ,..., QR R R⎡ ⎤= ⎣ ⎦R , and without loss of generality, assuming the 

maximum allowed data rate maxR to be the same for all users, find the optimum power 

vector 
'

1 2 QP ,P ,..., P⎡ ⎤= ⎣ ⎦P  and the optimum rate vector 
'

1 2 QR ,R ,...,R⎡ ⎤= ⎣ ⎦R  that minimize 

the following cost function 

( ) ( )2

1 1

,  1,..., ,−

= =

⎡ ⎤
= =⎢ ⎥
⎣ ⎦
∑∑P

Q N
N t

i
i t

J e t t Nγ  (3.42) 

subject to 

min max ,    1,...,iP P P i Q≤ ≤ =  (3.43) 

N is the optimization time window, γ is a real-valued constant adaptation factor. 

The error ei(t) has been defined according to the weighted metrics method (2.59) with p=1 

as 

( ) ( ) ( ) ( )i i,1 i min i,2 i i,min i,3 i i,maxe t P t P t t= λ − + λ Γ −Γ + λ Γ −Γ  (3.44) 

where i,1 i,2 i,30 , , 1≤ λ λ λ ≤  are real-valued, constant tradeoff factors, 
3

i,k
k 1

1
=

λ =∑ .  The 
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advantages of joining the weighting metrics method with the least squares formula of 

(3.42) are 

• The least squares method is well known and its derivation is 

straightforward. 

• General solution is obtained by using (3.42) minimizing over all users 

and for time window N. 

The error function (3.44) is the mathematical interpretation of the RRM objectives given 

in (a)-(d) in Section (3.8). The first term of (3.44) is to keep the transmitted power Pi(t) as 

close as possible to Pmin, so we try to achieve objective (a). Objectives (b) and (c) will be 

achieved in the second part of the error function. In this part, the transmitted power is 

selected to obtain CIR very close to the minimum required CIR. Achieving the minimum 

required QoS for every user maximizes the fairness in the cell. The third term in (3.44) 

represents the objective (d), where the users will try to get the maximum allowed QoS if 

possible.   

By solving (3.42) and (3.44) (using same procedure of MODPC algorithm in Section 

(2.4.8))  for one-dimensional (N=1) case we obtain for i=1,…,Q: 

( )
( ) ( ) ( )

( ),1 min ,2 ,min ,3 ,max

,1 ,2 ,3

1 ,    0,1,...i i i i i
i i

i i i i i

P
P t P t t

P t t
λ λ λ
λ λ λ

+ Γ + Γ
+ = =

+ + Γ
, (3.45) 

and as before 

( ) ( )1 s
i iT

i

RR t t
δ

+ = Γ  (3.46) 

( ) ( )min max ,min max  ;  i i iP P t P R R t R≤ ≤ ≤ ≤ . (3.47) 

 

If the minimum solution places such demands to some users that they can not be 

achieved, then dropping or handoff process should be applied [103]. 

The multi-rate power control algorithm given by (3.45)-(3.47) has some interesting 

characteristics. By changing the values of the tradeoff factors λi, different solutions with 

different meanings are obtained. For example, when i,1 i,2 i,31,  0,  and 0λ = λ = λ = , it is 

clear that (3.45) will be reduced to a fixed level (no) power control and user i will send at 

minimum power. For i,1 i,2 i,30,  1,  and 0λ = λ = λ = , equation (3.45) becomes the 

distributed power control (DPC) algorithm of [6]. In this case, the fairness is maximized. 
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When i,1 i,2 i,30,  0,  and 1λ = λ = λ = , algorithm (3.45) will maximize the average 

transmitted rate (with using reasonable dropping algorithm for non-supported users). In 

this case one or few users will be supported, so the outage probability will be high. From 

previous extreme conditions, one can make a tradeoff between these objectives to get the 

best performance according to the required specifications. The selection of the tradeoff 

values should be based on the communication link condition as well as the network and 

the user requirements.  Wide range of different solutions can be obtained by changing the 

values of tradeoff factors.  The selection of one solution is a job of the decision maker. 

The decision maker rules are not considered here, but it would be an interesting topic for 

future research.  

Proposition (3.3) 

For any P(0)>0, the Multi-Objective Distributed Power and Rate Control (MODPRC) 

algorithm (3.45)- (3.47) will converge to a unique fixed point P̂ .  

Proof:  

The proof is obtained by applying the same procedure as in proposition (2.10). The 

performance of the MODPRC algorithm is analyzed through intensive simulations in 

Section 3.10. 

 

3.8.2 Multi-Objective Totally Distributed Power and Rate Control (MOTDPRC) 

Algorithm 

In this section, we propose a slight modification of the MODPRC algorithm to be totally 

distributed algorithm. The MODPRC algorithm (3.45)- (3.47) assumes the availability of 

the actual CIR value. In the existing and near future cellular systems, only an up-down 

command of the power is available at the MS. The same procedure of the ESPC algorithm 

in Section 2.4.7 has been used to estimate the CIR. The estimated CIR is used with the 

MOTDPRC algorithm. The CIR (in dB) could be estimated as 

( ) ( ) ( ) ,    0,1,...T
i i idB dB

t t e t tΓ = Γ − =  (3.48) 

where ( )ie t  is estimated as in (2.50), ( )T
i tΓ  is the target CIR, and  ( )i tΓ  is the estimated 

CIR. Using the estimated CIR in the MODPRC algorithm we obtain 



Chapter Three               Combining Power and Rate Control Algorithms                       85 
 
 

( )
( ) ( ) ( )

( ),1 min ,2 min ,3 max

,1 ,2 ,3

1 ,   0,1,...
1

i i i
i i

i i i i i

P
P t P t t

P t t
λ λ λ

λ λ λ
+ Γ + Γ

= − =
− + + Γ

 (3.49) 

( ) ( )s
i iT

RR t t
δ

= Γ  (3.50) 

( ) ( )min max ,min max  ;  i i iP P t P R R t R≤ ≤ ≤ ≤  (3.51) 

 

Equations(3.49),(3.50) are functions in the estimated CIR. The MOTDPRC algorithm has 

some interesting properties as shown in Section 3.10.  

 

3.8.3 Centralized Algorithm for the Tradeoff between Total Throughput 

Maximization and Total Power Minimization (MTMPC) Algorithm 

Another application of the MO optimization in the RRM can be achieved by modifying 

the maximum throughput power control (MTPC)  algorithm. A centralized power control 

algorithm for throughput maximization has been introduced in the Section (3.2). The 

algorithm is based on maximizing the throughput and ignoring the transmitted power 

levels. In practice reducing the transmitted power is very desirable. In this Section we will 

formulate the cost function with two objectives. The first objective is the maximization of 

the total throughput as in [74]. The second objective is to minimize the total transmitted 

power. The proposed approach is the first one in the literature treating the total throughput 

maximization and the total power minimization simultaneously using multi-objective 

optimization techniques. 

The problem is defined as follows: 

Given the link gains of the users find the power vector which increases the total 

throughput (as much as possible) and at the same time reduces the total transmitted 

power (as much as possible).   

The problem can be represented mathematically as  

( ) ( ){ }1 2max O , O     s.t. − ∈ΩP P P  (3.52)  

where 1 2 QP ,P ,..., P ′⎡ ⎤= ⎣ ⎦P is the power vector, the objective functions ( )1
1

,
Q

i
i

O
=

= Γ∏P  and 

( )2
1

  ,
Q

i
i

O P
=

=∑P  and the admissible power set { }min max= , 1,...,iP P P i QΩ ≤ ≤ =P . The 

minus sign is used to minimize the second objective.  We will use the weighting method 
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to solve the multi-objective optimization problem (see the Appendix). As mentioned in 

Chapter 2, the idea of the weighting method is to associate each objective function with a 

tradeoff factor (weighting coefficient) and maximize (or minimize) the weighted sum of 

the objectives [77]. Applying the weighting method in our problem we obtain,   

( ){ }max   s.t.   ,∈Ω
P

O P P   (3.53) 

where  

( ) ( )
Q

1 i 2
i 1=

′= λ Γ −λ∏O P P 1 P  (3.54) 

is the multi-objective function, [ ]1,1,..,1 ′=1 , and the tradeoff factors real numbers, 

1 2 10 1,  and 1≤ λ ≤ λ = −λ . 

Necessary conditions for solving problem (3.53) are  

( )∇ =O P 0 , (3.55) 

where ( ) '

1 2, , , QP P P⎡ ⎤∇ = ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦O P O O O  is the gradient of O. 

Substituting the CIR equation (2.2) into (3.54) we obtain 

( )( ) ( )

( )
( )

Q Q
i ii

1 2 iQ
i 1i 1

j ij
j 1
j i

P t G
t P t

P t G n ==

=
≠

= λ −λ
+

∑∏
∑

O P  (3.56) 

To maximize the reward function (3.56), we find the power vector P which satisfies 

(3.55). Since the obtained equations are nonlinear, it will be very complicated to get an 

analytical solution. An iterative solution for k=1,…,Q will be formulated (we will drop 

the iteration argument t for simplicity)  

1 1
1 22

1

0

Q Q Q QQ Q Q

kk ii i ij j ii i rk ij j
j i r k j ii k i i i r

Q Qk

ij j
j ii

G G P G P n G P G G P n
O
P

G P n

λ λ
≠ ≠ ≠≠ = = ≠

≠=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
+ − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠= − =

∂ ⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑ ∑∏ ∏ ∏ ∏

∑∏

  (3.57) 

After simplification 
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1

1 2

1

0,

Q Q Q
rk

kk ii i ii i Q
r ki k i

rj j
j r

Q Q

ij j
j ii

GG G P G P
G P n

G P n
λ λ

≠≠ =

≠

≠=

⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠ +⎜ ⎟

⎝ ⎠ − =
⎛ ⎞

+⎜ ⎟
⎝ ⎠

∑∏ ∏
∑

∑∏
 (3.58) 

which can be rewritten as 

1 1 2
1 1

Q Q QQ Q
rk

kk ii i ii i ij jQ
r k j ii k i i

rj j
j r

GG G P G P G P n
G P n

λ λ λ
≠ ≠≠ = =

≠

⎛ ⎞⎛ ⎞
− = +⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠+⎜ ⎟

⎝ ⎠

∑ ∑∏ ∏ ∏
∑

 (3.59) 

or 

2
1 1

1

QQ Q
rk

kk kk k ij jQQ
r k j ii

ii irj j
i kj r

GG G P G P n
G PG P n

λλ λ
≠ ≠=

≠≠

⎛ ⎞
− = +⎜ ⎟⎛ ⎞ ⎝ ⎠+⎜ ⎟

⎝ ⎠

∑ ∑∏
∏∑

 (3.60) 

Solving for Pk leads to 

2
1

1
1

1Q Q

k kk ij jQ Q
j ii rk

kkii i Q
r ki k

rj j
j r

P G G P n
GGG P

G P n

λλ
λ≠=

≠≠

≠

⎡ ⎤
⎢ ⎥⎛ ⎞
⎢ ⎥= − +⎜ ⎟
⎢ ⎥⎝ ⎠
⎢ ⎥ ⎛ ⎞⎣ ⎦ +⎜ ⎟

⎝ ⎠

∑∏
∑∏

∑

 (3.61) 

and further to 

( )

( )
( )

( )

( )

12

1

11

Q Q

ij j
j ii

k Q Q Q
rk kr

kk ii iQ Q
r k r ki k

rj j rj j
j r j r

G P t n
P t

G GG G P t
G P t n G P t n

λ

λ

≠=

≠ ≠≠

≠ ≠

⎛ ⎞
+⎜ ⎟

⎝ ⎠+ = −

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑∏

∑ ∑∏
∑ ∑

 (3.62) 

Consider 2 0λ = , then from (3.54) the problem is reduced to maximizing the throughput, 

and from (3.62) we obtain MTPC algorithm (3.4) after constraining the transmitted 

power. Without power constraints  (3.4) is rewritten as: 
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( )

( )

11k Q
rk

Q
r k

rj j
j r

P t
G

G P t n≠

≠

+ =

⎛ ⎞
+⎜ ⎟

⎝ ⎠

∑
∑

 (3.63) 

After some mathematical manipulations (3.62) can be rewritten in a more compact form 

as 

( ) ( )

( )

( )
2

1

1

1
1 ,    0,1,....

1
1

k
k

k
Q

i
i

P t
P t t

P t

t

λ
λ

=

+
+ = =

⎡ ⎤
⎢ ⎥+
⎢ ⎥+
⎢ ⎥Γ⎢ ⎥⎣ ⎦

∏

 (3.64) 

where [ ]k min maxP P , P∈ , k=1,…,Q. From (3.64), the new transmitted power is a scaled 

value of the transmitted power in case of maximum throughput algorithm. 

Example 

To compare our algorithm with the maximum throughput algorithm presented in Section 

3.3, we will use the same numerical example as given in [74]. Consider the noiseless 

system with Q=5 users and the path gain matrix, G, shown below. 

 

( )

5.8 18.2 55.3 20.3 33.6
36.0 9.7 43.5 22.2 15.9

dB 41.6 30.9 9.3 38.6 36.5
14.2 20.6 38.5 6.8 36.6
22.6 23.9 20.1 16.4 10.8

− − − − −⎡ ⎤
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥= − − − − −
⎢ ⎥− − − − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

G  (3.65) 

 

The tradeoff factors have been set to { } { }1 2, 0.9999,0.0001λ λ = . In this case we penalize 

power usage. From Table 3.1, we can see that the summation of the SINR (dB) of the 

users (which is related to the total throughput as in (3.3)) has not changed very much in 

both schemes (only 0.04%) but the power has been reduced by more than 98% in the case 

of MTMPC method. 

 

 



Chapter Three               Combining Power and Rate Control Algorithms                       89 
 
 

 

3.9 Multi-rate Distributed Power Control using Kalman Filter 

In this Section we propose a new combining algorithm of the power control and rate 

control by using Kalman filters. The algorithm is a direct extension of the distributed 

Kalman power control algorithm proposed in Section 2.4.9. We will try to avoid the 

repetition of unnecessary equations and proofs (which have been given in Section 2.4.9). 

There are at least two methods to assign the data rate for each user. One method is based 

on competition where each user tries to get the maximum possible data rate based on the 

channel and interference conditions (as in MODPRC algorithm). If the user can not get at 

least his minimum required data rate, he will be assumed in outage. The second method is 

softer where each user requests certain data rate based on his application and the network 

checks the feasibility to assign the requested data rate to the user. If it is OK, the network 

gives the permission for the mobile to send at the requested data rate, otherwise another 

round of negotiation between the mobile and the networks starts. The algorithm proposed 

in this Section belongs to the second type. As indicated in Section 2.4.9, we can formulate 

the RRM problem in state-space form. 

The transmitted power of user i at time slot t is defined 

( ) ( ) ( )1 ,    1,..., ,i i iP t w t P t i Q+ = =  (3.66) 

where the optimum weight vector ( ) ( ) ( ) '

1 ,..., Qt w t w t⎡ ⎤= ⎣ ⎦w   can be estimated by solving 

the following state-space equations 

( ) ( ) ( ) ( )t 1 t t t+ = +w F w q  (3.67) 

( ) ( ) ( ) ( )t 1 t 1 t 1 t 1+ = + + + +y G w v        (3.68) 

Here F, G, q, and v are given in Section 2.4.9. The main difference between the algorithm 

presented in this Section and the KDPC algorithm proposed in Section 2.4.9 is the 

contents of the desired QoS vector y(t) in (3.68). In KDPC algorithm y(t) is vector of the 

 MTMPC algorithm 
1 20.0001 and 0.9999λ = λ =   

MTPC algorithm  
1 21 and 0λ = λ =  

User P (dBw) SINR (dB) P (dBw) SINR (dB) 
1 -13.9789 16.8345 -0.5580 16.9295 
2 -16.8918 -0.8548 -6.6072 -0.9234 
3 -4.6187 36.0956 13.4264 36.8300 
4 -12.8725 8.6383 1.2111 8.5561 
5 -14.3460 -5.9278 -1.5289 -6.5922 
 Average Power (W)= 0.1  Sum(SINR(dB))=54.78 Average Power (W)= 5 w Sum(SINR(dB))=54.8 

Table 3.1 Comparison between MTMPC and MTPC algorithms 



Chapter Three               Combining Power and Rate Control Algorithms                       90 
 
 

target CIR, where all the components of y(t) were assumed to be identical. This 

assumption can be relaxed. Now each component of the desired response vector y(t) can 

represent different target QoS. If we assume that each user requested a certain (feasible) 

data rate, then the desired response at time slot t is given by 

( ) ( ) ( ) ( ) '

1 2, , , ,     0,1,...T T T
Qt t t t t⎡ ⎤= Γ Γ Γ =⎣ ⎦y  (3.69) 

where the target CIR of user i (for DS-CDMA systems) is given by 

( ) ( ) ( ) ,      0,1,...
T
iT T

i i
s

R t
t t t

R
δΓ = =   (3.70) 

and ( )T
iR t  is the target data rate of user i at time slot t. 

The optimum power vector can be estimated by applying Kalman filter algorithm of 

(2.117)-(2.121) to (3.66)-(3.70). 

 

3.9.1 Minimum Variance Distributed Power and Rate Control 

In the previous Section we assumed that the target data rate of each user is given. In this 

subsection we propose an algorithm to estimate the best transmitted power as well as data 

rate to achieve the target SINR. Different formulation is used to construct the state space 

formulation of the problem.  

Rewriting Eq. (3.6) as 

( )
( ) ( )

( ) ( ) ( )
( )

1

      =0,1,...i ki Ts
iQ

i
j kj i

j
j i

P t G tR t t
R t P t G t N t

δ

=
≠

=
+∑

 (3.71) 

Now only the SINR parameter has been predefined.   

Define  

( ) ( )

( ) ( ) ( )
1

      =0,1,...s ki
i Q

j kj i
j
j i

R G t
t t

P t G t N t
α

=
≠

+∑
 (3.72) 

From (3.71) and (3.72) we obtain 

( ) ( ) ( ) ( ) 0T
i i i it P t t R tα δ− =  (3.73) 

Now the problem is, how to find the optimum power and rate value which achieve (3.73) 

by using Kalman filter. The measurement model can be expressed as 
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( ) ( ) ( ) ( )1 1 1 1 ,     0,1,...t t t t t+ = + + + + =y Z w v  (3.74) 

where  

( ) [ ]'0,0,...,0t =y  (3.75) 

( )

( ) ( )
( ) ( )

( ) ( )

1 1

2 2

0 0 0
0 0 0 0 0

,

0 0 0

T

T

T
Q Q

t t
t t

t

t t

α δ
α δ

α δ

⎡ ⎤−
⎢ ⎥−⎢ ⎥= ⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Z  (3.76) 

( ) ( ) ( ) ( ) ( ) '

1 1, , ,Q Qt P t P t R t R t⎡ ⎤= ⎣ ⎦w  (3.77) 

( )0, nnN ℜv ∼ , where nnℜ  is the measurement error covariance matrix. The parameters 

can be modeled as constants with uncertainty ( )tq ; i.e. the state-space model used in this 

formulation takes the form  

( ) ( ) ( )1 ,     0,1,...t t t t+ = + =w w q  (3.78) 

where ( )0, vvN ℜq ∼ ,where vvℜ  is the uncertainty covariance matrix. 

The Kalman filter provides the minimum-variance estimates of the RRS parameters 

(transmitted power and data rates).   

   

3.10 Simulation Results 

The simulation part will be divided to different scenarios to make an extensive 

comparison between the proposed algorithms and the existing algorithms, and also to 

evaluate the performance of our proposed algorithms. 

In the first part of simulations, we will compare the proposed MODPRC algorithm with 

the optimum power-rate algorithm (Section 3.2) and the maximum throughput power 

control (MTPC) algorithm. Because of the huge computational complexity of the 

optimum power-rate control, this simulation will be carried out on only five users. In this 

part, the snapshot assumption is assumed in the simulation. A white Gaussian noise is 

added with zero mean and -63 dBm mean power. The set of allowed rates is 

{15,30,60,120,240,480,960}Kb/s.  The maximum power is assumed to be 1 W. The data 

rate has been assumed to be continuous for the MODPRC algorithm and the MTPC 

algorithm. The user is assumed to be in outage, if at least one of the QoS requirements 

(the minimum data rate or the target SINR) can not been achieved. Figure 3.1 shows a 
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comparison between the optimum power-rate control, the MODPRC and the MTPC 

algorithms. The objective of the optimum power-rate control is to achieve the maximum 

rate sum with zero outage and power constraints. In the Figure we can see that MODPRC 

algorithm has achieved the same total rate with the following tradeoff 

factors 1 2 30.001,  0.830,  and 0.169λ = λ = λ = . The MTPC algorithm fails to achieve the 

same total data rates as shown in the same Figure. The average power profile is shown in 

Figure 3.2. It is clear that the optimum average power is less than the required power in 

the other cases (MTPC and MODPRC). The average power needed by the MTPC 

algorithm is less than the MODPRC algorithm. The outage probability was 0.20 for both 

MODPRC and MTPC algorithms.   

In CDMA systems the maximization of the total CIR products (3.3) can be directly 

mapped to the maximization of the total data rate products. One can say that the MTPC 

algorithm maximizes the total data rate products in the cell. Figure 3.3 shows that the total 

data rates product of the MTPC algorithm converges to the optimum value.  The 

interesting result here is that the MODPRC algorithm can converge (with less 

fluctuations) to the same optimum solution if the tradeoff factors are selected 

as 1 2 30.001,  0.895,  and 0.104λ = λ = λ = . Another interesting result in this simulation is 

that the average power of the MODPRC algorithm is slightly less than the MTPC 

algorithm as indicated in Figure 3.4. The outage probability was 0.20 for both  MODPRC 

and MTPC algorithms. This simulation part shows that the MODPRC algorithm was able 

to solve the power rate optimization problem for two different criteria, which are the 

maximization of the total sum of users’ data rates and the maximization of the total 

product of users’ data rates. The key point is to find the correct tradeoff factors to achieve 

the required objective. To clarify this point more, we will show the behavior of the 

MODPRC algorithm with the extreme tradeoff factors values. For the same previous 

scenario, we test the MODPRC algorithm performance at the following extreme values of 

tradeoff factors ( ) ( ) ( ) ( ){ }1 2 3, , 1,0,0 , 0,1,0 , 0,0,1λ λ λ ∈ . The average power, the total rate 

sum and the outage probability are shown in Figures 3.5, 3.6, and 3.7 respectively. Figure 

3.5 shows the average power in the three studied situations. In the first case 

( )1 2 3, , (1,0,0)λ λ λ =  the objective is only minimizing the total power. For this reason the 

power is very small compared with other two situations. At the same time the sum of data 
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rate is (almost) zero and the outage is very high (100%) as shown in Figures 3.6, and 3.7 

respectively. In the second case ( )1 2 3, , (0,1,0)λ λ λ = where the objective is to minimize 

the outage, the average power is fair. The sum of data rates is fair as well and the outage 

converges to zero as shown in Figures 3.5, 3.6, and 3.7 respectively. In the third case 

( )1 2 3, , (0,0,1)λ λ λ =  where the objective is to maximize the total data rates, the average 

power is the highest. The total data rate is the highest as well and the outage is 

considerably high as shown in Figures 3.5, 3.6, and 3.7 respectively. One can see that the 

performance of the MODPRC algorithm has a wide range of behavior depending on the 

tradeoff factor values.   

Now a more sophisticated simulation scenario will be considered. In this part of 

simulation consider 16 base stations distributed in an area of 16 km2 containing 100 users 

uniformly distributed. A white Gaussian noise is added with zero mean and 1 pW average 

power. Perfect handover is assumed, i.e., each user is assigned to the base station which 

has the best conditions. Uncorrelated log-normal shadowing is considered. The user is 

assumed to be in outage if his SINR is less than the target SINR ( Tδ ) or if the achieved 

data rate is less than the minimum required data rate. The target SINR is assumed to be 
Tδ =6 dB for all users.  The minimum required data rate is 15 Kb/s for all users. The 

variable data rate is realized by using a variable processing gain that is defined as the ratio 

of chip rate to the user information bit rate. The achieved data rate is assumed to continue 

without upper bound. All the simulations will be carried out for the uplink case. 

We will compare our proposed algorithms with different algorithms discussed in this 

Chapter. The performance comparison will be based on the achieved average data rate, 

power consumption and outage probability.   

Figures 3.8-3.10 show the performance comparison between the MODPRC algorithm and 

the MOTDPRC algorithm. In this simulation the tradeoff factors have been tuned 

at 1 2 30.001,  0.980,  and 0.019λ = λ = λ =  for both algorithms.  The power consumption 

and the outage of the MOTDPRC are worse than the MODPRC algorithm. The average 

data rate of the MOTDPRC is very close to the MODPRC algorithm. It is clear that the 

MOTDPRC algorithm does not perform as well as that of MODPRC algorithm. This 

result is logical since the MOTDPRC algorithm uses an estimated CIR rather than the 

actual CIR.   



Chapter Three               Combining Power and Rate Control Algorithms                       94 
 
 

Figures 3.11-3.13 indicate the performance comparison between the MODPRC algorithm 

and the MTPC algorithm. The tradeoff factors of the MODPRC algorithm have been 

tuned to get as close to the average data rate as the MTPC algorithm. The tradeoff factors 

have been tuned to 1 2 30.002,  0.893,  and 0.105λ = λ = λ = . The average data rate of the 

MTPC algorithm has been achieved using the MODPRC algorithm but at a higher 

average power and outage. This is due to the fact that the MTPC algorithm is a 

centralized algorithm and the MODPRC algorithm is a distributed one. One can note from 

Figure 3.12 that the MODPRC algorithm has a faster convergence than the MTPC 

algorithm.   

As explained in Subsection 3.8.3 the MTMPC algorithm is an extension of the MTPC 

algorithm to achieve a similar (or close) data rate at less transmitted power. Figures 3.14-

3.16 show the performance comparison between the MTMPC algorithm and the MTPC 

algorithm. It is clear from the Figures that with a small degradation on the average rate, 

the MTMPC algorithm can greatly reduce the average transmitted power. In this 

simulation scenario the average rate of the MTMPC algorithm degraded by about 30%, 

but the average saved power was about 98%. The performance of the MTMPC algorithm 

is degraded as the additive white noise increases.  The logarithmic scale has been used in 

Figure 3.14 because of the large difference in the average transmitted power of MTPC 

and MTMPC algorithms. From Figure 3.16, we see that the outage probability of the 

MTMPC is slightly worse than the MTPC algorithm. This is an expected result because 

the MTMPC algorithm reduces the transmitted power to be close to the minimum. 

The MODPRC algorithm gives us two degrees of freedom in the determination of the 

power-rate specifications. In this simulation we will compare the behavior of the 

MODPRC algorithm with the SPC algorithm at three different tradeoff factor values. 

Figures 3.17-3.19 show the performance comparison between the SPC algorithm and the 

MODPRC algorithm at 1 2 30.005,  0.940,  and 0.055λ = λ = λ = . It is clear that the 

MODPRC algorithm achieves less outage and less power consumption. But the SPC 

achieves a higher average rate. By increasing the weight of the data rate and reducing the 

weight of the fairness of the MODPRC algorithm, using values such as 

1 2 30.000,  0.500,  and 0.500λ = λ = λ = , we obtain the same average data rate as obtained 

by using SPC algorithm as shown in Figures 3.20-3.22. The outage probabilities are also 

comparable, but the MODPRC algorithm needs higher transmitted power. The reason is 
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that in the SPC algorithm, if one of the QoS requirements of a user can not be achieved, 

this user is dropped out and his transmitted power becomes zero. But in the MODPRC 

algorithm all users are transmitting whether their QoS requirements are achieved or not. 

This is more realistic, because in UMTS systems, even when the throughput is 

temporarily reduced to zero for some users, their control channel power will not be zero! 

The previous algorithms are based on the competition between users to divide the radio 

resources between them. The assignment of the radio resources of the multi-rate power 

control using Kalman filter is based on the negotiations between the users and the 

network. A different simulation scenario has been used to evaluate the performance of 

Kalman filter applications as multi rate power control.  

In the next simulation we consider again the uplink of a CDMA system that has a chip 

rate of 3.84 Mb/s. The transmitted data rate should be one in the following set {15, 30, 60, 

120, 240, 480, 960} Kb/s. We have assumed 120 users uniformly distributed in an area of 

4 Km2 with four base stations. Uncorrelated log-normal shadowing is assumed. The 

channel noise is assumed to be Gaussian and white with zero mean and 10-13 w  variance. 

The users are moving with a maximum speed of 30 Km/h. A user is assumed to be in 

outage, if his SNR is less than the target SINR ( Tδ ). The target SNR is assumed to be the 

same for all users and also equal to Tδ =6 dB. Figure 3.23 shows the actual CIR of one of 

the users when his transmitted data rate changed at time slot 15 from 15Kb/s to 240Kb/s. 

The new data rate has changed again at time slot 45 to 15Kb/s. The target CIR is shown in 

Figure 3.23 as well.   Figure 3.24 shows the transmitted power of the corresponding user 

and the optimum power. The optimum power is computed using centralized power 

control (Section 3.3). It is clear from the Figures 3.23-3.24 that Kalman filter converges 

to the optimum solution. The fluctuations in the results are caused by the dynamical 

behavior of the wireless mobile channels. 

Finally, we will simulate the case of minimum variance power and rate control. As 

described in Section 3.9.1 there is no pre-requested data rate or data rate objectives 

needed to be achieved. The algorithm specifies the optimum power and rate values to 

achieve the target SINR.  A simple scenario will be used for simulation. Assume 5 users 

randomly distributed in a cell with one base station. The additive white noise has zero 

mean and -80dBw variance. The maximum power and rate are assumed to be 10 W and 

256 Kb/s respectively. During the simulation we start with zero initial power and with the 
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maximum initial data rate. Snapshot assumption is assumed. The power values and the 

rate values of the users are shown in Figures 3.25 and 3.26 respectively. Each color 

represents a different user. It is clear from Figure 3.26 that all users achieved the highest 

data rate (256 Kb/s) except the user with red dashed line where his achieved data rate is 

small. Also his power is rather high as shown in Figure 3.25.  The same scenario but with 

uncorrelated slow and fast fading have been applied. The power values and the rate values 

of the users are shown in Figures 3.27 and 3.28 respectively. The practical significance of 

the minimum variance power and rate control algorithm is rather limited because it does 

not guarantee all QoS specifications.   

From the simulations one can conclude that the MODPRC algorithm can achieve 

different performance criteria by changing only the tradeoff factors values. If the QoS 

requirements of a user have changed within the same call (e.g. from voice call to video 

conferencing), then the user modifies only the tradeoff factors to optimize the power for 

the new situation. The problem is how to find the optimum tradeoff factors to achieve the 

required specifications. This problem is one of the biggest problems in the multi-objective 

optimization field. The decision maker takes the responsibility to select the optimum 

solution. This point is very interesting for future research. During the simulations the 

following tradeoff factors 1 2 3, , 0.01,0.97,0.02λ λ λ =  gave good results in many situations. 

The MTMPC algorithm reduces considerably the total power consumption with 

comparably slight degradation in the data rate, when compared to MTPC. The MTMPC 

algorithm is reasonable for systems with energy constraints like sensor networks. Kalman 

filter application in multi-rate power shows fast convergence speed to the required power. 

Kalman filters have very wide applications in different scientific fields. The behavior of 

Kalman filters is well understood. Our proposed algorithms introduce good bases for 

further research in this field. 
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 Figure 3.2. Average power comparisons between optimum algorithm, MTPC 
algorithm and MODPRC algorithm.  

Figure 3.1. Total rate comparisons between optimum algorithm, MTPC algorithm and 
MODPRC algorithm.  

Mohammed Elmusrati
Pencil

Mohammed Elmusrati
Pencil

Mohammed Elmusrati
Pencil

Mohammed Elmusrati
Pencil

Mohammed Elmusrati
Pencil

Mohammed Elmusrati
Pencil


Mohammed Elmusrati
Pencil


Mohammed Elmusrati
Pencil

Mohammed Elmusrati
Pencil

Mohammed Elmusrati
Pencil



Chapter Three               Combining Power and Rate Control Algorithms                       98 
 
 

 

 

 

Figure 3.3. Rate product comparisons between optimum algorithm, MTPC algorithm and 
MODPRC algorithm.  

Figure 3.4. Average power comparisons between optimum algorithm, MTPC algorithm 
and MODPRC algorithm.  
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Figure 3.5. Average power comparisons of MODPRC algorithm at extreme tradeoff factors.
 

Figure 3.6. Data rate  comparisons of MODPRC algorithm at extreme tradeoff factors. 
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Figure 3.7.  Outage  comparisons of MODPRC algorithm at extreme tradeoff factors. 

 Figure 3.8. Average power comparisons of MODPRC and MOTDPRC algorithms.  
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Figure 3.9. Average data rate comparisons of MODPRC and MOTDPRC algorithms.  

Figure 3.10. Outage comparisons of MODPRC and MOTDPRC algorithms.  
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         Figure 3.11. Average power comparisons of MODPRC and MTPC algorithms.  

  Figure 3.12. Average data rate comparisons of MODPRC and MTPC algorithms. 
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                Figure 3.13. Outage comparisons of MODPRC and MTPC algorithms.  

         Figure 3.14. Average power comparisons of MTPC and MTMPC algorithms.  
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Figure 3.15. Average data rate comparisons of  MTPC and MTMPC algorithms.  

            Figure 3.16. Outage comparisons of  MTPC and MTMPC algorithms. 
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     Figure 3.17. Average power comparisons of  MODPRC and SPC algorithms. 

  Figure 3.18. Average data rate comparisons of  MODPRC and SPC algorithms. 
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              Figure 3.19. Outage comparisons of  MODPRC and SPC algorithms. 

   Figure 3.20. Average power comparisons of  MODPRC and SPC algorithms. 
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     Figure 3.21. Average data rate comparisons of  MODPRC and SPC algorithms. 

                      Figure 3.22. Outage comparisons of  MODPRC and SPC algorithms. 
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    Figure 3.23. The actual CIR with the target using Kalman filters. 

Figure 3.24.  The transmitted power of one user using Kalman filters compared with 
the optimum power. 
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Figure 3.25. The transmitted power of five users using minimum variance power 
and rate control algorithm.  

Figure 3.26. The data rate using minimum variance power and rate control algorithm.  
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Figure 3.27. The power of five users (with different colors) using minimum variance 
power and rate control algorithm with dynamical channel. 

Figure 3.28. The data rates of five users (with different colors) using minimum variance 
power and rate control algorithm with dynamical channel. 
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CHAPTER FOUR 

SMART ANTENNA SYSTEMS 
 

 

4.1 Introduction 

The receiver and transmitter antennas are one of the most critical components in the 

design of wireless communication systems. A good design of the antenna can relax 

system requirements, improve overall system performance and greatly reduce the 

infrastructure costs [27]. It has been demonstrated that using a beamforming antenna 

instead of an omni-directional antenna in the mobile communication systems can increase 

the system capacity and improve the overall system performance [10],[14], and [28]. This 

performance enhancement is due to the reduction in the interference by attenuating the 

interference signals which have different directions of arrivals than the desired signal 

direction of arrival at the receiver antenna site. This is called spatial processing because 

the direction of arrival is related to the mobile location. The system performance can be 

further improved by exploiting the delay spread of the received signals. The signal of 

each mobile arrives to the base station antenna in multi-path form. Each path usually has 

its own delay and direction of arrival. Using the smart antenna alone means that we 

receive (ideally) only one path and ignore the others. Joining temporal processing and 

spatial processing can considerably enhance the overall system performance. In the next 

section, an introduction of smart antennas and some adaptation techniques are given. 

General overview of the spatial/temporal processing is presented in Section 4.3. A new 

algorithm for antenna weight computation for frequency selective channels is proposed in 

Section 4.3.  The capacity improvement from information theory point of view is 

presented in Section 4.4.    

 

4.2 Smart antennas and adaptation 

The joining of smart antenna and radio resource management is one of the results in this 

thesis. For this reason, special attention is given to the smart antenna analysis. The 

beamforming antenna system can be classified as a Fixed Beamforming Network, a 

Switched Beam Systems, and an Adaptive Antenna Systems [12]. By using an adaptive 
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antenna system, it is possible to achieve greater performance improvements than are 

attainable using a switched beam system or a fixed beamforming network [12].  

A smart antenna system consists of a set of antenna elements distributed in a certain 

configuration. Each antenna terminal is connected through a complex weight as shown in 

Figure 4.1. By the smart adaptation of these weights the radiation pattern of the antenna 

array can be adjusted in a proper way to minimize a certain error function or to maximize 

a certain reward function. This adaptation is performed using an adaptive algorithm. 

Many adaptive algorithms have been published in the literature [11], [12], [15], [16] and 

[17].  

The distance between the antenna elements is very small compared with the distance 

between the array and the transmitter antenna. Therefore it is convenient to ignore the 

differences in the amplitude between the received signals at each antenna terminal, but 

the differences in the phase can not be ignored. The reason is that even for a very small 

time delay difference between the antenna elements, the phase differences are 

considerable due to the multiplication of the time delay and the carrier frequency. Next, a 

brief summary of smart antenna models is given. The presentation follows [12].  

The phase difference ∆Ψm between the antenna element m and the reference element at 

the origin is given by 

( ) ( ) ( ) ( ) ( )( )cos sin sin sin cos ,  = 1,...,Mm m m m md x y z mβ β φ θ φ θ θ∆Ψ = ∆ = + + ,  (4.1) 

where ( ),θ φ  are the elevation angle and the azimuth angle, respectively, β is the phase 

propagation factor, and ( mmm z,y,x ) is the Cartesian position of the antenna element m 

with respect to a reference element (assumed to be at the origin).  

The output signal z(t) can be represented as 

( ) ( )
1

,
M

k k
k

z t w u t
=

= ∑  (4.2) 

or in a more compact form as 

( ) ( )ttz Huw= , (4.3) 

where [ ]1
H

Mw w=w  is the weight vector, the superscript H represents the 

Hermitian transpose, and ( ) ( ) ( )1 Mt u t u t ′= ⎡ ⎤⎣ ⎦u is the received signal vector. The phase 

differences between the signals at each antenna terminal depend on the direction of arrival 
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(DoA) of each signal. It is convenient to take the first element as a reference element so 

that 01 =∆Ψ . The input signal at each antenna terminal is the convolution between the 

transmitted signal and the channel impulse response 

( ) ( ) ( ), , ,     1,...,  ,     1,  ....,  ,ij i iju t s t h t i Q j Mτ τ= ∗ = =      (4.4) 

where the star indicates the convolution operation, ( )ts i  is the transmitted signal from user 

i, and ijh  is the impulse response of the channel between user (mobile station)  i and 

antenna element j at the base station, Q is the number of MS, and iju is the received signal 

from user i at antenna terminal j of the BS . 

The channel between the mobile station and the base station can be modeled using the 

Vector Channel Impulse Response (VCIP) as 

( ) ( ) ( ) ( )
1

, , ,       1,...,  
iB

i i l l il l
l

t t t i Qτ θ φ α δ τ
=

= − =∑h a   (4.5)  

 

 

1w  2w  3w Mw

1u  
2u  3u Mu

Φ
Φ

∑ 

z(t) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 
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where ( )lli ,φθa  is the steering vector of the MS i, and  it is given by 

( ) ( )( ) ( )( )2, 1  exp , exp , ,      1,...,  i l l l l M l l i Qθ φ θ φ θ φ ′⎡ ⎤= −∆Ψ −∆Ψ =⎣ ⎦a , (4.6) 

m∆Ψ  is given by (4.1), the subscript l represents the number of path, ih  is the channel 

impulse response vector and lτ  is the time delay of the signal of user i to the base station 

through path l. It is assumed also that there are iB  paths for the signal of user i . ( )tilα  is 

the complex channel gain and it is given by 

( ) ( )( )exp 2 ,     1,...,  ,il il il ilt j f t i Qα ρ π ϕ= + =  (4.7) 

where  ilρ  is the absolute channel gain given by 

,        1,...,  
il

il
il

il

A i Q
dηρ ≈ = ,     (4.8) 

Here ilA  is the log-normal shadowing effect for path l of user i , ild  is the distance 

between the base station and user i through path l, ilη  is the path loss exponent for user i  

through path l, ilf  is the Doppler shift, and ilϕ  is the phase offset. 

The received signal of user i at antenna terminal j can be described as 

( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

1

1

exp( ) exp 2

exp( ) exp 2

i

i

B

ij i jl il il il l j
l

B

jl il il il i l j
l

u t s t j j f t t n t

j j f t s t n t

ρ π ϕ δ τ

ρ π ϕ τ

=

=

= ∗ − ∆Ψ + − +

= − ∆Ψ + − +

∑

∑
 (4.9) 

where ( )jn t  is an additive noise at antenna terminal j.  

Equation (4.9) can be rewritten in a more compact form: 

( ) ( ) ( ) ( ) ,      1,...,  i i i it t t t i Q= + =u a α s n  (4.10) 

where   

( ) ( )

( ) ( )

11 1

1

exp exp

,          1,...,  

exp exp

i

i

B

i

M MB

j j

i Q

j j

⎡ ⎤− ∆Ψ − ∆Ψ
⎢ ⎥
⎢ ⎥= =
⎢ ⎥

− ∆Ψ − ∆Ψ⎢ ⎥⎣ ⎦

a  (4.11) 

is the steering matrix,  
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( ) ( )( )( )exp 2i il il ilt diag j f tρ π ϕ= +α     

( )( )

( )( )

1 1 1exp 2 0 0

0 0 exp 2
i i i

i i l

iB iB iB

j f t

j f t

ρ π ϕ

ρ π ϕ

⎡ ⎤+⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥+⎣ ⎦

  (4.12) 

    

and the transmitted signal vector ( ) ( ) ( )1 ii i i Bt s t s tτ τ ′⎡ ⎤= − −⎣ ⎦s , i = 1,..., Q . 

The total received signal then becomes from (4.10) 

1 1

Q Q

i i i i
i i= =

= = +∑ ∑u u a α s n  (4.13) 

The output signal of receiver i (which is used to receive the signal from transmitter i) is 

( ) ( ) ( ) ( ) ( ) ( )
1

Q
H H H

i i i i i i k k k i
k
k i

z t t t t t t
=
≠

= + +∑w a α s w a α s w n , (4.14) 

Now the problem can be stated as follows: What is the optimum weight vector iw  to 

enhance the performance of user i? Note that the additive white noise n(t) can not be 

considerably affected by adapting the antenna weights because it is not directive. The 

second term of (4.14) represents the interference from other users. This term can be 

minimized by the proper selection of the weight vector. 

Generally the weights should be adjusted to minimize (or reduce) the interference from 

other users, or equivalently to maximize the SINR for the user. Next we will present 

different commonly used algorithms for the weight computation.  

 

4.2.1 Conventional Beamformer 

In the conventional beamformer the weights are selected to be the complex conjugates of 

the steering vector, i.e., for one path case the weight vector is selected as 

 ,           1,...,  ,H
i i c i Q= =w a   (4.15) 

where c is a positive, and real number. This method does not take into consideration the 

interference of other users.  The SINR at the array output can be derived by substituting 

(4.15) into (4.14) and setting the second term equal to zero. The average signal to noise 

power (the noise is assumed to be uncorrelated) becomes 
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2 2

2 ,         1,...,i i
i

N

c PSINR i Qα
δ

= =  (4.16) 

where Pi is the average signal power, 2
Nδ  is the noise variance. Using the conventional 

beamformer gives some gain for SINR depending on the number of antenna elements. 

The main advantage of this method is its simplicity. It provides the maximum output 

SINR, if the noise is uncorrelated and there is no directional jammer. However, it is not 

wise to use this method in mobile communication systems, where there are many users 

sharing the same frequency (for WCDMA) and therefore many unintentional jammers.  

 

4.2.2 Null-Steering Beamformer 

This technique is more effective than the conventional beamformer in minimizing the 

signals of strong directional jammers. If we know the DoA of all users in the cell, the 

problem can be solved by finding the weights deterministically. If there are Q users in the 

cell, and the weights are calculated for user i, then the desired weight vector is the 

solution of the following system of linear equations (see (4.14)) 

  
1,  and

0,    {1, 2,.., } and , 1,...,

H
i i
H
i k k Q k i i Q

=

= ∀ ∈ ≠ =

w a

w a
 (4.17) 

The above system of linear equations can be solved exactly, if the number of users Q is 

less than or equal to the number of antenna elements M. Generally the problem can be 

solved as  

( ) ,           1,...,  
-1H H H

i D i Q′= =w A A A , (4.18) 

where [ ] 10 1 0 0 ; 1       ,  th
QD is at the i element and′ ⎡ ⎤= = ⎣ ⎦A a a  

The main advantage of the null-steering beamformer is its ability to null even strong 

directed interferences. The disadvantages are: a) DoA of all users should be known at the 

receiver, b) The number of antenna elements should be comparable with the number of 

users. If the number of users is much more than the number of antenna elements, then the 

method becomes less effective and the weights approach zero. 

  

4.2.3 Minimum Variance Distortionless Response (MVDR) Beamformer 

The MVDR beamformer overcomes the disadvantages of the null steering beamformer. In 

this method only the steering vector of the desired user is needed.  The concept of MVDR 
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beamformer is based on minimizing the average output array power while maintaining 

unity response in the looking-direction. The problem can be described mathematically as 

follows: 

( ) 2ˆ arg min [ ],           1,...,i E z t i Q= =w  (4.19) 

subject to                                                                                     

1,H
i i =w a   (4.20) 

where z(t) is given by (4.3) and E[.] is the expectation operator. The weights obtained by 

solving the optimization problem given in (4.19)-(4.20) will minimize the total noise, 

including interferences and uncorrelated noise. So MVDR beamformer maximizes the 

output SINR [11]. 

Substituting (4.3) into (4.19) the problem can be stated as follows: 

Find the minimum of 

,         1,...,  H
i uu i i Q=w R w   (4.21) 

subject to 

1H
i i =w a . (4.22) 

The autocovariance of the received signal u can be computed by 

[ ]H
uu E=R uu . (4.23) 

The MVDR problem can be solved using Lagrange multiplier method to obtain 
1

uu i
i H 1

i uu i

ˆ ,      i = 1,..., Q
−

−=
R aw

a R a
            (4.24) 

To find the optimum weights using the MVDR method, the DoA of the desired user is 

needed. Since in mobile communication systems, the users are moving, and the 

characteristics of the channel are time varying, an adaptive algorithm is needed to update 

the weights for the varying conditions. The sample matrix inversion (SMI) method can be 

used in adaptive beamforming algorithms. The weights are updated at every kth iteration 

using the K-sample covariance matrix: 

 ( ) ( )
1

1ˆ
K H

K j j
j

t t
K =

= ∑R u u  (4.25) 

where KR̂   is the unstructured maximum likelihood estimate of uuR . It converges to 
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uuR as K→∞ under the ergodic assumption. The SMI based adaptive MVDR weights are 

given by [29]: 
1

K i
i H 1

i K i

ˆ
ˆ ,      i = 1,..., Qˆ

−

−
=

R aw
a R a

, (4.26) 

which has the same form as in (4.24). 

 

4.2.4 Minimum Mean Square Error (MMSE) Beamformer 

If the transmitter sends a reference signal known to the receiver (like pilot signal), then 

this signal could be used to calculate the optimum weights even if there is no information 

about the DoA or about the channel characteristics. One of the methods which use a 

reference signal is the MMSE beamformer. The MMSE is based on finding the optimum 

weights which minimize the mean square error  

( ) ( ) 2
ˆ arg min ,          1,...,  H

i i iE t d t i Q⎡ ⎤= − =⎢ ⎥⎣ ⎦
w w u , (4.27) 

where di(t) is the training sequence for user i at time t. The optimum weights can be 

obtained by setting the gradient of the cost function with respect to wi equal to zero; thus 

one obtains the Wiener-Hopf equation for the optimum weights [19]: 
1ˆ ,            1,...,i uu i Q−= =w R P  (4.28) 

where R is computed as indicated in (4.23) and  
* ,            1,...,iE d i Q⎡ ⎤= =⎣ ⎦P u  (4.29) 

A recursive form of (4.28) is given in [11], [19] as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )*1 [ ] [ ]H
i i i it t E t t t E t d tµ+ = − −w w u u w u  (4.30) 

where constant µ  is a positive scalar (gradient step size) that controls the convergence 

characteristic of the algorithm, that is, how fast and how close the estimated weights 

approach the optimal weights. 

If we assume that the signals are ergodic, then the adaptive algorithm can be 

approximated as 

( ) ( ) ( ) ( )1 ,       0,1,...,       1,...,i i it t t e t t i Qµ+ = − = =w w u  (4.31) 

( ) ( ) ( ) ( )* .H
i i ie t t t d t= −w u                                                                               (4.32) 
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Here ei(t) is the instantaneous error between the array output and the desired response. 

The main disadvantage of the adaptive LMS algorithm and its different versions is its 

slow convergence speed [19]. This is an essential problem in mobile communication due 

to the nature of fast varying channel characteristics. The convergence of the LMS 

algorithm depends on the eigenvalue distribution of the correlation matrix [19], [24]. 

 

4.2.5 Recursive Least Square (RLS) Algorithm 

The RLS algorithm is more efficient (in many situations) than the LMS algorithm. In 

[29], the RLS algorithm has been proposed for weight adaptation in the uplink of CDMA 

mobile communication system.  

The RLS algorithm minimizes the cumulative square error [11] 

( ) 2

0

arg   min
n

n t
t

e tµ
=

⎧ ⎫= ⎨ ⎬
⎩ ⎭
∑w , (4.33) 

where the error e(t) is the difference between the reference signal and the actual array 

output. The weight updating algorithm is [19]: 

 ( ) ( ) ( )1 ( )t t t e t= − +w w K . (4.34) 

Here K(t) is the gain update and it is given by 

 ( ) ( ) ( )
( ) ( ) ( )

1
1 1H

t

t t
t

t t t
µ

−
=

+ −

P u
K

u P u
, (4.35) 

where ( ) ( )1t t−=P R  is solved recursively as 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1
1 1 1

H

H

t

t t t t
t t

t t t
µ

− −
= − −

+ −

P u u P
P P

u P u
. (4.36) 

tµ  is a real scalar, it is called forgetting factor. There are different updating algorithms 

for the forgetting factor such as: 

( )1 1      0 1t tµ αµ α α−= + − < <   (4.37) 

so that the old samples are deemphasized. 

 

 

 

 



Chapter Four  Smart Antenna Systems 120 
 

4.2.6 Subspace Methods for Beamforming 

In the subspace technique the structure of the signals at the array input is exploited for 

beamforming applications [17], [31], [32] and [34]. If there are Q users in the cell then the 

sum of received signals at an M antenna element array (see (4.13)) is  

1 1

Q Q

i i i i
i i= =

= = +∑ ∑u u a α s n . (4.38) 

Since each user i has iB  different paths which are assumed to come from different 

directions of arrivals (DoA), (4.38) can be written in a more compact form using matrix 

vector notation:   

 = +u AS n , (4.39) 

where 1 1 2 2[ ]Q Q=A a α a α a α  is an MxD dimensional matrix, ai an MxBi 

matrix, 1 2 Q
′⎡ ⎤= ⎣ ⎦S s s s an BixT matrix, 

1
D

Q

i
i

B
=

= ∑ and T = number of samples. 

If there is only one single path for each user, then the dimension of matrix A will be M×Q 

and the dimension of matrix S will be Q×T, where Q in this case is the number of users or 

in a more general terms, the number of uncorrelated signals.  

Using the data model of (4.39), the input covariance matrix Ruu can be expressed as  

[ ] [ ] [ ]H H H H
uu E E E= = +R uu A SS A nn   (4.40) 

or 
2 ,H

uu ss nδ= +R AR A I   (4.41) 

 

where Rss =E[SSH] is the signal correlation matrix. 

The matrix Ruu can be decomposed, for example by singular value decomposition, to 

obtain 

 uu V ′=R WΣ  (4.42) 

where W and V  are M×M orthogonal matrices, and ( )1 2, , , Mdiag σ σ σ=Σ  is a 

diagonal matrix iwith 0σ ≥ . The nonnegative numbers { }iσ  are called the singular 

values of Ruu and M21 σ≥≥σ≥σ . If Ruu has rank r then Ruu has exactly r strictly 

positive singular values so that .0 and 0 M2r1rr =σ==σ=σ>σ ++  
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Assume that all incident signals are not highly correlated and their number is less than the 

number of antenna elements, i.e., M>D. Then by examining the singular values of Ruu we 

will find D singular values with considerable values. The other (M-D) singular values 

have very small values. These small values represent the variance of the background 

noise.  

The received signal space can be decomposed into two subspaces. The first subspace that 

is spanned by the eigenvectors associated with the first D eigenvalues is called the signal 

subspace. The second subspace that is spanned by the eigenvectors associated with the 

last (M-D) eigenvalues is called the noise subspace. It has been proven that the noise 

subspace is orthogonal to the steering vectors [12]. This fact can be exploited in the 

estimation of the DoA of the signals. When the DoA of the interference signals is 

estimated it can be cancelled out by making the weight vector orthogonal to the 

interference subspace [34].  

Many different algorithms exploit the eigenstructure of the covariance matrix of the 

received signal [17], [11] and [34].  The main disadvantage of the beamformers that are 

based on the Eigen Decomposition (ED) methods is that the number of users is limited by 

the number of antenna elements. Therefore, they are not suitable to commercial CDMA 

applications, which must support a large number of users [35]. There are some techniques 

used to overcome this limitation. In [17] the fact that in CDMA systems the desired user 

power is much larger than that of each interference power due to the processing gain of 

the CDMA demodulation has been exploited. They have used the eigenvector 

corresponding to the largest eigenvalue as the optimum weight of the array. The main 

advantage of this method is that it can be used with any number of users, if the SINR of 

the desired user is very high [17]. 

 

4.2.7 Adaptive Beamforming using Kalman Filter 

The constrained optimization problem presented in equations (4.21)-(4.22) can be solved 

using Kalman filtering approach [22]. Equation (4.19) can be rewritten as follows: 

( ) 2
min E[ 0-z t ]   (4.43) 

subject to 

1H
i i =w a  (4.44) 

To incorporate Kalman filtering, the measurement equation can be written as  
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( ) ( ) ( )
( )

1

2

0
1

H

iH
i

v tt
t

v t
⎡ ⎤⎡ ⎤⎡ ⎤

= + ⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u
w

a
. (4.45) 

Here v1(t) is the residual error and v2(t) is the constraint error. These errors are assumed to 

be zero mean Gaussian and independent random variables. In matrix form Equation 

(4.45) becomes   

( ) ( ) ( )H
it t t= +Y B w V , (4.46) 

where ,
1
0
⎥
⎦

⎤
⎢
⎣

⎡
=Y ( ) ( )H

H
H
i

t
t

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

u
B

a
  and  ( ) ( )

( )
1

2

v t
t

v t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

V . 

Further, the correlation matrix of V(t) is  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

δ
δ

= 2
v

2
v

2

1

0
0

Q  (4.47) 

The state space model of the constrained Kalman algorithm may be written as 

( ) ( )1i it t= −w w  (4.48) 

Now, we may use Kalman filter to solve equations (4.46) and (4.48) to minimize the 

residual error in the mean-square sense while maintaining a distortionless response along 

the looking direction. The discrete Kalman filter can be written as [20]: 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ1 1 [ 1 1 ]H
i i it t t t t= − + − − − −w w K Y B w . (4.49) 

The Kalman gain ( )tK  is given by 

( ) ( ) ( ) ( ) ( ) ( )1 [ 1 ]Ht t t t t t= − − +K G B B G B Q , (4.50) 

where the filtered weight-error correlation matrix G(t) is  

( ) ( ) ( ) ( )[ ] 1Ht t t t= − −G I K B G . (4.51) 

It has been proven that the constrained Kalman-type array processor can converge to the 

minimum-variance distortionless-response (MVDR) beamformer [22]. 

 

4.2.8 Least Square Despread Respread Multitarget Array (LS-DRMTA) 

The algorithm proposed in [36] and [12] is based on re-spreading of the received data 

bits. The re-spread signal is compared with the received signal (before the despreading), 

and the difference is used as an error signal. This error is minimized by adjusting the 

antenna weights. Figure 4.2 shows the block diagram of the LS-DRMTA for user i.  

The re-spread signal is given by   
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( ) ( ) ( )       n-1 ,    1,...,i in i i b br t b C t T t nT i Qτ= − ≤ < = , (4.52) 

where Ci(t) is the spreading code for user i and bin is the nth received data for user i.  

The LS-DRMTA is used to minimize an error function by adjusting the weight vector wi.  

The cost function is given by 

( ) ( ) ( ) ( ) ( )
2 2

1 1

K K
H

i i i i
k k

F y t r t t r ti
= =

= − = −∑ ∑ w xw , (4.53) 

where K is the data block size and is set equal to the number of samples in one bit period 

in LS-DRMTA. 
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Figure 4.2. LS-DRMTA block diagram for user i. 
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4.3 Spatial-Temporal Processing 

The capacity as well as the performance of the cellular communication systems can be 

greatly enhanced by exploiting any known characteristics of the communication link. The 

natural spatial distribution of the users and the access delay distribution of the signal 

paths are two important characteristics which can be exploited. Using the adaptive 

antenna array one can enhance the reception from certain direction of arrivals (DoA) and 

attenuate the others as has been shown in the previous section. Usually the Signal of 

Interest (SoI) arrives at the receiver’s antennas as multi-path components, where each 

component has its own DoA as well as access delay. For wideband signals those multi-

paths could be uncorrelated. The adaptive antenna system will attenuate the other 

uncorrelated paths of the SoI. This time spreading of the SoI can be exploited as well by 

using two different methods. The first is to use a general wideband array as shown in 

Figure 4.3 [12]. If the length of each tapped delay line is long enough to capture the 

delayed multi-path components, then the wideband array can capture power in 

components which arrive with different delays and recombine them [12]. The other 

method is to use a Rake receiver with the adaptive antenna array. The Rake receiver is 

capable of receiving multiple signal paths and adding them coherently using multiple 

fingers. Each Rake finger is time locked to a different delay to capture the multi-path 

components arriving with different path delays. 

Combining the Rake receiver with adaptive antenna array one can exploit spatial as well 

as time distributions of the signals. Figure 4.4 shows the conventional way to combine a 

Rake receiver with adaptive antenna [12]. Any adaptive algorithm can be used to compute 

the optimum weight vector for each significant path which is captured by the rake fingers. 

The main problem of the spatial/temporal processing is the high computational cost.    
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For example if the number of antennas is 6 and the number of rake fingers is 6, this means 

that 36 weights should be adapted each time. A new method is proposed next to reduce 

Z-1 Z-1

w1,1

Σ

Z-1

Z-1 Z-1 Z-1

Z-1 Z-1 Z-1

w1,2 w1,K

w2,Kw2,2w2,1

wN,KwN,2wN,1

ΣΣ

ΣΣ

ΣΣ

Figure 4.3. Wideband adaptive antenna system 

Wi,1

Wi,3

Wi,2

Rake Finger 3

Rake Finger 2

Rake Finger 1

Diversity
Combiner

Figure 4.4. Adaptive antenna system and Rake Receiver 
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the computational cost. There are some other techniques to reduce the computational 

complexities of the receivers [90]. 

 

4.3.1 General MVDR (GMVDR) Algorithm for Frequency Selective Channels 

The main idea of the MVDR algorithm is to find the weight vector which minimizes the 

total received power except the power coming from directions of interest (4.2.3). In the 

MVDR techniques we need to know the DoA of the desired user’s paths. There are 

several techniques to estimate the DoAs of users, such as MUSIC and ESPRIT methods 

[12].  The main idea of the GMVDR algorithm is that we compute the optimum weight 

vector which minimizes the total received power except the power of signals coming from 

all the significant paths of the SoI.  

The problem can be described mathematically as follows: 

Find 
2

imin  E z ,          1, 2,.., ,i Q⎡ ⎤ =⎣ ⎦  (4.54) 

subject to 

,1

,2

,

1

1

1
i

H
i i

H
i i

H
i i M

=

=

=

w a

w a

w a

 (4.55) 

where ,i ka is the steering vector of  path k for user i. If we assume that the first element is 

the reference element then the steering vector can be defined as   

[ ], 21 exp( ) exp( ) ,      1,...,i k ik Nikj j i Q′= − ∆Ψ − ∆Ψ =a  (4.56) 

In the normal MVDR algorithm, we have only one equality constraint to represent the 

user’s DoA. 

Using Lagrange multiplier method, the total cost function becomes 

( ),
1

1
iM

H H H
i i i k i i k

k
C E γ

=

⎡ ⎤= + −⎣ ⎦ ∑w uu w w a  (4.57) 

where kγ  is the kth Lagrange multiplier factor.   

Necessary conditions for minimization are 



Chapter Four  Smart Antenna Systems 127 
 

,
1

2 0,      1,...,
iM

H Hi
i uu k i k

ki

C i Qγ
=

∂
= + = =

∂ ∑w R a
w

, (4.58) 

, 1 0,      1, 2,..,H Hi
i i j i

j

C j M
γ
∂

= − = =
∂

w a , (4.59) 

where H
uu E ⎡ ⎤= ⎣ ⎦R uu . 

From (4.58) the optimum weight vector is obtained as  

1
,

1

1 ,        1,...,
2

iM
H H
i k i k uu

k
i Qγ −

=

= − =∑w a R  (4.60) 

Now substituting (4.60) in (4.59) for all j results in 
1 1 1

,1 ,1 1 ,2 ,1 2 , ,1

1 1 1
,1 ,2 1 ,2 ,2 2 , ,2

1 1 1
,1 , 1 ,2 , 2 , ,

2,

2,

2.

i i

i i

i i i i i

H H H
i uu i i uu i i M uu i M

H H H
i uu i i uu i i M uu i M

H H H
i uu i M i uu i M i M uu i M M

γ γ γ

γ γ γ

γ γ γ

− − −

− − −

− − −

+ + + = −

+ + + = −

+ + + = −

a R a a R a a R a

a R a a R a a R a

a R a a R a a R a

 (4.61) 

The optimum Lagrange multiplier factors can be obtained by solving the system of linear 

equations given in (4.61) 

In the matrix form, (4.61) can be represented as 

2 ,        1,...,i i i Q= − =A Γ 1  (4.62) 

where 
1 1 1

,1 ,1 ,2 ,1 , ,1

1 1 1
,1 ,2 ,2 ,2 , ,2

1 1
,1 , , ,

i

i

i i i

H H H
i uu i i uu i i M uu i

H H H
i uu i i uu i i M uu i

i

H H
i uu i M i M uu i M

− − −

− − −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a R a a R a a R a

a R a a R a a R a
A

a R a a R a

 (4.63) 

1 2 ii Mγ γ γ ′⎡ ⎤= ⎣ ⎦Γ  (4.64) 

[ ]11 1 ′=1  is M×1 vector of ones 

From (4.62), the optimum Lagrange factors become 
12i i
−= −Γ A 1  (4.65) 

Equation (4.60) can be rewritten as 

11 ˆ ,        1,...,
2

H
i i uu i Q−′= − =w Γ a R  (4.66) 

where 
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,1

,

ˆ

i

H
i

i
H
i M

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

a
a

a
 (4.67) 

Substituting (4.65) into (4.66) gives 
1 1ˆ ,         1,...,H

i i i uu i Q− −′= =w 1 A a R  (4.68) 

This result could be compared with the conventional (single path) MVDR algorithm 

given by (4.24) 
1

1
ˆ ,        1,...,  .

H
H i uu
i H

i uu i

i Q
−

−= =
a Rw

a R a
 (4.69) 

It is clear that algorithm (4.69) is a special case (one path) of (4.68). 

From (4.63) it is clear that iA can be decomposed as 

1ˆ ˆ ,         1,...,H
i i uu i i Q−= =A a R a  (4.70) 

so that in order to get a non-singular matrix, the number of antenna elements should be 

greater than or equal to the number of Rake fingers. It should be noted that the GMVDR 

algorithm is effective only in the frequency selective channels.  

 

4.4 Information-Theoretic analysis of Uplink Beamforming 

The concepts of smart antennas and weight adaptation techniques are presented in the 

previous sections. In this section, the effect of using multiple antennas on the 

communication systems will be analyzed from the information-theoretic point of view. 

An upper bound of the system capacity for reliable communication will be determined 

using information theory. Certain concepts of information theory will be covered next  

4.4.1 Some information theory concepts [24], [47],  [50] and [51] 

• The information content in a discrete event sk  is defined as   

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k
2k P

1logsI , (4.71) 

where Pk is the probability of occurrence. 

• The Entropy is the mean of the information content over all the possible outcomes 

K as 
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( ) ( )[ ] ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==ϕ

−

=

1K

0k k
2kk P

1logPsIEH , (4.72) 

where ϕ is the set of all possible outcomes. The entropy is a measure of the 

average information per source symbol. 

• A simple communication system is represented as  

Y=X+N, (4.73) 

where X is a discrete channel input, Y is the measured channel output, and N is 

additive noise to the channel. We can define the conditional entropy H(X\Y) as 

the amount of uncertainty remaining about the channel input after the channel 

output has been observed: 

( ) ( ) ( ) ( ) ( ) ( )
K 1 K 1 J 1

k k j k k 2
k 0 k 0 j 0 j k

1H X \ Y H X \ Y y P y P x \ y P y log
P x \ y

− − −

= = =

⎛ ⎞
⎜ ⎟= = =
⎜ ⎟
⎝ ⎠

∑ ∑∑ .  (4.74) 

where ( )j kP x \ y  is the probability of xj conditioned on yk .      

• The mutual information I(X;Y) represents the uncertainty about the channel input 

that is resolved by observing the channel output. It is defined as  

        ( ) ( ) ( )Y\XHXHY;XI −= . (4.75) 

Substituting (4.72) and (4.74) into (4.75) gives 

( ) ( ) ( ) ( ) ( ) ( )
J 1 K 1 J 1

j 2 j k k 2
j 0 k 0 j 0j j k

1 1I X;Y P x log P x \ y P y log
P x P x \ y

− − −

= = =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑∑ . (4.76) 

It is clear that I(X;Y) =0 if and only if the input and output symbols of the channel 

are statistically independent (i.e.  P(xj\yk)=P(xj)). 

• The channel capacity has been defined as the maximum mutual information 

I(X;Y) as 

    
( ){ }

( )
jP x

C max I X;Y=  (4.77) 

 

• The differential entropy of a continuous random variable X with a probability 

density function (pdf)  fX(x) is  

( ) ( ) ( ) dx
xf

1logxfxh
X

2X∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∞

∞−
. (4.78) 

Recall that pdf of a Gaussian distributed random variable, x~N(µx,δ2
x), is 



Chapter Four  Smart Antenna Systems 130 
 

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

δ
µ−−

δπ
= 2

x

2
x

x
X 2

xexp
2
1xf . (4.79) 

 By substituting equation (4.79) into (4.78) we get 

( ) ( ) ( ) ( )2
2 2 2

1 1log 2 log log 2 .
2 2x xh x e eπδ πδ= + =   (4.80) 

It is not difficult to prove that for any arbitrary pdf fy(y) with the same mean and 

variance, i.e., 2
x

2
yxy ; δ=δµ=µ , one has 

 ( ) ( )2
x2 e2log

2
1yh δπ≤ . (4.81) 

The equality holds, when x=y. Equation (4.81) implies that for a finite 

variance 2
xδ , the Gaussian random variable has the largest differential entropy. 

• The pdf of a multivariate Gaussian distribution is defined as 

( )
( )

( ) ( )1
2

1 1exp
22 nf

π
−⎛ ⎞′= − − −⎜ ⎟

⎝ ⎠
X x xx x m M x m

M
 (4.82) 

where x=[x1,….,xn]’, M is an n×n covariance matrix with elements {ρij} with 

( )( )[ ]ij i i j jE x m x mρ = − − , and mx=[µx1, µx2,.., µxn]’ is the column vector of mean 

values. 

• The differential entropy of a multivariate Gaussian distribution is  

( )
( )

( ) ( )

( )( ) ( ) ( ) ( )

1 2

1
1 22

1 22 1
2 2 1

1 1exp
22

1               -log 2 log
2

n

x xn
x x x

n
x x n

h

e dx dx

π

π

−

−

⎛ ⎞′= − − − −⎜ ⎟
⎝ ⎠

⎡ ⎤′− − −⎢ ⎥⎣ ⎦

∫ ∫ ∫x x m M x m
M

M x m M x m

  (4.83) 

Analogously to (4.80) 

( ) ( )( )2
1 log 2 .
2

nh eπ=x M  (4.84) 

 

• The information capacity of a channel is defined as the maximum of the mutual 

information I(X,Y) that satisfies the power constraints, i.e.,  

( )
( ) 2max[ ; : ]

Xk
k k k xf x

C I X Y E X P⎡ ⎤= =⎣ ⎦ , (4.85) 

I(Xk;Yk)=h(Yk)-h(Nk), k=1,...,K    . (4.86) 
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As we have seen the maximum of I(X;Y) over the input pdfs f(x) is obtained when 

{Xi} are statistically independent zero-mean Gaussian random variables [24], i.e., 

 ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

π
=

ii x

2
k

x
kx P2

xexp
P2

1xf , (4.87) 

where 
ixP  is the average power of signal xi. 

From equations (4.72), (4.77) and (4.78), the channel capacity can be obtained as 

( )( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ

+=πδ−δ+π= 2
N

x
2

2
N2

2
Nx2

P
1log

2
1e2log

2
1eP2log

2
1C , (4.88) 

where 2
Nδ  is the average noise power. 

In other terms we may rewrite (4.88) as 

( )1
22 log 1C SINR= +   (4.89) 

where SINR is the signal to interference and noise ratio. 

 

4.4.2 Capacity of a channel with a single user and multi-receivers [51] 

Studying the capacity of a channel with a single user and multi-receivers will lead to a 

general formulation for the capacity of more complicated scenarios. Assume a single user 

transmitting his signal, which is received by multi-receivers (or multi-antennas). Suppose 

the received signal is presented as the vector x=[x1,x2,….,xK]. An additive white zero 

mean Gaussian noise is added at each antenna terminal to the signal. This noise is 

represented as N=[n1,n2,….,nK] with ni~N(0,δ2
i). The covariance matrix of the noise is 

∑=diag(δ2
1,,δ2

2,…,δ2
K). Since the received signal is given by Y=X+N, the capacity can be 

determined directly as  

( )( ) ( )( ) ( )1
xx2

K
2xx

K
2 log

2
1e2log

2
1e2log

2
1C −+=π−+π= ΣRIΣΣR , (4.90) 

where Rxx is the covariance matrix of the received signal. 

Since the received signal is for one user, the covariance matrix for a correlated received 

signal can be represented as  
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1 1 2 1

1 2 2 2

1

K

K
xx

K K

P PP PP

PP P P P

PP P

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R , (4.91) 

where Pi, i=1,…,K is the received power at antenna terminal i. It can be proven that the 

channel capacity is given by [51] 

2 2
1

1 log 1
2

K
i

i i

PC
δ=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑ . (4.92) 

From equation (4.92), it is clear that the capacity is increasing in log scale with users. 

 

4.4.3 Capacity of a channel with multi-users and multi-receivers 

The analysis of a channel capacity with multi-users and multi-receivers is more difficult 

than the case of a single user and multi-receivers. This difficulty comes from the 

interference effect of each user on the other users. The analysis of the channel capacity in 

this case depends on the decoding process. There are two ways for decoding. The first is 

the simplest one. “The least cost” is to decode every user separately and deal with other 

interference signals as a background noise. The other method is the joint decoding. In the 

joint decoding all users’ signals are decoded simultaneously to minimize the interference 

between them. The joint decoding is more sophisticated than the independent decoding 

method, however, it is expensive to implement. Some suboptimal methods have been 

used to reduce the complexity, and still provide some gain over the independent decoding 

method.  

From (4.39) for multi-user wireless communication system and single receiver with 

antenna array the received signal is  

 u=As+n (4.93) 

For simplicity, the study here will be restricted to narrowband systems. By assuming that 

the signals and noises are uncorrelated, one can write: 

( ) ( ){ } { }
{ }

1

2

2

, , ,

,

.

H
ss Q

H
N n

H
uu ss n

E t t diag P P

E δ

δ

= =

= =

= +

R s s

R nn I

R AR A I

 (4.94) 

The variables are defined in Section 4.2.6. To find the capacity in this case, we have to 
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assume multivariate Gaussian distribution for both the transmitted signals and for the 

added noise. We will assume independent decoding for the received signals.  

To find the capacity for user k, the total interference and noise covariance matrix of user k 

is defined as 
H
kkkuuuk P aaRR −=  (4.95) 

The capacity is given by 

( )[ ] ( ) ( )[ ]ts\hhts;ImaxC kkk uuu −==  (4.96) 

1
2 2

1 1log log
2 2

H
uk k k k H

k k k k uk
uk

P
C P −

⎛ ⎞+
⎜ ⎟⇒ = = +
⎜ ⎟
⎝ ⎠

R a a
I a a R

R
 (4.97) 

Since |I+AB|=|I+BA| the achievable rate of user k is [59] 

( )k
1

uk
H
kk2k P1log

2
1R aRa −+≤ . (4.98) 

In this thesis we have studied the beamforming, where the antenna array vector is 

optimally combined to a single output through a weight vector. The optimality is achieved 

by a proper selection of the weight vector. Now we will see that the optimal combining of 

the antenna outputs will not change the users’ achievable rates.  

As shown in Section 4.2, the output signal of user k is  

( ) ( ) ( ) ( ) ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑++==
≠
=

Q

kj
1j

jj
H
kkk

H
k

H
kk tsttsttz anwawuw . (4.99) 

The covariance of the output signal is 

( ) ( ) 2* H H
k k k k k k uk kE z t z t P⎡ ⎤ = +⎣ ⎦ w a w R w . (4.100) 

The optimum weight vector, which maximizes the CIR, is given by the MVDR [11] as 
1

1 .uk k
k H

k uk k

−

−=
R aw

a R a
 (4.101) 

Then the CIR for user k from equation (4.100) is given by 

 k
1

uk
H
kkk PCIR aRa −= . (4.102) 

By substituting equation (4.102) into the original Shannon capacity formula we obtain 
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 ( ) ( )k
1

uk
H
kk2k2k P1log

2
1CIR1log

2
1R aRa −+=+≤ , (4.103) 

which is identical to (4.98). This indicates that the optimal combining of the antennas 

outputs will not change the users’ achievable rates 

 

4.4.4 Capacity of a channel with multi-users, multi-receivers, and multi-paths 

Single path is assumed in the previous section. Now we will show the impact of multi-

path environment on the channel upper capacity. The output signal of the antenna array in 

multi-path case is given by 

( ) ( ) ( ) ( ) ( )
1 1 1

jk BB Q
H H H

k k k kl k kl k jl j jl
l j l

j k

z t t s t t s tτ τ
= = =

≠

⎛ ⎞
⎜ ⎟= = − + + −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑∑w u w a w n a  (4.104) 

If the weight vector is computed for one path (ex. the strongest path) then the other paths 

which have different delays and DoA will be added to the interference part of the received 

signal. Without any loss of generality assume the strongest path is the first, then (4.104) 

can be rewritten as   

( ) ( ) ( ) ( ) ( ) ( )1 1
1 1 2

,
j jB BQ

H H H
k k k k k k k jl j jl kl k kl

j l l
j k

z t t s t t s t s tτ τ τ
= = =
≠

⎛ ⎞
⎜ ⎟= = − + + − + −⎜ ⎟⎜ ⎟
⎝ ⎠

∑∑ ∑w u w a w n a a (4.105) 

where kB  is the number of signal paths of user k. It is clear that the interference part 

becomes larger now which means less capacity. In this case the MVDR algorithm (alone) 

is not the optimum. One method is to find the optimum weight vector of each signal path 

then using Rake receiver to equalize the different signal delays. Using the GMVDR 

algorithm (4.68) one can compute the optimum weight vector for all paths. In this case all 

signal paths can be exploited. Equation (4.104) can be rewritten in more compact form as 

( ) ( )
1

ˆ ˆ
Q

H H H H
k k k k k j j

j
j k

z t t
=
≠

⎛ ⎞
⎜ ⎟= + +⎜ ⎟⎜ ⎟
⎝ ⎠

∑w a s w n a s  (4.106) 

where 

1 2ˆ , ,..,
k

H
k k k kB⎡ ⎤= ⎣ ⎦a a a a  (4.107) 

( ) ( ) ( )* * *
1 2, ,...,

k

H

k k k k Bs t s t s tτ τ τ⎡ ⎤= − − −⎣ ⎦s  (4.108) 

The covariance of the output signal is 
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( ) ( )* ˆ ˆH H H
k k k k kk k k k uk kE z t z t⎡ ⎤ = +⎣ ⎦ w a R a w w R w  (4.109) 

where H
kk k kE s s⎡ ⎤= ⎣ ⎦R . 

If the covariance matrix of the interference can be estimated (usually difficult to obtain) 

then (4.68) can be rewritten as 
1 1ˆH T

k k k uk
− −=w 1 A a R  (4.110) 

Substitute (4.110) into (4.109) to obtain  

( ) ( )* 1 1 1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆH H H
k k k k uk k kk k uk k k k k uk uk uk k kE z t z t − − − − − − − −′ ′⎡ ⎤ = +⎣ ⎦ 1 A a R a R a R a A 1 1 A a R R R a A 1   (4.111) 

From (4.70) 
1ˆ ˆ H

k k uk k
−=A a R a  (4.112) 

Then (4.111) can be reduced to 

( ) ( )* 1
k k kk kE z t z t −′ ′⎡ ⎤ = +⎣ ⎦ 1 R 1 1 A 1  (4.113) 

The first part represents the received signal of interest which is the sum of the signal 

covariance matrix.  

The capacity in this case is 

( )2 2 1

1 1log 1 log 1
2 2

kk
k k

k

R CIR −

⎛ ⎞′
≤ + = +⎜ ⎟′⎝ ⎠

1 R 1
1 A 1

 (4.114) 

Observe that in case of single path, (4.114) is reduced to (4.103). 

 

4.5  Simulation Results 

The first part of simulations is performed to compare different adaptive antenna 

algorithms. We have assumed 50 users uniformly distributed within an area containing 

four base stations as shown in Figure 4.5. In the simulations the following parameters are 

used. Additive white noise with zero mean and -100dBw variance is assumed. Further, 

DS/CDMA system is assumed with processing gain (PG) of 128. The path loss exponent 

is 4 and the shadowing factor is assumed to be 2 dB. In the simulations, centralized power 

control algorithm is employed to adjust the transmitted power of each user. In Figure 4.6 

we can see the CIR in dB with respect to the number of users.  
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Figure 4.6 shows that the null steering beamformer behaves worst in a multi-cell 

environment with additive white noise; also it needs good estimation for the DoAs for all 

users. The MVDR gives relatively good results; its problem is that it needs an estimation 

for the DoA for the desired user, and good estimation for the inverse of the correlation 

matrix. The GMVDR is exactly the same as MVDR in single path case. The adaptive 

version of the MVDR method has slow convergence. The RLS was as expected faster 

than the LMS algorithm. The subspace method gives good results for small number of 

users, i.e. when the number of users is comparable with the number of antenna elements. 

For this reason it has not been shown in Figure 4.6. The GMVDR algorithm has been 

tested in the second part of simulations. Ten users uniformly distributed in an area of 1 

km2 with one base station have been assumed. Frequency selective channel with an 

additive white noise is assumed. Four antenna terminals are assumed at the base station. 

Three paths are assumed for each user. The paths have random DoAs. The antenna 

beamforming of one user is shown in Figure 4.7. It is clear that the antenna beam 

enhances the reception in the directions of the significant paths of the desired user’s 

signal.  

Figure 4.5  The base stations and users’ distributions. 
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Figure 4.6.  CIR (dB) versus the number of users. 
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CHAPTER FIVE  

JOINING RADIO RESOURCE MANAGEMENT 

AND SMART ANTENNAS 
 

5.1 Introduction 

It has been shown in previous chapters that the SINR is the backbone of the system 

performance. At low SINR, duplicating the SINR means duplicating the upper bound 

capacity, which means less infrastructures, less cost, better performance,…and so on. For 

this reason many researchers work to exploit any available or discovered phenomena to 

increase the SINR of the communication system. In Chapter 3 we discussed the optimum 

sharing way of the available resources between users, in other words, the optimum SINR 

value to be assigned for each user to achieve the required network and user objectives. It 

has been indicated in Chapter 4 that the SINR can be enhanced by reducing the 

interference through spatial and temporal processing. The performance can be further 

enhanced by using (Multi-Input Multi-Output) MIMO smart antenna system. That means 

using smart antenna system at the receiver as well as at the transmitter. MIMO antenna 

system usually means in the literature exploiting of uncorrelated multi-paths of the 

transmitted signal to obtain different channels at the same time, bandwidth, and code. We 

use the term MIMO here for MIMO beamforming. Equation (4.103) indicates that the 

same upper capacity can be achieved in both cases.  In this chapter we will show how to 

join the MIMO smart antenna and the radio resource scheduler.      

The joining algorithm of radio resource scheduler and smart antenna should considerably 

reduce the transmission power while achieving the target QoS performance. The 

convergence to an acceptable performance should be fast enough to handle the dynamical 

behavior of the mobile communication systems.  

A smart antenna can minimize the interference between users with different DoA signals, 

while the RRS optimizes the transmitted power and rate to maximize the capacity and to 

achieve the required QoS at the same time.  

It has been shown in Chapter 4 that the smart antenna weights are dependent on the 

received signal power “to construct the covariance matrix”. Chapter 3 shows that the 
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transmitted power and rate are dependent on the CIR. The CIR is dependent on the smart 

antenna weights, as is shown in Section 5.2. So we can see the direct effect of the RRS 

and beamforming to each other. By optimal or even sub-optimal joining of the two-

interference management approaches, one can greatly improve the capacity and the QoS 

of the mobile communication system.  

 

5.2 Influence of MIMO beamforming on communication system performance 

A general configuration of a cellular system with a smart antenna system at base station 

as well as mobile stations is shown in Figure 5.1. Suppose there are Q users uniformly 

distributed in an area with radius R, which contains V BSs. Assume that each BS has M 

antenna elements, and there are N antenna elements at each MS. There are some 

limitations of using the smart antenna at the MS such as the limited space, processing 

power, and the dynamic nature of the local environment near MSs [12]. But in general, 

the optimum adaptation of the antenna weights of the BS and MS will further enhance the 

performance of the cell [46],[48],[53]. Moreover using a MIMO smart antenna has 

important applications in the Wireless Local Loop systems [12].  In our model, we 

assumed that array beamforming is used in the receiving part of the BS and also in the 

transmission part of the MS (Uplink beamforming).  

The main advantages of using beamforming in the transmitter of the MS are 

a) Steering the radiation pattern in certain directions to increase the CIR and reduce the 

transmitted power.  

b)  Reducing the angle spread at the BS. 

c) In the case of multi-cells, using the antenna array at the MS will enhance the 

performance of the system by reducing the transmitted power in the direction of the 

other BSs. 

Another interesting point is that the calculated weights at the BS can be used to calculate 

the weights at the MS in TDD systems [60].  

Without loss of generality, it is assumed that the MS i communicates with BS i.  

The output signal of user i at BS i can be described as  
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1

,       1,...,
M

ii iji iji
j

Z u w i Q
=

= =∑  (5.1) 

where ijiu  is the signal of user i received at antenna terminal of element j in the BS i, ijiw  

is the jth weight adjusted for user i in BS i. 

From (5.1) the received signal power from user i at BS i is  
2

2

1

M

ii ii iji iji
j

P Z u w
=

= = ∑  (5.2) 

and the interference signal power for user i is  

2
n

2Q

ik
1k

M

1j
ijikjiii wuN σ+= ∑ ∑

≠
= =

  (5.3) 

where  2
nσ  is the variance of the additive noise. 

The additive noise at the antenna terminals is assumed to be identically distributed, 

uncorrelated, and to have zero mean. The input signal at each antenna terminal is the 

convolution between the transmitted signal and the channel impulse response as 

( ) ( ),iji ii iiu S t tτ= ∗h  (5.4) 

where  ( )tSii  is the transmitted signal from user i (assigned to  BS i), and iih  is the 

impulse response vector of the channel between MS i and BS  i. 

We assume the transmitted baseband signal for user i to be  

( ) ( ) ( )i ti i ir t P B t C t=  (5.5) 

where tiP  is the transmitted signal power and ( )iB t  is the binary data signal for user i. 

The binary data signal has been assumed to be ±1 with equal probability. ( )iC t  is the 

spreading code for user i with ±1 chips.  

The channel between MS i and BS  i has been modeled using Vector Channel Impulse 

Response (VCIP)  

( ) ( ) ( ) ( )
0

, ,
iB

ii ii l l iil iil
l

t t tτ θ φ α δ τ
=

= −∑h a  (5.6) 

where iia  is the steering vector, 1+iB  is the number of signal paths of user i, and ( )iil tα  

is the complex channel gain (see chapter 4 for more details).   
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Figure 5.1. Simplified System Model 
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From equation (4.9) , the received signal at terminal j is 

 
( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

0

0

exp  exp 2

   exp  exp 2 ,    1,...,

i

i

B

iji ii ijil iil iil iil iil
l

B

ijil iil iil iil ii iil
l

u S t j j f t t

j j f t S t i Q

β ρ π ϕ δ τ

β ρ π ϕ τ

=

=

= ∗ − ∆Ψ + −

= − ∆Ψ + − =

∑

∑
 (5.7) 

The variables are defined in Section 4.2. According to our model we have defined an 

antenna array at the MS. Then the transmitted signal from each MS can be defined as  

( ) ( ) ( )
1

ˆˆ .exp  ,       1,...,
N

ii iji iji i
j

S t w j r t i Qβ
=

= − ∆Ψ =∑  (5.8) 

where ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆˆ cos sin sin sin cos  iji j ii ii j ii ii j iix y zφ θ φ θ θ∆Ψ = + + , and iiii
ˆ,ˆ θφ  are the 

azimuth and the elevation angles  of the BS i relative to the MS i respectively, and ˆ ijiw  is 

the weight of MS i at antenna terminal j.  

Using a smart antenna in the communication system has a direct effect on the CIR in the 

system. Most RRS algorithms are based on the estimation of the CIR for each user. The 

RRS and smart antenna can be joined together mathematically based on the CIR as a 

common factor. In distributed RRS algorithms, only local information is needed to be 

known to transmit the optimum power and data rate.  

The distributed feasible updating algorithms can be represented as  

( ) ( ) ( ) ( ) ( )( )1 , , , ,     1,..., ,    0,1,...T
i i i iP t f t t t t i Q t+ = Γ = =P R θ  (5.9) 

( ) ( ) ( ) ( )( )1 , ( ), ,T
i i i iR t g t t t t+ = ΓP R θ    (5.10) 

 

where if  and ig are the power and rate updating functions of terminal i respectively 

(these functions depend on the modulation type, and the optimization criteria), P(t), R(t) 

are the power and rate vectors at time slot t respectively, ( )T
i tθ is a vector of target 

parameters (such as target SINR, maximum packet delay,…etc) of user i at time slot t. 

Note that the data rate itself has been represented in many applications as one item of the 

target QoS vector ( )T
i tθ , but here we assumed it to be a free parameter, which can be 

determined by the RRS, and  ( )tiΓ  is the CIR of user i at time slot t [7]. 

There are different types of interference functions in the literature (see Chapters 2 and 3). 
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The CIR can be derived from  (5.2) ,(5.3) and (5.7)  as 
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( ) ( )( ) ( )

( ) ( )( ) ( )
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2BM

ijil iil iil iil iv iil iji
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ii 2BQ M
2
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⎣ ⎦Γ =
⎡ ⎤

− β∆Ψ ρ π +ϕ − τ +σ⎢ ⎥
⎣ ⎦

∑ ∑

∑∑ ∑
 (5.11) 

 

To simplify (5.11) a narrowband (flat fading) channel is assumed. The following 

expression is then obtained: 
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= = =
≠
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⎣ ⎦Γ =
⎡ ⎤
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∑ ∑

∑ ∑ ∑
 (5.12) 

From  (5.8) and (5.12) the following expression can be derived:  

       ( )
( )

( )

2 22

2 22 2
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,      1,...,
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H H
i ii ii ii ii ii

ii Q
H H

k kk ik ii ki ki n
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t i Q
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≠

Γ = =
+∑

w a w a α

w a w a α
               (5.13) 

where [ ]HiMii2i i1iii w w w=w  is the weight vector, and the superscript H represents the 

Hermitian transpose, 

( )( ) ( )( )i i iii ii1 ii1 iv1 iiB iiB iiBexp j 2 f t     exp j 2 f t⎡ ⎤= ρ π + ϕ ρ π +ϕ⎣ ⎦α  (5.14)  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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i2i1 i2i2 i2iB
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exp j exp j exp j

exp j exp j exp j

exp j exp j exp j

⎡ ⎤− β∆Ψ − β∆Ψ − β∆Ψ
⎢ ⎥
⎢ ⎥− β∆Ψ − β∆Ψ − β∆Ψ

= ⎢ ⎥
⎢ ⎥
⎢ ⎥

− β∆Ψ − β∆Ψ − β∆Ψ⎢ ⎥⎣ ⎦

a  (5.15) 

[ ]H
ii i1i i2i iNiˆ ˆ ˆ ˆw w w=w   (5.16) 

and 

( ) ( ) T

ii i1i iNi
ˆ ˆˆ exp jβ exp jβ⎡ ⎤= − ∆Ψ − ∆Ψ⎣ ⎦a  (5.17) 

From (5.11) we see the direct influence of the MIMO antenna weights on the CIR. To 
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clarify the influence of the MIMO antenna weights on the system capacity we derive the 

maximum achievable CIR in flat fading channel case. As stated in Chapter 2 the channel 

matrix H determines the link performance. It can be used to determine the maximum 

achievable CIR in the case of noiseless channels. The H matrix can be redefined in the 

case of uplink MIMO smart antenna as 
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 (5.18) 

 

To compare the results of (5.18) with those given by Section 2.2, a single path channel 

with zero Doppler shift and zero phase offset will be assumed. The CIR for user i can be 

defined as 

 ( )
( )

( )
( )

( )∑ σ+ξ

ξ
=

∑ σ+
=Γ

≠
=

≠
=

Q

ik
1k

2
nkiki

2
k

iiii
2

i
Q

ik
1k

2
nki

2

ki
H
ii

2

ik
H
kk

2
k

ii

2

ii
H
ii

2

ii
H
ii

2
i

ii
Gtr

Gtr

Gˆˆtr

Gˆˆtr
t

awaw

awaw
 (5.19)   

where all the beamforming algorithms try to adjust the antenna array weights to minimize 

the factor 
ii

ki

ξ
ξ . The minimization of this factor leads to minimization of the interferences 

at user i.  

Now the matrix H in (5.18) becomes  
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Comparing (5.20) with (2.6) in Chapter 2 we can see that the spectral radius of the matrix 

defined by (5.20) is smaller than the spectral radius of the other matrix. The reason is that, 

using proper adaptation techniques leads to  

ii ikξ ξ≥  ,     ∀ i, k =1,..,Q                                (5.21) 

The smaller spectral radius means the larger maximum achievable CIR, which means 

higher capacity and better performance.   

Example 1 

An improvement in the maximum achievable CIR will be demonstrated next when a 

MIMO antenna system is used. In this simulation, four BSs distributed in an area of 4 km2 

are assumed. The conventional beamforming for weight calculation is used. Figure 5.2 

shows the maximum achievable CIR with respect to the number of users in two different 

cases. In the first case, an omni-directional antenna at the BS as well as the MS is 

assumed. In the second case, 4 antenna elements at each BS and 2 antenna elements at 

each mobile station are employed.  

Example 2 

In this example we demonstrate the reduction in the transmitted power when using a 

MIMO antenna system. The QoS is assumed to be the same for all users.  Here 200 users 

uniformly distributed within an area of 4 km2 with 4 BSs are assumed. The target CIR is 

assumed to be –18 dB. The average power of the additive white noise is 1 nW. Figure 5.3 

shows the results of this example. In the case of omni-directional antenna at the BS as 

well as the MS "beamforming (1,1)" the average transmitted power should be 8.3 dBw to 

achieve the target CIR. In the case of using 4 antenna elements at the MS and an omni-

directional antenna at the BS "beamforming (1,4)", the average power has been reduced 

to –5.7 dBw. In the case of omni-directional antenna at the MS and 4 antenna elements at 

the BS "beamforming (4,1)", the average power has been reduced to –13 dBw. Finally in 

MIMO case where 4 antenna elements are used at the BS as well as MS the average 

transmitted power dropped to –25 dBw.  
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Figure 5.3. Average power reduction of MIMO beamforming 

 

5.3 Joining Algorithms for Smart Antenna and RRS 

The radio resources scheduler optimization problem in the presence of MIMO 

beamforming antenna weights is usually a complex, multi-dimensional, non-linear, and 

non-convex problem. Generally, all the RRS optimization problems (Chapter 3) can be 

reformulated to find the optimum antenna weights as well. By taking the MTMPC 

algorithm (Section 3.8.3) as an example, the RRS optimization problem becomes 

( ) ( ) ( ){ }1 2, arg max O , O     s.t. = − ∈ΩP W P P P   (5.22) 

where 
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O P
=

=∑P ,  (5.25)   

and { }min max= , 1,...,iP P P i QΩ ≤ ≤ =P , and W is a vector of all antennas weights in the 

system. In next Section we show how to join the smart antenna and RRS using Kalman 

filters. 

   

5.3.1 Joining Smart Antenna and RRS using Kalman Filters  

In this part, the smart antenna array is assumed only at the base station. The two problems 

(RRS and antenna weights adaptation) are solved separately using Kalman filters. As was 

mentioned in Chapter 4, [22] has proposed to use Kalman filter to adjust the antenna 

weights. In chapter 3, Kalman filter was proposed to solve the radio resource scheduling 

problem. In this section, both methods will be combined.  

The system equation is (for i=1,…,Q ) 
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( )
( )

( )
1 0 0 0

1
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 (5.26) 

and the measurement equation is  
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w

 (5.27) 

 

 Equations (5.26) and (5.27) can be rewritten as 
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where q(t) and V(t) are assumed to be zero mean white Gaussian noise with covariance 

matrices 
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R  respectively.   

The other variables are defined in Chapters 3 and 4.  

Kalman filter for the system (5.28) is [20]: 

Let C(0) be the initial error covariance and W(0) the initial weight. 

( ) ( ) ( )
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  (5.29) 

Example 3 

Here 20 users uniformly distributed within one cell are assumed. The beamforming is 

assumed in the uplink at the BS with 4 antenna elements. Figure 5.4 shows the 

transmitted power for a randomly selected user. In the first case, Kalman filter for the 

power control and beamforming is utilized. In the second case, Kalman filter is used for 

only power control and an omni-directional antenna has been assumed at the BS.   The 

simulation demonstrates (Figure 5.4) that in the case of joining the power control and 

beamforming the algorithm becomes considerably faster with much less power.  Figure 

5.5 shows the CIR for a randomly selected user in three different scenarios. It indicates 

that in CDMA systems using power control alone is better than using spatial processing 

without power control. Joining both power control and spatial processing can 
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considerably enhance the capacity and the available resources by increasing the achieved 

CIR.  

 

 
 

 

Figure 5.4. Transmitted power of Kalman power control and beamforming 

Figure 5.5. CIR of Kalman power control and beamforming 
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5.3.2 Influence of Smart Antenna Systems on the Performance of Radio Resource 
Scheduling in CDMA Cellular Systems 
 

In this Section we are going to propose a pseudo code to join the smart antenna (at the 

BS) and the RRS of the uplink in cellular communication system. Some of the UMTS 

standards will be followed. A chip level cellular CDMA simulator has been written to 

examine the system performance. Including more realistic channel models into the 

simulation indicates that many results in the literature about the smart antenna 

performance are very optimistic [115]-[116]. The reason for obtaining these dramatic 

enhancements is due to the simple channel models which have been used. When we 

assume more realistic channel parameters in our simulator like the multi-path, Doppler, 

phase offset, different mobile speeds, and time varying environment, a fair improvement 

in the RRS performance is obtained.  

The uplink dedicated channel structure is shown in Figure 5.6 [64]. The Dedicated 

Physical Data Channel (DPDCH) and the Dedicated Physical Control Channel (DPCCH) 

are I/Q multiplexed. The power is updated in slot by slot basis. Since the time width of 

the slot is 0.6667 ms, then the power adaptation rate is 1500 Hz. The information of the 

used Processing Gain (PG) is distributed through 15 slots which form the frame. The PG 

is defined as the chip rate to the data rate. The time width of the frame is 

15×0.6667ms=10 ms which means that the data rate can be updated every 10 ms. The rate 

information is sent with Transport Format Combination Indicator (TFCI). If the TFCI is 

not decoded correctly, the whole data frame is lost [64]. The DPCCH consists of 4 fields 

as Pilot bits, TFCI, Transmission Power Control (TPC) bits, and FeedBack Information 

(FBI) bits. More detailed explanation can be found in [64]. Without loss of generality we 

propose the GMVDR algorithm to compute the optimum weights of antennas. Generally 

speaking any other algorithm can be used with minor modifications. As shown in Figure 

5.7, the antenna weights are adapted by taking samples from the base band signal at each 

antenna element. These samples are used to construct the covariance matrix which is used 

to solve the GMVDR problem. Briefly, in UMTS systems, the data symbols are spread 

using orthogonal spreading codes. The chip rate is 3.84 Mb/s. The processing gain is 

variable and depending on the required data rate and the link condition. In the UMTS the 

uplink PG can take any value in the following set {4,8,16,32,64,128,256}. The highest 

data rate is achieved at the minimum PG as 3.84/4  
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Mb/s=960 Kb/s. The slowest data rate is obtained at the maximum PG as 3.84/256 

Mb/s=15 Kb/s. Reducing the PG will enhance the transmitted data rate but will reduce the 

received signal to interference ratio (SINR) as well. The relation between the SINR and 

the PG can be described as  

( ) ( ) ( ) ,       0,1,...i i it PG t t tδ = ×Γ =  (5.30) 

where ( )i tδ  is the signal to interference ratio of user i at iteration t, and the ( )i tΓ  is the 

CIR. 

Next we introduce the pseudo-code for joining the RRS and smart antenna. We assumed 

in this procedure that all users try to send at the highest possible rate.  

 

1) Start with random initial power P(0)=Po , and with maximum PG=256. 

2) Estimate the CIR from the feedback information in the time slot, then update the 

transmitted power according to one of power control algorithms such as (3.45) 

(with maximum power constraints).  

3) Construct the auto-covariance matrix according to (4.25) for one time slot. 

4) Estimate the DoA of the desired user then update the antenna weights using one of 

the adaptation algorithms such as (4.66). 

5) At the end of each 15 time slots (time frame) average previous frame CIR (with 

some weighting in order to make higher weights for recent time slots CIR)  then 

update the transmitted rate according to one of rate adaptation algorithms such 

as  (3.46) and (3.47).  

6) Goto step 2. 

The previous steps concentrate on the adaptation process of three main parameters. The 

parameters are the transmitting power, the transmitting data rate, and the antenna weights.  

 

Example 4 

Two scenarios are examined in this example. In all simulated scenarios multi-path 

frequency selective channel is assumed. A zero mean additive white noise with variance 

10-10 is assumed. The processing gain is selected according to the UMTS standard. The 

maximum access delay is taken to be 350 ns. The maximum number of paths is 3, and the 

maximum user speed is 5 Km/h.  The maximum transmitted power of users is 1 W. In the 

first scenario we assume one cell with 10 users. The MODPRC algorithm is used as the 
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RRS. The tradeoff factors have been selected as 1 2 30.01,  0.9,  and 0.09λ = λ = λ = . The 

antenna at MS is omni-directional antenna. The configuration of the users and the BS is 

shown in Figure 5.8. From Figure 5.8 it is clear that user 1 is very close to the BS. The 

number of antenna elements at the base station is 2.  The simulation has been run for 350 

slots which is equivalent to 0.23 second. Figure 5.9 shows the transmitted power of the 

best user (user 1) and worst user (user 5) and the average transmitted power of all users. 

The average transmitted power is 0.87 W. Figure 5.10 shows the transmitted data rate of 

the best user (user 1) and worst user (user 5) and the average data rates of all users. The 

average transmitted data rate in this scenario is 59.25 Kbps. 

In the second scenario we have assumed 4 antennas at the base station. The users’ 

configuration is the same as in the first scenario to have fair comparison. The same 

tradeoff factors are used as well. The transmitted power is shown in Figure 5.11. It is 

clear that the transmitted power of user 1 as well as the average transmitted power has 

been reduced when compared with omni-directional case. The transmitted power of user 5 

is still at the maximum power (1 W), but his data rate has increased 4 times as shown by 

Figure 5.12. The average transmitted power in this scenario is 0.59 W. The average 

transmitted data rate in this scenario is 103.23 Kbps. Comparing the first and second 

scenario we can see that the average transmitted power of the second scenario has been 

reduced by more than 30 % and the average data rate is increased by more than 74%. 

Fewer fluctuations in the data rate are observed when using multi-antenna system than 

omni-directional antenna. 

 

 

 

 

 

 

 

 

 

 

 



Chapter FIVE Joining Radio Resource Management & Smart Antenna  155 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

500 600 700 800 900 1000 1100 1200 1300 1400 1500
500

600

700

800

900

1000

1100

1200

1300

1400

1500

distance [m]

di
st

an
ce

 [
m

]

(1) (3) 

(10) 

(6) 

(8) 

(2) 

(9) 

(7) 

(5) 

(4) 

(BS) 

Multi-path environment 
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CHAPTER SIX 
 

CONCLUSIONS  
 

 
 

Two different subjects have been studied in this thesis. The first subject is the radio 

resource scheduler, and the second is smart antennas. Both are very important subjects in 

multi-user wireless communication systems. Novel algorithms have been proposed in 

both subjects and also in joining them. 

The mobile communication channel is shared by many users at the same time. To 

maximize the capacity as well as the performance, the radio resources should be wisely 

divided between users. The radio resource scheduler takes the responsibility to address 

the optimum transmitted power and data rate of each radio terminal. The network 

situation and the QoS requirements of each user should be taken into consideration during 

the optimization process. The RRS problem has been treated in two different situations. In 

the first situation the data rate is assumed to be fixed, so the RRS problem is reduced to 

power control. In the second situation the RRS problem is the combined power and rate 

control. The first contribution area of this thesis is the application of Multi-Objective 

optimization methods in RRS (fixed and variable rate). The Multi-Objective optimization 

is a very strong tool in optimizing different and conflicted objectives, which makes it 

powerful method for RRS. Our work is the first in the literature to suggest using 

analytical multi-objective optimization to solve these types of problems. Three new 

algorithms have been proposed based on MO optimization. The first one is the Multi-

Objective Distributed Power Control (MODPC) algorithm, which is presented in Section 

(2.7). The MODPC algorithm has been derived by minimizing an error function of two 

objectives. The first objective is to minimize the transmitted power and the second 

objective is to minimize the outage. One of the benefits of the MODPC algorithm is that 

the snapshot assumption is not necessary during the problem formulation. The MODPC 

algorithm is easy to implement and the simulations show that it is faster than all other 

studied conventional algorithms. The analytical analysis shows its superiority in 

convergence speed compared with other algorithms presented in the literature. Simple but 



Chapter Six Conclusions 159 
 
 

efficient tuning method of the tradeoff factors is introduced. The MODPC algorithm has 

been extended to include the data rate in the objectives. A new algorithm has been 

obtained which is called Multi-Objective Distributed Power and Rate Control 

(MODPRC) algorithm. This algorithm has also the same benefits as the MODPC 

algorithm (Section 3.8.1). In MODPRC algorithm, the MO optimization is formulated to 

achieve the following objectives:  

1. Minimize the total transmitting power.                                        

2. Achieve the target SNR in order to get certain BER level (depends on the 

application). 

3. Maximize the fairness between users. In our definition, the system is fair as long 

as each user is supported by at least his minimum required QoS. In this sense, 

minimizing the outage probability leads to maximizing the fairness.   

4. Maximize the transmitted data rate or at least achieve the minimum required data 

rate.  

The tradeoff between objectives can be carried out by choosing the values of the tradeoff 

factors. Intensive simulations have been performed to compare the performance of the 

MODPRC algorithm with other algorithms. The third algorithm is the Maximum 

Throughput and Minimum Power Control (MTMPC) algorithm. In this part we have 

constructed a centralized power control algorithm based on the tradeoff between the 

maximization of the total throughput of the users and the minimization of their total 

transmitted power in cellular systems. Power control algorithm for total throughput 

maximization has been proposed in [74]. In our algorithm, we use the same throughput 

maximization objective, but another objective for power minimization has been added.  

The Multi-objective optimization problem is solved using weighting method. A 

centralized power control algorithm is obtained. The simulations show that at low 

additive white noise levels the total transmitted power can be reduced up to 95% 

compared with the algorithm given in [74] while the total throughput is reduced only by 

less than 3%. This subject is treated in Section 3.8.3. One of the main disadvantages of 

using MO optimization method is the tuning of the tradeoff factors. The optimum tradeoff 

factors depend on the required solution. The MODPC algorithm and the MODPRC 

algorithm like other conventional algorithms assume perfect estimation of the CIR. This 

is not feasible in existing and near future systems. Only few bits are sent in feedback 



Chapter Six Conclusions 160 
 
 

channel from BS to MS to represent the CIR. A new algorithm to estimate the actual CIR 

from the power control ON-OFF commands has been proposed. The MO algorithms are 

modified to be used with this estimated CIR rather than the perfect one. Two modified 

algorithms have been obtained, which are the Multi-Objective Totally Distributed Power 

Control (MOTDPC) algorithm and the Multi-Objective Totally Distributed Power and 

Rate Control (MOTDPRC) algorithm. The CIR estimation algorithm has been combined 

with the distributed power control algorithm to obtain a new algorithm called Estimated 

Step Power Control (ESPC) algorithm. This algorithm has been compared with the Fixed 

Step Power Control (FSPC) algorithm which is used in existing cellular systems. The 

simulations show that the ESPC algorithm outperforms the FSPC algorithm at slow 

fading situations at the same signalling level.  

The second contribution area is the application of Kalman filters in RRS and in the 

joining of RRS with smart antenna. Fixed rate and multi-rate power control algorithms 

have been proposed based on Kalman filters. Our motivation to use Kalman filter is the 

known fact that Kalman filter is the optimum linear tracking device on the basis of second 

order statistics. We have formulated the power control problem in state-space form. 

Kalman filter algorithm has been applied to estimate the optimum transmitted power.  

A novel algorithm has been proposed in the adaptation of smart antenna weights. The 

algorithm is called General Minimum Variance Distortionless Response (GMVDR) 

algorithm. The GMVDR algorithm is a modification of the MVDR algorithm to be able to 

look at all directions of the multi-path signal. The upper channel capacity has been 

investigated in the presence of GMVDR algorithm.  

The third part of this thesis is the joining procedure of the smart antenna and RRS. The 

cellular communication system performance has been investigated in the presence of 

MIMO smart antennas. General formulation of the optimization problem of joining RRS 

and smart antennas has been introduced. A simple algorithm based on Kalman filter has 

been proposed to join smart antennas and multi-rate power control. The influence of the 

smart antenna on the RRS performance in CDMA systems has been studied and analysed 

by simulations. The MODPRC is assumed for the RRS and the MVDR for the smart 

antenna. Multi-paths with different delays, slow fading, and fast fading have been 

assumed in the simulations. It is observed that smart antenna can clearly enhance the 

system performance in multi-path channels.  
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Many research issues can be continued to be studied. These include: 

1. Application of analytical MO optimization in communication systems is very rich 

area and many algorithms can be proposed in different communication fields. 

2. The design of the decision maker which selects the required solution from the 

Pareto optimal set has not been studied in this thesis. By studying this part one 

may find a more efficient way to tune the tradeoff parameters. 

3. The applications of the proposed algorithms in infrastructureless systems such as 

ad hoc networks [114]. 

4. More analysis can be done for the applications of Kalman filters in radio resource 

schedulers to obtain more efficient algorithms.  

5. Sub-optimal solutions can be obtained by solving the optimization problem in 

Section 5.3.  

6. The ESPC algorithm (Section 2.4.7) performance can be considerably enhanced 

by using adaptive step size. Research activities are going on for this issue. 

7. The performance of the derived GMVDR (Section 4.3.1) can be investigated by 

comparing it with other temporal-spatial algorithms for frequency selective 

channels. 

8. Dropping algorithms (joined with adaptive antennas) which maximize the total 

throughput in CDMA cellular downlink is interesting topic to be continued 

[102],[117].    
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APPENDIX 
 
1) INTRODUCTION TO MULTI-OBJECTIVE 
OPTIMIZATION TECHNIQUES 
 

MO optimization is a method to find the best solution between different, usually conflicting 

objectives. In the MO optimization problem we have a vector of objective functions. Each 

objective function is a function in the decision (variable) vector. The mathematical 

formulation of the MO optimization problem is [77][96]:  

Find 

 
( ) ( ) ( ){ }1 2 mmin f , f ,..., f

subject to ∈

x x x

x S
 (A.1) 

where we have m ( ≥ 2 ) objective functions n
if : ℜ → ℜ , x is the decision (variable) vector 

belonging to the (nonempty) feasible region (set) S, which is a subset of the decision variable 

space nℜ  . The abbreviation min means that we want to minimize all the objectives 

simultaneously. Usually the objectives are at least partially conflicting and possibly 

incommensurable. This means that, in general there is no single vector x, which can 

minimize all the objectives simultaneously. Otherwise, there is no need to consider multiple 

objectives. Because of this, MO optimization is used to search for efficient solutions that can 

best compromise between the different objectives. Such solutions are called non-dominated 

or Pareto optimal solutions.  

Definition 1 [77] 

A decision vector * S∈x  is Pareto optimal, if there does not exist another decision vector 

S∈x  such that ( ) ( )i if f ∗≤x x  for all i = 1,2,..,m and ( ) ( )j jf f ∗<x x  for at least one index j. 

The Pareto optimal set is a set of all possible (infinite number) Pareto optimal solutions.  

The condition of optimal Pareto set is rather strict and many MO algorithms can not 

guarantee to generate Pareto optimal solutions but only weak Pareto optimal solutions. Weak 

Pareto optimal solutions can be defined as follows: 
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Definition 2 [77] 

A decision vector * S∈x  is a weakly Pareto optimal if there does not exist another decision 

vector S∈x  such that ( ) ( )i if f ∗<x x  for all i = 1,2,..,m. 

The set of (weak) Pareto optimum solutions can be nonconvex and nonconnected.  

Figure A.1 shows the geometric interpretation of Pareto optimal and weakly Pareto optimal 

solutions. Note that all points on the line segment between points A and B are weakly Pareto 

optimal solutions. All points on the curve between points B and C are Pareto optimal 

solutions. Also the following example illustrates the main concepts of Pareto optimal and 

weakly Pareto optimal solutions.  

Example 1: 

Table A.1 shows the results of MO optimization of three objectives. The objectives are 

minimizing BER, packet delay and the power consumption.  It is clear that the first solution 

is dominated by any other solution. The BER of the 3rd solution is better than the BER of the 

1st solution, but the packet delay as well as the power consumption of the 1st solution is better 

than that of the 3rd solution. In that sense all 1st, 2nd, and 3rd  solutions are Pareto optimal. The 

4th solution is weakly Pareto optimal. The 5th solution is not Pareto optimal solution because 

it is dominated by the 1st solution.  

After the generation of the Pareto set, we are usually interested in one solution of this set. 

This solution is selected by the decision maker. In Example 1, the decision maker will select 

the 2nd solution, if the power consumption is the most important objective. If the objective is 

to select the solution with a low power consumption as well as low BER, then the 1st solution 

is preferred.  The main point now is how to find the Pareto optimal or even weakly Pareto 

optimal solutions. There are many techniques to find the (weakly) Pareto optimal solutions 

[77]; [96]. Using soft-computing methods such as genetic algorithm is one way to solve this 

kind of problems [89]. In this appendix we will concentrate on the analytical solutions of the 

MO optimization problems. Most of the MO optimization methods are based on converting 

the MO functions to a single objective problem. Two different MO optimization techniques 

are discussed in this appendix. The first method is called the Weighting Method.  The 

weighting method transforms the problem posed in (A.1) into 
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( )

m

i i
i 1

min f

subject to S
=

λ

∈

∑ x

x
 (A.2) 

where the tradeoff factors λi  satisfy the following 
m

i i
i=1

0 , i=1,..,m     and 1λ ≥ ∀ λ =∑ .            

Weakly Pareto optimal set can be obtained by solving the optimization problem (A.2) for 

different tradeoff factors values [77].  

The second MO optimization technique is of special interest in the applications of MO 

optimization in RRS. It is the method of Weighted Metrics.  If the global solutions of the 

objectives are known in advance, then problem (A.1) can be formulated as 

   ( )
1

m pp

i i i
i 1

min f z

subject to S

∗

=

⎛ ⎞
λ −⎜ ⎟

⎝ ⎠
∈

∑ x

x

 (A.3) 

where1 p≤ ≤ ∞ , iz∗  is the optimum solution of objective i, and the tradeoff factors satisfy the 

following  
m

i i
i=1

0 , i=1,..,m and 1λ ≥ ∀ λ =∑ . (A.4) 

It is clear that (A.3) represents the minimization of the weighted p-norm distance. For p=2 

the weighted Euclidean distance is obtained. With p=∞ the problem (A.3) is called weighted 

Tchebycheff or minmax problem [77][96]. The solutions of (A.3) depend on the p value.  

The Tchebycheff problem is called minmax because it takes the form: 

 ( )( ){ }*

1,..,
min max i i ii m

f zλ
=

−x  (A.5) 

 subject to S∈x  

In (A.3), if p=1, the sum of weighted deviations is minimized (becomes equivalent to (A.2) if 

iz∗  is a global minimum). If p=2, the Euclidean distance is minimized. When p gets larger, 

the minimization of the largest deviation becomes more and more important [77].  

Problem (A.5) is nondifferentiable, which makes the analytical solution not feasible. It can be 

solved in differentiable form as long as the objective and the constraint functions are 

differentiable: 
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We have indicated two simple and efficient methods to solve the MO optimization problems. 

There are many other methods to solve the MO optimization problems such as Goal 

Attainment method, Value Function method, Lexicographic ordering method, Interactive 

surrogate worth tradeoff method,…etc. Many packages to solve the MO optimizations 

problems are available. Some of them can be downloaded free from internet. Optimization 

toolbox in Matlab contains algorithms for MO optimization such as the Goal Attainment 

method.  

Example 3: 

A simple two objective optimization problem is given as follows 

 ( ) ( ){ }1 2min ,f fx x  (A.7) 

where 

( ) ( )2 2
1 210 26; 6 9f x x x f x x x= − + = − +   (A.8) 

 

We will show how to solve this with p=1,2, and ∞.  The concept of the tradeoff factors is 

demonstrated as well. It is easy to find the minima of both objectives as 
* *
1 21  at  x=5 ; 0  at  x=3z z= = . Solving the MO optimization problem (A.3) with p=1 and 

2 11λ λ= −  we obtain the following optimum solution 

 *
12 3x λ= +  (A.9) 

At ( )1 21 0λ λ= =  we obtain the optimum solution of the first objective (x=5). As the 

importance of the second objective increases ( 2 0λ > ) then the optimum solution will move 

toward the second objective. If both objectives have the same importance then the optimum 

solution (at p=1) is * 4x = . It is clear that for non-dominated solution points an improvement 

in one objective requires degradation in the other objective. 
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Solving this simple example with (p=2 and p= ∞) and when both objectives have same 

importance, i.e. 1 2
1
2

λ λ= = , we obtain the same optimum solution * 4x = .  

 

Table A.1. 

Solutions BER Packet delay [ms] Power consumption 

[mW] 

1 510−  0.45 176 

2 410−  0.37 138 

3 610−  0.85 286 

4 510−  0.45 185 

5 410−  0.87 179 

 

      Figure A.1  Pareto and weakly Pareto optimal set 
 
 
 

A 

B 

C 

f1(x) 

f2(x) 
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2) SPECTRAL RADIUS COMPARISONS 
 
In this appendix we will prove the results of Section 2.5 in a different way. The result to be 

proved is DBA DPC>D D  which means that DPC algorithm is faster than DBA algorithm.  

From Section 2.5 the strict convergence condition for any of the studied power control 

algorithm is 

( ) 1xxxρ <D  (A.10) 

where ( ).ρ  is the spectral radius,  xxxD  refers to D matrix of any of the studied algorithms in 

Section 2.5.  

From (2.136) and (2.137) one can say that  

1
1

T
DBA DPC

T T

Γ ⎡ ⎤= +⎢ ⎥+ Γ Γ⎣ ⎦
D D I   (A.11) 

It is well known that for any non-negative matrices A and B  

( ) ( ) ( )ρ ρ ρ+ ≤ +A B A B  (A.12) 

and at B=aI, (A.12) is held with equality such as 

( ) ( )a aρ ρ+ = +A I A  (A.13) 

where a is a scalar. 

Then from (A.11) and (A.12)  

( ) ( )1
1 1

T
DBA DPC

T Tρ ρ Γ
= +

+ Γ + Γ
D D  (A.14) 

Assume that 

( ) ( )DBA DPCρ ερ=D D  (A.15) 

where  

0 1ε< ≤  (A.16) 

Substitute (A.15) into (A.14) to obtain 

( ) 1

T
DPC

Tρ
ε ε

Γ
=

+ Γ −
D  (A.17) 

To be restricted with convergence condition (A.10) then  
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1
1

T

Tε ε
Γ

<
+ Γ −

 (A.18) 

It is clear that to achieve the inequality (A.18) then the value of ε should be greater than one 

(ε>1). This result contradicts with (A.16). This means that the spectral radius of DBA 

algorithm (at 
1

T

Tβ Γ
=

+ Γ
) is always greater than the spectral radius of the DPC algorithm. 

This result is compatible with the obtained results in Section 2.5. 

The same procedure can be followed to prove the other results.  
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