Time series segmentation for context recognition in mobile devices

Johan Himberg Kalle Korpiaho

Heikki Mannila

Johanna Tikanmiki

Hannu T.T. Toivonen

Nokia Research Center, Software Technology Laboratory
P.O. Box 407, FIN-00045 NOKIA GROUP, Finland
johan.himberg @nokia.com

Abstract

Recognizing the context of use is important in making
mobile devices as simple to use as possible. Finding out
what the user’s situation is can help the device and underly-
ing service in providing an adaptive and personalized user
interface. The device can infer parts of the context of the
user from sensor data: the mobile device can include sen-

sors for acceleration, noise level, luminosity, humidity, etc.

In this paper we consider context recognition by unsuper-
vised segmentation of time series produced by sensors.

Dynamic programming can be used to find segments that
minimize the intra-segment variances. While this method
produces optimal solutions, it is too slow for long sequences
of data. We present and analyze randomized variations of
the algorithm. One of them, Global Iterative Replacement
or GIR, gives approximately optimal results in a fraction
of the time required by dynamic programming. We demon-
strate the use of time series segmentation in context recog-
nition for mobile phone applications.

1 Introduction

Succesful human communication is typically contextual.
We discuss with each other in different ways depending on
where we are, what time it is, who else is around, what has
happened in the past, etc.: there is lots of context informa-
tion that is implicitly being used in everyday life. Commu-
nication that is not aware of its context can be very cumber-
some. The need for context-awareness is especially large
in mobile communications, where the communication situ-
ations can vary a lot.

Information about the context of, say, a mobile phone
can be used to improve the user interface. For example,
if we know from the context information that the user is
running, the font used in the display can be larger. Sim-
ilarly, audio volume can be adjusted to compensate for

0-7695-1119-8/01 $17.00 © 2001 IEEE

higher levels of noise. Context awareness is currently
studied in various aspects. Example of such studies in-
clude work on context sensitive applications, wearable com-
puters and environmental audio signal processing, e.g.,
in[4,5,6,9, 10, 14, 15, 17].

In this paper we discuss ways of achieving context-
awareness in mobile devices such as mobile phone. A mo-
bile device can infer useful context information from sen-
sors for, e.g., acceleration, noise level, luminosity, and hu-
midity. In general, figuring out what the user is actually
doing is difficult, and we tackle one important subproblem.
Specifically, we consider the problem of segmenting con-
text data sequences into non-overlapping, internally homo-
geneous segments. The segments that are found may re-
flect certain states where the device, and eventually its user,
are. Compact representations of the recognized segments
can be used as templates against which the actions of the
user (e.g., phone calls) are compared, so that for example
prediction of future actions becomes possible. Formally,
the segmentation problem is a special case of the general
clustering problem, but the temporal structure of the data
provides additional restrictions that can be used to speed up
the computations.

The time series segmentation problem has been widely
studied within various disciplines. A similar problem is
the approximation of signals using line segments [I, 3, 7,
11, 13, 19]. The aim is often to compress or index the
voluminous signal data [16, 18]. Computer graphics, car-
tography and pattern recognition utilize this reduction tech-
nique in simplifying or analyzing contour or boundary lines
[12, 13]. Other applications range from phoneme recog-
nition [14, 20] into paleoecological problems [2]. For an
excellent review of time series segmentation, see [8] in this
volume.

Our focus is on i) minimizing the cost function with a
given number of segments, ii) cost functions that are sums
of segmentwise costs, and iii) off-line segmentation, where
all the data to be segmented is readily available.

© 2001, 2004 IEEE. Reprinted, with
permission, from Proc. IEEE Int. Conf. on Data
Mining (ICDM2001), San José, California, 2001.

jhimberg
© 2001, 2004 IEEE. Reprinted, with permission, from Proc. IEEE Int. Conf. on Data Mining (ICDM2001), San José, California, 2001.

Based on dynamic programming (e.g., [1]), optimal solu-
tions to the time series segmentation problem can be found
in time O(kN?) for sequences of length N and for k seg-
ments. However, for large values of IV and % the algorithms
are not efficient enough. Greedy algorithms can be used to
solve the segmentation problem in time O(kN) with very
small constants (e.g., [8]). The algorithms provide solutions
that in most cases are very close to the optimal ones. We de-
scribe experimental results showing the quality of context
recognition in a test scenario.

2 Definition of k-segmentation

A time series s consists of N samples
x(1),x(2),...,x(N) from R% We use the notation
s(a, b) to define a segment of the time series s, that is, the
consecutive samples x(a),x{a + 1),x(a + 2),...,x(b)
where a < b. If 57 = s(a,b) and so = s(b + 1,c¢) are two
segments, then s1s2 = s{a, ¢) denotes their concatenation.

A k-segmentation S of s is a sequence s;83--- S of
k segments such that s182---s;y = s and each s; is
non-empty. In other words, there are segment boundaries
€1,62,...,Ch-1,0< ¢ <3 < -+ < cp—y <N, where

s1 =s(1,¢1), 82 = s(aa+l,¢2), ..., sp = s(ck—1+1, N).

For ease of notation, we define additionally ¢o = 0 and
Cp = N.

We are interested in obtaining segmentations of s where
the segments are interna]ly homogeneous. In order to for-
malize this goal, we associate a cost function F' with the in-
ternal heterogeneity of individual segments, and aim to min-
imize the overall cost of the segmentation. We make two as-
sumptions on the overall cost. First, the cost costg(s(a, b))
of a single segment is a function of the data points and the
number of data pointsn = b —a + 1,

costp(s(a, b)) = F(x;n|x € s(a,b)). (H
Second, the cost of a k-segmentation Costp(s18z2 - - - Sk) 1s
the sum of the costs of its segments s1, 82, .. ., S:
k
Costp(s182 - 8§) = ZCOS[F(Sk).)
i=1

An optimal k-segmentation S5 (s; k) of time series s
using cost function costg is such that Costg(sys2 - - - 8%) is
minimal among all possible k-segmentations.

The cost function F in Eq. 1 can be an arbitrary function.
We use the sum of the variances of the components of the
segment:

where n = b— a + 1 and d is the number dimensions. Thus
the cost function for segmentations is simply

k
1
Costy(s1s2-+-s8) = = D mV(si), ()

=1

where the segments have length n;,ns, ..., ng, the length
N of the sequence is S5, nx, and V (s;) is defined as in
Eq. 3.

By rewriting Eq. 4 we get

k ci
1 : .
Costy = I Z Z [1x(5) — Mi||2 (%)

i=1 j=c¢i—1+1

where p; is the mean vector of data vectors in segment s; =
s(ci-1 +1,¢).

The problem we address is finding the segment bound-
aries ¢; that minimize the cost. The problem is similar to
clustering, but simpler. Eq. 5 is well comparable to a typical
error measure of standard vector quantization (clustering),
but in this case the clusters are limited to being contiguous
segments of the time series instead of Voronoi regions in
R™.

3 Algorithms

Dynamic programming The k-segmentation problem
can be solved optimally by using dynamic program-
ming [1]. The basic criteria for the applicability of dynamic
programming to optimization problems is that the restric-
tion of an optimal solution to a subsequence of the data
has to be an optimal solution to that subsequence. For ex-

"ample, for our problem, given an optimal k-segmentation

$182 - - - Sk, any subsegmentation s; ---5; (1 <i < j < k)
is an optimal (j — %+ 1)-segmentation for the corresponding
subsequence, so the condition obviously holds. The compu-
tational complexity of the dynamic programming is of order
O(kN?) if the cost of a segmentation can be calculated in
linear time.

The computational complexity of the dynamic program-
ming algorithm is too high when there are large amounts of
data. Greedy methods can take advantage of the simple fact
that when the segmentation for a subsequence is changed,
e.g., if a segment is divided further or a set of subsequent
segments is redivided, the reduction in the total cost can be
calculated efficiently within the subsequence.

A well-known and fast greedy heuristic for segmentation
is the top-down approach or binary-split (e.g., [8]). This
makes splits in hierarchical manner.

Top-down The method starts by splitting the time-series
s optimally into two subsequences s; and s;. Now assume

that the algorithm has already segmented s into m < k seg-
ments. Each of these segments s;,7 = 1,2,...,mis splitin
turn optimally into two pieces s;, and s;, and the total cost
of the segmentation 5182 . .. 8;, S, . . . Sy 1S calculated. The
split which reduces the total cost most is accepted. Now
there are m + 1 segments and the procedure is carried on
until there are k segments.

The top-down method never makes changes in the break
points it has once set. The inflexibility of top-down is poten-
tially a weak point, since it can turn out later in the process
that the early decisions are far from optimal.

This problem can be assessed with dynamic procedures
that first heuristically place all break points and then it-
eratively move one break point at a time using some de-
cision rule that ensures convergence to some local opti-
mum [11]. We next propose two greedy algorithms that
move one breakpoint at a time straight into a local mini-
mum.

Local iterative replacement (LIR) LIR is a simple
greedy procedure where the new place for a break point
is selected optimally between the neighboring two break
points (including the beginning and ending of the time se-
ries). The approach is similar to [11] where break points are
moved gradually towards better positions, rather than to the
locally optimal ones.

1. Select the initial break points heuristically, e.g., by us-
ing evenly spaced or random initial locations, or with
the top-down method.

2. Select a break point ¢;, 1 < ¢ < k — 1, either in
random or sequential order, remove it and concate-
nate the two consecutive segments that meet at ¢; into
s(ci—1 +1,¢i41).

3. Find a new, optimal location for the break point
in the concatenated sequence: locate an optimal 2-
segmentation break point c; for the concatenated seg-
ment. Replace break point ¢; by ¢} in the solution.

. Steps 2 and 3 are repeated until a stopping criterion is
met. (Possible stopping criteria are discussed below.)

Global iterative replacement (GIR) Instead of relocat-
ing the break point ¢; between its neighbors ¢;_; and ¢; 1,
the best location is searched in the whole sequence. This
includes clearly local iterative replacement but it may avoid
some local minima. The approach bears some distant simi-
larities with [13], where segments are also split and merged.
The core idea of [13] is to split segments with large errors
and merge ones with small errors until given error thresh-
olds are met, whereas GIR makes one (at that time) optimal
split-merge pair at a time and keeps the number of segments
constant.

205

1. Set the initial segmentation S,, = 8182+ 8Sg; n = 0,
as in LIR.

. Selectabreak pointc;, 1 < ¢ < k—1, either inrandom
or sequential order, remove it and concatenate the two
consecutive segments that meet at ¢; into § = s(¢;—1 +

]-aci+1)'

3. Find a new optimal location for a break point

anywhere in the sequence. For each segment
87, § = 1,2,...,k — 1 in the new segmentation
S' = s189--8;_188;42 8 := (renumeration) :=

s'18’9 -+ 8'—1, find the optimal 2-segmentation to s,

I
and 532, and compute the respective (potential) savings
dj = costp(s}) — (costr (s},) +costrp(s},)) in the seg-

mentation cost.

4. Select the split with largest savings d;, say s; with sav-
ings d;, and set a break point at d;. The new segmen-

H H ! ot 7 ! '
tation is s785 -+ 81,8y, -+ Sp_3-
5. Set n := n + 1 and renumerate the segments for

the next round: S, = s182--- s, (renumeration) :=
! ! 1 ! !
S8y 8, 81, Sk -

6. Steps from 2 to 5 are repeated until a stopping criterion
is met.

A natural stopping criterion for these algorithms is that
the total cost cannot be decreased by any admissible move
of a breakpoint. It is immediate that both LIR and GIR will
stop in finite number of steps, since the cost decreases at
each step and the number of points in the sequence is finite
and discrete. A limit for the number of iterations is another
simple stopping criterion.

The randomized iterative algorithms can be run a few
times in order to reduce the chance of having an especially
poor local minima.

The computational complexity of the greedy methods is
linear in the size of the input data, if the cost of a segmen-
tation can be calculated in linear time, as it can for the vari-
ance (cost function of Eq. 4). The complexity is of order
O(K N) where the factor K depends on the number of the
break points k, on the number of iterations, and on the lo-
cations of the initial break points.

4 Experimental performance evaluation

The proposed iterative algorithms were benchmarked
against the top-down algorithm. The optimal solution pro-
vided by the dynamic programming algorithm was used as
areference. The tested algorithms were

1. top-down approach .

2. local iterative replacement (LIR)

3. global iterative replacement (GIR)

The cost function to be minimized was variance (Eq. 5).
First, the algorithms were tested with a number of different
artificial data sets.

4.1 Artificial data sets

The artificial data was generated as follows. First, the
length N € {100,200, 300, 400, 500} of the signal and the
number ¢ € {6,11, 16,21} of constant segments was fixed.
Then the values and lengths for the constant segments were
generated randomly, so that the ¢ — 1 places for transitions
(break points) were drawn randomly from {2,3,..., N-1}
with the restriction that the length of any segment had to
be at least two. The value for each constant segment was
randomly generated from a uniform distribution on [0, 1].

Three different random prototype signals of this kind
were generated for each combination of the number of seg-
ments and the length of signals, and three levels of gaussian
i.i.d. noise was added to the signals. For the relative noise
level (SNR; ratio of variance of signal to variance of noise)
we used levels 10 and 1.0. For each prototype signal and
for each combination for N, ¢ and SNR level we generated
30 time series. Fig. 1 shows an example of two test signals
(N = 300 and ¢ = 6). Both are generated by adding differ-
ent level of noise to the same prototype. Sample A has very
low noise (SNR=100) while B has SNR=1.0. Each test sig-
nal was segmented once using the dynamic programming,
top-down, LIR, and GIR algorithms. The number of seg-

ments k was set to ¢, the a priori number of the segments.

We call this simply the “Test 17 data set.

For some larger experiments, another set of data was
generated with the following procedure. One piecewise
constant prototype was generated with N = 500 and ¢ =
16, and fifty samples were generated by adding some gaus-
sian i.i.d noise SNR=10. We call this the “Test 2” data set.

4.2 Comparison of partitionings

A random initial location for the break points was given
for the iterative algorithms. Both LIR and GIR used the
same initial segmentations. The iteration was stopped when
the algorithms could not move the break points any more.

We compare the costs C' of the segmentations achieved
by top-down and proposed iterative methods LIR and GIR
to the cost of the optimal solution C,p; achieved by dynamic
programming. The comparison is made using a relative er-
ror measure since different signals and segmentations are
compared:

C — Copt

errre(C) = o,
op

206

Example of segmentation on two noise levels

Optimal segmentation for A (SNR=0.01)
119

153 229 79 4

Wigw Thss 79

or Optimal segmentation for B (SNR=1.0)
-02 . . . L L
50 100 150 200 250 300
Figure 1. Two noise levels (SNR=100,

SNR=1.0) added to an original signal of 6 con-
stant segments, and their optimal segmenta-
tions.

Relative error of Test 1 (k=11, SNR=10} Relative error of Test 1 (k=11, SNR=1.0}

- GIR -7~ LIR
—8- Top-down -4 GIR
&~ Top-down

~

[\ £ — Y L I

v 300 400 500

100 200
N

Relative error
o
°
*
Relative arror
o
°
2

Figure 2. The average relative error of seg-
mentation as a function of the length of the
sequence (N), for low to high amounts of
noise. Errorbars show one standard devia-
tion. Local iterative replacement (LIR) is out-
side the visible area in the left panel.

This measure tends to increase without limit if C,,¢ goes to
zero. However, since there was always noise present in the
test signals Cop, is always greater than zero.

Experiments with simulated data (Test 1) and the “cor-
rect” amount of segments show that the relative errors of
the partitionings produced by global iterative replacement
are within a percent or two (Figs. 2 and 3). Local iteration
performs badly, but the top-down method produces reason-
able partitionings. The results indicate that for the purposes
of the k-segmentation problem defined in 2 the top-down
method and the global iterative method are sufficiently ac-
curate.

More interesting results are obtained when the correct
number of segments is not known. Of course, this is the
situation in typical applications. Experiments with artificial
data set “Test 2” show that GIR consistently outperforms
the top-down approach, which in turn is superior to LIR.
The better performance of GIR over the top-down method
is probably explained by the fact that GIR can during the

Retative error of Test 1 {(N=300, SNR=10) Relative error of Test t (N=300, SNR=1.0)

. 0.1
WS- 3
—e- Top-down —~=~ Top-down
=
£ g
& G
2o.05 2008
3 3
< <
1
! ; 3
o . [
6 1 16 21 6 1" 16 21

Figure 3. The average relative error of seg-
mentation as a function of the number of seg-
ments (k), for low to high amounts of noise.
Errorbars show one standard deviation. Lo-
cal iterative replacement (LIR) is outside the
visible area in the left panel.

operation change decisions made earlier, whereas the top-
down method cannot.

4.3 Running times

. As expected, the computational requirements of the top-
down method and both local and global iterative replace-
ments are linear in N, the length of the sequence, whereas
the dynamic programming method is quadratic (Fig. 5).

For constant NN, all methods behave roughly linearly in &
(Figs. 6 and 7). However, dynamic programming has about
two orders. of magnitude larger consumption of computa-
tional resources (Fig. 7). Right panel of Fig. 7 allows a
closer look at behavior in k. In average, both LIR and GIR
behave in a similar fashion to the top-down algorithm.

Fig. 7 gives even an impression that, for this particular
case, the tested greedy algorithms might behave sublinearly
in k.

5 Context recognition

Real context data was collected with custom-built equip-
ment. Sensor signals were logged from a certain user sce-
nario where test subjects were told to perform different ac-
tivities (Table 1).

5.1 Context data

The data were recorded using microphones and a sensor
box that were attached to a mobile phone. The combination
was hanging in users’ neck in front of the chest. The data
were logged by wire to a laptop that the user was carrying.

The raw signal was transformed to 19 variables, called
context atoms, that indicate the amount of activation for an
action or state: movement (running, walking fast, walking),

207

Average relative error in Test 2

0,06}
-4 GIR
—5- Top-down
0.04
8
o
2 i
s
5]
o
0.02
olghe

10

Figure 4. The average relative error of seg-
mentation as a function of the number of
segments (k), for an artificial sequence (Test
2: N=500, c=16) Local iterative replacement
(LIR) is outside the visible area.

+ Computational load (Test 1; k=11)

7 Computational load (Test 1; k=11)

2210 x10
-&~ Optimal - GIR
& GIR = LIR
- LIR -8 Top-down
151 -5 Top-down
—_— 10
2
1 k)
[
B
05
0* [
100 200 30;3 400 500 100 200 303 400 500

Figure 5. The average computational cost in
floating point operations as a function of the
length of the sequence (N). Both panels show
the same data but on different scales. Error-
bars show one standard deviation.

-8~ Tog—dOWﬂ !
10
.,.
g1 &
w w

» 107 Computational foad (Test 1; N=300) x 10 Computational load (Test 1; N=300)

A e — 1
-6~ Optimal & GIR
A GIR i - LR
-~ LIR —5- Top-down

Figure 6. The computational cost in floating
point operations as a function of the number
of segments (k). Both panels show the same
data but on different scales. Errorbars show
one standard deviation.

Average load in Test 2 (log scale)

(linear scale}

x10°

—©- Optimal
-~ GIR

- LIR
—3- Top-down

Flops

“o- Optimat
-& GIR
- LIR
—6- Top-down

5 10 15 20 25
k

Figure 7. The average computational cost in
floating point operations as a function of the
number of segments (k), for an artificial se-
quence (Test 2: N=500, c=16). Errorbars
show one standard deviation. Note that the
scale on y-axis is logarithmic in the left panel
and linear in the right one. The dynamic pro-
gramming is out of the visible area in the right
panel.

Table 1. Outline of activities in the user sce-
nario
1. | user sits; device is on a table
2. | takes the device and puts it on
3. | stands up and starts to walk
4. | walks in a corridor
5. | walks down the stairs
6. | walks in a corridor
7. 1 walks outside
8. | walks in a porch
9. | walks in a lobby
10. | walks up the stairs
11. | walks in a corridor
12. | sits down
13. { puts the device on a table

208

sound pressure (loud, modest, silent), illumination condi-
tions (total darkness, dark, normal, bright), touch (at hand),
stability (unstable, stable), and device orientation (sideways
left, sideways right, antenna up, antenna down, display up,
display down). The pattern recognition algorithms for this
transformation and the sensor box itself are outside the
scope of this research, and we consider the context atom
data as given.

The real context data set consisted of 44 time series aris-
ing from the same scenario. The lengths of the 19 dimen-
sional time series varied between 223 and 267.

5.2 Performance on real context data

Each time series was segmented once to 2,...,21 seg-
ments using the dynamic programming, top-down, LIR, and
GIR algorithms. Results on relative error and running times
(Fig. 8) confirm the observations made with the artificial
data sets: GIR yields a small relative error with high com-
putational efficiency.

5.3 Quality of context recognition

A study of the optimal 2,...,21-segmentations for the
real data shows that there is certain stability in the loca-
tions of the break points (Fig. 9A). Most of the break points
occur in almost all segmentations after they occur the first
time. This gives certain credibility for the break points.

Next, examine a time series from context atom data and
its optimal 13-segmentation (Fig. 9B). An evaluation of the
segmentation against a video recording of the test shows
that segmentation can be very useful for context recogni-
tion. The segmentations seem to capture the most important
changes when compared with the real situation: putting the
equipment on and standing up, walking in stairs, being out,
going through doors, stopping, and getting the equipment
off. The 13 segments correspond practically one-to-one to
the activities in the user scenario (Table 1). Furthermore,
by comparing Figs. 9A and B one sees that the break points
for phases “getting equipment on”, “being out”, and “get-
ting equipment off” come up first. In this case, the order
of the appearance of the break points and their (subjective)
importance in real world seem to be consistent as well.

6 Conclusions

Context-awareness is becoming one of the major factors
in mobile communications. We have studied a particular
problem arising from mobile phones with sensors, the task
of time series segmentation.

We outlined the dynamic programming algorithm for
finding the optimal k-segmentation for a given cost func-
tion. However, dynamic programming is computationally

. Average relative errorin real context data set

02

Average flops in real context data set

~ LR v 10°
A GIR
-5~ Top-down /7"
- -©- Optimal
10" =#* LIR
. / A GIR
N/ -8 Top-down
g
Q
2014
£q
¢ 2
et
Kr—i
A
0 . : 10° , .
5 10 15 20 5 10 15 20

Figure 8. The average relative error (left) and computational cost in floating point operations (right)
as functions of the number of segments (k), for real context data set. Errorbars show one standard
deviation. Note that the scale on y-axis is logarithmic in the right panel.

too hard for long sequences, since the complexity of the al-
gorithm is of order O(kN?) where N is the amount of data
(assuming the cost of a single segment can be computed
in linear time). For this reason, we proposed and analyzed
fast greedy methods for time series segmentation. These
iterative methods were tested against both the optimal seg-
mentations and the top-down greedy segmentations. The
proposed global iterative replacement method (GIR) outper-
formed other greedy methods in our empirical tests.

The cost function that was minimized in this work was
the variance of the segment. This is just an example, and
other cost functions might be considered. It is, however,
advisable that the cost function could be calculated in linear
time with respect to the amount of data, as is the case with
the sample variance.

We applied the time series segmentation into sensor data
that was collected using a sensor box in a mobile phone.
The time series segmentation was used to capture inter-
esting changes in the user’s context. The experiment sug-
gests that time series segmentation using a simple variance
based cost function captures some essential phenomena in
the context atom time series. The segmentations presented
in Fig. 9 are optimal for the given data and cost function,
but the reflections of this fact to the real world must be eval-
uated by an analyst. The analyst might be working using
tools like visualization aids presented in Fig. 9, as well as
video recordings of the tests to get an overview for some
data in order to determine the usefulness of the emerged
patterns.

For other analysis purposes, the segmentation gives an
adaptive length window where the situation within window

is more or less constant and the break points occur at places
of changes. This can be useful in preprocessing the data for
forming higher-level contexts.

Acknowledgments

The authors would like to thank Esa Alhoniemi, Jani
Maintyjirvi, and Jari Paloniemi for useful comments.

References

[1] R. Bellman. On the Approximation of Curves by Line Seg-
ments Using Dynamic Programming. Communications of
the ACM, 4(6):284, 1961.

K. D. Bennett. Determination of the Number of Zones in
a Biostratigraphical Sequence. New Phytol., 132:155-170,
1996.

A. Cantoni. Optimal Curve Fitting with Piecewise Linear
Functions. [EEE Transactions on Computers, C-20(1):59—
67, 1971. '

B. Clarkson, K. Mase, and A. Pentland. Recognizing User
Context via Wearable sensors. In Digest of Papers of the
Fourth International Symposium on Wearable Computers,
pages 69-76. IEEE, 2000.

B. Clarkson and A. Pentland. Unsupervised Clustering of
Ambulatory Audio and Video. In Proceedings of the Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing 1999, volume 6, pages 3037-3040, 1999.

S. Fels, Y. Sumi, T. Etani, N. Simonet, K. Kobayashi, and
K. Mase. Progress of C-Map: a Context-Aware Mobile As-
sistant. In Proceedings of AAAI 1998 Spring Symposium on
Intelligent Environments, pages 60-67, 1998.

[2]

(3]

4]

(51

(6]

Contexl atom

SidewaysRight

H —

4 —t

5

6
P —t
io 1
10|
311l
51 H—~
5
E1s
Z 16

17

18 t

19 it 154

20 t +

21 i T i -t

0 50 100 150 200
Time (s)

13 segmentation of contexl stom time series

Running =

WatkingFast SR r cwsamss |
Walking - B TR
Loud

Maodest ¢ ig i t

Sient
TotalDarkress
Darl

Normal

SidewaysLet

Antennalp
AatannaDown

<
&5
53 S
T T TR T T TT

plasp
DisplayDown '

4 5 6 78 9 1 12
Bresk point number

Figure 9. A. The optimal 2,..,21-
segmentations of real data. The vertical
line segments on each horizontal grid line of
the y-axis presents one temporal segmenta-
tion. The x-axis shows time in seconds from
the beginning of the test. B. The context
atom data and the optimal 13-segmentation.
The horizontal bars show the activation of
the context atoms (labels on y-axis). Dark
means high activation. The vertical lines that
are numbered on x-axis show the places of
break points. The segmentation here is the
optimal 13-segmentation.

250

210

(7]

(8]

9l

[10]

(1

[12]

{13]

[14]

(15]

{16]

(17]

[18]

[19]

[20]

H. Imai and M. Iri. An Optimal Algorithm for Approxi-
mating a Piecewise Linear Function. Journal of Information
Processing, 9(3):159-162, 1986. :

E. Keogh, S. Chu, D. Hart, and M. Pazzani. An Online Al-
gorithm for Segmenting Time Series. In Proceedings of the
First IEEE International Conference on Data Mining, 2001.
To appear. .

K. V. Laerhoven and O. Cakmakci. What Shall We Teach
Our Pants? In Digest of Papers of the Fourth International
Symposium on Wearable Computers, pages 77-83. IEEE,
2000. "

M. Lamming and M. Flynn. "Forget me not” Intimate Com-
puting in Support of Human Memory. Technical Report
EPC-1994-103, Rank Xerox Research Centre, Cambridge.
T. Pavlidis. Waveform Segmentation Through Functional
Approximation. I[EEE Transactions on Computers, C-
22(7):689-697, 1973.

T. Pavlidis. Algorithms for Shape Analysis and Waveforms.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-2(4):301-312, 1980.

T. Pavlidis and S. L. Horowitz. Segmentation of Plane
Curves. [EEE Transactions on Computers, C-23(8):860~
870, 1974.

P. Prandoni, M. Goodwin, and M. Vetterli. Optimal Time
Segmentation for Signal Modeling and Compression. In
Proceedings of IEEE International Conference on Acous-
tics , Speech and Signal Processing 1997, volume 3, pages
2029-2032, 1997.

A. Schmidt, K. Aidoo, A. Takaluoma, U. Tuomela, K. V.
Laerhoven, and W. V. de Velde. Advanced Interaction in
Context. In Hand Held and Ubiquitous Computing, number
1707 in Lecture Notes in Computer Science, pages 89-101.
Springer-Verlag, 1999.

H. Shatkay and S. B. Zdonik. Approximate queries and rep-
resentations for large data sequences. In Proceedings of the
12th International Conference on Data Engineering, pages
536-545. IEEE, 1996.

T. Starner, B. Schiele, and A. Pentland. Visual Contex-
tual Awareness in Wearable Computing. In Second Inter-
national Symposium on Wearable Computers, Digest of Pa-
pers, pages 50-57. IEEE, 1998.

C. Wang and X. S. Wang. Supporting Content-based
Searches on Time Series via Approximation. In Proceedings
of the 12th International Conference on Scientific and Sta-
tistical Database Management, pages 69-81. IEEE, 2000.
L.-D. Wu. A Piecewise Linear Approximation Based on a
Statistical Model. [EEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-6(1):41-45, 1984.

Z. Xiong, C. Herly, K. Ramchandran, and M. T. Orchard.
Flexible Time Segmentations for Time-Varying Wavelet
Packets. In IEEE Proc. Intl. Symp on Time-Frequency and
Time-Scale Analysis, pages 9-12, 1994.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

