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ABSTRACT 
 
 
The resistance of cold-formed thin-walled cassettes against local transverse forces, i.e. the 
web crippling capacity, was investigated. The web crippling of cassettes, or liner trays as they 
are also called, was studied both experimentally and numerically using finite element 
modelling. Both unreinforced (flat) cassette webs and webs with longitudinal stiffeners 
situated on only one side of the web mid-line were studied.  
 
The calculation of the web crippling capacity of this type of stiffened webs is not included in 
current design codes. However, if cassettes are designed as continuous over two or more 
spans, the resistance against local transverse forces has to be verified. It should be noted that 
the original purpose of the stiffener in cassette webs is to increase the bending moment 
capacity by increasing the effective area of the compressed part of the web when cassettes are 
designed as single-span structures, in which case web crippling does not usually become 
critical. 
 
A total of 52 structural tests were carried out on specially manufactured single cassette web 
sections and built-up cassette structures. Both interior two-flange and interior one-flange 
loading were considered. The calculation rules for unreinforced webs given in current design 
codes were found to be relatively conservative in comparison to the test results.  
 
Finite element models were developed and validated on the basis of the test results and very 
good agreement was achieved. These models were used as a starting point for a parametric 
study of the influence of different cross-sectional parameters on the resistance against local 
transverse forces of longitudinally stiffened webs. Also the influence of the load bearing 
length was included in the study. Recommendations concerning the design of the cassette web 
section are given based on the results. 
 
It was shown that the use of a longitudinal stiffener of the studied type in fact reduces the web 
crippling capacity by at least 10 % in comparison to a similar cassette with an unreinforced 
web. Depending on the stiffener's geometry, the reduction can be considerably larger. A 
reduction factor equal to 0.7 - 0.9 should be used for the type of longitudinally stiffened webs 
considered in this study in connection with the design code formulae for the resistance of 
unreinforced webs against local transverse forces, depending on the cross-section geometry. 
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NOTATIONS 
 

A cross-sectional area 
B half of the width of the wider flange 
Bm1  effective width of the wide flange 
C2 non-dimensional coefficient 
C9 non-dimensional coefficient 
D flexural stiffness of the plate 
Dx bending stiffness across the wider flange 
Dy bending stiffness along the wider flange 
E modulus of elasticity  
Est modulus of elasticity of the steel sheet 
F load 
Fdi failure load at value of d equal to i 
Fei failure load at value of e equal to i 
Ffi failure load at value of f equal to i 
FR capacity against local transverse forces 
Ftest failure load obtained in test 
Fu ultimate load 
FFE-PRE ultimate load obtained from preliminary FE-analysis 
H height of the web  
Ia  second moment of area of the wide flange about its own centroid 
K non-dimensional buckling coefficient 
L span length of the cassette,  
 total length of test specimen 
Llb load bearing plate width 
Lspan span of cassette in interior one-flange tests 
N actual bearing length 
Pn nominal strength of a single web 
R inside bend radius 
Rb nominal strength of a single web 
Rs corner radius of stiffener fold 
Rw,Rd  local transverse resistance of a single unreinforced web 
RF reduction factor 
Sv shear stiffness per unit length 
Tv.Rd ultimate shear flow  
VSd,1 transverse shear force 
VSd,2 transverse shear force 
 
a height of the web opening, 
 length of the plate 
a1 distance between fasteners in the top (narrow) flange 
b width of the plate 
b1 partial flange width of cassette in interior one-flange tests on built-up sections 
b2  flange width of cassette in interior one-flange tests on built-up sections 
b3 partial flange width of cassette in interior one-flange tests on built-up sections 
bbf.fl width of bottom flange 
bbf.fl flat width of bottom flange 
bd developed width of the loaded flange 
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btf width of top flange 
btf.st width of flange stiffener fold 
bu width of the wider flange 
bw  width of web 
bwfl flat web width 
bw.fl flat web width 
bw.st exterior in-plane height of web stiffener 
bw.st.fl interior in-plane height of web stiffener 
c clear distance from free end to location of transverse load 
curvbf curvature of bottom flange 
curvtf curvature of top flange 
curvw curvature of web 
curvw.vert vertical curvature of web 
d top flange displacement,  
 distance of the longitudinal stiffener from the wide flange 
d1 depth of the flat portion of the web measured along the plane of the web 
dw.st distance of web stiffener from wide flange 
e Neper's number, e = 2.718281…, 
 out-of-plane height (eccentricity) of the longitudinal stiffener 
emax  larger eccentricity of the folds relative to the system line of the web 
emin smaller eccentricity of the folds relative to the system line of the web 
eo distance from the top (narrow) flange to the mass centre of the cross-section 
es distance between seam fasteners through the web 
f in-plane height (width) of the longitudinal stiffener 
fGo initial deformation of the wide flange 
fp0.1 mean yield strength corresponding to 0.1 % plastic strain  
fp0.2 mean yield strength corresponding to 0.2 % plastic strain  
fu.test yield strength obtained from material tests 
fy yield strength of steel 
fyb basic yield strength of steel 
h height of the web 
h depth of the flat portion of the web measured along the plane of the web 
hw web height between the midlines of the flanges 
hw.st out-of-plane height (eccentricity) of web stiffener 
∆hw web crippling deformation at ultimate load 
k non-dimensional coefficient 
k1 non-dimensional coefficient 
k2 non-dimensional coefficient 
k3 non-dimensional coefficient 
kF force increase factor 
kTF  top flange displacement increase factor 
kWC web crippling deformation increase factor 
la effective bearing length 
lb actual length of bearing  
r internal radius of corners 
rbf mid-surface bottom flange corner radius 
rebf exterior bottom flange corner radius 
ribf interior bottom flange corner radius 
retf exterior top flange corner radius 
ritf interior top flange corner radius 
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rtf mid-surface top flange corner radius 
sp slant height of the plane web element nearest to the loaded flange 
ss actual length of the stiff bearing 
t thickness of the steel sheet  
teq equivalent thickness of the stiffened lower (wider) flange 
tnom nominal steel thickness 
tw thickness of the web 
w beam deflection at ultimate load 
wcd web crippling deformation 
x  distance from the outer edge of an opening to the interior edge of the bearing  
  plate 
 
α non-dimensional coefficient, 
 width reduction factor 
αM mechanical interaction coefficient 
αG geometrical factor  
β coefficient depending on the boundary conditions of the plate 
βv non-dimensional coefficient 
γM1 partial safety factor 
γM2 partial safety factor 
γm material design safety factor 
εfu.test strain corresponding to failure load in material test 
εbreak ultimate strain 
θw angle between web and flange  
µ Poisson’s ratio, µ = 0.3 
τcr local shear buckling stress  
φ  slope of the web relative to the flanges 
φw factor of safety  
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1. Introduction 
 

1.1 Background 

 

Over the last few decades, lightweight steel framing construction has been a serious 

competitor to the more traditional wood frame construction and has gained ground all over the 

world, especially in Europe, U.S.A. and Australia. Cassette wall structures provide an 

alternative to the more common type of light-weight steel wall framing based on individual 

stub columns connected to each other at both flanges with the help of e.g. gypsum wall 

boards.  

 

 
 

 
 

Fig. 1.1 Cassette wall construction (Davies 1998). 

 

Cassettes are large U- or C-shaped cross-sections that have two webs connected with a wide 

flange and a lip-stiffened narrow flange on the other side, as shown in Figure 1.1. Different 

types of stiffeners can be used also along the wider flange and in the webs in order to increase 

the effective width of section parts in compression. Cassettes are installed as wall structures 

so that they span either vertically of horizontally. They have also been used as roof structures. 

They are fastened using screws to columns and beams or purlins. The sections can be installed 

so that the wider flange is on the outer or on the inner side of the wall. If the wider flange is 
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on the outer side, it immediately provides a weather-proof shell for the building and the 

insulation materials can be installed inside the cassette while other work is being continued on 

the outside of the wall. In some cases, the thermal insulation can also act compositely with the 

steel member and provide support against local buckling of the wider flange. 

 

Cassettes, or liner trays as they often are called, have so far usually been designed as single-

span structures connected to columns or beams at both ends. In this case, sagging bending 

moment acting together with curling of the wide flange has usually become critical in design. 

However, interest in installing cassettes as continuous structures over two or more spans has 

recently emerged. Current design codes provide formulae for the resistance of webs against 

local transverse forces present at the interior support area, but the codes fail to consider the 

type of longitudinally stiffened webs often used in cassette cross-sections. In these, the 

stiffener has been designed with bending moment resistance in mind, and the stiffener folds 

are situated on one side of the mid-line of the web only.  

 

 

1.2 Objectives of research 

 

The primary objective of the research is to gain an improved understanding of the behaviour 

of both unreinforced (flat) and longitudinally stiffened cassette webs under local transverse 

loading by using experimental and numerical methods. The main task is to examine the 

behaviour of longitudinally stiffened cassette webs, for which there are no design rules 

currently available. Also the verification of the validity of existing design rules, where 

applicable, is set as an objective. 

 

The influence of the cross-section geometry of longitudinally stiffened cassette webs on the 

resistance against local transverse forces is to be investigated by carrying out a substantial 

numerical parametric study, with the objective of providing design recommendations on the 

optimal shape of the cross-section. 
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1.3 Scope of the research 

 

An early objective of the research was to include all four commonly defined local transverse 

loading conditions (interior two-flange, interior one-flange, end two-flange and end one-

flange, see Section 2.3) in the study and to provide suitable design formulae for possible 

implementation in design codes. Unfortunately, this proved to be an overwhelming task once 

the experimental part of the research had been carried out and the cost in computation time 

and the laboriousness of model editing was established. Therefore the study was mainly 

limited to interior two-flange and interior one-flange loading and the provision of design 

recommendations for the studied structures.  

 

Experimental research included both flat and longitudinally stiffened webs with web heights 

100 mm, 150 mm and 200 mm and nominal steel thicknesses 1.0 mm and 1.5 mm tested 

under interior two-flange and interior one-flange conditions. Also built-up constructions were 

tested.  

 

Numerical studies concentrated on longitudinally stiffened cassette web sections under 

interior two-flange loading, although finite element models of structures with flat webs, 

structures under interior one-flange loading and steel sheeting based on tests found in 

literature were also created. 

 

 

1.4 Outline of the dissertation 

 

In order to obtain a basic understanding concerning the design of cassettes, a literature survey 

was carried out in Chapter 2. The existing research on the behaviour of cassette structures in 

bending, in-plane shear and under local-transverse forces is presented. The current European, 

American (U.S.A.), Australian and Finnish design regulations concerning resistance to local 

transverse forces are reviewed.  

 

Chapter 3 presents the experimental research carried out during this study. A total of 52 tests 

on single web sections and built-up sections under interior two-flange or interior one-flange 

loading were carried out. Both flat and longitudinally stiffened web sections were included. 
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The test results are compared to nominal design values calculated according to currently used 

design codes. 

 

Chapter 4 presents the development of the numerical models and their validation against test 

results. Some of the numerical analyses were carried out before the experimental testing and 

were used in the planning of testing. Chapter 5 presents the results of a parametric numerical 

study on the web crippling capacity of longitudinally stiffened thin-walled cassette webs. 

Design recommendations are given based on the results. Finally, the full results are discussed 

and final conclusions are given in Chapter 6. 
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2. STATE OF THE ART 
 

2.1 Design of cassette structures 

 

Cassettes have commonly been designed as single-span structures. In this case, the sagging 

bending moment is usually critical in design and vertical shear forces and transverse forces at 

supports can often be ignored. The bending moment resistance is critical for instance when 

the structure is submitted to a large wind load. Moreover, the membrane action created by the 

interaction of the cassettes and the frame of the building can be used beneficially in design.  

 

When cassettes are designed to have two or more spans, the structural behaviour at the 

interior support has to be studied carefully. The design calculations have to take into account 

the shear strength of the webs and web crippling at support areas. The resistance against the 

combined actions of hogging bending moment and local transverse forces has to verified. This 

chapter presents existing research work on cassette structures in general and web crippling in 

particular. Different design codes dealing with resistance to local transverse forces are also 

reviewed. 

 

 

2.2 Bending and in-plane shear 

 

When the cassette is under bending action, the wider flange tends to deflect towards the 

neutral axis of the cross-section. This phenomenon is known as flange curling and has the 

effect of reducing the bending capacity as the distance of the flange from the neutral axis is 

reduced. The phenomenon can be seen in Figure 2.1. A relatively large part of the wide flange 

has to be considered ineffective in design. One way to prevent the considerable 

ineffectiveness of the wide flange is suggested by steel manufacturer Rannila, who say that 

when the webs of adjacent cassettes are connected close to the wide flange as shown in 

Figure 2.2, flange curling cannot take place and the whole flange can be considered effective 

(Rannila Steel 2001). Although this procedure will reduce the curling of the wide flange, it is 

most likely that it will not prevent it completely. The effectiveness of the procedure is in fact 

literally put to the test in this study as reported in Chapter 3. 
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Fig. 2.1 Flange curling (Davies (1998)). 

 

 

 

 

 

 

Fig. 2.2 Connection of webs close to the wide flange. 

 

According to Davies (1998), the idea of cassette wall construction was first developed by Rolf 

Baehre in the late 1960’s. Baehre worked at the time in Stockholm, Sweden and later at the 

Universität Fridericiana in Karlsruhe, Germany. He published several papers, which presented 

the results of experimental and theoretical studies and were used as the basis of the design 

rules in ENV 1993-1-3: 1996 (Eurocode 3: Part 1.3). Baehre’s results were published in the 

German journal Stahlbau between 1986 and 1988. 

 

In Baehre & Buca (1986), the effective width of the tension flange of thin-walled C-shaped 

panels is investigated. They carried out an experimental research on bended cassettes with the 

wide flange in tension. The length of the tested specimens was 3.0 metres and it was loaded at 

four cross-sections at locations 1/4, 3/8, 5/8, and 7/8 along the length. Three different total 

load levels, i.e. 1.7 kN, 2.7 kN and 3.1 kN, were used. These total loads include a preload of 

0.7 kN and a variable load of 1.0 kN, 2.0 kN and 2.4 kN, respectively. 

 

The curling of the wide flange was measured as the difference between the deflections at mid-

span so that the mean of the flange edge deflections was subtracted from the deflection at the 

flange midpoint, as shown in the insert of Figure 2.3. The figure also shows the load-

deflection curve of a test with the highest load level. 
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Fig. 2.3 Load-deflection curve of cassette under bending (Baehre & Buca 1986). 

 

Baehre and Buca introduced a width reduction factor α that is comprised of a mechanical 

interaction coefficient αM and a geometrical factor αG. The mechanical interaction coefficient 

is due to the uneven stress distribution in the cross-section and the geometrical reduction 

factor to the curling of the wider flange. These two factors are multiplied in order to obtain α : 

 

GM ααα ⋅=                      (2.1) 

 

Baehre and Buca presented a design method for the calculation of the effective width of the 

wide flange. The procedure includes an appreciation of the distance between connectors in the 

narrow flanges, which has an effect on the failure load and mode and also on the width 

reduction factor α. The mechanical interaction coefficient αM takes into account the shear lag 

phenomenon and is determined as a function of (2B/L), where B is one half of the width of the 

wider flange and L is the span length of the cassette according to Figure 2.4. Bm1 = αM .B in 

the Figure is the effective width of the wide flange. 
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Fig. 2.4 Mechanical interaction coefficient according to DIN 1073 (Baehre & Buca (1986)). 

 

The geometrical interaction coefficient αG, on the other hand, appears to reflect the bending 

stiffness of the cross-sections and is determined as 
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β                 (2.3) 

 
 E is the modulus of elasticity of the cassette material [N/mm2], 
 Est is the modulus of elasticity of the steel sheet [N/mm2], 

eo is the distance from the top (narrow) flange to the mass centre of the cross-
section [mm], 

 t is the thickness of the steel sheet [mm], 
 teq is the equivalent thickness of the stiffened lower (wider) flange [mm], 
 H is the height of the web [mm], 
 B is the one half of the width of the wider flange [mm], 
 L is the span length of the cassette [mm], 
 a1 is the distance between fasteners in the top (narrow) flanges [mm], 
 fGo is the initial deformation of the wide flange [mm]. 
 

The effective width of the wider flange can then be calculated as 

BBB GMm ααα == .                    (2.4) 

 

The mechanical interaction coefficient is independent of the load level, but the geometrical 

interaction coefficient is not. Figure 2.5 shows the qualitative interdependence between the 
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interaction coefficients and the moment relative to ultimate moment. Up to about 2/3 of the 

failure load, the interaction coefficient α is approximately constant. 

 

 
 

Fig. 2.5 Graphical representation of the interdependence between the interaction  
coefficients and external load (Baehre & Buca (1986)). 

 

Baehre then turned his attention to the tension field (longitudinal shear, in-plane shear) 

analysis of cassette structures (Baehre 1987). He carried out a total of 24 structural tests in 

order to establish a design procedure for the longitudinal and transverse shear capacity of 

cassette structures and included the effects of thermal insulation on the load-carrying capacity. 

Bare cassettes (no foamed thermal insulation) usually experience local buckling of the wide 

flange, whereas this phenomenon is prevented in insulation-filled cassettes due to the support 

given by the rigid foam. The ultimate limit state, however, was first reached at the fastenings 

between cassettes or at the support due to longitudinal and lateral shear effects.  

 

Baehre differentiated between “local” shear buckling that takes place in the wider flange of 

just one cassette and “global” shear buckling that happens continuously over several adjoining 

cassettes, as shown in Figure 2.6.  
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Fig. 2.6 Buckling formation in case of local shear buckling (a)  
and global shear buckling (b) (Baehre 1987). 

 

Baehre showed that the ultimate shear flow Tv.Rd can be calculated as 

2

4 3

.

36

u

yx
Rdv b

DD
T

⋅
=                     (2.5) 

 

where Dx is the bending stiffness across the wider flange, 
u

a
x b

EI
D ≈ , 

 Dy is the bending stiffness along the wider flange, 
)1(12 2

3

µ−
=

EtDy , 

 Ia  is the second moment of area of the wide flange about its own centroid, 
 E is the modulus of elasticity, 
 bu is the width of the wider flange, 
 µ is Poisson’s ratio. 
  

This equation basically deals with the shear buckling of an orthotropic slab. When the usual 

value for Poisson’s ratio, µ = 0.3, is inserted and the equation is simplified, we obtain 

4

9

. 6 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=

u
aRdv b

tIET                    (2.6) 

which is the equation given in ENV 1993-1-3:1996. As Davies & Fragos (2001) point out, 

this equation was printed incorrectly in earlier versions of ENV 1993-1-3. 
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The design capacities of the fastenings were also discussed in Baehre’s paper and design 

formulae for the connections between adjacent cassettes and the connections to the underlying 

frame structure were given. 

 

The deformations of cassettes due to shear were taken into account in Baehre’s article through 

the introduction of four spring constants, which describe the shear flexibility of the diaphragm 

due to different effects. The method is in accordance with the instructions given in 

ECCS (1978). These effects include shear strain, flexibility of the sheet end fasteners, 

flexibility of the seam fasteners and flexibility of the shear connector fasteners along the 

longitudinal edge. Furthermore, Baehre pointed out that the resulting stiffness from the 

different effects could be approximated as  

 

( )us

u
v bBe

Lb
S

−
=

2000
                    (2.7) 

 

where es is the distance between seam fasteners through the web (max. 300 mm). 

 

This equation is included in ENV 1993-1-3:1996 as well. 

 

The fastening of trapezoidal sheeting to thin-walled C-shaped panels was discussed by 

Baehre, Holz & Voß (1988). They made the following main points in their paper: 

A. The distance between fasteners must be kept below a prescribed maximum value, 

B. The trapezoidal profile must be fastened at every second trough, at least, and 

C. The individual fasteners must withstand the tension and shear forces they are 

submitted to. 

 

Salonen (1988) presented a calculation method for the calculation of the deflection of the 

wide flange in tension. The method is based on an analogy with the theory of a beam on an 

elastic foundation. The results of the calculation method were compared to the mean result 

from a test series comprised of 13 tests and the difference between the two was found to be 

only 0.25 %. Salonen concluded that the effect of shear lag is small in the case of a single-

span cassette. In a continuous cassette, shear lag has to be taken into account because of the 

concentrated load on the internal support. Moreover, according to Salonen, web crippling is 

more critical in a continuous than in a single-span cassette. The ultimate load capacity of a 
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continuous cassette may in some cases be smaller than that of a single-span cassette of the 

same length. 

 

After Baehre, probably the most prominent researcher interested in cassette structures has 

been Professor J. Michael Davies of the University of Manchester in the U.K. In addition to 

his work on stressed skin diaphragm design (e.g. Davies & Bryan (1981), ECCS (1978) and 

ECCS (1995)), he has been the author or co-author of several articles specifically on cassettes 

during recent years. 

 

Davies (1998) provided a general presentation on lightweight steel cassette wall construction 

including a discussion of different construction methods, a historical overview of the 

development of design methods and applications, an appreciation of the different design cases 

commonly occurring and a presentation of a few realised projects. Davies pointed out that 

because of the relatively high material factor γM2 = 1.25 prescribed in ENV 1993-1-3:1996 for 

the moment resistance of cassettes, significantly better bending strengths can be obtained by 

testing than by calculation, and therefore design supported by testing is recommended.  

 

The basic load systems for a cassette wall installed with cassettes spanning vertically are 

shown in Figure 2.7. Davies (1998) discussed each of these different design cases separately. 

The axial compressive load capacity can be determined using essentially the design procedure 

given in ENV 1993-1-3:1996, bearing in mind that buckling in the plane of the wall is 

prevented. This procedure includes the determination of the effective area of the cross-section 

using the iterative method given in ENV 1993-1-3:1996 and should also consider distortional 

buckling. 

 

When the narrow flange is in compression and the wide flange is in tension, the design for 

bending should consider local buckling of the web and the narrow flange, distortional 

buckling of the narrow flange/lip combination and flange curling of the wide flange. 

Distortional buckling can be prevented by regular and sufficiently spaced fastenings of the 

narrow flanges, but Davies suggested that distortional buckling could be checked separately 

for an unbraced cassette using e.g. the Second-Order Generalized Beam Theory as given in 

Davies, Leach & Heinz (1994) or the method proposed by Serrette & Peköz (1995). 
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Fig. 2.7 Load system in a cassette wall with cassettes spanning vertically (Davies 1998). 

 

The behaviour of a cassette wall in shear was considered with reference to stressed skin 

design as prescribed in ENV 1993-1-3:1996 and ECCS (1995). However, Davies pointed out 

three important differences in the behaviour of cassette systems and trapezoidally profiled 

sheeting and decking. Firstly, the flexibility due to shear distortion is negligible in cassettes. 

Secondly, the strength calculation is often dominated by the tendency of the wide flange to 

buckle locally in shear. Thirdly, there is usually no separate longitudinal edge member, 

because the other web of the outermost cassettes serves this purpose.  

 

Davies repeated the equations (2.6) and (2.7) originally presented by Baehre (1987) and 

remarked that the stiffness could be calculated using the more fundamental approach given in 

ECCS (1995) instead of the simplified method (Equation (2.7). He emphasized that fastener 

failure can also be critical and criticizes the “excessive simplicity in the approach of EC3”, 

which is likely “to lead to a lack of fundamental understanding and over-confidence”. 

Another important point made in the paper is that resisting the uplift forces at the ends of the 

diaphragm walls can often be a critical factor in design. The corresponding axial compressive 

forces should also be considered in combination with other axial loads due to the overlaying 

structures and effects. 
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The shear buckling strength of empty and insulation-filled cassettes was discussed in more 

detail in Davies & Fragos (2001). They again pointed out that the method given in ENV 

1993-1-3:1996 for the calculation of local buckling due to shear (Equation 2.6) is safe but also 

quite inaccurate due to the neglect of the influence of boundary conditions and post-buckling 

behaviour. A test programme was carried out in order to account for these phenomena in 

plane unstiffened flanges. 

 

The accurate buckling load was difficult to ascertain from the tests, but it became clear that 

there is considerable post-buckling strength. The results showed also that the influence of the 

foam filling is important, especially for very thin walled elements and/or high grades of foam. 

The local shear buckling stress was evaluated by using the equation 

tb
DKcr 2

2πτ =                      (2.8) 

where  D is the flexural stiffness of the plate, ( )2

3

112 ν−
=

EtD , 

 K is a non-dimensional buckling coefficient, 
⎟
⎠
⎞

⎜
⎝
⎛

+= a
b

eK
β

α , 
 α, β are coefficients depending on the boundary conditions of the plate, 
 e is Neper's number, e = 2.718281…, 

a is the length of the plate, 
 b is the width of the plate, 
 

and by using finite element analysis. Values for the coefficients α and β for different 

boundary conditions are given in Table 2.1. 

 

Table 2.1 Values of coefficients α and β (Davies & Fragos 2001). 

Boundary condition α β 
All edges simply supported 4.188 1.64 
All edges rigidly clamped 7.868 1.92 
Two long edges clamped, two short edges simply supported 7.980 1.53 
Two long edges simply supported, two short edges clamped 4.089 2.14 
One long edge rigidly clamped, other edges simply supported 6.209 1.56 
One short edge rigidly clamped, other edges simply supported 4.262 1.90 

 

Davies & Fragos found that although the buckled shapes obtained in finite element analyses 

were invariably similar to those observed in tests, there was much more theoretical post-

buckling strength than was reached in the tests. The explanation to this was that the 

longitudinal boundary condition deteriorated during the post-buckling phase, leading to 

premature failure. 
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In addition to the general presentation of test results and finite element analyses on empty and 

infilled cassettes, Davies & Fragos (2001) also discussed briefly the use of differential 

equations in the analysis of this type of structures. 

 

 

2.3  Crippling of thin-walled webs 

 

2.3.1  General 

 

Web crippling is a significant problem in thin-walled structures that are subjected to local 

transverse external loads or support reactions. Cold-formed thin-walled members are usually 

unstiffened against this type of loading and sometimes additional members with high stiffness 

are added at the support area to provide the needed extra strength.  

 

Web crippling of thin-walled webs is a complicated phenomenon that is quite difficult to 

study theoretically, although attempts toward this exist and are also currently in development. 

Web crippling behaviour includes the influences of (Yu 2000): 

 - non-uniform stress distribution under the applied load, 

 - elastic and inelastic stability of the web, 

 - local yielding at the area of load application, 

 - bending produced by eccentric loading, 

 - initial out-of-plane imperfections of the plate elements, 

 - various edge restraints due to the flanges, 

 - possible inclined webs. 

 

The ultimate web crippling capacity is a function of several parameters, i.e. the web 

slenderness ratio H, the inside bend radius ratio R, the bearing length ratio N, the angle of web 

inclination θ, and the yield strength fy. Also the distance between the bearing edges of 

adjacent opposite concentrated loads or reactions has an effect on load capacity (Yu 2000).  

 

Because of the many factors influencing the ultimate web crippling strength of cold-formed 

steel sections, the majority of research has been experimental, but also finite element 

modelling has been used to model web crippling behaviour. Some authors have also created 

so-called mechanical models for web crippling (Bakker 1992, Hofmeyer 2000).  
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The current design methods are based on curve-fitting of experimental results, which has been 

criticised for two main reasons (Rhodes & Nash 1998): "(i) the rules are strictly confined to 

the range for which they have been proven, and (ii) it is often difficult to ascertain the 

engineering reasoning behind the different parts of the rather complex equations". The same 

criticism has been made by Hofmeyer (2000). For these reasons, a number of researchers have 

worked to create mechanical models that could be used to produce more accurate and 

descriptive design methods for web crippling. Although promising results have been 

achieved, especially at the University of Eindhoven in the Netherlands (Bakker 1992, 

Hofmeyer 2000), these methods have not yet been incorporated in design practice. 

 

In general, current design rules provide empirically defined formulae for the calculation of 

web crippling strength of cold-formed steel members. Four different loading conditions as 

shown in Figure 2.8 can generally be distinguished: 

- EOF  = End One-Flange loading 

- IOF  = Interior One-Flange loading 

- ETF  = End Two-Flange loading 

- ITF  = Interior Two-Flange loading 

 

 
Fig. 2.8 Different web loading conditions (hw = height of web). 

 

If the distance between the edges of the bearing plates on opposite sides of the web is more 

than 1.5 times the web height hw, one-flange loading is assumed to govern. If the distance is 

less than 1.5 times the web height, two-flange loading is assumed. Moreover, if the distance 

from the end of the member to the outer edge of the bearing or support plate is less than 1.5 

EOF IOF 

ITF ETF 

> 1.5 hw 

 hw 

< 1.5 hw 

 hw 

> 1.5 hw 

> 1.5 hw < 1.5 hw 
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times the web height, the loading is assumed to be end loading. If the distance is more than 

1.5 times the web height, interior loading is assumed. 

 

Web crippling quite often occurs together with a bending moment, especially for one-flange 

loading. However, Baehre (1975) showed that the influence of the bending moment is 

negligible if the applied bending moment is less than or equal to one third of the ultimate 

bending moment capacity of the section. Other authors have since confirmed this result 

(e.g. Wing and Schuster 1986, Studnička 1990). 

 

 

2.3.2  Existing design rules 

 

2.3.2.1  Eurocode 3: Part 1.3 

 

The web crippling equations in the European design code ENV 1993-1-3:1996 (also known 

simply as Eurocode 3: Part 1.3) are based on the Swedish code for cold-formed thin-walled 

steel structures StBK-N5 (1980). ENV 1993-1-3:1996 considers the web crippling of cross-

sections with single unstiffened webs (Figure 2.9), cross-sections with two or more 

unstiffened webs (Figure 2.10) and cross-sections with stiffened webs of the type shown in 

Figure 2.11. Cassette sections with unstiffened webs can be paralleled with C- and Z-sections 

with unstiffened webs (Figure 2.9). However, the web stiffeners used in common cassette 

sections, like that seen in Figure 1.1, are different from those shown in Figure 2.11. The 

procedure given in ENV 1993-1-3:1996 for stiffened webs only concern webs with 

"longitudinal web stiffeners folded in such a way that the two folds in the web are on opposite 

sides of the system line of the web joining the points of intersection of the midline of the web 

with the midlines of the flanges". However, in common cassette sections, this condition is not 

satisfied. In fact, ENV 1993-1-3:1996 does not provide any rules for the calculation of the 

web crippling capacity of webs with one-sided longitudinal stiffeners. However, the design 

rules for cross-sections with two of more unstiffened webs or stiffened webs are given below 

for comparison of different methods. 

 

An interesting remark can be made on the European design code for aluminium structures 

(ENV 1999-1-1:1998), more generally known as Eurocode 9: Part 1.1. In the section dealing 

with the resistance of webs to transverse forces, it is written that the "resistance of a 
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longitudinally stiffened web is increased due to the presence of the stiffeners but no rules 

about this are given here". No background to this statement is given either, so it is assumed 

that the resistance of such webs should be found out experimentally. 

Fig. 2.9 Cross-sections with single unstiffened webs (ENV 1993-1-3:1996). 

 

Fig. 2.10 Cross-sections with two or more unstiffened webs (ENV 1993-1-3:1996). 

 

 

 

 

 

 

 

 

 

Fig. 2.11 Cross-section with stiffened webs (ENV 1993-1-3:1996). 
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Cross-sections with a single unstiffened web 

 

According to Equation (5.18g) of ENV 1993-1-3:1996, the local transverse resistance Rw,Rd of 

a single unstiffened web in the case of ITF-loading can be determined from: 
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where hw is the web height between the midlines of the flanges, 
 t is the design wall thickness equal to the nominal core thickness of the steel 
   material before cold forming, exclusive of zinc or organic coatings, 

ss is the actual length of the stiff bearing, 
 fyb is the yield strength of steel, 
 γM1 is the partial safety factor, γM1 = 1.00. 
 

The values of the factors k3 to k5 should be determined using the equations: 
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where 228ybfk = , with fyb in N/mm2, 
 φ  is the slope of the web relative to the flanges (in degrees), 
 r is the internal radius of corners. 
 
The above design equation is valid if the cross-section satisfies the following criteria: 

6/ ≤tr                  (2.11a) 

200/ ≤thw                  (2.11b) 

6/ ≤tr                  (2.11c) 

 

In the case of IOF-loading, Equation (5.18e) of ENV 1993-1-3:1996 should be used: 
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Cross-sections with two of more unstiffened webs 

 

According to Equation (5.20) of ENV 1993-1-3:1996, the local transverse resistance Rw,Rd per 

web of a cross-section with two or more unstiffened webs can be determined from: 
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where α is a non-dimensional coefficient, 
 E is the modulus of elasticity of steel, E = 210 000 N/mm2, 
 la is the effective bearing length, la ≤ 200 mm. 
 
The values of α and la depend on the loading category and the type of cross-section. Loading 

Category 1 effectively covers loading conditions EOF, ETF and ITF, while Category 2 

corresponds to IOF-loading (see Figure 2.8): 

- for cassettes (liner trays) in Category 1: 

 - α = 0.057 
 - la = 10 mm, 

- for cassettes (liner trays) in Category 2: 

 - α = 0.115 
 - la = ss  for  βv ≤ 0.2 
 - la = 10 mm  for βv ≥ 0.3 

  where 
2,1,

2,1,

SdSd

SdSd
v VV

VV

+

−
=β , 

   |VSd,1| and |VSd,2| are the absolute values of the transverse shear forces on 
    each side of the local load or support reaction, |VSd,1| ≥ |VSd,2|, 
   ss is the actual bearing length. 
 - for values 0.2 ≤ βv ≤ 0.3, la is linearly interpolated. 
 
The above design equation is valid if the clear distance c from the actual bearing length for 

the support reaction or local load to a free end is at least 40 mm and the cross-section satisfies 

the following criteria: 

 10/ ≤tr                 (2.14a) 

φsin200/ ≤thw                (2.14a) 

°≤≤° 9045 φ                 (2.14a) 

 

It is interesting to see that Eq. (2.13) is not dependent on the height of the cross-section, but 

only on the wall thickness of the steel sheet and the corner radius. Also, the α-factor causes a 
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relatively large change (α = 0.057 vs. α = 0.115) in the calculated resistance value in cases 

where the distance from the end of the beam to an end support changes from c = 1.5 hw to 

c > 1.5 hw, because this is set as a limit value between Categories 1 and 2 according to more 

specific category definitions in ENV1993-1-3:1996. In principle, this is true even when the 

distance is increased even slightly (say, 1 mm) past the value c = 1.5 hw. The value of the 

effective bearing length la can also be either 10 mm or equal to the actual bearing length ss 

depending on the value of βv in Category 2, which causes more variance.  

 

 

Cross-sections with stiffened webs 

 

For cross-sections of the type in Figure 2.11 satisfying the condition 
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t

e
,                   (2.15) 

where emax is the larger eccentricity of the folds relative to the system line of the web as 

shown in Figure 2.11, the local transverse resistance of the web can be determined by 

multiplying the corresponding value for a similar unstiffened web by the factor κa,s given by 
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where emin is the smaller eccentricity of the folds relative to the system line of the web, 
 bd is the developed width of the loaded flange, 
 sp is the slant height of the plane web element nearest to the loaded flange. 
 

 

2.3.2.2  AISI Specification 

 

The design code currently in use in the United States is the 2001 edition of the Specification 

for the Design of Cold-Formed Steel Members published by the American Iron and Steel 

Institute. However, this edition was not available to the author during this research, so the text 

here is based on the 1996 edition (AISI 1996). The Specification gives design expressions to 

determine the web crippling strength of flexural members having flat single webs and I-beams 

made of two channels connected back to back, by welding two angles to a channel, or by 

connecting three channels, as shown in Figure 2.12. Stiffened webs are thus completely 

neglected. 
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Fig. 2.12 Built-up sections considered in AISI (1996) (Yu 2000). 
 

AISI (1996) gives a total of 12 different design expressions to be used in different design 

cases depending on the type of cross-section, spacing of opposing loads, whether end or 

interior loading is considered and if the flanges of the cross-section are stiffened or not. The 

equations are presented in a form that includes many different coefficients, but for the 

equations given below, some of the factors have been incorporated into the formula in order 

to simplify the presentation. The equations are valid for beams when 6≤tR  and to decks 

when 7≤tR , 210≤tN  and 5.3≤hN . For the case of interior two-flange loading, the 

design expression is 
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where 0.106.006.12 ≤−=
t
RC , 

 R is the inside bend radius, 
 C9  = 6.9 for metric units (N and mm), 
 h is the depth of the flat portion of the web measured along the plane of the web, 
 N is the actual bearing length. 

 

For the case of cassette structures continuous over two spans, the interior one-flange - 

situation is valid. The nominal strength of a single web, Pn, at a concentrated load or reaction 

for this design case is given by Eq. (2.18). 
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When 60>tN , the factor ( ))(007.01 tN+  may be increased to ( ))(011.075.0 tN+ .  

 

In the case of EOF-loading, the design value for a Z-section that has its flange bolted to the 

section's end support member may be multiplied by 1.3, if the following conditions are met: 

 - 150≤th , 
 - 4≤tR , 
 - cross-section base metal thickness ≥ 1.52 mm, 
 - support member thickness ≥ 4.76 mm. 
 

The design value of the strength of a single web is obtained by multiplying the value of Pn by 

the factor of safety φw = 0.75 in the case of single unreinforced webs and φw = 0.80 in the case 

of I-sections. It should be noted that the value of the modulus of elasticity is taken as 

E = 203 000 N/mm2 in AISI (1996). 

 

 

2.3.2.3  Australian / New Zealand Standard 

 

The Australian / New Zealand Standard for Cold-Formed Steel Structures 

(AS/NZS 4600 (1996)) gives design equations that are similar to the AISI (1996) equations, 

although their formulation is slightly different and different symbols have been used for some 

variables. The modulus of elasticity is taken as E = 200 000 N/mm2 in AS/NZS 4600 (1996). 

For ITF-loading, the equation is 
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where d1 is the depth of the flat portion of the web measured along the plane of the web, 
 tw is the thickness of the web, 

lb is the actual length of bearing (smaller value of lb is used for two opposite 
concentrated loads). 
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For IOF-loading, the design expression is 
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As in AISI (1996), when 60>wb tl , the factor ( ))(007.01 wb tl+  may be increased to 

( ))(011.075.0 wb tl+ . Also otherwise, the same conditions, limits and capacity (safety) factors 

for the use of the equations apply, as in the AISI (1996) specification. 

 

 

2.3.2.4  The National Building Code of Finland 

 

The National Building Code of Finland for cold-formed steel structures, RakMK B6 (1989), 

gives a design expression not dissimilar to the ENV 1993-1-3:1996 equations. The code 

considers only one-flange loading. When the support or the load-bearing plate is situated 

further away than the distance 1.5.hw from the end of the member, the capacity FR of one web 

against the concentrated load is given by Equation (2.21). Some of the symbols used in 

RakMK B6 (1989) have been modified from the original to correspond to the symbols used in 

ENV 1993-1-3:1996. 
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where k1  ▪ k1 = 1 for an unstiffened web, 
   ▪ k1 is the smaller of the values tek max1 06.074.1 −=  and    
     )/(5000095.0 2

min
2

1 pd sbetk ⋅+=  for a stiffened web, 
 k2  ▪ tlk a /01.012 ⋅+= , when tla ⋅≤ 100 , 
  ▪ 2

2 )100/((1.0/01.01 tltlk aa ⋅−⋅+= , when tlt a ⋅≤<⋅ 500100 , 
  ▪ 6.32 =k , when tla ⋅> 500 , 
 k3 ▪ 0.13 =k  for unreinforced webs of steel sheeting, 
  ▪ 8.03 =k for stiffened webs of steel sheeting and for cassette sections, 
 fy is the yield strength of steel, 
 E is the modulus of elasticity, E = 210000 N/mm2, 

la is the length of the bearing plate (when a steel sheet is supported/loaded by a 
C- or Z-section, the value la = 2b/3 is used, where b is the width of the flange 
as shown in Figure 2.13, 

φ, sp, emax, emin and bd are as defined in Figure 2.11. 
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Fig. 2.13 Value of la when steel sheeting is loaded through a C- or Z-section  
(RakMK B6 (1989)). 

 

When the support or the load-bearing plate is situated closer than the distance 1.5.hw from the 

end of the member, the capacity FR of one web against the concentrated load is one half of the 

value calculated above. By "stiffened web" in the calculation of k1, the same type of stiffening 

as in ENV 1993-1-3:1996 is meant, as shown in Figure 2.11. The material design safety factor 

used for cold-formed steel in RakMK B6 (1989) is γm = 1.0. 

 

It is most interesting to note that the Finnish code includes the factor k3 = 0.8 for cassettes. 

However, there is no mention about exactly what type of cassette is meant by the Finnish 

code in this case. The value 0.8 should also be used for profiled steel sheeting with stiffened 

webs, but the only type of stiffener mentioned in RakMK B6 (1989) is that shown in 

Figure 2.11. The explanatory document to RakMK B6 (1989), TRY (1989), does not clarify 

this matter either. What is surprising is that cassettes, regardless of web type, appear to be 

grouped together with profiled steel sheeting with stiffened webs. On the other hand, also 

factor k1 is meant to take the stiffener into account.  

 

 

2.3.2.5  Comparisons of design codes from literature 

 

Laine (1997) compared the values given by ENV 1993-1-3:1996 and RakMK B6 (1989) for 

different types of steel sheeting sections. He found that for an inside radius r = 5 mm, the 

values given by ENV 1993-1-3:1996 are, for the most part, slightly higher than the 

RakMK B6 (1989) values. He also compared the values to results from tests carried out by the 

sheet manufacturer Rannila and found that both codes give slightly higher capacities than the 

tests, except for high sheet thicknesses and when the load is applied at the narrow flange. 
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However, Laine points out that it is not possible to predict which code gives a higher capacity 

value for a particular design case, because of the many factors involved. 

 

Hofmeyer (2000) compared the AISI (1996) predictions with the Eurocode 3 (1996) values 

and various test data and found that the AISI code gives results that are from -22 % lower to 

+18 % higher than the Eurocode 3 values. These differences are not correlated to the web 

width, the span length or the bottom flange width, but they are larger for small plate 

thicknesses.  

 

A new comparison of design codes has not been carried out here, but comparisons have been 

carried out on the basis of test results at the end of Chapter 3. 

 

 

2.3.3  Existing research work 

 

There is a vast amount of research on the behaviour of thin-walled webs under local 

transverse loading. Most published articles are concerned with web crippling of unstiffened 

webs of channel or Z-sections, or corrugated steel sheets. 

 

The author has not been able to find articles dealing specifically with web crippling of 

cassette sections. In practice, however, cassettes with unstiffened webs can in this respect be 

fairly directly paralleled with common C- and Z-sections. Many research projects have dealt 

with trapezoidal steel sheeting or hat sections that can have inclined webs, while the webs of 

cassette sections normally form a 90° angle with both flanges. 

 

Cassettes normally have either unstiffened webs or webs that are stiffened in such a way that 

the stiffener is only on one side of a line drawn between the endpoints of the web. This is 

somewhat similar to the web of a Sigma-section shown in Figure 2.14. The author has not 

been able to find research results dealing with webs stiffened in this manner, which is 

unfortunate, because this section presents the most relevant case related to the present study. 

On the other hand, there is no theoretical reason why also cassette webs could not be stiffened 

using the type of folds shown in Figure 2.11. However, practical problems that prevent this  

may arise during the manufacturing process depending on the limitations of the production 

line. 
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Fig. 2.14 Sigma-section. 

 

Web crippling behaviour can generally be studied in three different ways. Testing is the 

fundamental research method for all empirical sciences. However, testing is rather expensive, 

which prevents research establishments from carrying out extensive experimental research 

programs. Therefore testing is quite often limited to a more or less representative sampling of 

design cases or specific orders from manufacturers. In spite of this, it is clear that when a new 

type of cross-section and/or design case is studied, testing is absolutely necessary in order to 

obtain reliable information about the different aspects of structural behaviour. 

 

A powerful and significantly less expensive research method is finite element modelling, 

which can provide additional information about structural behaviour and more insight into the 

test results. Finite element modelling makes it possible to "look inside" a structure and study 

internal stresses, strains and deformations. However, all finite element modelling should have 

a basis in the real behaviour of structures and numerical models should be validated by 

testing. Therefore, finite element modelling is usually used alongside testing. It can also be 

used to study the structural behaviour in design cases for which testing would be virtually 

impossible or cases that have very little practical application but are interesting theoretically. 

 

A third way to study web crippling is by the construction of mechanical models that use 

mathematical formulae to describe the cross-section geometry at the larger scale of e.g. web 

height and corner radius, while finite element models are constructed by much smaller 

elements whose stresses and strains are mathematically interdependent.  

 

The experimental investigation of web crippling behaviour of thin-walled cross-sections was 

first started at Cornell University in the 1940's and 1950's by Winter & Pian, followed by 
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Zetlin (Yu 2000). Also Hetrakul & Yu carried out a large number of tests in the 1970's. These 

tests provided the foundation of the AISI (1996) design expressions. Later numerous other 

researchers have returned to the topic in order to provide more specific information on 

different types of sections or sections with different cross-sectional parameters.  

 

In 1982, Wing & Schuster (1982) presented results of a study on the web crippling of decks 

(steel sheeting) subjected to either interior or end two-flange loading. The webs were 

unreinforced and their spreading was prevented by bolting the lower flanges to the bearing 

plate. New design expressions were developed for the ultimate web crippling load using a 

statistical program. The test results were found to fall within 20 % of the values predicted 

using the design expression. 

 

Four years later, Wing & Schuster (1986) continued the publication of research results on the 

topic of web crippling, this time concentrating on interior one-flange loading. Similarly to 

their previous study, they formulated a design expression, which predicts the failure load with 

20 % accuracy. This new expression for unstiffened webs was adopter for use in the Canadian 

design standard. According to Hofmeyer (2000), the Canadian Standard design expression has 

since evolved further and in the 1995 Edition of the standard, it is in the form: 
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where ribf is the interior bottom flange corner radius, 
 Llb is the load bearing plate width, 
 bwfl is the flat web width. 

 

The formula is valid for  

10/ ≤tribf                  (2.23a) 
200/ ≤tLlb                  (2.23b) 
200/ ≤tbwfl                  (2.23c) 

2/ ≤wfllb bL                  (2.23d) 
 

The web crippling of wide deck sections was also studied experimentally by 

Studnička (1990), who found that for interior loading, the ultimate load is almost directly 

influenced by the width of the bearing plate and that the behaviour of the deck was not 

substantially changed when its loading direction was reversed. For end loading, Studnička 
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found, in addition to the above, that when the free distance at the end of the member 

extending beyond the bearing plate is increased, the ultimate load is also increased, but that 

the influence is not very strong.  

 

Langan, LaBoube & Yu (1994) studied the behaviour of perforated webs subjected to end 

one-flange loading. They used a reduction factor RF to modify the ultimate web crippling 

capacity given by the AISI design code expression for unreinforced webs. RF includes the 

influence of web opening width and height and also the position of the opening along the 

vertical direction: 

00.1120.0630.008.1 ≤+−=
h
x

h
aRF                (2.24) 

where a is the height of the web opening, 
 h is the height of the web, 
 x is the distance from the outer edge of the opening to the interior edge of the 
  support bearing plate. 
 

The reduction factor may be used when the section is single-web and meets the requirements 

for application of the current AISI design code. The method of Lagan, LaBoube & Yu 

provides a simple and directly applicable way to take account of web openings in the case of 

end one-flange loading. Similarly, appropriate strength increase factors may be usable in the 

case of stiffened webs. 

 

Fox & Schuster (2000) studied the lateral strength of wind load bearing wall stud-to-track 

connections concentrating on web crippling failure and punch-through shear failure of the 

track. While the loading corresponds to end one-flange loading, it is different from the 

conditions given in design codes in that the bearing supports cannot be considered rigid 

(Figure 2.15). Fox and Schuster concluded that to ensure that web crippling of the stud is the 

critical design criterion, the track should be made of material of at least the same thickness as 

the stud. 
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Fig. 2.15 Idealised web crippling compared to stud-to-track  
connection (Fox & Schuster 2000). 

 

A large body of work on web crippling of cold-formed steel members has been carried out at 

the Technical University of Eindhoven in the Netherlands since the early 1990's. Bakker 

(1992) presented a mechanism model for the web crippling behaviour of unstiffened web 

elements in hat sections and first generation deck panels (Figure 2.16) when a negligibly 

small bending moment is present alongside the compressive concentrated load. This situation 

refers generally to IOF-loading when the distances between load and support bearing plates 

are not very large. 

 
Fig. 2.16 Section types included in Bakker's (1992) research. 

 

 
Fig. 2.17 Rolling mechanism modelled with moving yield lines (Bakker 1992). 
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The mechanical models were based on yield line theory with the objective of creating 

simplified and generalised expressions for web crippling strength. Based on previous work by 

other researchers, Bakker distinguished between two different web crippling mechanisms. In 

the rolling mechanism, the corner radius moves in a rolling manner down the web as shown in 

Figure 2.17. In the yield arc mechanism, web crippling is caused by a yield arc in the web 

underneath the load bearing plate (Figure 2.18). All deformations are assumed to be 

concentrated in the yield lines and other dimensions remain unchanged. For large corner 

radius, the rolling mechanism is governing; for small corner radius, the yield arc mechanism 

occurs. Bakker developed a mechanism model only for the rolling mechanism, not for the 

yield arc mechanism. 

 

 
Fig. 2.18 Yield arc mechanism (Bakker 1992). 

 

The model concentrates on the determination of the mechanism initiation load, whereas 

generally used design rules give the ultimate load. The mechanism initiation load is defined as 

the point of intersection of an elastic curve and a rigid-plastic mechanism initiation curve. The 

elastic curve is simply taken based on the initial stiffness observed in tests and the rigid-

plastic curve is based on generalized yield-line theory. According to Bakker, however, "the 

difference between the ultimate load and the mechanism initiation load may be so small, that 

it would not be unduly conservative to base design rules on the determination of the 

mechanism initiation load". The difference is smaller for larger span lengths. The prediction 

of the ultimate load using a mechanism model is much more difficult than that of the 

mechanism initiation load. In its presented form, the model by Bakker (1992) gives promising 
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results, although it is not given in a very user-friendly form, but it has to be remembered that 

it was only a first attempt at creating such a model. 

 

Hofmeyer (2000) continued Bakker's work and studied the combined web crippling and 

bending moment failure of first-generation trapezoidal steel sheeting. First-generation 

trapezoidal sheeting refers to cross-sections with unstiffened webs and flanges. Second-

generation sheeting includes longitudinal stiffeners and third-generation sheeting has both 

longitudinal and transversal stiffeners. The different sheeting generation types are shown in 

Figure 2.19. 

 

Fig. 2.19 Generations of sheeting (Hofmeyer 2000). 
 

Hofmeyer carried out three-point bending tests on sheet sections and recognised a third post-

failure mode in addition to the two described by Bakker (1992). This third failure mode is an 

unsymmetrical variant of the yield arc mechanism and was named the yield eye post-failure 

mode. Hofmeyer's tests showed that the rolling mechanism only occurs for impractically short 

span lengths (~ 600 mm) or impractically short load bearing plates. Therefore only the yield 

arc and yield eye mechanism are relevant for practical considerations. 

 

As defined by Hofmeyer (2000), the yield eye mode describes a situation, where buckles in 

the flange adjacent to the load-bearing plate become more pronounced after elastic 

deformations, and ultimately the failure load is thus reached. Just before the failure load is 
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reached, a yield eye occurs near one edge of the load-bearing plate. A schematic view of the 

yield eye mode is given in Figure 2.20. 

 

Fig. 2.20 Yield eye mode (Hofmeyer 2000). 
 

In addition to the experimental research, Hofmeyer developed finite element models for each 

of the three post-failure modes on finite element code ANSYS 5.4 (1999) using linear shell 

elements SHELL43. According to Hofmeyer, the elements are capable of describing 

plasticity, large deflections and large strains. For the rolling and yield arc modes, the load 

bearing plate was modelled using a solid steel block and the contact between the nodes of the 

block and the sheet section was modelled using special contact elements. The same approach 

was attempted for the yield eye mode, but this lead to convergence problems. Therefore the 

loading was instead applied via two point loads placed at the corners of the load bearing plate. 

Displacement control and a Newton-Raphson procedure were used for the yield arc and 

rolling mechanisms, while the arc-length method was applied to the yield eye mechanism 

problem. Because the rolling and yield arc modes are symmetrical, it was sufficient to use a 

quarter model, while a half model was needed for the yield eye mode. Hofmeyer reported 

reasonably good correspondence between the analysis and test results and the yield line 

patterns could be distinguished in most cases. 

 

Hofmeyer discussed the choice of the correct finite element model and concluded that a study 

should be started using the rolling model, which is a quarter model unable to describe the 

unsymmetrical yield eye mode. If a rolling post-failure mode appears, this is the correct 

mode. If a yield arc post-failure mode occurs, this is the correct mode. If the model seems to 

predict a mode similar to the yield eye mode (i.e. a yield eye develops, but because of the 

symmetry condition of the model, it cannot describe the unsymmetrical yield eye mode), 

another analysis should be run using the yield eye finite element model. A single model able 

to describe all three modes was not developed. 
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On the basis of the experiments and the finite element modelling, Hofmeyer developed an 

ultimate failure mechanical model and three post-failure mechanical models for each of the 

three modes. These models are too complicated for hand calculation, and will not be 

presented here as they are outside the main scope of the present work, but according to 

Hofmeyer's comparisons, the results given by the models are promising, although more model 

development may be appropriate. Hofmeyer also concluded that the Eurocode 3 predictions 

for the studied cases were quite good. 

 



 44

3. EXPERIMENTAL RESEARCH 
 

3.1 General 

 

A total of 52 tests were carried out on cassettes with different cross-sections. All cassettes 

were manufactured by Rannila Steel Oy and were chosen from the palette of Casetti cross-

sections normally in production at their factories. The test specimens were made from hot-

dipped zinc covered steel coils on a cold-forming line in Kaarina, Finland, and cut to the 

desired length directly on the production line. All longitudinal cutting required to prepare the 

final test specimens was done at the testing hall of the HUT Department of Civil and 

Environmental Engineering using a manually operated cutting blade. All testing was carried 

out at the same testing hall. 

 

The first phase of testing was divided into three groups depending on the loading conditions 

and the type of test specimen. The first of the three groups consisted of ITF (interior two-

flange) -tests on single web sections cut from factory-produced cassettes. The second group 

included IOF (interior one-flange) -tests on similar web sections using two different span 

lengths for the three-point bending tests. Finally, the third group consisted of IOF-tests on 

built-up sections where a small structural entity was constructed using two cassette sections 

for each specimen as explained in Section 3.5.  

 

Three different web heights (100 mm, 150 mm and 200 mm) and two different nominal wall 

thicknesses (1.0 mm and 1.5 mm) were chosen for testing. The IOF-tests were carried out 

only on 200 mm high sections with nominal wall thickness 1.5 mm. 

 

The naming convention for the test specimens is the following: 
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1st term: test type:  ITF for interior two-flange loading of single web specimens, 
 IOF for interior one-flange loading of single web specimens, 

 S-IOF for interior one-flange loading with built-up sections. 
 
2nd term: web height:  100, 150 or 200 [mm]. 
 



 45

3rd term: section type: [blank] for flat web sections, 
 R for longitudinally stiffened web sections. 
 
4th term: wall thickness: t10 for tnom = 1.0 mm, 
 t15 for tnom = 1.5 mm. 
 
5th term: span length: [blank] for ITF tests, 

 S600 for IOF-tests with span length Lspan = 600 mm, 
 S1000 for IOF-tests with span length Lspan = 1000 mm. 
 
6th term: sequence number of test in test series. 

 

For example, IOF200R-t15-S600-2 stands for the second test in the series of IOF-tests on 

200 mm high longitudinally stiffened webs with nominal wall thickness 1.5 mm and span 

length 600 mm. The main results of the tests have been previously published in the test report 

Kaitila & Mäkeläinen (2003). 

 

 

3.2  Material properties 

 

The material used in the manufacturing of the test specimens was S350GD-Z275MA 

(SFS-EN 10147, 2000). The material properties were determined by carrying out standardized 

tensile tests on test pieces cut out in both longitudinal and perpendicular directions relative to 

the direction of cold forming (SFS-EN 10 002-1, 2002). A total of ten different material test 

series had to be carried out, because the test specimens with different heights and thicknesses 

were manufactured from different steel coils. All coil materials had to be tested in both 

longitudinal and perpendicular directions relative to the direction of cold forming. The pieces 

tested longitudinally to the direction of cold forming were cut from the flat parts of the wide 

flange of cassette sections. The pieces tested perpendicularly to the direction of cold forming 

were cut from the cassettes' web part. Before testing, the protective zinc coating was removed 

and the tests were carried out on the base steel material. Tables 3.1-3.5 show the main 

parameters for the different steel materials with nominal thicknesses 1.0 mm and 1.5 mm and 

different web heights. The material test specimen tag numbers were chosen during testing and 

their sole purpose was to distinguish the different test series and specimens from each other. 

 

As is usually the case, the strength of the material is a little higher in the direction 

perpendicular to the cold forming direction. This is also the direction in which the loading is 
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mostly applied in the web crippling tests, especially in the ITF-tests. The development of 

plastic areas, the redistribution of stresses and the bending in IOF-tests naturally leads to 

stresses in the axial direction as well, i.e. the direction of cold forming. 

 

Some variations can be seen in the results of the material tests. The mean yield strength 

corresponding to 0.2 % plastic strain fp0.2 varies between a low of 390.1 N/mm2 and a high of 

446.6 N/mm2. The mean ultimate strength varies between 493.7 N/mm2 and 522.0 N/mm2. 

The mean modulus of elasticity varies between 167028 N/mm2 and 205364 N/mm2.  

 

The values the moduli of elasticity have been determined from the straight parts of the stress-

strain curves between data points corresponding approximately to stress values 30 N/mm2 and 

250 N/mm2 in the present tests. The exact determination of the modulus of elasticity is quite 

difficult for thin-walled steel sheets, because the material test specimens may have an initial 

curvature and the straightness of the initial part of the stress-strain curve may be difficult to 

ascertain. Therefore the values of E given in Tables 3.1-3.5 should not be taken as precise 

data.  

 

The material values given in Tables 3.3 and 3.5 for specimens with bw = 150 mm and 

bw = 200 mm, respectively (tnom = 1.5 mm in both cases), are all actually from the same steel 

coil (KH089002). When the data is carefully inspected, some differences in values of both 

strength and modulus of elasticity can be observed. The strength variations are thought to be 

due to the local residual stresses caused by the cold forming and the initial imperfections in 

the specimens (see section 3.3.1).  

 

The stress-strain curves corresponding to all the material test series presented in 

Tables 3.1-3.5 are given in ANNEX A. 
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Table 3.1a Material test results for specimens with tnom = 1.0 mm and bw = 100 mm cut 
longitudinally to the direction of cold forming (steel coil number FT019002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
CC-1 0.953 12.51 11.92 171432 379.9 394.0 492.4 16.40 24.34 
CC-2 0.951 12.51 11.90 192518 379.7 396.1 494.0 16.55 25.22 
CC-3 0.951 12.51 11.90 176978 382.2 397.3 494.8 16.61 25.68 
Mean 0.952 12.51 11.91 180309 380.6 395.8 493.7 16.5 25.1 

St. deviation 0.00 0.00 0.01 10930.6 1.39 1.67 1.22 0.11 0.68 
 

Table 3.1b Material test results for specimens with tnom = 1.0 mm and bw = 100 mm cut 
perpendicularly to the direction of cold forming (steel coil number FT019002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
CCP-1 0.952 12.51 11.91 177226 422.0 462.2 501.4 15.54 23.42 
CCP-2 0.951 12.51 11.90 173847 427.8 424.1 500.6 15.72 22.58 
CCP-3 0.954 12.51 11.93 178137 429.6 424.8 500.6 15.92 24.91 
Mean 0.952 12.51 11.91 176403 426.5 437.0 500.9 15.7 23.6 

St. deviation 0.00 0.00 0.02 2260.2 3.97 21.80 0.46 0.19 1.18 
 

Table 3.2a Material test results for specimens with tnom = 1.0 mm and bw = 150 mm cut 
longitudinally to the direction of cold forming (steel coil number J6503002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
A1-1 0.937 12.51 11.72 189097 383.3 395.3 501.4 14.84 21.11 
A1-2 0.940 12.51 11.76 188930 385.6 396.7 501.0 14.02 20.82 
A1-3 0.938 12.51 11.73 190735 380.2 393.4 498.6 14.15 20.19 
A1-4 0.934 12.51 11.68 177739 383.0 394.7 500.8 14.32 20.97 
A1-5 0.935 12.51 11.70 177360 382.0 392.8 499.5 14.36 21.88 
Mean 0.937 12.51 11.72 184772 382.8 394.6 500.3 14.34 20.99 

St. deviation 0.00 0.00 0.03 6632.4 1.97 1.55 1.17 0.31 0.61 
 

Table 3.2b Material test results for specimens with tnom = 1.0 mm and bw = 150 mm cut 
perpendicularly to the direction of cold forming (steel coil number J6503002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
B1-1 0.936 12.51 11.71 198936 387.5 421.6 503.3 13.53 15.95 
B1-2 0.936 12.51 11.71 209738 389.1 423.4 502.8 13.54 16.78 
B1-3 0.929 12.51 11.62 206748 387.9 420.9 502.5 12.92 16.60 
B1-4 0.928 12.51 11.61 200975 388.9 420.3 498.3 10.69 13.03 
B1-5 0.929 12.51 11.62 210423 382.9 417.0 501.3 12.75 15.55 
Mean 0.932 12.51 11.65 205364 387.3 420.6 501.6 12.69 15.58 

St. deviation 0.00 0.00 0.05 5177.43 2.53 2.34 2.01 1.17 1.51 
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Table 3.3a Material test results for specimens with tnom = 1.5 mm and bw = 150 mm cut 
longitudinally to the direction of cold forming (steel coil number KH089002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
A2-1 1.437 12.51 17.98 202449 390.4 407.4 506.0 12.75 17.49 
A2-2 1.443 12.51 18.05 188848 387.8 405.0 505.3 12.59 18.26 
A2-3 1.443 12.51 18.05 189132 389.9 407.6 507.5 12.61 17.71 
A2-4 1.440 12.51 18.01 189946 389.6 408.2 507.6 12.70 18.50 
A2-5 1.438 12.51 17.99 187627 390.9 408.5 509.3 12.76 19.61 
Mean 1.440 12.51 18.02 191600 389.7 407.3 507.1 12.68 18.31 

St. deviation 0.00 0.00 0.03 6121.39 1.18 1.38 1.56 0.08 0.83 
 

Table 3.3b Material test results for specimens with tnom = 1.5 mm and bw = 150 mm cut 
perpendicularly to the direction of cold forming (steel coil number KH089002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
B2-1 1.433 12.51 17.93 196575 414.0 446.7 520.9 9.70 11.93 
B2-2 1.431 12.51 17.90 187337 412.7 445.7 520.5 11.81 15.33 
B2-3 1.428 12.51 17.86 181071 417.8 447.2 522.5 10.95 13.34 
B2-4 1.429 12.51 17.88 201371 413.4 446.5 522.0 11.18 14.16 
B2-5 1.437 12.51 17.98 184891 415.9 447.1 524.2 12.11 17.49 
Mean 1.432 12.51 17.91 190249 414.8 446.6 522.0 11.15 14.45 

St. deviation 0.00 0.00 0.04 8443.06 2.07 0.60 1.46 0.94 2.10 
 

Table 3.4a Material test results for specimens with tnom = 1.0 mm and bw = 200 mm cut 
longitudinally to the direction of cold forming (steel coil number KF943005). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
BB-1 0.958 12.51 11.98 173891 377.8 390.3 496.8 15.15 22.89 
BB-2 0.954 12.51 11.93 180800 373.2 389.5 497.8 14.96 22.16 
BB-3 0.962 12.51 12.03 192256 379.4 390.5 497.9 15.54 23.51 
Mean 0.958 12.51 11.98 182316 376.8 390.1 497.5 15.2 22.9 

St. deviation 0.00 0.00 0.05 9275.8 3.22 0.53 0.61 0.30 0.68 
 

Table 3.4b Material test results for specimens with tnom = 1.0 mm and bw = 200 mm cut 
perpendicularly to the direction of cold forming (steel coil number KF943005). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
BBP-1 0.949 12.51 11.87 190408 372.8 408.4 501.5 15.03 23.19 
BBP-2 0.949 12.51 11.87 198170 375.3 410.6 501.5 14.66 21.17 
BBP-3 0.948 12.51 11.86 198612 372.9 409.3 501.8 15.16 21.97 
Mean 0.949 12.51 11.87 195730 373.7 409.4 501.6 15.0 22.1 

St. deviation 0.00 0.00 0.01 4614.3 1.42 1.11 0.17 0.26 1.02 
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Table 3.5a Material test results for specimens with tnom = 1.5 mm and bw = 200 mm cut 
longitudinally to the direction of cold forming (steel coil number KH089002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
AA-1 1.446 12.51 18.09 166452 381.4 396.8 506.4 14.13 23.62 
AA-2 1.448 12.51 18.11 159190 378.3 393.8 503.4 14.51 22.72 
AA-3 1.451 12.51 18.15 175443 376.9 400.2 503.3 13.61 22.78 
Mean 1.448 12.51 18.12 167028 378.9 396.9 504.4 14.1 23.0 

St. deviation 0.00 0.00 0.03 8141.8 2.30 3.20 1.76 0.45 0.50 
 

Table 3.5b Material test results for specimens with tnom = 1.5 mm and bw = 200 mm cut 
perpendicularly to the direction of cold forming (steel coil number KH089002). 

 
Specimen 

tag 
t  

mm 
b  

mm 
A  

mm2 
E 

N/mm2 
fp0.1 

N/mm2 
fp0.2 

N/mm2 
fu.test 

N/mm2 
εfu.test 

% 
εbreak 

% 
AAP-1 1.436 12.51 17.96 215585 394.9 427.8 520.5 13.27 20.71 
AAP-2 1.440 12.51 18.01 209294 396.8 429.0 520.4 13.12 20.63 
AAP-3 1.437 12.51 17.98 185375 399.2 431.3 522.4 12.64 18.08 
Mean 1.438 12.51 17.98 203418 397.0 429.4 521.1 13.0 19.8 

St. deviation 0.00 0.00 0.03 15939.2 2.15 1.78 1.13 0.33 1.50 
 

 

3.3 ITF-tests on single webs 

 

3.3.1 Test arrangement 

 

The first series of tests was carried out on 1200 mm long single web sections that had been 

cut from factory-produced Rannila Casetti sections. This resulted in nominal cross-sections of 

the type shown in Figure 3.1 for unstiffened web sections and Figure 3.2 for stiffened web 

sections. The figures also show the measurements taken from each tested specimen before 

testing. The most important nominal dimensions are given in Tables 3.6a and 3.6b. The actual 

measured values are given in ANNEX B. 

 

Table 3.6a Most important nominal cross-sectional dimensions for flat and longitudinally 
stiffened web profiles (t = wall thickness). 

 

 btf btf.st bw bbf.fl ritf retf rtf ribf rebf rbf 

ITF100 100 + t 
ITF150 150 + t 
ITF200 

93.7 30.3 
200 + t 

36.7 2.4 3.6 3.0 2.4 3.6 3.0 
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Table 3.6b Additional nominal cross-sectional dimensions for webs with longitudinal 
stiffeners (t = wall thickness). 

 

 bw.st bw.st.fl dw.st hw.st 

ITF100R 
ITF150R 
ITF200R 

30.7 49.3 27.0 - t 8.0 

Fig. 3.1 Nominal flat web cross-section for ITF- and IOF-tests. 
 

Fig. 3.2 Nominal longitudinally stiffened web cross-section for ITF- and IOF-tests. 
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Fig. 3.3 Schematic view of general ITF test set-up. 
 

 
 

Fig. 3.4 General view of test set-up (test ITF100-t10-1). 
 

As can be seen from Figure 3.4, specially manufactured welded T-shaped steel sections were 

used to connect the specimen to the Roell+Koerthaus universal testing rig. The T-shaped 

sections were attached to the flanges of the test specimen using two 8 mm diameter screws 

and 20 mm diameter washers situated at 20 mm distance from the centre line of the web.  The 

connection can be seen in the photo on the right in Figure 3.11a. This test set-up provided 
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laterally braced connections at the top and bottom flanges and did not allow curling of the 

flanges at the loading area. Although this arrangement may not be directly comparable to all 

practical situations, it nevertheless provides unambiguously determined boundary conditions, 

which is important in the comparison of test results and numerical analysis results. 

 

The test specimen was placed between the jaws of the testing machine and attached via the 

T-shaped sections. The loading was applied using displacement control. In the first two tests 

(ITF100-t10-1 and ITF100-t10-2), the load application speed was chosen as 0.5 mm/min, but 

was thereafter increased to 1.0 mm/min for all subsequent ITF- and IOF-tests in order to 

speed up the testing procedure while still keeping the loading speed relatively low. 

 

There were noteworthy and sometimes important deviations in the initial shape of a number 

of test specimens in comparison to the nominal cross-section dimensions. Many test 

specimens were also rather curved along their length. These initial imperfections were 

measured along the length of the specimens using a three-point measuring rod whose end 

points were at a 1100 mm distance from each other and at equal (approximately 50 mm) 

distances from the ends of the specimen. The difference from the zero-value was measured at 

mid-span. Measurements were taken at both flanges and at the mid-height of the web as 

shown in Figure 3.5. In some specimens, also the shape of the web at mid-span was curved 

vertically, which obviously had a direct influence on some of the test results. The vertical 

curvature of the web at mid-span was evaluated in a similar way as shown in Figure 3.6. All 

the measurements shown in the Figures are given for each test specimen in ANNEX B. 

The +- and −-signs in the figures indicate the sign of the measured curvature. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.5 Principle of longitudinal curvature measurement for ITF- and IOF- test specimens. 
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Fig. 3.6 Principle of vertical curvature measurement of the web at mid-span. 
 

 

3.3.2 Test results 

 

The results of all ITF-tests are summarized in Table 3.7 and the results of all individual tests 

are given in Tables 3.8-3.17 and Figures 3.7-3.25. 

 

Table 3.7 Summary of test results from ITF-tests. 
 

Test series Average Fu 
[kN] 

Average load displacement at Fu 
[mm] 

ITF100-t10   7.45 3.08 
ITF100R-t10   6.02 7.52 
ITF150-t10   6.34 5.34 

ITF150R-t10   5.27 8.68 
ITF150-t15 16.56 3.42 

ITF150R-t15 12.90 7.34 
ITF200-t10   6.51 6.16 

ITF200R-t10   5.14 8.94 
ITF200-t15 16.24 4.67 

ITF200R-t15 12.71 7.70 
 

One of the main conclusions from the results of the ITF-tests is that the presence of a 

longitudinal web stiffener reduces the web crippling strength of the profile by about 17-22 % 

in comparison to the corresponding section with a flat web. Also the initial stiffness of the 

web is reduced when a stiffener is present as can be seen from the load-displacement graphs 

of individual tests shown below.  

 

The influence of web height on the section's resistance against local transverse forces does not 

appear to be very important, although the average failure loads for the 100 mm high section 

with tnom = 1.0 mm are slightly higher than those for 150 mm and 200 mm high sections with 
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the same steel thickness. The differences between 150 mm and 200 mm high sections are 

smaller still. 

 

The behaviour of cross-sections with flat webs is remarkably different from that of cross-

sections with stiffened webs. As could be expected, the flat webs collect a higher amount of 

potential energy during the first part of loading. This energy is then freed when the ultimate 

load bearing capacity is reached and the web buckles. However, in most of the ITF-tests 

herein, the buckling of the web was not very notable, probably due to the initial imperfections 

and curvatures of the profiles. However, tests on the most slender flat webs, the 200 mm high 

1.0 mm thick sections, were an exception to this rule. Here the buckling was pronounced and 

happened suddenly leading to an immediate fall of the applied load. The redistribution of 

stresses still led to a further increase of the load after the buckling, but subsequent buckling 

still occurred later on in the tests. 

 

By looking at the development of the buckling and plastic deformations in the profiles, it can 

be seen how the stresses are redistributed to sections of the beam further away from the 

loading area as the test progresses. 

 

The different test series are discussed below in separate sections. The individual test results 

are given in tables and the load-displacement curves are shown. Photographs showing the 

deformation modes are given and the test results are discussed. The load-displacement curves 

from all ITF-tests are also collected in ANNEX C in order to show the differences in the 

results depending on web height and steel thickness. 
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Test series ITF100-t10 and ITF100R-t10 
 

Table 3.8 Results of ITF-tests on 100 mm high unstiffened single webs with tnom = 1.0 mm. 
 
Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF100-t10-1 7.30 3.17 
ITF100-t10-2 7.34 3.10 
ITF100-t10-3 7.7 2.98 
Mean 7.45 3.08 
Standard deviation 0.220 0.096 
 

Table 3.9 Results of ITF-tests on 100 mm high stiffened single webs with tnom = 1.0 mm. 
 
Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF100R-t10-1 6.01 7.47 
ITF100R-t10-2 6.05 7.53 
ITF100R-t10-3 6.00 7.55 
Mean 6.02 7.52 
Standard deviation 0.027 0.040 
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Fig. 3.7 Load-deformation curves for ITF-tests on 100 mm high single webs  

with tnom = 1.0 mm. 
 

The failure load of the unstiffened webs of 100 mm high sections with tnom = 1.0 mm is on 

average 23.8 % higher than the failure load of corresponding stiffened webs.  The failure load 

for unstiffened webs is taken as the first local maximum in the load-displacement curve. 

Interestingly for these specimens, an even higher load magnitude is reached later in the test. 
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After the failure load, the load magnitude is reduced by about 20-30 %, but after this the load 

starts to increase again and the profile is able to carry load for a long time even though the 

plastic web crippling process continues. However, only for these first tests did the second 

local maximum reach an even higher value than the failure load. The webs with longitudinal 

stiffeners showed fundamentally different behaviour. The load-displacement curve is 

smoother and no sudden changes are observed. After the failure load is reached, the load 

continues to decrease rather slowly without any further post-failure stiffening occurring. 

 

As explained above, the load was applied using displacement control with a load application 

speed of 0.5 mm/min for the first two tests and 1.0 mm/min for all subsequent tests. This 

explains the slightly higher ultimate load and stiffness of test ITF100-t10-3 when compared 

with the first two tests, because the increase of load application speed is known to cause this 

type of effect.  

 

The stiffened webs are not as much affected by initial form imperfections as the nominally 

flat webs, because the non-symmetry of the stiffener causes a spring-like effect that is not too 

sensitive to minor variations in the cross-section. This is shown by the practically overlapping 

load-displacement curves. As the load is applied, the stiffened web simply starts to displace 

out-of-plane in the direction of the stiffener. The unstiffened web, on the other hand, behaves 

more like a simply supported plate loaded in the plane and undergoes buckling when the load 

reaches a certain level. 

 

Figures 3.8a and 3.8b show the progression of the deformations in the web of the specimen as 

seen from either side of the web, respectively. It can be seen that the first deformations 

constitute of a clear arc-shaped curve under the loading pad. As the test is continued, the 

deformed area widens as plastic deformations are born and the stresses are redistributed. 

Nevertheless, in all the tests, the deformed area remained relatively local in the longitudinal 

direction of the specimen and the ends of the 1200 mm long specimens were not seen to be 

affected by the local transverse forces applied at mid-span. 
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Fig. 3.8a Web crippling progression in test ITF100-t10-2 as seen from the "outside". 

 

   
Fig. 3.8b Web crippling progression in test ITF100-t10-2 as seen from the "underside". 

 

   
Fig. 3.9 Web crippling progression in test ITF100R-t10-1. 

 
Figure 3.9 shows the progression of the deformations for 100 mm high webs with stiffeners. 

The first arc-shaped deformations can be seen at the stiffener level in the photo on the left. In 

the other two photos, the further yield deformations are shown. The deformations were 

concentrated on the lower part of the web and the bottom flange. 
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Test series ITF150-t10 and ITF-150R-t10 
 

Table 3.10 Results of ITF-tests on 150 mm high unstiffened single webs with tnom = 1.0 mm. 
 
Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF150-t10-1 6.17 5.54 
ITF150-t10-2 6.53 5.79 
ITF150-t10-3 6.19 5.21 
ITF150-t10-4 6.47 4.86 
ITF150-t10-5 6.35 5.31 
Mean 6.34 5.34 
Standard deviation 0.163 0.352 
 

Table 3.11 Results of ITF-tests on 150 mm high stiffened single webs with tnom = 1.0 mm. 
 

Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF150R-t10-1 5.33 8.60 
ITF1500R-t10-2 4.78 9.68 
ITF150R-t10-3 5.70 7.75 
Mean 5.27 8.68 
Standard deviation 0.467 0.970 
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Fig. 3.10 Load-deformation curves for ITF-tests on 150 mm high single webs  

with tnom = 1.0 mm. 
 

The 150 mm high flat web specimens with tnom = 1.0 mm all behaved qualitatively similarly to 

the 100 mm high flat web specimens with the exception of the second test specimen as can be 

seen from the load-displacement curves in Figure 3.10. The deformation mode in this test was 
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quite different as well, as can be seen when the web crippling progression in Figure 3.12 for 

specimen ITF150-t10-2 is compared to the one in Figures 3.11a and 3.11b for specimen 

ITF150-t10-1. In four of the five tests, the deformation started off as a local arc-shaped mode 

at the location of the loading pad, as was observed in the ITF100-t10 tests as well. This arc 

was then transformed into a rolling deformation mode as seen most clearly from the photo on 

the right in Figure 3.11a. The widening of the yielding area can also be clearly observed. 

However, in test ITF150-t10-2, the web buckled towards the right (in Figure 3.12) at its mid-

height, while creating a large arc-like buckled shape in the lower part of the web. When the 

initial imperfections of the tested specimens measured before testing are studied closely, it 

can be seen that the vertical curvature of test specimen ITF150-t10-2 was larger in magnitude 

(-0.64 mm) than for any of the other specimens in this category (see ANNEX B). This may 

have partly contributed to the change of behaviour. Test specimen ITF150-t10-4, which has a 

similar load-displacement curve during the start of the test, has the second-highest magnitude 

of initial vertical curvature (-0.54 mm). In these cases this initial imperfection appears to be 

beneficial to the resistance of the cross-section. However, the differences are relatively small.  

 

   
Fig. 3.11a Web crippling progression in test ITF150-t10-1 as seen from the "outside". 

 

   
Fig. 3.11b Web crippling progression in test ITF150-t10-1 as seen from the "underside". 
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Fig. 3.12 Web crippling progression in test ITF150-t10-2. 
 

 
 

Fig. 3.13 Web deformation in test ITF150R-t10-2. 
 
 

It is also interesting to note that while the failure load of specimen ITF150-t10-2 is somewhat 

higher than for the other specimens, the test load for this specimen appears to decrease 

monotonously after its first maximum, while for the other specimens, a further increase is 

observed similarly to the ITF100-t10 tests. This is qualitatively similar to the behaviour of 

web sections with longitudinal stiffeners, which is explained by the similarity of the initial 

web deformation of specimen ITF150-t10-2 with the eccentricity caused by the longitudinal 

stiffener in tests ITF150R. 
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Test series ITF150-t15 and ITF-150R-t15 

 

Table 3.12 Results of ITF-tests on 150 mm high unstiffened single webs with tnom = 1.5 mm. 
 

Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF150-t15-1 16.73 3.10 
ITF150-t15-2 16.73 3.41 
ITF150-t15-3 16.20 3.76 
Mean 16.56 3.42 
Standard deviation 0.306 0.331 
 

Table 3.13 Results of ITF-tests on 150 mm high stiffened single webs with tnom = 1.5 mm. 
 

Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF150R-t15-1 12.87 7.45 
ITF150R-t15-2 13.00 6.75 
ITF150R-t15-3 12.84 7.82 
Mean 12.90 7.34 
Standard deviation 0.082 0.544 
 

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35

Web crippling deformation (= Load cylinder displacement) [mm]

A
pp

lie
d 

lo
ad

 [k
N

]

ITF150-t15-1

ITF150-t15-2

ITF150-t15-3

ITF150R-t15-1

ITF150R-t15-2

ITF150R-t15-3

ITF150-t15-1

ITF150-t15-2

ITF150-t15-3

ITF150R-t15-1

ITF150R-t15-2

ITF150R-t15-3

 
Fig. 3.14 Load-deformation curves for ITF-tests on 150 mm high single webs  

with tnom = 1.5 mm. 
 

The results of the ITF-tests on 150 mm high specimens with tnom = 1.5 mm do not show any 

unexpected behaviour when compared to the previous results. The web crippling progression 

was similar to the corresponding 1.0 mm thick sections, as can be seen from Figures 3.15 and 

3.16. For the flat webs, an arc-shaped deformation first appeared, and a rolling web crippling 
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deformation followed later on in the test. For the web with a longitudinal stiffener, the 

deformations first concentrated at the mid-height of the web, close to the lower edge of the 

stiffener, and soon thereafter the web was simply bulged toward the "outside" as seen in 

previous tests, with the deformed area widening as the test progressed. 

 

   
Fig. 3.15 Web crippling progression in test ITF150-t15-1 as seen from the "outside". 

 

  
Fig. 3.16 Web crippling progression in test ITF150R-t15-1 as seen from the "underside". 
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Test series ITF200-t10 and ITF-200R-t10 

 

Table 3.14 Results of ITF-tests on 200 mm high unstiffened single webs with tnom = 1.0 mm. 
 

Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF200-t10-1 7.16 5.96 
ITF200-t10-2 6.25 6.51 
ITF200-t10-3 6.13 6.00 
Mean 6.51 6.16 
Standard deviation 0.567 0.308 
 

Table 3.15 Results of ITF-tests on 200 mm high stiffened single webs with tnom = 1.0 mm. 
 

Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF200R-t10-1 5.08 9.62 
ITF200R-t10-2 5.08 8.80 
ITF200R-t10-3 5.27 8.39 
Mean 5.14 8.94 
Standard deviation 0.107 0.626 
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Fig. 3.17 Load-deformation curves for ITF-tests on 200 mm high single webs  

with tnom = 1.0 mm. 
 

The load-displacement curves of test specimens in series ITF200-t10 (Figure 3.17) show a 

somewhat different behaviour from all the other specimens. In these specimens, the web 

buckling was much more pronounced than in the others due obviously to the higher 

slenderness of the web. The buckling load corresponds to the failure load. A loud noise could 
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be heard at the moment of buckling and a sudden drop in load can be seen. After the drop, the 

load continued to increase slightly until a further buckling occurred.  

 

The higher slenderness of these webs makes them also prone to the effects of initial 

imperfections. It should be pointed out that of all those tested, these specimens were the most 

curved initially as can be seen from the measurements given in ANNEX B. The higher failure 

load of specimen ITF200-t10-1 can probably be attributed to the magnitude of the vertical 

curvature, which was -3.13 mm, while for specimens ITF200-t10-2 and ITF200-t10-3 the 

values were -2.15 and -1.93, respectively. The negative sign of the initial curvature seems 

therefore to increase the load bearing capacity of this type of section, at least in the inspected 

range. The same effect was witnessed in test series ITF150-t10 above. 

 

The web crippling progression for the flat web specimens is shown in Figures 3.18 and 3.19 

for tests ITF200-t10-1 and ITF200-t10-2, respectively. The deformation starts again as a 

yield-arc mode followed by the bulging of the whole web. The photo on the right in 

Figure 3.18 includes a vertically placed member to help show the magnitude of the lateral 

web deformation.  

 

The photo on the left in Figure 3.19 shows specimen ITF200-t10-2 in its initial state. It can be 

seen that there are several wave-like deformations in the web profile. 

 

   
Fig. 3.18 Web crippling progression in test ITF200-t10-1. 

 

  
Fig. 3.19 Web crippling progression in test ITF200-t10-2. 
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Fig. 3.20 Web crippling progression in test ITF200R-t10-1. 

 

The basic deformation mode of test series ITF200R-t10 was similar to the other webs with 

longitudinal stiffeners, i.e. the web bulged towards the stiffener side, as seen in Figure 3.20. 

However, probably due to the higher slenderness value of these sections, a yield-arc pattern 

could also be more clearly recognized at areas adjacent to the loading pads. 

 

 
Fig. 3.21 Initial form of test specimen ITF200R-t10-3 forcing the top flange  

T-section into the jaws of the loading cylinder. 
 

To give a better idea of the initial curvatures present in the test specimens, Figure 3.21 shows 

a photo of test specimen ITF200R-t10-3 before testing with the lower flange connected to the 

testing rig and the top flange free with the T-section connected. In the top part of the figure, 

the opening of the loading cylinders jaws can be seen. The specimen had to be forced into the 

vertical position before testing could be started. It is clear that the initial stresses thus created 

will have some effect on the test results. However, it should be noted that the photo presents 

the most pronounced case and that the initial curvatures were not as large as this in all the 

specimens.
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Test series ITF200-t15 and ITF-200R-t15 

 

Table 3.16 Results of ITF-tests on 200 mm high unstiffened single webs with tnom = 1.5 mm. 
 

Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF200-t15-1 14.30 4.32 
ITF200-t15-2 17.39 4.64 
ITF200-t15-3 16.99 4.73 
ITF200-t15-4 16.27 5.00 
Mean of all tests 16.24 4.67 
Standard deviation of all tests 1.370 0.278 
Mean of tests 2-4 16.88 4.79 
Standard deviation of tests 2-4 0.571 0.185 
 

Table 3.17 Results of ITF-tests on 200 mm high stiffened single webs with tnom = 1.5 mm. 
 

Specimen code Fu [kN] Load displacement at Fu [mm] 
ITF200R-t15-1 12.18 8.69 
ITF200R-t15-2 13.26 6.66 
ITF200R-t15-3 12.69 7.74 
Mean 12.71 7.70 
Standard deviation 0.538 1.013 
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Fig. 3.22 Load-deformation curves for ITF-tests on 200 mm high single webs 

with tnom = 1.5 mm. 
 

As can be seen in Figure 3.22, the load-displacement curve of test ITF200-t15-1 runs lower 

than those of the other tests in the same series. No clear reason for this behaviour could be 
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found. The photos in Figure 3.23 show that the web bulged towards the left in this test, while 

for the other three tests in the series, the web bulged towards the right, as shown in Figure 

3.24. However, the initial vertical curvatures fail to explain this difference, as can be 

concluded when comparing the values given in Table 3.18. The value for ITF200-t15-1 

(-0.56 mm) falls between the extreme values recorded (-0.31 mm and -0.74 mm). It can be 

seen from the load-displacement curve that just before a deflection of 2 mm was reached, the 

web buckled, which was not as clearly observed for any of the other three tests in this series. 

This type of snap-through behaviour may have been due to the initial stresses caused by 

having to force the web section between the jaws of the testing rig in a situation similar to that 

shown in Figure 3.21. 

 

Table 3.18 Initial vertical web curvature values for specimens in test series ITF200-t15. 
 

Test specimen Value of vertical web curvature [mm] 
ITF200-t15-1 -0,56 
ITF200-t15-2 -0,71 
ITF200-t15-3 -0,74 
ITF200-t15-4 -0,31 

 

It is possible that test ITF200-t15-1 was simply an exception, but it is obviously impossible to 

discuss the statistical importance of this exception with such a small amount of test results. 

Nevertheless, Table 3.16 also shows the calculated mean values of tests 2-4 in this series. 

These tests give results comparable to each other. 

 

   
Fig. 3.23 Web crippling progression in test ITF200-t15-1. 

 

Once again, the webs with a longitudinal stiffener showed no great surprises in their 

behaviour. The failure mode constituted of the slowly progressing web bulging as shown in 

Figure 3.25. Here, the initial vertical curvature appears to have a straightforward influence on 

the failure load, as can be concluded by comparing the curvature values in Table 3.19 with the 

test results in Table 3.17. 
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Fig. 3.24 Web crippling progression in test ITF200-t15-2. 

 

 
Fig. 3.25 Web crippling in test ITF200R-t15-1. 

 

 

Table 3.19 Initial vertical web curvature values for specimens in test series ITF200R-t15. 
 

Test specimen Value of vertical web curvature [mm] 
ITF200R-t15-1 -1,98 
ITF200R-t15-2 -0,28 
ITF200R-t15-3 -1,08 
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3.4 IOF-tests on single webs 

 

3.4.1 Test arrangement 

 

The second group of tests consisted of three-point bending tests carried out on similar 

1200 mm long single-web sections as those used for the ITF-tests above. Two different span 

lengths were considered, i.e. 600 mm and 1000 mm. Strictly speaking, the shorter span does 

not correspond to the commonly used definition of IOF-loading (ENV 1993-1-3:1996), which 

requires the distance between the edges of the loading and support pads to be at least 1.5 

times the height of the web. However, the term IOF is used for these tests as well, in order to 

distinguish them from the ITF-tests. The test type definitions (ITF and IOF) are conventional 

and based on earlier empirical information and cannot be considered to be physically 

confining definitions. 

Fig. 3.26 General test set-up for IOF-tests. Lspan was set as either 600 mm or 1000 mm. 
 

Figure 3.26 shows a sketch of the general test set-up for the IOF-tests. Specially manufactured 

welded T-sections were used at the supports and at the loading area at mid-span. The support 

conditions included rollers that allowed the free rotation of the supports. A photograph of test 

specimen IOF200-t15-S600-1 ready for testing is shown in Figure 3.27. The clamps shown in 
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the picture were used to keep the specimen in place and removed at the start of the test once 

the applied load had reached a value of about 8 kN. The clamps were necessary, because the 

test specimens were not ideally straight. 

 

At the supports, the test specimen was connected with bolts to the vertical support plate as 

shown in the sketch. Three bolts were used for the flat web sections, while for the 

longitudinally stiffened web sections, the uppermost bolt had to be omitted because it would 

have had to be placed at the height of the stiffener. This support arrangement was used in 

order to have the web crippling phenomena take place at mid-span. The arrangement proved 

successful and no notable deformations occurred at the support areas. The loading pad 

connection at mid-span was the same as that used for the ITF-tests. The lateral displacement 

and the rotation about the longitudinal (x) axis of the specimen was restrained at the 

connected flanges at mid-span and at the supports. 

 

 
 

Fig. 3.27 General view of test arrangement. 
 

The nominal cross-sectional dimensions of the specimens were the same as for the ITF-tests 

(cf. Section 3.3.1). All the same measurements as for the ITF-tests were also carried out 

before testing and the measured values can be found in ANNEX B. 
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3.4.2 Test results 

 

The results of all IOF-tests are summarized in Table 3.20 and the results of all individual tests 

are given in Tables 3.21-3.24 and Figures 3.29-3.51, which show load-displacement curves, 

load-web crippling curves and photographs of the test specimens.  

 

Table 3.20 Summary of test results from IOF-tests. 
 

Test series Average Fu 
[kN] 

Average load 
displacement at Fu [mm] 

Average web crippling 
deformation at Fu [mm] 

IOF200-t15-S600 17.14 3.43 2.42 
IOF200R-t15-S600 13.99 7.93 7.34 
IOF200-t15-S1000 15.91 4.30 2.41 

IOF200R-t15-S1000 12.23 8.34 5.92 
 

The presence of a longitudinal stiffener in the web decreases the resistance to concentrated 

lateral loading by about 18-23 % in these tests. These results and the overall behaviour are 

quite similar to those seen in the ITF-tests.   

 

It was expected that the ultimate load be reduced when the effect of bending moment comes 

to play, but this was not necessarily the case in these tests. The mean ultimate load of tests 

ITF200-t15 was 16.24 kN, less than the 17.14 kN recorded for the corresponding IOF-tests 

with Lspan = 600 mm. For Lspan = 1000 mm, the load was reduced, but not by very much. 

However, the displacement of the load cylinder was a little less at the time of ultimate load for 

the IOF-tests.  

 

Similar behaviour can be observed for the IOF-tests on longitudinally stiffened web sections. 

When Lspan = 600 mm, the ultimate load is a little higher than it was for the ITF-tests, while 

the increase of Lspan to 1000 mm causes a slight decrease in the ultimate load value. The 

displacement at the time of reaching the ultimate load is again a little higher than for the 

ITF-tests. The web crippling deformation in the IOF-tests on flat webs is only about half of 

that recorded for the ITF-tests. For the IOF-tests with longitudinally stiffened webs, the web 

crippling deformation is not reduced quite as rapidly. 

 

The load and displacement values for all tests were measured directly from the load cylinder 

using a very short data saving interval. In addition, the vertical displacement of the bottom 

flange was measured using a gauge (cf. Figure 3.28), which recorded displacement values at 
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about 0.125 kN intervals. In order to use a spreadsheet to calculate the web crippling 

deformation, i.e. the difference in vertical displacements between the top and bottom flanges, 

the data points from the load cylinder data corresponding to the more scarcely recorded data 

points from the gauge data had to be identified. A special macro was developed in Microsoft 

Excel (2000) for this purpose. Because the results in Table 3.20 are based on the load cylinder 

data and the load-displacement and load-web crippling deformation curves in 

Figures 3.27-3.28, 3.33-3.34, 3.40-3.41 and 3.46-3.47 are based on the gauge data, some 

minor differences in values may occur. The problem of having to transform the data in order 

to calculate the web crippling deformation was avoided in the four tests (tests IOF200-t15-

S1000-2 and -3 and IOF200R-t15-S1000-2 and -3) that were the last to be carried out by 

adding a second gauge on the top flange. 

 

 
 

Fig. 3.28 Displacement measurement gauge at bottom flange. 

 

The load-displacement curves of IOF-tests with a span of 1000 mm are compared with the 

corresponding ITF-tests on 200 mm high specimens with tnom = 1.5 mm in ANNEX D and 

ANNEX E for flat webs and longitudinally stiffened webs, respectively. It can be seen from 

the graphs that the ITF-curves showing the displacement of the load cylinder at the top flange 

are located between the IOF-curves for load cylinder displacement and IOF-curves for web 
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crippling deformation (= the difference between top and bottom flange displacements). The 

stiffness of the section subjected to ITF-loading thus appears to be slightly higher than when 

IOF-loading is applied, which is intuitively correct because of the influence of the bending 

moment. 
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Test series IOF200-t15-S600 

 

Table 3.21 Results of IOF-tests on 200 mm high unstiffened single webs 
with tnom = 1.5 mm and Lspan = 600 mm. 

 
Specimen code Fu  

[kN] 
Load displacement at Fu 

[mm] 
Web crippling deformation 

at Fu [mm] 
IOF200-t15-S600-1 16.09 3.42 2.44 
IOF200-t15-S600-2 17.52 3.52 2.52 
IOF200-t15-S600-3 17.43 3.42 2.22 
IOF200-t15-S600-4 17.53 3.35 2.52 
Mean 17.14 3.43 2.42 
Standard deviation 0.705 0.070 0.143 

 

 
Fig. 3.27a Load-displacement curves for IOF-tests on 200 mm high flat single webs 

with tnom = 1.5 mm and Lspan = 600 mm. 
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Fig. 3.27b Load-displacement curves for IOF-tests on 200 mm high flat single webs 
with tnom = 1.5 mm and Lspan = 600 mm, detailed view of initial phase. 

 
Fig. 3.28 Load-web crippling deformation curves for IOF-tests on 200 mm high flat single 

webs with tnom = 1.5 mm and Lspan = 600 mm.
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Fig. 3.29 Deformations in specimen IOF200-t15-S600-1 at load F = Fu,  

views from left and right side. 
 

  
Fig. 3.30 Deformations in specimen IOF200-t15-S600-1 at time when top flange 

displacement is equal to 10 mm, views from left and right side. 
 

  
Fig. 3.31 Deformations in specimen IOF200-t15-S600-1 at time when top flange 

displacement is equal to 20 mm, views from left and right side. 
  

  
Fig. 3.32 Deformations in specimen IOF200-t15-S600-1 at time when top flange 

displacement is equal to 30 mm, views from left and right side. 
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Test series IOF200R-t15-S600 

 

Table 3.22 Results of IOF-tests on 200 mm high longitudinally stiffened single webs 
with tnom = 1.5 mm and Lspan = 600 mm. 

 
Specimen code Fu  

[kN] 
Load displacement at Fu 

[mm] 
Web crippling deformation 

at Fu [mm] 
IOF200R-t15-S600-1 13.99 8.01 7.89 
IOF200R-t15-S600-2 13.93 8.01 6.23 
IOF200R-t15-S600-3 14.05 7.77 7.90 
Mean 13.99 7.93 7.34 
Standard deviation 0.060 0.138 0.963 

 
 

 
 

Fig. 3.33 Load-displacement curves for IOF-tests on 200 mm high longitudinally stiffened 
single webs with tnom = 1.5 mm and Lspan = 600 mm. 
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Fig. 3.34 Load-web crippling deformation curves for IOF-tests on 200 mm high 

longitudinally stiffened single webs with tnom = 1.5 mm and Lspan = 600 mm. 
 

  
Fig. 3.35 Deformations in specimen IOF200R-t15-S600-1 at load F = Fu,  

views from left and right side. 
 

  
Fig. 3.36 Deformations in specimen IOF200R-t15-S600-1 at time when top flange 

displacement is equal to 15 mm, views from left and right side. 
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Fig. 3.37 Deformations in specimen IOF200R-t15-S600-1 at time when top flange 

displacement is equal to 20 mm, views from left and right side. 
 

  
Fig. 3.38 Deformations in specimen IOF200R-t15-S600-1 at time when top flange 

displacement is equal to 25 mm, views from left and right side. 
 

 
Fig. 3.39 Deformations in specimen IOF200R-t15-S600-1 at time when top flange 

displacement is equal to 20 mm, axial view from end of beam. 
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Test series IOF200-t15-S1000 

 

Table 3.23 Results of IOF-tests on 200 mm high unstiffened single webs 
with tnom = 1.5 mm and Lspan = 1000 mm. 

 
Specimen code Fu  

[kN] 
Load displacement at Fu 

[mm] 
Web crippling deformation 

at Fu [mm] 
IOF200-t15-S1000-1 15.80 4.31 2.29 
IOF200-t15-S1000-2 16.06 4.34 2.48 
IOF200-t15-S1000-3 15.85 4.24 2.46 
Mean 15.91 4.30 2.41 
Standard deviation 0.138 0.050 0.104 

 

 
Fig. 3.40a Load-displacement curves for IOF-tests on 200 mm high flat single webs 

with tnom = 1.5 mm and Lspan = 1000 mm. 
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Fig. 3.40b Load-displacement curves for IOF-tests on 200 mm high flat single webs 
with tnom = 1.5 mm and Lspan = 1000 mm, detailed view of initial phase. 

 

Fig. 3.41 Load-web crippling deformation curves for IOF-tests on 200 mm high flat single 
webs with tnom = 1.5 mm and Lspan = 1000 mm. 
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Fig. 3.42 Deformations in specimen IOF200-t15-S1000-2 at load F = Fu, 

views from left and right side. 
 

  
Fig. 3.43 Deformations in specimen IOF200-t15-S1000-2 at time when top flange 

displacement is equal to 10 mm, views from left and right side. 
 

  
Fig. 3.44 Deformations in specimen IOF200-t15-S1000-2 at time when top flange 

displacement is equal to 20 mm, views from left and right side. 
 

  
Fig. 3.45 Deformations in specimen IOF200-t15-S1000-2 at time when top flange 

displacement is equal to 30 mm, views from left and right side. 
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Test series IOF-200R-t15-S1000 

 

Table 3.24 Results of IOF-tests on 200 mm high longitudinally stiffened single webs 
with tnom = 1.5 mm and Lspan = 1000 mm. 

 
Specimen code Fu  

[kN] 
Load displacement at Fu 

[mm] 
Web crippling deformation 

at Fu [mm] 
IOF200R-t15-S1000-1 12.03 9.22 6.56 
IOF200R-t15-S1000-2 12.39 7.76 6.05 
IOF200R-t15-S1000-3 12.27 8.03 5.15 
Mean 12.23 8.34 5.92 
Standard deviation 0.186 0.777 0.716 

 

 
Fig. 3.46 Load-displacement curves for IOF-tests on 200 mm high longitudinally stiffened 

single webs with tnom = 1.5 mm and Lspan = 1000 mm. 
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Fig. 3.47 Load-web crippling deformation curves for IOF-tests on 200 mm high 

longitudinally stiffened single webs with tnom = 1.5 mm and Lspan = 1000 mm. 
 
 

   
Fig. 3.48 Deformations in specimen IOF200R-t15-S1000-1 at load F = Fu, 

views from left side, beam end and right side. 
 

  
Fig. 3.49 Deformations in specimen IOF200R-t15-S1000-1 at time when top flange 

displacement is equal to 15 mm, views from left and right side. 
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Fig. 3.50 Deformations in specimen IOF200R-t15-S1000-1 at time when top flange 

displacement is equal to 20 mm, views from left and right side. 
 
 
 
 
 
 
 
 
 
 

Fig. 3.51 Deformations in specimen IOF200R-t15-S1000-1 at time when top flange 
displacement is equal to 30 mm, views from left side, beam end and right side. 
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3.5 IOF-tests on built-up sections 

 

3.5.1 Test arrangement 

 

The short-span bending tests carried out on built-up cassette sections were similar in 

arrangement to the IOF-tests on single webs. Due to the greater width of the test pieces, the 

tests were moved away from the Roell+Koerthaus testing machine to a separate hydraulic 

loading cylinder as shown in Figure 3.52. The loading beam was tied to the displacement 

cylinders at the sides to obtain forced displacement control. 

 

 
 

Fig. 3.52 General view of test set-up for S-IOF-tests on built-up specimens. 

 

The general test arrangement, support conditions and naming conventions for the webs are 

shown in Figure 3.53. A 45 mm thick piece of wood was cut to shape and placed tightly 

between the two sets of webs at the supports as shown in Figures 3.52 and 3.53. The webs 

were connected to the piece of wood using wood screws through drilled holes. A 35 mm wide 
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steel batten connected with screws to the piece of wood was placed between the bottom 

flanges and the 30 mm diameter steel tube at the supports. The adjacent webs were 

furthermore connected to one another using self-drilling screws at 250 mm intervals as shown 

in Figure 3.53. The top flange was connected with screws to the loading beam on both sides 

of the webs at 30 mm distances from the mid-line of the web. The lateral displacement of the 

specimen was thus prevented during the test, but the rollers allowed for free longitudinal 

displacement at the supports.  

 

The load was applied using displacement control at a speed of 2 mm/minute. The vertical 

displacements at top and bottom flange locations of both sets of webs were measured using 

four separate displacement gauges. The load value was recorded directly from the load 

cylinder. 

 

Fig. 3.53 General test set-up for S-IOF-tests. Lspan was set as 1000 mm. 
 

All the most important cross-sectional dimensions were measured as for the earlier tests as 

shown in Figures 3.1, 3.2 and 3.5. In addition, the total widths b1, b2 and b3 of the different 

parts of the top flange were measured. The vertical curvatures of the four webs were 

measured at mid-span using the sign rules shown in Figure 3.54. The measurements are given 

in ANNEX B. 
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Fig. 3.54 Additional measurements for built-up specimens. 
 
 
 
 
 
 
 



 89

3.5.2 Test results 

 

3.5.2.1 Test series S-IOF200-t15-S1000 

 

The results of test series S-IOF200-t15-S1000 on built-up specimens with flat web sections 

are summarized in Table 3.25, Figure 3.55 (average top and bottom flange displacement 

curves) and Figure 3.56 (average web crippling deformation curves). 

 

Table 3.25 Results of S-IOF-tests on 200 mm high built-up specimens with flat webs and  
tnom = 1.5 mm and Lspan = 1000 mm. 

 
Specimen code Fu  

[kN] 
Load displacement at Fu 

[mm] 
Web crippling deformation 

at Fu [mm] 
S-IOF200-t15-S1000-1 84.06 6.30 2.28 
S-IOF200-t15-S1000-2 77.83 7.34 3.43 
S-IOF200-t15-S1000-3 81.67 7.68 3.41 
Mean 81.19 7.11 3.04 
Standard deviation 3.143 0.719 0.658 

Fig. 3.55 Calculated average top and bottom flange displacement curves  
for test series S-IOF200-t15-S1000. 
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average, which is equal to 5.1 times the ultimate load reached in test series IOF200-t15-S1000 

on single flat webs (15.91 kN), although there were only 4 similar webs in the present test 

series. This shows that the adjacent webs do give support to each other and that the total 
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resistance of the built-up structure against concentrated loads is higher than the sum of the 

individual web resistances. The failure load calculated per web was thus increased by a factor 

kF = 5.1 / 4 = 1.28. This and similar factors kTF and kWC for top flange displacement and web 

crippling deformation, respectively, are calculated in Table 3.26. 

 

Table 3.26 Factors k for comparison of flat single webs with built-up structures. 

 S-IOF200-t15-S1000 IOF200-t15-S1000 Ratio k 
Ultimate load Fu per web 81.19 / 4 = 20.30 15.91 kF = 20.30 / 15.91 = 1.28 
Top flange displacement at Fu 7.11 4.30 kTF = 7.11 / 4.30 = 1.65 
Web crippling deformation at Fu 3.04 2.41 kWC = 3.04 / 2.41 = 1.26 
 

The top flange displacement corresponding to the ultimate load in the present test series 

S-IOF200-t15-S1000 was 7.11 mm, which is 1.65 times the corresponding value (4.30 mm) 

for test series IOF200-t15-S1000. Because this factor is higher than the relative increase of 

the ultimate load, it can be concluded there was relatively more flexibility per web in the 

built-up structure than in the single-web specimen. However, the web crippling deformation 

corresponding to the ultimate load was 3.04 mm for the built-up sections, which is only 1.26 

times the corresponding value (2.41 mm) for test series IOF200-t15-S1000. This factor is 

close to the relative increase of the ultimate load (factor 1.275), so the stiffness per web is 

about the same in both cases. 

Fig. 3.56 Calculated average web crippling deformation curves  
for test series S-IOF200-t15-S1000. 
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The deformation modes were generally quite similar to those observed in test series 

IOF200-t15-S1000. This is demonstrated in the photos under the sections on individual tests 

(see below). 

 

 

Test S-IOF200-t15-S1000-1 

 

Test S-IOF200-t15-S1000-1 was the first to be carried out in this test series. Some problems 

were experienced during this test concerning both the displacement measurements and the 

forced displacement control. When the test was first begun, the displacement gauges did not 

start measuring correctly and the applied load reached a value of about 49 kN before the test 

was interrupted. After the load was brought back down, a small residual displacement 

remained in the specimen due mostly to the closure of gaps and other tolerances present in the 

built-up specimen. No noticeable plastic deformations could be observed in the web or at the 

loading and support areas. When the test was restarted, the displacements were reset to zero as 

seen in Figure 3.57. However, it is likely that this unplanned preloading of the specimen had 

some influence on the final results especially regarding the displacement values. The ultimate 

load reached in the test, however, is close to the values obtained in the other two similar tests. 

It can be seen in Figures 3.55 and 3.56 that the stiffness of test specimen 

S-IOF200-t15-S1000-1 was a little higher before reaching the ultimate load than for the other 

specimens. 

 

Figure 3.57 shows the top and bottom flange displacement curves for the different webs and 

their calculated averages. Figure 3.58 shows the web crippling deformation curves and their 

average calculated on the basis of the measurements. It can be seen that the deformations in 

web1-2 were throughout larger than those in web3-4. This is mainly due to the failure of the 

loading beam to distribute the load evenly on both sets of webs. When web1-2 started to give 

in, the beam became inclined and practically started to rotate around the top flange 

intersection of web3-4. This is demonstrated by the large differences in deformations between 

the two sets of webs as seen in Figure 3.57. 

 

For the reasons explained above, the results of test S-IOF200-t15-S1000-1 should be 

considered to be suggestive at best. For the remaining five tests on built-up sections, the side 
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supports of the loading beam were made considerably stronger and the stability of the beam 

was secured. This can be observed in the symmetry of the displacement-load curves of the 

remaining tests. 

Fig. 3.57 Top and bottom flange displacement curves for test S-IOF200-t15-S1000-1. 

Fig. 3.58 Web crippling deformation curves for test S-IOF200-t15-S1000-1. 
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Test S-IOF200-t15-S1000-2 

 

Figure 3.59 shows the top and bottom flange displacement curves for the different webs and 

their calculated averages for test S-IOF200-t15-S1000-2. Figure 3.60 shows the web crippling 

deformation curves and their average calculated on the basis of the measurements. Figures 

3.61-3.63 show photos of the deformations during the test.  

Fig. 3.59 Top and bottom flange displacement curves for test S-IOF200-t15-S1000-2. 
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Fig. 3.60 Web crippling deformation curves for test S-IOF200-t15-S1000-2. 
 

(a)  (b)  

(c)  (d) 
 

Fig. 3.61 Deformations in test S-IOF200-t15-S1000-2 at load F = Fu:  
web1-2 (a), web3-4 (b), top flange at web1-2 (c), top flange at web3-4 (d). 
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Fig. 3.62 Deformations in web1-2 in test S-IOF200-t15-S1000-2 at top flange displacements  
d = 15 mm (left), d = 24 mm (centre) and d = 35 mm (right). 

 

   
 

Fig. 3.63 Deformations in top flange above web1-2 in test S-IOF200-t15-S1000-2 at top 
flange displacements d = 15 mm (left), d = 24 mm (centre) and d = 35 mm (right). 

 

The wide flange experienced some flange curling as can be seen in Figure 3.63. The 

maximum deflection of the flange in relation to the loading beam was about 20 mm when the 

displacement of the loading beam was d = 35 mm (photo on the right in Figure 3.63). This 

shows that having the adjacent webs connected to each other near the wide flange, as 

explained in Chapter 2, is not able to completely prevent flange curling from taking place, 

although it probably reduces it. 

 

 

Test S-IOF200-t15-S1000-3 

 

Figure 3.64 shows the top and bottom flange displacement curves for the different webs and 

their calculated averages for test S-IOF200-t15-S1000-3. Figure 3.65 shows the web crippling 

deformation curves and their average calculated on the basis of the measurements. The photos 

in Figures 3.61-3.63 are demonstrative of the deformations in test S-IOF200-t15-S1000-3 as 

well.  
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Fig. 3.64 Top and bottom flange displacement curves for test S-IOF200-t15-S1000-3. 
 

Fig. 3.65 Web crippling deformation curves for test S-IOF200-t15-S1000-3. 
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Test series S-IOF200R-t15-S1000 

 

The results of test series S-IOF200R-t15-S1000 on built-up specimens with longitudinally 

stiffened web sections are summarized in Table 3.27, Figure 3.66 (average top and bottom 

flange displacements curves) and Figure 3.67 (average web crippling deformation curves). 

 

Table 3.27 Results of S-IOF-tests on 200 mm high built-up specimens with longitudinally 
stiffened webs, tnom = 1.5 mm and Lspan = 1000 mm. 

 
Specimen code Fu  

[kN] 
Load displacement at Fu 

[mm] 
Web crippling deformation 

at Fu [mm] 
S-IOF200R-t15-S1000-1 55.68 9.11 5.98 
S-IOF200R-t15-S1000-2 54.20 9.52 6.62 
S-IOF200R-t15-S1000-3 54.97 10.00 6.71 
Mean 54.95 9.54 6.44 
Standard deviation 0.740 0.445 0.398 

 
 

Fig. 3.66 Calculated average top and bottom flange displacement curves  
for test series S-IOF200R-t15-S1000. 

 

The ultimate load reached in the present test series S-IOF200R-t15-S1000 was 54.95 kN on 

average, which is equal to 4.5 times the ultimate load reached in test series 

IOF200R-t15-S1000 on single longitudinally stiffened webs (12.23 kN). This result is similar 

to that obtained with built-up specimens with flat webs and shows that some extra strength is 

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

Displacement [mm]

A
pp

lie
d 

lo
ad

 [k
N

]

S-IOF200R-t15-S1000-1 TF average

S-IOF200R-t15-S1000-1 BF average

S-IOF200R-t15-S1000-2 TF average

S-IOF200R-t15-S1000-2 BF average

S-IOF200R-t15-S1000-3 TF average

S-IOF200R-t15-S1000-3 BF average

Top flange 
displacement 
curves (TF)



 98

provided by the interaction and interconnection of adjacent cassette profiles. The increase 

factor per web is smaller here than it was for flat webs, but it is still equal to 

kF = 4.5 / 4 = 1.12, i.e. the ultimate load per web is increased by an average of 12 % per web 

in the built-up structure. This and similar factors kTF and kWC for top flange displacement and 

web crippling deformation, respectively, are calculated in Table 3.28. 

 

Table 3.28 Factors k for comparison of longitudinally stiffened single webs  
with built-up structures. 

 
 S-IOF200R-t15-S1000 IOF200R-t15-S1000 Ratio k 
Ultimate load Fu per web 54.95 / 4 = 13.74 12.23 kF = 13.74 / 12.23 = 1.12 
Top flange displacement at Fu 9.54 8.34 kTF = 9.54 / 8.34 = 1.14 
Web crippling deformation at Fu 6.44 5.92 kWC = 6.44 / 5.92 = 1.09 
 

The top flange displacement corresponding to the ultimate load in the present test series 

S-IOF200R-t15-S1000 was 1.14 times and the web crippling deformation 1.09 times the 

corresponding values for test series IOF200R-t15-S1000 with single webs. It can be 

concluded that the flexibility of the top flange and the stiffness per section are about the same 

as in the single web tests, because the values of kF, kTF and kWC are close to each other. 

 

The deformation modes were again generally quite similar to those observed in test series 

IOF200R-t15-S1000. This is demonstrated in the photos under the sections on individual tests 

(see below). 
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Fig. 3.67 Calculated average web crippling deformation curves  
for test series S-IOF200R-t15-S1000. 

 

 

Test S-IOF200R-t15-S1000-1 

 

Figure 3.68 shows the top and bottom flange displacement curves for the different webs and 

their calculated averages for test S-IOF200R-t15-S1000-1. Figure 3.69 shows the web 

crippling deformation curves and their average calculated on the basis of the measurements. 

Figures 3.72-3.73 show photos of the deformations of test specimen S-IOF200R-t15-S1000-2 

during the test. These deformations are demonstrative of the deformations in specimen 

S-IOF200R-t15-S1000-1 as well. 
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Fig. 3.68 Top and bottom flange displacement curves for test S-IOF200R-t15-S1000-1. 

 

Fig. 3.69 Web crippling deformation curves for test S-IOF200R-t15-S1000-1. 
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Test S-IOF200R-t15-S1000-2 

 

Figure 3.70 shows the top and bottom flange displacement curves for the different webs and 

their calculated averages for test S-IOF200R-t15-S1000-2. Figure 3.71 shows the web 

crippling deformation curves and their average calculated on the basis of the measurements. 

Figures 3.72-3.73 show photos of the deformations during the test. 

Fig. 3.70 Top and bottom flange displacement curves for test S-IOF200R-t15-S1000-2. 
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Fig. 3.71 Web crippling deformation curves for test S-IOF200R-t15-S1000-2. 
 

  
 

Fig. 3.72 Deformations in web1-2 in test S-IOF200-t15-S1000-2 at load  F = Fu. 
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(a)  (b)  

(c)  (d) 
 

Fig. 3.73 Deformations in test S-IOF200R-t15-S1000-2 at top flange displacement 
d = 25 mm: web1-2 (a), web3-4 (b), top flange at web1-2 (c), top flange at web3-4 (d). 

 
 

Test S-IOF200R-t15-S1000-3 

 

Figure 3.74 shows the top and bottom flange displacement curves for the different webs and 

their calculated averages for test S-IOF200R-t15-S1000-3. Figure 3.75 shows the web 

crippling deformation curves and their average calculated on the basis of the measurements. 

Figures 3.72-3.73 show photos of the deformations of test specimen S-IOF200R-t15-S1000-2 

during the test. These deformations are demonstrative of the deformations in specimen 

S-IOF200R-t15-S1000-3 as well. 



 104

Fig. 3.74 Top and bottom flange displacement curves for test S-IOF200R-t15-S1000-3. 

Fig. 3.75 Web crippling deformation curves for test S-IOF200R-t15-S1000-3. 
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3.6 Comparison of test results and nominal design values 

 

The equations given in the European (ENV 1993-1-3:1996), American (AISI (1996)), 

Australian (AS/NZS 4600 (1996)) and Finnish (RakMK B6 (1989)) design codes were used 

to calculate comparison values for the test results in the cases of ITF- and IOF-tests on 

specimens with single flat webs. The values from tests with longitudinally stiffened webs 

cannot be directly compared with the design codes, because the codes do not consider the type 

of stiffeners used in these sections.  

 

For ITF-tests, the design formulae used for the comparisons were the following: 

- ENV 1993-1-3:1996: - Eq. (2.9) for cross-sections single webs, 

    - Eq. (2.13) for the case with two or more webs (Category 1), 

- AISI (1996):   - Eq. (2.17), 

- AS/NZS 4600 (1996): - Eq. (2.19). 

 

As mentioned in Chapter 2, the National Building code of Finland (RakMK B6 (1989)) does 

not consider ITF-loading. The partial safety factors were equal to unity in all calculations. 

When interpreting the results, it should be kept in mind that the design safety factor 

recommended by ENV 1993-1-3:1996 for this case is γM1 = 1.00, while AISI (1996) and 

AS/NZS 4600 (1996) both recommend φw = 0.75 for single unreinforced webs and 

RakMK B6 (1989) gives a factor γm = 1.0. 

 

For ENV 1993-1-3:1996 design values corresponding to ITF-loading were calculated for both 

nominal and measured cross-sections and material properties. The values for the tested 

nominal cross-sections with single flat webs are given in Table 3.29 along with the 

corresponding mean ultimate load from tests and the ratios between the test value and the 

corresponding design value. 

 

The values given by Equations (2.9) and (2.13) for the tested actual cross-sections with single 

flat webs and measured values of yield strength are given in Table 3.30 along with the 

corresponding mean ultimate load from tests and the ratios between the test value and the 

corresponding design value. 
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Table 3.29 Comparison of design values for the tested nominal cross-sections 
 according to ENV 1993-1-3:1996 and test results. 

 
 Mean 

ultimate load 
from tests 

[kN] 

Value from  
Eq. (2.9) 

[kN] 

Ratio between 
test load and 
value from 
 Eq. (2.9) 

Value from  
Eq. (2.13), Cat. 1, 
α=0.057, la=10 mm 

[kN] 

Ratio between 
test load and 
value from  
Eq .(2.13) 

ITF100-t10   7.45 4.27 1.74 1.23 6.06 
ITF150-t10   6.34 3.33 1.90 1.23 5.15 
ITF150-t15 16.56 10.19 1.63 2.70 6.13 
ITF200-t10   6.51 2.40 2.71 1.23 5.29 
ITF200-t15 16.24 8.74 1.86 2.70 6.01 

 

Table 3.30 Comparison of design values for the tested actual cross-sections 
according to ENV 1993-1-3:1996 and test results. 

 
 Mean 

ultimate load 
from tests 

[kN] 

Value from  
Eq. (2.9) 

[kN] 

Ratio between 
test load and 
value from  
Eq. (2.9) 

Value from  
Eq. (2.13), Cat. 1, 
α=0.057, la=10 mm 

[kN] 

Ratio between 
test load and 
value from  
Eq. (2.13) 

ITF100-t10   7.45 4.72 1.58 1.24 6.01 
ITF150-t10   6.34 3.39 1.87 1.26 5.03 
ITF150-t15 16.56 10.97 1.51 2.78 5.96 
ITF200-t10   6.51 2.52 2.58 1.39 4.68 
ITF200-t15 16.24 9.29 1.75 2.84 5.72 

 

It can be seen from Tables 3.29 and 3.30 that the use of measured cross-section properties 

gives slightly higher resistance values than when nominal values are used. This is mostly 

influenced by the yield strength of the actual cross-section, which is normally higher than the 

nominal value. 

 

Table 3.31 Comparison of values from Eq. (2.13) when value of la is varied. 
 

 Mean ultimate 
 load from tests 

[kN] 

Value from  
Eq. (2.13), Cat. 1, 
α=0.057, la=10 mm 

[kN] 

Value from  
Eq. (2.13), Cat. 1, 

α=0.057, la=100 mm 
[kN] 

ITF100-t10   7.45 1.23 2.50 
ITF150-t10   6.34 1.23 2.50 
ITF150-t15 16.56 2.70 5.18 
ITF200-t10   6.51 1.23 2.50 
ITF200-t15 16.24 2.70 5.18 
 

Because the values from Eq. (2.13) calculated with α = 0.057 and effective bearing length 

la = 10 mm, as prescribed in ENV 1993-1-3:1996, seemed very conservative (see Tables 3.29 

and 3.30), the values were calculated also for la = 100 mm, which is equal to the actual 

bearing length ss. The calculated capacity values are approximately doubled, but they are still 

only about one third of the corresponding test result. It could be concluded that for the case of 
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cassettes under ITF-loading, the current rule given in ENV 1993-1-3:1996 for cross-sections 

with two or more unstiffened webs is very conservative and the use of the actual bearing 

length ss instead of the effective bearing length la = 10 mm should be considered in order to 

avoid extreme conservatism in design. On the other hand, the results obtained by using 

Eq. (2.9) for cross-sections with single webs gives results that are also quite conservative but 

not as low as for Eq. (2.13). Therefore the use of Eq. (2.9) could be recommended in this case. 

 

For AISI (1996) and AS/NZS 4600 (1996), design values corresponding to ITF-loading were 

calculated only for nominal cross-sections and material properties. The values for the tested 

nominal cross-sections with single flat webs are given in Table 3.32 along with the 

corresponding mean ultimate load from tests and the ratios between the test value and the 

corresponding design value. 

 

Table 3.32 Comparison of design values for the tested nominal cross-sections 
according to AISI (1996), AS/NZS 4600 (1996) and test results. 

 
 Tests AISI (1996) AS/NZS 4600 (1996) 
 Mean 

ultimate load 
from tests 

[kN] 

Value from  
Eq. (2.17) 

[kN] 

Ratio between 
test load and 
value from  
Eq. (2.17) 

Value from  
Eq. (2.19) 

[kN] 

Ratio between 
test load and 
value from  
Eq. (2.19) 

ITF100-t10   7.45 4.85 1.54 4.84 1.54 
ITF150-t10   6.34 3.81 1.66 3.80 1.67 
ITF150-t15 16.56 11.48 1.44 11.46 1.45 
ITF200-t10   6.51 2.76 2.36 2.77 2.35 
ITF200-t15 16.24 9.86 1.65 9.84 1.65 

 

For test series IOF200-t15-S1000, the mean failure load obtained in tests was Ftest = 15.91 kN 

and the design values were calculated using all four codes according to Table 3.33. The 

values for RakMK B6 (1989) were calculated for both k3 = 0.8 and k3 = 1.0. As explained in 

Chapter 2, the value k3 = 0.8 is meant for cassettes in the code, but on the basis of Table 3.33, 

also the value k3 = 1.0 gives a sufficiently conservative result. 
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Table 3.33 Comparison of design codes in the case of tests IOF200-t15-S1000. 

Design code Equation Design load Fd [kN]  Ftest / Fd 

2.12 11.43 1.39 
ENV 1993-1-3:1996 

2.13 with α = 0.115 10.45 1.52 

AISI (1996) 2.18 12.75 1.25 

AS/NZS 4600 (1996) 2.20 12.52 1.27 

2.21 with k3 = 0.8 9.06 1.76 
RakMK B6 (1989) 

2.21 with k3 = 1.0 11.32 1.41 

 

The AISI (1996) and AS/NZS 4600 (1996) design codes give slightly higher resistance values 

for the cases of ITF-tests as shown in Tables 3.29 and 3.32 than ENV 1993-1-3:1996 

(Eq. (2.9)). The same is true for the IOF-test considered in Table 3.33, while the National 

Building Code of Finland RakMK B6 (1989) gives quite a conservative value when k3 = 0.8 is 

used. When k3 = 1.0 is used, the value given by RakMK B6 (1989) is comparable to the 

ENV 1993-1-3:1996 values. 

 

It can be seen from the comparison results that all examined design codes leave a considerable 

margin of safety between the design values and the test results. This is understandable, 

because the actual form and imperfections of the cross-section and the lateral and longitudinal 

support conditions cannot always be fully guaranteed. Also, the limited amount of tests does 

not allow statistical comparisons to be made during this study. However, it can be noted that 

the current design methods for the web crippling of cross-sections with flat webs are 

conservative, as they should be. As shown above, ITF-results calculated using Eq. (2.13) are 

considerably conservative. 
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4. NUMERICAL ANALYSES  
 

4.1 General 

 

The finite element modelling carried out during this research has been done on a multi-

purpose commercially available finite element software package ABAQUS 

Version 6.2 (2001), Version 6.3 (2002) and Version 6.4 (2003). The programme module 

ABAQUS/Standard was used for static analyses. However, when the number of degrees of 

freedom was increased, the model became larger and the contact surface areas more complex, 

and it was necessary to turn to ABAQUS/Explicit for quasi-static dynamic analyses. With 

ABAQUS/Explicit, it is possible to get accurate results also for highly non-linear and 

computationally expensive contact analyses. The software's own pre-processor 

ABAQUS/CAE and postprocessor ABAQUS/Viewer were used throughout. Some keyword 

cards needed in the analyses are not supported by ABAQUS/CAE and therefore the analysis 

input file had to be edited using a text editor or CAE's own input data editor. During the 

research, ABAQUS Versions 6.3 and 6.4 became available and these were used for the 

modelling described in Section 4.4 and Chapter 5. 

 

The analyses were run using the super computers of the Centre for Scientific Computing 

(CSC) in Otaniemi, Finland. The computers used were SGI Origin 2000 (cedar.csc.fi) with 

128 MIPS R12000 processors and 160 GB total memory and the IBM pSeries 690 with 

512 GB total memory. 

 

Section 4.2 presents the creation of reference finite element models using experimental test 

results found in Hofmeyer (2000). The test results were used to verify the correct behaviour of 

finite element models. After this initial modelling period was finished, the findings were used 

for the predictive modelling of the then upcoming ITF-tests on single web cassette sections. 

Some of the general results of this period are given in Section 4.3 where they are also 

compared to the corresponding test results. Section 4.4 presents the modelling done on some 

of the tested cross-sections after the complete test series described in Chapter 3 was finished. 

These models were used to study the web crippling behaviour of cold-formed steel cassettes 

further and to carry out a parametric study on the effects of variations in the cross-section and 

the support and loading conditions. The results of this last part are given in Chapter 5. 
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4.2 FE-analyses of Hofmeyer experiments 

 

4.2.1 Hofmeyer experiment 25 (yield arc mode) 

 

Cross-section information 

 

As mentioned in Chapter 2.2, Hofmeyer (2000) carried out a series of tests on cold-formed 

sheet sections of the type shown in Figure 4.1. Hofmeyer's test number 25 was chosen as the 

first to be modelled in the present work because it is one of the tests best described in 

Hofmeyer's thesis and the FE-analysis carried out by Hofmeyer using ANSYS was also 

discussed in more detail. The relevant cross-sectional variables as shown in Figure 4.1 for test 

specimen number 25 were as shown in Table 4.1. The length of the load bearing plate used in 

the test was 150 mm. 

 

Table 4.1 Measured and nominal values of cross-section variables for test number 25 
(Hofmeyer 2000). 

 
 Symbol Measured value  

[mm] 
Value used for ABAQUS/Standard 

analysis [mm] 
Bottom flange width bbf 40.5 40 
Web width bw 100.1 100 
Top flange width btf 136.6 140 
Corner radius rbf 2.6 2.6 
Steel plate thickness t 0.680 0.680 
Angle between web and flange θw 49.9 50 
Specimen length L 1201.0 1200.0 
 

Fig. 4.1 Sheet cross-section used in Hofmeyer's (2000) tests. 
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Material properties 

 

The material properties used for the analyses were taken as given in Hofmeyer (2000). The 

stress-strain values are shown in Table 4.2. The real strain values given in the source data had 

to be transformed into real plastic strain values for the ABAQUS/Standard analyses by 

subtracting the purely elastic real total strain values 0.00169 at first yield from all subsequent 

true total strain values. The modulus of elasticity used was E = 210000 N/mm2 and Poisson's 

ratio µ = 0.3. 

 
Table 4.2 Real stress-strain values used in the analyses (Hofmeyer 2000). 

 
Real total strain εr Real plastic strain εr.p Real stress σr [N/mm2] 

0.00169 0.00000 353.9 
0.03106 0.02937 362.3 
0.05022 0.04853 404.1 
0.07511 0.07342 441.9 
0.10120 0.09951 468.0 
0.15014 0.14845 504.2 
0.20008 0.19839 532.9 
0.25037 0.24868 554.7 

 

 

Test arrangement 

 

The test arrangement used by Hofmeyer is shown in Figure 4.2. The test was a three-point 

bending test where the loading jack was under the sheeting and the loading was applied 

upwards. This was done to make it easier to make castings of the inner cross-section during 

the test. Strips were used at regular and sufficient intervals in order to prevent the spreading 

of the webs.  

 
Fig. 4.2 Arrangement for tests by Hofmeyer (2000). 
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The web crippling deformation was measured as the difference between total mid-span 

deflection of the top of the sheeting and the movement of the hydraulic loading jack. The load 

value was measured by recording the support reactions. 

 

 

Boundary and symmetry conditions 

 

Because of the symmetry of both the test set-up and the expected failure mode, it was 

sufficient to model only one quarter of the sheet cross-section beam so that symmetry 

conditions were applied at mid-span and at the middle of the cross-section shown in 

Figure 4.3. Naturally, the sheeting is assumed to be continuous in the lateral direction and 

therefore lateral displacements were prevented at the sides of the section and rotational 

symmetry conditions applied as explained in the following. 

 

 
Fig. 4.3 Boundary and symmetry conditions for model hofm25a.inp. 
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Figure 4.3 shows the support and symmetry boundary conditions used in model hofm25a.inp. 

At the support, it was actually adequate to prescribe boundary conditions for a single point 

only, which is named the 'Reference point' in the figure. At this point, vertical (y) and lateral 

(x) displacements and rotations about the vertical (y) and longitudinal (z) axes were restrained. 

The vertical (y) displacement of the other points at the end of the top flange were tied to this 

reference point using the *EQUATION keyword card available in ABAQUS/Standard. The 

points of the web at the support line were defined as a RIGID BODY with the same 

'Reference point' as above. This means that their motion is completely defined by the 

movement of the 'Reference point', i.e. they can only rotate about the 'Reference point'. This 

was done in order to prevent the failure of the cross-section at the support area instead of the 

mid-span area, where the concentrated load is applied. In order to model the actual support 

conditions of the test set-up as closely as possible, the hinged support strip seen in Figure 4.2 

was modelled by tying the rotations about the lateral (x) axis to be the same as the rotation of 

the 'Reference point'. These support conditions seem relatively complicated, but were 

necessary, because if only a simple vertical support condition were applied at the end of the 

profile, strong stress and strain concentration would appear at the support area and this would 

have an affect on the overall behaviour of the beam. 

 

The continuity of the sheeting in the lateral (x) direction was modelled by setting the 

lateral (x) displacements and rotations about the vertical (y) and longitudinal (z) axes equal to 

zero along the outer edges of both flanges. Similarly, in order to model the continuity of the 

sheeting at midspan, the longitudinal (z) displacements and rotations about the lateral (x) and 

vertical (z) axes were restrained at all the points of the cross-section. 

 

The loading was applied using a separate loading block with a reference point at one corner of 

the block. All other degrees of freedom except the vertical (y) displacement were restrained at 

the reference point. Contact surfaces were modelled at the flanges of the sheeting and the 

loading block in order to bring the loading onto the structure in a realistic manner. 
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Mesh 

 

The modelled beam was divided longitudinally in three parts as shown in Figure 4.4. The 

adjacent edges of the parts were then tied together using *TIE-keywords so that the geometry 

performs exactly as if it were made of a single piece. This was done in order to give more 

freedom to the mesh modelling and allow variations in mesh density between different areas 

of the beam. In this way, simple, regular and undistorted square shell elements could be used 

in all parts of the beam, also at areas of changing mesh density. The length of the end part 

where the web crippling deformation is expected to happen is 120 mm, the length of the 

middle part is 340 mm and the length of the other end part at the support is 140 mm. 

 

 
Fig. 4.4 Mesh design for model hofm25a.inp. 

 

All shell elements used for the sheeting were of type S4R, which is a linear four-node 

general-purpose shell element using reduced integration and allowing for finite (large) strains 

and changes in thickness. In the web and flanges, the size of the elements was 3 mm × 3 mm 

in the part where the loading was applied and about 10 mm × 10 mm elsewhere. Four 

elements were used at the rounded corners. A single element is not sufficient to model the 

corner area adequately, as shown in Figure 4.5. The loading block was made up of 



 115

3 mm × 3 mm R3D4 rigid elements. The total number of nodes in the model was 11575 and 

the total number of elements 7614. 

 
Fig. 4.5 Influence of mesh refinement in corner area. 

 

 

 

Results 

 

The load-deflection curve for the finite element analysis performed using ABAQUS/Standard 

is shown in Figure 4.6 together with the test results (Hofmeyer 2000). As can be seen, the 

finite element model gives fairly good results in comparison with the test situation. The initial 

stiffness of the cross-section is higher in the model than in the test, which can be partly 

explained by the rigid web design at the support and the normal initial imperfections 

occurring in practice. 
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Fig. 4.6 Load-deflection curves for test specimen hofm25. 
 

The test and analysis values for the ultimate load Fu, web crippling deformation ∆hw at Fu and 

beam deflection w at Fu are given in Table 4.3. The ultimate load given by the 

ABAQUS/Standard analysis is 2.6 % higher than the test value, the deflection is 15 % smaller 

and the web crippling deformation is 37 % smaller than measured in the test. 

 

Table 4.3 Ultimate loads and deformation values from test and FE-simulations. 
 
 Test hofm25 ABAQUS analysis 

results 
ANSYS analysis results 

(Hofmeyer 2000) 
Fu [N] 3773 3870 3743 
∆hw [mm] 0.31 0.195 0.23 
w [mm] 4.28 3.65 3.50 

 

The yield line formation at the surface of the shell elements obtained from the 

ABAQUS/Standard analysis is shown in Figure 4.7. When the patterns are compared to those 

obtained by Hofmeyer (2000) from the corresponding ANSYS analysis (Figure 4.8), it can be 

seen that the results are very similar to each other. If the yield line formation from the 

ABAQUS/Standard analysis were drawn at the mid-surface of the shell elements, the patterns 

would not be as obvious as they are in Figure 4.7. This is due to the fact that the yielding 

starts from the shell surfaces. 
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Fig. 4.7 Plasticity after ultimate load for ABAQUS model hofm25a.inp  
(step 2, increment 37, total deflection 10.5 mm), top view. 

 
 

 
 

Fig. 4.8 Plasticity after ultimate load for ANSYS model of test hofm25, isometric view 
(Hofmeyer 2000). 

 



 118

Variation of model 

 

After the above analyses had already been completed, an attempt was made to simplify the 

boundary conditions at the support and to get an even more realistic model of the tested beam. 

The model was changed so that the beam was extended 150 mm beyond the actual support 

line, as shown in Figure 4.2 of the actual test set-up. This permitted the support boundary 

conditions to be applied only to the nodes at the "support line" in the top flange. The 

rotational boundary conditions describing the influence of the "support plate" and the rigid 

body condition of the web at the support could be deleted. This simplification increased the 

stiffness of the beam cross-section at the support and rationalised the model.  

 

A similar analysis to the one described above was run on this new model named 

hofm25a_extsup.inp. The load-displacement curve given in Figure 4.9 shows that the new 

curve runs closer to the test curve when compared to the previous analysis curve hofm25a.inp. 

However, the value of the ultimate load is not influenced by the change. 

 

Fig. 4.9 Load-deflection curves for test hofm25. 
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analysis. However, the rigid loading block was removed and replaced by a pressure load in 

the bottom flange covering the same area as the load block. The lowest eigenmode thus 

obtained was then used as the basis for initial imperfections in the profile. These initial 

imperfections, as shown in Figure 4.10, may not be the most common forms obtained during 

the manufacturing process, but they nevertheless make the otherwise ideal cross-section more 

realistic by introducing local node displacements along the beam. It should be noted that the 

deformation scale factor in Figure 4.10 is set so that the maximum nodal displacement is 

equal to 10 mm, while the length of the model is 600 mm. This means that the deformations 

are highly exaggerated in the Figure. 

 

 
Fig. 4.10 Buckling mode used as basis for initial imperfections for analyses of test hofm25.  

 

The buckling mode was scaled so that the largest nodal displacement (at the corner of the top 

flange) was equal to 1.0 mm or 0.5 mm in models hofm25a_extsup_imp_1p0_b.inp and 

hofm25a_extsup_imp_0p5_b.inp, respectively. As can be seen from the curves in Figure 4.9, 

the smaller magnitude of imperfection has a negligible effect on the behaviour of the profile, 

but the larger initial imperfection reduces the ultimate load to 3715 N, which is 1.5 % lower 

than the test value. 
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The measured web crippling deformation is shown in Figure 4.11 with two 

ABAQUS/Standard analysis results. The results are qualitatively satisfactory, but the linearity 

of the web crippling deformation in the test is not accurately repeated in the analyses. The 

maximum web crippling deformation is reached at approximately the same time in the test 

and the analyses, but the magnitude of the deformation is smaller in the analyses. This is not 

considered to be a serious defect of the model, because the web crippling deformation is very 

sensitive to imperfections in the model. 

 

It can be concluded that the created ABAQUS/Standard model gives a good description of the 

behaviour of the tested beam hofm25, and especially of the failure load value. 

Fig. 4.11 Web crippling deformation for the yield arc mode. 
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4.2.2 Hofmeyer experiment 61 (yield eye mode) 

 

Experiment information 

 

The second experiment used in the development of FE-models was test number 61 carried out 

by Hofmeyer (2000). The cross-section was basically similar to that of test specimen 25 

above, but some cross-sectional values varied as given in Table 4.4. The failure mode 

observed in the test was the unsymmetrical yield eye mode. The ultimate load observed in the 

test was 1614 N. 

 

Table 4.4 Measured and nominal values of cross-section variables for test number 61 
(Hofmeyer 2000). 

 
 Symbol Measured value  

[mm] 
Value used for ABAQUS/Standard 

analysis [mm] 
Bottom flange width bbf 39.0 39.0 
Web width bw 100.5 100.5 
Top flange width btf 141.0 141.0 
Corner radius rbf 5.8 5.8 
Steel plate thickness t 0.680 0.680 
Angle between web and flange θw 44.2 44.2 
Specimen length L 2400.0 2400.0 

 

The material properties were the same as for the previous model, as given in Table 4.2. The 

test set-up was also fundamentally the same as for test 25 above. The main structural 

difference between the two tests is that the span is twice as long in test 61 as in test 25 and the 

length of the load bearing plate was only 100 mm in test 61, while in test 25 it was 150 mm. 

This makes the ratio between the length of the load bearing plate and the length of the beam 

considerably smaller than in test 25.  

 

 

Creation of finite element models 

 

The same approach that was used above for modelling test number 25 was at first adopted 

also for test number 61. However, it was clear from the beginning that a quarter model would 

not be adequate in this case due to the unsymmetrical failure mode observed in the test. At 

least a half model would therefore be necessary. In order to have a more complete structure, 

however, it was decided that the complete basic cross-section of the sheeting should be 
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modelled, as shown thematically in Figure 4.1. This, together with the increased length of the 

beam in comparison to test 25 and the relatively dense mesh, meant that the number of 

degrees of freedom (DOF's) was radically increased. The total number of nodes in the model 

was 36835 and the number of elements 26448. 

 

The high number of DOF's made the calculation too demanding for the static analysis 

procedure in ABAQUS/Standard and lead to unsurpassable convergence difficulties. The 

mesh had to be made very scarce in order for the analysis to work, but this made the whole 

profile far too stiff and analysis results unrealistic. Therefore a switch to using 

ABAQUS/Explicit was made. ABAQUS/Explicit is a general-purpose analysis module that 

uses an explicit dynamic finite element formulation. It is mostly used for the modelling of 

dynamic events with a short duration, but is also very efficient for analyses including 

changing contact problems and considerable nonlinearities. 

 

The idea, then, was to carry out a quasi-static analysis using a dynamic analysis procedure. In 

order to accomplish this, the load introduction period has to be long enough for the inertia 

effects of the structure to be negligible.  

 

The steel density needed in the dynamic analysis was set equal to the usual value 7850 kg/m3. 

The load bearing plate was moved against the profile using displacement control with an end 

displacement equal to 20 mm. The displacement is applied using the AMPLITUDE - option 

under the *BOUNDARY keyword. The displacement amplitude is thus applied using the 

SMOOTH STEP amplitude definition option, which allows the displacement to be ramped up 

smoothly from the initial zero value to the end value. 

 

Although the test arrangement as shown in Figure 4.2 is basically a simply supported three-

point bending test, the support arrangement can be assumed to provide also axial restraints of 

non-negligible magnitude. The rotation of the sheeting at support seems to be free, but the 

axial movement does not. This conclusion is strongly supported also by the results of the 

finite element analyses, as given below, where the stiffness of an axially unrestrained beam is 

much smaller than that observed in the test. However, if the axial restrain condition is applied 

at the supports, the stiffness corresponds quite closely to the test result. 
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A number of analyses were run using different average element sizes, different load 

application periods and different support boundary conditions. Figure 4.12 shows results for 

ABAQUS/Explicit - analyses using an average element size equal to 10 mm (referring to the 

length of the edge of a rectangular shell element). The curves' names show the element size 

and the load application period ("0p1sek" stands for 0.1 seconds, "1p0sek" stands for 

1.0 seconds). In the first two (basic) models, the axial displacement of the beam was not 

restrained anywhere in the model. This means that as the loading presses the beam down at 

midspan, the supports can translate towards the loading area. As can be seen, the analyses 

give a very good estimate of the ultimate load for this model, but the stiffness is considerably 

lower than observed in the test. When the axial displacement of just one of the supports is 

prevented (models tagged with "_onesup_u3"), the results are practically the same. However, 

when the axial displacement of both supports is restrained (models tagged with "_sup_u3") 

the stiffness is very close to that observed in the test. For some reason, though, the ultimate 

load is then reached a little earlier. For instance, the ultimate load for curve 

"u2_rf2_10mm_1p0sek_sup_u3" was 1517 N, i.e. 6 % less than that observed in the test. This 

is still a very good estimate. 

 

Fig. 4.12 ABAQUS/Explicit results for test hofm61 using an average element size  
equal to 10 mm. 
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Fig. 4.13 ABAQUS/Explicit results for test hofm61 using different average element sizes, 

load application times and support boundary conditions. 
 

Figure 4.13 shows another comparison among different ABAQUS/Explicit analysis models. 

These curves show the effects of varying the mesh density for models with axially 

unrestrained or axially restrained support boundary conditions. It can be seen that changing 

the mesh density does not influence the initial stiffness of the models, but that the ultimate 

load is slightly decreased when the mesh is made denser. For instance, the ultimate load for 

the model using an average element size equal to 5 mm is 7 % smaller than that for the model 

using an average element size equal to 10 mm and 8.8 % smaller than the test result for the 

case where all axial displacements are free. 

 

The web crippling deformations of different models are compared to the test curve in Figure 

4.14. The form of the web crippling deformation curve obtained from test hofm61 is rather 

interesting in that after the ultimate load has been reached, the web crippling deformation 

starts to decrease strongly and at the end of the test, the value of the deformation changes sign 

and becomes negative, i.e. the height of the profile actually seems to increase. This effect is 

due to the measurement technique used in the test and the unsymmetrical deformation form, 

as shown in Figure 4.15. In the finite element models, the web crippling deformation was in 
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fact measured in the same way ("a-b" in Figure 4.15), but the failure deformation mode was 

symmetric, so the aforementioned effect is not seen. 

 
Fig. 4.14 Web crippling deformation from ABAQUS/Explicit results for test hofm61 using 

different average element sizes, load application times and support boundary conditions. 
 

 
 
Fig. 4.15 Measured vs. real web crippling deformation for the yield eye post-failure mode of 

test hofm61 (Hofmeyer 2000). 
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measured in the test, the curves are all qualitatively fairly similar up to the ultimate load and 

the changes in stiffness are modelled rather accurately. The existence or non-existence of the 

axial boundary condition at the supports does not seem to have an important influence. The 

small fluctuations at the start of the analyses are most likely due to the dynamic damping 

effects in the analysis procedure. It should be noticed that the scale of the graph is quite large 

and that the actual magnitude of the fluctuations is in fact about 0.03 mm. 

 

It is the author's strong belief that the unsymmetrical post-failure deformation mode, i.e. the 

yield-eye failure mode, is a consequence of initial imperfections in the actual structures. Its 

occurrence is clearly more likely in longer beam elements with a relatively narrow 

concentrated load area than with shorter beams with a relatively large loading area. If the 

ideal structure and situation are considered, there can be found nothing unsymmetrical in 

either. The structure itself, the loading conditions, and the support conditions are all 

symmetrical about a plane drawn at the midspan of the beam. The material of the beam is 

homogenous throughout. Therefore an unsymmetrical failure mode should only occur in case 

of small initial non-symmetries in the actual structures. These could be modelled in ABAQUS 

using for instance different buckling modes as bases for imperfection shapes, but the results 

obtained using the ideal model are very consistent with the test results, and therefore the 

inclusion of imperfection modes was deemed unnecessary. It is assumed that their influence 

on the stiffness and ultimate load behaviour of the structure is not important, even if they may 

cause the non-symmetry of post-failure modes. Cases, where the loading is applied centrically 

in the plane of the web, these initial imperfection modes may prove to be essential for the 

correct modelling of the structure. 
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4.3 Preliminary FE-models on cassette sections 

 

Before the tests described in Chapter 3 were carried out, some preliminary FE-analyses were 

run using ABAQUS/Explicit on models similar to the tested specimens in order to obtain an 

approximate prediction of the behaviour of the specimens during ITF-tests. A type drawing of 

the modelled sections is shown in Figure 4.16. It should be noted that in these initial models, 

the flanges of the section point to the same direction, while in the tested specimens 

(Chapter 3), the flanges pointed in opposite directions. 

 

 
 

Fig. 4.16 Type drawing of cross-section modelled during the preliminary analyses. 
 

The loading and support pads were modelled using rigid elements of type R3D4 and the 

cassette section using shell elements S4R. The connections between the pads and the flanges 

of the structure were modelled using contact surfaces in order to reproduce the real structural 

behaviour as closely as possible, although the complexity of the approach makes it not the 

most economical on CPU-time. However, this approach allows the separation of the contact 

surfaces also after initial contact, making the behaviour of the local contact area more 

realistic. The contact surfaces had zero friction and were modelled as hard surfaces. The 

loading was applied by using a prescribed displacement of the loading pad pressing on the 

wide flange. The application of the displacement was done using the smooth step function in 

ABAQUS, which makes the initial phase of the displacement slower and thus allows for the 

structure to smoothly deform from its original state. 

 

The lateral (U1) and longitudinal (U3) displacements were restrained at the mid-length at both 

flanges of the cassette similarly to what was done in the test set-up as described in Chapter 3. 
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The rotation about axis 3 (UR3) was restrained along lines at each flange as shown in Figure 

4.17. This was done in order to prevent the bending of the flanges that was observed in initial 

models where this boundary condition was not present. 

 

Figure 4.18 shows a comparison between the FE-analysis results and the corresponding test 

results for tests ITF100-t10-2 and ITF200R-t15-3. When the curves are analysed, it should be 

kept in mind that the preliminary FE-models were based on the ideal nominal cross-section 

without any imperfections and nominal material data, i.e. a value of yield stress equal to 

350 N/mm2 and a value of the modulus of elasticity equal to 210000 N/mm2. Double 

precision was used for the ABAQUS/Explicit analyses. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.17 Boundary conditions at load application area. 

 

 

 

 

 

UR3 = 0 
along lines 

U1 = U3 = UR2 = 0 
at corner points 



 129

 
Fig. 4.18 Comparison of preliminary FE-analysis results and ITF-test results. 

 

The first set of curves corresponds to 100 mm high flat web sections with tnom = 1.0 mm. The 

preliminary load-deformation curve from the FE-analysis for test ITF100-t10-2 has a slightly 

higher initial stiffness than the test result, but does not quite reach the same failure load. It 

seems likely that the pre-buckling stiffness of the tested element with a flat web was lowered 

by the initial imperfections in the cross-section. The higher ultimate load, on the other hand, is 

mostly influenced by the yield strength, which was determined as 396 N/mm2 in the direction 

of cold forming and 437 N/mm2 in the direction perpendicular to the direction of cold 

forming, as seen from Tables 3.1.  

 

The second set of curves corresponds to longitudinally stiffened 200 mm high web sections 

with tnom = 1.5 mm. Here again the initial stiffness recorded during the FE-analysis is higher 

than that obtained from the test. However, the ultimate load is close to the value obtained in 

the test. The yield strength of the test specimen was determined as 397 N/mm2 in the direction 

of cold forming and 429 N/mm2 in the direction perpendicular to the direction of cold 

forming, as seen from Tables 3.5. The height of the web measured for specimen 

ITF200R-t15-3 was 203.9 mm, as seen from ANNEX A, while the total nominal web height 

is 201.5 mm, as modelled for the FE-analysis. It is possible that the initial imperfections and 
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the slightly greater web height of the tested specimen compensate the higher yield strength, 

which together lead to a lower ultimate load than would otherwise be expected for an ideally 

straight specimen. 

 

Table 4.5 presents the ultimate load values FFE-PRE evaluated using FE-analysis before testing 

for all tested sections. When compared with the corresponding average test results FTest, also 

presented in the Table, it can be seen that the preliminary analyses were able to predict the 

failure load with about 20 % accuracy for all models. For the 200 mm high sections, the 

predictions were within 3 % of the test result. The predictions for 150 mm high sections were 

within 15 % and the weakest agreement could be obtained for the 100 mm high sections. 

Larger differences can be seen in the force displacement values w at failure load.  

 

Table 4.5 Comparison of preliminary FE-results with test results 
 

Section 
type 

tnom  
[mm] 

FFE-PRE 
[kN] 

Average  
FTest [kN] 

FFE-RPE /  
FTest 

w at FFE-PRE 
[mm] 

w at FTest 
[mm] 

100 1.0   6.20   7.45 0.83 1.7 3.08 
100R 1.0   4.75   6.02 0.79 4.0 7.52 

1.0   5.80   6.34 0.91 2.0 5.34 150 1.5 14.00 16.56 0.85 2.0 3.42 
1.0   4.70   5.27 0.89 4.0 8.68 150R 1.5 12.00 12.90 0.93 3.6 7.34 
1.0   6.70   6.51 1.03 1.0 6.16 200 1.5 16.00 16.24 0.99 0.6 4.67 
1.0   5.30   5.14 1.03 6.0 8.94 200R 1.5 12.70 12.71 1.00 4.0 7.70 

 

 

Regardless of the differences in stiffness and ultimate load values between the preliminary 

FE-models and the test results, it can be concluded that a fairly good estimate of the 

behaviour of the test specimens could be obtained already before the testing using the 

modelling assumptions that had been studied during the modelling of the Hofmeyer (2000) 

experiments in Section 4.2. The shapes of the load-deformation curves are very descriptive of 

those recorded during tests and even the second local maximum of the curve for the flat web 

specimen was successfully modelled. 
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4.4 FE-analyses on tested cassette sections 

 

General 

 

A substantial amount of development work was put into the refinement of the FE-models 

described in Section 4.3 in order to obtain an even closer correspondence to the test results. 

The work was begun with the modelling of test ITF200-t15-3 with a flat web, continued with 

tests ITF200R-t15-3, ITF200R-t10-2 and ITF100R-t10-1 with longitudinally stiffened webs, 

and concluded with test IOF200R-t15-S1000-2 with a longitudinally stiffened web and IOF-

loading with a span equal to 1000 mm. 

 

The material model used for these analyses was based on the actual material tests on 

specimens cut in the direction perpendicular to the direction of cold forming as given in 

Section 3.2. The tables giving the basic material data corresponding to different modelled 

tests are given in Table 4.6. The values of stress and strain from the material test data were 

transformed into true plastic stress and true strain values according to the ABAQUS/Standard 

Getting Started User's Manual. Double precision was used for all the analyses. 

 
Table 4.6 Material data used for numerical models. 

 
Nominal web height bw 

(mm) 
Nominal steel sheet 
thickness tnom (mm) 

Steel coil number Table number 

200 1.5 KH089002 Table 3.5b 
200 1.0 KF943005 Table 3.4b 
100 1.0 FT019002 Table 3.1b 

 

The support conditions were similar to what was described in Section 4.3, except that at both 

flanges, boundary conditions were applied at the locations where the screw connections were 

situated in the tests (Chapter 3). Thus, in each flange, there were two points at 20 mm distance 

from the web, where U1 = U3 = UR2 = 0 and two lines where UR3 = 0 − otherwise as shown 

in Figure 4.17. The models were based on the measured cross-sections of the tested specimens 

as given in ANNEX B. 
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A parametric study was carried out in order to see the influence of different analysis settings 

and model characteristics on the results. The parameters varied during the development work 

were: 

 - the length of the load application period {0.1 sec; 0.5 sec; 1.0 sec; 2.0 sec; 3.0 sec;  

  5.0 sec},  

 - the magnitude of the maximum imperfection value {0.001 m; 0.002 m; 0.003 m}, and 

 - the average element edge length {10 mm; 5.0 mm; 2.5 mm}. 

 

It is noted that initial imperfections were applied also to the models on longitudinally 

stiffened web sections despite the inherent eccentricity in the section due to the stiffener. This 

was done in order to qualitatively reproduce the actual measured shape of the tested 

specimens (see Chapter 3). 

 

 

Modelling of test ITF200-t15-3 

 

Figure 4.19 shows the influence of the load application period on the results of the finite 

element analyses corresponding to test ITF200-t15-3. It can be seen that the influence of the 

variation of the load application period between 0.1 seconds and 5.0 seconds has a negligible 

influence on the results. Therefore it was decided that it would be most practical to use a load 

application period equal to 0.1 seconds, as this is the most economical on CPU-time.  

 

Figure 4.20 shows the influence of the magnitude of the maximum value of the geometric 

initial imperfection for models with average element edge length 5 mm. It can be seen that the 

increase of the magnitude of the initial imperfection slightly lowers the stiffness and the 

ultimate load values reached in the analysis, which seems intuitively correct. It is considered 

that the use of maximum initial imperfection magnitude equal to 0.001 m is adequate for the 

analyses. 
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Fig. 4.19 Influence of load application period on FE-models. 
 

Fig. 4.20 Influence of initial imperfection magnitude on FE-models. 
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The influence of the average element edge length on the FE-analysis results can be seen in 

Figure 4.21. Of the three parameters (load application period, initial imperfection magnitude 

and average element edge length) varied during the development of the finite element models, 

these results are the most difficult to interpret and make definite conclusions from. It can be 

seen that the initial stiffness of the three models with different element sizes is practically the 

same, but that after the first elastic linear phase, the curves start to divert from each other so 

that the smaller the element size, the lower its stiffness is during the latter part of load 

increase. This is in fact to be expected, because a coarser mesh generally leads to a stiffer 

model, as is the case here. In all three cases, however, the stiffness is greater than was 

measured during the test.  

 

Fig. 4.21 Influence of average element edge length on FE-models. 
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higher the ultimate load reached during the analysis, although the differences here are not so 
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and 2.5 mm seems to first decrease just a little after the local maximum after which it 

suddenly starts to increase again, reaching a higher load value than the first local maximum. 

 

The higher stiffness of the model with element edge length 10 mm is exemplified by the value 

of the lowest buckling load. Although the shapes of the lowest buckling modes for models 

with 10 mm and 2.5 mm edge length are similar (see Figure 4.22), the corresponding buckling 

load for the model with 10 mm element size is 11.57 kN, while it is 10.80 kN for the model 

with 2.5 mm element size.  

 

Fig. 4.22 Lowest buckling modes for ITF200-t15-3 models with average element edge  
length 10 mm (left) and 2.5 mm (right). The deformations are scaled in the picture so that the 

largest displacement is equal to 120 mm. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.23 Detail of corner area for ITF200-t15-3 models with average element edge  
length 10 mm (left) and 2.5 mm (right). 
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Another factor in the modelling is the precision of the mesh in the corner area, as shown in 

Figure 4.23 for the models with average element edge length 10 mm and 2.5 mm. The corner 

is modelled with a single element in the coarser mesh, while two elements are used in the 

denser mesh. The stresses and strains will be more precisely modelled using the denser mesh. 

 
 

It is likely that the differences in the load-displacement curves in Figure 4.21 are due to the 

factors explained above. Furthermore, especially local buckling phenomena are more 

precisely modelled using the denser element mesh. The question arises therefore, why does 

the shape of the load-displacement curve from the model with the coarser mesh (10 mm edge 

length) seem to be closest to the shape of the test curve. No clear answer has been found. 

However, it should be kept in mind that the geometric initial imperfections in the actual test 

specimen cannot be modelled precisely. Also, possible residual stresses in the test specimen 

and stresses due to the fitting of the specimen onto the test rig (see Chapter 3) have not been 

modelled. Nevertheless, it is considered that all of the above models give a fair estimate of the 

web crippling behaviour of the structure at hand. Therefore an element mesh based on an 

average element size equal to 5 mm is chosen for further analyses while the corners are 

modelled using two elements. 

 

 

Modelling of test ITF200R-t15-3 

 

The load-displacement curves for test ITF200R-t15-3 on a longitudinally stiffened web 

section and three corresponding finite element models are given in Figure 4.24. The element 

edge length was varied from 5 mm to 2.5 mm, but hardly any effect of this can be seen in the 

resulting curves. All in all the correspondence with the test is quite satisfactory, although the 

FE-models again show higher values of initial stiffness and lower values of ultimate load. The 

shapes of the curves are very similar, however, and the differences in the values of ultimate 

load are within the 10 % range of the test result.  

 

The influence of the lateral support in the plane of the flanges (x-direction) was studied by 

introducing a spring element to the points where the screws were connected in the test. In the 

tests and in all the finite element models so far, the x-displacements of the flanges were fully 

restrained. This is not necessarily the case in all practical cases, however, which is why the 
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influence of elastic springs was considered. The spring constant was taken equal to 

350 N/mm, which corresponds to a common value used for gypsum boards connected with 

screws (Kesti 2000). A model with only one spring per flange and no other lateral restraints 

was also run (curve u2_rf2_5mm_0p1s_onespring350). As can be seen from Figure 4.24, the 

influence of the spring supports on the web crippling behaviour is negligible. 

 

Fig. 4.24 Load-displacement curves for test ITF200R-t15-3 and corresponding FE-models. 

 

 

Modelling of test ITF200R-t10-2 

 

The load-displacement curves for test ITF200R-t10-2 and the corresponding finite element 

model are given in Figure 4.25. The element edge length was 5 mm and the model included 

an initial imperfection of maximum amplitude 1.0 mm based on the lowest buckling mode. 

The agreement between the curves is quite good overall. The ultimate load reached during the 

analysis was 5.00 kN (at 8.0 mm displacement) and the ultimate load reached in the test was 

5.08 kN (at 8.8 mm). The stiffness values and the curve shapes are also similar. The failure 

mode can be seen in Figure 4.26. It is similar to the failure mode observed during the test (see 

Figure 4.27). 
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Fig. 4.25 Load-displacement curves for test ITF200R-t10-2 and corresponding FE-model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.26 Failure mode for model ITF200R-t10-2_5mm_0p1s, deformation scale factor 3.0. 
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Fig. 4.27 Failure mode for test ITF200R-t10-2. 
 

 

Modelling of test ITF100R-t10-1 

 

The load-displacement curves for test ITF100R-t10-1 and the corresponding finite element 

model are given in Figure 4.28. The element edge length was 5 mm and the model included 

an initial imperfection of maximum amplitude 1.0 mm based on the lowest buckling mode. 

The agreement between the curves is very good overall. The ultimate load reached during the 

analysis was 6.23 kN (at 8.5 mm displacement) and the ultimate load reached in the test was 

6.01 kN (at 7.5 mm). The stiffness values and the curve shapes are also very similar. The 

failure mode can be seen in Figure 4.29. It is quite similar to the failure mode observed during 

the test (see Figure 3.9). 
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Fig. 4.28 Load-displacement curves for test ITF100R-t10-1 and corresponding FE-model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.29 Failure mode for model ITF100R-t10-1_5mm_0p1s, deformation scale factor 3.0. 
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Modelling of test IOF200R-t15-S1000-2 

 

An attempt was also made to model the internal one-flange test IOF200R-t15-S1000-2. This 

model was edited from the corresponding ITF-model by removing the support block at mid-

span and modelling 40 mm long support strips at the ends of the beam using a stronger 

material with modulus of elasticity E = 3.5.1015 N/m2 and fy = 3.5.1011 N/m2 as shown in 

Figure 4.30. Vertical displacement boundary conditions (U2 = 0) were applied at the bottom 

flange nodes at z = 0.100 m and z = 1.100 m. Lateral displacement boundary conditions 

(U1 = 0) were applied at the webs from the bottom flange to the lower edge of the stiffener at 

the same z-locations. These boundary conditions were used to model the T-shaped support 

rods described in Section 3.4.1. 

Fig. 4.30 Set-up of IOF-model. 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.31 Lowest buckling mode for model IOF200R-t15-S1000-2. 
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Otherwise the modelling was done as described earlier for ITF-models. An initial 

imperfection with maximum amplitude 1.0 mm was used for the model based on the lowest 

buckling mode shown in Figure 4.31. The buckling load was 28.383 kN. 

 

Figure 4.32 shows the load-displacement curves for the top flange and the bottom flange for 

test IOF200R-t15-S1000-2 and the corresponding FE-model. Figure 4.33 shows the 

corresponding web crippling deformations (bottom flange displacement subtracted from the 

top flange displacement). It can be seen that the ultimate load reached during the analysis was 

only 10.76 kN while the ultimate load recorded during the test was 12.39 kN. The analysis 

load was thus 13 % lower than the test load. However, the curve shapes are very similar to 

each other.  

 

Fig. 4.32 Load-displacement curves for test IOF200R-t15-S1000-2 and the corresponding 
analysis model. 

 

Two different views of the failure mode are shown in Figure 4.34. The mode is similar to that 

observed during the test, as shown in Figure 4.35.  
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Fig. 4.33 Load-web crippling deformation curves for test IOF200R-t15-S1000-2 and the 
corresponding analysis model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.34 Failure mode obtained from the analysis. 
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The reasons for the lower failure mode of the numerical model are not known. It is possible 

that there is some extra stiffness in the test set-up that has not been reproduced numerically 

using the current modelling assumptions. Despite this, the numerical model can be considered 

to reasonably reproduce the test result, as the load-displacement curve shapes and failure 

modes are quite similar. Further development of the numerical model could lead to a better 

reproduction of the failure load as well, but this work was not continued in this thesis because 

it is not considered to be the main focus of the work. 

 

Fig. 4.35 Failure modes observed during test at failure load (top row) and at top flange 
displacement value 30 mm (bottom row). 

 

Mises stress distributions at the mid-surface of the shell elements are shown in Figure 4.36 at 

the time of the ultimate load and in Figure 4.37 at the end of the analysis. By comparison of 

the Figures, it can be seen how the bulging of the web under the loading block causes a 

redistribution of stresses and the tension field is developed in the web between the supports 

and the load application area.  
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Fig. 4.36 Mises stress distribution at ultimate load  
for model IOF200R-t15-S1000-2_5mm_0p1s. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4.37 Mises stress distribution at end of analysis  
for model IOF200R-t15-S1000-2_5mm_0p1s. 
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5. PARAMETRIC STUDY ON THE WEB CRIPPLING 
 CAPACITY OF LONGITUDINALLY STIFFENED THIN-
 WALLED CASSETTE WEBS 
 

5.1 Scope of the parametric study 

 

A parametric study was carried out using finite element analysis in order to find out the 

influence of the geometry of the longitudinal stiffener on the capacity of the cassette web 

against local transverse loading. The study was limited to ITF-loading conditions and the 

influence of bending moment was thus ignored.  

 

The height of the profile bw was taken as 200 mm, 150 mm or 100 mm, which are commonly 

used web heights for actual cassette cross-sections. The steel thickness was taken as either 

t = 1.46 mm or t = 0.96 mm, which correspond to nominal thicknesses tnom = 1.5 mm and 

tnom = 1.0 mm, respectively, reduced by the zinc layer thickness 0.04 mm (according to 

ENV 1993-1-3: 1996). Only the single web profile was studied as shown in Figure 5.1. The 

wide flange was cut longitudinally in the same way as was done for the ITF-tests described in 

Chapter 3. The figure also shows the three main parameters that were varied during the 

analysis. They are 

 

d the distance of the longitudinal stiffener from the wide flange,  

e the out-of-plane height (eccentricity) of the longitudinal stiffener, and 

f the in-plane height (width) of the longitudinal stiffener. 

 

The distance of the stiffener from the wide flange d was varied between 20 and 75 mm, the 

out-of-plane eccentricity of the stiffener e was varied between 5 and 16 mm and the in-plane 

height of the stiffener f was varied between 20 and 100 mm. Comparisons to similar models 

with flat webs are also presented. The mid-surface corner radius R at the web-flange junctions 

was equal to 3 mm and the corner radius Rs of the stiffener folds was approximately 4 mm. 

The influence of the corner radii was not included in this parametric study.  

 

The influence of the bearing length ss was studied with the help of a few models. For most 

analyses, the bearing length was 100 mm, but two section geometries were analysed also with 
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bearing lengths 150 mm and 50 mm. The loading pad and the support pad were always of 

equal length in each model. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.1 Main parameters studied. 

 

 

5.2 Set-up of numerical models 

 

The numerical models were constructed by modifying the previously built models validated 

using test results (Section 4.4). However, the length of the single-web beam was increased 

from 1200 mm to 3000 mm in order to minimise the influence of the free ends of the beam. 

This was done after noticing that for some model geometries, the ends of the beam were 

strongly deformed due to the local transverse load applied at mid-length, similarly to what can 

be seen to happen during the buckling of the model on test IOF200R-t15-S1000-2 in 

Figure 4.31. The downside of increasing the length was that this resulted in an increase of the 

number of nodes and elements in the model by a factor of 2.5 and the required CPU-time 

increased accordingly. This in turn limited the number of analyses that could be run. 

However, it was considered more important to have a limited amount of good results than a 

larger amount of results that leave more questions open. 
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The element types used were S4R for the cassette section and R3D4 for the loading and 

support pads. The boundary conditions and contact surface conditions were the same as in the 

validation models. The load application period was equal to 0.1 seconds in all models, during 

which a forced displacement equal to 30 mm was introduced to the structure via the rigid 

loading pad and the contact surfaces. In a few analyses, the displacement was set to 20 mm 

instead. This does not appear to have any notable influence on the results, as can be noted by 

comparing curves for models 100R-t15_d40_e12_f20 and 100R-t15_d40_e12_f30 in 

Figure 5.7. The "smooth step" function in ABAQUS was used for the load application in 

order to give the structure more time to respond to the loading. The displacement boundary 

conditions were similar to what was explained in Section 4.4. 

 

All parametric models had a general element edge length of 5 mm, except at rounded corners 

of the cross-section, where two smaller elements were generally used in a similar way to what 

is shown in Figure 4.23 for the models with element edge length 2.5 mm. However, an 

attempt was made not to have an element aspect ratio larger than about 5.0, because a very 

large aspect ratio or even a single relatively small element in the model can cause the stable 

time increment used in the dynamic analysis to decrease substantially, leading to a large 

increase in required CPU-time. The stable time increment in the parametric models turned out 

to be of the order of 4.10-7
 seconds. As a consequence, the CPU-time needed for one analysis 

was of the order of 20 to 40 CPUh depending on the model, which is already quite high and 

was considered to be the maximum that is acceptable for the practical research work, even 

though the wall clock time used for the analyses was reduced by the use of 4 parallel 

processors.  

 

 

5.3 Results of the parametric study 

 

The full results of the parametric study are distributed into groups according to web height 

and steel thickness in Tables 5.2-5.8 in the order given in Table 5.1, where also the total 

number of models in each group is shown. The total number of parametric models is 71 

(+ 5 models with flat webs). The results are organised inside the tables according to failure 

load values.  
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The force-displacement curves for all models are given in Figures 5.2-5.10. The curves for the 

corresponding flat web models are also shown. Some curves end before the full prescribed 

displacement 30 mm is reached, because in these cases the analysis was interrupted by the 

user in order to save CPU-time. In all cases, however, the analysis has been continued well 

past the failure load. 

 

The bearing length ss was equal to 100 mm in all models except where noted (Tables 5.7 and 

5.8). In Tables 5.7 and 5.8, which give results dealing with the effect of bearing length, the 

results for the models with bearing length ss = 100 mm are reproduced from Tables 5.2 and 

5.6, respectively, in order to facilitate the comparison of the results. 

 
 

Table 5.1 Grouping of parametric model results. 
 
Table 
number 

Results group Figures showing 
corresponding 

load-displ. 
curves 

Number of 
models in 

group 

Table 5.2 Models with web height 200 mm, tnom = 1.5 mm Figures 5.2-5.3 16 
Table 5.3 Models with web height 200 mm, tnom = 1.0 mm Figures 5.4-5.5 15 
Table 5.4 Models with web height 150 mm, tnom = 1.5 mm Figure 5.6 9 
Table 5.5 Models with web height 100 mm, tnom = 1.5 mm Figure 5.7 11 
Table 5.6 Models with web height 100 mm, tnom = 1.0 mm Figure 5.8 12 
Table 5.7 Models with different bearing lengths and web height 200 mm Figure 5.9 4 
Table 5.8 Models with different bearing lengths and web height 100 mm Figure 5.10 4 
 

Table 5.2 Models with web height 200 mm, tnom = 1.5 mm; d, e and f in [mm]. 
 
Model tag d 

 
e f Buckling 

load 
 

(kN) 

Failure 
load  

 
(kN) 

Reduction in 
failure load 
compared to 
flat web (%) 

Displ. at 
failure  
load  
(mm) 

Material 

200-t15_flat    11.34 16.24  4.50 KH089002 
200R-t15_d75_e8_f20 75 8 20 19.07 14.54 10.5 5.68 KH089002 
200R-t15_d50_e8_f20 50 8 20 18.36 14.30 11.9 5.72 KH089002 
200R-t15_d75_e8_f50 75 8 50 23.37 13.71 15.6 6.96 KH089002 
200R-t15_d50_e8_f50 50 8 50 22.28 13.42 17.4 8.41 KH089002 
200R-t15_d50_e12_f20 50 12 20 20.87 13.36 17.7 10.05 KH089002 
200R-t15_d20_e8_f20 20 8 20 15.62 12.84 20.9 6.60 KH089002 
200R-t15_d50_e8_f100 50 8 100 25.70 12.56 22.7 10.39 KH089002 
200R-t15_d50_e12_f50 50 12 50 23.80 12.40 23.6 10.58 KH089002 
200R-t15_d20_e8_f35 20 8 35 18.42 12.10 25.5 5.72 KH089002 
200R-t15_d20_e8_f50 20 8 50 20.35 12.05 25.8 7.06 KH089002 
200R-t15_d20_e8_f50_EC3 20 8 50 21.00 11.88 26.8 4.89 EC3-1-3 
200R-t15_d20_e12_f20 20 12 20 17.72 11.52 29.1 9.01 KH089002 
200R-t15_d50_e16_f50 50 16 50 24.51 11.44 29.6 13.32 KH089002 
200R-t15_d20_e16_f20 20 16 20 19.28 10.43 35.8 10.58 KH089002 
200R-t15_d20_e12_f50 20 12 50 22.40 10.34 36.3 8.51 KH089002 
200R-t15_d20_e16_f50 20 16 50 23.65 9.15 43.7 10.58 KH089002 
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The material used for the analyses was based on the ENV 1993:1-3: 1999 (EC3-1-3) material 

model with yield strength fy = 350 N/mm2 and modulus of elasticity E = 210000 N/mm2, 

except for the models with web height 200 mm and steel thickness 1.5 mm, for which the 

material was the same as for the test analyses, i.e. material KH089002 as described in Chapter 

4). The reason for this was that the author failed to think of changing the material parameters 

when the parametric study was begun by modifying the model based on test ITF200R-t15-3. 

The mistake was only noticed after a number of analyses had been run, and the relatively high 

cost in CPU-time prevented the models to be re-run with the EC3-1-3 material model. 

However, the influence of the material was studied by running one ITF200R-t15-analysis 

using the EC3-1-3 material model and it can be seen from the results in Table 5.2 (models 

200R-t15_d20_e8_f50 and 200R-t15_d20_e8_f50_EC3) that the material has but a small 

influence on the failure load (11.88 kN for material EC3-1-3 and 12.05 kN for the test 

material KH089002). The difference is of the order of 1.4 %.  A greater difference can be 

seen in the value of the displacement of the loading pad at failure load, which is 7.06 mm for 

the test material KH089002 and only 4.89 mm for the EC3-1-3 material model. The stiffness 

of the EC3-1-3 material model as described by the value of the modulus of elasticity used 

(E = 210000 N/mm2 for EC3-1-3 and E = 203418 N/mm2 for the test material KH089002) is 

only slightly higher than that of the test material. However, when the force-displacement 

curves of the two models, as given in Figure 5.2, are compared, it can be seen that there is not 

much difference in their shapes. The difference in the displacement value at failure load is due 

to the low stiffness of the model near the failure load, causing the tangent of the curves to be 

close to horizontal for some time already before the moment of failure. Therefore already a 

small increase in failure load will lead to a larger increase in the displacement value. 

 

As can be seen from the parametric results for models 200R-t15 in Table 5.2, the failure load 

varies between 9.15 kN and 14.54 kN when the size and shape of the longitudinal stiffener are 

varied. The failure load of the model with a flat web was 16.24 kN. It is also shown that the 

decrease in % for this and the other model groups are the following: 

• 10-44 % for models 200R-t15 

• 9.5-42 % for models 200R-t10 

• 12-35 % for models 150R-t15 

• 13-38 % for models 100R-t15 

• 13-29 % for models 100R-t10 
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The highest reduction percentages are due to high values of stiffener eccentricity e. It can be 

concluded that all of the stiffener geometries reduce the resistance to local transverse forces 

by at least 10 % in comparison to a similar cross-section without a stiffener. 

 

The maximum value of the failure load for models 200R-t15 with longitudinally stiffened 

webs is about 59 % larger than the minimum value. For the other model groups with different 

web heights and steel thicknesses, the increase in failure load from the minimum to the 

maximum value is 56 % for models 200R-t10, 35 % for 150R-t15, 40 % for 100R-t15 and 22 

% for 100R-t10 (see Tables 5.3-5.6). However, these values should not be directly compared 

among each other, because the ratios of the studied parameters to web height are different for 

the different groups. Nevertheless, they are a clear indicator that the size and the location of 

the longitudinal stiffener have an important influence on the section's resistance against local 

transverse forces.  

 

Tables 5.2-5.8 also show the elastic buckling load corresponding to the lowest buckling mode 

of the structure. This buckling mode was used as a basis for the initial imperfection 

introduced into the subsequent ABAQUS/Explicit failure analysis model. The maximum 

imperfection amplitude was 1.0 mm in all models. Because the failure of the structure under 

local transverse forces happens through yielding, the elastic buckling load usually has a 

higher value than the failure load of the same structure. There is only one exception to this 

rule in the present analyses. As can be seen from Table 5.3, model 200R-t10_d20_e8_f20 has 

a slightly lower buckling load (5.38 kN) than its failure load (5.68 kN) is. This is explained by 

the fact that this particular model has the most slender web of those analysed, where the 

longitudinal stiffener is relatively small and situated close to the wide flange, and thus leaves 

a large flat area at the lower part of the web. However, it is difficult to find a clear correlation 

between the failure load and the elastic buckling load for the profiles. 
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Fig. 5.2 Load-displacement curves for models 200R-t15 with e = 8 mm. 

 

The force-displacement curves in Figures 5.2 and 5.3 for models 200R-t15 all have a similar 

shape where the initial phase shows a rapid increase in support reaction. The failure load is 

reached smoothly without any sudden buckling taking place, as was observed during tests on 

longitudinally stiffened webs. In some curves, most notably those for models 

200R-t15_d20_e8_f20, ITF200R-t15_d20_e12_f20 and 200R-t15_d20_e16_f20, there is a 

small additional increase in the support reaction after the first local maximum is reached. This 

is due to the local stiffening of the web when the top part of the flange is pressed against the 

stiffener and the deformations of the rounded corners below the load application area. 

A similar pattern can be observed in some of the other models as well, but it usually appears a 

little later during the analysis, because the stiffener is further down from the wide flange. The 

same phenomenon can be seen in the force-displacement curves for models with 150 mm and 

100 mm high webs. 
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Fig. 5.3 Load-displacement curves for models 200R-t15 with e = 12-16 mm. 

 

The force-displacement curves in Figures 5.4 and 5.5 for models 200R-t10 show a somewhat 

different behaviour in comparison to those for models 200R-t15. Due to the slenderness of the 

web, the curves are not so smooth and several local buckling phenomena can be clearly seen 

to take place during the whole analysis as the deformations progress through the section. 

Nevertheless, the general shape of the curves is similar to those of models with less slender 

webs. Also, these effects are reduced when the eccentricity e of the stiffener and/or the 

distance from the wider flange d are increased, as can be seen most clearly from Figure 5.5 for 

models 200R-t10_d50_e12_f20, 200R-t10_d50_e12_f50 and 200R-t10_d50_e16_f50. This is 

intuitively correct. 
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Table 5.3 Models with web height 200 mm, tnom = 1.0 mm; d, e and f in [mm]. 
 
Model tag d e f Buckling 

load 
 

(kN) 

Failure 
load 

 
(kN) 

Reduction in 
failure load 
compared to 
flat web (%) 

Displ. at 
failure 
load 
(mm) 

Material 

200-t10_flat    3.47    EC3-1-3 
200R-t10_d75_e8_f20 75 8 20 6.79 6.22 9.5 5.53 EC3-1-3 
200R-t10_d50_e8_f20 50 8 20 6.52 6.19 9.9 4.46 EC3-1-3 
200R-t10_d75_e8_f50 75 8 50 8.34 5.93 13.7 9.86 EC3-1-3 
200R-t10_d50_e8_f50 50 8 50 7.95 5.91 14.0 8.41 EC3-1-3 
200R-t10_d50_e12_f20 50 12 20 7.44 5.76 16.2 11.47 EC3-1-3 
200R-t10_d20_e8_f20 20 8 20 5.38 5.68 17.3 4.56 EC3-1-3 
200R-t10_d50_e8_f100 50 8 100 9.21 5.63 18.0 9.92 EC3-1-3 
200R-t10_d50_e12_f50 50 12 50 8.44 5.40 21.4 9.86 EC3-1-3 
200R-t10_d20_e8_f35 20 8 35 6.44 5.35 22.1 4.46 EC3-1-3 
200R-t10_d20_e8_f50 20 8 50 7.26 5.28 23.1 7.10 EC3-1-3 
200R-t10_d20_e12_f20 20 12 20 6.16 4.94 28.1 4.96 EC3-1-3 
200R-t10_d50_e16_f50 50 16 50 8.64 4.94 28.1 13.32 EC3-1-3 
200R-t10_d20_e12_f50 20 12 50 7.96 4.51 34.4 10.58 EC3-1-3 
200R-t10_d20_e16_f20 20 16 20 6.70 4.40 36.0 10.86 EC3-1-3 
200R-t10_d20_e16_f50 20 16 50 7.88 3.99 41.9 12.78 EC3-1-3 
 

 
 

Fig. 5.4 Load-displacement curves for models 200R-t10 with e = 8 mm. 
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Fig. 5.5 Load-displacement curves for models 200R-t10 with e = 12-16 mm. 

 

In the start and the end of the analyses, the density of data collection points is increased, as 

can be seen from the curves with markers. This is due to the "smooth step"-setting used in the 

analyses, which causes the load application speed to be slower at the start and at the end of 

the analysis. The data is collected at regular time intervals during analysis, so when the 

application of the forced displacement happens slower, there are more points per unit 

displacement. The time interval between data collection points was set to 0.001 seconds in 

most analyses, which means that there are a total of 100 data points collection points during a 

0.1 second long analysis. 
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Table 5.4 Models with web height 150 mm, tnom = 1.5 mm; d, e and f in [mm]. 

 
Model tag d e f Buckling 

load 
 

(kN) 

Failure 
load 

 
(kN) 

Reduction in 
failure load 
compared to 
flat web (%) 

Displ. at 
failure 
load 
(mm) 

Material 

150-t15_flat    17.06 16.60  1.52 EC3-1-3 
150R-t15_d50_e8_f20 50 8 20 29.77 14.63 11.9 5.24 EC3-1-3 
150R-t15_d50_e8_f50 50 8 50 36.75 14.22 14.3 6.51 EC3-1-3 
150R-t15_d50_e12_f50 50 12 50 39.07 13.67 17.7 7.53 EC3-1-3 
150R-t15_d50_e12_f20 50 12 20 32.10 13.55 18.4 6.96 EC3-1-3 
150R-t15_d20_e8_f50 20 8 50 32.30 12.62 24.0 5.20 EC3-1-3 
150R-t15_d20_e8_f35 20 8 35 30.56 12.19 26.6 5.24 EC3-1-3 
150R-t15_d20_e8_f20 20 8 20 26.62 12.05 27.4 4.12 EC3-1-3 
150R-t15_d20_e12_f50 20 12 50 34.50 10.86 34.6 7.34 EC3-1-3 
150R-t15_d20_e12_f20 20 12 20 29.89 10.85 34.6 5.29 EC3-1-3 
 
 

 
Fig. 5.6 Load-displacement curves for models 150R-t15. 
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Table 5.5 Models with web height 100 mm, tnom = 1.5 mm; d, e and f in [mm]. 

 
Model tag d e f Buckling 

load 
 

(kN) 

Failure 
load 

 
(kN) 

Reduction in 
failure load 
compared to 
flat web (%) 

Displ. at 
failure 
load 
(mm) 

Material 

100-t15_flat    28.63 17.01  9.45 EC3-1-3 
100R-t15_d50_e8_f20 50 8 20 48.60 14.77 13.2 4.31 EC3-1-3 
100R-t15_d40_e12_f20 40 12 20 52.89 13.13 22.8 6.87 EC3-1-3 
100R-t15_d20_e8_f50 20 8 50 61.66 12.86 24.4 5.65 EC3-1-3 
100R-t15_d20_e8_f20 20 8 20 47.34 12.73 25.2 7.92 EC3-1-3 
100R-t15_d40_e12_f30 40 12 30 58.27 12.66 25.6 7.97 EC3-1-3 
100R-t15_d20_e8_f35 20 8 35 54.20 12.63 25.7 5.11 EC3-1-3 
100R-t15_d50_e16_f20 50 16 20 56.51 12.10 28.9 8.71 EC3-1-3 
100R-t15_d20_e16_f20 20 16 20 49.29 10.96 35.6 12.76 EC3-1-3 
100R-t15_d20_e12_f50 20 12 50 58.31 11.95 29.7 12.21 EC3-1-3 
100R-t15_d20_e12_f20 20 12 20 51.61 11.29 33.6 10.44 EC3-1-3 
100R-t15_d20_e16_f35 20 16 35 45.73 10.52 38.2 8.88 EC3-1-3 
 
 

 
 

Fig. 5.7 Load-displacement curves for models 100R-t15. 
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Table 5.6 Models with web height 100 mm, tnom = 1.0 mm; d, e and f in [mm]. 

 
Model tag d e f Buckling 

load 
 

(kN) 

Failure 
load 

 
(kN) 

Reduction in 
failure load 
compared to 
flat web (%) 

Displ. at 
failure 
load 
(mm) 

Material 

100-t10_flat    8.22 7.44  2.79 EC3-1-3 
100R-t10_d40_e8_f20 40 8 20 16.33 6.49 12.8 6.54 EC3-1-3 
100R-t10_d40_e8_f30 40 8 30 17.98 6.36 14.5 6.14 EC3-1-3 
100R-t10_d20_e5_f35 20 5 35 16.44 6.28 15.6 4.41 EC3-1-3 
100R-t10_d20_e8_f35 20 8 35 17.27 6.20 16.7 8.01 EC3-1-3 
100R-t10_d20_e5_f50 20 5 50 18.29 6.17 17.1 5.53 EC3-1-3 
100R-t10_d20_e5_f20 20 5 20 14.47 6.15 17.3 7.00 EC3-1-3 
100R-t10_d20_e8_f50 20 8 50 17.93 6.08 18.3 9.52 EC3-1-3 
100R-t10_d40_e12_f30 40 12 30 17.51 6.06 18.5 8.51 EC3-1-3 
100R-t10_d40_e12_f20 40 12 20 17.05 5.95 20.0 8.47 EC3-1-3 
100R-t10_d20_e8_f20 20 8 20 15.54 5.69 23.5 8.50 EC3-1-3 
100R-t10_d20_e12_f20 20 12 20 14.60 5.40 27.4 10.05 EC3-1-3 
100R-t10_d20_e12_f50 20 12 50 12.93 5.30 28.8 10.05 EC3-1-3 

 

 
Fig. 5.8 Load-displacement curves for models 100R-t10. 
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The influence of the bearing length ss was studied using four different single-web cassette 

sections with either the 200R-t15 or the 100R-t10 configuration. The results are shown in 

Tables 5.7-5.8 and Figures 5.9-5.10. The results confirm that the failure load is directly 

proportional to the bearing length, as expected. Looking at the force-displacement curves 

more closely, it can be noted that the increase in failure load appears to be fairly linear for 

each of the four sets of cross-section geometries, at least when the first local maximum is 

taken as the failure load in each case. The failure loads given in the Tables are the maximum 

values during the whole analysis, and as can be seen by looking at the graphs, in several 

cases, these values are somewhat larger than the first maximum. 

 
Table 5.7 Models with different bearing lengths and web height 200 mm. 

 
Model tag d 

 
 

(mm) 

e 
 
 

(mm) 

f 
 
 

(mm)

ss 
 
 

(mm)

Buckling 
load 

 
(kN) 

Failure 
load 

 
(kN) 

Displ. at 
failure 
load 
(mm) 

Material 

200R-t15_d20_e8_f20_s50 20 8 20 50 14.72 12.45 4.89 KH089002 
200R-t15_d20_e8_f20 20 8 20 100 15.62 12.84 6.60 KH089002 
200R-t15_d20_e8_f20_s150 20 8 20 150 23.43 14.69 6.15 KH089002 
200R-t15_d50_e8_f20_s50 50 8 20 50 17.40 14.39 8.51 KH089002 
200R-t15_d50_e8_f20 50 8 20 100 18.36 14.30 5.72 KH089002 
200R-t15_d50_e8_f20_s150 50 8 20 150 27.53 15.00 7.06 KH089002 

 
Fig. 5.9 Load-displacement curves for models 200R-t15 with different bearing lengths. 
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Table 5.8 Models with different bearing lengths and web height 100 mm. 
 
Model tag d 

 
 

(mm) 

e 
 
 

(mm) 

f 
 
 

(mm)

ss 
 
 

(mm)

Buckling 
load 

 
(kN) 

Failure 
load 

 
(kN) 

Displ. at 
failure 
load 
(mm) 

Material 

100R-t10_d20_e8_f20_s50 20 8 20 50 14.66 5.44 8.95 EC3-1-3 
100R-t10_d20_e8_f20 20 8 20 100 15.54 5.69 8.50 EC3-1-3 
100R-t10_d20_e8_f20_s150 20 8 20 150 15.84 5.91 8.47 EC3-1-3 
100R-t10_d40_e8_f30_s50 40 8 30 50 17.47 6.01 9.01 EC3-1-3 
100R-t10_d40_e8_f30 40 8 30 100 17.98 6.36 6.14 EC3-1-3 
100R-t10_d40_e8_f30_s150 40 8 30 150 16.74 7.00 5.72 EC3-1-3 

 
Fig. 5.10 Load-displacement curves for models 100R-t10 with different bearing lengths. 
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with d = 20 mm are packed together more tightly than the curves for models with d = 50 mm. 
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In ANNEX F, Mises stress distributions at the mid-level of the shell elements are shown for 

models 100R-t10_d40_e8_f30 with bearing lengths 50 mm and 150 mm at time of failure and 

at the end of the analyses. The differences in stress distribution can be seen clearly in these 

pictures. Higher stress peaks are experienced in the model with ss = 50 mm. The smaller 

bearing length also causes the web to crushed at both flanges, while the larger bearing length 

has the web crushing concentrated at the lower flange in this case. 

 

 

5.4 Analysis of the influence of the studied parameters d, e and f 

 

5.4.1 Overview 

 

In this section, comparisons among the analysis results are presented. The results given in 

Tables 5.2-5.8 are reorganised according to Table 5.9 to show the influence of the distance of 

the longitudinal stiffener from the wide flange d, the out-of-plane height (eccentricity) of the 

longitudinal stiffener e and the in-plane height (width) of the longitudinal stiffener f (see 

Figure 5.1). 

 

Table 5.9 Reorganisation of results for analysis. 
 

Studied parameter Tables Figures 
d Tables 5.10-5.14 Figures 5.11-5.14 
e Tables 5.15-5.19 Figures 5.15-5.16 
f Tables 5.20-5.24 Figures 5.17-5.18 

 

 

5.4.2 Influence of the distance of the stiffener from the wide flange (d) 

 

The results of the parametric study on longitudinally stiffened webs have been rearranged into 

Tables 5.10-5.14 according to web height and steel thickness. A subdivision inside the tables 

is made so that horizontal lines separate groups of 2 or 3 models from each other. In each 

group, the other geometric parameters (e and f) are kept constant, while the value of d is 

varied. This allows the separation of the studied parameter from the others. Depending on the 

model group, the parameter d is given values 20 mm, 40 mm, 50 mm and 75 mm. The 

corresponding failure loads are marked with Fdi, where i is the value of d, e.g. Fd50 is the 

failure load for a model with d = 50 mm. The ratio Fdi/Fd20 is then calculated for 
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i = {40 mm, 50 mm, 75 mm}. Maximum, minimum and average values of the ratios Fdi/Fd20 

are finally collected at the bottom of each table.  

 

Table 5.10 Influence of d for 200 mm high webs with tnom = 1.5 mm. 
 
Model name d (mm) Failure load F (kN) Fdi / Fd20 
200R-t15_d20_e8_f20 20 12.84  
200R-t15_d50_e8_f20 50 14.30 1.11 
200R-t15_d75_e8_f20 75 14.54 1.13 
200R-t15_d20_e12_f20 20 11.52  
200R-t15_d50_e12_f20 50 13.36 1.16 
200R-t15_d20_e8_f50 20 12.05  
200R-t15_d75_e8_f50 75 13.71 1.14 
200R-t15_d20_e12_f50 20 10.34  
200R-t15_d50_e12_f50 50 12.40 1.20 
200R-t15_d20_e16_f50 20 9.15  
200R-t15_d50_e16_f50 50 11.44 1.25 
  Minimum Fd50 / Fd20 1.11 
  Maximum Fd50 / Fd20 1.25 
  Average  Fd50 / Fd20 1.18 
  Minimum Fd75 / Fd20 1.13 
  Maximum Fd75 / Fd20 1.14 
  Average  Fd75 / Fd20 1.14 
 

Table 5.11 Influence of d for 150 mm high webs with tnom = 1.5 mm. 

 
Model name d (mm) Failure load F (kN) Fdi / Fd20 
150R-t15_d20_e8_f20 20 12.05  
150R-t15_d50_e8_f20 50 14.63 1.21 
150R-t15_d20_e8_f50 20 12.62  
150R-t15_d50_e8_f50 50 14.22 1.13 
150R-t15_d20_e12_f20 20 10.85  
150R-t15_d50_e12_f20 50 13.55 1.25 
150R-t15_d20_e12_f50 20 10.86  
150R-t15_d50_e12_f50 50 13.67 1.26 
  Minimum Fd50 / Fd20 1.13 
  Maximum Fd50 / Fd20 1.26 
  Average  Fd50 / Fd20 1.21 
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Table 5.12 Influence of d for 100 mm high webs with tnom = 1.5 mm. 
 
Model name d (mm) Failure load F (kN) Fdi / Fd20 
100R-t15_d20_e8_f20 20 12.73  
100R-t15_d50_e8_f20 50 14.77 1.16 
100R-t15_d20_e12_f20 20 11.29  
100R-t15_d40_e12_f20 40 13.13 1.16 
100R-t15_d20_e16_f20 20 10.96  
100R-t15_d50_e16_f20 50 12.10 1.10 
  Minimum Fd40 / Fd20 1.16 
  Maximum Fd40 / Fd20 1.16 
  Average  Fd40 / Fd20 1.16 
  Minimum Fd50 / Fd20 1.10 
  Maximum Fd50 / Fd20 1.16 
  Average  Fd50 / Fd20 1.13 
 

Table 5.13 Influence of d for 200 mm high webs with tnom = 1.0 mm. 
 
Model name d (mm) Failure load F (kN) Fdi / Fd20 
200R-t10_d20_e8_f20 20 5.68  
200R-t10_d50_e8_f20 50 6.19 1.09 
200R-t10_d75_e8_f20 75 6.22 1.10 
200R-t10_d20_e12_f20 20 4.94  
200R-t10_d50_e12_f20 50 5.76 1.16 
200R-t10_d20_e8_f50 20 5.28  
200R-t10_d50_e8_f50 50 5.91 1.12 
200R-t10_d75_e8_f50 75 5.93 1.12 
200R-t10_d20_e12_f50 20 4.51  
200R-t10_d50_e12_f50 50 5.40 1.20 
200R-t10_d20_e16_f50 20 3.99  
200R-t10_d50_e16_f50 50 4.94 1.24 
  Minimum Fd50 / Fd20 1.09 
  Maximum Fd50 / Fd20 1.24 
  Average  Fd50 / Fd20 1.16 
  Minimum Fd75 / Fd20 1.10 
  Maximum Fd75 / Fd20 1.12 
  Average  Fd75 / Fd20 1.11 
 

Table 5.14 Influence of d for 100 mm high webs with tnom = 1.0 mm. 
 
Model name d (mm) Failure load F (kN) Fdi / Fd20 
100R-t10_d20_e8_f20 20 5.69  
100R-t10_d40_e8_f20 40 6.49 1.14 
100R-t10_d20_e12_f20 20 5.40  
100R-t10_d40_e12_f20 40 5.95 1.10 
  Minimum Fd40 / Fd20 1.10 
  Maximum Fd40 / Fd20 1.14 
  Average  Fd40 / Fd20 1.12 
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Graphic representations of the results are shown in Figures 5.11 and 5.12 for tnom = 1.5 mm 

and tnom = 1.0 mm, respectively. Dotted lines (.....) are used for bw = 100 mm, dash lines (---) 

for bw = 150 mm and full lines (___) for bw = 200 mm. Different markers and colours are used 

to separate the model types from each other (a certain marker stands for a certain combination 

of e and f). 

 

 

Fig. 5.11 Influence of d for tnom = 1.5 mm. 
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Fig. 5.12 Influence of d for tnom = 1.0 mm. 

 
It is clearly seen from the graphs that the increase of d from 20 mm to 40 mm or 50 mm 

increases the failure load. From Tables 5.10-5.14, it can be read that this increase is of the 

order of 11-25 % for bw = 200 mm, 13-26 % for bw = 150 mm and 10-16 % for bw = 100 mm. 

However, for models with bw = 200 mm, a further increase of d to 75 mm does not appear to 

have much influence. The effect seems to be slightly more pronounced for models with 

tnom = 1.5 mm, for which the average of ratios Fd40/Fd20 or Fd50/Fd20 is 1.18, while for models 

with tnom = 1.0 mm, it is 1.15, but it is difficult to draw a clear conclusion on this because of 

the relatively small amount of results.  

 

3

3.5

4

4.5

5

5.5

6

6.5

7

0 10 20 30 40 50 60 70 80

Distance of stiffener from top flange d  (mm)

100R-t10_e8_f20 200R-t10_h8_f20 200R-t10_h8_f50

100R-t10_e12_f20 200R-t10_h12_f20 200R-t10_h12_f50

200R-t10_h16_f50



 166

It should be noted that the increase of d from 20 mm to 40 mm or 50 mm brings the 

longitudinal stiffener to different relative heights in different cross-sections, as demonstrated 

in Figure 5.13. For bw = 100 mm, d = 40 mm means that the stiffener is symmetrically at mid-

height of the web, when f = 20 mm, like in all models in Table 5.14. For bw = 200 mm, 

however, the stiffener is still clearly in the upper part of the web when d = 50 mm. Only when 

d = 75 mm and f = 50 mm, is the stiffener symmetrically at mid-height of the 200 mm high 

web. 

 

 
 

Fig. 5.13 Location of stiffener in cross-sections with bw = 100 mm, bw = 150 mm and  
bw = 200 mm, when d = 40 mm, 50 mm or 75 mm. 

 

For this reason, the influence of the location of the stiffener relative to web height was 

analysed by setting the ratio d / bw on the x-axis and the ratio of the failure load of the 

longitudinally stiffened web Fdi to the failure load of the corresponding flat web section Fflat 

on the y-axis, as shown in Figure 5.14. All models from figures 5.11 and 5.12 are combined 

here so that models with tnom = 1.5 mm have larger markers than models with tnom = 1.0 mm.  

 

It can be seen that the lines from models with tnom = 1.0 mm run a little higher than the lines 

from otherwise similar models with tnom = 1.5 mm, which means that the influence of the 

longitudinal stiffener is slightly smaller for thinner webs. Otherwise, the lines show similar 

behaviour depending on the ratio d/bw. It is once more seen that increasing the ratio d / bw to 

at least 0.25 has a very positive effect on the resistance against ITF-loading, regardless of the 

other parameters in these models. A further increase of the ratio does not appear to lead to 

large increases in resistance, while not being detrimental either.  
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Fig. 5.14 Influence of the ratio d / bw on failure load. 
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5.4.3 Influence of the eccentricity of the stiffener (e) 

 

A second reorganisation of results into groups has been carried out in Tables 5.15-5.19 

according to web height and steel thickness in order to find out the influence of the 

eccentricity e of the longitudinal stiffener on failure load. A subdivision inside the tables is 

again made so that horizontal lines separate groups of 2 or 3 models from each other. In each 

group, the other geometric parameters (d and f) are kept constant, while the value of e is 

varied. Depending on the model group, the parameter e is given values 5 mm, 8 mm, 12 mm 

and 16 mm. The corresponding failure loads are marked with Fei, where i is the value of e, 

e.g. Fe12 is the failure load for a model with e = 12 mm. The ratio Fei/Fe8 is then calculated for 

i = {5 mm, 12 mm, 16 mm}. Maximum, minimum and average values of the ratios Fei/Fe8 are 

finally collected at the bottom of each table.  

 
Table 5.15 Influence of e for 200 mm high webs with tnom = 1.5 mm. 

 
Model name e (mm) Failure load F (kN) Fei / Fe8 
200R-t15_d20_e8_f20 8 12.84  
200R-t15_d20_e12_f20 12 11.52 0.90 
200R-t15_d20_e16_f20 16 10.43 0.81 
200R-t15_d20_e8_f50 8 12.05  
200R-t15_d20_e12_f50 12 10.34 0.86 
200R-t15_d20_e16_f50 16 9.15 0.76 
200R-t15_d50_e8_f20 8 14.30  
200R-t15_d50_e12_f20 12 13.36 0.93 
200R-t15_d50_e16_f50 16 11.44 0.80 
200R-t15_d50_e8_f50 8 13.42  
200R-t15_d50_e12_f50 12 12.40 0.92 
  Minimum Fe12 / Fe8 0.86 
  Maximum Fe12 / Fe8 0.93 
  Average  Fe12 / Fe8 0.90 
  Minimum Fe16 / Fd20 0.76 
  Maximum Fe16 / Fd20 0.81 
  Average  Fe16 / Fd20 0.79 
 
 
Graphic representations of the results are shown in Figures 5.15 and 5.16 for tnom = 1.5 mm 

and tnom = 1.0 mm, respectively. Dotted lines (.....) are again used for bw = 100 mm, 

dash lines (---) for bw = 150 mm and full lines (___) for bw = 200 mm. Different markers and 

colours are used to separate the model types from each other (a certain marker stands for a 

certain combination of d and f). 
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Table 5.16 Influence of e for 150 mm high webs with tnom = 1.5 mm. 
 

Model name e (mm) Failure load F (kN) Fei / Fe8 
150R-t15_d20_e8_f20 8 12.05  
150R-t15_d20_e12_f20 12 10.85 0.90 
150R-t15_d20_e8_f50 8 12.62  
150R-t15_d20_e12_f50 12 10.86 0.86 
150R-t15_d50_e8_f20 8 14.63  
150R-t15_d50_e12_f20 12 13.55 0.93 
150R-t15_d50_e8_f50 8 14.22  
150R-t15_d50_e12_f50 12 13.67 0.96 
  Minimum Fe12 / Fe8 0.86 
  Maximum Fe12 / Fe8 0.96 
  Average  Fe12 / Fe8 0.91 
 

Table 5.17 Influence of e for 100 mm high webs with tnom = 1.5 mm. 
 
Model name e (mm) Failure load F (kN) Fei / Fe8 
100R-t15_d20_e8_f20 8 12.73  
100R-t15_d20_e12_f20 12 11.29 0.89 
100R-t15_d20_e16_f20 16 10.96 0.86 
100R-t15_d20_e8_f35 8 12.63  
100R-t15_d20_e16_f35 16 10.52 0.83 
100R-t15_d20_e8_f50 8 12.86  
100R-t15_d20_e12_f50 12 11.95 0.93 
100R-t15_d50_e8_f20 8 14.77  
100R-t15_d50_e16_f20 16 12.10 0.82 
  Minimum Fe12 / Fe8 0.89 
  Maximum Fe12 / Fe8 0.93 
  Average  Fe12 / Fe8 0.91 
  Minimum Fe16 / Fd20 0.82 
  Maximum Fe16 / Fd20 0.86 
  Average  Fe16 / Fd20 0.84 
 

As is intuitively correct, increasing the value of e decreases the failure load of otherwise 

similar structures. Looking at the lines in Figures 5.14 and 5.15, it can be observed that the 

decrease happens fairly linearly with the increase of e. The phenomenon is quite similar to 

simply having an eccentric loading on a column. As in the case of d in the previous section, 

the steel thickness does not appear to have a notable influence on the results. 

 

From Tables 5.15-5.19, it can be concluded that an increase of the value of e from 8 mm to 12 

mm decreases the failure load by 4-14 % with an average decrease of about 9 % for all the 

studied models. When the eccentricity is further increased to e = 16 mm, the failure load 

decreases by 11-24 % from the situation with e = 8 mm, with an average decrease of about 

18 %.  
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Fig. 5.15 Influence of e for tnom = 1.5 mm. 
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Table 5.18 Influence of e for 200 mm high webs with tnom = 1.0 mm. 
 
Model name e (mm) Failure load F (kN) Fei / Fe8 
200R-t10_d20_e8_f20 8 5.68  
200R-t10_d20_e12_f20 12 4.94 0.87 
200R-t10_d20_e16_f20 16 4.40 0.89 
200R-t10_d20_e8_f50 8 5.28  
200R-t10_d20_e12_f50 12 4.51 0.85 
200R-t10_d20_e16_f50 16 3.99 0.76 
200R-t10_d50_e8_f20 8 6.19  
200R-t10_d50_e12_f20 12 5.76 0.93 
200R-t10_d50_e8_f50 8 5.91  
200R-t10_d50_e12_f50 12 5.40 0.91 
200R-t10_d50_e16_f50 16 4.94 0.84 
  Minimum Fe12 / Fe8 0.85 
  Maximum Fe12 / Fe8 0.93 
  Average  Fe12 / Fe8 0.89 
  Minimum Fe16 / Fd20 0.76 
  Maximum Fe16 / Fd20 0.89 
  Average  Fe16 / Fd20 0.83 
 

Table 5.19 Influence of e for 100 mm high webs with tnom = 1.0 mm. 
 
Model name e (mm) Failure load F (kN) Fei / Fe8 
100R-t10_d20_e5_f20 5 6.15 1.08 
100R-t10_d20_e8_f20 8 5.69  
100R-t10_d20_e12_f20 12 5.40 0.95 
100R-t10_d20_e5_f35 5 6.28 1.01 
100R-t10_d20_e8_f35 8 6.20  
100R-t10_d20_e5_f50 5 6.17 1.02 
100R-t10_d20_e8_f50 8 6.08  
100R-t10_d20_e12_f50 12 5.30 0.87 
100R-t10_d40_e8_f20 8 6.49  
100R-t10_d40_e12_f20 12 5.95 0.92 
100R-t10_d40_e8_f30 8 6.36  
100R-t10_d40_e12_f30 12 6.06 0.95 
  Minimum Fe5 / Fe8 1.01 
  Maximum Fe5 / Fe8 1.08 
  Average  Fe5 / Fe8 1.04 
  Minimum Fe12 / Fe8 0.87 
  Maximum Fe12 / Fe8 0.95 
  Average  Fe12 / Fe8 0.92 
 

As can be seen from Table 5.19 showing the results for the case with bw = 100 mm and 

tnom = 1.0 mm, three models with d = 20 mm were also computed with the eccentricity e equal 

to 5 mm, while f = {20 mm, 35 mm 50 mm}. Depending on the value of f, the failure load 

increased by 1-8 % in comparison to the case with e = 8 mm. The increase was greatest with 

f = 20 mm, which seems intuitively correct, as in this case the stiffener is most compact and 

can probably offer a higher stiffness than when f has a larger value. 
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Fig. 5.16 Influence of e for tnom = 1.0 mm. 

 

As was done with d above, the influence of the eccentricity of the longitudinal stiffener 

relative to web height was analysed by setting the ratio e / bw on the x-axis and the ratio of the 

failure load of the longitudinally stiffened web Fdi to the failure load of the corresponding flat 

web section Fflat on the y-axis, as shown in Figure 5.17. All models from figures 5.15 and 5.16 

are combined here so that models with tnom = 1.5 mm have larger markers than models with 

tnom = 1.0 mm. It can be seen again that the lines from models with tnom = 1.0 mm run a little 

higher than the lines from otherwise similar models with tnom = 1.5 mm. Besides this, the lines 

show similar behaviour depending on the ratio e/bw. It is once more seen that decreasing the 

ratio e / bw has a strong influence on the failure load.  
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Fig. 5.17 Influence of the ratio e / bw on failure load. 
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5.4.4 Influence of in-plane length of the stiffener (f) 

 

A third reorganisation of results into groups has been carried out in Tables 5.20-5.24 

according to web height and steel thickness in order to find out the influence of the in-plane 

length f of the longitudinal stiffener on failure load. A subdivision inside the tables is once 

again made so that horizontal lines separate groups of 2 or 3 models from each other. In each 

group, the other geometric parameters (d and e) are kept constant, while the value of f is 

varied. Depending on the model group, the parameter f is given values 20 mm, 30 mm, 

35 mm, 50 mm and 100 mm. The corresponding failure loads are marked with Ffi, where i is 

the value of f, e.g. Ff50 is the failure load for a model with f = 50 mm. The ratio Ffi/Ff20 is then 

calculated for i = {30 mm, 35 mm, 50 mm, 100 mm}. Maximum, minimum and average 

values of the ratios Ffi/Ff20 are finally collected at the bottom of each table.  

 
Table 5.20 Influence of f for 200 mm high webs with tnom = 1.5 mm. 

 
Model name f (mm) Failure load F (kN) Ffi / Ff20 
200R-t15_d20_e8_f20 20 12.835  
200R-t15_d20_e8_f35 35 12.097 0.94 
200R-t15_d20_e8_f50 50 12.054 0.94 
200R-t15_d50_e8_f20 20 14.299  
200R-t15_d50_e8_f50 50 13.421 0.94 
200R-t15_d50_e8_f100 100 12.556 0.88 
200R-t15_d75_e8_f20 20 14.539  
200R-t15_d75_e8_f50 50 13.713 0.94 
200R-t15_d20_e12_f20 20 11.519  
200R-t15_d20_e12_f50 50 10.336 0.90 
200R-t15_d50_e12_f20 20 13.359  
200R-t15_d50_e12_f50 50 12.399 0.93 
200R-t15_d20_e16_f20 20 10.429  
200R-t15_d20_e16_f50 50 9.154 0.88 
  Minimum Ff35 / Ff20 0.94 
  Maximum Ff35 / Ff20 0.94 
  Average  Ff35 / Ff20 0.94 
  Minimum Ff50 / Ff20 0.88 
  Maximum Ff50 / Ff20 0.94 
  Average  Ff50 / Ff20 0.92 
  Minimum Ff100 / Ff20 0.88 
  Maximum Ff100 / Ff20 0.88 
  Average  Ff100 / Ff20 0.88 
 

Graphic representations of the results are shown in Figures 5.18 and 5.19 for tnom = 1.5 mm 

and tnom = 1.0 mm, respectively. Dotted lines (.....) are again used for bw = 100 mm, 

dash lines (---) for bw = 150 mm and full lines (___) for bw = 200 mm. Different markers and 
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colours are used to separate the model types from each other (a certain marker stands for a 

certain combination of d and e). 

 
Table 5.21 Influence of f for 150 mm high webs with tnom = 1.5 mm. 

 
Model name f (mm) Failure load F (kN) Ffi / Ff20 
150R-t15_d20_e8_f20 20 12.05  
150R-t15_d20_e8_f35 35 12.19 1.01 
150R-t15_d20_e8_f50 50 12.62 1.05 
150R-t15_d50_e8_f20 20 14.63  
150R-t15_d50_e8_f50 50 14.22 0.97 
150R-t15_d20_e12_f20 20 10.85  
150R-t15_d20_e12_f50 50 10.86 1.00 
150R-t15_d50_e12_f20 20 13.55  
150R-t15_d50_e12_f50 50 13.67 1.01 
  Minimum Ff35 / Ff20 1.01 
  Maximum Ff35 / Ff20 1.01 
  Average  Ff35 / Ff20 1.01 
  Minimum Ff50 / Ff20 0.97 
  Maximum Ff50 / Ff20 1.05 
  Average  Ff50 / Ff20 1.01 
 

 

Table 5.22 Influence of f for 100 mm high webs with tnom = 1.5 mm. 
 
Model name f (mm) Failure load F (kN) Ffi / Ff20 
100R-t15_d20_e8_f20 20 12.73  
100R-t15_d20_e8_f35 35 12.63 0.99 
100R-t15_d20_e8_f50 50 12.86 1.01 
100R-t15_d20_e12_f20 20 11.29  
100R-t15_d20_e12_f50 50 11.95 1.06 
100R-t15_d20_e16_f20 20 10.96  
100R-t15_d20_e16_f35 35 10.52 0.96 
100R-t15_d40_e12_f20 20 13.13  
100R-t15_d40_e12_f30 30 12.66 0.96 
  Minimum Ff30 / Ff20 0.96 
  Maximum Ff30 / Ff20 0.96 
  Average  Ff30 / Ff20 0.96 
  Minimum Ff35 / Ff20 0.96 
  Maximum Ff35 / Ff20 0.99 
  Average  Ff35 / Ff20 0.98 
  Minimum Ff50 / Ff20 1.01 
  Maximum Ff50 / Ff20 1.06 
  Average  Ff50 / Ff20 1.04 
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Table 5.23 Influence of f for 200 mm high webs with tnom = 1.0 mm. 
 
Model name f (mm) Failure load F (kN) Ffi / Ff20 
200R-t10_d20_e8_f20_EC3 20 5.68  
200R-t10_d20_e8_f35_EC3 35 5.35 0.94 
200R-t10_d20_e8_f50_EC3 50 5.28 0.93 
200R-t10_d50_e8_f20_EC3 20 6.19  
200R-t10_d50_e8_f50_EC3 50 5.91 0.95 
200R-t10_d50_e8_f100_EC3 100 5.63 0.91 
200R-t10_d75_e8_f20_EC3 20 6.22  
200R-t10_d75_e8_f50_EC3 50 5.93 0.95 
200R-t10_d20_e12_f20_EC3 20 4.94  
200R-t10_d20_e12_f50_EC3 50 4.51 0.91 
200R-t10_d50_e12_f20_EC3 20 5.76  
200R-t10_d50_e12_f50_EC3 50 5.40 0.94 
200R-t10_d20_e16_f20_EC3 20 4.40  
200R-t10_d20_e16_f50_EC3 50 3.99 0.91 
  Minimum Ff35 / Ff20 0.94 
  Maximum Ff35 / Ff20 0.94 
  Average  Ff35 / Ff20 0.94 
  Minimum Ff50 / Ff20 0.91 
  Maximum Ff50 / Ff20 0.95 
  Average  Ff50 / Ff20 0.93 
  Minimum Ff100 / Ff20 0.91 
  Maximum Ff100 / Ff20 0.91 
  Average  Ff100 / Ff20 0.91 
 

Overall, the steel thickness does not appear to have a notable influence on these results either. 

Other than that, it is more difficult to draw general conclusions about the results concerning 

the influence of f than it was in the cases of d and e above. Some of the lines in Figures 5.18 

and 5.19 are increasing, some decreasing, some staying practically the same as the value of f 

is increased from the base value of 20 mm. However, some trends can be observed.  

 

For all models with bw = 200 mm, the failure load decreases when f is increased from the base 

value of 20 mm. Furthermore, the decrease appears to be fairly linear and of equal magnitude 

when f is increased from 20 mm to 50 mm in all cases. Model groups 200R-t15_d20_e8 and 

200R-t10_d20_e8 show, however, that the larger part of this decrease in failure load happens 

at values f = 20...35 mm than at values  f = 35...50 mm. When this result is combined with 

what was noted in the previous section about models with e = 5 mm, it can be concluded that 

the compactness (low values of e and f) of the stiffener is a positive factor for the web 

section's resistance against local transverse forces.  
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The overall decrease in failure load is of the order of 9-12 % when the value of f is increased 

from the base value of 20 mm up to 100 mm, with about 30-50 % of the change taking place 

between 20 mm and 35 mm and the rest between 35 mm and 100 mm. 

 

For models with bw = 150 mm, the results are not quite as straightforward. As the value of f is 

increased from 20 mm to 50 mm, some of the corresponding failure loads in Figure 5.16 

decrease, some increase and some remain the same. No correlation with the values of d and/or 

e can be seen. The same is true for bw = 100 mm. 

 
Fig. 5.18 Influence of f for tnom = 1.5 mm. 
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Table 5.24 Influence of f for 100 mm high webs with tnom = 1.0 mm. 
 
Model name f (mm) Failure load F (kN) Ffi / Ff20 
100R-t10_d20_e5_f20 20 6.15  
100R-t10_d20_e5_f35 35 6.28 1.02 
100R-t10_d20_e5_f50 50 6.17 1.00 
100R-t10_d20_e8_f20 20 5.69  
100R-t10_d20_e8_f35 35 6.20 1.09 
100R-t10_d20_e8_f50 50 6.08 1.07 
100R-t10_d40_e8_f20 20 6.49  
100R-t10_d40_e8_f30 30 6.36 0.98 
100R-t10_d20_e12_f20 20 5.40  
100R-t10_d20_e12_f50 50 5.30 0.98 
100R-t10_d40_e12_f20 20 5.95  
100R-t10_d40_e12_f30 30 6.06 1.02 
  Minimum Ff30 / Ff20 0.98 
  Maximum Ff30 / Ff20 1.02 
  Average  Ff30 / Ff20 1.00 
  Minimum Ff35 / Ff20 1.02 
  Maximum Ff35 / Ff20 1.09 
  Average  Ff35 / Ff20 1.06 
  Minimum Ff50 / Ff20 0.98 
  Maximum Ff50 / Ff20 1.07 
  Average  Ff50 / Ff20 1.02 
 
 

As was done with d and e above, the influence of the in-plane width of the longitudinal 

stiffener f relative to web height was analysed by setting the ratio f / bw on the x-axis and the 

ratio of the failure load of the longitudinally stiffened web Fdi to the failure load of the 

corresponding flat web section Fflat on the y-axis, as shown in Figure 5.20. All models from 

figures 5.18 and 5.19 are again combined here so that models with tnom = 1.5 mm have larger 

markers than models with tnom = 1.0 mm. It can be seen once more that the lines from models 

with tnom = 1.0 mm run a little higher than the lines from otherwise similar models with tnom = 

1.5 mm. For some cases, the inclinations of the lines for similar models with different steel 

thicknesses are slightly different. As seen above, no clear overall trend can be seen from this 

graph either.  
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Fig. 5.19 Influence of f for tnom = 1.0 mm. 
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Fig. 5.20 Influence of the ratio f / bw on failure load. 
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6. DISCUSSION OF THE RESULTS AND CONCLUSIONS 
  

6.1  General  

 

This research has focused on the resistance against local transverse forces, or web crippling 

capacity, of thin-walled steel cassettes. These types of structures have previously been 

designed as single-span structures and web crippling at the support area has usually not been a 

critical factor in design. Instead, sagging moment capacity has determined the design level. 

However, if the cassette is to be installed as a continuous structure over two or more spans, 

the capacity against local transverse forces at the inner support has to be determined.  

 

Although design codes have since long included design formulae for the determination of 

resistance against local transverse forces, the type of longitudinally stiffened web often used 

in cassette cross-sections is not included in the current design codes. This study therefore had 

the following objectives, which effectively divided the research work into separate sub-

projects: 

 

• The determination of the web crippling strength of both flat and longitudinally 

stiffened cassette webs and constructions experimentally; 

• The development and validation of numerical models on the basis of the experimental 

data; 

• The numerical study of the influence of different geometrical parameters on the 

resistance against local transverse forces of longitudinally stiffened cassette webs; 

• The provision of design recommendations concerning the resistance to local transverse 

forces of longitudinally stiffened cassettes webs. 

 

The following sections summarize the methodologies used in the study, the principal results 

obtained and the conclusions, and propose further research for the continued development of 

the solutions to the problems. 
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6.2 Methodology 

 

The problem was initially approached by carrying out a thorough literature study on the 

existing research work and design codes on cassette sections in general and web crippling in 

particular. The lack of information on the web crippling of longitudinally stiffened webs of 

the type studied was thus established.  

 

A test programme was designed in order to gain necessary and valid results to be used directly 

in the verification of existing design rules and indirectly by using the results to validate 

numerical models for parametric studies of cassette geometries. Non-linear finite element 

modelling was already effectively used in the planning of the test programme after similar 

models had been developed for test results found in literature. The preliminary FE-models 

were able to predict the test results with acceptable accuracy.  

 

After testing, the material test data and the actual measured cross-section dimensions were 

available and the numerical models could be developed further. Very good agreement 

between numerical analyses and test results was obtained. This allowed the initiation of a 

parametric study on longitudinally stiffened cassette web sections, during which the influence 

of different cross-section dimensions on the resistance against local transverse forces was 

investigated.  

 

 

6.3 Experimental results 

 

The experimental results showed that the existence of a longitudinal stiffener of the type that 

was tested reduces the resistance of the web section against local transverse forces by about 

17-22 % in comparison to a similar flat web section.   

 

The load-displacement graphs of the tested sections show a clear difference between the 

behaviour of flat and longitudinally stiffened web sections. While the stiffness and ultimate 

load of the flat web section are higher than those of the similar longitudinally stiffened web, 

also the failure happens more quickly for the flat web section. When the slenderness of the 

flat web is high, a clear buckling phenomenon takes place. When the slenderness is lower and 

the section is more compact, a gradual yielding leads to failure. For the longitudinally 
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stiffened web sections, the yielding happens slower and near the failure load, the 

displacements increase relatively quickly, i.e. the load-displacement curve's tangent is nearly 

horizontal. Once the failure load is reached and the test is continued, the load decreases 

slowly, while the load for the flat web sections starts to increase again after a short while. 

This is due to the redistribution of stresses and the development of a tension field in the web 

section. As the loading is continued, the tension field extends further away from the load 

application area. 

 

Interior one-flange - tests were carried out with spans 600 mm and 1000 mm. The results 

showed that the influence of the bending moment on web crippling capacity at these short 

spans is not very important. The average failure load of the tested sections with 

Lspan = 1000 mm was reduced only by about 2-4 % in comparison to the corresponding 

interior two-flange - tests. For the sections with Lspan = 600 mm, the failure load was actually 

slightly increased from the ITF-tests. This is most likely due to the development of a tension 

field between the stiffened support areas and the load application area, which helps a larger 

area of the cassette web to carry the load.  

 

Tests on built-up structures comprised of two full cassette sections and a total of four webs 

were carried out to study the difference between web sections acting alone and together with 

an adjacent web. According to the tests, the failure load per web increased by about 28 % for 

flat web sections and 12 % for longitudinally stiffened webs when compared to similar single-

web specimens. The increase is greater for structures with flat webs, because these benefit 

more from the extra support due to the higher slenderness (greater height) of the plate area. 

However, the overall stiffness per web section was not increased. 

 

The test results were compared with nominal design values calculated according to the 

European, American (U.S.), Australian and Finnish structural design codes. It was noticed 

that all codes give conservative values in comparison to the test results and that the American 

and Australian codes give slightly higher strength values than the European code, while the 

Finnish code is most conservative of the four. However, the American and Australian design 

codes prescribe a factor of safety equal to 0.75 (to be multiplied with nominal web crippling 

strength to obtain design resistance), while the European and Finnish codes are satisfied with 

a safety factor equal to unity.  
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Concerning the European design code, large discrepancies were noticed in design values 

depending on whether the equation for single webs or two or more webs was used. On the 

basis of the present results, it is recommended that the equation for single webs be used. 

 

 

6.4 Numerical studies 

 

A large number of finite element modelling has been carried out during this research. The 

functioning of the numerical models was validated on the basis of test results found in 

literature and the tests carried out during the present study. Overall, very good correlation was 

obtained between numerical models and tests after a substantial amount of experimenting on 

different modelling schemes and options. Among the modelling factors studied were the 

element sizes, the influence of initial imperfections, the length of the load application period 

and the number of elements used to model the rounded corners. Also the effect of having 

elastic spring supports at the flanges instead of screw connections was studied. The validity of 

the models was given a lot of attention in this study, because that was essential for the 

credibility of the subsequent parametric study. 

 

In the end, a quasi-static dynamic analysis type was chosen as the basis for the parametric 

modelling. This made possible the realistic modelling of the support and loading pads using 

contact surfaces, which allows the separation and individual deformations of the flanges at the 

loading area. This would not be possible if prescribed displacement boundary conditions were 

applied. The drawback of this method was the high cost in CPU-time, which was increased so 

much that the number of different parametric models had to be limited for practical reasons. 

 

In order to study the influence of the size and position of the longitudinal stiffener in the web 

on the resistance against local transverse forces, a total of 71 parametric numerical models 

(+ 5 comparison models with flat webs) were run using the model configuration validated on 

the basis of test results. Three main parameter, i.e. the distance of the stiffener from the wide 

flange d, the out-of-plane eccentricity of the stiffener e and the in-plane height of the stiffener 

f were varied, and an additional few models were run to see the influence of the load bearing 

length on resistance. The web height was chosen as 200 mm, 150 mm or 100 mm and the 

steel sheet thickness was 0.96 mm or 1.46 mm. 
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It was concluded that the existence of a longitudinal stiffener of the studied type decreases the 

resistance of the cross-section against local transverse forces by at least 10 % and much more 

if it is unfavourably situated or shaped. The relative decrease of resistance is slightly smaller 

for cross-sections with steel thickness 0.96 mm than for cross-sections with thickness 

1.46 mm.  

 

It was found that the placing of the stiffener very close to the flange is unfavourable for the 

resistance against local transverse forces. It is better to place the stiffener at least a distance 

equal to 0.25 bw away from the flange. If the stiffener is moved closer than 0.25 bw to the mid-

height of the web (up to 0.5 bw), the further influence on resistance is slight but positive. 

However, if the practical design case and the original purpose of the longitudinal stiffener 

(increasing bending resistance) are considered, it is probably favourable that the stiffener be 

closer to the compressed flange than to the mid-height of the web. Therefore it could be 

concluded that the distance d = 0.25 bw from the flange can be recommended, although this 

should be verified in analyses where the combined effects of local transverse forces and 

bending moment are considered. 

 

The eccentricity of the stiffener e was found to be inversely proportional to the resistance, as 

could well be expected. Furthermore, the influence appeared to be fairly linear. The influence 

of the in-plane length of the stiffener f was less coherent than those of d and e. However, it 

would appear that the compactness (low values of f and e) of the stiffener is favourable for the 

resistance. Concerning load bearing length, the analyses confirmed that the resistance against 

local transverse forces is directly proportional to load bearing length. 

 

Although the idea of developing a new design formula or a new resistance factor to be used 

similarly to Eq. (2.16) of ENV 1993-1-3:1996 for the case of a stiffened webs with two folds 

on opposite sides of the web was set as a possible objective of the present study, it had to be 

accepted during the course of the work that this objective was too ambitious due to the 

considerable number of statistical data needed and the relatively high cost of the numerical 

modelling work. However, it is hoped that the test and analysis results and the general 

guidelines and conclusions given in the present study will be of help in the optimisation of the 

cross-section geometries of cold-formed steel structures and the formulae used in design. 
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A reduction factor equal to 0.7 - 0.9 should be used for the type of longitudinally stiffened 

webs considered in this study in connection with the design code formulae for the resistance 

of unreinforced webs against local transverse forces, depending on the cross-section 

geometry. 

 

 

6.5 Further research 

 

Each study has to be limited to a certain scope - otherwise the work would never be finished. 

Further research is needed on the following aspects. 

 

Numerical parametric studies should be carried out under different loading conditions, namely 

IOF-, ETF- and EOF-conditions. This would lead to a better understanding of the influence of 

the different geometrical parameters on the resistance against local transverse forces and 

naturally lead to the inclusion of the combined effects of hogging bending moment and 

support reaction in the study. Some further testing may be necessary to validate the numerical 

models with different loading conditions. The accuracy of the numerical models could be 

improved further - or other modelling options could be developed.  

 

Different types of stiffeners and cross-sections should be considered in order to widen the 

field of application of the research. Once a sufficient amount of data has been gathered, a 

design formula could be developed and used within prescribed limits.  

 

The current design equations for unreinforced webs give relatively conservative values on the 

basis of this research. Work for their optimisation should be continued. 

 



 187

REFERENCES 
 

ABAQUS Version 6.2 (2001), User's Manual, Hibbitt, Karlsson & Sorensen, Inc., U.S.A. 
 
ABAQUS Version 6.3 (2002), User's Manual, Hibbitt, Karlsson & Sorensen, Inc., U.S.A. 
 
ABAQUS Version 6.4 (2003), User's Manual, Hibbitt, Karlsson & Sorensen, Inc., U.S.A. 
 
AISI (1996), Specification for the Design of Cold-Formed Steel Members with Commentary, 
Cold-Formed Steel Design Manual - Part V, American Iron and Steel Institute, 1996 Edition, 
Washington, DC, U.S.A. 
 
ANSYS 5.4 (1999), User's Manual, University High Option, ANSYS, Inc., Southpointe 275 
Technology Drive, Canonsburg, PA 15317, U.S.A. 
 
AS/NZS 4600 (1996), Australian / New Zealand Standard for Cold-Formed Steel Structures, 
Standards Australia, Sydney, Australia. 
 

Baehre, R. (1975), Sheet Metal Panels of Use in Building Construction - Current Research 
Projects in Sweden, Proceedings of the Third International Specialty Conference on Cold-
Formed Steel Structures, St.Louis, MO, U.S.A., 24-25.11.1975, University of Missouri-Rolla. 
 
Baehre, R., Buca, J. (1986), Die wirksame Breite des Zuggurtes von biegebeanspruchten 
Kassetten (Effective Width of the Tension Flange of Thin-Walled C-Shaped Panels), Stahlbau 
9/1986, pp. 276-285, Wilhelm Ernst & Sohn Verlag, Berlin, Germany (in German). 
 
Baehre, R. (1987), Zur Schubfeldwirkung und –bemessung von Kassettenkonstruktionen 
(Longitudinal Shear Effects and Dimensioning of Waffle-Structures), Stahlbau 7/1987, pp. 
197-202, Wilhelm Ernst & Sohn Verlag, Berlin, Germany (in German). 
 
Baehre, R., Holz, R., Voß, R.P. (1988), Befestigung von Trapezprofiltafeln auf 
Stahlkassettenprofilen (Fastening of Trapezoidal Sheetings to Thin-Walled C-Shaped Panels), 
Stahlbau10/1988, pp.309-311, Wilhelm Ernst & Sohn Verlag, Berlin, Germany (in German). 
 
Bakker, M.C.M. (1992), Web Crippling of Cold-Formed Steel Members, PhD Thesis, 
Eindhoven University of Technology, The Netherlands. 
 
Davies, J.M., Bryan, E.R. (1981), Manual of stressed skin diaphragm design, Granada, U.K. 
 
Davies, J.M., Leach, P. and Heinz, D. (1994), Second-Order Generalized Beam Theory, 
Journal of Constructional Steel Research, Vol. 31, Nos. 2-3, 1994, pp. 221-241, Elsevier 
Science Ltd, U.K. 
 
Davies, J.M. (1998), Light gauge steel cassette wall construction, Proceedings of the Nordic 
Steel Construction Conference, Bergen, Norway, 14-16.9.1998, Norwegian Steel Association, 
Oslo, Norway. 
 



 188

Davies, J.M., Fragos, A.S. (2001), Shear Strength of Empty and Infilled Cassettes, 
Proceedings of the Third International Conference on Thin-Walled Structures, Advances and 
Developments,, Crakow, Poland, 5-7 June 2001, Elsevier Science Ltd, U.K. 
 
ECCS (1978), The Stressed Skin Design of Steel Structures, ECCS 19, TC7, Constrado, 
Croydon, England. 
 
ECCS (1995), European Recommendations for the Application of Metal Sheeting acting as a 
Diaphragm, ECCS 88, TC7, Brussels, Belgium. 
 
ENV 1993-1-3:1996 European Committee for Standardisation: Eurocode 3: Design of Steel 
Structures, Part 1.3: Supplementary rules for cold formed thin gauge members and sheeting, 
CEN, Brussels, Belgium. 
 
ENV 1999-1-1:1998 European Committee for Standardisation: Eurocode 9: Design of 
aluminium structures - Part 1.1: General rules - General rules and rules for buildings, CEN, 
Brussels, Belgium. 
 
Fox, S.R., Schuster, R.M. (2000), Lateral Strength of Wind Load Bearing Wall Stud-to-Track 
Connection, Proceedings of the Fifteenth International Specialty Conference on Cold-Formed 
Steel Structures, St.Louis, MO, U.S.A., 19-20.10.2000, University of Missouri-Rolla. 
 
Hofmeyer, H. (2000), Combined Web Crippling and Bending Moment Failure of First-
Generation Trapezoidal Steel Sheeting: Experiments, Finite Element Models, Mechanical 
Models, PhD Thesis, Eindhoven University of Technology, The Netherlands. 
 
Kaitila, O., Mäkeläinen, P. (2003), Web Crippling Tests on Rannila Cassettes, Helsinki 
University of Technology Laboratory of Steel Structures Research Reports TKK-TeRT-03-
01, Espoo, Finland. 
 
Kesti, J., (2000), Local and Distortional Buckling of Perforated Steel Wall Studs, Doctoral 
dissertation, Helsinki University of Technology Laboratory of Steel Structures Publications 
TKK-TER-19, Espoo, Finland. 
 
Laine, T. (1997), Kantavien teräspoimulevyjen mitoitustutkimus (Design of load-bearing steel 
sheeting profiles), Master's Thesis, Helsinki University of Technology, Laboratory of Steel 
Structures, Espoo, Finland (in Finnish). 
 
Langan, J.E., LaBoube, R.A., Yu, W.W. (1994), Perforated Webs Subjected to End-One-
Flange Loading, Proceedings of the Twelfth International Specialty Conference on Cold-
Formed Steel Structures, St.Louis, MO, U.S.A., 18-19.10.1994, University of Missouri-Rolla. 
 
Microsoft Excel® (2000), Microsoft Office 2000, Microsoft Corporation, U.S.A. 
 
RakMK B6 (1989), Suomen Rakentamismääräyskokoelma, B6 Teräsohutlevyrakenteet, 
Ohjeet 1989, (The National Building Code of Finland B6 Light gauge steel structures, 
Guidelines), Ympäristöministeriö (Ministry of the Environment), (in Finnish). 
 
Rannila Steel Oy (2001), Rannilan rakennejärjestelmät – käsikirja (Rannila construction 
systems – handbook), Otavan kirjapaino Oy, Keuruu, Finland (in Finnish). 



 189

 
Salonen, S. (1988), Ohutlevykasetin vedetyn laipan taipuman määrittäminen (Determination 
of the deflection of the flange in tension of a thin-walled cassette), Proceedings of the 3rd 
Finnish Mechanics Days (Matti A. Ranta (ed.)), Helsinki University of Technology, Faculty 
of Information Technology, Institute of Mechanics, Otaniemi, Espoo, Finland 2-3.6.1988/26 
(in Finnish). 
 
Serrette, R.L., Peköz, T. (1995), Distortional Buckling of Thin-Walled Beams/Panels, I: 
Theory and II: Design Methods, Journal of Structural Engineering, Vol. 121, No. 4, April, 
1995, pp. 757-776, ASCE, U.S.A. 
 
SFS-EN 10 002-1 (2002), Metallic materials. Tensile testing. Part 1: Method of test at 
ambient temperature (Metallien vetokoe. Osa 1: Vetokoe huoneenlämpötilassa), Suomen 
Standardisoimisliitto SFS (In Finnish and in English). 
 
SFS-EN 10147 (2000), Kuumasinkityt ohutlevyrakenneteräkset. Tekniset toimitusehdot. 
(Continuously hot-dip zinc coated structural steel strip and sheet. Technical delivery 
conditions.), Suomen Standardisoimisliitto SFS (In Finnish and in English). 
 
StBK-N5 (1980), Norm för tunnplåtskonstruktioner 79 (Tunnplåtsnorm) (Design code for 
cold-formed thin-walled structures 79), Staten Stålbyggnadskommitté hos AB Svensk 
Byggtjänst (in Swedish). 
 
Studnička, J. (1990), Web Crippling of Wide Deck Sections, Proceedings of the Tenth 
International Specialty Conference on Cold-Formed Steel Structures, St.Louis, MO, U.S.A., 
23-24.10.1990, University of Missouri-Rolla. 
  
TRY (1989), Teräsohutlevyrakenteiden mitoitus, Ohjeiden B6 käsikirja (Design of Cold-
Formed Steel Structures, B6 Handbook),Teräsrakenneyhdistys r.y. TRY (Finnish 
Constructional Steelwork Association FCSA) (in Finnish). 
 
Wing, B.A., Schuster, R.M. (1982), Web Crippling of Decks Subjected to Two Flange 
Loading, Proceedings of the Sixth International Specialty Conference on Cold-Formed Steel 
Structures, St.Louis, MO, U.S.A., 16-17.11.1982, University of Missouri-Rolla. 
 
Wing, B.A., Schuster, R.M. (1986), Web Crippling of Multi-Web Deck Sections Subjected to 
Interior One Flange Loading, Proceedings of the Eighth International Specialty Conference 
on Cold-Formed Steel Structures, St.Louis, MO, U.S.A., 11-12.11.1986, University of 
Missouri-Rolla. 
 
Yu, W.-W. (2000), Cold-Formed Steel Design, Third Edition, John Wiley & Sons, Inc., New 
York, U.S.A. 
 



ANNEX A
1 (10)

Material test stress-strain curves for tested specimens (cf. section 3.2)

Fig. A1 Complete stress strain curves for material test specimens cut
longitudinally from steel coil FT019002 and used for cassettes sections

with tnom = 1.0 mm and bw = 100 mm.

Fig. A2 Initial part of stress strain curves for material test specimens cut
longitudinally from steel coil FT019002 and used for cassettes sections

with tnom = 1.0 mm and bw = 100 mm.
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Fig. A3 Complete stress strain curves for material test specimens cut
perpendicularly from steel coil FT019002 and used for cassettes sections

with tnom = 1.0 mm and bw = 100 mm.

Fig. A4 Initial part of stress strain curves for material test specimens cut
perpendicularly from steel coil FT019002 and used for cassettes sections

with tnom = 1.0 mm and bw = 100 mm.
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Fig. A5 Complete stress strain curves for material test specimens cut
longitudinally from steel coil J6503002 and used for cassettes sections with

tnom = 1.0 mm and bw = 150 mm.

Fig. A6 Initial part of stress strain curves for material test specimens cut
longitudinally from steel coil J6503002 and used for cassettes sections with

tnom = 1.0 mm and bw = 150 mm.
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Fig. A7 Complete stress strain curves for material test specimens cut
perpendicularly from steel coil J6503002 and used for cassettes sections

with tnom = 1.0 mm and bw = 150 mm.

Fig. A8 Initial part of stress strain curves for material test specimens cut
perpendicularly from steel coil J6503002 and used for cassettes sections

with tnom = 1.0 mm and bw = 150 mm.
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Fig. A9 Complete stress strain curves for material test specimens cut
longitudinally from steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 150 mm.

Fig. A10 Initial part of stress strain curves for material test specimens cut
longitudinally from steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 150 mm.
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Fig. A11 Complete stress strain curves for material test specimens cut
perpendicularly from steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 150 mm.

Fig. A12 Initial part of stress strain curves for material test specimens cut
perpendicularly from steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 150 mm.

0

50

100

150

200

250

300

350

400

450

500

550

0 2 4 6 8 10 12 14 16 18 20
Strain [%]

St
re

ss
 [N

/m
m

²]

KH089002 Perpendicularly 1.5-B2-1
KH089002 Perpendicularly-1.5-B2-2
KH089002 Perpendicularly-1.5-B2-3
KH089002 Perpendicularly-1.5-B2-4
KH089002 Perpendicularly-1.5-B2-5

B2-5

B2-4

B2-2

B2-3
B2-1

0

50

100

150

200

250

300

350

400

450

500

550

0.0 0.1 0.2 0.3 0.4 0.5
Strain [%]

St
re

ss
 [N

/m
m

²]

KH089002 Perpendicularly 1.5-B2-1
KH089002 Perpendicularly-1.5-B2-2
KH089002 Perpendicularly-1.5-B2-3
KH089002 Perpendicularly-1.5-B2-4
KH089002 Perpendicularly-1.5-B2-5



ANNEX A
7 (10)

Fig. A13 Complete stress strain curves for material test specimens cut
longitudinally from steel coil KF943005 and used for cassettes sections

with tnom = 1.0 mm and bw = 200 mm.

Fig. A14 Initial part of stress strain curves for material test specimens cut
longitudinally from steel coil KF943005 and used for cassettes sections

with tnom = 1.0 mm and bw = 200 mm.
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Fig. A15 Complete stress strain curves for material test specimens cut
perpendicularly from steel coil KF943005 and used for cassettes sections

with tnom = 1.0 mm and bw = 200 mm.

Fig. A16 Initial part of stress strain curves for material test specimens cut
perpendicularly from steel coil KF943005 and used for cassettes sections

with tnom = 1.0 mm and bw = 200 mm.
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Fig. A17 Complete stress strain curves for material test specimens cut
longitudinally from steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 200 mm.

Fig. A18 Initial part of stress strain curves for material test specimens cut
longitudinally from steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 200 mm.
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Fig. A19 Complete stress strain curves for material test specimens cut perpendicularly from
steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 200 mm.

Fig. A20 Initial part of the stress strain curves for material test specimens cut
perpendicularly from steel coil KH089002 and used for cassettes sections

with tnom = 1.5 mm and bw = 200 mm.
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Table B1 Measured cross-sectional dimensions of single web test specimens with flat webs [mm].

btf btf.fl btf.st bw bw.fl bbf bbf.fl bbf.st ritf retf rtf ribf rebf rbf L

ITF100-t10-1 97.1 89.0 27.2 101.7 95.6 41.4 37.3 24.3 2.75 4.50 3.63 2.00 3.50 2.75 1199
ITF100-t10-2 97.7 89.1 29.1 101.2 95.5 41.5 36.6 23.3 2.50 4.50 3.50 2.00 3.50 2.75 1199
ITF100-t10-3 97.8 89.8 29.4 101.4 95.9 41.8 37.2 23.5 2.50 4.50 3.50 2.00 3.50 2.75 1201
ITF150-t10-1 97.2 88.3 26.5 152.0 145.1 39.5 32.4 14.0 2.50 5.00 3.75 2.50 5.00 3.75 1198
ITF150-t10-2 96.9 89.4 27.4 151.8 145.7 39.3 33.0 14.9 2.50 4.75 3.63 2.50 5.00 3.75 1194
ITF150-t10-3 96.2 89.0 28.2 152.7 146.5 39.3 32.9 14.4 2.50 5.00 3.75 2.50 5.00 3.75 1195
ITF150-t10-4 98.9 86.2 28.8 153.0 144.1 39.6 32.1 15.5 2.50 4.50 3.50 3.00 5.00 4.00 1196
ITF150-t10-5 95.5 86.3 29.9 153.0 144.4 39.2 32.5 15.2 3.00 4.50 3.75 3.75 5.00 4.38 1199
ITF150-t15-1 91.9 88.1 29.7 153.3 143.3 41.7 35.8 18.9 2.50 4.50 3.50 2.75 5.00 3.88 1200
ITF150-t15-2 94.3 87.3 28.1 152.9 144.7 41.4 35.6 17.3 2.25 4.50 3.38 2.75 4.75 3.75 1202
ITF150-t15-3 94.7 88.4 29.7 152.6 142.4 42.0 36.5 16.9 2.50 4.75 3.63 2.75 5.00 3.88 1201
ITF200-t10-1 93.2 85.6 28.7 201.7 188.0 42.1 33.1 23.5 2.25 5.00 3.63 2.25 5.00 3.63 1198
ITF200-t10-2 92.2 87.7 27.8 200.3 190.5 42.1 33.1 23.9 2.25 4.75 3.50 2.50 4.75 3.63 1198
ITF200-t10-3 93.7 88.0 28.7 200.8 192.2 42.0 34.6 23.6 3.00 5.00 4.00 3.00 4.50 3.75 1199
ITF200-t15-1 93.8 87.0 32.6 203.2 192.3 42.3 35.0 22.3 2.50 5.00 3.75 1.00 4.25 2.63 1199
ITF200-t15-2 94.3 85.0 29.7 203.2 188.9 42.6 32.1 24.7 2.75 5.00 3.88 1.25 4.00 2.63 1203
ITF200-t15-3 94.1 86.1 29.4 202.3 189.8 41.9 33.1 23.1 2.75 4.50 3.63 1.00 4.25 2.63 1201
ITF200-t15-4 94.5 86.3 29.4 203.8 189.2 41.9 33.7 25.6 3.00 5.00 4.00 1.50 4.00 2.75 1203
IOF200-t15-S600-1 93.3 87.3 27.3 202.4 191.0 43.5 35.3 24.6 3.00 5.00 4.00 2.75 4.50 3.63 1198
IOF200-t15-S600-2 95.1 86.4 28.0 203.7 192.9 43.0 35.2 23.4 3.00 5.00 4.00 1.75 4.00 2.88 1207
IOF200-t15-S600-3 94.5 86.9 28.3 203.6 190.6 43.5 35.4 25.9 3.00 5.00 4.00 2.00 4.50 3.25 1199
IOF200-t15-S600-4 94.2 86.7 27.5 203.7 191.1 43.0 35.0 26.0 3.00 5.00 4.00 2.25 4.50 3.38 1198
IOF200-t15-S1000-1 93.1 88.0 28.8 203.7 189.8 43.8 35.3 25.7 2.75 5.00 3.88 2.25 4.50 3.38 1200
IOF200-t15-S1000-2 94.7 86.0 28.2 204.1 193.2 42.9 34.5 26.6 2.50 5.00 3.75 2.25 4.00 3.13 1200
IOF200-t15-S1000-3 92.7 85.3 29.4 204.0 191.3 42.7 34.7 26.0 2.50 5.00 3.75 2.25 4.00 3.13 1198
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Table B2 Measured cross-sectional dimensions of single web test specimens with longitudinally stiffened webs [mm].

btf btf.fl btf.st bw bw.fl bbf bbf.fl bbf.st ritf retf rtf ribf rebf rbf bw.st bw.st.fl dw.st hw.st L

ITF100R-t10-1 95.2 89.0 27.7 102.7 98.7 39.8 37.7 19.8 2.75 4.50 3.63 1.75 4.00 2.88 45.0 31.2 27.8 8.5 1198
ITF100R-t10-2 95.9 90.0 30.7 101.9 96.9 43.0 35.6 16.6 2.75 4.50 3.63 2.50 3.75 3.13 45.5 30.0 26.2 8.7 1197
ITF100R-t10-3 95.6 89.0 26.4 102.4 97.3 42.0 35.1 17.8 2.75 4.00 3.38 2.50 3.75 3.13 44.9 29.9 25.9 8.7 1202
ITF150R-t10-1 94.7 90.3 27.4 152.1 147.6 41.8 37.2 14.7 2.75 4.50 3.63 2.75 5.00 3.88 45.2 29.3 25.7 8.2 1199
ITF150R-t10-2 96.3 91.3 29.3 151.7 147.5 41.8 35.7 15.2 2.50 4.50 3.50 2.50 4.50 3.50 46.6 29.3 23.8 8.8 1200
ITF150R-t10-3 94.3 89.7 29.4 152.8 142.0 42.1 31.5 14.7 2.50 4.00 3.25 3.00 5.50 4.25 45.7 29.6 25.9 7.3 1200
ITF150R-t15-1 97.0 88.5 30.1 153.2 143.2 41.8 35.7 11.8 2.75 4.75 3.75 2.50 5.00 3.75 45.6 28.7 25.4 8.6 1200
ITF150R-t15-2 96.7 88.5 27.7 152.4 144.3 41.4 36.1 12.2 2.50 4.50 3.50 2.25 4.50 3.38 45.9 28.6 25.6 8.8 1203
ITF150R-t15-3 96.0 89.3 27.0 151.8 144.9 41.4 36.3 12.1 3.00 4.50 3.75 2.75 4.50 3.63 46.0 30.2 26.0 9.0 1203
ITF200R-t10-1 94.0 87.4 30.0 201.9 192.0 43.4 32.7 14.4 3.00 4.50 3.75 2.75 4.50 3.63 45.3 29.6 26.0 7.9 1201
ITF200R-t10-2 94.3 89.4 29.3 201.7 188.0 42.4 33.4 14.6 2.50 4.50 3.50 2.50 4.25 3.38 44.7 30.8 25.6 8.4 1200
ITF200R-t10-3 93.6 89.1 29.8 201.9 189.8 43.3 32.8 15.2 2.50 5.00 3.75 2.25 4.00 3.13 44.9 29.9 25.4 8.3 1199
ITF200R-t15-1 93.9 87.4 28.1 202.6 190.2 41.6 34.5 15.5 2.50 5.00 3.75 1.75 3.75 2.75 47.7 27.2 23.7 8.4 1199
ITF200R-t15-2 95.0 87.9 28.0 202.6 189.0 40.9 31.1 15.3 2.25 4.75 3.50 2.00 4.50 3.25 47.2 28.2 24.0 8.3 1203
ITF200R-t15-3 95.5 88.9 30.3 203.5 191.1 41.0 33.3 15.4 2.00 5.00 3.50 1.00 3.75 2.38 48.1 27.7 23.5 7.9 1199
IOF200R-t15-
S600-1 94.9 86.7 30.7 204.2 194.1 41.7 34.7 19.2 3.00 5.00 4.00 2.00 4.00 3.00 47.5 29.1 26.1 9.3 1199
IOF200R-t15-
S600-2 94.8 86.5 30.9 203.7 193.7 42.5 34.3 17.5 2.25 5.00 3.63 2.25 4.50 3.38 48.1 29.0 25.9 8.1 1202
IOF200R-t15-
S600-3 96.4 87.0 28.9 203.9 192.4 41.8 33.3 18.9 2.25 5.00 3.63 2.25 4.00 3.13 47.4 29.3 25.9 8.2 1201
IOF200R-t15-
S600-4 95.0 88.2 29.3 203.8 193.1 41.7 35.1 17.4 2.25 5.00 3.63 2.00 4.00 3.00 47.2 28.4 25.8 8.6 1200
IOF200R-t15-
S1000-1 94.8 86.5 29.6 203.5 193.3 42.0 34.9 14.8 2.75 5.00 3.88 2.00 4.00 3.00 48.3 29.6 25.0 8.9 1205

IOF200R-t15-
S1000-2 93.1 87.2 29.5 203.7 196.2 42.1 32.2 17.1 3.00 5.00 4.00 2.00 4.00 3.00 47.3 30.0 25.5 8.9 1199

IOF200R-t15-
S1000-3 92.7 85.8 30.3 203.2 195.0 42.0 35.0 16.8 2.75 5.00 3.88 2.00 4.00 3.00 47.2 28.7 25.1 8.7 1200
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Table B3 Measured initial curvatures of single web
test specimens with flat webs [mm].

curvtf curvw curvbf curvw.vert

ITF100-t10-1 0.31 -0.69 -1.90 -0.93
ITF100-t10-2 0.35 -0.46 -1.97 -0.80
ITF100-t10-3 0.33 -0.46 -1.85 -0.79
ITF150-t10-1 -0.59 -1.07 -1.09 -0.26
ITF150-t10-2 -0.55 -1.46 -1.27 -0.64
ITF150-t10-3 -0.54 -1.21 -1.15 -0.37
ITF150-t10-4 -0.21 -1.30 -1.21 -0.54
ITF150-t10-5 -0.27 -1.16 -1.05 -0.33
ITF150-t15-1 -1.00 -1.80 -0.89 -0.57
ITF150-t15-2 -1.27 -1.72 -1.03 -0.68
ITF150-t15-3 -0.96 -2.00 -1.20 -0.57
ITF200-t10-1 -6.40 -6.50 -0.06 -3.13
ITF200-t10-2 -3.05 -5.77 0.00 -2.15
ITF200-t10-3 -5.55 -6.03 0.35 -1.93
ITF200-t15-1 -1.74 -1.83 0.37 -0.56
ITF200-t15-2 -1.89 -2.23 0.84 -0.71
ITF200-t15-3 -1.20 -1.57 0.24 -0.74
ITF200-t15-4 -1.37 -1.66 0.06 -0.31
IOF200-t15-S600-1 -1.57 -2.10 0.41 -1.06
IOF200-t15-S600-2 -2.05 -1.90 0.06 -0.59
IOF200-t15-S600-3 -1.65 -2.11 0.17 -0.72
IOF200-t15-S600-4 -1.37 -1.72 -0.10 -0.79
IOF200-t15-S1000-1 -1.03 -1.76 -0.12 -0.45
IOF200-t15-S1000-2 -1.19 -1.43 -0.38 -0.41
IOF200-t15-S1000-3 -1.32 -1.38 -0.17 -0.52

Table B4 Measured initial curvatures of single web test
specimens with longitudinally stiffened webs [mm].

curvtf curvw curvbf curvw.vert

ITF100R-t10-1 0.07 -2.53 -2.48 -8.96*
ITF100R-t10-2 0.23 -2.46 -2.46 -8.61*
ITF100R-t10-3 0.10 -2.04 -2.25 -8.54*
ITF150R-t10-1 -0.13 -0.29 -0.88 -1.43
ITF150R-t10-2 -0.44 -1.57 -1.00 -3.47
ITF150R-t10-3 -0.03 -0.31 -1.32 2.90
ITF150R-t15-1 -0.69 -2.33 -0.97 -1.86
ITF150R-t15-2 -1.18 -2.18 -1.14 -2.47
ITF150R-t15-3 -0.88 -1.84 -1.27 -1.70
ITF200R-t10-1 -0.36 1.45 -0.75 1.80
ITF200R-t10-2 -0.28 1.45 -0.21 1.92
ITF200R-t10-3 0.70 2.60 -1.70 8.30
ITF200R-t15-1 -1.93 -2.78 0.04 -1.98
ITF200R-t15-2 -0.71 -1.74 0.06 -0.28
ITF200R-t15-3 -1.40 -1.90 0.00 -1.08
IOF200R-t15-S600-1 -0.92 -0.74 -0.23 -0.10
IOF200R-t15-S600-2 -0.82 -0.84 -0.03 -0.12
IOF200R-t15-S600-3 -0.79 -0.81 0.13 -0.42
IOF200R-t15-S600-4 -0.85 -0.95 0.10 -0.53
IOF200R-t15-S1000-1 -1.27 -2.23 0.22 -0.90
IOF200R-t15-S1000-2 -1.00 -1.60 -0.19 -0.54
IOF200R-t15-S1000-3 -0.73 -1.44 -0.11 -0.94
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Table B5 Measured cross-sectional dimensions of built-up test specimens with flat webs [mm].

btf btf.fl btf.st bw bw.fl bbf bbf.fl bbf.st ritf retf rtf ribf rebf rbf L

S-IOF200-t15- web1 96.4 90.6 29.8 199.8 187.2 29.3 22.3 10.5 2.5 5.0 3.75 2.5 4.0 3.25 1201
S1000-1 web2 93.7 87.2 29.1 203.6 192.5 42.9 35.3 25.6 2.0 5.0 3.50 2.0 4.0 3.00 1198

web3 96.8 89.4 29.5 199.8 189.6 28.5 21.5 9.3 2.0 5.0 3.50 2.0 5.0 3.50 1198
web4 93.0 87.5 28.7 203.5 191.6 43.1 34.6 24.9 2.5 5.0 3.75 2.3 3.5 2.88 1201

S-IOF200-t15- web1 96.2 89.2 30.9 199.4 188.6 29.7 22.3 10.4 2.5 4.5 3.50 2.5 4.5 3.50 1200
S1000-2 web2 92.3 87.2 29.5 204.1 190.4 42.5 35.9 26.5 3.3 4.5 3.88 1.5 4.0 2.75 1199

web3 97.2 90.3 29.1 199.6 190.1 28.8 21.4 9.7 2.0 5.0 3.50 2.0 4.5 3.25 1199
web4 94.0 89.7 28.7 203.6 190.8 43.6 36.6 26.2 2.5 5.0 3.75 2.5 3.0 2.75 1200

S-IOF200-t15- web1 98.1 90.6 29.3 199.9 188.4 28.0 22.3 11.1 2.5 4.5 3.50 2.0 4.0 3.00 1200
S1000-3 web2 92.4 88.7 28.7 203.8 190.8 43.2 35.2 25.4 3.0 4.5 3.75 2.0 3.5 2.75 1196

web3 96.4 90.2 29.3 200.4 189.3 29.4 19.4 10.5 2.0 5.0 3.50 2.0 4.5 3.25 1196
web4 94.2 88.6 27.2 204.4 189.7 42.8 34.9 26.1 2.0 5.0 3.50 2.0 4.0 3.00 1200

Table B6 Measured cross-sectional dimensions of built-up test specimens with longitudinally stiffened webs [mm].

btf btf.fl btf.st bw bw.fl bbf bbf.fl bbf.st ritf retf rtf ribf rebf rbf bw.st bw.st.fl dw.st hw.st L

S-IOF200R- web1 95.6 89.6 30.0 198.2 191.0 29.5 21.1 10.4 2.5 4.5 3.50 2.5 4.5 3.50 49.7 30.0 26.0 10.8 1201
t15- web2 94.9 89.5 29.5 204.1 193.9 42.6 33.6 17.9 2.8 5.0 3.88 2.3 4.0 3.13 47.8 27.3 25.2 8.1 1199
S1000-1 web3 96.1 88.6 31.5 198.8 190.6 29.1 20.8 9.8 2.5 4.5 3.50 2.5 4.5 3.50 49.7 26.4 25.1 10.6 1199

web4 95.8 89.7 28.5 204.1 193.2 42.3 36.1 16.9 2.8 4.5 3.63 2.0 4.0 3.00 49.7 29.0 26.1 8.0 1201
S-IOF200R- web1 96.4 88.8 30.9 198.4 189.2 30.0 23.0 10.8 2.5 4.5 3.50 2.5 4.0 3.25 47.0 32.1 26.0 10.2 1202
t15- web2 95.5 90.4 28.7 203.2 192.9 42.9 35.7 14.9 2.5 4.5 3.50 2.0 4.0 3.00 48.1 28.7 25.2 8.8 1204
S1000-2 web3 96.6 88.2 29.2 199.0 188.6 30.0 22.9 11.7 2.5 4.5 3.50 2.3 4.5 3.38 45.6 30.1 27.0 10.0 1204

web4 93.9 89.2 28.4 203.7 193.3 41.9 34.9 17.5 2.5 5.0 3.75 2.0 4.0 3.00 46.5 28.8 25.3 8.2 1202
S-IOF200R- web1 96.6 89.5 31.5 198.9 189.6 29.3 21.0 10.7 2.5 4.5 3.50 2.5 4.0 3.25 49.1 29.8 26.4 10.5 1200
t15- web2 93.3 88.6 28.9 204.4 191.5 42.2 35.2 17.3 2.8 4.5 3.63 2.0 3.5 2.75 47.1 29.5 24.3 8.5 1200
S1000-3 web3 95.9 87.3 30.5 198.8 188.0 28.5 21.8 10.6 2.5 4.5 3.50 2.5 4.5 3.50 47.2 28.8 26.2 10.1 1200

web4 95.3 90.7 30.3 204.3 192.9 42.1 35.5 18.0 2.5 4.5 3.50 2.0 3.0 2.50 47.3 28.4 24.9 8.6 1199
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Table B7 Measured initial curvatures of built-up test
specimens with flat webs [mm].

curvtf curvw curvbf curvw.vert

S-IOF200-t15- web1 -1.02 1.30 0.30 0.00
S1000-1 web2 -1.00 -2.50 -0.53 -1.23

web3 -1.28 0.53 0.20 -0.13
web4 -1.07 -1.77 0.00 -0.60

S-IOF200-t15- web1 -0.50 1.90 0.15 -0.17
S1000-2 web2 -1.37 -2.78 -0.40 -1.05

web3 -1.00 0.95 0.00 -0.17
web4 -0.97 1.70 -0.54 -0.54

S-IOF200-t15- web1 -0.54 0.31 0.28 -0.60
S1000-3 web2 -1.36 -2.35 0.20 0.82

web3 -1.40 0.91 0.10 -0.18
web4 -0.60 1.45 -0.27 -0.88

Table B8 Measured top flange widths of built-up test
specimens with flat webs [mm].

b1 b2 b3

S-IOF200-t15-S1000-1 298 598 299
S-IOF200-t15-S1000-2 299 598 299
S-IOF200-t15-S1000-3 300 598 299

Table B9 Measured initial curvatures of built-up test
specimens with longitudinally stiffened webs [mm].

curvtf curvw curvbf curvw.vert

S-IOF200R- web1 0.40 0.80 0.40 1.51
t15- web2 -1.00 -1.25 -0.15 -0.11
S1000-1 web3 -0.70 0.70 0.00 1.66

web4 -1.00 -1.45 -0.38 0.00
S-IOF200R- web1 -0.20 1.45 0.25 1.90
t15- web2 -1.60 2.75 0.05 -2.50
S1000-2 web3 -0.95 1.10 0.14 1.10

web4 -1.04 -1.50 -0.15 0.71
S-IOF200R- web1 -1.30 1.30 0.00 2.06
t15- web2 -1.00 -1.40 -0.12 -0.14
S1000-3 web3 -0.65 0.77 0.17 -0.17

web4 -1.10 -1.32 -0.30 0.00

Table B10 Measured top flange widths of built-up test
specimens with longitudinally stiffened webs [mm].

b1 b2 b3

S-IOF200R-t15-S1000-1 299 598 300
S-IOF200R-t15-S1000-2 299 598 300
S-IOF200R-t15-S1000-3 298 598 299
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Example of input-file for ABAQUS/Explicit analysis

This annex presents the input file for the model ITF200-t15_flat created for the parametric
study. Dash lines "---" replace edited parts (e.g. node and element data). All parametric
models followed fundamentally the same scheme. The input file was created using
ABAQUS/CAE.

*Heading
** Job name: ITF200-t15_flat Model name: ITF200-t15_flat
**
** PARTS
**
*Part, name=CassetteSection
*End Part
*Part, name=LoadingBlock
*End Part
**
** ASSEMBLY
**
*Assembly, name=Assembly
**
*Instance, name=CassetteSection-1, part=CassetteSection
*Node
      1,       -0.003,        0.197,         1.52
      2,        -0.02,        0.197,         1.52
---
  54719,  -0.09985445,    0.1937899,        0.005
  54720,   -0.1087272,     0.190745,        0.005
*Element, type=S4R
 1,    1,   85, 9089,   94
 2,   85,   86, 9090, 9089
---
53924, 54719, 54720,  9087,  9088
53925, 54720,  9086,    84,  9087
** Region: (CasShellSection:Picked)
*Elset, elset=_I1, internal, generate
     1,  53925,      1
** Section: CasShellSection
*Shell Section, elset=_I1, material=S350_testmat
0.001443, 5
*End Instance
**
*Instance, name=LoadingBlock-1, part=LoadingBlock
-0.0970000049989506, -0.0337218462614279,         1.55
-0.0970000049989506, -0.0337218462614279,         1.55, -0.0970000049989508,
0.966278166426624,         1.55, 89.9999992730282
*Node
      1,         0.03,           0.,          0.2
      2,         0.03,         0.03,          0.2
---
   2606,        0.055,         0.01,           0.
   2607,        0.055,        0.005,           0.
*Element, type=R3D4
 1,   1,  51, 676,  70
 2,  51,  52, 677, 676
---
2679, 2606, 2607,  236,  235
2680, 2607,  411,   14,  236
*Node
   2608,         0.05,           0.,          0.1
*Nset, nset=LoadingBlock-1-RefPt_, internal
2608,
*Elset, elset=LoadingBlock-1, generate
    1,  2680,     1
*End Instance
**
*Instance, name=LoadingBlock-2, part=LoadingBlock
      -0.103,  0.197628696,         1.55
      -0.103,  0.197628696,         1.55,       -0.103, 1.19762870868805,         1.55,
89.9999992730282
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*Node
      1,         0.03,           0.,          0.2
      2,         0.03,         0.03,          0.2
---
   2606,        0.055,         0.01,           0.
   2607,        0.055,        0.005,           0.
*Element, type=R3D4
 1,   1,  51, 676,  70
 2,  51,  52, 677, 676
---
2679, 2606, 2607,  236,  235
2680, 2607,  405,   14,  236
*Node
   2608,         0.05,           0.,          0.1
*Nset, nset=LoadingBlock-2-RefPt_, internal
2608,
*Elset, elset=LoadingBlock-2, generate
    1,  2680,     1
*End Instance
*Nset, nset=RP_supportblock, instance=LoadingBlock-1
 2608,
*Nset, nset=RP_LoadBlock, instance=LoadingBlock-2
 2608,
*Nset, nset=Cassette_all, instance=CassetteSection-1, generate
     1,  54720,      1
*Elset, elset=Cassette_all, instance=CassetteSection-1, generate
     1,  53925,      1
*Nset, nset=load_block_left_screw_location, instance=LoadingBlock-2
 12,
*Nset, nset=load_block_right_screw_location, instance=LoadingBlock-2
 37,
*Nset, nset=sup_block_left_screw_location, instance=LoadingBlock-1
10,
*Nset, nset=sup_block_right_screw_location, instance=LoadingBlock-1
 31,
*Nset, nset=bf_left_screw_location, instance=CassetteSection-1
 38,
*Nset, nset=bf_right_screw_location, instance=CassetteSection-1
 15,
*Nset, nset=bf_screw_lines, instance=CassetteSection-1
  13,  15,  17,  36,  38,  40, 201, 202, 208, 209, 210, 378, 379, 387, 388, 389
*Elset, elset=bf_screw_lines, instance=CassetteSection-1
 203, 204, 205, 215, 216, 217, 218, 611, 612, 613, 629, 630, 631, 632
*Nset, nset=tf_left_screw_location, instance=CassetteSection-1
 2,
*Nset, nset=tf_right_screw_location, instance=CassetteSection-1
 6,
*Nset, nset=tf_screw_lines, instance=CassetteSection-1
   1,   2,   5,   6,  28,  50,  85,  86,  95,  96, 247, 248, 249, 250, 251, 252
 253, 254, 255, 256, 257, 258, 259, 432, 433, 434, 435, 436, 437, 438, 439, 440
 441, 442, 443, 444
*Elset, elset=tf_screw_lines, instance=CassetteSection-1
   1,   2,   3,  13,  14,  15, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278
 279, 280, 281, 282, 695, 696, 697, 698, 699, 700, 701, 702, 703, 704, 705, 706
 707, 708
*Elset, elset=_Load_block_bot_surface_SPOS, internal, instance=LoadingBlock-2
   37,   38,   39,   40,   41,   42,   43,   44,   45,   46,   47,   48,   49,   50,   51,
52
---
 2617, 2618, 2619, 2620, 2621, 2622, 2623, 2624, 2625, 2626, 2627, 2628, 2629, 2630, 2631,
2632
*Surface, type=ELEMENT, name=Load_block_bot_surface
_Load_block_bot_surface_SPOS, SPOS
*Elset, elset=_Sup_block_top_surface_SPOS, internal, instance=LoadingBlock-1
  117,  118,  119,  120,  121,  122,  123,  124,  125,  126,  127,  128,  129,  130,  131,
132
---
 2303, 2304, 2305, 2306, 2463, 2464, 2465, 2466, 2467, 2468, 2469, 2470, 2471, 2472, 2473,
2474
*Surface, type=ELEMENT, name=Sup_block_top_surface
_Sup_block_top_surface_SPOS, SPOS
*Elset, elset=_Cas_top_surface_SNEG, internal, instance=CassetteSection-1
    1,    2,    3,    4,    5,    6,    7,    8,    9,   10,   11,   12,   13,   14,   15,
16
---
 9004, 9005, 9006, 9007, 9008, 9009, 9010, 9011
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*Surface, type=ELEMENT, name=Cas_bot_surface
_Cas_bot_surface_SPOS, SPOS
*Rigid Body, ref node=LoadingBlock-1.LoadingBlock-1-RefPt_, elset=LoadingBlock-1.LoadingBlock-
1
*Rigid Body, ref node=LoadingBlock-2.LoadingBlock-2-RefPt_, elset=LoadingBlock-2.LoadingBlock-
2
*End Assembly
*Amplitude, name=Loading_amplitude, definition=smooth step
0., 0., 0.1, 1.
**
** MATERIALS
**
*Material, name=S350_testmat
*Density
7850.,
*Elastic
 2.03418e+11, 0.3
*INCLUDE, INPUT=KH089002_AA-3_ABQ_plastic_input.txt
**
** INTERACTION PROPERTIES
**
*Surface Interaction, name=Contact_properties
*Friction
0.,
*Surface Behavior, pressure-overclosure=HARD
**
** BOUNDARY CONDITIONS
**
** Name: Load_block_bc Type: Displacement/Rotation
*Boundary
RP_LoadBlock, 1, 1
RP_LoadBlock, 2, 2
RP_LoadBlock, 3, 3
RP_LoadBlock, 4, 4
RP_LoadBlock, 5, 5
RP_LoadBlock, 6, 6
** Name: Sup_block_bc Type: Displacement/Rotation
*Boundary
RP_supportblock, 1, 1
RP_supportblock, 2, 2
RP_supportblock, 3, 3
RP_supportblock, 4, 4
RP_supportblock, 5, 5
RP_supportblock, 6, 6
** Name: bf_left_screw_bc Type: Displacement/Rotation
*Boundary
bf_left_screw_location, 1, 1
bf_left_screw_location, 3, 3
bf_left_screw_location, 5, 5
bf_left_screw_location, 6, 6
** Name: bf_right_screw_bc Type: Displacement/Rotation
*Boundary
bf_right_screw_location, 1, 1
bf_right_screw_location, 3, 3
bf_right_screw_location, 5, 5
bf_right_screw_location, 6, 6
** Name: bf_screw_lines_bc Type: Displacement/Rotation
*Boundary
bf_screw_lines, 3, 3
bf_screw_lines, 6, 6
** Name: tf_left_screw_bc Type: Displacement/Rotation
*Boundary
tf_left_screw_location, 1, 1
tf_left_screw_location, 3, 3
tf_left_screw_location, 5, 5
tf_left_screw_location, 6, 6
** Name: tf_right_screw_bc Type: Displacement/Rotation
*Boundary
tf_right_screw_location, 1, 1
tf_right_screw_location, 3, 3
tf_right_screw_location, 5, 5
tf_right_screw_location, 6, 6
**
** Name: tf_screw_lines Type: Displacement/Rotation
*Boundary
tf_screw_lines, 3, 3
tf_screw_lines, 6, 6
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**
*IMPERFECTION, FILE=ITF200-t15_flat_buckle, STEP=1, NSET=Cassette_all
1,0.001
**
** ----------------------------------------------------------------
**
** STEP: Loading Step
**
*Step, name="Loading Step"
*Dynamic, Explicit
, 0.1
*Bulk Viscosity
0.06, 1.2
**
** BOUNDARY CONDITIONS
**
** Name: Load_block_bc Type: Displacement/Rotation
*Boundary, amplitude=Loading_amplitude
RP_LoadBlock, 1, 1
RP_LoadBlock, 2, 2, -0.03
RP_LoadBlock, 3, 3
RP_LoadBlock, 4, 4
RP_LoadBlock, 5, 5
RP_LoadBlock, 6, 6
**
** INTERACTIONS
**
** Interaction: Bot_fl_contact
*Contact Pair, interaction=Contact_properties, mechanical constraint=KINEMATIC
Cas_bot_surface, Sup_block_top_surface
** Interaction: Top_fl_contact
*Contact Pair, interaction=Contact_properties, mechanical constraint=KINEMATIC
Cas_top_surface, Load_block_bot_surface
**
** OUTPUT REQUESTS
**
***Restart, write, number interval=1, time marks=NO
**
** FIELD OUTPUT: F-Output-1
**
*Output, field
*Node Output
U,
*Element Output
S,
**
** HISTORY OUTPUT: H-Output-RP_Load
**
*Output, history, time interval=0.001
*Node Output, nset=RP_LoadBlock
U2,
**
** HISTORY OUTPUT: H-Output-RP_Support
**
*Node Output, nset=RP_supportblock
RF2,
*End Step
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Mises stress distributions at shell mid-surface for models
ITF100R-t10_0p1s_d40_e8_f30 with bearing lengths 50 mm and 150 mm

Fig. G1 Mises stress distribution for model ITF100R-t10_0p1s_d40_e8_f30_s50
at time of failure.

Fig. G2 Mises stress distribution for model ITF100R-t10_0p1s_d40_e8_f30_s150
at time of failure.
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Fig. G3 Mises stress distribution for model ITF100R-t10_0p1s_d40_e8_f30_s50
at end of analysis.

Fig. G4 Mises stress distribution for model ITF100R-t10_0p1s_d40_e8_f30_s150
at end of analysis.
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