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Abstract

The Self-Organizing Map (SOM) is one of the most popular neural network meth-
ods. It is a powerful tool in visualization and analysis of high-dimensional data in
various engineering applications. The SOM maps the data on a two-dimensional
grid which may be used as a base for various kinds of visual approaches for
clustering, correlation and novelty detection. In this chapter, we present novel
methods that enhance the SOM based visualization in correlation hunting and
novelty detection. These methods are applied to two industrial case studies:
analysis of hot rolling of steel and continuous pulp process. A research software
for fast development of SOM based tools is briefly described.
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2.1 Introduction

Traditionally, modeling and control of industrial processes is based on an-
alytic system models. The models may be built using knowledge based
on physical phenomena and assumptions of the system behavior. How-
ever, many practical systems, e.g., industrial processes, are so complex
that global models cannot be defined. In such cases, system modeling must
be based on experimental data obtained by various measurements.

Modern automation systems produce large amounts of measurement
data. However, interpretation of this data and the correlations between
measurements and other system parameters is often difficult. In many
practical situations, even minor knowledge about the characteristic behav-
ior of the system might be useful. For this purpose, easy visualization of
the data is of great help. The measurements need to be converted into some
simple and comprehensive display which would reduce the dimensionality
of measurements and simultaneously preserve the most important metric
relationships between the data.

Artificial neural networks have successfully been used to build system
models directly based on process data. They provide means to analyze
the system or process without explicit physical model. The Self-Organizing
Map (SOM) [12] is one of the most popular neural network models. Due to
its unsupervised learning and topology preserving properties it has proven
to be especially suitable in analysis of complex systems. The SOM algo-
rithm implements a nonlinear topology preserving mapping from a high-
dimensional input data space onto a two-dimensional network or grid of
neurons. The network roughly approximates the probability density func-
tion of the data and, thus, inherently clusters the data. Various visualiza-
tion alternatives of the SOM are useful, e.g., in searching for correlations
between measurements and in investigating the cluster structure of the
data.

SOM based data exploration has been applied in various engineering
applications such as pattern recognition, text and image analysis, financial
data analysis, process monitoring and modeling as well as control and fault
diagnosis [15; 19]. In addition, the SOM has been used in analysis and
monitoring of telecommunications systems. Applications include equalizer
structures for discrete-signal detection and adaptive resource allocation in
telecommunications networks.

The ordered signal mapping property of the SOM algorithm has proven
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to be powerful in analysis of complex industrial systems and processes. The
SOM allows easy visualization of system parameters and their correlations,
cluster structure of the data, monitoring of operation state, and novelty
detection. The SOM based approach has, for instance, been utilized to
determine the reasons for situations where the output quality of an indus-
trial process is not satisfactory. The case studies presented in this chapter
include analysis of pulping and steel rolling processes.

The SOM can be used in many different ways for data visualization
and exploration. In this chapter, we present SOM based tools for data
exploration in practical industrial applications. Novel methods to enhance
the SOM based visualization in correlation detection, cluster analysis, and
operation monitoring as well as novelty detection will be discussed.

2.2 Data analysis using the Self-Organizing Map

Our approach to data analysis is explorative and will concentrate on visu-
alization based approaches. The main idea is to provide an overall picture
of the data and create tools that help the analyst to see what the data are
like and get ideas for further, perhaps more quantitative descriptions of the
data.

2.2.1 The Self-Organizing Map

A SOM is formed of units located on a regular low-dimensional grid (usually
1D or 2D to enable visualization). The lattice of the grid can be hexagonal
or rectangular. The former is often used because it is more pleasing to the
eye.

Each unit i of the SOM is represented by an n-dimensional prototype
vector m; = [m;1,...,M;,], where n is equal to the dimension of the input
space. On each training step, a data sample x is selected and the prototype
vector m, closest to it, the winner unit, is found from the map. The
prototype vectors of the winner unit and its neighbors on the grid are
moved towards the sample vector:

m; ;= m; + a(t)h () (x — my), (1)

where a(t) is the learning rate and h.;(t) is a neighborhood kernel centered



November 26, 1999 16:29 WorldScientific/ws-b8-5x6-0 main

The Self-Organizing Map as a Tool in Knowledge Engineering

on the winner unit ¢. Both learning rate and neighborhood kernel radius
decrease monotonically with time. During the iterative training, the SOM
behaves like a flexible net that folds onto the “cloud” formed by input data.

2.2.2 Data analysis scheme

Using the SOM in data analysis is only one part of a multi-staged process.
The map — as any method — is a fruitful tool only if the input data
really describe the essential phenomena and is not governed by completely
erroneous data. The phases of a basic explorative data analysis process
using the SOM can be sketched as follows:

Data acquisition may be real time measurement collection (on-line) or
database query (off-line) which is usually the case when an exploratory
analysis is made.

Data preprocessing, selection and segmentation are usually elaborate
tasks involving a lot of a priori knowledge. Erroneous raw data have to be
removed. Proper data scaling and representational transformations (e.g.,
symbolic to numerical values) have to be considered. Clearly inhomoge-
neous data sets may have to be divided to disjoint subsets according to
some criteria in order to avoid problems which would come up if a global
model was applied.

Feature extraction is the phase where preprocessed and segmented data
are transformed into feature data vectors. It is important to realize that
the objective in our case is to interpret the data and extract knowledge
from it and from relations in it not to make black-box classification or
regression. Therefore, the feature variables have to describe the important
phenomena in the data in such a way that they are clear in the analysis.
It is evident that this and the previous stages cannot be properly done
without knowledge of application domain.

Training of the SOM is performed according to the Sec. 2.2.1. The
training parameters need to be determined. Fortunately, the basic SOM
algorithm seems to be rather robust in this sense, and by following certain
basic guidelines (see, e.g., [12]) satisfactory results are usually obtained.
However, one delicate issue is the scaling of the feature variables. The vari-
ables with large relative variance tend to dominate the map organization.
In order to equalize the contribution of individual variables in the map
organization, they are usually normalized to be equivariant. The distance
measure used in the SOM training has to be chosen in such a way that
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applying it to data makes sense. Usually, the Euclidean distance is used.
The variable normalization and the distance measure are, of course, data
dependent issues and related to the feature extraction phase.

Visualization and interpretation are the key issues for using SOM in
data analysis. These include correlation detection, cluster analysis and
novelty detection. The scope of this chapter is on the visualization and
interpretation phase which are described in the next section. We remind
that the data analysis is usually not a flow-through process, but requires
iteration, especially between feature extraction and interpretation phases.
An integrated software environment is clearly needed. We describe our re-
search software in Sec. 2.4.

2.3 Visualization

The SOM provides a low-dimensional map of the data space. The aim of
visualization is both to understand the mapped area and to enable investi-
gation of new data samples with respect to it.

To understand what the SOM really shows, it is important to under-
stand that it actually performs two tasks: vector quantization and vector
projection. Vector quantization creates from the original data a smaller,
but still representative, data set to be worked with. The set of prototype
vectors reflects the properties of the data space. The projection performed
by the SOM is nonlinear and restricted to a regular grid (the map grid).
The SOM tries to preserve the topology of the data space rather than rel-
ative distances.

In contrast, there are several other ways of projecting multidimensional
data to lower dimensions. A well-known method is based on Principal
Component Analysis (PCA): the eigenvectors with the largest eigenvalues
are calculated from the data set, and the data samples are projected on the
subspace spanned by these vectors. This is a fast linear operation, but gives
misleading results if the ignored directions have significant information.

A different approach is to project the data so that relative distances be-
tween samples are as close to the original as possible according to some
cost function. Different cost functions lead to different nonlinear algo-
rithms, e.g., Sammon’s projection [18] or the Curvilinear Component Anal-
ysis (CCA) [4]. Large data sets cause often problems for these, usually
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iterative, projection methods as the procedure becomes computationally
heavy. One possibility is to reduce the computational task by first quantiz-
ing the data using some suitable method, e.g., k-means and then applying
the projection method. Some recent solutions include [17]. Of course, the
SOM can be seen as doing something similar, except that only topology
not distances  is preserved.

2.3.1 Basic methods for SOM wvisualization

The SOM grid provides a basis for various visualizations. Variable values
or other features may be shown with respect to the grid.

(a) Unified distance matrix

The unified distance matrix (u-matrix) [7; 22] is a simple and effective
tool to show the possible cluster structure on a SOM grid visualization.
It shows the distances between neighboring units using a gray scale repre-
sentation on the map grid. This gives an impression of “mountains” (long
distances) which divide the map into “fields” (dense parts, i.e., clusters).
See Fig. 2.1(c).

(b) Component planes

The SOM is often “sliced” into component planes in order to see how the
values of a certain variable (component) varies on different locations of the
map [20]. Each plane represents the value of one variable (component)
of the prototype vector in each node of the SOM using, e.g., gray scale
representation. One can now see the general behavior of the variable values
in different parts of the SOM. See Fig. 2.1(c).

The component planes play an important role in the correlation detec-
tion: by comparing these planes even partially correlating variables may
be detected by visual inspection a simple enhancement to this is de-
scribed in the next section. This kind of comparison could be done using
scatter plots as well, but this would require a quadratic amount of displays
with respect to the number of variables: each variable against each other
variable. When using the component planes the number of displays grows
linearly. Furthermore, the vector quantization performed by the SOM re-
moves noise. The component planes can also be easily compared with the
cluster representation of the u-matrix.
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(c) Hits

When investigating new data with the SOM the question is, which part
of the map best corresponds to the data? Traditionally, this has been an-
swered by finding the nearest prototype vector (the best matching unit,
BMU) for each investigated data sample and then indicating it from the
SOM. See Fig. 2.1(c). For multiple data vectors, one can count the number
of times that each unit has been the BMU, and thus, a data histogram is
obtained. By comparing different histograms, one can evaluate the simi-
larity of different data sets in terms of the map. Similar histograms imply
similar data sets.

(d) Trajectories

If the data have been acquired from a process, one may be interested in
visualizing the evolution of the process state in time. The BMU of the
current feature vector may be regarded as the operating point on the map
which in turn can be regarded as a projection of the multidimensional state
space. Trajectory (Fig. 2.1(d)) is a line connecting a sequence of these
operating points [10; 21] that shows the change of the process in time. A
software tool related to this issue is presented in Sec. 2.4.3.

(e) Combining different projections

To get an idea of the shape of the map in the data space, the prototype
vectors of the SOM can be projected to a low dimension using some vec-
tor projection method which tries to preserve distances between projected
points. A common practice is to use Sammon’s projection and to show the
topological relations of the map by connecting points that corresponds to
neighboring units. The SOM may be considered unreliable if the topolog-
ical structure is completely twisted or folded. In Fig. 2.1(b) one can see
that this has not happened in our artificial example but the map is well
ordered in this case.

In order to clarify the connections between visualizations, they may be
linked together using color which is a dominant visual hint for grouping
objects. This idea has been applied to carrying information from the SOM
representation to a geographical map in [1; 3; 8]. We have applied this idea
simply to link different presentations of the same data together, e.g., the
SOM grid and a scatter plot or Sammon’s projection [5; 23]. See Fig. 2.2.
Similar linking idea to PCA has been earlier presented by Aristide [3].
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Data: 3D example Data: 3D example
() (d)

Fig. 2.1 TFigure (a) shows a simple three-dimensional (variables X,Y and Z) artificial
data set with four clear clusters (a,b,c,d). Figure (b) shows the prototype vectors (“o0”)
of a SOM trained with the data in (a). The topological connections are shown as lines
connecting the neighboring prototype vectors. Figure (¢) shows the u-matrix and com-
ponent planes. In the u-matrix dark gray represents long inter-unit distances and light
gray short ones. The clusters that can be seen as light “fields” between the dark
“mountains” — have been labeled for convenience. The +-sign shows the BMU for the
sample marked by +-sign in (a) (located between clusters a and c¢). The component
planes show how the variables X,Y and 7 vary along the map. Figure (d) shows a
trajectory of five samples on the u-matrix.

2.3.2 Correlation hunting

Correlations between component pairs are revealed as similar patterns in
identical positions of the component planes. The correlation detection can
be made easier if the component planes are reorganized so that the possibly
correlated ones are presented near each other [24]. See Fig. 2.3. Using com-
ponent planes for correlation hunting in this way is easy, but also rather
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vague and sometimes even misleading. However, it is easy to select inter-
esting component combinations for further investigation. A more detailed
study of interesting combinations can be done using scatter plots which can
be linked to the map units by color as has been regularly done in the case
studies in Sec. 2.5.*

a0 500

Fig. 2.2 Correlations between vector components can be efficiently visualized using
scatter plots. Tn Fig. (a) each dot corresponds to one map unit. The z- and y-coordinates
of the dots have been taken from two components of the prototype vectors. To link the
scatter plot to other visualizations, each dot is given a color according to the color coding
of the map units shown in Fig. (b). In this grayscale figure only four shades of gray are
used. In practice a full color palette is much more informative. In addition to color
coding, Fig. (b) also uses size to indicate clusters on the map: small units correspond to
cluster borders. It can be seen that for most units, especially those with light gray color
coding, the two components are linearly correlated but that there are distinct exceptions.

2.3.3 Nowelty detection

When investigating new data using SOM, the BMU of each data sample is
found and indicated on the map (see Sec. 2.3.1). The problem with this
simple approach is that it gives no information of the accuracy of the match.
Typically, there are several units with almost as good match as the BMU.
Alternatively, the data sample may actually be very far from the map — a
novelty in terms of the map.

Instead of simply pointing out the BMU, the response of all map units
to the data can be shown. The resulting response surface shows the relative
goodness of each map unit in representing the data. The response can be,

*For technical reasons we can’t use colors in this presentation. In order to sketch the
idea, a gray level coding is used instead. A full color version can be found in [27].
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Fig. 2.3 Correlations between components can be hunted from the component planes
visualization on the left. The task is easier if the planes are reorganized so that compo-
nent planes which seem to have high correlation are placed near each other, as shown
on the right. For example, this reorganization brings nicely together the four framed
components.

e.g., a function of the quantization error as follows:

1
X, m;) = —————, 2
g(x, m;) 1+ (gi/a)?’ (2)
where ¢; = ||x — my]| is the quantization error, i.e., distance, between

sample x and map unit i. The scaling factor a is the average distance
between each training data sample and its BMU. See Fig. 2.4(a). Perhaps
a more interpretative response function results if the SOM is used as a basis
for reduced kernel density estimate of the data. Then one can estimate the
probability P(i|x) of each map unit representing the data sample, see for
example [2; 6].

In both cases above, the response surface is added onto the map af-
terwards, while the original SOM algorithm has a “crisp” winner-take-all
activation function. There are related algorithms that have an intrinsic
probabilistic background as the S-Map [11]. However, it seems that a ker-
nel density estimation model added to the SOM gives results that are well
comparable with these methods [2].

Another way to show the accuracy of the match is to use, e.g., the
size of the sample marker. In Fig. 2.4(b), the fuzzy response function
(Eq. 2) has been used to control the size of the sample markers (circles).
Now, individual samples can be seen along with their BMUs (position) and
accuracy (size).
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Fig. 2.4 Accuracy of matches. Figure (a) shows the response surface (Eq. 2) for one
data sample. Figure (b) shows BMUs and corresponding accuracies of 20 samples. The
background texture is averaged u-matrix of the SOM. Each circle represents one sample.
The position of the circle indicates the BMU, and its size the accuracy of the match.

2.4 Software

To accomplish the explorative and iterative data analysis scheme, a flexible
software environment is needed. It should include domain specific post-
and preprocessing capabilities, SOM implementation and different visual-
izations. The possibility to rapidly customize the code is important. We
have tried to achieve this in the SOM Toolbox.

2.4.1 SOM Toolbox

The MathWorks Inc.’s MATLAB [16] has been gaining popularity as the
“language of scientific computing”, and it employs a high-level program-
ming language with strong support for matrix algebra, graphics and visu-
alization. MATLARB suits for fast prototyping and customizing. The SOM
Toolbox! [25], hereafter the Toolbox, is an attempt to take advantage of
these strengths and provide a customizable and easy-to-use implementation
of the SOM as a free function library for the MATLAB environment.

The advantages of the Toolbox are mainly in fast customization and
visualization. A major benefit is that as the MATLAB’s language is inter-

T Available in http://wuw.cis.hut.fi/projects/somtoolbox/
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preted, the user may give on-line commands to change various parameters
or visualizations. Furthermore, the Toolbox is constructed in a modular
manner. Therefore, it is convenient to tailor the code for the specific needs
of each user. Other toolboxes commercial or freeware may be used
together with the Toolbox to provide domain specific processing capabili-
ties. For example, a toolbox related to system simulation might be used in
a process control task.

The basic procedures SOM initialization, training and visualization

have been collected under high level functions which provide heuristic
choices for various parameter values. This gives an automated data-to-
visualization operation to start with. The Toolbox also implements some
variants of the basic SOM. The topology of the SOM can be n-dimensional,
and several SOM shapes are supported: rectangular, cylinder and toroid
— as well as several neighborhood functions. In order to facilitate the
data analysis process, the Toolbox keeps track of labels associated with
individual data vectors, vector component names, component normalization
information and information on the training procedure.

A standard implementation of the SOM and related tools are available
as the SOM_PAK [13]. It is a public domain software package! developed
in the Neural Networks Research Centre of the Helsinki University of Tech-
nology, written in ANSI C language for UNIX and PC environments. In
map training, it is faster than the Toolbox and has a better capability to be
applied to large data sets than the Toolbox. However, while the SOM_PAK
is the choice for heavy duty, the Toolbox is meant for experimental and/or
interactive purposes. If the scalability is a problem, the SOM_PAK can be
accessed from the Toolbox. It is possible to first train the map with the
SOM_PAK and then use the Toolbox for visualization.

2.4.2 The SOM wvisualization as a user interface platform

The SOM grid is an effective base for building visualizations and user inter-
faces for accessing multidimensional data. Assume that we need to attach
some information (text, symbols, colors) to the projected points. The pro-
jection methods that produce a nonuniform visualization may cause prob-
lems as the labeling information easily becomes unreadable in the dense
parts of the projection.

tAvailable in http://www.cis.hut.fi/nnrc/som_pak/
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In the SOM the amount of the units in a certain region of the space is
proportional to the density of the training data in that region, i.e., the map
uses more units to represent the dense parts of the data. This increases
readability as the map automatically “zooms up” areas that are dense. On
the other hand, the topology preserving property gives access to cluster or
variable value visualization through u-matrix and component planes which
can be easily used as browsers. The nodes can be used as clicking points
to access the data underneath. The idea to use the SOM visualization as a
user interface has been used earlier, e.g., in the WEBSOM [14] in browsing
large document collections.

2.4.3 Interactive tool for time-series exploration

As an example, we shortly describe an interactive time-series tool designed
on the SOM Toolbox. The purpose of the tool is to facilitate the inspection
of the connections between the multidimensional data space presented by
the SOM and the time-series plot. In analysis, the feature data have been
extracted and the map is trained using them. The analyst may now evaluate
how certain feature variables are distributed and what kind of clusters there
are in the map visualization. The analyst sees how different regions of the
map are related to a time-series representing the same data from a different
point of view. After this, the analyst may reconsider if the feature data
really represent the investigated phenomena in a sensible way or if the
features should be extracted in some other way. The tool in Fig. 2.5 allows
the analyst to

e see the connection between original time-series and the feature
space visualized by the SOM.

e run the process using a slider on the time-series. A trajectory
showing the connected BMUs for the current and some past samples
of the time-series  is animated on the map.

e define some areas on the map and tag them with specific colors.
The same markers are shown on the time-series. Now the analyst
may inspect how a region on the map is connected to the time-
series. This may be done to the opposite direction, too, in order to
see how the time-series is projected to the map.
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Fig. 2.5 Time-series tool. The analyst may inspect changes in the operation point using
a slider. The analyst may mark regions on the map and in the time-series using different
colors.

2.5 Case studies

2.5.1 Analysis of a continuous pulp digester

In the first case study, behavior of a continuous pulp digester was analyzed.
An illustration of the digester and separate impregnation vessel is shown
in Fig. 2.6. Wood chips and cooking liquor are fed into the impregnation
vessel. After the impregnation, the chips are fed into the digester. At the
top of the digester, they are heated to cooking temperature using steam,
and the pulping reaction starts. During the cook, the chips slowly move
downwards the digester. The cooking ends at extraction screens, where the
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pulping reaction is stopped by cooling the chips using wash liquor. The
wash liquor is fed to the digester bottom and it moves upwards, counter-
current to the chip flow.

Continuous

digester Seam
Impregnation
vessel
- Top e
“---.__ Oldextraction
=777 soreens
Black liquor
Extraction
scre?rfs Black liquor
- |l B

3'\' bt |
Wash liquor L ’—F—Eﬂw—' L Pulp
: |—|$ :

White liquor | ‘ Kappa meésuremem

Fig. 2.6 The continuous digester and the impregnation vessel. The cooking and wash
liquor flows are marked by thin lines and the chip flow by thick line.

Problems in digester operation indicated by drops of pulp consistency
in the digester outlet were the starting point for the analysis. In those
situations, end product quality variable (kappa number) values were lower
than the target value.

Measurement data were obtained from the automation system of the
mill. The analysis was started with several dozens of variables which were
gradually reduced down to six most important measurements during data
analysis process. The data used in the following experiments consisted of
three separate measurement periods during more than one month of normal
pulping operation. The periods were segmented by hand in such a way that
they mainly consisted of faulty situations of the process. The production
speed was required to be constant. During the measurement periods there
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were no significant errors in the measurements. Process delays between
signals were compensated using known digester delays.

In Fig. 2.7, the six signals and production speed of the fiber line are
shown. The three segmented parts are shown by solid line and the parts
that were left out of the analysis by dotted line. In Fig. 2.8, the compo-
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Fig. 2.7 Measurement signals of the continuous digester. The analyzed parts are marked
by solid line and the parts that were ignored by dotted line.

nent planes of a 17 by 12 units SOM trained using signals of Fig. 2.7 are
presented. Five of them depict behavior of the digester and the last one is
the output variable, the kappa number. The problematic process states are
mapped to the top left corner of the SOM: the model vectors in that part
of the map have too low kappa number value.

Correlations between the kappa number and other variables are shown
in Fig. 2.9, where the SOM of Fig. 2.8 has been presented using color coding.
The colors were originally chosen in such a way that adjacent map units
had almost similar colors; here we are only able to use four gray levels. The
five scatter plots are based on model vector component values of the SOM.
They all have the values of kappa number on the x-axes and the five other
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Fig. 2.8 Component planes of the SOM trained using six measurement signals of the
digester. Dark color indicates low and light color high variable value, respectively.

variables on the y-axes. In Fig. 2.10, a similar technique for coloring the
scatter plots is utilized. In this case, however, the scatter plots are based
on data vectors  not values of the model vectors of the SOM. The color of
each data vector is the one assigned to the the SOM unit that is nearest to
the data vector. It should be noted that even though the plots differ from
the ones of Fig. 2.9, the SOM has been able to capture the shape of the data
cloud quite accurately. The scatter plots indicate that in the faulty states
denoted by dark grey color (top left corner of the map), there is only weak
correlation between kappa number and H-Factor, which is the variable used
to control the kappa number. Otherwise, there is a negative correlation as
might be expected. On the other hand, the variables Eztraction and Chip
level seem to correlate with the kappa number in the faulty process states.
Also, the values of Press. diff. are low and value of variable Screens (which
during the analysis was noticed to indicate digester fault sensitivity) is high.

The interpretation of the results is that in a faulty situation, the down-
ward movement of the chip plug in the digester slows down. The plug is so
tightly packed at the extraction screens that the wash liquor cannot pass it
as it should. There are two consequences: the wash liquor slows down the
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Fig. 2.9 Color map and five scatter plots of model vectors of the SOM. The points have
been dyed using the corresponding map unit colors.

downward movement, of the plug and the pulping reaction does not stop.
Because the cooking continues, the kappa number becomes too small. In
addition, the H-factor based digester control fails: in the H-factor compu-
tation, cooking time is assumed to be constant, while in reality it becomes
longer due to slowing down of the chip plug movement.

2.5.2 Analysis of the quality of the hot rolled strip

In the second case study, a hot rolling system was analyzed. Hot rolling
is a process where steel slabs are heated, rolled, cooled and coiled into
final products, strips. Figure 2.11 illustrates the composition of the hot
strip mill in Raahe (at the time of the data acquisition; currently the mill
construction is somewhat different). First, the slab is heated in the slab re-
heating furnaces (1) into temperature appropriate for the following rolling
process. Then, after the formed scale is removed with high-pressure water
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Fig. 2.10 Color map and five scatter plots of data vectors. The points have been dyed
using the color of BMU.

shower (2), the slab passes to the roughing mill. The slab is rolled back
and forth several times vertically in the edger (3) and horizontally in the
reversing rougher (4). The resulting transfer bar travels under the heat
retention panels (5) through another descaling and possible shearing of
the head (6) into the finishing mill (7), where it is rolled into desired end
product. The finishing mill consists of six stands. The transfer bar goes
through them with high accelerating speed. After the rolling, the strip is
cooled with several water curtains (8) and coiled (9).

The process is controlled hierarchically by several separate automation
systems. Basically, each process stage introduced above has its own au-
tomation system. Furthermore, a lot of additional computation, control,
and information processing is made within and between the systems. This
causes difficulties in the data acquisition. Hence, the process data available
for this case study consisted only of averages and standard deviations of
the measured process variables of one strip.

main
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Fig. 2.11 Rautaruukki hot strip mill. The different process stages are marked with
numbers. See text for their explanations.

Due to ever increasing competition and customer requirements, the steel
producers are under growing pressure to improve the cost efficiency of the
production and the quality of their products. This is also the motivation for
the analysis, the purpose of which was to study which process parameters
and variables affect the quality of the rolled strips. This can be done, e.g.,
with correlation analysis for process data, which was the approach in this
case.

The data was collected from factory data bases in co-operation with the
process experts. In the data set it was chosen 47 variables. The average
and standard deviation of five process parameters were chosen to repre-
sent the quality: width, thickness, profile, flatness and wedge of the rolled
strip. The other variables included information about the slab (analyzed
chemical content), finishing mill parameters (average bending forces, entry
tensions, and axial shifts for each stand), and process state (strip strength,
target dimensions, and average and standard deviation of the temperature
after the last stand). After preprocessing of data, the amount of the strips
included in the study was slightly over 16500.

In the beginning, in order to get to know the general dependencies
between the parameters, a very simple global linear correlation analysis
was performed. This showed, e.g., that the entry tensions of the stands
were controlled based on the tensile strength calculated from the chemical
analysis results. Due to redundant information of the variables caused
by the controlling principles of the process, the data dimension could be
reduced to 36 variables.

The structure of the data set was then studied. This was done by
projecting the data on the two largest principal components of the data
(Fig. 2.12(a)). As an alternative approach, the prototype vectors of a SOM
trained with the data were projected with Sammon’s mapping (Fig. 2.12
(b)). The data seem to be somehow clustered as was expected. Further-
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more, it can be seen that the different projection algorithms provide more
or less similar results and the SOM has approximated the data quite well.

(b) Sammon

Fig. 2.12 The original data projected with PCA (a) and the prototype vectors of the
SOM projected with Sammon’s mapping (b).

Due to the quite large amount of variables, finding correlations between
them using the typical component plane representation (where the planes
are plotted next to each other in the same order as the variables in the
data) became extremely difficult. Fortunately, the task could be made
easier by reorganizing the component planes using the procedure explained
in Sec. 2.3.2 so that the possibly correlating planes were placed near each
other. The result is illustrated in Fig. 2.13.

Using this approach, some of the interesting relationships between the
variables could be detected. Based on this information and the a priori
knowledge of the system, the variables to be used in the more detailed
analysis of the strip quality could be chosen. In this case, the strip thick-
ness was chosen to be studied further. The variables included in the new
data set were quality parameters, thickness average deviation and standard
deviation, strip target dimensions, strip strength, bending forces, tempera-
ture after the last stand, and strip profile.

Using the scatter plots colored with the continuous coloring of the SOM
plane, as explained in Sec. 2.3.2, dependencies between thickness and other
parameters in different process states could be found. The approach is
illustrated in Fig. 2.14, where all the other variables are plotted against
average thickness deviation. Note, that here the color code had to be limited
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Fig. 2.13 The reorganized component planes of the SOM.

[

to four gray levels, which drastically deteriorates the results. However,
in the actual study a true continuous color code was used. After some
inspection of these plots, the following statements regarding the problems
with strip width could be made:

e The thickness deviation of the strip seems to increase as the bend-
ing forces decrease, especially when the strips are somewhat thick.
Then, also the standard deviations of the thickness, the tempera-
ture after the last stand, and the strip profile tend to increase.

e The standard deviation of the strip seems to increase as the thick-
ness of the strip increases, especially with hard steels. As with the
deviation of the thickness, the standard deviation seems to increase
as the rolling temperature and the bending forces decrease. The
standard deviation of the temperature after the last stand and the
strip profile tend also to increase. However, this does not hold for
quite narrow and thin strips.

main
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Fig. 2.14 1In Fig. (a) variables from the prototype vectors of SOM are scatter plotted
using the color coding shown in the upper left picture. For example, the last scatter plot
(prof-std vs. h-dev-avg) shows that on the lightest gray region of the color coded map
the thickness deviation (h-dev-avg) does not increase/decrease, as on the other regions,
when the profile standard deviation (prof-std) increases. In Fig. (b), it can be seen that
on the lightest gray region of the map are the data samples mostly from quite narrow,
thin, and mild strips, as on this region the component planes w-tgt (target width), h-tgt
(target thickness), and n-str (strip strength) indicate low values simultaneously.

h-tgt
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2.6 Conclusions

The Self-Organizing Map has proven to be a powerful tool in knowledge
discovery and data analysis. It combines the tasks, and benefits, of vector
quantization and data projection. The various novel visualization methods
presented in this chapter offer efficient ways to enhance the visualization of
the SOM in data exploration. There are many kinds of tasks in exploratory
visualization, but as the proposed principles are simple, they can be easily
modified to meet the needs of the task. Future work is still needed to enable
the methods to automatically take heed of the properties of the underlying
data.

The SOM can be effectively used to find and visualize correlations be-
tween process variables in different operational states of the process. The
topology preserving property together with the regular presentational form
of the SOM visualization gives a compact base where many kinds of visu-
alizations and interfaces may be linked together.

In this chapter, we have used the basic SOM visualizations together with
methods that link different kind of visualizations using color. However,
there are some aspects in the methods that should be noted:

e One should remember when using color visualizations that there are
color-blind people who do not see the color space as the majority
of people do.

e The color coding that we have used is of heuristic design, something
to start with. Furthermore, a coloring that brings up the cluster
structure (see [8; 9]) would certainly be beneficial.

e The linking between the scatter plots and the SOM could be made
interactively by highlighting the interesting points. However, the
color coding brings an automated overall sight to this procedure.

e The scatter plots connected to the map grid will benefit the analysis
only if the dependencies are such that a variable can be considered
to be (locally) a function of mainly one other latent variable. If the
dependencies are more complex, the scatter plot visualization with
the color linking becomes useless.

Despite their evident limitations, the methods presented have facilitated
the industrial data analysis, especially in the explorative phase of the work.

It should be emphasized that the data analysis process usually is itera-
tive, i.e., the most important variables can be determined only after various
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steps of the data mining process. In the beginning, there are usually several
dozens of measurements which will then be reduced to the most important
ones affecting the behavior of the process. Several tests must be made and
interpreted using knowledge of process experts.
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