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In this thesis, functionalization of polymers with three different types of supramolecular self-assembled nanostructures 
have been examinated: 1) blends of block copolymers and thermosets, 2) polymer-amphiphile systems, and 3) block 
copolymer-amphiphile complexes. Morphologies of complexes were characterized preferentially using small- and 
wide-angle X-ray scattering, and transmission electron microscopy. The effect of nanostructures on mechanical, electrical 
or optical properties were measured with dynamic mechanical spectroscopy, DC- and AC-conductivity, and UV-Vis 
spectroscopy.
 In the first example, the self-assembled diblock and triblock copolymer nanostructures (spherical, “worm-like” cylindrical 
and lamellar structures) were used to modify the mechanical properties of phenolic resins. Morphology of complexes 
depended on the weight fraction of microphase separated domain. The storage moduli at room temperature decreased 
slowly with increasing weight fraction of the microphase separated domain, when the phenolic matrix was continuous. 
The long period of the structures was of the order of 12-70 nm, depending on the molecular weights of blocks.
 In the second example, the self-assembled polymer-amphiphile complexes were used to form one-dimensional cylindrical 
conducting structures with the long period of 3.5 nm using conjugated polymer polyaniline. The conductivity of samples 
increased rapidly two orders of magnitude when the cylindrical structure was formed. The increase of conductivity is 
probably due to confinement of polyaniline chains within the cylinders and due to cosolvent effects of the amphiphiles. 
 In the third example, the self-assembled block copolymer-amphiphile structures were used to first achieve molecularly 
reinforced polyelectrolyte. Complexes formed a lamellar structure, where the conductivity of ”liquid-like” polyelectrolyte 
was decoupled from the segmental motion of the reinforcing glassy domain. Lithium salt was introduced to promote the 
ionic conductivity. The conductivity levels were relatively low at room temperature probably due to the Coulombic traps 
and grain boundaries. Finally, the hierarchical structures were used to manipulate optical properties. A high molecular 
weight block copolymer complexes with surfactants lead to lamellar structure with the long period of ca. 140 nm. All 
starting materials were almost colourless, but the complexes were predominantly blue pearlescent in reflection to an 
observer viewing them in ambient. The transmission and reflectance spectra revealed the formation of an incomplete 
photonic bandgap at ca. 460 nm.
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1 Introduction  

1.1 Self-Assembly 

Self-assembly1 has aroused considerable interest in the contexts of both 
natural and synthetic materials, as it can lead to nanoscale structures and 
functional or responsive materials [1-7]. To achieve self-assembly, two or 
more chemically different and mutually repulsive materials are required, 
where attractive forces prevent the macroscopic phase separation.  

In homopolymers, chemically similar repeat units are covalently 
connected to each other and self-assembly does not take place. Diblock 
copolymers, where two polymers A and B are covalently connected to 
each other in a linear fashion, form self-assembled stable morphologies 
(spherical, cylindrical, gyroid, and lamellar structures) [8, 9], if the 
repulsion between the blocks is sufficient. The morphology depends not 
only on the chemical nature of polymers and the volume fraction of the 
polymer blocks, but also on the temperature and the number of repeat 
units in the polymer chain. Various other block copolymer architectures 
have been investigated leading to more complicated morphologies [8-13].
In many of them, ”liquid crystal” moieties [9] have been incorporated in 
the block copolymer structure and in that case repulsion and the 
”aggregation” tendency are stronger and shorter blocks are needed for 
self-assembly.  

In supramolecular chemistry, molecularly matching physical 
interactions are used for the structure formation (for supramolecular 
chemistry see Ref. [14]). Physical interactions are much weaker than the 
covalent bonds and the bonding equilibrium can depend on the external 
conditions. One example about supramolecular structures is polymer-
amphiphile2 complex, where the head group of amphiphile has an 
attractive physical interaction (e.g. hydrogen bonding [15, 16], ionic 
interaction [17-20], or coordination [21, 22]) with the polymer backbone. 
These complexes can form comb-shaped supramolecular structures in the 

1  In literature, the terms self-assembly, self-organization and microphase separation do 
not have precise definitions. In this Thesis we use the terms self-assembly or 
microphase separation to mean reversible and cooperative assembly of components 
into ordered nanoscale structures. In Articles I-VI we used the term self-organization 
instead of self-assembly. On the other hand, self-organization is used for dissipative 
structured materials, which require continuous energy supply (e.g. biological systems).   

2  Amphiphiles are molecules, which have a polar head group and a non-polar tail. 
Amphiphiles can form self-assembled structures in bulk and in selected solutions. 
Surfactants, on the other hand, are water-soluble amphiphiles.
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solid state, see Figure 1. Depending on the mutual strengths of the 
physical attraction and repulsion (e.g. alkyl tail), three situations are 
possible; 1) The attraction is too weak compared to the repulsion and the 
polymer and the amphiphile macrophase separate; 2) The repulsion is too 
weak and the polymer and the amphiphile form homogenous mixture
(solution) without self-assembly; 3) The repulsion is strong enough to lead 
to ”microphase separation” of the alkyl tails, but the attraction is sufficient 
to prevent macrophase separation. In the last case, self-assembled
structures with the long period of ca. 2–6 nm are formed, where the alkyl 
tails of the amphiphiles segregate into one domain and the polymer
backbones together with the polar head groups into another. Polymer-
amphiphile complexes usually form lamellar or cylindrical morphologies,
but in some cases more complex structures are formed [20, 23]. The length 
and the number of side chains and stiffness of the polymer backbone affect 
the structure formation, but the prediction of morphology is, however, 
difficult. Self-assembled supramolecular structures can also be obtained 
without long alkyl side chains using e.g. liquid crystalline moieties [24-26].

Figure 1. Schematic presentation of the polymer-amphiphile complex.
The amphiphilic molecules are physically bonded (e.g. hydrogen
bonding, ionic interaction or coordination) to the homopolymer backbone 
and self-assembled structure with the period of 2–6 nm can be obtained,
depending on the mutual strengths of the attractive and the repulsive 
forces. Cylindrical morphology, in which polymer backbones are 
surrounded by alkyl tails, is shown here as an example, but a lamellar
structure has been more commonly observed for polymer-amphiphile
complexes.

The self-assembly of polymer-amphiphile complexes can be combined
with diblock copolymers, which leads to hierarchy of structures, i.e. 
structure-within-structure (Figure 2), taken that one block has an attraction 
with the amphiphile and the other block has not [5, 27]. The self-assembly
now takes place at two length scales, where the long periods of the block 
copolymer and the polymer-amphiphile complex are 20–100 nm and 2–6 
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nm, respectively. The morphology depends on several parameters: the 
volume fraction of domains, the degree of complexation, the alkyl tail 
lengths of the amphiphiles, and temperature. The low molecular weight 
amphiphiles can also be regarded as selective solvent or plasticizer due to 
their specific interaction. This can lead to faster structure formation and 
better local structures, when mobility of chains increases. 

Figure 2. A schematic presentation for a hierarchical self-assembly, i.e.
structure-within-structure morphology based on a block copolymer and 
amphiphiles. The long periods of the block copolymer structure and the 
polymer-amphiphile complex are typically 20–100 nm and 2–6 nm,
respectively.

1.2 Self-Assembly Enables Nanotechnology 

There are two general approaches to obtain nano-scale patterns, i.e. the 
”top-down” method (lithography) and the ”bottom-up” method (self-
assembly). Lithography based methods have their own advantages, such as 
well-defined long range order and possibility to locate the structures on 
exact positions on the substrates, but they are ”restricted” to two 
dimensions unless considerably effort is paid for the manufacturing. In 
addition, it may be challenging to obtain very small structures purely 
based on lithographic methods, unless radiation of very short wavelengths 
is used. Self-assembly aims to achieve spontaneous structure formation
within the matter, based on competing attractive and repulsive 
interactions. This enables to achieve new properties and functionality [3, 5-
7, 28]; such as optical, electrical or mechanical properties, nano-objects, 
nanomotors, porous membranes, or high-density information storage 
media.

There seems to be a difficult length scale between the ”top-down” and 
”bottom-up” approaches, i.e. the mesoscale at ca. 50-200 nm. An inherent 
problem related to the ”bottom-up” concepts is that they easily lead to 
well-controlled local structures, but domain boundaries may remain.
Structural difference between single crystalline and polycrystalline 
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materials can be regarded as an analogue. The length scale in crystals is of 
the order of 0.1 nm whereas in the self-assembly it is typically one to three 
orders of magnitude larger. The defects and domain boundaries in self-
assembling materials can at least partially be reduced by applying 
additional fields, such as flow, magnetic and electric fields, temperature 
gradients and surface interactions.

Block copolymers and amphiphiles can make self-assembled 
nanostructures both in bulk and in solutions and mixtures. Due to this 
ability, block copolymers and amphiphiles have been used as structure-
directing agents in the composites of organic or inorganic materials [29].
The templates, i.e. block copolymers or amphiphiles, can be removed 
afterwards partly or completely leading to porous materials [30-36], nano-
objects [36-43] or dots [44-46], with a small variation in size and large 
surface area.

Noncentrosymmetric [47] and photonic bandgap materials (see Chapter 
5) have been constructed using block copolymers and colloids. In the latter 
systems, well-defined periods at optical wavelengths with high refractive 
index contrast are difficult to obtain and additional orientation to suppress 
the defects, and the incorporation of inorganic additives to increase the 
dielectric contrast is needed. Some examples will be also presented in the 
beginning of Chapters 3-5.

1.3 Outline of this Thesis 

Aim of this Thesis has been to demonstrate that the nanostructures of self-
assembled supramolecules based on homopolymers, block copolymers, 
and amphiphiles can be used to modify material properties, such as 
mechanical (Articles II and VI) or electrical (Articles IV and V) 
properties. It will be also shown that these concepts can even lead to new 
properties, like optical (Article VI) properties, which was not observed in 
any starting materials.   

The logic in the studies has been the following: First of all we have 
analysed the structure and interactions in the system and finally we have 
characterized how this structure affects on selected macroscopic properties 
(the mechanical properties, the conductivity or the optical properties). 

In Articles I and III we describe two routes for self-assembled cross-
linked thermoset blends where an attraction between cross-linkable 
phenolic resin and one block of the block copolymer enables the nanoscale 
structures after curing. We also analyse the effect of these structures on 
the thermal and the mechanical properties (Article II).  

In Article IV we study the self-assembled structure of a conjugated 
polymer. We analyse the effect of structure formation on the conductivity 
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at the macroscopic scale. In Article V we investigate possibility for a 
molecularly reinforced polyelectrolyte where ionically conducting 
ethylene oxide side chains containing Lithium salt, are physically bonded 
to one block of the block copolymer, whereas the other domain is glassy. 

In Article VI we represent the high molecular weight block copolymer-
amphiphile complexes with structures at two length scales. The selective 
interaction of amphiphiles with one block of the block copolymer enables 
the long period to be comparable to optical wavelengths, leading to the 
appearance of an incomplete photonic bandgap at specific wavelengths. 

Chapter 2 presents the materials used in this Thesis. In Chapters 3–5 
the results of Articles I–VI are represented and discussed with a short 
introduction to the work done in the field. Final conclusions and some 
future aspects are presented in Chapter 6.
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2 Materials 

The complexes used in the Articles were prepared after the following 
procedures. The components were separately dissolved in a common
solvent, and the clear and homogenous solutions were combined at ratio, 
which corresponds to the aimed composition of complexes. The solvent 
was evaporated and the samples were finally dried in a vacuum oven. For 
more detailed description of the sample preparation see Articles I–VI. The 
abbreviations of the materials used in this Thesis are listed in Table 1.

Table 1. Abbreviation of materials used in the Thesis.
  Material   Abbreviation
  camphorsulfonic acid   CSA
  dodecylbenzenesulfonic acid   DBSA
  (ethylene oxide)sulfonic acid   EOSA
  hexamethyltetramine   HMTA
  4-hexylresorcinol   Hres
  lithium perchlorate   LiClO4

  polyaniline   PANI
  poly(ethylene oxide)   PEO
  polyisoprene   PI
  poly(propylene oxide)   PPO
  polystyrene   PS
  poly(2-vinylpyridine)   P2VP
  poly(4-vinylpyridine)   P4VP

Two kinds of nomenclatures for the complexes are used in this Thesis 
to indicate the compositions. In Articles I-II the samples are characterized 
as a function of the weight fraction of the microphase separated PI-block. 
Note that here the weight fraction roughly corresponds to the volume
fraction, which is often used in the models of block copolymer self-
assembly. In Articles IV-VI the amount of moles of acid or additive are 
compared with the moles of the reactive or interacting repeat units of the 
homopolymer or block copolymer. This is indicated with the degree of 
complexation y. Figure 3 represents the chemical formulas and the 
interactions of the materials in Articles I-VI. For the characterization 
methods used in this Thesis, see the Articles I-VI. 
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Figure 3. The chemical formulas of the materials and the interactions 
between them used in A) Articles I and II, B) Article III, C) Article IV,
D) Article V, and E) Article VI. 
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3 Self-Assembly of Cross-Linked Blends of Phenolic 
Thermosets and Block Copolymers

Phenolic resins are commonly used thermosets in the industry [48] and 
they are typically hard and brittle. The mechanical properties of many 
thermoplastic [49-53] and thermoset [54] polymers have been modified 
using plasticization agents, rubbery dispersions or self-assembled 
nanostructures. Although the mechanical properties are largely dominated 
by the continuous domain, the microphase separated morphology, block 
copolymer architecture, deformation mechanism, and especially the 
interface structure and strong adhesion between domains are important. In 
some cases synergistic properties have been found in a small composition 
range for diblock copolymers having a large interface width [51]. In 
Articles I-III, we aimed to study supramolecular self-assembled 
morphologies of phenolic resins and block copolymers and how these 
structures affected on the mechanical and thermal properties. 

3.1 Background and Related Studies  

Phenolic resins are small molecules (Mn  500–5000 g/mol), which are 
synthesized from phenols and formaldehydes. Depending on the synthesis 
conditions, the phenolic resins can react directly or via a so called 
hardener to form three-dimensional networks [48]. Phenolic resins and 
epoxies are common examples of thermosets and after formation of 
covalently bonded network they do not melt or dissolve in solvents due to 
the network of “infinite” molecular weight. Uncross-linked phenolic 
resins, in turn, are soluble in many polar polymers due to the strong ability 
of phenols to form hydrogen bonds via their hydroxyl group [55-58]. Upon 
cross-linking, there is a tendency to macroscopic phase separation due to 
the entropy penalty upon forming the network. In addition, the commonly 
used curing at elevated temperatures reduces the number of hydrogen 
bonds, which also promotes macrophase separation. In some cases it has 
been observed that phenolic resins and polar polymers form 
interpenetrating networks even after curing, when the weight fraction of 
the solubilized polymer is sufficiently small compared to that of the 
phenolic resin [57].

The phase behaviour of blends of homopolymer A and block 
copolymer A-block-B is more complicated than that of the pure diblock 
copolymer as there is an interplay between macrophase separation and 
self-assembly [9, 59-61].  The molecular weights of homopolymer A and 
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the A-block of the block copolymer A-block-B affect the structure 
formation. When the molecular weight of homopolymer is smaller than 
the molecular weight of the corresponding block of the block copolymer, 
“wet-brush” like structure is observed potentially leading to a change of 
morphology. On the other hand, increased molecular weight of the 
homopolymer leads to a tendency of homopolymer segregation to the 
center of the microphase separated domains. Finally, when the 
homopolymer is larger than the corresponding block of the block 
copolymer, macrophase separation predominates [9]. The similar situation 
can be observed with blends of block copolymer A-block-B and 
homopolymer C, if the interaction parameters are correctly chosen [9].

Self-assembly of thermosets has been investigated recently and it is 
even more difficult to sketch a phase diagram for this kind of system, 
because the energies involved in the chemical reactions may be larger than 
the weak physical energies of the self-assembly. Self-assembled thermoset 
networks can be divided into two approaches: Curing of thermoset 
precursors in the presence of block copolymers [54, 62-69] and 
polymerization of specific surfactant assemblies [70-74]. In addition, 
cylindrical, lamellar and disordered structures have been demonstrated by 
polymerizing phenol-formaldehyde in the presence of cationic surfactants 
[75].

In the self-assembled thermosets, typically the low molecular weight 
epoxy resins have been mixed with amphiphilic block copolymers, such as 
poly(ethylene oxide)-block-poly(ethylene-propylene) [62, 63]. Before 
curing, the epoxy resin is miscible with PEO-block due to their matching 
polarity and therefore microphase separated structures are observed. The 
structures are essentially retained upon amine curing, but due to the 
reduced mixing entropy as the cross-linking progresses and weak 
interactions between the epoxy and PEO, “a wet-brush/dry-brush 
transition” and segregation of PEO tends to occur. The growing network, 
however, topologically limits the extent of the phase separation to be only 
local. As an effort to control the macrophase separation, block copolymers 
with reactive groups have been introduced [65, 66]. In addition, it has been 
observed that different amine hardening agents can reduce tendency for 
the macrophase separation [64, 67, 69]. Self-assembled structures have 
been obtained also with blends of epoxy resins and tri- [64, 67, 69] or 
tetrablock [66] copolymers or block copolymer with one crystalline block 
[68].
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3.2 Self-Assembled Blends of Phenolic Resin and Poly(2-
vinylpyridine)-block-Polyisoprene and their Properties 
(Articles I–II) 

Phenols form relatively strong hydrogen bonds with pyridines [76]. The 
aim in Articles I-II was to use supramolecular nanostructures of 
amphiphilic block copolymers, i.e. poly(2-vinylpyridine)-block-
polyisoprene (P2VP-block-PI), to modify the mechanical properties of 
phenolic resin. Morphologies of complexes were characterized using 
transmission electron microscopy (TEM) and small-angle X-ray scattering 
(SAXS).   Figure 4 shows the TEM micrographs of the cross-linked blends 
of phenolic resins and block copolymers P2VP-block-PI, when the 
molecular weight of the P2VP-block was considerably larger than the 
molecular weight of phenolic resin before curing (Mn,PI = 71,000 g/mol 
and Mn,P2VP = 21,000 g/mol). The weight fractions of PI-domains in the 
complexes were 0.20, 0.30, and 0.40, corresponding to spherical, “worm-
like” cylindrical and lamellar structures, respectively. The observed 
structures with increasing weight fraction of PI were quite similar to those 
expected for blends of block copolymer A-block-B and homopolymer A 
when the molecular weight of homopolymer A is smaller than that of the 
A-block.

Fourier transformation infrared spectroscopy (FTIR) was used to study 
interactions between phenolic resin and P2VP. It was observed that before 
cross-linking there exist hydrogen bonds between P2VP and the phenolic 
resin. In Figure 5 FTIR spectra are represented for the starting materials 
and one complex after the curing. Shifts in absorption bands indicate that 
the hydrogen bonds remain even after cross-linking. On the other hand, 
there were no considerable changes in the absorption peak intensities 
indicating that the number of hydrogen bonds has not been significantly 
decreased. It was actually surprising that even after curing, when the 
entropy of the phenolic matrix decreases dramatically, there were no 
observable signs for even partial macrophase separation between P2VP-
block and phenolic matrix.  

The effect of molecular weight of P2VP-block was investigated using 
block copolymer with a shorter P2VP-block (Mn,PI = 30,000 g/mol and 
Mn,P2VP = 2,800 g/mol). In this case phenolic resin did not swell the P2VP-
block so effectively and lamellar and even inverse cylindrical structure 
was observed when the weight fraction of PI-domains was only 0.20. The 
long period of this complex was ca. 50 nm. In Figure 6 TEM micrograph 
for the cured complex and SAXS curves for the uncured and cured 
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samples are represented indicating a lamellar structure with the long 
period of ca. 50 nm (the weight fraction of PI-domain was 0.40).

Figure 4. A) The chemical formula of the phenolic resin and the block 
copolymer P2VP-block-PI (Mn,PI = 71,000 g/mol and Mn,P2VP = 21,000 
g/mol) and hydrogen bonding between them. Due to hydrogen bonds, the
phenolic resin and P2VP are confined within the same self-assembled
domain even after the cross-linking whereas PI forms the other domain.
TEM micrographs of the cross-linked blends showed spherical, “worm-
like” cylindrical and lamellar structures, when the weight fraction of PI
was B) 0.20, C) 0.30, and D) 0.40, respectively. Due to OsO4 staining PI 
domains show dark in the images. (TEM by J. Ruokolainen)
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Figure 5. FTIR spectra of phenolic resin, P2VP-block-PI, and one of their 
blends (containing 0.40 of PI) after curing. Hydrogen bonding between 
P2VP and phenol causes shifts in FTIR bands: A) a band of P2VP shifts
from 993 cm-1 to 1008 cm-1, B) a ring stretching band of P2VP shifts 
from 1589 cm-1 to 1597 cm-1, and C) a hydroxyl stretching band of 
hydrogen bonded phenolic resin shifts from 3365 cm-1 to 3344 cm-1. The 
shoulder at ca. 3500 cm-1 is due to the free hydroxyl groups and it is 
slightly reduced in the cured blends. 

Figure 6. TEM image (cured) and SAXS curves of a blend of phenolic 
resin and P2VP-block-PI (Mn,PI = 30,000 g/mol and Mn,P2VP = 2,800 
g/mol) before and after curing. The molecular weight of P2VP-block is
only slightly larger than that of the phenolic resin before cross-linking. 
Weight fraction of PI was 0.40. Due to OsO4 staining PI-domains show
dark in the image. (TEM by J. Ruokolainen) 

The effect of the structure, i.e. the weight fraction of PI-domains, on 
the mechanical and thermal properties was investigated using dynamic
mechanical spectroscopy (DMA) and differential scanning calorimetry
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(DSC) (Figure 7). The storage moduli of the complexes decreased only 
slightly when the temperature was below the glass transition temperature
of PI (Tg,PI = -62 oC). Above this temperature the storage moduli decreased 
slowly with increasing weight fraction of PI, when the phenolic matrix
was continuous (Figure 7C). More significant decrease was observed with 
lamellar structure (the weight fraction of PI was 0.40). The glass transition 
temperature of PI was also observed with DSC at ca. -62 oC.

Figure 7. The effect of the morphology on mechanical and thermal
properties of cross-linked blends of phenolic resin and block copolymer
P2VP-block-PI (Mn,PI = 71,000 g/mol and Mn,P2VP = 21,000 g/mol). A) 
The loss tangent (tan ) as a function of temperature. The peak at –62 oC
indicates the glass transition of PI. B) The storage moduli E’ for 
complexes as a function of temperature. The curves have been shifted for 
clarity. C) E’ and E’’ as a function of the weight fraction of PI at the 
room temperature indicates that the morphology does not have a
significant effect on the storage moduli, when the phenolic matrix is 
continuous. D) DSC curves indicating the glass transition of PI at –62 oC.
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3.3 The Effect of the Hydrogen-Bonded Block to the Structure 
of Block Copolymer/Phenolic Resin Blends (Article III) 

In Article III, the effect of block copolymer architecture (i.e. triblock 
instead of diblock copolymer) and the length of hydrogen-bonded block to 
the supramolecular self-assembled structures was investigated using 
phenolic resin and poly(ethylene oxide)-block-poly(propylene oxide)-
block-poly(ethylene oxide) (PEO-block-PPO-block-PEO). Phenols can 
form hydrogen bonds with the oxygens of PEO and PPO. Hydrogen bonds 
with PPO are, however, more improbable due to steric hindrance of the 
methyl group and we expected that the phenols form stronger interaction 
with the PEO-block. Three different block copolymers were used, which 
had almost the same length of the repulsive PPO-block, i.e. Mw,PPO = 2,700 
g/mol – 3,200 g/mol. The molecular weight of PEO-blocks was varied 
from 400 g/mol to 900 g/mol.  

The structures were characterized using TEM and SAXS (Figure 8). 
PPO turned out to be sufficiently repulsive to allow self-assembly in the 
bulk cross-linked complex. The tendency for macrophase separation 
increased with decreasing length of the PEO-blocks due to the decreased 
number of hydrogen bonds, as expected. A spherical self-assembly with a 
long period of the order of 12 nm was observed when the weight fraction 
of PEO in the block copolymer was fPEO = 0.40 and the weight fraction of 
block copolymer in the complex was 0.20 (Figrue 8C). Macrophase 
separation manifests upon curing when the weight fraction of the PEO-
blocks in the block copolymers was smaller, i.e. fPEO = 0.30 or fPEO = 0.20. 
In addition, the results showed that the molecular weights of the PEO-
blocks and phenolic resin have to be of the same order before curing in 
order to prevent macrophase separation. The chemical difference between 
the PEO- and PPO-blocks is smaller than that between P2VP and PI, and it 
is more difficult to investigate how PEO- and PPO-blocks are distributed. 
It is possible that wet-brush/dry-brush transition has taken place in our 
microphase separated sample and that the growing network topologically 
limits the extent of the phase separation to be only local. 
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Figure 8. A) The chemical formulas of used materials and interaction 
between them. TEM images of the cured blends of phenolic resin/PEO-
block-PPO-block-PEO, where the lengths of the PPO-blocks are 
approximately constant i.e. Mw,PPO = 2,700 g/mol – 3,200 g/mol and the 
weight fraction of PEO-blocks in block copolymers was B) fPEO = 0.30 
and C) fPEO = 0.40. D) Self-assembly in complex (PEO weight fraction
0.40) was confirmed with SAXS indicating the long period of ca. 12 nm.
(TEM by J. Ruokolainen) 
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4 Nanostructured Conducting Systems 

In Articles IV and V we investigated the effect of supramolecular self-
assembled nanostructures on conductivity and mechanical properties. Two 
kind of nanostructured conducting systems were investigated: inherently 
conducting complex of polyaniline (PANI) and an amphiphile and 
molecularly reinforced polyelectrolyte. 

4.1 Conducting Polymers and Polyelectrolytes 

Conducting polymeric systems can be divided to inherently conducting, 
i.e. conjugated polymers (where mainly electronic excitations move) [77, 
78], and ionically or protonically conducting polymers (where mainly ions 
or protons move) [79-83]. Inherently conducting polymers, such as 
polyaniline, polypyrrole, and polythiophene have a semi-rigid conjugated 
main chain leading to reduced solubility. Flexible side chains have been 
covalently [84, 85] or physically [78, 86-91] bonded to the backbone to 
promote processibility and solubility. Such comb-shaped or hairy rod 
architectures can lead to self-assembly with periodicity of 2-6 nm. In this 
context lamellar [85-94] and cylindrical [94] structures have been observed.

Polyaniline (PANI) in its emeraldine base form is insulating, but the 
protonation of PANI with a strong acid [87, 89-91, 95, 96] such as sulfonic 
acid, leads to an electronically conducting polymeric salt.  

There are also other methods, e.g. templated self-assembly [97-101] or 
electrospinning [102, 103], to produce conducting objects, such as 
nanotubes or nanowires or low percolation in polymer colloids. The size 
of these structures is, however, about one or two orders of magnitude 
larger than the long period of the polymer-amphiphile complex. 

There is a vast literature on ionically conducting polymeric 
electrolytes [79-83, 104-107] due to their possible application in portable 
electric sources. The most widely studied “salt-in-polymer” system 
consists of poly(ethylene oxide) (PEO) where lithium salts have been 
dissolved. Typically the aim is to achieve high single ion mobility of the 
Li+-cations [106, 108, 109] and to suppress the additional mobility of the 
anions. High molecular weight PEO is semi-crystalline whereas the 
conduction takes place mainly in the amorphous regions, where the chain 
relaxations are not hindered. Dissolution of Li-salts to PEO increase the 
number of charge carriers, but crystallinity and the glass transition 
temperature tend to increase leading to lower mobility of the ions. There 
has been a wealth of efforts to lower the glass transition temperature (Tg)
and to suppress the crystallization of PEO in order to increase conductivity 
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[105, 106, 110]; Sufficiently short ethylene oxide oligomers do not 
crystallize, additional plasticizers, solvents and ceramic additives have 
been mixed with PEO; PEO can be cross-linked and the matrices can be 
swollen with solvents to improve conductivity and flexibility [106, 110];
Random copolymers [111, 112] or block copolymers [5, 43, 113-122] can be 
used, and “internal” plasticization can be accomplished by branches or 
combs within PEO, where the enhanced side chain relaxations improve the 
mobility of ions [93, 105, 108, 123-127]. Furthermore, oligomeric ethylene 
oxide side chains can be covalently connected to the polymer backbones 
to form comb-copolymers [105, 126, 128-131]. Also low dimensional 
conductors due to self-assembled or smectic lamellar structures have been 
constructed to suppress aggregation of the charges [132-138], which can 
lead to anisotropic conductivity. 

The mechanical properties of the electrolyte must also be considered, 
because the increased proportion of the chain ends (low molecular weight) 
and additional solvent leads to softening of material. This can be 
overcome if the flexible side chains are incorporated within one block of a 
block copolymer and the overall mechanical properties could be tailored 
by the other block [113, 114, 118, 132, 134]. Also a rigid backbone [93, 139]
or reinforcing mesogenic moieties [133] can be used. 

4.2 Cylindrical Self-Assembly of Polyaniline-Salt Complexes 
(Article IV) 

Carbon nanotubes [140] and columnar self-assemblies of other carbon 
nanostructures [141, 142] can show one-dimensional transport properties. 
In Article IV we aimed at one-dimensional conducting structures of 
inherently conducting PANI, where PANI chains were confined inside 
self-assembled cylinders. It is known that highly conducting films are 
achieved when PANI is nominally fully protonated with camphorsulfonic 
acid (CSA), i.e. PANI(CSA)0.5, and when the complex is cast from a 
proper solvent, such as phenolic m-cresol [143]. ”Alkyl” chain of m-cresol
is too short to allow self-assembly and phenols with longer alkyl chain 
was looked for. Finding such phenols was not straightforward [144, 145].
Pentadecylphenol forms self-assembly with P4VP [15] but 
macroscopically phase separates from PANI(CSA)0.5 as the long alkyl tails 
cause too large repulsion in comparison to the attractive hydrogen bonds. 
In this respect 4-hexylresorcinol (Hres) turned out to be useful. The 
repulsion due to the short hexyl tails is sufficient to allow self-assembly 
and the two hydroxyl groups prevent macrophase separation. Hres is 
hydrogen bonded to PANI salt, but as there are many places where this 
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could take place, the exact scheme of hydrogen bonding is difficult to 
specify.

It was not easy to identify the solvent to prepare the 
PANI(CSA)0.5(Hres)y complexes. Formic acid was used for the sample
preparation and the potential tendency of the ester formation was 
controlled by rapid evaporation of solvent. Figure 9 show that the 
complexation of Hres with PANI(CSA)0.5 salt leads to X-ray scattering 
peaks characteristic for cylindrical structure with a distance between the 
cylinders around 3.5 nm. Due to the softness of the samples it was 
concluded that the structure could look like drawn in Figure 9C.

Figure 9. A) Chemical formulas of PANI, CSA and Hres and their 
proposed complexes. B) SAXS peaks of PANI(CSA)0.5(Hres)y indicated 
formation of a cylindrical structure with a distance between cylinders ca.
3.5 nm. C) Schematics of the proposed self-assembly, where PANI
backbones are surrounded by alkyl tails of Hres. D) The conductivity
measurements show considerable increase of conductivity simultaneously
as the cylindrical structure was formed.

Conductivity of the complexes PANI(CSA)0.5(Hres)y were measured
as a function of the complexation y. Due to the necessity to use formic
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acid as a solvent, the conductivity of pristine PANI(CSA)0.5 film was 
lower than could be achieved from m-cresol. The conductivity increased 
rapidly   two  orders  of  magnitude   around  y  =  0.5  when  comb-shaped 
complex was formed and the cylindrical structure was observed. We 
propose that such an increase could be due to confinement of PANI-chains 
within the cylinders. However, certain hydrogen bonding donors are know 
to have cosolvent effects and lead to increased conductivity [143, 146]. It is 
probable that our effect is a combination of both these phenomena.    

4.3 Molecularly Reinforced Polyelectrolyte (Article V) 

Our interest in Article V was to combine the ionically conducting ”liquid-
like” polyelectrolyte of ethylene oxide (EO) oligomers with rigid 
mechanical properties of glassy self-assembled domains of PS. Poly(4-
vinylpyridine)-blocks of polystyrene-block-poly(4-vinylpyridine) (PS-
block-P4VP) were complexed with sulfonic acid terminated oligomeric 
ethylene oxide ((EO)n-SA) (Figure 10) and lithium perchlorate (LiClO4)
was soaked to the P4VP((EO)n-SA)1.0 domains to promote ionic 
conductivity. Proton transfer between P4VP and sulfonic acid group was 
verified with FTIR band shifts of P4VP pyridines (Figure 10B). Block 
copolymers with physically bonded side chains formed lamellar structures 
where glassy PS forms reinforcing domains and the polyelectrolyte 
P4VP((EO)n-SA)1.0(LiClO4)y the conducting domains. The long period of 
structures was ca. 30 nm. EO side chains have been usually covalently 
connected to the polymer backbone, but we expected that the physically 
bound side chains could have increased relaxations, which could lead to 
improved conductivity.  

The complexes were investigated with DSC, DMA and AC-impedance 
measurements. The glass transition temperature of pure (EO)n-SA was at 
ca. –54 oC, but it was not clearly observable in the complexes. On the 
other hand, the crystals in PS-block-P4VP((EO)13-SA)1.0 melt at ca. 23 oC,
but the starting materials did not crystallize at all.  

The ionic conductivity levels remained relatively low, i.e. 10-7–10-6

S/cm at room temperature and 10-5–10-4 S/cm at 80 oC. There could be two 
reasons for the low conductivity: 1) Discontinuous conducting domains 
with “grain boundaries” are expected and the charges have to hop from 
one conducting domain with “dead ends” to another over the insulating PS 
domain. Later observations suggest that it may be difficult to achieve 
continuous conducting channels even if the self-assembled domains are 
aligned by flow [147] 2) The conducting domain contains a large amount 
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of charges due to the Li-salt and P4VP((EO)n-SA)1.0 complex. These 
Coulombic traps could reduce the mobility of the ions.

Figure 10. A) Schematic presentation for the formation of complex PS-
block-P4VP((EO)n-SA)1.0(LiClO4)y. B) FTIR changes in P4VP ring 
stretching band indicated that protonation has taken place. C) Lamellar
structure was confirmed with SAXS and the long period was ca. 30 nm.

Low glass transition temperature is favourable for high ionic 
conductivity, but mechanical properties, on the other hand, change when 
sample is heated above it. In batteries, mechanically ”stable” materials are 
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looked for, in order to use thinner electrolyte layer. In superionic glasses 
[107], in turn, conductivity is decoupled from the segmental motions
leading to high conductivity and good mechanical properties.

The mechanical properties of one complex and the reference materials
(PS and low molecular weights PEO) were measured as a function of 
temperature. The storage moduli of the complexes were almost the same
than that of PS at low temperatures and considerably higher than that of 
low molecular weight PEO at higher temperatures (Figure 11C). Glass 
transition and melting temperatures were observed as peaks in loss moduli
curves. Our results show that the self-assembly allows decoupling of the 
structural and conductivity medium relaxations, when the glassy 
reinforcing domains and well-plasticized domains are combined. Higher 
conductivity and elasticity could be obtained with triblock copolymer PS-
block-P4VP-block-PS with small PS-blocks, when P4VP polyelectrolyte 
forms continuous conducting domain and PS domains serve as physical 
cross-linking points. 

Figure 11. DSC, AC-impedance and DMA curves as a function of
temperature. A) The low glass transition temperature was observed for
(EO)n-SA with DSC, but not for the complexes. B) Measured samples did
not show any conductivity transition, because they did not crystallize. C) 
The storage moduli of complex remained at relatively high values up to
the glass transition of the PS-domains. D) Glass transition and melting
temperatures could be observed as peaks in loss moduli curves.
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5 One-Dimensional Optical Reflector Based on Self-
Assembly of Block Copolymers 

In Article I-V we showed that mechanical and electrical properties of 
material can be modified using self-assembly of supramolecular 
structures. In article VI we demonstrate that these concepts can even lead 
to appearance of new properties, i.e. optical functionality, which was not 
observed in any of starting material. Block copolymer with repulsive side 
chains in one domain lead to a sufficient long period to serve as a one-
dimensional optical reflector.  

5.1 Photonic Bandgap Materials  

The detailed manipulation of flow of light [148-151] has turned to be 
important in optical telecommunication. 3D periodic structures with 
sufficient dielectric contrast between the domains can block the 
propagation of light, thus leading to a complete photonic bandgap when 
the period of the structure equals with /2n condition for the optical 
wavelengths ( is the wavelength and n is the refractive index). If 
controlled defect structures can be combined with the bandgap, a wealth of 
applications in photonics is expected. 

Small structures with sufficient dielectric contrast and matching 
periodicity with optical wavelength are usually constructed with 
lithographic and etching techniques. On the other hand, spontaneous 
assemblies of colloids [152-156], synthetic opals [157-161], inverted opals 
[157, 162-167], and block copolymers [32, 168-173] allow the formation of 
small enough structures based on competing interactions. They could offer 
other types of application, especially if flexibility is required, and in this 
sense polymers could be useful. Self-assembling systems have usually 
good local order, but the long-range order is poor and a complete bandgap 
is difficult to obtain due to the low refractive index contrast.

The long period of block copolymers can be increased up to 100 – 200 
nm range just by increasing the molecular weight. Such high molecular 
weights would, however, lead to high viscosity, slow structure formation, 
and poor local and long-range order. These difficulties have been 
overcome by swelling the block copolymer domains with narrow 
molecular weight homopolymers or oligomeric plasticizers [169-171]. Also 
the refractive index contrast in polymer systems is often low and inorganic 
additives with high refractive index have been incorporated within one 
domain [168, 172]. Complete bandgap with self-assembed materials may 
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be difficult to construct, but there can be other kind of applications for 
them due to their unique properties compared to inorganics, such as the 
tuning of bandgaps [157-160] and sensors [154-156].

5.2 1D Optical Reflector PS-block-P4VP(DBSA)y (Article VI) 

In Article VI, high molecular weight PS-block-P4VP block copolymer 
(Mn,PS = 238,100 g/mol, Mn,P4VP = 49,500 g/mol) and 
dodecylbenzenesulfonic acid (DBSA) amphiphiles were used, and in their 
nominally stoichiometric composition PS-block-P4VP(DBSA)1.0, the 
DBSA-molecules are expected to be bonded to the pyridines by 
protonation. Still more DBSA molecules can be added by hydrogen 
bonding DBSA to the sulfonates of the P4VP(DBSA)1.0 salts (Figure 
12A). Morphology of the samples was characterized using TEM and 
SAXS. TEM revealed that complex PS-block-P4VP(DBSA)2.0 formed a 
lamellar structure with a period of ca. 140 nm (Figures 12B). The DBSA 
molecules have two functions; They act as constituents of the comb-
shaped polymeric supramolecules and a smaller internal structure inside 
P4VP(DBSA)y domains is formed due to a strong repulsion between the 
polar salt backbone and the dodecyl alkyl tails (Figure 12C). Perhaps more 
importantly, the comb-shaped architecture leads to stretching of the chains 
and the long period increased with increasing the mole fraction of DBSA 
in the complexes (Figure 12D). The DBSA molecules also serve as 
selective plastizicers, enabling better local structures.

All starting materials were almost colourless, but the complexes turned 
predominantly blue pearlescent in reflection to an observer viewing it in 
ambient. At the same time, the transmission and reflectance spectra 
revealed the formation of an incomplete photonic bandgap. The increase 
of the long period with increasing the mole fraction of DBSA was 
observed also in UV-Vis curves (Figure 13) as the reflectance peak shifted 
to longer wavelengths. The refractive index contrast, however, in this kind 
of organic polymer system is low, which explains the moderate intensity 
observed in the reflectance measurements.  
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Figure 12. A) Schematic presentation of the interactions in PS-block-
P4VP(DBSA)y complex. B) TEM indicated that the complex PS-block-
P4VP(DBSA)2.0 formed a lamellar structure with periodicity of ca. 140 
nm. (TEM by J. Ruokolainen) C) SAXS curves indicated that there was
smaller structure within P4VP(DBSA)y domains (Lp = 3.0 nm). D)
Lamellar structure with long period of ca. 130 nm was confirmed for 
sample PS-block-P4VP(DBSA)1.5 with SAXS.
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Figure 13. UV-Vis A) specular transmission and B) diffuse reflectance 
measurements for complexes PS-block-P4VP(DBSA)y. Reflectance 
graphs of complexes y = 1.0, 1.5, and 2.0 had the peaks at 370 nm, 460
nm, and 470 nm, respectively.
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6 Conclusions 

In this Thesis we examined supramolecular self-assembled nanostructures 
of blends of block copolymers and thermosets, polymer-amphiphile 
systems and structural hierarchy of block copolymer-amphiphile 
complexes. On the other hand, we showed that these structures can be 
used to modify mechanical and electrical properties of materials and that 
even new properties, i.e. optical functionality, which was not seen in any 
starting material, can appear.  

 Block copolymer nanosturctures were used to modify mechanical 
properties of phenolic resins. Phenolic resin, complexed with amphiphilic 
diblock copolymers, P2VP-block-PI, formed spherical, “worm-like” 
cylindrical and lamellar structures. Morphology depended on the weight 
fraction of PI and the phase behaviour was quite similar to those expected 
for blends of block copolymer A-block-B and homopolymer A. The 
number of hydrogen bonds did not significantly decrease during cross-
linking and there were no observable signs for the segregation between 
P2VP-block and phenolic matrix. The storage moduli at room temperature 
decreased slowly with increasing weight fraction of PI, when phenolic 
matrix was continuous. More significant decrease was observed with 
lamellar structure. 

Structures of phenolic resin with the triblock copolymers were 
investigated. A spherical self-assembly with a long period of ca. 12 nm 
was observed when the weight fraction of PEO in block copolymer was 
high (fPEO = 0.40). The tendency for macrophase separation increased with 
decreasing length of the PEO-blocks due to decreased number of hydrogen 
bonds. It is possible that wet-brush/dry-brush transition takes place in our 
microphase separated sample and that the growing network topologically 
limits the extent of the phase separation to be only local. 

One-dimensional cylindrical conducting structures of nominally fully 
protonated PANI, where PANI chains are confined inside self-assembled 
cylinders, were investigated. The distance between the cylinders was ca. 
3.5 nm. The conductivity of the complexes increased rapidly two orders of 
magnitude when the comb-shaped cylindrical structure was formed. It is 
probable that observed increase of conductivity is due to confinement of 
PANI-chains within the cylinders and due to cosolvent effects of Hres.

Molecularly reinforced polyelectrolyte with lamellar structure was 
demonstrated, where conductivity was decoupled from the segmental 
motions. P4VP and ionically conducting ”liquid-like” polyelectrolyte of 
ethylene oxide (EO) oligomers with high segmental motions were in one 
lamellae and a glassy PS in another. LiClO4 was introduced to promote 
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ionic conductivity. The conductivity levels were relatively low, i.e. 10-7–
10-6 S/cm at room temperature probably due to the Coulombic traps and 
grain boundaries.

Finally, a high molecular weight block copolymer was complexed with 
amphiphiles leading to lamellar structure with long period of ca. 140 nm. 
All starting materials were almost colourless, but the samples were 
predominantly blue pearlescent in reflection to an observer viewing them 
in ambient. The transmission and reflectance spectra revealed the 
formation of an incomplete photonic bandgap at ca. 460 nm. 

The results of this Thesis show that the nanostructures at different 
length scale can easily be obtained by combining interacting synthetic 
materials in solutions. These structures can lead to modified properties or 
even new functionalities compared to the starting materials. Future work, 
where concepts introduced here are used for switchable optical [174] and 
electrical properties [175] and selectively absorbing mesoporous materials 
[176], are under investigation.
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