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Chapter 2The Self-Organizing Map as a Tool inKnowledge EngineeringJohan Himberg, Jussi Ahola, Esa Alhoniemi,Juha Vesanto, and Olli SimulaHelsinki University of TechnologyAbstractThe Self-Organizing Map (SOM) is one of the most popular neural network meth-ods. It is a powerful tool in visualization and analysis of high-dimensional data invarious engineering applications. The SOM maps the data on a two-dimensionalgrid which may be used as a base for various kinds of visual approaches forclustering, correlation and novelty detection. In this chapter, we present novelmethods that enhance the SOM based visualization in correlation hunting andnovelty detection. These methods are applied to two industrial case studies:analysis of hot rolling of steel and continuous pulp process. A research softwarefor fast development of SOM based tools is brie
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November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainThe Self-Organizing Map as a Tool in Knowledge Engineering2.1 IntroductionTraditionally, modeling and control of industrial processes is based on an-alytic system models. The models may be built using knowledge basedon physical phenomena and assumptions of the system behavior. How-ever, many practical systems, e.g., industrial processes, are so complexthat global models cannot be de�ned. In such cases, system modeling mustbe based on experimental data obtained by various measurements.Modern automation systems produce large amounts of measurementdata. However, interpretation of this data and the correlations betweenmeasurements and other system parameters is often di�cult. In manypractical situations, even minor knowledge about the characteristic behav-ior of the system might be useful. For this purpose, easy visualization ofthe data is of great help. The measurements need to be converted into somesimple and comprehensive display which would reduce the dimensionalityof measurements and simultaneously preserve the most important metricrelationships between the data.Arti�cial neural networks have successfully been used to build systemmodels directly based on process data. They provide means to analyzethe system or process without explicit physical model. The Self-OrganizingMap (SOM) [12] is one of the most popular neural network models. Due toits unsupervised learning and topology preserving properties it has provento be especially suitable in analysis of complex systems. The SOM algo-rithm implements a nonlinear topology preserving mapping from a high-dimensional input data space onto a two-dimensional network or grid ofneurons. The network roughly approximates the probability density func-tion of the data and, thus, inherently clusters the data. Various visualiza-tion alternatives of the SOM are useful, e.g., in searching for correlationsbetween measurements and in investigating the cluster structure of thedata.SOM based data exploration has been applied in various engineeringapplications such as pattern recognition, text and image analysis, �nancialdata analysis, process monitoring and modeling as well as control and faultdiagnosis [15; 19]. In addition, the SOM has been used in analysis andmonitoring of telecommunications systems. Applications include equalizerstructures for discrete-signal detection and adaptive resource allocation intelecommunications networks.The ordered signal mapping property of the SOM algorithm has proven



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainData analysis using the Self-Organizing Mapto be powerful in analysis of complex industrial systems and processes. TheSOM allows easy visualization of system parameters and their correlations,cluster structure of the data, monitoring of operation state, and noveltydetection. The SOM based approach has, for instance, been utilized todetermine the reasons for situations where the output quality of an indus-trial process is not satisfactory. The case studies presented in this chapterinclude analysis of pulping and steel rolling processes.The SOM can be used in many di�erent ways for data visualizationand exploration. In this chapter, we present SOM based tools for dataexploration in practical industrial applications. Novel methods to enhancethe SOM based visualization in correlation detection, cluster analysis, andoperation monitoring as well as novelty detection will be discussed.2.2 Data analysis using the Self-Organizing MapOur approach to data analysis is explorative and will concentrate on visu-alization based approaches. The main idea is to provide an overall pictureof the data and create tools that help the analyst to see what the data arelike and get ideas for further, perhaps more quantitative descriptions of thedata.2.2.1 The Self-Organizing MapA SOM is formed of units located on a regular low-dimensional grid (usually1D or 2D to enable visualization). The lattice of the grid can be hexagonalor rectangular. The former is often used because it is more pleasing to theeye.Each unit i of the SOM is represented by an n-dimensional prototypevector mi = [mi1; : : : ;min], where n is equal to the dimension of the inputspace. On each training step, a data sample x is selected and the prototypevector mc closest to it, the winner unit, is found from the map. Theprototype vectors of the winner unit and its neighbors on the grid aremoved towards the sample vector:mi :=mi + �(t)hci(t)(x�mi); (1)where �(t) is the learning rate and hci(t) is a neighborhood kernel centered



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainThe Self-Organizing Map as a Tool in Knowledge Engineeringon the winner unit c. Both learning rate and neighborhood kernel radiusdecrease monotonically with time. During the iterative training, the SOMbehaves like a 
exible net that folds onto the \cloud" formed by input data.2.2.2 Data analysis schemeUsing the SOM in data analysis is only one part of a multi-staged process.The map | as any method | is a fruitful tool only if the input datareally describe the essential phenomena and is not governed by completelyerroneous data. The phases of a basic explorative data analysis processusing the SOM can be sketched as follows:Data acquisition may be real time measurement collection (on-line) ordatabase query (o�-line) which is usually the case when an exploratoryanalysis is made.Data preprocessing, selection and segmentation are usually elaboratetasks involving a lot of a priori knowledge. Erroneous raw data have to beremoved. Proper data scaling and representational transformations (e.g.,symbolic to numerical values) have to be considered. Clearly inhomoge-neous data sets may have to be divided to disjoint subsets according tosome criteria in order to avoid problems which would come up if a globalmodel was applied.Feature extraction is the phase where preprocessed and segmented dataare transformed into feature data vectors. It is important to realize thatthe objective in our case is to interpret the data and extract knowledgefrom it and from relations in it | not to make black-box classi�cation orregression. Therefore, the feature variables have to describe the importantphenomena in the data in such a way that they are clear in the analysis.It is evident that this and the previous stages cannot be properly donewithout knowledge of application domain.Training of the SOM is performed according to the Sec. 2.2.1. Thetraining parameters need to be determined. Fortunately, the basic SOMalgorithm seems to be rather robust in this sense, and by following certainbasic guidelines (see, e.g., [12]) satisfactory results are usually obtained.However, one delicate issue is the scaling of the feature variables. The vari-ables with large relative variance tend to dominate the map organization.In order to equalize the contribution of individual variables in the maporganization, they are usually normalized to be equivariant. The distancemeasure used in the SOM training has to be chosen in such a way that



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainVisualizationapplying it to data makes sense. Usually, the Euclidean distance is used.The variable normalization and the distance measure are, of course, datadependent issues and related to the feature extraction phase.Visualization and interpretation are the key issues for using SOM indata analysis. These include correlation detection, cluster analysis andnovelty detection. The scope of this chapter is on the visualization andinterpretation phase which are described in the next section. We remindthat the data analysis is usually not a 
ow-through process, but requiresiteration, especially between feature extraction and interpretation phases.An integrated software environment is clearly needed. We describe our re-search software in Sec. 2.4.2.3 VisualizationThe SOM provides a low-dimensional map of the data space. The aim ofvisualization is both to understand the mapped area and to enable investi-gation of new data samples with respect to it.To understand what the SOM really shows, it is important to under-stand that it actually performs two tasks: vector quantization and vectorprojection. Vector quantization creates from the original data a smaller,but still representative, data set to be worked with. The set of prototypevectors re
ects the properties of the data space. The projection performedby the SOM is nonlinear and restricted to a regular grid (the map grid).The SOM tries to preserve the topology of the data space rather than rel-ative distances.In contrast, there are several other ways of projecting multidimensionaldata to lower dimensions. A well-known method is based on PrincipalComponent Analysis (PCA): the eigenvectors with the largest eigenvaluesare calculated from the data set, and the data samples are projected on thesubspace spanned by these vectors. This is a fast linear operation, but givesmisleading results if the ignored directions have signi�cant information.A di�erent approach is to project the data so that relative distances be-tween samples are as close to the original as possible according to somecost function. Di�erent cost functions lead to di�erent nonlinear algo-rithms, e.g., Sammon's projection [18] or the Curvilinear Component Anal-ysis (CCA) [4]. Large data sets cause often problems for these, usually



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainThe Self-Organizing Map as a Tool in Knowledge Engineeringiterative, projection methods as the procedure becomes computationallyheavy. One possibility is to reduce the computational task by �rst quantiz-ing the data using some suitable method, e.g., k-means and then applyingthe projection method. Some recent solutions include [17]. Of course, theSOM can be seen as doing something similar, except that only topology |not distances | is preserved.2.3.1 Basic methods for SOM visualizationThe SOM grid provides a basis for various visualizations. Variable valuesor other features may be shown with respect to the grid.(a) Uni�ed distance matrixThe uni�ed distance matrix (u-matrix) [7; 22] is a simple and e�ectivetool to show the possible cluster structure on a SOM grid visualization.It shows the distances between neighboring units using a gray scale repre-sentation on the map grid. This gives an impression of \mountains" (longdistances) which divide the map into \�elds" (dense parts, i.e., clusters).See Fig. 2.1(c).(b) Component planesThe SOM is often \sliced" into component planes in order to see how thevalues of a certain variable (component) varies on di�erent locations of themap [20]. Each plane represents the value of one variable (component)of the prototype vector in each node of the SOM using, e.g., gray scalerepresentation. One can now see the general behavior of the variable valuesin di�erent parts of the SOM. See Fig. 2.1(c).The component planes play an important role in the correlation detec-tion: by comparing these planes even partially correlating variables maybe detected by visual inspection | a simple enhancement to this is de-scribed in the next section. This kind of comparison could be done usingscatter plots as well, but this would require a quadratic amount of displayswith respect to the number of variables: each variable against each othervariable. When using the component planes the number of displays growslinearly. Furthermore, the vector quantization performed by the SOM re-moves noise. The component planes can also be easily compared with thecluster representation of the u-matrix.



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainVisualization(c) HitsWhen investigating new data with the SOM the question is, which partof the map best corresponds to the data? Traditionally, this has been an-swered by �nding the nearest prototype vector (the best matching unit,BMU) for each investigated data sample and then indicating it from theSOM. See Fig. 2.1(c). For multiple data vectors, one can count the numberof times that each unit has been the BMU, and thus, a data histogram isobtained. By comparing di�erent histograms, one can evaluate the simi-larity of di�erent data sets in terms of the map. Similar histograms implysimilar data sets.(d) TrajectoriesIf the data have been acquired from a process, one may be interested invisualizing the evolution of the process state in time. The BMU of thecurrent feature vector may be regarded as the operating point on the mapwhich in turn can be regarded as a projection of the multidimensional statespace. Trajectory (Fig. 2.1(d)) is a line connecting a sequence of theseoperating points [10; 21] that shows the change of the process in time. Asoftware tool related to this issue is presented in Sec. 2.4.3.(e) Combining di�erent projectionsTo get an idea of the shape of the map in the data space, the prototypevectors of the SOM can be projected to a low dimension using some vec-tor projection method which tries to preserve distances between projectedpoints. A common practice is to use Sammon's projection and to show thetopological relations of the map by connecting points that corresponds toneighboring units. The SOM may be considered unreliable if the topolog-ical structure is completely twisted or folded. In Fig. 2.1(b) one can seethat this has not happened in our arti�cial example but the map is wellordered in this case.In order to clarify the connections between visualizations, they may belinked together using color which is a dominant visual hint for groupingobjects. This idea has been applied to carrying information from the SOMrepresentation to a geographical map in [1; 3; 8]. We have applied this ideasimply to link di�erent presentations of the same data together, e.g., theSOM grid and a scatter plot or Sammon's projection [5; 23]. See Fig. 2.2.Similar linking idea to PCA has been earlier presented by Aristide [3].
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(c) (d)Fig. 2.1 Figure (a) shows a simple three-dimensional (variables X,Y and Z) arti�cialdata set with four clear clusters (a,b,c,d). Figure (b) shows the prototype vectors (\o")of a SOM trained with the data in (a). The topological connections are shown as linesconnecting the neighboring prototype vectors. Figure (c) shows the u-matrix and com-ponent planes. In the u-matrix dark gray represents long inter-unit distances and lightgray short ones. The clusters | that can be seen as light \�elds" between the dark\mountains" | have been labeled for convenience. The +-sign shows the BMU for thesample marked by +-sign in (a) (located between clusters a and c). The componentplanes show how the variables X,Y and Z vary along the map. Figure (d) shows atrajectory of �ve samples on the u-matrix.2.3.2 Correlation huntingCorrelations between component pairs are revealed as similar patterns inidentical positions of the component planes. The correlation detection canbe made easier if the component planes are reorganized so that the possiblycorrelated ones are presented near each other [24]. See Fig. 2.3. Using com-ponent planes for correlation hunting in this way is easy, but also rather



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainVisualizationvague and sometimes even misleading. However, it is easy to select inter-esting component combinations for further investigation. A more detailedstudy of interesting combinations can be done using scatter plots which canbe linked to the map units by color as has been regularly done in the casestudies in Sec. 2.5.�
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(a) (b)Fig. 2.2 Correlations between vector components can be e�ciently visualized usingscatter plots. In Fig. (a) each dot corresponds to one map unit. The x- and y-coordinatesof the dots have been taken from two components of the prototype vectors. To link thescatter plot to other visualizations, each dot is given a color according to the color codingof the map units shown in Fig. (b). In this grayscale �gure only four shades of gray areused. In practice a full color palette is much more informative. In addition to colorcoding, Fig. (b) also uses size to indicate clusters on the map: small units correspond tocluster borders. It can be seen that for most units, especially those with light gray colorcoding, the two components are linearly correlated but that there are distinct exceptions.2.3.3 Novelty detectionWhen investigating new data using SOM, the BMU of each data sample isfound and indicated on the map (see Sec. 2.3.1). The problem with thissimple approach is that it gives no information of the accuracy of the match.Typically, there are several units with almost as good match as the BMU.Alternatively, the data sample may actually be very far from the map | anovelty in terms of the map.Instead of simply pointing out the BMU, the response of all map unitsto the data can be shown. The resulting response surface shows the relativegoodness of each map unit in representing the data. The response can be,�For technical reasons we can't use colors in this presentation. In order to sketch theidea, a gray level coding is used instead. A full color version can be found in [27].
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Fig. 2.3 Correlations between components can be hunted from the component planesvisualization on the left. The task is easier if the planes are reorganized so that compo-nent planes which seem to have high correlation are placed near each other, as shownon the right. For example, this reorganization brings nicely together the four framedcomponents.e.g., a function of the quantization error as follows:g(x;mi) = 11 + (qi=a)2 ; (2)where qi = jjx � mijj is the quantization error, i.e., distance, betweensample x and map unit i. The scaling factor a is the average distancebetween each training data sample and its BMU. See Fig. 2.4(a). Perhapsa more interpretative response function results if the SOM is used as a basisfor reduced kernel density estimate of the data. Then one can estimate theprobability P (ijx) of each map unit representing the data sample, see forexample [2; 6].In both cases above, the response surface is added onto the map af-terwards, while the original SOM algorithm has a \crisp" winner-take-allactivation function. There are related algorithms that have an intrinsicprobabilistic background as the S-Map [11]. However, it seems that a ker-nel density estimation model added to the SOM gives results that are wellcomparable with these methods [2].Another way to show the accuracy of the match is to use, e.g., thesize of the sample marker. In Fig. 2.4(b), the fuzzy response function(Eq. 2) has been used to control the size of the sample markers (circles).Now, individual samples can be seen along with their BMUs (position) andaccuracy (size).
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(a) (b)Fig. 2.4 Accuracy of matches. Figure (a) shows the response surface (Eq. 2) for onedata sample. Figure (b) shows BMUs and corresponding accuracies of 20 samples. Thebackground texture is averaged u-matrix of the SOM. Each circle represents one sample.The position of the circle indicates the BMU, and its size the accuracy of the match.2.4 SoftwareTo accomplish the explorative and iterative data analysis scheme, a 
exiblesoftware environment is needed. It should include domain speci�c post-and preprocessing capabilities, SOM implementation and di�erent visual-izations. The possibility to rapidly customize the code is important. Wehave tried to achieve this in the SOM Toolbox.2.4.1 SOM ToolboxThe MathWorks Inc.'s MATLAB [16] has been gaining popularity as the\language of scienti�c computing", and it employs a high-level program-ming language with strong support for matrix algebra, graphics and visu-alization. MATLAB suits for fast prototyping and customizing. The SOMToolboxy [25], hereafter the Toolbox, is an attempt to take advantage ofthese strengths and provide a customizable and easy-to-use implementationof the SOM as a free function library for the MATLAB environment.The advantages of the Toolbox are mainly in fast customization andvisualization. A major bene�t is that as the MATLAB's language is inter-yAvailable in http://www.cis.hut.fi/projects/somtoolbox/



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainThe Self-Organizing Map as a Tool in Knowledge Engineeringpreted, the user may give on-line commands to change various parametersor visualizations. Furthermore, the Toolbox is constructed in a modularmanner. Therefore, it is convenient to tailor the code for the speci�c needsof each user. Other toolboxes | commercial or freeware | may be usedtogether with the Toolbox to provide domain speci�c processing capabili-ties. For example, a toolbox related to system simulation might be used ina process control task.The basic procedures | SOM initialization, training and visualization| have been collected under high level functions which provide heuristicchoices for various parameter values. This gives an automated data-to-visualization operation to start with. The Toolbox also implements somevariants of the basic SOM. The topology of the SOM can be n-dimensional,and several SOM shapes are supported: rectangular, cylinder and toroid| as well as several neighborhood functions. In order to facilitate thedata analysis process, the Toolbox keeps track of labels associated withindividual data vectors, vector component names, component normalizationinformation and information on the training procedure.A standard implementation of the SOM and related tools are availableas the SOM PAK [13]. It is a public domain software packagez developedin the Neural Networks Research Centre of the Helsinki University of Tech-nology, written in ANSI C language for UNIX and PC environments. Inmap training, it is faster than the Toolbox and has a better capability to beapplied to large data sets than the Toolbox. However, while the SOM PAKis the choice for heavy duty, the Toolbox is meant for experimental and/orinteractive purposes. If the scalability is a problem, the SOM PAK can beaccessed from the Toolbox. It is possible to �rst train the map with theSOM PAK and then use the Toolbox for visualization.2.4.2 The SOM visualization as a user interface platformThe SOM grid is an e�ective base for building visualizations and user inter-faces for accessing multidimensional data. Assume that we need to attachsome information (text, symbols, colors) to the projected points. The pro-jection methods that produce a nonuniform visualization may cause prob-lems as the labeling information easily becomes unreadable in the denseparts of the projection.zAvailable in http://www.cis.hut.fi/nnrc/som pak/



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainSoftwareIn the SOM the amount of the units in a certain region of the space isproportional to the density of the training data in that region, i.e., the mapuses more units to represent the dense parts of the data. This increasesreadability as the map automatically \zooms up" areas that are dense. Onthe other hand, the topology preserving property gives access to cluster orvariable value visualization through u-matrix and component planes whichcan be easily used as browsers. The nodes can be used as clicking pointsto access the data underneath. The idea to use the SOM visualization as auser interface has been used earlier, e.g., in the WEBSOM [14] in browsinglarge document collections.2.4.3 Interactive tool for time-series explorationAs an example, we shortly describe an interactive time-series tool designedon the SOM Toolbox. The purpose of the tool is to facilitate the inspectionof the connections between the multidimensional data space presented bythe SOM and the time-series plot. In analysis, the feature data have beenextracted and the map is trained using them. The analyst may now evaluatehow certain feature variables are distributed and what kind of clusters thereare in the map visualization. The analyst sees how di�erent regions of themap are related to a time-series representing the same data from a di�erentpoint of view. After this, the analyst may reconsider if the feature datareally represent the investigated phenomena in a sensible way or if thefeatures should be extracted in some other way. The tool in Fig. 2.5 allowsthe analyst to� see the connection between original time-series and the featurespace visualized by the SOM.� run the process using a slider on the time-series. A trajectory |showing the connected BMUs for the current and some past samplesof the time-series | is animated on the map.� de�ne some areas on the map and tag them with speci�c colors.The same markers are shown on the time-series. Now the analystmay inspect how a region on the map is connected to the time-series. This may be done to the opposite direction, too, in order tosee how the time-series is projected to the map.
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Fig. 2.5 Time-series tool. The analyst may inspect changes in the operation point usinga slider. The analyst may mark regions on the map and in the time-series using di�erentcolors.2.5 Case studies2.5.1 Analysis of a continuous pulp digesterIn the �rst case study, behavior of a continuous pulp digester was analyzed.An illustration of the digester and separate impregnation vessel is shownin Fig. 2.6. Wood chips and cooking liquor are fed into the impregnationvessel. After the impregnation, the chips are fed into the digester. At thetop of the digester, they are heated to cooking temperature using steam,and the pulping reaction starts. During the cook, the chips slowly movedownwards the digester. The cooking ends at extraction screens, where the



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainCase studiespulping reaction is stopped by cooling the chips using wash liquor. Thewash liquor is fed to the digester bottom and it moves upwards, counter-current to the chip 
ow.
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Fig. 2.6 The continuous digester and the impregnation vessel. The cooking and washliquor 
ows are marked by thin lines and the chip 
ow by thick line.Problems in digester operation indicated by drops of pulp consistencyin the digester outlet were the starting point for the analysis. In thosesituations, end product quality variable (kappa number) values were lowerthan the target value.Measurement data were obtained from the automation system of themill. The analysis was started with several dozens of variables which weregradually reduced down to six most important measurements during dataanalysis process. The data used in the following experiments consisted ofthree separate measurement periods during more than one month of normalpulping operation. The periods were segmented by hand in such a way thatthey mainly consisted of faulty situations of the process. The productionspeed was required to be constant. During the measurement periods there



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainThe Self-Organizing Map as a Tool in Knowledge Engineeringwere no signi�cant errors in the measurements. Process delays betweensignals were compensated using known digester delays.In Fig. 2.7, the six signals and production speed of the �ber line areshown. The three segmented parts are shown by solid line and the partsthat were left out of the analysis by dotted line. In Fig. 2.8, the compo-
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Fig. 2.8 Component planes of the SOM trained using six measurement signals of thedigester. Dark color indicates low and light color high variable value, respectively.variables on the y-axes. In Fig. 2.10, a similar technique for coloring thescatter plots is utilized. In this case, however, the scatter plots are basedon data vectors | not values of the model vectors of the SOM. The color ofeach data vector is the one assigned to the the SOM unit that is nearest tothe data vector. It should be noted that even though the plots di�er fromthe ones of Fig. 2.9, the SOM has been able to capture the shape of the datacloud quite accurately. The scatter plots indicate that in the faulty statesdenoted by dark grey color (top left corner of the map), there is only weakcorrelation between kappa number and H-Factor, which is the variable usedto control the kappa number. Otherwise, there is a negative correlation asmight be expected. On the other hand, the variables Extraction and Chiplevel seem to correlate with the kappa number in the faulty process states.Also, the values of Press. di�. are low and value of variable Screens (whichduring the analysis was noticed to indicate digester fault sensitivity) is high.The interpretation of the results is that in a faulty situation, the down-ward movement of the chip plug in the digester slows down. The plug is sotightly packed at the extraction screens that the wash liquor cannot pass itas it should. There are two consequences: the wash liquor slows down the
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KappaFig. 2.9 Color map and �ve scatter plots of model vectors of the SOM. The points havebeen dyed using the corresponding map unit colors.downward movement of the plug and the pulping reaction does not stop.Because the cooking continues, the kappa number becomes too small. Inaddition, the H-factor based digester control fails: in the H-factor compu-tation, cooking time is assumed to be constant, while in reality it becomeslonger due to slowing down of the chip plug movement.2.5.2 Analysis of the quality of the hot rolled stripIn the second case study, a hot rolling system was analyzed. Hot rollingis a process where steel slabs are heated, rolled, cooled and coiled into�nal products, strips. Figure 2.11 illustrates the composition of the hotstrip mill in Raahe (at the time of the data acquisition; currently the millconstruction is somewhat di�erent). First, the slab is heated in the slab re-heating furnaces (1) into temperature appropriate for the following rollingprocess. Then, after the formed scale is removed with high-pressure water
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KappaFig. 2.10 Color map and �ve scatter plots of data vectors. The points have been dyedusing the color of BMU.shower (2), the slab passes to the roughing mill. The slab is rolled backand forth several times vertically in the edger (3) and horizontally in thereversing rougher (4). The resulting transfer bar travels under the heatretention panels (5) through another descaling and possible shearing ofthe head (6) into the �nishing mill (7), where it is rolled into desired endproduct. The �nishing mill consists of six stands. The transfer bar goesthrough them with high accelerating speed. After the rolling, the strip iscooled with several water curtains (8) and coiled (9).The process is controlled hierarchically by several separate automationsystems. Basically, each process stage introduced above has its own au-tomation system. Furthermore, a lot of additional computation, control,and information processing is made within and between the systems. Thiscauses di�culties in the data acquisition. Hence, the process data availablefor this case study consisted only of averages and standard deviations ofthe measured process variables of one strip.
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Fig. 2.11 Rautaruukki hot strip mill. The di�erent process stages are marked withnumbers. See text for their explanations.Due to ever increasing competition and customer requirements, the steelproducers are under growing pressure to improve the cost e�ciency of theproduction and the quality of their products. This is also the motivation forthe analysis, the purpose of which was to study which process parametersand variables a�ect the quality of the rolled strips. This can be done, e.g.,with correlation analysis for process data, which was the approach in thiscase.The data was collected from factory data bases in co-operation with theprocess experts. In the data set it was chosen 47 variables. The averageand standard deviation of �ve process parameters were chosen to repre-sent the quality: width, thickness, pro�le, 
atness and wedge of the rolledstrip. The other variables included information about the slab (analyzedchemical content), �nishing mill parameters (average bending forces, entrytensions, and axial shifts for each stand), and process state (strip strength,target dimensions, and average and standard deviation of the temperatureafter the last stand). After preprocessing of data, the amount of the stripsincluded in the study was slightly over 16500.In the beginning, in order to get to know the general dependenciesbetween the parameters, a very simple global linear correlation analysiswas performed. This showed, e.g., that the entry tensions of the standswere controlled based on the tensile strength calculated from the chemicalanalysis results. Due to redundant information of the variables causedby the controlling principles of the process, the data dimension could bereduced to 36 variables.The structure of the data set was then studied. This was done byprojecting the data on the two largest principal components of the data(Fig. 2.12(a)). As an alternative approach, the prototype vectors of a SOMtrained with the data were projected with Sammon's mapping (Fig. 2.12(b)). The data seem to be somehow clustered as was expected. Further-
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(a) PCA (b) SammonFig. 2.12 The original data projected with PCA (a) and the prototype vectors of theSOM projected with Sammon's mapping (b).Due to the quite large amount of variables, �nding correlations betweenthem using the typical component plane representation (where the planesare plotted next to each other in the same order as the variables in thedata) became extremely di�cult. Fortunately, the task could be madeeasier by reorganizing the component planes using the procedure explainedin Sec. 2.3.2 so that the possibly correlating planes were placed near eachother. The result is illustrated in Fig. 2.13.Using this approach, some of the interesting relationships between thevariables could be detected. Based on this information and the a prioriknowledge of the system, the variables to be used in the more detailedanalysis of the strip quality could be chosen. In this case, the strip thick-ness was chosen to be studied further. The variables included in the newdata set were quality parameters, thickness average deviation and standarddeviation, strip target dimensions, strip strength, bending forces, tempera-ture after the last stand, and strip pro�le.Using the scatter plots colored with the continuous coloring of the SOMplane, as explained in Sec. 2.3.2, dependencies between thickness and otherparameters in di�erent process states could be found. The approach isillustrated in Fig. 2.14, where all the other variables are plotted againstaverage thickness deviation. Note, that here the color code had to be limited
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b−cont cu−cont ni−cont cr−cont c−cont v−cont n−str mn−contFig. 2.13 The reorganized component planes of the SOM.to four gray levels, which drastically deteriorates the results. However,in the actual study a true continuous color code was used. After someinspection of these plots, the following statements regarding the problemswith strip width could be made:� The thickness deviation of the strip seems to increase as the bend-ing forces decrease, especially when the strips are somewhat thick.Then, also the standard deviations of the thickness, the tempera-ture after the last stand, and the strip pro�le tend to increase.� The standard deviation of the strip seems to increase as the thick-ness of the strip increases, especially with hard steels. As with thedeviation of the thickness, the standard deviation seems to increaseas the rolling temperature and the bending forces decrease. Thestandard deviation of the temperature after the last stand and thestrip pro�le tend also to increase. However, this does not hold forquite narrow and thin strips.
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(a)

(b)Fig. 2.14 In Fig. (a) variables from the prototype vectors of SOM are scatter plottedusing the color coding shown in the upper left picture. For example, the last scatter plot(prof-std vs. h-dev-avg) shows that on the lightest gray region of the color coded mapthe thickness deviation (h-dev-avg) does not increase/decrease, as on the other regions,when the pro�le standard deviation (prof-std) increases. In Fig. (b), it can be seen thaton the lightest gray region of the map are the data samples mostly from quite narrow,thin, and mild strips, as on this region the component planes w-tgt (target width), h-tgt(target thickness), and n-str (strip strength) indicate low values simultaneously.



November 26, 1999 16:29 WorldScienti�c/ws-b8-5x6-0 mainThe Self-Organizing Map as a Tool in Knowledge Engineering2.6 ConclusionsThe Self-Organizing Map has proven to be a powerful tool in knowledgediscovery and data analysis. It combines the tasks, and bene�ts, of vectorquantization and data projection. The various novel visualization methodspresented in this chapter o�er e�cient ways to enhance the visualization ofthe SOM in data exploration. There are many kinds of tasks in exploratoryvisualization, but as the proposed principles are simple, they can be easilymodi�ed to meet the needs of the task. Future work is still needed to enablethe methods to automatically take heed of the properties of the underlyingdata.The SOM can be e�ectively used to �nd and visualize correlations be-tween process variables in di�erent operational states of the process. Thetopology preserving property together with the regular presentational formof the SOM visualization gives a compact base where many kinds of visu-alizations and interfaces may be linked together.In this chapter, we have used the basic SOM visualizations together withmethods that link di�erent kind of visualizations using color. However,there are some aspects in the methods that should be noted:� One should remember when using color visualizations that there arecolor-blind people who do not see the color space as the majorityof people do.� The color coding that we have used is of heuristic design, somethingto start with. Furthermore, a coloring that brings up the clusterstructure (see [8; 9]) would certainly be bene�cial.� The linking between the scatter plots and the SOM could be madeinteractively by highlighting the interesting points. However, thecolor coding brings an automated overall sight to this procedure.� The scatter plots connected to the map grid will bene�t the analysisonly if the dependencies are such that a variable can be consideredto be (locally) a function of mainly one other latent variable. If thedependencies are more complex, the scatter plot visualization withthe color linking becomes useless.Despite their evident limitations, the methods presented have facilitatedthe industrial data analysis, especially in the explorative phase of the work.It should be emphasized that the data analysis process usually is itera-tive, i.e., the most important variables can be determined only after various
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