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ABSTRACT 
 
This paper is aimed to determine a general model for 
simulating the single and two-phase induction machines 
operation. The objective of this model is to predict motor 
performance parameters such as torque, and motor speed. 
The model includes representation of both main and 
auxiliary winding in stationary reference frame and also the 
effect of core losses and the saturation of the main flux 
paths. A notable feature of the model is the technique used 
for representing the different level of saturation in the both 
axis of magnetisation. The developed model is suitable for 
simulation and modelling the steady-state and transient 
operation of the single and two-phase induction machines 
more accurate. 
 
Keywords: modelling, single-phase, two-phase induction 
machine, iron loss, saturation, vector control 
 
1 INTRODUCTION 
 
Different modern control techniques are applied to reduce the 
impact of parameter variation on the drive performance. Iron 
loss and flux saturation are among the main causes of the 
parameter variation for a single or two-phase induction motor. 
Different from the three-phase induction machine with 
symmetrical effects, these effects are different for the q and d 
axis, due to the unsymmetry of the machine. This paper is 
devoted to the modelling of such machines with inclusion of the 
iron loss and saturation effects that can be fully compensated, 
because they are recognised by the control system. The 
emphasis is focused on a method of detuning these effects in 
single or two-phase induction machines drives. There are 
proposed two control systems: rotor flux and stator flux 
oriented control two-phase induction motor drive. 
 
2 MATHEMATICAL MODEL 
 
The developed model is based on several assumptions, 
generally acceptable as stated in [1]: 
• Only the fundamental space-harmonic component of the air-

gap flux distribution is considered. 
• Using the assumption that there is a unique distinct 

magnetisation curve along each of the two orthogonal axes of 
the machine includes magnetic-flux saturation effects. No 
superposition is used. The developed model uses the 
following inductances: steady-state, differential and dynamic 
(crosscoupling) magnetising inductances as in [2] and [3]. 

• A non-linear resistor that is associated with the total stator 
flux linkage models core loss. 

Since the stator windings of the unsymmetrical two-phase 
induction machine are not identical, the only reference frame 
with constant parameters is the stationary one. In d-q co-
ordinates, the machine model is described as follows 
accordingly to Fig. 1 (the list of symbols is given in Annex I): 
Stator voltage equations 
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Rotor voltage equations 
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Flux equations: 
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Currents equations: 
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As the machine is unsymmetrical, the time variation of the 
magnetisation flux in d-q axis is: 
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Now, if there are introduced the notations: 

dmd
m
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λ          dynamic inductance in axis d 
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The induced voltage in the magnetising branch become: 
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where the inductance terms are described by the relations:  
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The electromagnetic torque is: 
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The machine parameters can be determined experimentally 
through classical methods, or theoretically by FEM computing. 
The value of the resistance used to model iron loss is 
determined from standard no-load test, at first with sinusoidal 
supply of rated frequency, and then with a PWM supply of 
rated frequency. The same test is used for determining the 
discrete points on the magnetising curve of the machine. The 
detailed processes of determining these parameters are 
presented in [2] and [4]. 
Under transient conditions, the Eqs. (1) ÷ (24) describe the 
performance of the single or two-phase induction machine. The 
state-variable forms of the voltage equations will be: 
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Fig. 1. The d-q axis single and two-phase induction machine 

equivalent circuit with iron loss and main flux saturation 
included 
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where: 
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The above model is verified by comparing simulated with 
experimental results.  
 
ROTOR FLUX ORIENTED CONTROLLED TWO-
PHASE INDUCTION MACHINE 
 
As the stator windings of the single-phase induction motor are 
unbalanced, the vector control principles have to be 
implemented in a special way. The machine parameters differ 
from axis d to axis q. The waveform of the electromagnetic 
torque demonstrates the unbalance of the system. Even for 
equal amplitude, orthogonal stator currents iqS and idS, the 
torque contains oscillating term. From Eq.(23), it can be 
observed that there are present different values for referred 
magnetising inductance. In [6] there were proposed some 
relations between the stator currents in order to eliminate the 
oscillating term from torque expression. However, these 
relations are valid only in linear conditions (neglecting 



 

 

saturation and iron core losses). Furthermore, the above 
mentioned model is implemented using a non-referred 
equivalent circuit, which presume some complicated 
measurements of magnetising, mutual inductance for stator and 
rotor. 
A new relation for the torque computation, can be determined, 
by using Eqs. (7)-(10), in Eq. (23): 
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As mqsmds LkL 2= , an equivalent torque expression to that 

of the symmetric machine, without oscillating term in steady 
state, can be obtain by imposing the following conditions: 
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After some computing manipulations, it results: 
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From Eqs. (3), (4) and (7)-(10), one can obtain the dynamic 
relation that relates the rotor flux to the stator currents: 
 

1'111
qSmqs

qR
dRrqR

qR
qR iL

k
p

τ
λωλ

τ
λ ++−=       (34) 

1'11
dSmds

dR
dR

dR
qRrdR iLkp

τ
λ

τ
λωλ +−−=        (35) 

where: 

r

dR
dR

r

qR
qR Rk

L
R
L

2; == ττ  

In an arbitrary reference frame, the rotor flux of a single-phase 
induction machine can now be derived as: 
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where ωa is angular speed of the arbitrary reference frame.  
Based on the derived rotor flux model, the rotor field oriented 
control system can be adapted to a single-phase induction 
machine. The machine equations in the rotor flux reference 
frame, can now be obtained by using the constraint condition 

for rotor flux field orientation control. The resultant equations 
are as follows: 
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where λr is the rotor flux amplitude, ωrr = ωe - ωr, and ωe is the 
angular speed of the rotor flux viewed from the stator. 
The torque expression in rotor flux oriented control system 
becomes: 
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STATOR FLUX ORIENTED CONTROL OF THE TWO-
PHASE INDUCTION MACHINE  
 
The torque expression depending on stator flux and current is: 
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(41) 
The above relation can be simplified as follows: 
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Usually, the stator windings have identical configuration, and 
differ only through number of turns and the diameter of the 
copper wire. This determines a ratio between the leakage 
inductance of the main and auxiliary stator windings equal to 
the square turns ratio (k2). Conditions for the stator currents 
become 

1'' qSqS ii = and 
1

2 '' dSdS iki =  and Eq. (42) can be 

re-written as: 
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The dynamic relations function of stator currents and fluxes are 
described as follows: 
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For an arbitrary reference frame, the corresponding dynamic 
equations are easily deductible by substituting the ωr term with 
ωr -ωa. 
Based on the vector model given above, it can be applied the 
field oriented principles to control the stator flux of the single 
or two-phase induction machine. The following equations are 
obtained: 
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Existence of the saturation effect and core loss in the machine 
can be included in such manner that the torque and flux 
production in the machine is governed solely by stator current. 
It has to be mentioned that in stator flux oriented control 
operation, the machine presents a steady-state pull-out torque 
that limits the stabile operating region. 
 
EXPERIMENTAL AND SIMULATED RESULTS 
 
Experimental validation of the proposed model was made on a 
capacitor run single-phase induction motor, the parameters of 
which are shown in Annex II.  
Fig. 2 illustrates the torque–slip characteristic of the motor with 
both stator windings energised (no run capacitor was 
connected). With symbol ‘o’ is denoted the measured points of 
this curve. A good accuracy of the model can be observed. 
Further analysis of the motor is made by simulation of load 
operation in two cases: normal capacitor run single-phase 
induction motor, and vector controlled single-phase induction 
motor, without running capacitor. Due to space limitations, 
only few simulations results are presented.  
Figs 3, 4 are dedicated to run capacitor motor and Figs 5, 6 to 
vector controlled motor, respectively. Two important 
improvements are realised through vector control operation: a 
significant decreasing of the pulsating component torque of the 
motor, and decayed speed oscillations about the final operating 
point. 
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Fig. 2. Torque-slip characteristic (-calculated, o measured) 
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Fig. 3. Simulated torque-time variation for two phase induction 
motor with run capacitor 
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Fig. 4. Simulated torque-speed variation for  two-phase induction 
motor with run capacitor. 
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Fig. 5. Simulated torque-time variation for vector controlled two-

phase induction motor 
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Fig. 6. Simulated torque-speed variation for vector controlled two-

phase induction motor 
 



 

 

CONCLUSIONS 
 
This paper proposes an equivalent circuit for the single and 
two-phase induction machines including simultaneously, but as 
independent phenomena, the iron loss and the main flux 
saturation. This model permits an improvement in operation of 
vector-controlled single and two-phase induction machines. 
The vector control structure suitable for unsymmetrical two-
phase induction machine may be chosed rotor or stator flux 
oriented control. The model can be implemented for 
simulations by using either experimental determined parameters 
or FEM calculated parameters. 
The stator field oriented system can be readily implemented on 
the same DSP board with the rotor field control version, as 
there are used the same parameters. It is expected that the stator 
flux control should be more suitable for low speed applications, 
as the rotor flux control system is useful for high-speed 
applications. 
 
ANNEX I 
 
List of principal symbols 
ωe           synchronous speed 
ωr           rotor speed 
p            differential operator 
RM, RA, main, auxiliary stator windings resistance 
Rr          rotor winding resistance 
Rfeq,d….equivalent iron-loss resistance (d and q axis) 
LlM, LlA main, auxiliary stator leakage inductance 
Lmds,mqs  magnetising inductance (d and q axis) 
Llr         rotor leakage inductance 
k          turns ratio auxiliary/main windings 
Te           electromagnetic torque 
Jm           inertia of motor 
λdS,qS      stator flux (d and q axis) 
λdR,qR      rotor flux (d and q axis) 
vdS,qS      stator voltages (d and q axis) 
idS,qS       stator current (d and q axis) 
idR,qR      rotor current (d and q axis) 
idfe,qfe   iron-loss equivalent stator current (d and q axis) 
 
ANNEX II 
 
Data of the motor under simulation 
Rated output power: 750 W 
Rated frequency: 50 Hz 
Rated speed: 1448 rpm 
Rated voltage: 220 V 
Number of poles: 4 
Inertia: 0.00146 kgm2 
Running capacitor: 10 µF/400 V. 
Stator main winding resistance: 5.35 Ω 
Stator auxiliary winding resistance: 13.83 Ω 
Rotor resistance: 3.95 Ω 
Iron-loss resistance (in d axis): 1459 Ω 
Iron-loss resistance (in q axis): 1287 Ω 
Stator main winding leakage reactance: 12.35 Ω 
Stator auxiliary winding reactance: 14.54 Ω 
Rotor leakage reactance: 5.25 Ω 
Mutual reactance (in d axis): 224.73 Ω 
Mutual reactance (in q axis): 104.1 Ω 
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