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ABSTRACT 
 
This thesis describes the production and properties of xylanases from Trichoderma reesei Rut 
C-30 and Thermomyces lanuginosus DSM 10635. The thermostability of several T. reesei 
xylanase II mutants was also studied. T. reesei Rut C-30 responds to the pH of the growth 
environment by modifying its enzyme production patterns. The production of the xylanases I, 
II and III by T. reesei at different pH conditions correlates with the pH-dependent activity 
pattern of the enzymes. The xylanase was preferentially produced when it is most active in 
that particular pH environment. The highest total xylanase production with T. reesei Rut C-
30 was achieved at pH 6 on a lactose-based medium. Among the pentoses and hexoses tested, 
L-arabinose was the most effective inducer of the xylanases. Furthermore, in co-metabolism 
of L-arabinose and D-glucose, the addition of the former relieved the repression of D-glucose 
on xylanase production. The replacement of part lactose with L-arabinose resulted in 
significant improvement in xylanase production. Small amounts of bulky L-arabinose-rich 
plant materials, such as sugar beet pulp and oat husk hydrolysates, stimulated the xylanase 
production. While xylanase production was improved by these approaches, the cellulase 
production was not enhanced. In addition, the stability and activity of T. reesei xylanase II 
mutants containing different combinations of disulphide bridges were studied. The most 
stable combination mutant showed about 5000-fold half-life at 65 oC compared to the wild 
type xylanase II. The molecular system controlling xylanase induction was fundamentally 
different in T. reesei and T. lanuginosus. Unlike T. reesei Rut C-30, T. lanuginosus DSM 
10635 xylanase was not induced by L-arabinose or lactose. The amino acid sequence of 
DSM 10635 xylanase was most likely the same as that of T. lanuginosus DSM 5826 xylanase. 
The temperature-dependent inactivation curve of the DSM 10635 xylanase decreased slowly 
at neutral or slightly alkaline pH, whereas at low pH, the inactivation was fast. The 
thermostabilizing effect of the substrate, birchwood xylan, on DSM 10635 xylanase was 
observed to be significant only under acidic conditions.  
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1.  INTRODUCTION 
 
 
1.1             BACKGROUND  
 
There are several applications of xylanases in industry (Prade, 1996; Kulkarni et al., 1999; 
Subramaniyan & Prema, 2002). Currently, the major applications of xylanases are in pulp 
and paper, feed, and baking industries.  
 
Xylanases are used in the prebleaching of kraft pulp to reduce the use of harsh chemicals in 
the subsequent chemical bleaching stages. The enzymatic treatments improve the chemical 
liberation of lignin by hydrolysing residual xylan. This reduces the need for chlorine-based 
bleaching chemicals, which is beneficial for the environment (Viikari et al., 1994; Suurnäkki 
et al., 1997; Christov et al, 1999; Viikari et al., 2001; Beg et al., 2001). In feed formulations, 
cooperation of xylanases, glucanases, proteinases and amylases reduces viscosity of the feed 
and increases the adsorption of nutrients. Enzymes liberate nutrients either by hydrolysis of 
non-degradable fibres or by liberating nutrients blocked by these fibres (Leisola et al., 2004). 
In the food industry, xylanases are used to improve the dough properties and baking quality 
of bread and other baked goods by breaking down the polysaccharides in the dough. The 
enzyme treatment has favourable effects on dough handing, bread volume, texture and 
stability (Li et al, 2000; Bhat, 2000). In combination with pectinases and other enzymes, 
xylanases have also been used in other processes such as clarification of juices, extraction of 
coffee, and extraction of plant oils and starch. Other potential applications include the 
conversion of agricultural waste and the production of fuel ethanol (Eriksson et al., 2002; 
Sorensen et al., 2003; Damaso et al., 2003).  
 
Although xylanases produced by thermophilic eubacteria and archaea have considerably 
longer half-life (T1/2) at 80 oC or higher temperatures than those from thermophilic fungi, the 
levels of xylanase activity produced by these bacteria are considerably lower than those of 
fungi (Singh et al., 2003). Filamentous fungi are particularly useful producers of xylanases 
from the industrial point of view, due to the high production level and extracellular secretion 
of enzymes, as well as relative ease of cultivation. In general, xylanase activity levels from 
fungal cultures are typically much higher than those from yeasts or bacteria (Bergquist et al., 
2002; Paloheimo et al., 2003).  
 
 
1.2             XYLANASE PRODUCING STRAINS  
 
1.2.1          Trichoderma reesei Rut C-30 
 
Trichoderma reesei (also known as Hypocrea jecorina) is a mesophilic fungus which is one 
of the most efficient xylanase and cellulase producers. Industrial strains of Trichoderma 
reesei can achieve protein production levels of up to 100 g/l (Cherry & Fidantsef, 2003). The 
efficient secretory ability and the cheap and easy cultivation of T. reesei make it a useful 
organism for the large-scale production of enzymes for a variety of industrial applications. T. 
reesei can also be used for the large-scale production of heterologous proteins (Hui et al., 
2001). Among the many T. reesei mutants (Table 1), Rut C-30 is a widely studied strain 
(Montenecourt & Eveleigh, 1979; Bader, 1993). It grows on a single carbon source, such as 
cellulose or xylan, and secretes both cellulases and xylanases. In addition, it produces 
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enzymes more efficiently than the wild-type T. reesei. The cellulase expression in Rut C-30 
is not repressed by glucose to the same extent as in some other strains (Tangnu et al., 1981; 
Domingues et al., 2000). The modern production strains are genetically engineered to 
increase the enzyme production and often to remove the expression of unwanted enzymes, 
like cellulases during the production of xylanases (Paloheimo et al., 2003; Verdoes et al., 
1995). 
  
Table 1. The genealogy of different high-cellulase producing T. reesei mutant strains isolated 
worldwide (Persson et al., 1991; Nevalainen et al., 1994; Xu et al., 2000).  

Rut series, Rutgers University, USA      
(Montenecourt & Eveleigh, 1977, 1979) 

 Rut C 30 
 (ATCC 56765) 

 
Rut M-7 

 
 Rut NG14 

 Rut EPI series 
 
CL series, Societe Cayla, France 
(Durand et al., 1984) 
Kyowa series, (PC-3-7), Kyowa Hakko 
Kogyo Co., Japan (Kawamori et al., 
1985,1986) 
D1 series, Indian Institute of 
technology, India (Mishra et al., 1982) 
MHC series, Slovak Academy 
Sciences, Slovakia (Farkas et al., 1981) 
L series, Cetus Corporation, USA 
(Shoemaker et al., 1981) 
VTT-D series, Technical Research 
Centre, Finland (Nevalainen et al., 
1980; Ilmén et al., 1996) 
MG series, Gulbenkian Institute of 
Science (Beja da Costa & van Uden, 
1980) 

 
 
 
 

 
 

 
Trichoderma 

reesei 
 

QM6a 
 

wild type, 
(Mandels & 
Reese, 1957) 

 
 
 
 QM9123 
 
 
Natick, USA 
(Mandels et 
al., 1971) 

 
 
 
  QM9414 
(ATCC 26921) 
 
Natick, USA 
(Mandels et al., 
1971) 

MCG series, Natick, USA 
(Gallo et al., 1979) 

Note: the references in this table can be found in Nevalainen et al., 1994. 
 
 
1.2.2 Thermomyces lanuginosus DSM 10635 
 
Thermomyces lanuginosus (formerly known as Humicola lanuginosa) is a widely distributed 
thermophilic ascomycete fungus.  By definition, a thermophilic fungus is one that thrives at 
temperatures above 60 oC and fails to grow below 20 oC (Singh et al., 2003). T. lanuginosus 
has attracted considerable interest due to its production of thermostable enzymes, especially 
the xylanase belonging to family 11 of glycosyl hydrolases (Henrissat & Davies, 1997). 
Furthermore, the xylanase production in T. lanuginosus is not accompanied by cellulase 
production. In addition very low levels of other hemicellulases are found in the culture media 
of this fungus (Gomes et al., 1993; Singh et al., 2003).  
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The lack of cellulases is important, since the treatment of paper pulp with xylanase 
preparations containing cellulases results in a reduction in the degree of polymerisation of the 
cellulose fibers and a drop in product quality (Beg et al., 2001). In the current industrial 
production systems, cellulases are removed genetically. However, T. lanuginosus was earlier 
thought to be a potential xylanase producer due to the lack of cellulases and lignocellulolytic 
enzymes in the native strains (Singh et al., 2003; Purkarthofer et al., 1993b).  
 
T. lanuginosus DSM 5826 strain was isolated from Bangladesh (Purkarthofer et al., 1993a, 
1993b; Cesar & Mrsa, 1996). SSBP, ATCC 46882 and other T. lanuginosus strains were 
isolated from different geographic locations (SSBP isolated from South Africa) (Lin et al., 
1999; Bennett et al., 1998; Singh et al., 2000a, 2000b). DSM 10635 strain was isolated from 
the Czech Republic. No reports about the DSM 10635 xylanase, studied in this thesis, have 
previously been published. 
 
 
1.3 ENZYMES PRODUCED BY T. REESEI  AND T. LANUGINOSUS 
 
T. reesei produces a number of extracellar enzymes (Table 2, 3, 4). It produces at least four 
endo-1,4-β-xylanases (XYN I, II, III and IV, EC 3.2.1.8), two β-xylosidases (EC 3.2.1.37), 
two endo-1,4- β -D-glucan cellobiohydrolases (CBH I and II, EC 3.2.1.91), five endo-1,4-β-
D-glucan-4-glucanohydrolases (EG I, II, III, IV and V, EC 3.2.1.4) and two β-D-glucosidases 
(BGL I and II, EC 3.2.1.21) (Bailey et al., 1993b; Zeilinger et al., 1996; Xu et al., 1998; 
Nogawa et al., 2001, Karlsson et al., 2001). Several other enzymes  are also produced by T. 
reesei: β–mannanase (EC 3.2.1.78), β–mannosidase (EC 3.2.1.25), α-L-arabinofuranosidase 
(EC 3.2.1.55), α–galactosidase (EC 3.2.1.22), acetylxylan esterases (EC 3.1.1.72) and 
laccases (benzenediol:oxygen oxidoreductases, EC 1.10.3.2) (Stålbrand et al., 1993; Roche et 
al., 1995; Shabalin et al., 2002; Hakulinen, 2003).  
 
Several strains of T. lanuginosus have been found to produce extracellular xylanases, but no 
cellulolytic enzymes are produced simultaneously. Other hemicellulases are produced in low 
levels (Singh et al., 2003). This is different from many other xylan-degrading organisms, 
which often secrete complex mixtures of xylanases and cellulases. 
 
1.3.1 Xylanase 
 
Many bacterial and fungal species can produce a mixture of xylanase, β-xylosidase and 
accessory side-group cleaving enzymes in order to utilize xylan, a complex polymer which is 
the major component of hemicellulose in the plant cell wall. Xylan found in nature consists 
of a β-1,4-linked xylopyranose backbone substituted with acetyl, arabinosyl and glucuronosyl 
side chains (Gregory et al., 1998). Enzymatic hydrolysis of xylan to xylose is catalyzed by 
endo-1,4-β-xylanase and β-xylosidase, the former randomly hydrolyzing xylan to 
xylooligomers and the latter producing xylose from xylooligomers. The side chain groups are 
liberated by α-L-arabinofuranosidase, α-D-glucoronidase, α-galactosidase and acetyl xylan 
esterase (Subramaniyan & Prema, 2002). β-xylosidase shows high activity toward xylobiose 
but no activity toward xylan (Bajpai, 1997). However, some xylanases may also have an 
ability to hydrolyze xylooligomers to xylose, especially in the cross-linked enzyme crystal 
form (Finell et al., 2002).  
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The xylanase activity of T. reesei is composed of xylanases I, II, III and IV, and xylan-
digesting cellulases. Xylanases I and II (pI 5.5 and 9, respectively) are approximately 20 kDa 
proteins belonging to the family 11 of glycosyl hydrolases (Törrönen & Rouvinen, 1997). 
Xylanase III (pI 9.1, 32 kDa) is a family 10 glycosyl hydrolase, first characterized from T. 
reesei PC-3-7 (Xu et al., 1998). The pH optimum for xylanase I is at pH 4.0-4.5, for xylanase 
II at pH 4.0-6.0 and for xylanase III at pH 6.0-6.5. Of the total xylanase activity in T. reesei 
PC-3-7 produced on a cellulose-based growth medium, xylanase III accounted for over 25% 
(Xu et al., 1998). Xylanase IV (pI 7.0, 43 kDa) was described in a recent patent (Clarkson et 
al., 2001). Its pH optimum is at pH 3.5-4.0. The activity of xylanase IV increases efficiently 
when it is combined with other xylanases. The different properties of T. reesei xylanases are 
summarized in Table 2. The xylanases of different T. lanuginosus strains have been 
characterized, and most of them have very similar molecular weights and pI values (25.5 kDa 
and 4.1, respectively) (Lin et al., 1999; Cesar & Mrsa, 1996; Bennett et al., 1998).  
 
The crystal structures of different family 11 xylanases have been resolved, including the 
structures of T. reesei xylanases I and II and T. lanuginosus xylanase (Hakulinen et al., 2003). 
The protein structure is composed of two β-sheets and a single α-helix forming a right hand-
like structure (See cover picture of this book). Based on the structural information, a large 
number of protein engineering studies have been performed with family 11 xylanases 
utilizing site directed mutagenesis, and also random mutagenesis techniques (Turunen et al., 
2004). 
 
Table 2. Biochemical properties of purified T. reesei xylanases. 
Xylanase MW*

(kDa)
pI Optimum 

pH 
Stability Specific 

activity¤

(IU/mg) 

pH 
stability 

Reference 

XYN I 
 

19 5.5 4.0-4.5 24 h, 40 oC 
 

70 
 

2.5-4.5 Tenkanen et al., 1992 

XYN II 
 

20 9.0 5.0-5.5 24 h, 45 oC 
 

231 
 

4.0-7.5 Tenkanen et al., 1992 

XYN III 
 

32 9.1 6.0-6.5 24 h, 50 oC 
 

258 
 

5.0-8.0 Xu et al., 1998 

XYN IV 
 

43 7.0 3.5-4.0 - - - Clarkson et al., 2001 

*MW: Molecular weight in SDS-PAGE; ¤Specific activity was measured at 50 oC, pH 6.0, in 
1% birch wood xylan solution by Xu et al., 1998. The specific activity of XYN I and II was 
reported to be 120 IU/mg and 810 IU/mg, respectively, at 60 oC by Lappalainen et al., 2000. 
 
 
1.3.2 Cellulase 
 
Cellulose is degraded by three major classes of hydrolases (Table 3). Endoglucanases digest 
the amorphous regions of cellulose, cellobiohydrolases cut the cellulose to cellobiose from 
the free chain end and β-glucosidases degrade small soluble oligosaccharides and cellobiose 
to glucose. Efficient enzymatic degradation of insoluble polysaccharides often requires a 
tight interaction between the enzymes and their substrates. In the case of cellulose 
degradation, many cellulases are known to bind to crystalline and/or amorphous cellulose via 
cellulose-binding domains (CBDs) which are distinct from the catalytic domains (Ohmiya et 
al., 1997).                                                                                                                        
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Table 3. Physical properties of T. reesei cellulases. 
Number of 

residues 
 

Total Core 

Molecular 
weight* 
(kDa) 

Isoelectric 
point 
(pI) 

Position 
of the 
CBD 

Reference 

CBH I 
(Cel 7A) 

497 430 59—68 3.5—4.2 C Reinikainen, 1994 

CBH II 
(Cel 6A) 

447 367 50—58 5.1—6.3 N Reinikainen, 1994 

EG I  
(Cel 7B) 

437 368 50—55 4.0—6.0 C Reinikainen, 1994 

EG II 
(Cel 5A) 

397 327 48 5.5 N Reinikainen, 1994 

EG III 
(Cel 12A) 

218 218 25 7.5 No Reinikainen, 1994 

EG IV 
(Cel 61A) 

344 344 55 - C Karlsson et al., 2001 

EG V  
(Cel 45A) 

225 166 23 - C Reinikainen, 1994 

BGL I 
(Cel 3A) 

713 713 75 8.7 No Reinikainen, 1994 

BGL II 
(Cel 1A) 

700 700 114 4.8 - Foreman et al, 2003; 
Viikari et al, 2001 

* SDS-PAGE results. Abbreviations: CBH, cellobiohydrolase; EG, endoglucanase; BGL, 
β-D-glucosidases; CBD, cellulose binding domain; C, C-terminal; N, N-terminal.  
 
Cellulases are currently sold to the textile industry for cotton softening and denim finishing 
and to detergent markets for color care, cleaning and anti-redeposition in washing powders. 
(Cherry & Fidantsef, 2003). Alkaline cellulase when it attacks cotton fiber relaxes the 
rigidity of the fiber and releases the stains within the interior of the fiber (Ohmiya et al., 
1997). In the pulp and paper industry, cellulases are used together with hemicellulases to 
improve the drainage and runnability of the paper machines and to enhance the deinking of 
recycled fibres (Viikari et al, 2001; Cao & Tan, 2002). 
 
Cellulases have replaced the use of volcanic lava stones in the treatment of denim in order to 
achieve the so-called “stone-washed” or abraded look appreciated by the consumers. The 
stones caused considerable damage to the machines and fibres, and nowadays the same effect 
can be obtained by the use of cellulases (Leisola et al., 2004). 
  
In the future, the cellulase market is expected to increase dramatically if economical 
conversion of cellulosic biomaterial to ethanol can be demonstrated. The major barrier for 
this expansion is the current cost of cellulases in biomass saccharification (Cherry & 
Fidantsef, 2003).  
 
1.3.3 Other enzymes 
 
Besides xylanases and cellulases listed above (Table 2, 3), T. reesei is an efficient producer 
of many other enzymes also, which are listed in Table 4. 
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Table 4. Selected T. reesei enzymes with industrial potential. 
Enzyme Function Application Reference 

β-mannanase Degradation of 
mannan  

Delignification of 
pulp 

Ohmiya et al., 1997 

α-L-arabinofuranosidase Cleavage of side 
groups in xylan  

Feed and baking Roche et al., 1995 

α-galactosidase Cleavage of side 
groups in xylan  

Digestion of guar 
gum; medicine 

Golubev et al., 2004 

Pectin methyl esterases De-esterification and 
gelling of pectins 

Clarification of 
cider 

Haltmeier et al., 
1983; Bhat, 2000 

Acetylxylan esterases Hydrolysis of acetyl 
side groups of xylan 

Co-operation with 
xylanase 

Hakulinen et al., 
2000 

Laccases Oxidation of wide 
variety of compounds 

Textile bleaching, 
biosensors, etc. 

Kiiskinen et al., 2004 

 
β-mannanase: Mannans and xylans are the main components of wood besides cellulose and 
lignin. For the complete hydrolysis of mannans the synergistic action of endo-1,4-β-
mannanases, β-mannosidases, β-glucosidases, α-galactosidases and acetyl mannan esterases 
is required. Endo-1,4-β–mannanase, which hydrolyzes mannan yielding mannotriose and 
mannobiose, has been reported to be produced by T. reesei (Stålbrand et al., 1993). 
 
α-L-arabinofuranosidase: D-xylose and L-arabinose are two most widespread pentose sugars 
in biosphere. Arabinan, arabinoxylan and some other arabinose-containing polysaccharides 
release arabinose when hydrolyzed by T. reesei α-L-arabinofuranosidase (Roche et al., 1995). 
 
α-galactosidase catalyses cleavage of terminal α-galactose residues from α-O-galactosides 
including galactose-containing oligosaccharides and branched polysaccharides, such as 
galactomannans and galactoglucomannans. It may have an application in digestion of guar 
gum, which contains about 40 % galactoses with α-1,6-linkages on a β-mannosyl backbone. 
α-galactosidase can be used in modification of wood-derived materials because 
galactomannans and galactoglucomannans are the main groups of hemicelluloses in 
softwoods. It may have an application also in medicine for the treatment of Fabry disease 
(Zeilinger et al., 1993; Siika-aho et al., 1994; Shabalin et al., 2002; Golubev et al., 2004). 
 
Pectinases are a group of enzymes (polygalacturonase, pectin lyase, pectate lyase, and pectin 
esterase) that break the glycosidic bonds of the long chains of galacturonic acid residues in 
pectic substances, which are the structural polysaccharides of plant cells. The pectinases have 
applications in fruit juice clarification and wine production. A potential utilization of 
pectinases is treatment of softwoods, which has been shown to improve the efficiency of 
preservative treatment by rendering the wood more permeable for chemical preservatives 
(Haltmeier et al., 1983; Gregorio et al., 2002).   
 
Acetylxylan esterases represent a group of carbohydrate esterases with great potential in 
biotechnology and carbohydrate chemistry. They deacetylate partially acetylated 4-O-
methyl-D-glucuronoxylan, the main hardwood hemicellulose, or its fragments generated 
upon the action of endo-1,4-β-xylanases (Hakulinen et al., 2000). Other important enzymes, 
such as laccases and proteases, are also secreted by T. reesei (Kiiskinen et al., 2004; 
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Eneyskaya et al., 1999). Laccases catalyse oxidation of a wide variety of compounds, and 
potentially apply in textile dye bleaching, pulp bleaching, effluent detoxification, biosensors 
and bioremediation (Kiiskinen et al., 2004). T. reesei protease digests the proteins in the 
medium under acidic conditions (pH below 2.7). At higher pH, the proteolytic reaction is 
limited. Glucose and cellobiose repress the proteolysis of cellobiohydrolase in a 
concentration-dependent manner (Eneyskaya et al., 1999). 
 
T. lanuginosus is also an efficient producer of thermostable amylases (Arnesen et al., 1998; 
Puchart et al., 1999; Nguyen et al., 2002). Application of this amylase in the baking industry 
has been patented (Michelsen et al., 1996). However, T. lanuginosus produces only tiny 
amounts of other hemicellulases and cellulases (Singh et al., 2003). 
 
 
1.4 CULTIVATION CONDITIONS  
 
1.4.1 Carbon sources and inducers 
 
In most studies on cellulase production by Trichoderma, cellulosic materials have been used 
as the substrate for fungus growth (Suto & Tomita, 2001). However, the high amount of solid 
material in these systems burdens the agitation and lowers the availability of oxygen in 
bioreactors, and absorbs some of the enzymes. The rate of enzyme synthesis depends on the 
hydrolysis of cultivation substrates (Oashima et al., 1990). Soluble substrates have some 
advantages compared to the cellulosic materials. The process conditions can be optimised 
and run as a fed-batch or a continuous culture system to maximize the productivity (Ju et al., 
1999). A series of different carbohydrates have been studied for T. reesei QM9414 growth 
and xylanase induction (Table 5). In general, lactose has been used as a common carbon 
source and inducer of industrial enzyme production (especially cellulases) in T. reesei 
(Chaudhuri & Sahai, 1993, 1994; Morikawa et al., 1995; Olsson et al., 2003).  
 
Table 5. Growth and expression levels of xylanase genes (xyn1, xyn2) in T. reesei QM9414.  

 
Carbon source 

 
Growth*

 
Induction¤ 

 
Reference 

D-glucose + + + - Margolles-Clark et al.,1997 
D-xylose + + + - Margolles-Clark et al.,1997 
Mannose + + + - Margolles-Clark et al.,1997 
D-galactose  + + - Margolles-Clark et al.,1997 
Xylobiose + + Zeilinger et al., 1996 
Sophorose n.r. + + +  Zeilinger et al., 1996 
Cellobiose + +  Margolles-Clark et al.,1997 
Arabinose n.r. - Zeilinger et al., 1996 

Xylan  + + + + +  Margolles-Clark et al.,1997 
Cellulose + + + + +  Margolles-Clark et al.,1997 

* Growth was estimated visually (+ + + best growth, + poor growth); ¤ induction was 
estimated by analysing mRNA expression. n.r., not reported. 
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Hydrolysates of many different bulk materials have been used for xylanase and cellulase 
production for decades. Wastepaper hydrolysate has a similar cellulose-inducing strength as 
cellulose and it induces a wide set of cellulases (Ju et al., 1999). A high xylanase/cellulase 
ratio of enzyme activities was found at neutral pH cultivation of T. reesei Rut C-30 on xylan- 
and cellulose-based media (Bailey et al., 1993a). Hemicelluloses were suitable substrates for 
the xylanase production with concomitant low production levels of cellulase activity 
(Gamerith et al., 1992). Notably, some filamentous fungi are known to produce higher 
xylanase activities when cultured on wood pulp than on pure xylan (Royer & Nakas, 1989).  
 
Since xylan and cellulose are unable to enter the microbial cell, it has been suggested that 
low molecular weight degradation products of xylan and cellulose hydrolysis penetrate into 
the cells and induce the production of hydrolytic enzymes (Nikolaev et al., 1998; Haltrich et 
al., 1996). Both xylanases and cellulases are induced by monosaccharides and disaccharides. 
L-sorbose has been considered to be the only monosaccharide found so far to induce 
cellulase formation, and sophorose is regarded as the most efficient inducer of cellulases. 
Cellobiose is thought to be the inducer of these enzymes in natural conditions (Royer & 
Nakas, 1990; Nogawa et al., 2001).  
 
There are only a few reports regarding the use of different soluble carbon sources for enzyme 
induction in T. lanuginosus. D-xylose seems to be an efficient inducer of xylanase activity in 
DSM 5826 (Table 6). Another report claims that D-xylose repressed xylanase production by 
T. lanuginosus RT 9 (Hoq et al., 1994). 
 
Table 6. The xylanase and biomass production by T. lanuginosus DSM 5826 during growth 
on 15 g/l of different carbon sources (Purkarthofer & Steiner, 1995). 

 
Carbon source 

 
Xylanase (IU/ml) 

 
Dry weight (mg/ml) 

D-Glucose 0.21 5.92 
D-Galactose 0.41 4.94 
D-Mannose 0.29 5.32 
D-Ribose 7.95 3.58 
D-Arabinose 8.08 4.31 
D-Xylose 73.50 4.55 
D-Lyxose 51.00 3.89 
L-Arabinose 0.83 3.83 
D-Fructose 0.16 4.97 
L-Sorbose  0.19 3.25 
Cellobiose 0.15 3.96 
Sucrose 0.66 3.85 
Lactose 0.16 3.07 
Maltose 0.46 4.99 
Xylan 426 - 
None 0.16 1.35 
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1.4.2 Nitrogen sources  
 
Typical nitrogen sources in T. reesei cultivations are ammonium sulphate or ammonia water 
solution. Nitrate or urea are not suitable for T. reesei cultivations (Tangnu et al., 1981; 
Haltrich et al., 1996; Lieckfeldt et al., 2000), whereas trace peptone and yeast extract can 
stimulate an increase in enzyme production (Haapala et al., 1996; see also Pedersen & 
Nielsen, 2000). In the shake flask cultivations, the initial 30 g/l lactose and 5 g/l ammonium 
sulphate concentration are good choices. In batch and fed-batch fermentations, ammonia 
water solution has been used to adjust pH. The initial C:N ratio (w/w) should be close to 4:1 
(approximately equal to the ratio of 4 grams lactose per 1 gram ammonium sulphate) (Ju & 
Afolabi, 1999).  
 
Table 7. Common nitrogen sources for xylanase production by T. reesei. 
  
Nitrogen source 

 
Growth 

 
Comments 

 
Reference 

Ammonium + + + Decreases medium pH Haapala et al., 1994 

Urea  + Increases medium pH Haapala et al., 1994 

Yeast extract + + + + Stimulates enzyme 
production 

Haapala et al., 1996; 
 

Peptone  + + + +  Stimulates enzyme 
production 

Haapala et al., 1996; 
 

 
The Maillard reaction may have a bad influence on the cultivation, when using plant 
hydrolysates as the carbon source. The preparation of plant hydrolysates to produce 
saccharides and proteins involves high temperatures, and the colour-forming Maillard 
reaction plays a significant role in this process. The Maillard reaction consumes nutrients 
such as amino acids and saccharides, and the colour products can be harmful for microbes 
and cell growth (Jing et al., 2000).  High temperature, high substrate concentration and 
alkaline conditions greatly increase the intensity of the colour reaction (Ames, 1998). 
 
A few studies have dealt with suitable nitrogen source for T. lanuginosus. It seems that yeast 
extract is a better nitrogen source and nutrient material than other common organic or 
inorganic nitrogen sources (Purkarthofer et al., 1993a).   
 
1.4.3 Other nutrients and surfactants  
 
Besides carbon and nitrogen sources, several other factors have also to be considered in 
designing the optimum cultivation conditions. The morphological and physiological changes 
of T. reesei influence enzymes production (Velkovska et al., 1997; McIntyre, 1998). It has 
been reported that only the second fungal stage of T. reesei can produce enzymes and the 
primary mycelium does not efficiently secrete enzymes (Velkovska et al., 1997). A summary 
of the metal ions and surfactants used for T. reesei cultivation are listed in Table 8. 
 
Tween-80 is beneficial for the secretion of enzymes; its optimal concentration is close to 0.2 
ml/l, while a higher concentration is harmful for the production of cellulases (Tangnu et al., 
1981; Panda et al., 1987). A similar effect was observed in these studies also for other 
extracellular enzymes (Arnesen et al., 1998). The mechanism for the enhanced enzyme 
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production by Tween-80 may be related to the increased permeability of the cell membrane, 
allowing a more rapid secretion of the enzymes, which leads to greater enzyme synthesis 
(Arnesen et al., 1998; Eriksson et al., 2002). Another possible explanation is that Tween-80 
has an influence on the level of glycosylation and thus, e.g., on protein stability (Kruszewska 
et al., 1990). 
 
Table 8. Metal salt, organic nitrogen and Tween-80 concentrations in T. reesei cultivations. 
  

A 
 

B 
 

C 
 

D 
 

E 
KH2PO4 15 2.0 3.8 2.0 2.0 
MgSO4

.7H2O 1.23 0.3 0.6 0.3 0.3 
CaCl2

.2H2O 0.8 0.3 0.8 0.3 0.3 
FeSO4

.7H2O 
MnSO4

.H2O 
ZnSO4

.7H2O 
CoCl2

.6H2O 

0.0027 
0.0016 
0.0014 
0.0036 

0.005 
0.0016 
0.0014 
0.002 

0.005 
0.0016 
0.0014 
0.0037 

0.005 
0.0016 
0.0014 
0.002 

0.005 
0.0016 
0.0014 
0.002 

Antifoam - - 0.1 0.1 - 
Tween-80 0.3 0.2 0.2 0.2 0.1 
Yeast extract 0.3 0.3 - - - 
Peptone 0.75 0.75 - 2.0 1.0 

A) Domingues et al., 1999, B) Leisola, 1979, C) Tholudur et al., 1999, D) Ju et al., 1999, E) 
Krishna et al., 2000. All units are g/l except Tween-80 unit is ml/l. 
 
 
1.4.4 pH and temperature 
 
pH is an important parameter in the production of enzymes by T. reesei (Denison, 2000). 
Earlier reports indicated that a rather high pH (7.0) is essential for good production of 
xylanases by T. reesei Rut C-30 on cellulose- and xylan-based growth media, although 
growth (broth viscosity) was evidently better at pH 4.0 than at pH 7.0. Meanwhile, good 
production of cellulases was found at low pH (4.0) (Bailey et al., 1993a). A high pH (7.0) 
was essential for high xylanase production by Trichoderma longibrachiatum in cellulose 
medium (Royer & Nakas, 1990). During the course of the fermentation, the nitrogen source 
can significantly influence the pH of the medium (Haapala et al., 1994). The pH of T. reesei 
culture broth decreased during the cultivation when ammonium salts were used as the 
nitrogen source, whereas the pH increased when urea was the nitrogen source. 
 
The cultivation temperature does not only affect the growth rate of an organism, but it can 
also have a marked effect on the level of xylanase production. T. reesei Rut C-30 grew well 
at 17, 28 and 37 oC when cultivated on lactose substrate, but xylanase production was 
significantly increased at higher temperature, whereas cellulase production was reduced 
(Haltrich et al., 1996). An initial phase of cultivation of T. reesei Rut C-30 at 37 oC followed 
by a shift to 28 oC in the beginning of the enzyme production phase was advantageous for 
both the amount of xylanase activity obtained and the ratio of xylanase to cellulase. By 
applying the temperature shift during laboratory cultivation, xylanase activity could almost 
be doubled, whereas the xylanase/cellulase ratio was threefold higher in comparison to 
cultivation at a constant temperature of 28 oC (Haltrich et al., 1996; Smits et al., 1998).  
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1.4.5 Aeration and agitation  
 
When bioreactors are used in the cultivation of filamentous fungi for industrial enzyme 
production, the agitation rate and aeration levels influence the fungal growth and secretion of 
enzymes. The shearing action of the impellers on the morphology and productivity of 
filamentous fungi also deserves attention (Ilias & Hoq, 1998; Gibbs et al., 2000). Too strong 
agitation and aeration have been shown to be harmful for the production of xylanase. In 
large-scale fermentations, the stirrer speed had an even more pronounced effect on the 
production of xylanase. Highest xylanase activities were obtained in 20,000-litre cultivations 
by T. lanuginosus when the stirrer was turned off after a certain cultivation time and then 
used only periodically (Haltrich et al., 1996; Reddy et al., 2002). Thus, conditions of low 
shear which are typical for an air-lift fermentor were approached by using this method. 
 
The enzyme production by T. reesei QM 9414 was seriously affected by agitation (Lejeune et 
al., 1995). When using lactose as the substrate in a 15-litre fermentation, the optimal 
agitation rate was found to be 200 rpm. Low xylanase activities were obtained at 130 rpm, 
most probably due to oxygen or mass transfer limitations, while at 400 rpm almost no 
xylanase was produced. The latter result could be explained by a low production rate caused 
by the increased shear stress. When cellulose powder was used as the substrate, the effect of 
agitation rate was less pronounced than with lactose. With this substrate, the optimum stirrer 
speed was 300 rpm, and significant xylanase production occurred even with the highest 
agitation of 400 rpm. The particles of the insoluble substrate appeared to have a protective 
effect on the mycelium (Lejeune et al., 1995). 
 
The effect of oxygen saturation has been studied for T. reesei Rut C-30 grown on 1 % 
cellulose or xylan. Enzyme and extracellular protein levels were not affected by oxygen 
levels of 20 % or above, but were severely reduced at 10 % oxygen saturation (Schafner & 
Toledo, 1992). On the contrary, low levels of dissolved oxygen or even oxygen limitation did 
not adversely influence xylanase production by T. lanuginosus (Purkarthofer et al., 1993b). 
Varying aeration rates used in laboratory fermentations of T. lanuginosus from 0.5 to 1.5 
vvm (vvm: the income air volume per medium volume per minute) showed that slightly 
higher xylanase activities were obtained when aeration was increased from 0.5 to 1.0 vvm, 
whereas at the highest aeration rate of 1.5 vvm xylanase yields were significantly reduced 
(Hoq et al., 1994).  
 
1.4.6 Fed-batch and continuous fermentation 
 
Fed-batch operation involves a slow addition of highly concentrated nutrient media into the 
bioreactor with no effluent removal until the reactor is full. The aeration tank contains a large 
volume of highly active and dense organisms at the beginning of operation with slow feeding 
of concentrated nutrient solution, which is diluted inside the reactor. This operation can 
maintain low nutrient levels to minimize catabolite repression, or to extend the stationary 
phase by nutrient addition to obtain additional product. Fed-batch with feed-back control in 
the case of substrate inhibition is widely used in the industrial fermentations (Hendy et al., 
1984; Bailey & Tähtiharju, 2003; Skolpap et al., 2004).  
 
Continuous-flow stirred-tank reactor (CSTR) cultivations are usually operated as chemostats. 
It is usually preceded by growth of the fungus in batch culture to stationary phase. When 

 19



supply of fresh medium is initiated, the growth proceeds and material from the vessel is 
washed out, until the concentration of the medium is reduced to a level at which it limits 
specific growth rate (Papagianni, 2004). In an industrial production process, higher 
productivity and cell growth rate can be obtained by continuous culturing.  Detailed T. reesei 
growth parameters are listed in the report by Chaudhuri and Sahai (1994). 
 
1.4.7 Solid-state fermentation  
 
Besides submerged fermentation, solid-state fermentation (SSF) is a popular method to 
produce xylanases and cellulases by fungi. SSF means that the microorganism grows on 
moist solid substrates in the absence of free-flowing water. Filamentous fungi grow typically 
in nature on solid substrates, such as wood, seeds, stems, roots and leaves of plants in 
symbiotic associations. Compared to the submerged fermentation, SSF possesses several 
advantages such as higher fermentation productivity, higher end-concentration of products, 
higher product stability, lower catabolic repression, cultivation of microorganisms 
specialized for water-insoluble substrates or mixed cultivation of various fungi, and lower 
demand of sterility due to the low water activity used in SSF (Hölker et al., 2004).  
 
However, SSF is currently used only to a small extent for enzyme and secondary metabolite 
production because of severe process engineering problems. A scale-up of solid-state 
processes seems to be difficult due to the generally known problems of heat transfer, the fact 
that the media is not homogeneous, and difficulties with aeration. In T. lanuginosus 
cultivations, these problems are made worse by the shear sensitivity of the microbe 
(Purkarthofer et al., 1993b; Smits et al., 1996). 
 
 
1.5 METHODS TO IMPROVE THERMOSTABILITY OF XYLANASE 
 
There has accumulated during the years a large amount of information about factors related 
to thermostability of proteins (Lehmann & Wyss, 2001; van den Burg & Eijsink, 2002; 
Fágáin, 2003). The information has been gathered by structural comparison of mesophilic 
and thermophilic proteins, statistical comparison of amino acid composition between 
mesophilic and thermophilic proteins and mutagenesis studies of a large number of different 
proteins, including many industrial enzymes. To improve the protein thermostability, it is 
important to find the weak points in the protein structure, e.g. sites that are likely to unfold at 
elevated temperature. Computer simulations can be helpful in finding these sites. Sequence 
comparisons can be used to find features that are different in thermophilic enzymes when 
compared to mesophilic ones. This information is then used to plan site-directed mutations 
into a mesophilic protein. Random mutagenesis and directed evolution techniques do not 
require prior knowledge of the protein structure and can reveal stabilizing mutations that 
cannot be found by rational design (site-directed mutagenesis). 
 
There are several strategies to plan thermostable mutations. Strategies to stabilize an enzyme 
can be to reduce the degrees of freedom in the main chain or to make unfolding more 
unfavourable (Shaw & Bott, 1996). Stabilizing mutations can increase the structural rigidity, 
e.g. by strengthening the attractive forces (hydrogen bonds, salt bridges, etc.). The 
approaches to stablize enzymes by salt bridges are not always successful (Shaw & Bott, 
1996).  Introduction of new disulphide bridges can have a very large stabilizing effect, 
although even they are not always successful. Replacement of lysine with arginine has been 
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shown to increase the thermostability of several proteins. Even a small structural 
modification can have a significant effect on the properties of the enzyme (Lee & Vasmatzis, 
1997). A protein molecule can be stabilized also by adding stabilizing agents or particular 
ions and salts to the solution (Fágáin, 2003). This method is important in the production of 
commercial enzymes. 
  
The thermostability of xylanases has been studied extensively because the first commercial 
xylanases were from mesophilic microbes, while the enzyme met harsh conditions in feed 
(high temperature) and pulp bleaching (high temperature and high pH) applications. Family 
11 xylanases have been stabilized by introduction of disulphide bridges into the protein N-
terminus and α-helix, extension of protein N-terminus and several single amino acid 
substitutions at N-terminal region, Ser/Thr surface, α-helix and other sites (Wakarchuk et al., 
1994; Shibuya, 2000; Turunen et al., 2001, 2002; Sung, 2003; Fenel et al., 2004; Jänis et al., 
2004). While the mesophilic family 11 xylanases are inactivated quickly above 50 oC, the 
engineered enzymes have at best 10-20 oC higher apparent temperature optimum (Georis et 
al., 2000; Sung, 2003; Fenel et al., 2004). The protein engineering of these enzymes has still 
not created the thermostability found in the Dictyoglomus thermophilum xylanase, which is 
the most stable known family 11 xylanase with the apparent temperature optimum (Topt) at 
85 oC (Morris et al., 1998). The thermostability of family 10 xylanases can be much higher 
than that of family 11 xylanases (Biely et al., 1997). The most thermostable known xylanases 
are active at temperatures above 100 oC (Table 9). 
 
Table 9. A list of thermostable xylanases. 

Xylanase MW*

(kDa) 
Family Topt 

(oC) 
   T1/2  
  (min)  

Reference 

Thermomyces lanuginosus  
DSM5826 

25.5 11 60-70 148  at 75 oC Cesar & Mrsa, 1996; 
Singh et al, 2000 

Nonomuraea flexuosa  
(Actinomadura flexuosa) 

37 11 70-80 
 

32 at 80 oC 
273 at 80 oC 
 (shortened form) 

Leskinen et al., 2004; 
Hakulinen et al., 
2003 

Dictyoglomus thermophilum 33 11 85  Gibbs et al., 1995 
Morris et al., 1998 

Thermococcus zilligii  95  80 8 at 100 oC Uhl & Daniel, 1999 
 

Sulfolobus solfataricus 57  90 47 at 100 oC Cannio et al., 2004 

Thermotoga neapolitana 116 10 102 120 at 100 oC Zverlov et al., 1996 

Thermotoga sp.  
FjSS3-B.1 

 10 80 20 at 105 oC  Sunna et al., 1997; 
Simpson et al, 1991; 

Pyrodictium abyssi    105-
115 

 Sjöholm & 
Antranikian, 1997 

* Molecular weight in SDS-PAGE. 
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2. AIMS OF THIS STUDY 
 
Xylanase is used in various industrial applications. It is mainly produced by different fungi. 
However, more economical production systems and more stable enzymes are needed for 
industrial applications. Cheaper and better inducers of xylanase would therefore be 
advantageous. The problem with stability can in principle be overcome by finding more 
stable enzymes from nature or by stabilizing the existing enzymes to be suitable for industrial 
applications. 
 
Trichoderma reesei and Thermomyces lanuginosus are two excellent xylanase producers. 
Therefore these organisms were chosen for this study. The specific goals of this thesis study 
were formulated during the research process and were as follows:  
 

1. to study the regulation of xylanase production in T. reesei, especially the pH-
dependent regulation of enzyme production; 

 
2. to find better inducers and soluble carbon sources for xylanase production by T. 

reesei; 
 

3. to study the temperature- and pH-dependent properties of T. reesei xylanase II 
mutants; 

 
4. to study the growth properties of  T. lanuginosus and characterize its xylanase. 
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3. MATERIALS AND METHODS 
 
 
 3.1  ORGANISMS AND CULTIVATION CONDITIONS 
 
T. reesei Rut C-30 was obtained from VTT, Finland (www.vtt.fi). Dry powder spores were 
suspended in sterile 20 % (v/v) glycerol and the suspension inoculated on potato dextrose 
agar (PDA) slants (Difco Laboratories, USA). The PDA slants were incubated at 30 ºC for 7 
days and then stored at 4 ºC. The formed spores were collected by washing the slant with 3 
ml of sterile culture medium. The spore concentrate was pipetted into 250 ml shake flasks 
containing 100 ml culture medium and incubated on a rotary shaker (200 rpm) at 30 ºC. After 
36 h growth the medium was used as the inoculum for bioreactor cultivations.  
 
Batch cultivations were carried out in 2-litre glass-vessel bioreactors (Biostat MD system, B. 
Braun Biotech International, Germany). The cultivation parameters were as follows: 
temperature 28 ºC, agitation 400 rpm (tip speed 1.1 m/s, two Rushton type impellers), 
aeration 1 vvm and cultivation time 5 days. Foam was controlled by automatic addition of 10 
% (v/v) silicone antifoaming agent (BDH Laboratories, UK). The pH was controlled by 
automatic addition of 12.5 % (v/v) ammonia water or 10 % (w/w) sulfuric acid. The working 
volume in the bioreactor was 1 litre.  
 
The same Biostat MD system and above-mentioned conditions were used in the fed-batch 
cultivation. The initial working volume was 1 litre. The feeding was started at t = 48 h and 
maintained for 48 h. The pump rate was set at about 5.0 ml/h and the total input was 240 ml 
feeding solution into the bioreactor. In the fed-batch cultivation the initial mono- and 
disaccharide concentration was set to 20 g/l (10 g/l lactose monohydrate and 10 g/l plant 
hydrolysate sugars). The feeding solution comprised 100 g/l lactose monohydrate, 100 g/l 
plant hydrolysate sugars, 7.5 g/l peptone, 3 g/l yeast extract and trace metals. The trace metal 
concentrations were 10 times the concentrations in the culture medium. 
 
T. reesei culture medium was: 5 g/l KH2PO4; 0.6 g/l MgSO4

.7H2O; 0.8 g/l CaCl2
.2H2O; 5.0 

mg/l FeSO4
.7H2O; 1.6 mg/l MnSO4

.H2O; 1.4 mg/l ZnSO4
.H2O; 2.0 mg/l CoCl2

.6H2O; 0.2 
ml/l Tween-80 (Fluka Chemie, Switzerland); 0.75 g/l Peptone (Difco Laboratories, USA); 
0.3 g/l Yeast extract (Lab M, International Diagnostics Group, UK); and the carbon source 
was lactose monohydrate (the concentration is given in the text). If otherwise not indicated, 
the culture medium components were purchased from Sigma-Aldrich Chemie, Germany.  
 
T. lanuginosus DSM 10635 (www.dsmz.de/strains/no010635.htm) (isolated from sludge in 
the Czech Republic) was purchased from the German type culture collection (DSMZ). The 
strain was grown on a potato dextrose agar slant at 50 oC for 5 days and stored at 4 oC. The 
growth conditions in shake flasks and bioreactor are described in article V (Xiong et al., V). 
The medium was 5 g/l KH2PO4; 0.3 ml/l Tween 80; 15 g/l yeast extract and 15 g/l various 
carbon sources as indicated in the text.   
 
The generation of the mutants of T. reesei xylanase II by PCR method is described in article 
IV (Xiong et al., IV). Escherichia coli XL1-Blue (Strategene, USA) was used as the host 
strain for the plasmid growth and production of xylanase enzyme from the pALK143 vector 
(ROAL, Finland) as earlier described by Turunen et al. (2001). In the plate screening of the 
enzyme activity, the E. coli cells were grown on agar plates containing RBB-xylan (X-0502, 
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Sigma), in which the xylanase activity is seen as white halos around the positive colonies 
(Biely et al., 1985). For the production of xylanase by E. coli, the cultivation medium was 2 
% (w/v) LB broth (Laboratorios Conda, Spain). Growth conditions were 30 oC and 200-250 
rpm agitation in the shake flask. 1 mM isopropyl-thio-β-D-galactopyranoside (IPTG) was 
added to induce xylanase production (Turunen et al., 2001). 
 
 

 3.2   ACID HYDROLYSIS OF PLANT RAW MATERIALS  
 
Oat husk (Suomen Viljava, Finland), spruce fiber (Metso, Finland) and sugar beet pulp 
(Suomen Sokeri, Finland) were hydrolyzed in 4 % (w/w) sulfuric acid at 100 °C for 2 hours 
(100 g solid in 1 litre acid solution). After hydrolysis the solutions were filtered with 
Whatman No.3 filter paper (Whatman International, UK) applying suction. The filtered 
solutions were neutralized with calcium carbonate and the precipitate removed by filtration. 
The sugar beet pulp was pre-treated before the acid hydrolysis with a protease solution at 60 
°C and pH 8 for 2 hours and was then washed with excess water to remove the soluble 
material. After hydrolysis the solutions were concentrated by vacuum evaporation at 60 °C to 
~30 % (w/w) of dry matter and re-filtered. The concentrated hydrolysates were autoclaved at 
121 °C for 15 minutes immediately after concentration. 
 
 

 3.3   ANALYSIS OF SUBSTRATES AND FERMENTATION PRODUCTS  
 
The concentration of monosaccharides was analyzed by high-performance liquid 
chromatography (HPLC). The following system was used: Waters 717 plus autosampler 
(Waters Corp., USA), Waters 510 pump, and Waters 410 refractive index detector. The 
components were separated in an Aminex HPX-87P column (Bio-Rad Laboratories, USA) at 
70 °C with distilled water as the mobile phase. The elution rate was 0.6 ml/min and a 
deashing Micro-Guard pre-column (Bio-Rad Laboratories, USA) was used to remove the 
ions. 
 
The oligosaccharide content of oat husk hydrolysate and sugar beet pulp hydrolysate was 
determined by gel permeation chromatography (GPC). The detailed method is described in 
article III. The Empower program version 4 (Waters) was used for calculations and Shodex 
standard P-82 (Showa Denko K.K., Japan) together with L-arabinose, cellobiose and 
raffinose (Sigma) were used as molecular weight standards. 
 
The cell dry weight (cdw) was measured with pre-weighed filter papers (0.45 µm, diameter 
50 mm, NC 45, Schleicher & Schuell, Germany). An aliquote of 3 ml of culture broth was 
pipetted onto the filter paper under suction. The cells were washed with 20 ml distilled water, 
dried in a microwave oven at full power (1000 W) for 7 minutes, cooled down and weighed. 
 
The protein concentrations were determined by the method of Lowry et al. (1951). Bovine 
serum albumin (A-4503, Sigma) was the standard protein. The xylanase protein 
concentration of absorbance = 1 at 280 nm (1 cm cuvette) corresponded to the concentration 
of 0.7 g/l measured by Lowry. The standard protein (Bovine Albumin, Sigma, A-4503) of 
absorbance 1 at 280 nm (1 cm cuvette) corresponded to the weight concentration 1.66 grams 
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protein per litre. Pure T. reesei xylanase II protein with absorbance 1 at 280 nm corresponds 
to the protein concentration of 0.37 mg/ml (Turunen et al., 2001). 
 
 

 3.4   ENZYME PURIFICATION 
 
T. lanuginosus xylanase was purified as follows. T. lanuginosus cells were separated from 
the medium by centrifugation. Ammonium sulfate was added to the supernatant to achieve 80 
% saturation. The suspension was centrifuged and the precipitate was dissolved in 25 % 
saturated ammonium sulfate in 50 mM Tris-HCl (pH 7.5). The sample was applied to a 
Phenyl Sepharose column (Amershan Pharmacia Biotech, Sweden) pre-equilibrated with 25 
% saturated ammonium sulfate in 50 mM Tris-HCl buffer (pH 7.5). The column was eluted 
with a linear gradient of 25 to 0 % saturated ammonium sulfate. The active fractions were 
pooled and concentrated by ultrafiltration (PM 10, Millipore) to approximately one tenth of 
the original volume and 20 mM ammonium acetate buffer (pH 6.0) was added to achieve the 
original volume. The concentration-dilution procedure was repeated once and the sample was 
applied to a DEAE Sepharose FF (Amershan Pharmacia Biotech) column pre-equilibrated 
with 20 mM ammonium acetate buffer, pH 6.0. The column was eluted with a linear NaCl 
gradient from 0 to 1 M NaCl (Nyyssölä et al., 2001). The fractions showing xylanase activity 
were pooled and concentrated by ultrafiltration (Centriplus 30, Amicon, USA). The sample 
was washed by adding 20 mM ammonium acetate buffer (pH 6.0) and concentrated again. 
The final sample was filtered by Ultrafree MC 30,000 NMWL (Millipore) and the xylanase 
was collected from the filtrate. The purified enzyme was stored at 4 oC in 20 mM ammonium 
acetate buffer, pH 6.0.  
 
 

 3.5   IEF AND SDS-PAGE 
 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was carried out 
using 12 % polyacrylamide gels according to standard protocol (Laemmli, 1970). Molecular 
weight was estimated using BIO-RAD low molecular weight standard. The denaturing SDS-
PAGE was run at room temperature and 200 V. The isoelectric focusing (IEF) was 
performed using polyacrylamide gel (Ampholine PAG plate, Amersham Pharmacia Biotech, 
Sweden) with a pH range of 3.5-9.5.  Samples were focused at 2500 Vh and the end voltage 
was 1500 V (~150 V/cm gel). Proteins were stained with Coomassie blue (Bio-Rad 
Laboratories, USA). The accurate molecular weight of the purified xylanase was determined 
by ESI FT-ICR mass spectrometry as described by Jänis et al. (2001). 
 
 

 3.6   ZYMOGRAM 
 
Zymogram analysis after IEF was performed according to Biely et al. (1988). Remazol 
Brilliant Blue-Xylan (RBB-xylan) was used as the soluble substrate for detecting xylanase 
activity. The IEF gel was overlapped onto an RBB-xylan-agar gel. The gels were incubated 
at room temperature until the enzyme zones became clearly visible. The IEF gel was 
removed and the enzyme-degraded substrate zones on the RBB-xylan-agar gel were 
destained with a solution comprising two parts of 95 % (v/v) ethanol and one part of 0.05 M 
acetate buffer (pH 5.4). 
 

 25



The assumed xylanase III was extracted from IEF agarose. IEF was performed using agarose 
gel (Agarose IEF, Amersham Pharmacia Biotech) with a pH range of 3.5-9.5 using 
Ampholine preblended solution (Amersham Pharmacia Biotech). The IEF parameters were 
otherwise as described above. After running the agarose IEF, the gel region close to pI 9.1 
was cut out of the gel and smashed in 0.05 M citrate-phosphate buffer (pH 5).  The mixture 
was frozen and thawed twice to transfer the proteins into the buffer solution. A centrifugal 
filter device (Centriprep YM-3, Millipore, USA) was used to concentrate the sample solution 
to protein concentration of 2 g/l. This protein solution was used for the next SDS-PAGE 
zymogram analysis. 
 
Zymogram analysis was also carried out after SDS-PAGE. The protein concentrate was run 
in a SDS-PAGE gel containing 0.1 % (w/v) xylan at 4 ºC and 100 V, with non-heated protein 
sample. SDS was washed out using 2.5 % (v/v) Triton X-100 solution (Sigma-Aldrich 
Chemie, Germany), and after this the gel was incubated in 0.05 M acetate buffer (pH 5.4) at 
50 ºC for 20 min. Then the gel was soaked in 0.2 % (w/v) NaOH for 30 min. After removal 
of NaOH, 0.1 % (w/v) Congo-Red solution was added to stain xylan (20 min incubation). 
Finally, 1 M NaCl solution was used to remove unbound Congo-Red. Bio-Rad Coomassic 
blue was used to stain the protein standard lane (SDS-PAGE low range standard LS1610305, 
Bio-Rad Laboratories, USA). 
 
 

 3.7   ENZYME ACTIVITY ASSAYS 
 
Xylanase activity was analyzed by measuring with the 3,5-dinitrosalicylic acid (DNS) 
method the reducing sugars released during a 10 min reaction (Bailey et al., 1992).  The 
substrate was 1 % (w/v) xylan (X-0502, Sigma). The buffer was 0.05 M citrate-phosphate at 
pH 4-7 or 0.05 M Tris-HCl at pH 7-9 or 0.05 M Glycine-HCl at pH 9-10. The used pH and 
temperature values in each assay are mentioned in the text. The residual activities after 
inactivation at higher temperatures were measured at 50 oC, pH 5 (T. reesei XYN II) or 70 oC, 
pH 6 (T. lanuginosus XYN). 
 
The cellulase activity was analyzed with filter paper according to the method of Ghose 
(1987). Whatman No.1 filter paper (~50 mg, Whatman International, UK) was incubated at 
50 ºC for 1 h in 1 ml of 0.05 M Na-citrate buffer solution (pH 4.8) supplemented with 0.5 ml 
of enzyme solution. The liberated sugars were analyzed by the DNS method.  
 
One unit (IU) of enzyme activity was defined as the amount of enzyme releasing 1 
micromole reducing sugars in one minute reaction. D-xylose was the standard sugar for 
xylanase assay, and D-glucose was the standard sugar for cellulase assay. 
 
 

 3.8   EA AND ED OF ENZYME    
 
The Arrhenius activation energy Ea and the deactivation energy Ed were approximately 
calculated with the Arrhenius Equation:  
 
k = A * e –E/RT
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Both the enzymatic reaction velocity constant ka and the enzyme deactivation velocity 
constant kd were calculated with this equation. ka is obtained from the temperature-dependent 
enzyme activity curve (temperature optimum curve) and kd is obtained from temperature-
dependent enzyme inactivation profiles (Pauline, 1995). T is the absolute temperature.  
 
 

 3.9   HALF-LIFE IN THE PRESENCE OF SUBSTRATE   
 
The half-life in the presence of the substrate was determined from the productivity curves 
(Xiong et al., V, Fig. 6A &B), in which the amount of reaction product was followed as a 
function of time. The inactivation of the enzyme was seen as decreased accumulation of the 
reaction product during the course of reaction. A series of parallel reactions with equal 
amounts of enzyme was performed with equal amounts of substrate, and then the reaction 
was terminated at time point t1, t2, t3, t4, t5 and t6 by DNS solution. The corresponding activity 
values (absorption at 540 nm) were A1, A2, A3, A4, A5 and A6. The time intervals were the 
same as the first reaction time, and thus, the reaction times were recorded as 0, 1t, 2t, 3t, 4t 
and 5t. The enzyme deactivation is estimated to decrease the activity exponentially with a 
function of time following the equation V = Vo × e –kd t. The first interval phase reaction 
rate was assumed to be Vo and then the other values were calculated as shown in Table 10: 
 
Table 10. Half-life calculation in the presence of substrate. 
Interval 
phase 

t1 t2 -- t1 t3 -- t2 t4 -- t3 t5 -- t4 t6 -- t5

Activity  A1 A2-A1 A3-A2 A4- A3 A5-A4 A6-A5

Time 
 

0 1t 2t 3t 4t 5t 

Natural 
Logarithm 

LN 
(A1 / A1) 

LN 
((A2-A1) 

/ A1) 

LN 
((A3-A2) 

/ A1) 

LN 
((A4- A3) 

/ A1) 

LN 
((A5-A4)  

/ A1) 

LN 
((A6-A5)  

/ A1) 
 
The slope of linear Time- Logarithm (X-Y) is the constant - kd. Half-life can then be 
approximately calculated from the equation th = LN (2) / kd.  
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4.     RESULTS AND DISCUSSION
 
 

 4.1   INFLUENCE OF PH ON XYLANASE PRODUCTION BY T. REESEI 
 
Lactose was used as the main carbon source for the xylanase and cellulase production by T. 
reesei Rut C-30. The highest xylanase and cellulase activities were observed at pH 6.0 and 
pH 4.0, respectively (Fig. 1). The highest concentration of soluble protein was observed at 
pH 4.5. Compared with the cellulose- and xylan-based growth media, in which cellulase 
production was favoured at pH 4.0 and xylanase production was favoured at pH 7.0 (Bailey 
et al., 1993a), the lactose-based medium showed a lower pH for the maximal xylanase 
production (Xiong et al., I). 
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Fig. 1. Xylanase and cellulase activities (IU/ml) and soluble protein concentration (g/l) 
as a function of pH in batch cultivations of T. reesei Rut C-30. Culture conditions: 30 g/l 
lactose, 28 oC, 400 rpm and 5 days. 

 
The apparent xylanase activity in the culture broth is formed by various xylanases and 
cellulases. By using the IEF and RBB–xylan zymogram analysis, it was possible to obtain 
information about the xylan degrading enzymes (Xiong et al., I, Fig. 2). The non-specific 
cellulases, such as endoglucanase I (EGI), which show xylanase activity, have pI value below 
5.0 (Biely & Markovic, 1988; Bailey et al., 1993b). It could be seen in the zymogram 
analysis of IEF gels that xylanase activity corresponded to three T. reesei xylanases (Xiong et 
al., I, Fig. 2). The production of xylanases showed pH-dependence. Xylanase II (pI 9.0) was 
expressed at low (4.0) and high (6.0) pH, whereas xylanase I showed higher expression at pH 
4.0 and xylanase III at pH 6.0. 
 
The identity of both xylanases I and II was confirmed by comparing to purified enzymes, 
according to the active band in RBB-xylan zymogram and pI results in IEF gel (Xiong et al., 
I, Fig. 2). The cultivation of T. reesei at pH 6 produced a xylanase with a very high pI value 

 28



(higher than that of the pure xylanase II, pI 9.0). In the xylan-containing SDS-PAGE, the 
protein molecular mass weight was close to 32 kDa (Xiong et al., I, Fig. 2 & 3). Both pI and 
MW corresponded to the values of the T. reesei xylanase III (pI 9.1; 32 kDa) (Xu et al., 
1998). Therefore, this indicated that the enzyme with pI higher than 9.0 was T. reesei 
xylanase III. 
 
As a conclusion, T. reesei Rut C-30 reacts to the pH of the growth environment by modifying 
its enzyme production patterns. The pH-dependent activity profiles of the purified T. reesei 
xylanases and the pH-dependent production levels appear to be linked together. It means that, 
at a low pH, T. reesei produces xylanase I, which is most active at those pH values. At a high 
pH the fungus produces xylanase III, which is most active at those pH values. Although 
xylanase II is produced both at pH 4 and pH 6, a higher amount of xylanase II is produced at 
pH 6. The fungus apparently saves its energy by modifying its metabolism to produce the 
correct enzymes for the particular pH surroundings. The comparison of activity and 
production levels for different xylanases is shown in Table 11. Further research is needed to 
clarify what is the molecular basis for the influence of pH on the expression of XYN I, XYN 
II and XYN III and how the regulation at promoter level is involved. 
 
Table 11. Summary of T. reesei xylanase activities and production levels by T. reesei Rut C-
30 at pH 4 and 6. (+ + + best activity or production; + poor activity or production) 
  

pH 4 
 

pH 6 
 
Reference 

XYN I    activity* ++ + Tenkanen  et al., 1992 

XYN I    production ++ + Xiong et al., I 

XYN II   activity* ++ +++ Tenkanen et al., 1992 

XYN II   production ++ +++ Xiong et al., I 

XYN III activity* + +++ Xu et al., 1998 

XYN III production + +++ Xiong et al., I 

* Activity here means the pH-dependent activity. The optimum pH of XYN I, II, and III is 
4.0, 5.5, and 6.0, respectively (Table 2). 
 
 

4.2    XYLANASES INDUCTION BY L-ARABINOSE AND OTHER SUGARS  
 
Eight aldopentoses were tested as the carbon source for xylanase production by T. reesei Rut 
C-30. The highest xylanase activity was achieved in cultivation with L-arabinose, and the 
obtained xylanase production was even higher than in the lactose cultivation under the 
conditions that were used in this study (Xiong et al., II, Table 1).  
 
In the cultivation with mixture of D-glucose (15 g/l) and L-arabinose (5 g/l), the xylanase 
activity reached 96.6 IU/ml. The sole D-glucose (20 g/l) cultivation produced only 3.8 IU/ml, 
since D-glucose has a strong repression effect. With the mixture of lactose (15 g/l) and L-
arabinose (5 g/l), the obtained xylanase activity was 121.7 IU/ml, whereas the sole lactose 
(20 g/l) cultivation produced 59.2 IU/ml in the same conditions (Xiong et al., II). Lactose is 
able to induce xylanase activity in T. reesei Rut C-30. However, 20 g/l of D-glucose caused 
strong repression of xylanase activity (Fig. 2).  
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Co-metabolism of L-arabinose with other sugars was also studied. The mixturing of L-
arabinose with other sugars improved xylanase production to different extents when 
compared to the cultivation with the single sugars (Fig. 2). L-arabinose caused the maximum 
increase of xylanase induction for D-glucose cultivation. Thus, L-arabinose appeared to 
relieve the repression of xylanase production caused by D-glucose. L-arabinose showed 
limited effect on the xylanase induction when used in mixture with other sugars, except with 
D-glucose and lactose. 
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Fig. 2.  Stimulation of xylanase production by L-arabinose in 4 days shake flask cultivation 
with different sugar mixtures.   
 

T. reesei consumed lactose, D-glucose and L-arabinose at different rates in the cultivation 
with mixture of them. It consumed each type of sugar efficiently, but first lactose and D-
glucose and after that L-arabinose (Fig. 3). When the lactose was cleaved to D-galactose and 
D-glucose during the early stages of cultivation, this increased the amount of D-glucose in 
the medium shifting the consumption curve of D-glucose to the right (Fig. 3). D-galactose 
formed from lactose was consumed quickly. D-galactose was a good carbon source but it 
induced only low amounts of xylanase (Fig. 2). 
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Fig. 3. Sugar consumption rates by T. reesei in cultivation with sugar mixture of D-glucose, 
L-arabinose and lactose. D-galactose is the hydrolysis product of lactose. 
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The positive effect of L-arabinose on xylanase production by T. reesei has not been reported 
before. L-arabinose is an abundant sugar in nature. Since L-arabinose is found in the 
arabinoglucurone side-chains of xylan in wood fibres and other hemicelluloses, it is possible, 
in principle, that the release of L-arabinose is a signal for the fungus to produce xylanase for 
xylan digestion. The efficient induction of xylanase by L-arabinose could be one reason why 
higher xylanase activities are achieved when some fungi are grown on wood pulp compared 
to growth on pure xylan (Royer & Nakas, 1990). 
 
 

 4.3   XYLANASE INDUCTION BY PLANT HYDROLYSATES 
 
In order to find cheaper materials, L-arabinose-rich plant hydrolysates such as sugar beet 
pulp and oat husk hydrolysates were tested as the carbon sources and inducers of xylanase 
activity. Based on the sugar concentrations obtained by HPLC analysis of these hydrolysates 
(Xiong et al., III, Table 1), pure sugar models were tested first. The models consisted of pure 
monosaccharides with same ratio as in the corresponding hydrolysates (Xiong et al., III, 
Table 2). Surprisingly, the media made from the L-arabinose-rich plant hydrolysates 
produced higher xylanase activities than the corresponding media made from the mixture of 
pure sugars (Xiong et al., III). A fed-batch cultivation on the oat husk hydrolysate (30 g/l) 
and lactose (30 g/l) mixture is shown in Fig. 4. 
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Fig. 4. T. reesei Rut C-30 growth and xylanase activity production in fed-batch 
cultivation with mixture of oat husk hydrolysate and lactose. The details are described in 
Materials and Methods 3.1. (Xiong et al., III). 
 

The xylanase activity (1350 IU/ml) produced by the mixture of oat husk hydrolysate and 
lactose in fed-batch cultivation is amongst the highest xylanase activities achieved with T. 
reesei (Haltrich et al., 1996). The batch cultivation using solid substrates like beechwood 
xylan (30 g/l) and corn steep liquor (10 g/l) achieved about 1370 IU/ml xylanase activity 
(Bailey et al., 1993a). Meanwhile, the produced xylanase patterns (xylanases I, II and III) 
were similar regardless of the used carbon sources (Xiong et al., III, Fig. 7).  
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While xylanase III (srs.ebi.ac.uk/srsbin/cgi-bin/wgetz?-e+[UNIPROT-acc:Q9P973]+-vn+2) 
is produced by T. reesei strains Rut C-30 and PC-3-7, it is not produced by the strain 
QM9414 (Xu et al., 1998, 2000). It appears that the xyn3 gene of T. reesei QM9414 is in a 
dormant state, which may be caused by a mutation in T. reesei QM9414 that prevents the 
expression of xyn3 gene. QM9414 strain is missing also another xylanase-related property: 
there is no xylanase induction by arabinose in this strain (Zeilinger et al., 1996). In genealogy, 
the above three T. reesei strains are derived from the same ancestor strain T.reesei QM6a 
(Table 1). Hence, it is possible that the ancestor strain QM6a would show similar pH-
dependent regulation and L-arabinose induction of xylanases as strain Rut C-30. 
 
In addition, it was observed that T. reesei Rut C-30 can grow in entire plant hydrolysates 
solution with saturated calcium sulfate, which was formed by the neutralization with calcium 
carbonate (Xiong et al., III). The osmotic pressure caused by saturated calcium sulfate did 
not inhibit the T. reesei growth and enzyme secretion. This result is in agreement with results 
obtained by growing T. reesei in high concentration of mineral salts (NH4NO3, KH2PO4, 
MgSO4, and KCl) (Haltrich et al., 1996).  
 
Since the T. reesei cultivations with plant hydrolysates produced higher xylanase activities 
than the corresponding pure sugar models, it is possible that the oligosaccharides present in 
the hydrolysate are responsible for this effect. It could even be that the oligosaccharides 
themselves are more effective inducers of xylanase production in T. reesei than the 
monosaccharides (Xiong et al., III, Fig. 1).  
 
 
       4.4      THERMOSTABILITY OF T. REESEI XYLANASE II MUTANTS 
 
Thermostability and broad pH range tolerance are desirable properties of xylanases when 
thinking the industrial usefulness of enzymes. There are several ways to improve these 
properties. In generally, many stabilizing amino acid substitutions and some of the factors 
determining the pH-dependent activity are known (Haki and Rakshit, 2003), and exploited 
also for xylanases (Turunen et al., 2004). Disulphide bridges have been used to stabilize 
many proteins, and if successful, they can have a remarkable stabilizing effect (Pace et al., 
1990; van den Burg et al., 1998). Usually, finding of the stabilizing mutations for each 
particular enzyme is a process of trial-and-error. Disulphide bridges have been used to 
stabilize family 11 xylanases with a good success (Wakarchuk et al., 1994; Turunen et al., 
2001; Fenel et al., 2004). In T. reesei XYN II, the bridges at position 2-28 (protein N-
terminus) and 110-154 (α-helix) have increased the thermostability (Turunen et al., 2001; 
Fenel et al., 2004). Unlike the bridge at 110-154, bridge at 2-28 increased also the apparent 
temperature optimum. The T. reesei XYN II amino acid sequence (www.ebi.ac.uk/msd-
srv/apps/Viewer/ViewerServlet?id=1xyp, for corresponding structure see 1 XYP in Protein 
Data Bank) is as follows:  
 
   1 QTIQPGTGYN NGYFYSYWND GHGGVTYTNG PGGQFSVNWS NSGNFVGGKG  
 
  51 WQPGTKNKVI NFSGSYNPNG NSYLSVYGWS RNPLIEYYIV ENFGTYNPST  
 
 101 GATKLGEVTS DGSVYDIYRT QRVNQPSIIG TATFYQYWSV RRNHRSSGSV  
 
 151 NTANHFNAWA QQGLTLGTMD YQIVAVEGYF SSGSASITVS   
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Different mutation combinations were engineered between two bridges at the N-terminus and 
two bridges at the α-helix. The bridges at the α-helix were 110-154 and 105-162 and they 
formed a crosslink between the α-helix and nearby β-strand. The bridges at the N-terminus 
were 2-28 and 7-16. The combinations were A) 2-28 and 110-154, B) 2-28 and 105-162, C) 
7-16 and 110-154. The mutants contained also some other mutations (Xiong et al., IV, Table 
1). To summarize, the result was that the combination of bridges 2-28 and 110-154 had an 
additive effect on the thermostability, whereas the combination of 7-16 and 110-154 had only 
a partly additive effect and the combination of 2-28 and 105-162 was not successful. 
 
The combination of the disulphide bridges 2-28 and 110-154 created a superstable mutant 
(named DB1; Xiong et al., IV). The mutations in this mutant were: T2C, T28C, N11D, N38E, 
S110C, N154C, and Q162H (Xiong et al., IV). The presence of the disulphide bridges in this 
seven-fold DB1 mutant was verified for the purified enzyme by mass spectrometry. The DB1 
mutant contained also an unintentional mutation Y27F, confirmed by sequencing and also 
mass spectroscopy of the protein (Jänis et al., 2004).  
 
 
   1 QCIQPGTGYN DGYFYSYWND GHGGVTFCNG PGGQFSVEWS NSGNFVGGKG  
      ↑___________________________↑   
 
  51 WQPGTKNKVI NFSGSYNPNG NSYLSVYGWS RNPLIEYYIV ENFGTYNPST  
 
 101 GATKLGEVTC DGSVYDIYRT QRVNQPSIIG TATFYQYWSV RRNHRSSGSV  
        ______↑    
        ↓ 
 151 NTACHFNAWA QHGLTLGTMD YQIVAVEGYF SSGSASITVS   
 
The DB1 mutant showed a very high thermostability and stability over a very wide pH range 
as shown in Fig. 5 and 6. Some enzymatic properties such as Km, Vmax, and pHopt did not 
differ significantly between the mutant and the wild type xylanase, except that the apparent 
optimum temperature was increased from ~58 oC to ~71 oC (Xiong et al., IV, Table 3). The 
introduction of the bridge 110-154 to the bridge 2-28 mutant did not anymore increase the 
apparent optimum temperature from the level of the mutant with the 2-28 bridge. However, 
the thermostability increased 110-fold at 65 oC. Alltogether, the half-life of DB1 was at least 
5000 times higher at 65 oC than that of the wild type enzyme. Since the kinetic values 
remained at the wild type level, it means that the extensive stabilization of the enzyme did 
not decrease the functional properties. 
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Fig. 5. Temperature-dependent inactivation of the thermostable DB1 mutant and the wild 
type T. reesei XYN II at pH 6. The enzymes were incubated for 10 min at each 
temperature and then the residual activity was measured.   
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Fig. 6. pH-dependent inactivation of the thermostable DB1 mutant and the wild type T. 
reesei XYN II. After 30 min incubation at each pH, the residual activity was measured.  

 34



      4.5     CHARACTERIZATION OF T. LANUGINOSUS XYLANASE  
 
Since L-arabinose, lactose and oligosaccharides (Xiong et al., II and III) are typically good 
carbon sources and inducers of xylanase production in T. reesei, the cultivation of T. 
lanuginosus DSM 10635 was studied by using a similar medium as in the T. reesei 
cultivations. However, the results were fundamentally different. T. lanuginosus DSM 10635 
cultivation with those carbohydrates produced a lower xylanase activity than with D-xylose 
(Xiong et al., V, Table 1). These cultivation results with DSM 10635 were similar to the 
results reported for T. lanuginosus DSM 5826 (Table 6). D-xylose was the best carbon source 
and inducer of xylanase production. L-arabinose and lactose were not efficient inducers of 
xylanase, and lactose even was not consumed by T. lanuginosus DSM 10635 (Xiong et al., 
V). These results showed that the molecular system controlling the xylanase induction is 
fundamentally different between T. reesei and T. lanuginosus.  
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Fig. 7. T. lanuginosus xylanase purification by HIC and ion-exchange chromatography. 
The elution salt concentration is shown on the right; absorbance (at 280 nm) of the elution 
and xylanase activity (absorbance at 540 nm in DNS assay) are shown on the left. 
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T. lanuginosus DSM 10635 xylanase was purified to electrophoretic homogeneity and some 
of its enzymatic properties were characterized. The xylanase activity peak appeared at 2-10 
% saturated ammonium sulphate in the HIC step and at approximately 0.3 M NaCl in ion-
exchange chromatography step (Fig. 7A and 7B). A summary of T. lanuginosus xylanase 
purification steps is given in Table 12. 
 
Table 12. The purification summary for T. lanuginosus DSM 10635 xylanase. 

Steps 
 

Protein (mg) 
 

Activity (IU)
 

Specific activity 
(IU/mg) 

Yield 
( %) 

Broth              1350 15500 11.5 100 

(NH4)2SO4   294 12700 43.3 82 

Phenyl Sepharose 26 8650 333 56 

DEAE-Sepharose 3.3 5030 1520 32 

Ultrafiltration 1.8 4340 2330 28 
 
 
The molecular mass of the purified DSM 10635 xylanase was 21295.17 Da determined by 
mass spectrometry. This is very close to the theoretical molecular mass of 21294.96 Da 
deduced from the DSM 5826 xylanase sequence (www.ebi.ac.uk/msd-
srv/msdlite/atlas/1yna_visualization.html), when the aminoterminal Gln is in a cyclic form as 
shown by the crystal structure (1YNA in Protein Data Bank; Schlacher et al., 1996; Gruber et 
al., 1998). In addition, the protein did not show molecular weight heterogeneity in the mass 
spectrometric analysis, indicating that there are no glycosylation variants of this protein. This 
is in agreement with the results obtained by lectin characterization of T. lanuginosus DSM 
5826 xylanase (Cesar & Mrsa, 1996). Finally, the enzymatic properties are also similar 
between these two xylanases (Xiong et al., V). 
 
T. lanuginosus DSM 5826 xylanase amino acid sequence (PDB code 1YNA; the protein 
structure is shown on the cover picture of this book): 
 
   1 QTTPNSEGWH DGYYYSWWSD GGAQATYTNL EGGTYEISWG DGGNLVGGKG  
 
  51 WNPGLNARAI HFEGVYQPNG NSYLAVYGWT RNPLVEYYIV ENFGTYDPSS  
 
 101 GATDLGTVEC DGSIYRLGKT TRVNAPSIDG TQTFDQYWSV RQDKRTSGTV  
        ______↑    
        ↓ 
 151 QTGCHFDAWA RAGLNVNGDH YYQIVATEGY FSSGYARITV ADVG  
 
When comparing the amino acid sequences of T. lanuginosus xylanase with T. reesei XYN-
II, the similar structure was found for these two family 11 xylanases, specifically the α-helix 
(amino acids 153-162) and two β-sheets (Törrönen & Rouvinen, 1997; Singh et al, 2003). 
The disulfide bridge at position 110-154 is one of the reasons for the high thermostability of 
T. lanuginosus xylanase. Cleavage of the disulphide bridge resulted in a 25% loss of the β-
sheet structure (Tatu et al., 1990). The same disulphide bridge in T. reesei xylanase II and 
Bacillus circulans xylanase increased considerably the thermostability (Wakarchuk et al., 
1994; Turunen et al., 2001; Xiong et al., IV). 
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In conclusion, the properties of xylanases from different T. lanuginosus strains are highly 
similar, even though they have been isolated from different geographic locations (Xiong et 
al., V). The findings from mass spectrometry showed that DSM 10635 and DSM 5826 
xylanases have identical or highly similar amino acid sequences. This conclusion is based 
also on the highly similar properties of xylanases of most of these strains (Singh et al., 
2000a). 
 
 
      4.6   THERMOSTABILITY OF T. LANUGINOSUS  XYLANASE  
 
The thermostability of T. lanuginosus xylanase in the presence and absence of the substrate 
was studied in the article V. Typical to T. lanuginosus xylanase is that it loses its activity 
slowly during the elevation of temperature, when the experiment is done at neutral or slightly 
alkaline pH (Fig. 8). The same behavior has been reported for xylanases of other T. 
lanuginosus strains (Singh et al., 2000b). In line with this, the deactivation energy (86 kJ 
mol-1; at pH 6.5) was smaller than the typical values (170-400 kJ mol-1) of many enzymes 
(Pauline, 1995). However, at pH 5, the temperature-dependent inactivation curve is steep 
during the elevation of the temperature, and correspondingly, the deactivation energy is high 
(278 kJ mol -1; Lischnig et al., 1993). 
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Fig. 8. Temperature-dependent inactivation profiles of T. lanuginosus xylanase. The 
enzyme was incubated for 30 min at each temperature and the residual activity was 
measured (Xiong et al., V). 

 
During the incubation for 30 min at 70 oC, T. lanuginosus xylanase was inactivated very 
easily at pH 4-5 without presence of substrate, but still it was quite active at that pH (Xiong 
et al, V, Fig. 5). This apparent discrepancy called for further study into the stability of this 
enzyme in the presence of the substrate at low pH. It was found that the enzyme was much 
more stable in the presence of the substrate than when it was absent at acidic pH (pH 4.0-6.5), 
but not at neutral or alkaline pH (Table 13). The presence of the substrate increased the 
stability 7-fold at pH 4. The molecular mechanism for the protective effect of substrate on 
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xylanase at acidic pH is unclear. It is possible that the hydrogen bonds (the substrate forms in 
the active site) increase the stability of the enzyme at low pH. However, when the amount of 
OH- ions is increased in the solution, the hydrogen bonds from the substrate are disrupted, 
and as a consequence, the substrate does not stabilize the enzyme in alkaline pH. Another 
possibility is that the substrate causes stabilizing structural changes in the enzyme in a pH-
dependent manner. The effect of the substrate on the thermostability of xylanase has been 
shown earlier (Tenkanen et al., 1992; Tenkanen et al., 1995; Turunen et al., 2002), but this 
work is the first to find its pH-dependency. In studying the DB1 mutant of T. reesei XYN II 
it was observed that the protective effect of the substrate is low at higher temperatures (75 oC) 
(Xiong et al., IV). 
 
Table 13. Half-life (min) of T. lanuginosus DSM 10635 xylanase in the absence or presence 
of 1 % birchwood xylan substrate (Xiong et al., V). 

 

Incubation conditions  
 

Substrate absent 
 

Substrate present 

65 oC, pH 4.0 ~ 2 ~ 14 

65 oC, pH 5.0 ~ 18 ~ 71 

70 oC, pH 5.0 ~ 4 ~ 13 

70 oC, pH 6.5 ~ 40 ~ 60 

70 oC, pH 9.0 ~ 19 ~ 12 
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5. CONCLUSIONS AND FUTURE PERSPECTIVES  
 
This thesis presents results from studies of xylanase production by T. reesei and T. 
lanuginosus, as well as on stabilization of T. reesei xylanase II by disulphide bridges. 
However, some interesting topics could deserve further research: 
 

• T. reesei produces higher xylanase activities and lower cellulase activities at pH 6; 
or produces lower xylanase activities and higher cellulase activities at pH 4 in the 
lactose-based medium. The fungus modifies the xylanase expression pattern to 
maximize the degradation of xylan at different pH conditions. The mechanism for 
the pH-dependent regulation of xylanase expression has still to be clarified.  

 
• L-arabinose was one of the best inducers of T. reesei xylanases among the tested 

sugars. Under experimental conditions, the effect was even better than with lactose. 
The cultivation with a mixture of L-arabinose and lactose or D-glucose produced a 
higher xylanase activity than the sole lactose or D-glucose. Especially, L-arabinose 
relieves the repression of xylanase production by D-glucose. The molecular 
background for this regulation at promoter level requires further research. 

 
• L-arabinose-rich plant hydrolysates are good carbon sources and inducers for 

xylanase production by T. reesei. It may be that oligosaccharides are more powerful 
inducers than monosaccharides. This possibility should be studied further, and there 
are questions such as which type of oligosaccharide is the best inducer, or whether 
the combination of different oligosaccharides gives better results than single ones.   

 
• The thermostability of T. reesei xylanase II is significantly improved after 

introduction of two disulphide bridges into proper positions. This highly stable 
variant of xylanase is potentially very useful for industrial applications. However, 
the achieved stability level is still lower than the stability level of most stable family 
11 xylanases. Engineering a mesophilic xylanase to be fully active at ~100 oC would 
be a great challenge.     

 
• T. lanuginosus secretes a thermostable xylanase unaccompanied by cellulases. The 

produced cellulolytic/xylanolytic enzyme pattern is fundamentally different than that 
of T. reesei. An efficient inducer of xylanase for T. lanuginosus is D-xylose; the best 
inducers for T. reesei, such as L-arabinose or lactose, are not suitable for T. 
lanuginosus. The inactivation of T. lanuginosus xylanase proceeds slowly during the 
elevation of temperature at neutral or slightly alkaline pH. Substrate protection of 
this xylanase was influenced by pH. Industrial applications involving this xylanase, 
especially after modification of its properties by protein engineering, could bring 
interesting results, but this requires further research. 
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