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ABSTRACT

This thesis is about data mining (DM) and visualization methfor gaining insight into multidi-
mensional data. Novel, exploratory data analysis toolsadaptive user interfaces are developed
by tailoring and combining existing DM and visualizationtimeds in order to advance in different
applications.

The thesis presents new visual data mining (VDM) methodstteealso implemented in software
toolboxes and applied to industrial and biomedical sigriailst, we propose a method that has been
applied to investigating industrial process data. The-aajainizing map (SOM) is combined with
scatterplots using the traditional color linking or intetiee brushing. The original contribution is
to apply color linked or brushed scatterplots and the SOMisaally survey local dependencies
between a pair of attributes in different parts of the SOMusB#rs can be visualized on a SOM with
different colors, and we also present how a color coding amutomatically obtained by using
a proximity preserving projection of the SOM model vecto8econd, we present a new method
for an (interactive) visualization of cluster structurasai SOM. By using a contraction model, the
regular grid of a SOM visualization is smoothly changed talva presentation that shows better
the proximities in the data space. Third, we propose a no@VI\vinethod for investigating the
reliability of estimates resulting from a stochastic indegent component analysis (ICA) algorithm.
The method can be extended also to other problems of simiitar KAs a benchmarking task, we
rank independent components estimated on a biomedicasdatacorded from the brain and gain a
reasonable result.

We also utilize DM and visualization for mobile-awarenesd personalization. We explore how
to infer information about the usage context from featuhes are derived from sensory signals. The
signals originate from a mobile phone with on-board senfswrambient physical conditions. In pre-
vious studies, the signals are transformed into desceffivzzy or binary) context features. In this
thesis, we present how the features can be transformedigtiehlevel patterns, contexts, by rather
simple statistical methods: we propose and test using niimraariance cost time series segmenta-
tion, ICA, and principal component analysis (PCA) for thigjpose. Both time-series segmentation
and PCA revealed meaningful contexts from the features iswal/data exploration.

We also present a novel type of adaptive soft keyboard wiheraim is to obtain an ergonomi-
cally better, more comfortable keyboard. The method sfesta some conventional keypad layout,
but it gradually shifts the keys into new positions accogdimthe user’s grasp and typing pattern.

Related to the applications, we present two algorithms ¢hatbe used in a general context:
First, we describe a binary mixing model for independenabjrsources. The model resembles the
ordinary ICA model, but the summation is replaced by the Banloperator OR and the multipli-
cation by AND. We propose a new, heuristic method for esfimgathe binary mixing matrix and
analyze its performance experimentally. The method wasksifjnals that are sparse enough. We
also discuss differences on the results when using diffegjective functions in the FastICA esti-
mation algorithm. Second, we propose “global iterativdaepment” (GIR), a novel, greedy variant
of a merge-split segmentation method. Its performance emeg¥avorably to that of the traditional
top-down binary split segmentation algorithm.
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Chapter 1

Introduction

1.1 Course of this thesis

1.1.1 Seeds—diverse problems

The seeds of this thesis are data-analysis problems inegp@search that | have encountered both
in academia and industry. A part of the work is conducted itsidki University of Technology, in
a research group with interest in analyzing and visualizimgplex data, especially from metal and
pulp process industry. The aim of the work is to provide ergiiory data analysis and visualization
tools for analyzing and monitoring industrial processebe €conomical and environmental inter-
ests related to process analysis are quite obvious. Fortrer | extend the use of visualization in
assessing the results of an analysis performed on biomadicals recorded from the human brain.

Another part of this thesis is related to my duties at Nokiadaech Center. The research is
inspired by a vision to make a mobile device context-awatkraare personal. Context-awareness
means that devices and applications should adapt favotalthe usage situation. The concept of
context-awareness is relatively young in mobile commuitoa and human-computer interaction,
but interest in it grows rapidly due to the increasing mapiand level of sophistication of com-
munication devices, computers, and services. To set aigtitugoal, the mobile devices could use
commonsense reasoning, learn the facts of life and “lealimebwith their users in changing con-
texts.

As a result, this thesis touches on three interesting bué giiverse applications with different
aims:

— detecting the cause of problems in an industrial process,
— analyzing biomedical signals, and

— personalizing a mobile phone user interface by makingritexd-aware.

Now, what is the scope of my thesis? And what is the scientfievance of it? In the following
subsection, | will shortly answer to the first question bylakpng the main themes of my thesis on
a general level. After that, in Sec. 1.1.3, | summarize theehacientific contributions of this thesis.

1



2 CHAPTER 1. INTRODUCTION

1.1.2 Growth—the storyline
Scope

Process industry and brain research are intriguing subpdtthey are not an end in themselves in
this thesis. The subject matter of this thesis is to invastignd utilize the signal data in general, in an
exploratory manner. The methods of visual and exploratatg dnalysis, i.e., the visual data mining,
are also related to human-computer interaction studiepicaity, some kind of a user interface is

used in controlling a data mining process and in showingessilts. My work is also about an other

kind of combination of data mining and user interfaces: mdthof data mining are used to build

new, adaptive user interface applications. In the follgyihrough out the common factors, the

three-folded yarn of this thesis, in more detail.

Data mining on multidimensional sensor data

Firstly, in each application there are multisensor measergs from a complex system. Understand-
ing multidimensional data is difficult and often requireplisticated, computerized tools of analysis
and presentation. Extracting useful patterns from suca aiatl making them understandable for the
analyst, are problems encountered in disciplines callensviedge discovery in databases and data
mining.

Thus, the applications are knitted together by the goal tdialmg insight into the sensor data.
In process industry, the measurements consist of proceampters that may be controllable or just
monitored. In brain research, signals are supplied by a etagncephalograph (MEG), a sophis-
ticated instrument that is capable of measuring the magfietds produced by the brain in sixty
locations on the scalp. In the study relating to contextrawass, the data consists of various si-
multaneous features describing the user’s environmenesdlieatures are derived from sensors
monitoring the ambient conditions of a mobile device andateeleration of the device itself.

Visualization and human-computer interaction

Secondly, in a major part of my thesis, a user interface araligation is combined with compu-
tational methods of data mining. Exploring the patternsatads advanced by using visualization
techniques. Visualization means computer supported Mispeesentations of data. Extensive use of
visualization in data mining is called visual data minindpi@h sets the framework for my thesis. The
aim of information visualization is to create interactiwgifidows” to the data. Visual data mining
is not only about presenting the results of the data analystsabout exposing the data and the data
mining method transparently to the analyst. This promatsight both into the data and the analysis
itself.

This thesis also deals with applications where a user mterfs changed according to the de-
tected patterns in data. This applies to the mobile userfate applications where the aim is to
make the mobile device sensitive to the user actions anéxbme., to make it context-aware. Thus,
this thesis touches human-computer interaction not ombuigph the interactive nature of visual data
mining but also through some of the applications.

Research and development on novel application areas

Thirdly, the novelty of the application domains charaaesi this work. To begin with, in order to
gain understanding in the first place, one has to get somalbirsight into the data produced by
the sensor system. This might be called “playing with th@tat exploring the data. This is where
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the visual data mining or visual data exploration are of [a exploration is a necessary phase in
order to have some ideas for further research.

Commercial competition encourages the realization of exagyue ideas in novel application
areas. This can be clearly seen in the context-aware molbdaeapplications which compete on
the cutting edge of technology. The aim there is to sketchotopypic system to demonstrate that
some application indeed could be constructed. Tangibldtessom materializing the ideas are the
applied patents.

Novelty of a method or a research area may hinder obtainisgjteein academic research as
well. In this thesis, the analysis of biomedical data exéiiegl this problem. There, the problem
lies in assessing the results provided by a stochastic iligoon a limited sample. How to do
this in a well-established manner, is an important resequestion. However, from a practitioner’s
standpoint, any tool capable of providing insight into theldem helps in advancing the real matter
of interest: finding interesting signals from the brain drastsystems. An exploratory data analysis
approach combined with visualization provides a fairly dagay of obtaining results which are
generalizable into other similar problems as well.

Main theme

To sum up the theme of this thesis, | concentrate on the raggtbgiment of methods for gaining
insight into multidimensional data. This is done in ordeptomote research and development in
new application areas. This involves developing novelj@gpory data analysis tools and adaptive
user interfaces by tailoring and combining existing datalysis methods and visualizations. The
visualizations also provide insight into the results andrabteristics of the data mining methods
themselves.

1.1.3 Fruits—scientific and practical relevance

In this section, | present the main contributions of thissteethe background, and motivation for
them. Section 1.1.4 re-describes the contributions inildstgublication and author at a time.

Scientific contributions

The first part of my thesis is about visual data mining methdsbegin with, it regards the self-
organizing map (SOM) as a widely accepted and establishédamien (visual) data mining and
proposes new options for its visualization. | present newhiods that utilize color linking, brushing,
and interactive projection in enhancing SOM visualizagiand in linking it into other representations
of the data.

An established way of visualizing SOM, the component plagass a good general view to
attribute values in different parts of the SOM. Howeversinbt easy to see details of the pairwise
dependencies between the attributes in it. Meanwhile, dinary scatterplot is an easily conceivable
means of investigating such dependencies. The first ofigamribution is a method where the gen-
eral view mediated by the component planes is combined wigcted scatterplots and, possibly, a
time series plot of data using color linking or interactiveghing. The method is applied for indus-
trial process data analysis in order to visually surveyusiameously, dependencies in and clustering
of the data, as well as the relation to the original, multieiivsional time series.

Another problem with the SOM visualization has to do withed#ing clusters in data. Although,
the SOM aims at retaining the topology of the data, the regyrid of the SOM units in the output
space does not, in itself, visualize clusters in the dataespaifferent solutions exist: Contour lines
or shades of gray on the SOM grid can be used to visualize thaahdistances between model
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vectors (in the data space) of the neighboring SOM unitsst€ls can also be visualized on a SOM
with different colors. | propose how the color coding cancautically be obtained by using a
proximity preserving projection of the SOM model vectorshé color coding can then be used to
link the SOM to other representations, like scatterplots.)

Another option for highlighting the clusters is to reflect istances between the model vectors
of the neighboring SOM units in the input space by the disano the output space visualization.
Different solutions exist: One can rigorously optimize agenable cost function that sets the inter-
unit distances in the visualization to correspond thosééniiput data space. Alternatively, the are
variants of the SOM where unit locations in the output spabeiiently try to reflect the shape (and
cluster structure) of the input data.

| take a different approach and present a novel (interdcthathod for visualization of cluster
structures in a SOM. The method does not aim at a rigor opditioiz of a cost function but easily
computes a sequence of projections by repeatedly applysigale contraction model. As a con-
sequence, the visualization can be smoothly changed, batkoath, between the regular grid, a
presentation that reflects the inter-unit proximities ia ttata space, and a densely clustered view.
The same method can, eventually, be applied to any init@tiprity preserving projection.

To continue with visual data mining, my thesis addressesoalem of assessing results from
a stochastic estimation algorithm by resampling, clustgrand visualization: FastICA is an estab-
lished algorithm, with many favorable properties, for axting independent components. A feature
of FastICA is that its optimization procedure may end toatiht results for the same data depending
on the initial conditions of the estimation. This is a prahleimilar to many practical and widely
used, greedy algorithms, as e.g., K-means.

How to assess the reliability of the results on a sample, en@l problem in independent com-
ponent analysis (ICA). A resampling method has been predeatsolve this, but applying it directly
to FastICA without changes may cause difficulties. As a smitl propose, with my co-author, a
novel method|cassg for investigating the reliability of estimates resultiftgm FastICA.Icassois
based on bottom-up clustering of resampled ICA estimatesth&rmore, we propose a proximity
preserving visualization of the estimate space for adutiicheck up and further investigation of the
clustering results. The method can be extended also to ptbblems of similar kind, say, assessing
the results of the K-means algorithm.

The second part of my thesis is joint work about utilizing imae learning in context recognition,
mobile-awareness and personalization. We explore howféo imformation about the usage context
from features that are derived from sensory signals. Theasgoriginate from a mobile phone
equipped with on-board sensors for ambient physical camdit touch, noise, light, temperature,
humidity and acceleration of the device itself. In previsugdies, the signals are transformed into
descriptive (fuzzy or binary) context features.

Earlier, Hidden Markov models, self-organizing maps, aaiv@ Bayesian classifiers have been
proposed to be used, especially, for the purpose of sugeheisntext recognition. We present how
the features can be transformed into higher-level patteorgexts, by rather simple statistical meth-
ods that seem not to be previously appeared in connectioarttext recognition: we propose and
test using minimum-variance cost time series segmentétiotetecting context-changes in time—
and principal component analysis (PCA) and ICA for extragttontexts as latent sources. Time
series segmentation is an attractive approach since thei@eputationally light, though subopti-
mal, algorithms available. PCA and ICA could extract cotgaxnsupervisedly as latent variables.
In contrast to the previous approaches, where only one xoistactive at a time, several latent vari-
ables can be active simultaneously. Time series segmemeaid PCA revealed meaningful contexts
from the features in a visual data exploration. In this c#58,did not provide that useful statistical
aggregates for the test data, and | will discuss the reasonki$ in this thesis.
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Related to the context-aware applications, we also présenalgorithms that can be used in a
general context: the first one is related to latent varialdelets and the second one to time series
segmentation: First, our test data in context-awarenedgestconsists of multidimensional, (almost)
binary data. We assumed that the data could, in generalgenfram a non-linear, Boolean mixing
model of independent binary sources, and possibly binaisend he prior work with ICA and binary
data has concentrated on linear mixtures of discrete (isaurces and Gaussian noise, which was
not applicable model in the problem. To advance rapidly artdke use of the effective methods for
linear ICA, we propose a new, heuristic method for estinggtiive binary mixing matrix of the model
and analyzed its performance experimentally. The metha#tsor signals that are sparse enough.
We also discuss differences on the results when using diftevbjective functions in the FastICA
estimation algorithm. Second, we propose “global iteeteplacement” (GIR), a novel, greedy and
fast variant of a merge-split time series segmentation atktlts performance compares favorably
to that of the traditional top-down binary split segmematalgorithm.

Finally, we present a novel type of an adaptive soft keybodrde prior work on optimized,
soft keyboards typically aims for one common layout where kbys are completely relocated to
an optimal configuration for fast typing. This is done acdogdto general theoretical models of
language and human motor system. We propose reshapingythedsd to feel personal and present
an adaptive keyboard that subtly changes the keyboard tbefitser’s individual typing pattern.
The individual physiology of the hand and the personal fastif typing are not captured by the
generally used models in keyboard optimization. In the absef a well-established model, we
started exploring the problem based on a very simple legrt@nhnique: the method starts from
a given keypad layout and shifts the keys into new positiat®@ling to the user’s grasp using a
simple adaptation rule. Preliminary, quantitative resoih user satisfaction and adaptation results
are encouraging

Other contributions

What comes to the practical import, one aspect of my thetisdemonstrate the rapid deployment of
data mining into new applications in mobile user interfafoesnsights and innovations. In fact, the
research and development work done while preparing thsihas led to some patent applicatidns.
More importantly, some of the results have been concretiialin two freeware software packages
the SOM ToolboxandIcasso These packages are targeted for researchers both in aeaded
industry.

1published applications include WO03043356: A method fertrmdling operation of a mobile device by detecting usage
situations, WO03107168: Electronic device and method afaging its keyboard, and U.S. Pat. Appl. 20040002948: Blerta
electronic device and method for determining its context.
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1.1.4 Publications and their original features

The original features of my thesis are contained in eightipations. Seven of them are contained in
peer reviewed proceedings of international scientific emrices and one is an invited, edited book
chapter. The list below gives the numbering that is used whéstring to the publications. The
order of the publications is by topic which is explained belo the description of the contents and
original features of the publications, and my personalbutions to them.

1. Johan Himberg, Jussi Ahola, Esa Alhoniemi, Juha Vesantb Olli Simula (2001). The Self-
Organizing Map as a Tool in Knowledge EngineeriRgttern Recognition in Soft Computing
Paradigm (ed. Nikhil R. Pal). World Scientific Publishing, pages 88-

2. Johan Himberg (1998). Enhancing the SOM Based Data Vist@in by Linking Different
Data Projections. IfProceedings of the International Symposium on Intelligeata Engi-
neering and Learning (IDEAL'98Hong Kong, pages 427-434.

3. Johan Himberg (2000). A SOM Based Cluster Visualizatind Hs Application for False
Coloring. InProceedings of the IEEE-INNS-ENNS International Joint f€mmnce on Neural
Networks (IJCNN2000QXomo, Italy, vol. 3, pages 587-592.

4. Johan Himberg and Aapo Hyvarinen (2003). Icasso: Soéia investigating the reliability
of ICA estimates by clustering and visualization. Rroceedings of the IEEE International
Workshop on Neural Networks for Signal Processing (NNSRP08ulouse, France, pages
259-268.

5. Johan Himberg, Jani Mantyjarvi and Panu Korpipa&@0 Using PCA and ICA for Ex-
ploratory Data Analysis in Situation Awareness. Rroceedings of the IEEE Conference on
Multisensor Fusion and Integration for Intelligent Sysge(MFI2001) Baden-Baden, Ger-
many, pages 127-131.

6. Johan Himberg and Aapo Hyvarinen (2001). Independenpcment analysis for binary data:
An experimental study. IRroceedings of the International Conference on Indepen@em-
ponent Analysis and Blind Signal Separation (ICA20@&3n Diego, California, pages 552—
556.

7. Johan Himberg, Kalle Korpiaho, Heikki Mannila, Johaniteaimaki, and Hannu T.T. Toivo-
nen (2001). Time series segmentation for context recagniti mobile devices. Ifroceed-
ings of the IEEE International Conference on Data Mining[k22001) San Josg, California,
pages 203-210.

8. Johan Himberg, Jonna Hakkila, Jani Mantyjarvi, aettrifkangas (2003). On-line personal-
ization of a touch screen based keyboardPtaceedings of the International Conference on
Intelligent User Interfaces (IUI'03)Miami, Florida, pages 77-84.

Visual data mining: Publications 1-4 in detalil

Publications 14 relate to creating visual data mininglorés. More specifically, Publications
1-3 concentrate on visual data mining (of industrial dathg theSOM Toolboxhat implements
the SOM as a platform for various techniques. Publicatiomtdoducesicassq the method for
exploratory assessment of results from a randomized #tgorispecialized in assessing results of
independent component analysis using visualization. Difiievare uses parts OM Toolboxas
building blocks.



1.1. COURSE OF THIS THESIS 7

Publication 1 is a review of SOM based tools and methods for industrial ttetbare developed in
theIntelligent Data Engineering Research GroapHelsinki University of Technology. The review
concentrates on multisensor time series data originatomg process industry. It pursues a typical
data mining setting for industrial data and presents thetitsrof the SOM to the exploratory data
analysis process. Four main themes are considered: datystiime series visualization, correlation
and outlier visualization, and a research software,3 Toolboxthat collects the basic SOM
and the tools developed during the research for public use. cbntributions originating from my
work are the time series exploring tool—combined with the@ation/clustering visualization pre-
sented in Publications 2 and 3, discussing the visualizdtemefits of the SOM, and participating in
planning of theSOM Toolboxespecially its visualization framework.

I managed the writing process, set the scope of the paper adé the final edition. The co-
authors wrote about their original contributions and pgstited in writing the introduction and the
discussion. The industrial cases are contributed by DrA#isaniemi (pulp industry) and Mr. Jussi
Ahola (metal industry). These examples highlight how trEs@f Publication 2 have successfully
been used in surveying industrial data. The usage of the SO%birelation hunting” and novelty
detection originate from Dr. Juha Vesanto’s and Mr. JussilAk work.

In Publication 2 the SOM is combined with scatterplots using the traditicc@or linking. The
original contribution is to apply color linked scattergatnd the SOM for visualizing (process) data
in order to survey local dependencies between a pair obates in different parts of the SOM.
The method is applied to investigating relations in datavitey from a customer help-desk service.
| also demonstrate how cluster structures can be visuatimeal SOM by using another proximity
preserving projection for the color coding.

In Publication 3, the regular grid of SOM visualization is altered toward agemtation where the
distances between the map units on visualization apprdgith@ proximities in the data space. |
propose using a contraction projection for this purpose ddntraction projection has an interesting
relation to the conventional, hierarchical clusteringisTtigpe of projection suits well for interactive
purposes where the user is able to shift between the cldsa@gtregular display of the SOM.

Publication 4 presents an exploratory method for assessing the reswdtsanidomized algorithm on
a data sample by means of exploratory data analysis. Mocifispdly, we present an exploratory
visualization method for investigating the relations betw estimates from the FastICA algorithm.
In our method, the algorithmic and statistical reliabilgynvestigated by running the algorithm many
times with different initial values and/or with differepthootstrapped data sets. Resulting estimates
are compared by visualizing their cluster structure adogrtb a suitable mutual proximity index.
Clusters are used for assessing the reliability of the etém Also, more robust estimates can
be produced using, e.g., the centrotypes of the clusterg vidual exploration tool provides an
additional sanity check on the overall results. The use efttlol is tested and demonstrated on a
biomedical data set recorded from the brain using MEG. Thelt®are reasonable in light of known
properties of the signals.

The topic and rough solution were proposed by Dr. Aapo Hyedr. | selected the methods
for clustering and visualization, planned the overall tantl implemented it as a software package
Icassoutilizing the SOM ToolboxandFastICA for MATLABpackages. We wrote the paper together.

Data mining and emerging user interface applications: Pulkitations 5-8 in detail

Publications 5-8 are related to applying data mining in neobdntext-awareness, personalization
and adaptive user interfaces (Uls). Publication 6 mightrssemewhat alien in this group since
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it investigates a rather general problem related to indé@eincomponent analysis. It is, however,
directly related to the methodology used in Publication Gblfeations 5 and 7 take some steps in
incorporating data mining methods into context-awarendss explained before, we take an ex-
ploratory approach: we investigate and demonstrate féigsf principal component analysis, time
series segmentation and independent component analyfsiglimg meaningful patterns in data that
describes the user context. Ultimately, the aim would beakera mobile terminal capable of sensing
a user’s context and usage patterns and learning to addpige favorably. Publication 8 describes
the ergonomically personalized adaptive keyboard, eoga fmobile device. The application repre-
sents an example of gaining new ideas through the visualizaf data mining algorithms. Here, the
common visual demonstration of a vector quantization atgorin two dimensions is turned into an
adaptive keyboard.

Publication 5 introduces the context data and the mobile context anatysislem that are further
used in Publication 7. The paper reports results on pretimiaxploration on the data using principal
component analysis (PCA) and independent component anglg). The results show a clear
clustering structure of the context data visualized inedéht ways. As a result, we were able to
demonstrate that the information contained in the origioald be symbolized and transformed into
higher-level context by rather simple statistical metho@s the other hand, the results suggested
that linear, instantaneous ICA could not extract very ie¢éing components from the data. It became
evident that a temporal analysis, i.e., time series arslysuld be needed in order to proceed on the
problem and this is pursued in Publication 7.

The co-authors were responsible for data collection, feaéxtraction from the original sig-
nals, i.e., the “context atom” creation. | composed the tod the context atoms together with
Dr. Mantyjarvi, and | was responsible for implementing texperiments and visualizations using
PCA and ICA. We wrote the paper and discussed the resulttteige

Publication 6 describes a specific non-linear mixing model for indepethbarary sources. In this
non-linear model, the summation of the linear mixing is aepld by Boolean operator OR and the
multiplication by AND. The model might be applicable in theoplem described in Publication 5
if one assumes that the aforementioned “context atoms”iageypand generated from independent
binary sources (contexts). The same data model is encegn#so, e.g., in document analysis.
Instead of using any model-specific algorithm, Publicaastudies experimentally how a heuristic
based on the linear ICA performs on this data model. Moreiipaity, we first apply the FastiCA
algorithm and then scale and threshold the linear mixingisnat order to form the basis vectors
of the binary model. It turns out that this method works readdy well for signals that are sparse
enough. In general, for this type of problem, skewness as®& lfiar the objective function works
better than kurtosis, but interestingly, if the signals @eupted by additional noise, kurtosis gives
better results.

| suggested the topic and the heuristics, designed and ctettiihe experiments while Dr. Hyvari-
nen guided the work and discussed the results. We wrote thex pagether.

In Publication 7 we apply time series segmentation into similar context tdsawas used in Pub-
lication 5. It seems that the resulting segmentations aee@ordance with the real world situation
even when the segmentation criteria is as simple as thenagihgment variance.

Publication 7 has also an algorithmic contribution: We paiat that dynamic programming,
which produces an optimal segmentation, is computatigrealite intensive for mobile comput-
ing. Some computationally less intensive but suboptimhitsms for the problem are known, e.g.,
the traditional top-down binary split or merge-split typgaithms. We propose and analyze two
presumably novel variants of the merge-split optimizatioethod. These randomized and greedy
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algorithms are called local iterative replacement (LIR) gifobal iterative replacement (GIR). The
quality of the results produced by GIR on the context dat@getpare favorably to the binary-split
algorithm.

| elaborated Prof. Heikki Mannila’s original idea of LIR Wwito-authors. | guided making the
experiments and was responsible for discussing the agiplicto the context data. Ms. Johanna
Tikanmaki and Mr. Kalle Korpiaho implemented the alganith and made the performance tests,
and also contributed to elaborating the randomized algmst | bear the principal responsibility for
writing the paper.

Publication 8 continues the research on adaptive Ul in a mobile phone batdiffierent aspect: the
physical appearance of the Ul. The decreasing size and fleeations for personalization challenge
the conventional, rigid keypad design.

We present an idea of an adaptive soft keyboard where thesaimabtain an ergonomically
better, more comfortable keyboard. The method starts fiammesconventional keypad layout, but it
gradually shifts the keys into new positions according toubker’s grasp and typing pattern. The pur-
pose is not, however, to change the original global ordenekeys but just adjust the positions of the
keys. Thus, our application avoids a common pitfall of ad@dills: changing the conventional habit
drastically that is known to rather distract than help therusVe describe a simple implementation
on a numeric keypad and report experiments on a small groupert.

| elaborated the idea with co-inventor Dr. Jani Mantyjamho contributed especially to the
overall system design. | implemented the software that wasd tor realizing the system, performing
the user tests and analyzing the results. Ms. Jonna Hé&kd Mr. Petri Kangas, shared the principal
responsibility for the usability test design, discussiontmman-computer interaction, the testing
itself and the hardware setting. Ms. Hakkila and | shatedmain responsibility for writing the
paper.

1.2 Outline of the introductory part

This chapter of the introductory part has expressed the afriine thesis and scientific contributions
of the publications. The rest of the introductory part isdidéd into chapters as follows:

Chapter 2 is an overview of the research fields that the methods in lieisis relate to: data mining
and knowledge discovery, information visualization, amlal data miningChapter 3 provides a
short tutorial on the data mining and visualization methaguisearing in this thesis and motivates their
use. Process industry and brain imaging are not within tbpesof this thesis as such. Therefore, in
Chapter 3, | concentrate just in the (visual) data mininghroés that can be utilized in these fields.
Meanwhile, emerging Ul paradigms, like context-aware Ulis,form a central part of the thesis.
Chapter 4 is dedicated for a literature review on applying machinerag to context-awareness,
personalization, and adaptive Uls. FinalBhapter 5 contains a short conclusion and some thoughts
about further research.

On one hand, the introductory part of this thesis serves anargl literature review. On the other
hand, it presents some details that have been only refatémtee original publications. The relation
of the introductory part to the original publications is cmentary. That is, most of the technical
substance of the publications is not reproduced here.
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INTRODUCTION



Chapter 2

Data mining and visualization

2.1 Data mining

2.1.1 What is data mining?

Datais a Latin word having roughly the meaning “things that hagerbgiven”. For us, it refers to
a collection of numbers or other symbols which have beemgiva form that can be processed by
a computer. It might originate from scientific experimemsgustrial processes, corporate databases,
or collections of digitized documents. Such collectiongafa, as mass like entities, are of little
value unless they can be transferred ikhowledgefamiliarity, awareness, or understanding gained
through experience or study.

The computerized process that combines methods for stythfige amounts of data is known as
knowledge discovery (in databas€<pPD), a research field that started in the late 1980’s (Ctas.e
1998) and has gained much interest for quite obvious rea3dwesWorld Wide Web (WWW) gives
a good—but just one—example why this is the case. KDD is aitenmplex and iterative process
rather than a linear process from data to knowledge. Theegriiovolves (Fayyad et al., 1996)

— gathering domain specific knowledge, managing the datg blasa preparation and data qual-
ity issues (Kim et al., 2003; Pyle, 1999),

extracting the relevant features from the data,

data mining: finding the interesting patterns, rules or el®@Hand et al., 2001; Kleinberg
etal., 1998),

— assessing the results, and

exploiting the knowledge in research or in business.

There is a notable endeavor to standardize the KDD proceSsoiss-Industry Standard Process for
Data Mining (CRISP-DM model) (Shearer, 2000).

Data mining can be seen as the specific part of KDD where irdtive and novel patterns,
rules, or models are discovered (Cios et al., 1998; Hand.€2@01). The patterns, rules, or other
descriptions should be interesting and useful to the dateeowand be something previously unknown
(Fayyad et al., 1996; Hand et al., 2001). “Interestingne$s! pattern can be measured with utility,

lathttp: //ww. cri sp-dm or g [referred 14 Apr 2004].

11
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i.e., the ability to suggest concrete, profitable actionkifiberg et al., 1998). Sometimes, terms
“KDD” and “data mining” are used interchangeably, e.g.,€8ter, 2000; Vesanto, 2002), and we
will not make a strict difference between these two concigptsis work.

Data mining resides in the junction of traditional statistitnd computer science. As distinct from
statistics, data mining is more about searching for hym®bén data that happens to be available
instead of verifying research hypotheses by collecting diatm designed experiments (Glymour
etal., 1997). Data mining is also characterized as beirmted toward problems with a large number
of variables and/or samples that makes scaling up algositinmportant. This means developing
algorithms with low computational complexity, using p&btomputing, partitioning the data into
subsets, or finding effective ways to use relational dat@b@isepner and Kim, 2003; Lawrence
et al., 1999; Provost and Kolluri, 1999). The process- aildydtentered thinking in data mining
and knowledge discovery is manifested also in the repodmehmercial systems, e.g., (Hsu et al.,
2002).

2.1.2 Data mining tasks

Hand et al. (2001) recognize some characteristic tasksatieatncountered within data mining re-
search: predictive modeling, descriptive modeling, digtimg rules and patterns, exploratory data
analysis, and retrieval by content.

Predictive modelingncludes many typical tasks of machine learning such asifization and
regression. In this thesis, the emphasis is moralescriptive modelinghat is ultimately about
modeling all of the data, e.g., estimating its probabilitstidbution. Finding a clustering, segmen-
tation or informative linear representation are commortasks of descriptive modeling, and their
applications are important in this thesis.

Particular methods fatiscovering rules and pattermsnphasize finding interesting local charac-
teristics, patterns, instead of global models. Examplesthé context of the methods and problems
encountered in this thesis—include finding local pattemsme series (Oates, 2002; Patel et al.,
2002) or atypical items (outliers) using the self-orgamigimap (SOM; Sec. 3.2.12) (Mufioz and
Muruzabal, 1998).

Different methods ofmachine learningre used in data mining to perform these tasks. In “learn-
ing from data” (Cherkassky and Mulier, 1998), “learning”asmetaphor that is used to describe
finding the interesting patterns. “Learning” does not rdfere to the analyst but to a learning ma-
chine, a system that is capable of extending predictive powtside the sample of data and finding
generalizations or reductions of the data. A list of typlealrning tasks—density estimation, classi-
fication (pattern recognition), regression, and cluste(@®herkassky and Mulier, 1998)—echo some
of the data mining tasks.

The task ofexploratory data analysiss most important in this thesis. The name originates
from the seminal work of Tukey (1977) and refers to an appréactatistics where the focus is on
creating hypothesis instead of rigorous statistical erfiee for testing them (Glymour et al., 1997;
Tukey, 1977). Statistical graphics assist in this task\{€lknd and McGill, 1987; Cleveland, 1994;
Tukey, 1977). At the stage of exploratory data analysistdBk is not yet to confirm the validity of
the results but to provide clues for further research.

Finally, the task ofretrieval by contenhas many popular applications including queries from
WWW and other large collections of data. For example, of #ferences in this thesis (Honkela
etal., 1996; Kohonen et al., 2000; Laaksonen et al., 200@pR& et al., 2002a; Skupin, 2002; Yang
et al., 2003) relate to this task.
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2.1.3 Related research fields

Data mining benefits of computational methods from variasearch fields of machine learning.
Consequently, many features of this thesis have appeasedgtre than in conferences on data
mining in particular.

Publication 1 has appeared in a book devotepktitern recognitiorwhich is the traditional field
that considers many problems important in data mining. dalpi, the aim in pattern recognition is to
classify some sensed patterns in predefined classes. Aigdimandwritten character recognition in
mobile equipment gives an illustrative example (Vuori et 2000). However, pattern recognition is
not confined to the learning task of classification. At lets,task of clustering (unsupervised clas-
sification) is usually considered in pattern recognitiotitieoks, e.g., (Duda et al., 2001; Schalkoff,
1992).

Algorithms for machine learning are studied also under thmgext ofartificial neural networks
(ANN) that has gained inspiration from the information pessing in real nervous systems, see e.g.,
(Flanagan, 2001; Kohonen, 2001). Characteristic bendfits\NiN algorithms are that they adapt
(learn) on-line, are noise (fault) tolerant and often supparallel implementation (Kohonen, 2001).
Of the methods used in this thesis, the SOM (Kohonen, 1982atspecial position in ANN theory.
Also, learning algorithms related to principal componerdlgsis (PCA; Sec. 3.2.4) (Oja, 1982) and
independent component analysis (ICA; Sec. 3.3.1) (JutidriHerault, 1991) have been influential.

In practice, many ANN conferences and journals are forumsrfachine learning in general.
For example, Publications 3 and 4 have appeared in ANN cenées. The substance of this thesis
is, though, more about exploratory data analysis than atheuparadigm of ANNs. Nevertheless,
the on-line performance and adaptivity are often of utmogidrtance, e.g., in the context-aware
applications (Flanagan et al., 2002).

2.1.4 Visualizing results of data mining

Results produced by data mining methods can be assessedtisyicgll means or codified using
rules. For example, in the context of data mining using th&1S@ne can check whether significant
differences exist between the clusters, or derive rulasiscribe the clusters (Vesanto and Hollmén,
2002). In this thesis, instead of an analytical approachysuglly concentrate on the visualization of
the results by linking them into some other representatfidheoriginal data. In Publications 1 and
2, the structure of process data detected by a SOM is linkédasior coding and manual brushing
to the original process time series and scatterplots betwéeresting variables. In Publication 7, the
results of time series segmentation are related to a videaratwhich gives an automated narrative,
a series of images of what happened in the putative, integesbntext changes. The aim of such
tools is to assist in the exploratory phase of the research.

In the following sections, we will visit visual data minintpe research area between visualization
and data mining, as well as visualization in general.

2.2 Visualization

2.2.1 What is visualization?
External representations for problem solving and communiation

The wordvisualizationhas a meaning of “picturing something in one’s mind”, i.magining. But it
has also a reversed meaning, making pictaridérnal representations for problem solvi(ghang,
1997) and for communication. Visualizing ideas by drawing aketching is kind of “thinking with



14 CHAPTER 2. DATA MINING AND VISUALIZATION

pictures”, and it has evolved hand in hand with engineeriagtices (Ferguson, 1977). Sketching
pictures makes it possible to design complex systems anéhiedecit, informal knowledge within
engineering communities and organizations (Henders@9)19

External representations provide means of perceptualgmobolving by redirecting cognitive
operations (Zhang, 1997). A task might be completely déffieidepending on the form of presenta-
tion. Sometimes, the solution can be directly perceiveddm@s not need to be interpreted explicitly
in high-level cognitive operations. For example, a timaéeseof measurements can be plotted as a
curve, a line graph, to make certain patterns immediatelygdeable.

Visualization transforms cognitive work on symbols int@gessing of visual features that may
in some cases be preattentive (Healey et al., 1996), whiowslfast parallel processing of the
feature$ One can say that the visualization “amplifies cognition’d dine several ways in which
this happen are discussed also in (Card et al., 1999a) withefiireferences. A quite obvious detail is
that visualizations decrease working memory load whiléquaring cognitive tasks (Zhang, 1997).

Zhang (1996) points out three tasks of data graphics:

— information retrieval (value lookup),
— value comparison among one attribute or between attsbated
— finding emergent patterns in data.

All functions appear already in some most typical examplesta graphicsline graphs scatterplots
andscatterplot matrice¢Cleveland and McGill, 1984; Cleveland, 1994). In a linegraf a time
series, we can both think of finding a value for a certain tinsant, or comparing values—but we
can also see the slope of a curve or other patterns such a&saydrends. While an alphanumeric
table can be more accurate in providing exact data valuése gitaph illustrates how a visual form
immediately provides access into patterns in data thatvakevard to find in a table (Lohse, 1997).

Different categories and aims of visualization

Card et al. (1999a) define the concepirdbrmation visualizatioms “the use of computer-supported,
interactive, visual representations of abstract data tpliéyncognition”.2 This distinguishes the
archetypal information visualization from archetysaientific visualizatione.g., (Nielson et al.,
1997). In scientific visualization, the objects that arevahdave typically quite a clear physical
meaning; visualization of flow and vortex, geological/gepgical, molecular structure or medical
imaging are a few examples of the application fields. A cotigeal, static diagram on paper or
screen is, according to the taxonomy of Card et al. (199%dgddata graphics Expositions of
different data graphics, scientific and information vig&stion techniques in general can be found in
(Bertin, 1983; Card et al., 1999b; Cleveland, 1994; Fayyaal.e2002; Nielson et al., 1997; Tufte,
1983, 1990), and introductions to multidimensional alu$tdata visualization in (Card et al., 1999a;
Grinstein and Ward, 2002; Hoffman and Grinstein, 2002; K&l602; Wong and Bergeron, 1997).
We are interested especially in tBgploratorypurpose of visualization for discovering new re-
sults. Another familiar purpose of visualization is to fresentationaln order to illustrate known
results in papers, books or lectures (Kosslyn, 1994). Thatisualizations are also meansomim-
munication A data graph may even be a part of aesthetic line in booksanriags, advertisements,
or corporate handouts. Thiecorativeuse of data graphics can create “disinformation” when done

2A task that can be performed in a multielement display intleas 200 ms is considered preattentive (Healey et al., 1996)

SCard et al. (1999a) also define thagualization in general, refers to “interactive use of computer to Vigearelations in
data”. In this thesis, the word “visualization” is used in ammeveryday sense. It may refer to any pictorial repreientaf
data or concepts.
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inexperienced (Tufte, 1983). On the other hand, skillfudige of misleading visualizations can be
deliberately used in propaganda.

Craft and tradition of visualization

The works of J. Bertin and E. R. Tufte, e.g., (Bertin, 1983ft&u1983, 1990) are recognized as
seminal in the area of information visualization in manywsys (Lohse, 1997; Card et al., 1999a;
Ware, 2000). These works are not focused on computerizedlizations but are important sources
of profound graphical experience, tradition and best jprast

Tufte crystallizes making good visual representationoimjectures of graphical excellence and
a couple of quantitative measures. The graphical excadlengbout “communicating complex ideas
with clarity, precision and efficiency”. The aim to presem priginal values of data with precision
(i.e., lookup and comparison tasks). Tufte encouragegusinimalistic and subtle design (within
reason) to convey the necessary information. For exangatg®ink ratio” should be high meaning
that as little “ink”, i.e., intensity and area, should bedifar objects that are “not data”, e.g., axes or
tick marks. Tufte’s works are also about the history andins@f data graphics and present a lot of
interesting examples of both successful and disinformatisualizations.

While Tufte present an approach based on general graphéséd and aesthetic guidelines,
Bertin (1983) describes a detailed theory and taxonomy t&£ deaphics. Bertin's theory is based
on semiology: He treats maps and data graphics as a languge the elements of visualizations,
signs, interact. Bertin also classifies the graphicalkattas, e.g. luminance, color, texture, position,
and size of an object, in a way that presents the most suipainfose of use.

Toward science of information visualization

Bertin's theory is a rather subjective one, but it contairagnof the same elements as later work in
the field that is explicitly based on psycho-visual and ctigmiresearch results (Card et al., 1999a;
Mackinlay, 1986; Zhang, 1996). Such results give a measiratientifichackground for informa-
tion visualization. They tell how the elements and attrésudf visualization can take advantage of
universal, low-level sensory mechanisms. Card et al. (&p@fd Ware (2000) survey such results
and their application to information visualization.

What has been found during visualization research can bressgd as general design principles
or specific rule-of-thumbs included in reference books,, €¢@eveland, 1994; Eick, 1997; Kosslyn,
1994; Ware, 2000). However, designing a visualizationgakéot of effort and it is not guaranteed
that the designer’s graphical skills are up to the best leMalis, automated design would be benefi-
cial. For example, Mackinlay (1986) presents a cognitivelelof graphical perception and interac-
tion and a methodology Presentation ToolLohse (1997) surveys further models in automating the
evaluation and design of data graphics. However, accotdidg Oliviera and Levkowitz (2003), the
cognitive models are still restricted to a set of basic datgkic tasks, and are not sufficient for the
growing number of sophisticated exploratory and intevactisualization techniques. Eventually, a
visualization system may have some specific features tleatparceptually tuned”. For example,
related to Publication 3, Kaski et al. (1999) present a methocolor-coding a cluster visualization
of the SOM that is based on using a perceptually uniform splace.

Empirical user studies are important in the research adnafbmplex, human-computer interac-
tion systems. This applies to visualization systems anlhtgcies as well. In information retrieval,
there are a number of diverse studies: Chen and Yu (2000¢pand compare a selection of these.
For exploratory visualization methods of abstract datehstudies are harder to find. Grinstein et al.
(2002) and Keim and Kriegel (1996) provide formative exagsplThey compare the performance
of certain visualization methods on benchmarking dataw@tsknown clusters, outliers, or rules.
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While these two studies interestingly highlight differesdn applicability of visualization techniques
on different type of data and tasks, a potential weaknebaigshe evaluation is based on the personal
opinion of a small group of experts.

Understanding novel visualization methods requires digeer Consequently, it is hardly rea-
sonable to expect that all characteristics of an advandechiration visualization method would be
immediate for an unexperienced analyst. This also laydergés for fair evaluation of the visualiza-
tion systems and methods (Keim and Kriegel, 1996). For ed@ripa study on information retrieval
tasks (Sebrechts et al., 1999) a difference between “cangitlled” and “layman” was apparent
when using a 3D visualization system. Even, in traditiorsthdyraphics, learning has been shown
to improve reading and understanding of the graphics (Lal®@7). Undoubtedly, many aspects of
visualizations are conventions that have to be learnedgVZ800).

2.2.2 Visual data mining
What is visual data mining?

This thesis does not contribute to the research of the psyshual basis of visualization, but it
focuses on the “craft” or "engineering” side of visualizatiand uses methods which

— are intended for multidimensional (abstract) data vigatibns,

— are implemented in toolboxes using a computational enwilent that supports interactive use
and graphics, and

— combine the data mining approach and visualizations.

This kind of combination is studied in particular Wiisual data mining(VDM) (Keim, 2002;
de Oliviera and Levkowitz, 2003; Wong, 1999). In generakah be said that VDM lies in the
junction of data mining and visualization. In addition tarmpdata mining byisual data exploration
VDM can also aim at visualizing the results and operationarfiputational data mining methods.
This should make the process of data mining more transpéoehe analyst. A tightly coupled
VDM system supports using visual abstractions for gainimgight into the data and operation of
algorithms, instead of just conveying results of automatecisions (Wong, 1999; de Oliviera and
Levkowitz, 2003). Furthermore, a VDM system can guide ther tisrough a data mining process
and be coupled with decision making, e.g., for substituéinglytical decisions by human expertise
when needed.

As data mining, VDM and related fields collect a large variefymethods; de Oliviera and
Levkowitz (2003) survey the plethora of techniques, meshadftware, and terminology. They also
compare some attempts to categorize and formalize VDM afwinration visualization methods
(Card et al., 1999a; Keim, 2002; Chi, 2000). Keim (2002) ubese main aspects for classifying
VDM methods:

1. Thenature of the data or object(s) to be visualiaghere Keim (2002) differentiates 1D (time
series) data; 2D—3D data, multidimensional data, dataistimg of text or document collec-
tions, data that is mainly about hierarchies or graphs, &atithms/software.

2. Characteristics of the basgsualization technique For example, there are “standard tech-
niques” such as scatterplots, bar or pie charts, and “@timef axis techniques, e.g., the par-
allel coordinates method (Sec. 2.2.3). Furthermore, K@id02) distinguishes between using
hierarchical division of space, graphs, glyphs (Sec. 2,28d dense pixel methods. Dense
pixel methods aim at a very high data density on the visuitingKeim and Kriegel, 1996;



2.2. VISUALIZATION 17

Keim et al., 2002). Obviously, the nature of the data has gaohon the proper selection of
the method (Card et al., 1999a).

3. Theinteraction and distortion techniquesed for interactively zooming, filtering, browsing,
querying, linking, brushing, or distorting the visualimats (Sec. 2.2.3).

2.2.3 Some basic building blocks of visualizations
Differentiating the computational method and visualization

The visualization techniques are processes that can bemmdwn into several stages where the
nature of the data and operations are different. Chi (200€3ks down visualization techniques
into several stages and operators, and proposes a taxorfonsyalization processes that is useful
also to software designers. We will not pursue this pariicpirocess model in detail but point
out a general remark: Casually, we say, e.g., that the SOMCér &e used for visualizing data.
Actually, the process consists of different phases. Fors,transforms the data into features using a
computational method (such as SOM or PCA). Second, sonileugts of the results angsualized

i.e., mapped into graphical attributesuch as position. The mapping can be done in several ways
and, consequently, the visual appearances can be quisglvari

Graphical attributes and dimensional anchors

Graphical attributes include, e.g., texture, color, sihgpe, orientation, and intensity (gray scale) of
a marker or an areaOther graphical attributes than position are sometimdsatadtinal attributes
(Bertin, 1983; Card et al., 1999a). Our average capabilicourate recognition (absolute judgment)
of different levels of magnitudes in visual attributes ig wery high. Furthermore, different contrast
and illusory effects emerge in case of many visualizatiordsraay change the correspondence be-
tween the original and perceived value (Tufte, 1983; Wad802.

However, we can detect astonishingly small relative dififeres among graphical attributes. Con-
sequently, the idea of visualization is that graphical reeslare not independent, but are in correspon-
dence with each other (Bertin, 1983). Visualizations tgplicuse some frame of reference for the
graphical markers. One way to describe such references othcept oflimensional anchoréHoff-
man et al., 1999). A typical example is a scatterplot wheeddhation of the markers is “anchored”
to the scales along two perpendicular axes that may alsadech grid which helps determining
the values. The framework of dimensional anchor extendghergresentations, e.g., parallel
coordinatesa method that is meant especially for displaying multidisienal data (Inselberg and
Dimsdale, 1990). See Fig. 2.3 in Sec. 2.2.5.

In general, specially manipulated axes (e.g., stacked enatghical axes) and other types of
dimensional anchors give rise to sophisticated visuatinahethods reviewed in (Card et al., 1999b;
Fayyad et al., 2002; Keim, 2002; Nielson et al., 1997; dei®a/and Levkowitz, 2003).

Movement and stereoscopic vision bring in further optioBsth in scientific and information
visualization one can use immersive, virtual and animatetas using the realm of techniques in
computer graphics (Haase et al., 1997). However, in thisisheur scope is limited to visualizations
that remain in two dimensions and do not use animation.

4Somewhat the same graphical attributes are encountereohiputer graphic systems (Hearn and Baker, 1997), and
Cleveland and McGill (1987) note that the graphical attéisuneed not to be the most fundamental in perceptional ytheor
since their aim is to assist the graph maker to manipulagehgraonveniently.
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Examples of using graphical attributes

Different graphical attributes have different resolutemd other characteristics. For example, the
function between the physical and perceived value of anhicapattribute varies (Ware, 2000), and
different graphical attributes imply different types otaéZhang, 1996). Not surprisinglgpsition
(on a scale) and line length are the attributes that are offenred to be the best choice for quanti-
tative coding on a ratio scale (Card et al., 1999a; ClevetantiMcGill, 1987; Lohse, 1997; Zhang,
1996).

While gray levelandsizeare somewhat suitable for quantitative coding, they suffan con-
trast effects and are less accurate in general. They anme @t@mmended for coding a few ordinal
variables in value lookup and comparison (Card et al., 1998ae, 2000; Zhang, 1996). But misin-
terpretations can happen also when a “too effective” gaglattribute is used. For example, if one
codes a nominal variable using a position on a scale thisémprdering that is not present and may
lead into false impression on the data (Mackinlay, 1986 4h4996).

Color is usually recommended especially for nominal (categdriedeling of markers (Card
et al., 1999a; Zhang, 1996). According to Healey and Enn8q), %around seven carefully selected
colors can be distinguished rapidly and accurately. Howeklie use of color in directly conveying
dimensional information, e.g., in cluster visualizatismot completely ruled out (Ware and Beatty,
1988).

Clearly identifiableshapesre also often used for class labeling, e.g., in scatteyp&se Fig. 2.1
(Sec. 2.2.5). On the other hand, one can also parametrfeeatif attributes of a shape, say width and
length. This technique is used gtyph (or icon) visualizations, e.g., (Chernoff, 1973; van Watsu
et al., 1996). See Fig. 2.2 (Sec. 2.2.5). A glyph can be a csitgpof many different adjustable
shapes, lines, and colors: Chernoff (1973) presents a famlgph visualization that uses stylized
human faces to represent multidimensional data.

Shading of an area using different gray levels or color cislefien used to show a function on
2D plane, e.g., in U-matrices or component planes (Sed 3).2A carefully designed color scale can
reduce the contrast effects and be better for value looksistan a 2D surface plot (Ware, 1988).
On the other hand, a color scale may cause artificial conigiuiisg raise to false interpretations
about general patterns (Ware, 1988, 2000). Now, a choiceebéence comes in: is the aim to assist
seeing general patterns or value lookup?

Accurate value lookup—emergent patterns

In general, visual attributes cannot be treated as beirgpimddent channels. Some of the attributes
form integral pairs, e.g., the hue and saturation of colongight and width of a shape (Healey et al.,
1996; Ware, 2000). Components in an integral pair are ngtyeod for separate value lookup tasks:
they form a new, emergent visual pattern. In general, coxquenbinations of visual attributes cause
phenomena that often require detailed study and modeliegléy et al., 1996; Healey and Enns,
1999; Ware, 1988, 2000). This sets challenges in constigichmposite visualizations, e.g., glyph
visualizations.

In Publication 5, the slope of the signals is not really otmest, instead the time span of the
somewhat discrete events is, so using multiple line graggbktrbe confusing in this case. Gantt
chartis a popular bar chart for showing the interrelationshipgrimjects, schedules, and other time
related systems that progress over time. It is quite nataratlopt this way of presenting the data
in Fig. 4.2 (Sec. 4.3.3) instead of a line graph. However, sratterplot or line graph, detailed
recognition of the level of some signal can be seen better.ekample, compare the same signal
presented as a line graph in Fig. 4.1(a) and a gray level codei Fig. 4.1(b) (Sec. 4.3.3).
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Techniques for exploration and interaction

An important part of VDM, visual data exploration, consisfsan overview for visually finding
interesting subsetzooming and filterindor focusing to interesting subsets, and thagtails-on
demandy a drill-down feature or using another visualization tgEgue (Keim, 2002).

A problem that can be solved using interaction isfihe@is-context problerfCard et al., 1999a).
For example, if the user zooms into details he may lose théegbof the data and in a panoramic
view, the details become unreadable. A separate focusedinieed to a general view is one solution
(Card et al., 1999a). View distortion techniques, like tisadiye views (Leung and Apperley, 1994),
can also help in the focus-context problem. Ritter (1999)¥eng et al. (2003) apply different view
distortions to SOM visualization.

Brushing(Becker and Cleveland, 1987) aliaking of plots (Buja et al., 1991) are two common
techniques in visualization. Brushing means selectingman a view of the data, e.g., a scatterplot,
and transferring the selection into other views of the saata.drhis links the presentations together
by using a retinal attribute of the markers. For example uer can change the color of the inter-
esting data points by brushing them. In Publication 1, alingstool is presented for interactively
brushing and linking a line graph representation of a timeeseand a SOM. In Publications 1-3, a
color coding is used to link views. Furthermore, views catlifdeed using explicit connections (like
in Fig. 4.1(b)) or movement of the markers (Buja et al., 1991)

2.2.4 Focus on software

VDM is an interactive and iterative process and requiresna® that should be reconfigurable,
general, and widely usable (Wong, 1999). The observatibi®yle (1999) on the importance and
time consumption of data preprocessing in KDD process aglpltyto visual exploration of data. In
an expert user study, reformatting and transforming date wealuated to be at least as important
functions as the tasks of exploring and presenting the ¢tibano, 1999).

Consequently, enabling visual data mining require a lofffofrein integrated software systems.
Polaris (Stolte et al., 2002) and GGobi (Swayne et al., 2@08)recent examples of visualization
systems for data exploration in general. They support uarimultivariate interactive visualiza-
tion techniques, provide programming interfaces, speeidiformal visualization languages, and are
compatible with different databases and data types.

MATLAB and S-PLUS are general-purpose statistical andréei computation environments
that also provide a collection of different, interactivewalization primitives (Grinstein and Ward,
2002)° Consequently, th&OM ToolboxVesanto et al., 1999, 2000), briefly described in Publica-
tion 1, andicassoin Publication 4 were created using MATLAB since it is usedt@aommonly in
scientific and technical computing. It supports fast prgietcreation through an interpreted script
language and “toolboxes” for various technical fields suchignal or image processing. Therefore,
it is quite beneficial in technical, multisensor data analpsoblems. Most visualization examples in
this thesis were created using tB®M Toolboxthat implements various data preprocessing, cluster-
ing, and projection methods in addition to the SOM and itsi@iization.

SMATLAB is a registered trademark of The MathWorks, Inc.; BLFS is a registered trademark of Insightful Corporation.
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2.2.5 Examples
Iris data

The following examples demonstrate some visualizatiorhodg on the famous Iris flower ddta.
The Iris data set is often used in such illustrations of Migation and machine learning. The data
contains sepal and petal lengths and widths measured fr@rikSflowers that belong to three
specific types callettis setosavirginica andversicolor Fifty plants stem from each class. The data
set is also used throughout the examples in Chapter 3. Eaidbutd has been linearly normalized
(Sec. 3.2.2) between 0 and 1.

Scatterplots

Figure 2.1 shows two scatterplots of two attribute pairshefiris data. The class of a data item is
shown using shape and color. One can see that the secondtjmojgives somewhat better separa-
tion between classes. A small amount of random noise is aidtizeéach point since many of them
overlap. This technique is callgittering (Hoffman and Grinstein, 2002). Many techniques to en-
hance data analysis using scatterplots, line graphs aedadia graphics are described in (Cleveland
and McGill, 1984, 1987; Cleveland, 1994).

Scatterplot of Iris data Scatterplot of Iris data
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Figure 2.1: Two scatterplots of Iris data.

Glyphs and parallel coordinates

Figure 2.2 presents the Iris data as simple glyphs. It is asy ¢o read any exact values from the
glyphs in this view, but they form emergent patterns of shaplee same shape coding is used in
Figs. 3.1 and 3.6 in Chapter 3. In Fig. 2.2, the glyphs arerorga in reading order—from left to
right and top to bottom—according to the rank order of thd firscipal component (Sec. 3.2.4) of
the data.

The glyphs have the same class color labels as in Fig. 2.1.t psple can easily separate
the red, green, and blue colors that are the orthogonal fpreésiof the RGB color space and also
fundamental in human vision (Ware, 2000). However, if caeparation was really critical, this

8documented and available, e.g., in (Blake and Merz, 199&Yevhttributed to Fisher (1936).
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selection would be unfortunate since in the most commondarfticolor blindness” differentiating
red and green is especially degraded.
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Figure 2.2: Glyph visualization of Iris data items. Each Binax contains one glyph. The distances
from the center point of the box to the vertices of the glyptieattributes 1) sepal-length, 2) sepal-

width, 3) petal-length, and 4) petal-width counterclockastarting from the upper left corner. (Red:
setosaGreenvirginica, Blue: versicoloi).

Another way of visualizing multidimensional data, the gietaoordinate plotis shownin Fig. 2.3.
Two clusters are evident also in this plot. In the parallerdinate plot, one can read the attribute
values of a particular item quite accurately, if it is notdaed by other items. Visual overlapping
may be a severe problem in this visualization.
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Figure 2.3: Parallel coordinate plot of Iris data.

Graphs, containment, linking

Next, we consider linking two scatterplots by a color codsualizing a graph using explicit connec-
tions, and using enclosures to express containment (cd)istehe basis of Fig. 2.4 is the same set of
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scatterplots as in Fig. 2.1.

First, the same kind of graph visualization that is used ihlieation 4 is demonstrated. A Eu-
clidean distance between the data items using all foubates has been computed and the graph
line is the darker the shorter the distance is. To be moreatdagdthe graph uses three shades of gray
corresponding to three threshold values among distancesveithe third threshold the lines are
not drawn. (The exact thresholds are not of interest hereaying all graph lines explicitly is not
feasible for large graphs. Abello and Korn (2002) and vamé.and de Leeuw (2003) present more
advanced graph visualization techniques. At least, thigcesrof the graph can be organized accord-
ing to the graph topology. Consequently, in Publication graximity preserving projection in used
(Gordon, 1987; van Liere and de Leeuw, 2003). Another wayisafalizing distance information is
presented in Fig. 3.4 (Sec. 3.2.10) where a clustering ndethapplied to the data.

The purple convex hulls in Fig. 2.4 are drawn around threstehs (group of data items) that
have been selected according to the clustering presenteid.ir3.4. Evidently, in areas where the
convex hulls overlap, it is not clear to which cluster thergebelong to.

The color coding of the points is the same as that of the glypkg&y. 3.1. The coloring has been
given according to projection to the SOM in Fig. 3.5 (Sec.B2 using the technique described in
Publication 2.

Scatterplot, proximity graph and clusters Scatterplot, proximity graph and clusters
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Figure 2.4: Scatterplots with color linking, proximity gdaand cluster visualizations.



Chapter 3

Methods for visual data mining

3.1 Data mining in this thesis

3.1.1 Methods and motivation for their use

Exploratory and descriptive data mining techniques foadegscription that are relevant here can be
divided roughly into three groups:

— proximity preserving projectiorfer (visual) investigation of the structure of the data (S2.2—
3.2.4and 3.2.13)

— partitioning the data bglustering and segmentati¢Bec. 3.2.8-3.2.12)

— linear projectionsfor finding interesting linear combinations of the originalriables using
principal component analysis (PCA; Sec. 3.2.4) and indépencomponent analysis (ICA;
Sec. 3.3.1-3.3.2).

Generally speaking, the motivation for using the technégmemost applications of this thesis
is to find patterns that reflect differesitates or sources in the procetssmt generated the data. The
states are assumed to be reflected in clusters, segmentgargrojections.

What is in common for many algorithms presented in this #ieshe FastICA (Sec. 3.3.2),
batch K-means (Sec. 3.2.9), local and global iterativeasghent (LIR and GIR; Sec. 3.2.11), and
the batch SOM (Sec. 3.2.12)—is that they figed point iteratiorof form A := G(A). Especially, in
the case of the batch K-means, LIR and GIR, understandingtiation of the fixed point algorithm
is very intuitive.

Many theoretical aspects, such as convergence proofse @lgorithms are left aside. The aim
of this chapter is to describe the practical charactessticd operation of the algorithms when this is
not done in the supplemental publications.

3.1.2 From data to features

We largely set aside two important preliminaries of a KDDjpeot: the data collection and storage—
not to mention the organization, management and effectheeaf large data bases. We assume
that the data is given, suitable for any computation, in & daatrix X consisting ofN vectors
x(1),x(2),...,x(N) that areM-dimensional.

Depending on the context, the elements of the vectors detle@riables featurescomponents
or attributes In this thesis, the attributes are usually real valued.olmes cases they are restricted

23
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to be between 0 and 1, as in Publications 5 and 7 where sontmutdt are actually binary (values
are 0 or 1). Publication 6 is an exception: there the data la@antodel is purely binary. However,
it is always assumed that the data can be handled with metbpdentinuous data. Consequently,
discrete data types, algorithms and similarity measuretaagely beyond the scope of this thesis.
In data mining and pattern recognition, “the data” refetefo the original records, say, in a
measurement log file. For example, in Publications 5 anderplttysical signals from the sensors in
a mobile phone form the original, “raw” data. It is practitaltransform the original raw data into
new attributes that present the data in a way that is knowr teelevant in the domain. In pattern
recognition literature, this phase of data preprocessirmiledfeature extraction In Publications
5 and 7, the common line is to extract understandable fegturkich aims at making it easier to
integrate user-defined, rule-based parts to the same syS&n4.3.2). In general, it is customary
to select attributes (features) that are the most adeqeat®rsthe task at hand; Langley (1994)
gives a short review. Since the phase of feature extractimetly domain dependent, it is a major
path where the prior, expert knowledge enters the data mimiacess. Developing suitable feature
extraction methods is often a matter of trial and error. @gunently, working toward computer-aided
attribute selection and feature extraction in data mingngni interesting challenge; Laine (2003) and
Sinkkonen (2003) present two very different approachededlto the feature extraction, weighting,
and selection problem, cf. Sec. 3.2.15.

3.1.3 Noise and outliers

The data mightinclude noise or outliers that must be takemafa In Publication 4, low-pass filtering
and dimension reduction using PCA are used to deal with ramideestimation problems. In general,
ensuring the data quality and preparing data for the arsalgguire lots of effort during a data mining
project (Pyle, 1999). Outliers—erroneous or drasticaiffedent data items— and missing attribute
values arise sometimes difficult problems.

Many of the methods considered in this thesis are somewnsitse to outliers due to the
qguadratic error functions they involve. However, we infeatt disturbing outliers are gradually
pointed out in the course of the exploratory work. Missintyea are not a relevant problem with the
data sets in this work either.

3.2 Finding patterns by proximity

3.2.1 Visual and automated investigation of data structure

We often wish to make a taxonomy of things based on propesfiebjects. How could (visual)
data mining help in this task? Two dimensional data can bgu@n a scatterplot. In this kind of
figure, visual proximity may link together objects into mareless easily identified groups. From
this background, a rather general descriptioma afusterseems natural: A cluster is a set of objects
which are alike; objects from different clusters are ndta(iJain and Dubes, 1988). In clustering one
aims at automatically dividing items into groups by theirtoal proximities or other properties. In
visual data mining the data is transformed so that it asgistal detection of clusters (among other
patterns in data).

When data dimension grows, one needs more advanced teelriigan a single scatterplot.
For multidimensional data there are specific techniquesh s the parallel coordinate or glyph
techniques. In general, one can use other graphical attglihan position; proximity is just one
of the Gestalt grouping principleshat describe qualitatively our tendency to perceive pastén
figures (Koffka, 1935). In addition to proximity these indkiconnectedness; continuity; similarity
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upon graphical attributes: color, luminance, and shapansgtry; closures and common fat&@hus,

the similarities can be visualized by various means: Eroginiesults suggest that direct coding of
three data dimensions onto RGBlor coordinates (color of the marker) added to an ordinary 2D
scatterplot (position of marker) can be used to detect@tash 5D data up to some extent (Ware
and Beatty, 1988). In typical visualizations of the SOM eatibn of clusters is prominently based
on visual inspection ashapeand color (or gray scale) coded patterns and contours: Wbmather
similar techniques, and color coding of SOM visualizatiom presented in Sec. 3.2.13. Also, the so
called pixel oriented methods (Keim and Kriegel, 1996; Keinal., 2002) rely on shape and color
coding to reveal patterns in datdlotion that induces common fate can be used to highlight data
structure as well, e.g., the “Grand Tour” method (Asimov@3Pdescribes such an approach (Buja
etal., 1991).

If data dimension grows high one usually runs out of direap@iical means to present the data—
mapping each data attribute onto a separate attribute ofishalization is simply not feasible nor
informative. In this thesis, we concentrate on a convelfiocomputational approach where one
tries to reduce the number of attributes and still maintaamibformation of the original data using
proximity preserving projections, PCA, or ICA.

In a proximity preserving projection the focus often chamffem presenting the data attribute
values to presenting patterns in data. This is because thespondence between the axes and the
data is not straight-forward anymore. In a favorable cdmseakes can be interpreted as latent factors
related to the phenomena that have produced the data. Wleetiteysical axis has a meaningful
interpretation, depends on the data and the method—as wéiieaobservers familiarity with the
method. Butin general, the aim of these methods is to bringatierns, clusters and other interesting
structure, from the data.

3.2.2 Proximity and proximity preserving projections
Similarity and dissimilarity

From now on, we usproximity as a general notion for measuressohilarity §; anddissimilarity
dij between data itemisand j (Borg and Groenen, 1997). Discussion of different (disjisirity in-
dices and asymmetric proximities (divergences) that apipgaattern recognition, multidimensional
scaling and clustering, can be found, e.g., in (Bassevit89; Borg and Groenen, 1997; Everitt,
1993; Gower, 1982; Grabmeier and Rudolph, 2002; Jain an@ful988). To mention some typical
properties (which slightly vary in the literature), we ré¢hat

— all proper (dis)similarities are symmetric,

— it is often required that self-dissimilaritiely = O for all objects, all dissimilarities are non-
negative (Jain and Dubes, 1988), and self-similarity is ff@ximum similaritysj = Snax
(Grabmeier and Rudolph, 2002),

— while dissimilarity indices often have no upper bound, awonly used similarity indices are
typically bounded ir0, 1] or [—1,1] (Gower, 1982), and

— metric distances are dissimilarities that further obeytttangular equatiod;j + djk > dix and
for whichd(x,y) =0 only if x =Y. Itis often possible to construct a simple transformatiai t
changes a non-metric dissimilarity matrix into a distan@drin if necessary (Gower, 1982).

Usually, in data analysis, the proximities between datastbave to be computed from the attributes
of the items. This opens a fundamentally difficult problemcsi there is often no explicit model

IMotion that visually groups the objects.
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in exploratory data analysis, and inevitably, the selectba proximity measure implicitly intro-
duces profound assumptions of the structure of the datects®j a proximity index that makes the
exploration successful in clustering or other tasks oftdls dor a heuristic decision.

Euclidean distance and normalization of attributes

If the data consists of vectors (&), an engineering decision is the everyday notion of prokimi
the Euclidean distance. While it is invariant in rotatiomdranslation of the data, it is not invariant
for other linear operations, like scaling of the originatisales. Consequently, the normalization
of the variables becomes of interest. Yet again, doing thisrably for successful exploration is a
guestion that may well call for a heuristic decision.

Normalization to unit variance is a common procedure whighiddn and Cooper (1988) com-
pare to different range normalizations in clustering aiafibenchmark data. In this case, the range
normalizations performed better. A typical range nornaian is to set the minimum value to zero
and maximum to one and scale the rest linearly in betweers Adimalization is used for the data
visualization examples in Chapters 2—3. However, it carpbaghat a specific heuristic hides more
rather than brings out patterns, e.g., clusters.

The Euclidean distance is quite ubiquitous in data analgsils in this thesis. In Publications
1-3, itis used in th&OM Toolboxn conjunction with the SOM algorithm. It appears impligitlso
in the cost function of the time series segmentation in Bakittn 7 and very obviously in Publication
8.

Correlation coefficient

In some problems, there exists an intrinsic similarity nueasand the attribute scaling problem
can be partly avoided. Comparing independent componentagsts in Publication 4 provides an
example. There, a natural similarity measure is based om#mgmnitude of thdinear correlation
coefficient 5j between two attributeisand j:

Xof Xo

r(Xoi, Xoj) = 7o—ro
(Xoi: Xo1) = e 1MKor

(3.1)
where the vectorXo; andXo; are attributesandj, i.e., rows of a centered data matky. Centering
means subtracting the average of the data(1/N) 5; x(i) from every data vector iX.

Transformations between similarities and dissimilarities

Sometimes, it is necessary to transform similarities ingsichilarities or vice versa. The correlation
coefficientr is limited between-1 and 1, and it can be transformed into a dissimilarity coresgty
bydij = 1—sj (Gower, 1982). This transformation is used in Publicatidor&xpressing proximities
between objects for a clustering tool whose implementagguires a dissimilarity matrix.

In some cases, one has to transform a similarity matrix irtistance matridD thatembedsnto
a Euclidean space. This means that there is a correspondiimgopnfigurationX* for which di; =
[Ix*(i) =x*(j)||. A reason for doing the transformation is using a method éisatimes Euclidean
distances, see, e.g., Nikkila et al. (2002).

In general, ifSis a positive semidefinite similarity matrix whesg € [—1, 1], such as the corre-

lation matrix, then

dij = \/2——ZSJ (3.2)
results in a distance matrix that embeds into a Euclideanesf@ower, 1982). In Publication 4,
transformatiord;; = /2 — 2Jrj;| was used since it resulted in a satisfactory visualizationfact,
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the resulting dissimilarity matrix does not quite embea iah Euclidean space since the similarity
matrix with elementsr;;| is not positive semidefinite in general. It turns out that

dij = 1/2—2I’%

would give an exact Euclidean embedding since the Hadamadiipt of two positive semidefinite
matrices is positive semidefinite (Horn and Johnson, 1891).

If one needs to transform a dissimilarity into a similaritdex, one possibility is an inverse
exponential function, e.g., a Gaussian keimel, o) (Grabmeier and Rudolph, 2002) that is used in
Publication 3:

h(d,0) = Kexp<— ¢ ) (3.3)

202

whereo is the kernel width and a normalization factor.

3.2.3 From distances to a data matrix: principal coordinates

Occasionally, the proximity matrix is given and the cormsging input vectors< are required.
For example, we could know only the mutual road distancewds towns and we would like
to reconstruct their relative locations (relative cooedés). Given a Euclidean distance matbix
a corresponding (but possibly rotated) datasét(the coordinates) can be constructed using the
method ofprincipal coordinatesGower, 1966; Hand et al., 2003).

When we seB = X*TX*, the squared Euclidean distances can be expressﬁpasbii +bjj -
2bij. Solving matrixB with elementdy; is presented in detail, e.g., in (Borg and Groenen, 1997). A
solution is

Bo_t(1_Lqm D> STy , Wheredy; =d2, 1"=[1 1...1. (3.4
2 N N J el
N

Now, the coordinateX* are given by eigenvalue decomposit®r= EAET so thatX* = AZE.
The principal coordinates method minimizes

lz; (dﬁ- —d; 2) (3.5)

for the mutual Euclidean distance matrix of the data (Me&$2). In this thesis, the method of
principal coordinates appears in Publication 4.

If the dissimilarities in the principal coordinates methar@ not Euclidean, the eigendecompo-
sition contains negative eigenvalues and complex eigeorsec The reconstruction of data using
principal coordinates corresponding to the positive ergltres may still be satisfactory. This is the
case if the discrepancy results from a relatively smallypbgtion in original, Euclidean distances
and leaves the observed dissimilarities to a nearly linglation to the original ones (Sibson, 1979).

2Whether this would have been better for the particular Vizagon has not been empirically evaluated. It is probalie
the effects caused by the reduction of dimensionality archtin-linear projection dominate effects caused by theexaat
embedding, anyway.

3also called classical scaling (Mead, 1992; Sibson, 197B)ear metric multidimensional scaling attributed to Tergpn
(1952/1958), e.g., in (Gower, 1966; Mead, 1992).



28 CHAPTER 3. METHODS FOR VISUAL DATA MINING

3.2.4 Principal coordinates and principal components

Principal coordinates are closely relategtincipal component analysi®CAY*. PCA is a classical
statistical method for obtaining an orthogonal transfdrameE for dimension reduction which max-
imizes the remaining data variance. The principal comptafen a data seX can be computed as
follows:

1. Center the data (Sec. 3.2.2).

2. Compute the eigenvalue decompositn= EAET of the sample covariance matr® =
(1/N)XoXo'.

3. Arrange the columns d, i.e., the eigenvectors, and the diagonal elements 4f, i.e, the
eigenvaluedj, so thaty > Az > ... Aq.

4. The eigenvectagj gives now thejth principal axis and the component scoXe®n jth princi-
pal axis, i.e., thgth principal component* = ejTXo.

The computational load of a standard implementation of PG#ing eigenvalue decomposition)
scales well with sample size but not with the number of dinrs(Hand et al., 2001).

In general Am/3;Ai gives the relative amount of variance that each principatgonent (or
principal coordinate) captures. For exampie, = [e; & X is an orthogonal projection that
contains as much of the original variance as possible in 2D.

If one computes a Euclidean distance matrix for a data sgntipdeprincipal coordinates are
effectively the same as the principal components of the satgGower, 1966). Thus, PCA can
also be understood as a proximity preserving projectiomesesit also minimizes Eq. 3.5 in the case
of Euclidean distances. Consequently, in addition to datapression or noise reduction, PCA is
traditionally used also for exploratory visualizationsh@al (1971).

In Publication 5, PCA is used to show the clustering of théestpace into few dominant
states, contexts, within the data. The new attributes,cijrah components, can be regarded as
low-dimensional, more efficient representations of theesalata. In Publication 5, an additional
visualization ofE is shown in order to see the relation between the originahlbes and princi-
pal components. This can help in interpreting the meaningash component. Another way to do
this is called aiplot (Gabriel, 1971) which can be used to show the projection efafiginal data
coordinate system on principal components.

3.2.5 Whitening using PCA

Principal components can be further normalized to unitararé by
Z = A2ET X, (3.6)

and now, any rotated version &fis still uncorrelated. This is a way @fhitening(sphering) the data.
Whitening is an essential step in the FastICA algorithm in. Se3.2.

For Euclidean distances, whitening gives invariance iatroh but in most cases it is not a par-
ticularly brilliant way of normalizing data. For example, élustering it may very well decrease the
signal to noise ratio in the data. In many applications, thgaliassumption is that the principal
components corresponding to small eigenvalues (variaraepe considered as noise.

4often attributed to Hotelling (1933) (Hyvarinen et al. 020 Borg and Groenen, 1997)
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3.2.6 Non-linear proximity and topology preserving projedions

The restriction with methods of principal coordinates a@RRs that the projection is linear. They
also contain a built-in assumption that especially Eueiddistances between the data vectors would
be meaningful in finding structure in the data. But in genexaén for truly Euclidean distances, a
complex data structure might be better revealed and exgutdssa method that is designed to follow
non-linear structures in the data.

Traditional multidimensional scaling (MDS) methods (B@ngd Groenen, 1997; Mead, 1992)
aim at preserving distances, or more generally rank disigni the output faithfully—and they can
produce non-linear projections. Typically, MDS methodsimize a cost function (stress) between
the original and scaled distances using some iterativenigstion algorithm. Also, the cost func-
tions that define Sammon’s projection (Sammon, Jr., 196@}taa Curvilinear Component Analysis
(CCA) (Demartines and Hérault, 1997) used in this thesisbmapresented as

> Y (dij —di)*F (3.7)
I J#

whereF is a function of original or projected distances that chemazes the method.

The cost function in Eq. 3.7 witk = 1, defines MDS with “raw stress” (Mead, 1992) which
aims at global preservation of distances as in the case o€ip&l coordinates method. This is a
characteristic of many classic MDS methods (Venna and K&€1). FunctiorFcan be used to
weight different distances in the projection beneficially:

— In Sammon’s projection, Eq. 3.7 h&s= 1/d;j. Thus, the method gives more weight for
original short distances.

— In CCA,F is some bounded, monotonically decreasing function of tbiepted distanced;,
e.g., the Gaussian kernel in Eq. 3.3. The distances thahareia theprojectionhave more
weight in the stress of CCA. This should favor retaining theal topology of points in the
projection (like in a SOM) (Demartines and Hérault, 199&s&nto, 2002)—we infer that this
should help retaining the projection trustworthiness See. 3.2.7). A further characteristic
of CCA is that the width of can be decreased along the iteration steps. This makegget ta
of optimization more complicated than in the case of Sammprojection.

A method that is also used to reflect the structure of datadsSBM, and in fact, CCA has
borrowed many characteristics of it (Demartines and Hera997)—cf. Sec. 3.2.12. The SOM
differs considerably from the classical MDS methods. Althb, it aims at retaining the topolog-
ical relations of the input data, it does not explicitly aitnnainimizing a stress, like Eq. 3.7, on
distances. Consequently, the SOM is described @palogy preserving projectionFurthermore,
it also performs a clustering procedure called vector gmation (Sec. 3.2.9). Thus, the SOM is
also an example of eector quantization-projection meth¢demartines and Hérault, 1993; Vesanto,
1999). Vesanto (2002) discusses further the characteristiSOM, CCA, and Sammon’s mapping
and their differences.

Recently proposed proximity/topology preserving techeigincluddsomap(Tenenbaum et al.,
2000) andocally linear embeddingRoweis and Saul, 2000) that use #heearest neighbors of data
points to reflect the structure of the data manifold in corimmuthe projection. They are claimed to
overcome many parameter selection and optimization pnoblypical for many methods, e.g., for
Sammon'’s projection and CCA.
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Figure 3.1: Iris data using proximity preserving projenso The data items are shown using the
same glyph encoding that in Fig. 2.2 the color of the glyphae®s from the SOM color coding in
Fig. 3.5.

3.2.7 Trustworthiness of projections

The obvious graphical method for assessment of the rekdtiprbetween true proximities and the
projected Euclidean distances is a scatterplot betweese ttveo (Demartines and Hérault, 1997).
Another way is to provide additional visual cues like thegeed graph in Publication 4, to highlight
data items that are misplaced by a retinal variable or fitent out (Kaski et al., 2003a). One can
also link several projections: Kohonen et al. (1996) adtlis¢ a SOM can be visually inspected by
using, e.g., Sammon’s projection to get a figure of map ongefdlding effects. In Publication 2, a
color linking coding is used to show relations between a S@M rzonlinear projections.

In general, different MDS and related methods highlighfiedént aspects of data. Consequently,
comparing values of their different stress functions isatetys sound. Furthermore, stress functions
in MDS are not particularly designed to tell how the percdigtructure in visualization reflects
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the structure of data. Considering that proximitysually is a strong indication of similarity or
belonging to a group, it sounds reasonable that retainiedpital neighborhoods is more important
than retaining the global distances in a projecfioBased on this idea, Venna and Kaski (2001)
have proposed a quantitative measure of projectisstworthinesglt) for comparing the quality of
proximity preserving projection methods. This index is lgggpin Publication 4; other applications
can be found in (Nikkila et al., 2002; Kaski et al., 2003a).

The trustworthiness index is based on counting “alien itetinat are close to wrong (visual)
neighborhoods, and therefore degrade the quality of thegion strongly. Consequently, the trust-
worthiness index is designed to decrease when data iteras wring neighborhoods in the pro-
jection. In addition, the further away a data item jumps iatawrong neighborhood, the more it
decreases the quality of projection.

More specifically, let be some “host” data item, and ragk be the rank of the dissimilaritg;
among all dissimilarities fromto the other data itemg & 1,...,N, i# j). For data item, the
itemsj with rank distances,P, ...,k are itsk nearest neighbor&-neighborhooll and we mark this
set withRynn(i). The data items are projected into, say, 2D space with coordinatgs). Now,
let Rgy (i) be thek-neighborhood of data iternin the projection i.e., the items withk shortest
distances amondj = [|x*(i) —x*(j)|l, j=1,...,N. Ideally, neighborhoodBnn(i) andRgyy(i)
should remain the same for all data items and neighborhaed $i.e. i, k).

Now, letUy(i) be the set of data items which have enteredktmeighborhood of iten in the
projection but that are not ik-neighborhood in the original data, i¥(i) = {j|j € Riyn(i) A J ¢
Runn(i) }. The degree of dissimilarity between the alien data itemi@mtew surroundings is brought
in by using the rank distance between the alien data itemlamdeighborhood of the host item in
the original data space. The trustworthiness becomes then

T09=1-KF > (ank(i) K, k9= m (3.8)

wherek is to normalize the measure between zero and one for all valfie This formulation is
applicable for neighborhoodis< N/2 which should be well enough in practice.

The trustworthiness has a counterpart measuringbservation of the original neighborhoods
where the number of points escaping their origikaeighborhood and their rank distance are the
basis of the measure.

The trustworthiness of a projection is not a single measutedflects quality of different neigh-
borhood sizes. In Publication 4, the non-linear projedimtain quite well the local neighborhoods
that fall into the relatively tight clusters but the actyailhteresting band in trustworthiness is at
neighborhood size that reflects the relations between thestclusters.

Figure 3.2 compares the visualization examples of Chapted e terms of retaining trustworthi-
ness. Obviously, this is not a comparison of the methods miyttbe particular figures. No serious
attempt in optimization of the methods is made but #@M Toolboxule-of-thumb heuristics are
used. As some of the projections produce ties in distanbestanking is not unique. Here, the
average between the results from most favorable and watstiog among the ties is presented.

Figures that are produced using the SOM and CCA retain bittelocal neighborhoods than
those made using linear projections, i.e., the principardmate plots or the scatterplots of the
original attributes. However, on larger neighborhoods Bid(a) (based on PCA) has a better trust-
worthiness index than Figs. 3.6(a) and 3.6(b) based on tiM. §@ can also see that the contraction
projection of the SOM in Fig. 3.6(b) is comparable with theui¢ of the initial, uniform SOM visu-

5in its ordinary meaning of being at a close distance
6As a minor note, the larger the distances are the more inaiectineir comparison would be anyway (Cleveland and
McGill, 1987).
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alization in Fig. 3.6(a) on small neighborhoods but the fernetains trustworthiness better on larger
neighborhoods. Figure 3.1(c), produced using CCA, seelins the best in terms of trustworthiness
index at any neighborhood size.

Trustworthiness of visualization examples on Iris data
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Figure 3.2: Visualizations of Iris data in this thesis ewdfd using the trustworthiness index for
neighborhoodk=1,...,25. CCA: Fig. 3.1(c), Sammon: Fig. 3.1(b), PCA: Fig 3.1(&M Fig. 3.5
(Hits) and Fig. 3.6(a), SOM+contraction: Fig. 3.6(b), $eatlot 1: Fig. 2.1(b), and Scatterplot 2:
Fig. 2.1(a).

3.2.8 Whatis clustering?

So far, we have gone through some methods that can be usesitdlyidetect groups in data. Now,
we move on to basic clustering methods thatiomaticallydivide data items in groups by their mutual
proximities. Clustering is indeed a very open problem sgitand there is a considerable amount of
specific clustering tasks and clustering methods. Expositand taxonomies of these can be found,
e.g., in (Cormack, 1971; Duda et al., 2001; Everitt, 1993lBneier and Rudolph, 2002; Halkidi
et al., 2001; Jain and Dubes, 1988; Jain et al., 1999).

We confine ourselves to dealing mainly with the very basid clusteringwhere the item either
belongs to a cluster or not. Furthermore, the clusters ameowerlapping: a clustering is a partition
of the set of all data item& = {1,2,...N} into K disjoint clustersC = (JK ;C..” Some clustering
methods construct a model of the input data space that inthegreould allow classifying a new
sample into some of the determined clusters. K-means argfdive(Secs. 3.2.9 and 3.2.12) partition

"Hard clustering allowing overlapping is calletlmping(Cormack, 1971), and isoft clusteringthe data items can belong
simultaneously to several clusters with fuzzy or probatidimemberships, e.g., by generative models (Hand et(fl1)2
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the input data space in this manner. Some other methodsyymmlide a partition of the items in
the sample: the agglomerative hierarchical methods pesdexample of this case (Sec. 3.2.10).

In addition to the basic cluster analysis tasks, we encotnwteexamples of clustering methods
in this thesis that includauxiliary constraints®

— the time series segmentation (Sec. 3.2.11) where thetdata have some natural order, e.g.,
time, which must be taken into account; a segment alwaysstsmg a sequence of subsequent
samples of the time series, and

— the SOM where the cluster models have prior, fixed topodcagfations. This structure is
used to capture some of the topographic relations in thefdathe purpose of visualization.

3.2.9 Partitional methods

A partitional clustering method picks a partition (clustering) which imiizes some cost function.
To exemplify, some classical cost functions are given below

Suggested by the intuitive aim of the basic clustering tadkguate global clustering criteria can
be obtained by minimizing/maximizing a functionwithin-cluster dispersiofscatterDyy, between-
cluster dispersioDg, and their sum, theotal dispersiorDt that is constant and independent of the
clustering. For data in a Euclidean space (Duda et al., 2001)

K
Dw = Dw(i), Dw(i)= ) —c)(x(j)—c)T (3.9)
i; w (i) (i j;(x(l (x(i)
K
Dz = 3 [Gle-c)G—o) (3.10)
N
Dr = DW+DB:_Z(X(j)_c)(x(j)_c)T (3.11)

whereK is the number of clusters; is the average of the data in clus@&yandc is the average of all
data. These quantities can be formulated also for a genissardlarity matrix (Hand et al., 2001).

The dispersion matrices can be used as a basis for diffepshfunctions. Friedman and Rubin
(1967) have proposed two criteria invariant to (non-siaguinear transformations of data based on
the dispersion matrices: maximizing traDg*,lDB) and minimizing deDw). Minimizing the latter
gives the maximum likelihood solution for a model where alsters are assumed to have a Gaussian
distribution with the same covariance matrix (Grabmeiet Bndolph, 2002).

The aforementioned criteria may be difficult to optimize @awet al., 2001). Therefore, a scale
dependent criteria, minimization of trg@y), has become popular, presumably because it can be
(suboptimally) minimized with the fast and computatiopdiljht K-means algorithm that is shortly
described in more detail. A related, scale invariant deter maximizing tracéD7 Dy ). However,
this means effectively the same as first whitening the daddtan minimizing tracgDy )—with the
obvious problems emerging from whitening (Duda et al., 2001

8auxiliary wrt. to the data space.
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Vector quantization

Minimization of tracéDy) is the same as minimizing the sum of squared errors (SSE)cketa
data vectox(i) and the nearest cluster centraid

K
SSE=3 5 Ix(i)-ell® (3.12)
i=1x(])€C

Eq. 3.12 is encountered wector quantizationsee, e.g., (Gersho and Gray, 1992), a form of clus-
tering that is particularly intended for compressing dalia.vector quantization, the cluster cen-
troids appearing in Eq. 3.12 are calleddebook vectorsThe codebook vectors partition the input
space in nearest neighbor regidfis A regionV; is associated with the nearest cluster centroid by
Vi = {x:|Ix—=ci|| <|[x—q]l;VI} (nearest neighbor conditignClusterC; in Eq. 3.12 is now the set
of input data points that belong 6.

K-means

K-means (MacQueen, 1966) refers to a family of algorithnat tppear often in the context of
vector quantization. K-means algorithms are tremendqushular in clustering, and often used for
exploratory purposes as suggested already by MacQueef)(188 a clustering model the vector
guantizer has an obvious limitation: the nearest neighbgions are convex, which limits the shape
of clusters that can be separated.

We consider only théatchK-means algorithm; different sequential procedures apa@xed,
e.g., in (Bottou and Bengio, 1995; MacQueen, 196@he batch K-means algorithm proceeds by
applying alternatively in successive steps the centrotiragarest neighbor conditions that are nec-
essary for optimal vector quantization (Gersho and Gra92):9

1. Given a codebook of vectoecgi = 1,2,...,K associate the data vectors into codebook vectors
according to the nearest neighbor condition. Now, each lmoale vector has a set of data
vectorsCj associated to it.

2. Update the codebook vectors to the centroids of Gegecording to thecentroid condition
Thatis, for alli setc; := (1/|Ci|) ¥ jec; Xj- See Fig. 3.3.

3. Repeat from step 1 until the codebook vectpido not change any more.

When the iteration stops, a local minimum for the quantitiE &Sachieved (Gersho and Gray, 1992).
K-means typically converges very fast. For a discussionanvergence see (Bottou and Bengio,
1995). Furthermore, wheld < N, K-means is computationally far less expensive than theahie
chical agglomerative methods, presented in the next secioce computing(N distances between
codebook vectors and the data vectors suffices.

Well known problems with the K-means procedure are thatriveoges but to a local minimum
and is quite sensitive to initial conditions (Pefia et 899). A simple initialization is to start the
procedure usind randomly picked vectors from the sample as a codebook (Mee@ul966),
which is compared to other methods in (Pena et al., 1999Yysadid solution for trying to avoid bad
local minima is to repeat K-means a couple of times from dififiet initial conditions. More advanced
solutions include using some form of stochastic relaxaf®arsho and Gray, 1992) among other
modifications, e.g., (Cheung, 2003; Patané and Russo)2001

9K-means is known also as the Linde-Buzo-Gray (LBG) (Lindalgt1980) or the generalized Lloyd algorithm (Gersho
and Gray, 1992). MacQueen (1966) attributes the idea ohbd&tmeans to Forgy and Jennifer (1963), independently.
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Figure 3.3: One step of K-means. The crosses depict datdylaéle& dots the initial position of
codebook vectors, and the gray dots the position of thenr piforming one step of K-means
which in this simple case already reaches the optimum. Thd gmy lines are the borders of
nearest neighbor regions for the initial codebook vectarstae faint lines for the final codebook
vectors. In fact, this figure shows also how the “ergononyqadrsonalized keyboard” (Sec. 4.4.2),
described in Publication 8, adapts.

3.2.10 Agglomerative hierarchical methods

The family of partitional methods is often opposed to ttierarchical methods. Agglomerative
hierarchical methods do not aim at minimizing a global ci@dor partitioning, but join data items
in bigger clusters in a bottom-up manner. In the beginnifiggeanples are considered to form their
own cluster. After this, aN — 1 steps the pair of clusters having minimal pairwise didsirity o
are joined, which reduces the number of remaining clustermmle. The merging is repeated until all
data is in one cluster. This gives a set of nested partitiodsaatree presentation is quite a natural
way of representing the result. See Fig 3.4. In Publicatieandalternative MDS based visualization
(Gordon, 1987) is shown—see also Fig. 2.4.

Gordon (1987) reviews hierarchical clustering in genena different options for cluster merg-
ing, orlinkage criteria. Here we list the between-cluster dissimilag® of some of the most com-
mon agglomeration strategies that are also used in Publicat the single linkage (SL), complete
linkage (CL) and average linkage (AL) criteria:

01 = Og. = mindij, ieC,jeC (3.13)
& = dL=maxdj, i€CjeC (3.14)
1
B = da=———+ dij (3.15)
3 AL |Ck||CI||€%kJ; i

whereCy, C;, (k # 1) are any two distinct clusters. SL and CL are invariant for otone transfor-
mations of dissimilarity. SL is reported to be noise semsitiut capable of producing elongated or
chained clusters while CL and AL tend to produce more sphkclasters (Everitt, 1993).
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If similarities are used instead, the merging occurs for imaxn pairwise cluster similarity. In
Publication 4, Eq. 3.15 is applied after similarity-togiisilarity transformatiortij = 1 — s;. This
is the equivalent of merging for maximal pairwise similpsi. = 1/(|C||Ci|) Ticc, Y jeg Sij-

Distance matrix; average linkage dendrogram

Figure 3.4: Dendrogram produced by AL clustering on Eueliddistances between the vectors of
the Iris data set. The data items are at leaves and the heligdneviwo branches of the tree join show
the linkage distancda. where the clusters were merged. The simplest way of aclydviclusters

is to cut the dendrogram at a level wh&telusters are present. The distance matrix is shown as gray
shade representation. Below, the color code shows the kass of the item (Redsetosa Green:
virginica, Blue: versicolo). Note that the order of the leaves is not unique.

3.2.11 Time series segmentation
Problem

A K-segmentatiodividesX into K segment€; with K — 1 segment bordexsg, ..., ck_1 So that
C1 = [X(1).X(2)....,x(cp)],....Ck = [X(ek-1+ 1), X(Ck_1+2),..., X(oN)]-

This is the basic time series segmentation task where egohese is considered to emerge from a
different model; Gionis and Mannila (2003) address the [@miof having less segment models than
segments. Furthermore, we consider the case where theodatasegmented is readily available.
On-line segmentatioaf a streaming time series is considered in (Keogh et al.1200

As in the basic clustering task, we wish to minimize some adégjcost function by selection
of the segment border. We stay with costs which are sums ofithcil segment costs that are not
affected by changes in other segments. An example of suchctida is an SSE cost function like
that of Eq. 3.12 whereg; is the mean vector of data vectors in segm@nt There is, of course,
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a fundamental difference between time series segmentattbrSSE cost and vector quantization.
In vector quantization, the borders of the nearest neightemionsv; are defined by the codebook
vectors, whereas in segmentation, the mean vecte@n® determined by the segme@tdut cannot
directly be used to infer the segment borders.

Minimizing the cost in Eq. 3.12 for segmentation aims at dbsty each segment by its mean
value. It may also be seen as splitting the sequence so tagbiased) sample varianc® =
(1/N) 3K, |Ci|o? computed by pooling the sample variances of the segm@ntsgether is mini-
mal.

Algorithms

The basic segmentation problem can be solved optimallygudymamic programming (Bellman,
1961). The dynamic programming algorithm finds also optiinal .. ,K — 1-segmentations while
searching for an optima-segmentation. The computational complexity of dynamagpamming

is of orderO(KN?) if the cost of a segmentation can be calculated in linear tithenay be too
much when there are large amounts of data. Consequentbdygedgorithms with complexity close
to O(KN) have been proposed: Alhoniemi (2003) and Keogh et al. (2pfd)ide surveys of such
segmentations algorithms. Popular algorithms includ®th@ous hierarchical methods in top-down
or in bottom-up manner. Keogh et al. (2001) claim the bottgmsegment formation to be the
preferred solution, especially in on-line segmentation.

Another class are the merge-split algorithms of which tlealand global iterative replacement

algorithms (LIR and GIR) proposed in Publication 7 are ex@sp They resemble the batch K-
means in the sense that at each step they change the desaipttoe partition (segment borders vs.
codebook vectors) to match with a necessary condition @ loptimum. The LIR gets more easily
stuck in bad local minima, and the GIR was considerably batt¢éhis sense, yet still sensitive to
the initialization. The GIR and LIR algorithms can be seewasants of the “Pavlidis algorithm”
(Pavlidis, 1973) that changes the borders gradually to@dodal optimum.
K-means, the initialization matters, and it might be adwledo try an educated guess for initial posi-
tions. One possibility to create a more effective segmantalgorithm is to combine several greedy
methods. For example, the basic bottom-up and top-downadsttan be fine-tuned by merge-split
methods. Alhoniemi (2003) compares various combinatidrdifterent segmentation algorithms
on industrial data. In these experiments, the GIR appligti¢anitial segmentation obtained from
the bottom-up method was the best combination in finding gamdtions in reasonable time and
computational effort.

Applications

Time series and other similar segmentation problems aridédferent applications, e.g., in approxi-
mating functions by piecewise linear functions (Bellma®61; Cantoni, 1971; Pavlidis, 1973). This
might be done for the purpose of simplifying or analyzingtoam or boundary lines (Pavlidis, 1980).
Another aim, important in information retrieval, is to coraps or index voluminous signal data
(Shatkay and Zdonik, 1996; Wang and Wang, 2000). Other egaiiins in data analysis span from
phoneme segmentation (Prandoni et al., 1997; Xiong et@34}linto finding sequences in biological
(Bennett, 1996; Gionis and Mannila, 2003) or industrialqess data (Alhoniemi, 2003).
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3.2.12 Self-organizing map

In this thesis, the self-organizing map (SOM) is used as a dabing method that combines vec-

tor quantization and proximity preserving projection. Tiesic SOM is formed oK map units

organized on a regulérx | low-dimensional grid—usually 2D for visualization. SegF3.5.
Associated to each map uiithere is a

1. neighborhood kernel (i, o(t)) where the distance is measured from map uriito others
along the grid (output space), and

2. acodebook vectar; that quantize the data space (input space).

The magnitude of the neighborhood kernel decreases maipatiyrwith the distancel;j. A typical
choice is the Gaussian kernel (in Eq. 3.3).

Batch algorithm

One possibility to implement batch SOM algorithnis to add an extra step to the batch K-means
procedure (Kohonen et al., 2000). After step 2 of the K-mgmosedure in Sec. 3.2.9, a smoothing
pass along the grid is carried out:

_ ZialCilh(dy.o(t)e;
- YalClh(dio(t)

A relatively large neighborhood radius in the beginningegia global ordering for the map. The
kernel widtho(t) is then decreased monotonically along with iteration st@pgh increases the
flexibility of the map to provide lower quantization errortime end. If the radius is run to zero, the
batch SOM becomes identical to K-means. Details of in#&tlon, suggestions of learning parameter
and neighborhood kernel selection are omitted here, segKaponen, 2001).

The batch SOM is a computational short-cut version of thecb@scremental SOM that was
introduced by Kohonen (1982). Despite the intuitive claghd elegance of the basic SOM, its
mathematical analysis has turned out to be rather compdex,esg., (Flanagan, 2001). This comes
from the fact that there exists no cost function that thedo&€)M would minimize for a probability
distribution (Erwin et al., 1992).

Some authors regard generative mixture models obtaineldebgxpectation-minimization algo-
rithm as a probabilistic counterpart of the K-means algoni{Bottou and Bengio, 1995). In similar
fashion, self-organizing structures having a probaldiliftamework have been proposed (Bishop
et al., 1998). Lampinen and Kostiainen (2002) present aroadarobability density model for the
basic SOM.

In general, the number of map codebook vectors governs timpatational complexity of one
iteration step of the SOM. If the size of the SOM is scaleddiewith the number of data vectors, the
load scales t@®(MN?) (Kohonen et al., 2000). But on the other hand, the selecfi¢haan be made
following, e.g.,v/N as suggested in (Vesanto, 2000), and the load decreagésid’®). Vesanto
(2000) considers details of the computational load of thelémentation of thesOM Toolbox It
is suggested that tHeOM Toolboxapplies to small to medium data sets up to, say, 10 000—-100 000
records. A specific problem is that the memory consumptiohneisOM Toolboxgrows quadratically
along with the map sizK.

(3.16)

Applications

In practice, the SOM and its variants (Kangas et al., 1990 leeen successful in a considerable
number of application fields and individual applicationgéKi et al., 1998a; Oja et al., 2003). In the
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context of this thesis, interesting application areasectosVDM include

— visualization and Ul techniques especially in informatietrieval, and exploratory data analy-
sis in general (Ainsworth, 1998; Aristide, 1993; Honkelalet1996; Kaski, 1997; Kaski et al.,
1998b, 1999, 2000, 2003b; Kdnig and Michel, 2003; Kohorteal.e 2000; Laaksonen et al.,
2000; Nikkila et al., 2002; Pampalk et al., 2002a,b, 2008hiB and Giménez, 2003; Ultsch,
2003; Vesanto and Ahola, 1999; Vesanto, 1999; Vesanto aiithEle, 2002; Yang et al., 2003),

— context-aware computing (Schmidt et al., 1999a; Laerhe¥al., 2001)

— industrial applications for process monitoring and asiglfAlhoniemi et al., 1999; Laine,
2003; Simula et al., 1996).

Visualization capabilities, data and noise reduction kpotogically restricted vector quantiza-
tion, and practical robustness of the SOM are of benefit ta aéing (Kaski, 1997; Vesanto, 2002).
There are also methods for additional speed-ups in the SOMdpecially large datasets in data
mining (Lawrence et al., 1999) and in document retrievaliapfjons (Kohonen et al., 2000).

The SOM framework is not restricted to Euclidean space drueetors. For example, within
the scope of visualization, Ritter (1999) presents a vanathe SOM in a non-Euclidean space to
enhance modeling and visualizations of hierarchicallyrifisgted data. This method uses a fisheye
distortion in the visualization. Also self-organizing nsagnd similar structures for symbolic data
exist (Kohonen and Somervuo, 1998; Flanagan, 2003), arel thean applied also to context-aware
computation (Sec. 4.3) (Flanagan et al., 2002).

3.2.13 Some notes on SOM visualization
Compact, ordered, and trustworthy view to data

In visual data mining, the grid structure of the SOM givesatfpkm for visualization Ul tool that is
based on the topological order of the codebook vectors. Tidecgn then be used to present some
other visualization primitives, different labels, glyplather data graphics, and Ul tools, and others
in an orderly fashion. Kaski (1997), Vesanto (1999), andiv#s (2002) give good general overview
of several aspects and methods related to SOM visualization

Different visualizations of a SOM can be juxtaposed, see Bi§. Juxtaposing ordered views
helps in comparing entities (cf. technique of small muégp(Tufte, 1983)). This is a common
graphical technique used, e.g., in scatterplot matricasithErmore, compared to the proximity
preserving projections with space between the markersS@ld makes effective use of the visu-
alization area since it automatically scales with the dgrdi the data. Finally, Venna and Kaski
(2001), Nikkila et al. (2002), and Kaski et al. (2003a) haeenpared several proximity preserv-
ing projections and concluded that the SOM compares verédly to other methods in retaining
trustworthiness.

Cluster visualization

While being beneficial to efficient use of visualization spate uniform grid representation of the
SOM does not show any clustering in itself but visual cuescfastering have to be added to it
otherwise.

A popular way to visualize clustering is to compute the distabetween units in the data space
and present the result adamatrix (livarinen et al., 1994; Ultsch and Siemon, 1990). To be suc-
cessful, this visual means to detect clusters in the SOMiregubstantially more map units than
anticipated clusters. A gray level coding of the U-matripissented in Fig. 3.5. Also, the average
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distance of the map unit and its neighbors can be shown onGé &id (Pampalk et al., 2002b;
Vesanto, 1999). Contour lines can be used instead of gra} toding (Pampalk et al., 2002b).
The SOM in document visualization has been approached froartagrapher’s viewpoint as well
(Skupin, 2002). Indeed, the U-matrix is strongly assodiatéh a geographical map, e.g., “islands”,
mountain and valleys can be thought of as metaphors. Enheerds to the U-matrix and different
techniques aiming at the same visual metaphor are presentgdn (Kaski et al., 2000; Pampalk
et al., 2002b; Ultsch, 2003).

Another possibility is to actually map the SOM unit distamgedata space to distances between
the visual markers representing the map units. In genéialcannot be done perfectly. One solution
is to use a non-linear proximity preserving projection sastfsammon’s projection, but on the other
hand, the orderliness of the map may be lost. Kaski et al. Q188scribe a method that approximates
the local distances but still maintains the orderlines§ef3OM grid. The method directly optimizes
an appropriate cost function by a stochastic gradient aescethod.

The contraction projection explained in Publication 3 ckso &e used for the purpose of reflect-
ing distances. It also incorporates an adjustable meanigblighting cluster structure in the data.
When only a slight contraction is made, the map order is stdintained. When the contraction
proceeds further, cluster structure is more highlightedcdntrast to the method of (Kaski et al.,
1999), the contraction projection does not rigorously miae a cost function. It does not return a
single projection but a sequence of them. This requirediieatiser inspects different stage(s) of the
contraction process and decide which of them are of inteFasthermore, it involves a user spec-
ified kernel width parameter. On one hand, this can be seempasbéem since the method is quite
heuristic. On the other hand, the contraction projectiam fsa used with an interactive Ul where
one can change the kernel width parameter and the stage toadction to move from a visualization
between a uniform SOM grid to a clustered view. Figure 3.8ashsome stages of a contraction
projection for the SOM on the Iris data. Recently, Rubio amu&ez (2003) have proposed several
enhancements to SOM visualization, e.g., a “grouping ngéumethod intended for a similar pur-
pose as the contraction projection. Rubio and Giménez3P@@mpare the grouping neuron method
to the contraction projection presented in Publication 8 siggest that their method is computa-
tionally more effective on larger SOMs. Furthermore, erdiramthe global distance preservation by
directly modifying the learning algorithm of SOM have beeagented in (Konig and Michel, 2003;
Yin, 2001).

The dissimilarities between the units can also be visudlaa color difference (Kaski et al.,
1998b, 1999). Publication 2 demonstrates this using Sarsnpoojection of the map, and Publi-
cation 3 utilizes the SOM contraction projection to creatarsble color coding. The color coding
in Publications 2 and 3 is based on mapping attribute valirestty into the monitor RGB color
space (Ware and Beatty, 1988; Ainsworth, 1998). Kaski ef18199) use visually more uniform
CIELab color space, see, e.g., (Ware, 2000). When using &ikolor space, the mapping needs
more consideration in order to cope with the shape of ther@gace and the output device gamut.
Using direct RGB coding is practical in the sense that it skigese problems, and it has been found
to work reasonably in cluster visualization—yet the visuah-uniformity degrades results in certain
directions (Ware and Beatty, 1988).

Component planes and scatterplots

The problem with scatterplot matrices is that the numberaifiise comparisons grow quadrati-
cally. To some extent, the SObbmponent plane@ryba et al., 1989) facilitate this problem. The
component planes code the attribute values in differerts péithe SOM using some retinal attribute,
typically gray level, see Fig. 3.5. Thus, the componentg@darely on comparing differences in the
shape of the contours, and the notes on using gray level or cotle in representing data values on
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surfaces apply here.

The visual search for similarities and differences amongpmeanent planes can still be cumber-
some. To ease the comparison task, Vesanto and Ahola (1898)droposed a tool for ordering
the component plane according to the global linear coicglatbetween the variables. This helps
comparing the component planes since roughly similar oregr@uped together. Detecting linear
dependencies is, of course, not new. The added value of tiS{ detecting partial correlations
or clusters that appear, €.g., as spots in a subset of thear@mnpplanes, see Publication 1. A prob-
lem is that the overfitting and folding of the map may introelspurious correlations even in random

data (Lampinen and Kostiainen, 2002).
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Figure 3.5: A typical presentation of a SOM in t8®M ToolboxThe SOM is made on the Iris data.
The first row of panels shows the component planes. The gvay ¢¢ each unit (hexagon) shows
the value of the corresponding map codebook vector elenTdrd.first panel on the second row is
the U-matrix of the map: the darker the gray, the longer therianit distance. The second panel
on the second row show, using pie diagrams, the amount (@ share (color) of each class of
data vectors projected in the map unit. The third panel orséttend row is the color coding of the
map units used in Figs. 2.4, 3.1, and 3.6. where the markedata items get the color tfie best
matching uniin this SOM. The best matching unit for a data item is the ot@\vhich the data item
gets projected, i.e., the closest unit in the data space.

Linking and brushing

The component planes and U-matrix presentation of SOM camsbd in conjunction with other
presentations of data by utilizing two common techniquessnalization: linking and brushing. For
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Figure 3.6: Some different phases of a contraction praaatin the SOM in Fig. 3.5. Panel (a)
shows glyphs of the data on the best matching units on théatigniform SOM grid. The rest of
the panels show phases of the contraction process endmtpiatmajor clusters.

linking, a SOM is given some ordered coding using some rkdittdbute(s), e.g., color. The color of
the best matching unit (see Fig. 3.5) for a data item is thersferred onto some other presentation of
the same data. Aristide (1993) has demonstrated linkin§@ with PCA scatterplots, hierarchical
clustering methods, and coloring the map of Europe accgridithe SOM presenting economical
status of the countries. Kaski et al. (1998b) map econorsta#iis of countries using the SOM onto
a world map using color coding. Ainsworth (1998) colors arawgraphic map using a 3D SOM
trained with remote sensing dafA.

Publications 1 and 2 apply the color linking between U-mxattomponent planes, and ordinary
scatterplots to process data analysis. Alhoniemi (200ed this method in investigation of pulp-
ing data. Furthermore, in Publication 1, an interactiveshimg tool for SOM is shortly described. It
was developed for exploring, especially, industrial pescgata.

19In this case, the colors come from the 3D SOM grid coordinatapped directly into an RGB cube.
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3.2.14 Clustering validity indices

The clustering methods in this thesis do not directly makedsibn of the number of clusters but
require it as a parameter. This poses a question which nuaflmusters fits best to the “natural
structure” of the data. The problem is somewhat vaguely ddfsince the utility of clusters is not
explicitly stated with any cost function. An approach toveothis, adopted in Publication 4, are the
“add-on” relative clustering validity criteria. Basicgllone clusters first the data with an algorithm
with cluster numbeK = 2,3,...,Knhax Then, the index is computed for the partitions, and (local)
minima, maxima, or knee of the index plot indicate the adegjuhoice(s) oK. The good news is
that many of the relative cluster validity indices are fastdmpute. The bad news, not surprisingly,
is that the results of empirical studies with known numbecloéters do not unanimously support a
certain index for all data types (Bandyopadhyay and Ma@iilQ1; Bezdek and Pal, 1998; Halkidi
et al., 2001; Maulik and Bandyopadhay, 2002), or concluder afmpirical tests that some classic
indices hardly make any sense on the application data at(vardi and Laaksonen, 2002).

Two examples of such indices appear in Publication 4 DaBmsidin type indices (Davies and
Bouldin, 1979) are among the most popular relative clustevalidity criteria:

AG) +A(C)
6(01 7Cj) ’
whereA(G) is some adequate scalar measure for within-cluster dispeaiadd(C;,C;) for between-

cluster dispersion. A simplified variant of this, the R-ird&), adopted from Levine and Domany
(2001), was considered in Publication 4.
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In preliminary experiments, the R-index gave reasonaldgastions for a sensible number of clus-
ters with a given benchmarking data set. It was comparedat®tinn-like indicewag (Bezdek and
Pal, 1998):

1
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Vag = min { — 0 (3.19)
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whereda is some between-cluster dissimilarity measure; those e@fmEqgs. 3.13-3.15 apply here,
andAg is some measure of within-cluster dispersion (diametey), e

01(C) = maxdj, i,jeC (3.20)

1
A = — di;. 3.21
Z(Ck) |Ck|2_|ck| i,J€ . ( )

With this notatiorv11 in Eqg. 3.19 would be the original Dunn'’s index (Dunn, 19743vi2s-Bouldin
and Dunn-like indices share a problem: if there is only oreniin a cluster, or if the items are
identical, the within-cluster scatter vanishes and thikesdhe index dubious when one-item clusters
appear. There are literally dozens of relative clusteitglindices (Halkidi et al., 2001), and as is
obvious, the selection of the R-index in Publication 4 isdhaoptimal but a working solution and it
is only meant to roughly guide the exploration.
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Within the scope of time series segmentation, e.g, Vaskolainanen (2002) have studied se-
lecting the proper number of segments using hypothesisgelsased on random permutations and
Levine and Domany (2001) have used random sampling foratitig hierarchical clustering.

The clustering validity index, in the sense of model setattis accompanied with tasks of

— checking the general clustering tendency, i.e., testingther the hypothesis of random struc-
ture in data should abandoned in the first place

— external validity tests, i.e., comparing the clusteririhwwome external partition, e.g., known
classification.

For example, Jain and Dubes (1988) and Halkidi et al. (20@sguds further different clustering
evaluation tasks and methods.

Selecting the “best” SOM is more complicated as it differsymuch from the basic clustering.
Measuring the quality of a SOM in the sense of topologicakdrdy is considered in (Kaski and
Lagus, 1996; Kiviluoto, 1995; Polani, 2002).

3.2.15 Some further aspects of clustering
Large datasets and dimensionality

In this thesis, we restrict ourselves to quite small datawéh a modest number of dimensions (say,
less than 50) However, often in data mining, large databasdsvery high-dimensional data are
encountered. Consequently, computational problems astdlems of dimensionality grow. Large
databases require sophisticated clustering methodsxgorme, DENCLUE (Hinneburg and Keim,
1998) and BIRCH (Zhang et al., 1996) combine different @tiay approaches along with scaling up
techniques and techniques to accommodate noise. Halladli @001) list further such systems and
their characteristics. In addition to large number of sasph big dimension can cause computational
problems, one solution being dimension reduction by rangiajections utilized in (Bingham, 2003;
Kohonen et al., 2000).

Feature selection and weighting

When data dimensionality is high, methods that rely on camgyroximities using all attributes
may fail since the contribution of task-irrelevant variebtause a noise-like effect that degrades the
result. Traditionally, forward-backward attribute sdienc and global attribute weighting methods
have been applied in selecting a subset of attributes thduges a “good” clustering (Fowlkes et al.,
1988; Milligan, 1989). Furthermore, in some data there rrigiclusters in different subspaces, or to
put it otherwise, different features (variables) may bequadly important for formation of different
clusters. Detecting clusters in (low-dimensional) sulbsgaof high-dimensional data is the aim in
projected clusteringr subspace clusterinAggarwal et al., 1999).

To sum up, the problem to select a proper proximity measusetasf features makes one believe
that clustering is a tricky problem. Explicit introductiofisome external criterion and information
would surely benefit the exploration. For exampliscriminative clusteringSinkkonen and Kaski,
2002; Kaski et al., 2003b) is a clustering paradigm thataa&td prior class labels of the data items
as an auxiliary constraint. As a result, the clustering ctfléhe features that are most relevant with
respect to the prior classes of data (Sinkkonen, 2003). fardifit approach is a VDM style cluster
analysis system for aiding an expert to make decisions:  §003) and Pampalk et al. (2003)
present SOM based VDM tools that facilitate feature sedactind allow the effects of changing
features in cluster structures to be seen. This kind of amrecomes close to the line of exploratory
data analysis described in Publication 1.
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3.3 Finding interesting linear projections

Finding patterns in data can be assisted by searching amriafive recoding of the original vari-
ables by a linear transformation. The linearity is at the eséime the power and the weakness of
these methods. On one hand, a linear model is limited, bute@wther hand, potentially both com-
putationally more tractable and intuitively more undemsi@ble than a non-linear method.

The use of PCA in this manner was explained in Sec. 3.2.4. Mervsearching for directions
of maximum variance is not necessarily an interesting wagobding the data. In exploratopyo-
jection pursuit the rather broad intention is to maximize an indexntérestingnessf the variables
(Friedman and Tukey, 1974). One measure of being intege#ithat the distribution of a variable
is far from being Gaussian (Hyvarinen et al., 200hdependent component analy@liSA) (Jutten
and Herault, 1991; Hyvarinen et al., 2001) is based on &stat model where the observed data is
expressed as a linear transformation of latent variablsatte non-Gaussian and mutually indepen-
dent. In exploratory data analysis, ICA can be used to firet@sting recoding of the data variables
into attributes that might relate to or reveal some phen@nbetter than the original ones.

3.3.1 Independent component analysis

In the basic, linear and noise-free, ICA model, we h&{datent variabless, i.e., the unknown
independent componenfsr source signals) that are mixed linearly to fokhobserved signals,
variabless;. WhenX is the observed data, the model becomes

X =AS (3.22)

whereA is an unknown constant matrix, called thexing matrix and S contains the unknown
independent componeftsS= [s(1) s(2)...s(N)] consisting of vectors(i), s=[s; S...su]'.

The task is to estimate the mixing matix (and the realizations of the independent components
s) using the observed da¥ alone. Comon (1994) presents exact conditions for the iiikgpitity

of the model; the most fundamental is that the independempooents must have non-Gaussian
distributions. However, what is often estimated in pragtis thedemixing matriXW for S= WX,
whereW is a (pseudo)inverse & (Hyvarinen et al., 2001).

This kind of problem setting is pronouncedhbiind signal separatiorfBSS) problems, such as
the “cocktail party problem” where one has to resolve theratice of many nearby speakers in the
same room. Publication 4 gives a typical example of BSS wtierddenchmarking task for ICA is
the separation of brain and noise signal sources.

Several algorithms for performing ICA have been proposedivdd from different theoretical
grounds (Hyvarinen et al., 2001). In Publications 4, 5, 6nthe FastICA algorithm is used. This
fast, fixed point algorithm is briefly described in the nexttgm.

3.3.2 FastICA andlcasso

The FastICA algorithm (Hyvarinen and Oja, 1997) is basedinding projections that maximize

non-Gaussianity measured by an objective funcliokurtosis Ey*) — 3 (E(yz))z(applies to a zero
mean variablg) was originally used as a basis of the objective functiois #omewhat sensitive to
outliers, and (Hyvarinen, 1999) proposes alternativeremnobust objective functions.

A necessary condition for independence is uncorrelatexiaesl a way of making the basic ICA
problem somewhat easier is to whiten the original sigixalsThereafter, it suffices to rotate the
whitened dat& suitably, i.e., to find an orthogonal demixing matrix thadguces the estimates for

11A row of Sis an independent component.
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the independent componer8s= W*Z (Hyvarinen et al., 2001). When the whitening is performed
by Eqg. 3.6 the demixing matrix for the original, centerecadatV = W*A-3ET.

Here, we present the symmetrical version of the FastICArélga where all independent com-
ponents are estimated simultaneously:

1. Whiten the data. For simplicity, we denote here the wigitethata vectors by and the mixing
matrix for whitened data withV.

2. Initialize the demixing matriV = [w] wJ...w},], e.g., randomly.

3. Compute new basis vectors using update rule
wj:=E (g(ijx)x) -E (g’(WJ-Tx)) Wi
whereg is a non-linearity derived from the objective functidnin case of kurtosis it becomes

g(u) = U3, and in case of skewneggu) = u? (Hyvarinen et al., 2001). Use sample estimates
for expectations.

4. Orthogonalize the neW, e.g., byW := W(WTw)-1/2,
5. Repeat from step 3 until convergence.

There is also a deflatory version of the FastICA algorithn finas the independent components
one by one. It searches for a new component by using the fixed peration (in step 3 of the
procedure above) in the remaining subspace that is orttadgmpreviously found estimates.

Both practical and theoretical reasons make the FastICApeading algorithm. It has very com-
petitive computational and convergence properties. Eantbre, FastICA is not restricted to resolve
either super- or sub-Gaussian sources of the original esuwas it is the case with many algorithms
(Hyvarinen et al., 200132 However, the FastICA algorithm faces the same problemsaeta sub-
optimal local minima and random initialization which app@amany other algorithms—including
K-means and GIR. Consequently, a special toaksofor VDM style assessment of the results was
developed in the course of this thesis in Publication 4.

A recent method by Meinecke et al. (2002) is intended for #maespurpose agassoand it is
also based on resampling. The method of Meinecke et al. jZb8estimates the independent com-
ponents for the original data. To our understanding, themates act then as fixed cluster centers
during the rest of the process. After computing the init&tiraates, bootstrapping (Efron and Tib-
shirami, 1998), is used to introduce perturbation to thamgded estimates. The bootstrapped ICA
estimates are clustered, using the initial estimates atetlgentroids. Dispersion in the clustered
estimates and the confusion between them is finally computed

The procedure of Meinecke et al. (2002) works fine for an atigor that has no stochastic
elements—being stable in the sense that it always givesatie sesult for the same data. An exam-
ple of such an ICA algorithm is JADE (Cardoso and Soloumiac, 1993) used in (Meinecke et al.,
2002). However, this is surely not the case with FastICA witandom initial condition. We assume
that if proceeding as Meinecke et al. (2002), a single, jphssbad” set of initial estimates from
FastICA could form unnatural clusters when used as fixedecsHt Therefore)cassopools all the
estimates together and forms the clusters bottom-up anh&mg. tin addition|cassois concentrated
in Ul and visualization of the estimate space by means of alinear mapping. The approach can

12 super-Gaussian variable has positive kurtosis: disiohuhas a sharp peak and heavy tails. A sub-Gaussian \ariabl
has negative kurtosis: distribution is flat with light tails

13Joint Approximation of Diagonal Eigenmatrices

1%We recently found out that there is an implementation of thisnethod at URL
http://ida.first.fraunhofer.de/ ~mei necke/ downl oaddi caresanp. htm [referred Apr, 2004] which could be
modified to use FastICA to compare the methods and test oumgas®on.
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be used in other similar applications—only a proximity malretween the estimate is needed. One
could, e.g., investigate the results of K-means in thisitash

3.3.3 ICA and binary mixture of binary signals

Next, we consider a very specific non-linear mixture of latariables, the problem of the Boolean
mixture of latent binary signals and possibly binary noBgically, prior work with ICA and binary
data concentrates on linear mixtures of discrete (binayjces and Gaussian noise, e.g., (Pajunen,
1997; Palmieri et al., 1998). See (Bingham, 2003) for furthiscussion and references. In general,
non-linear extensions of ICA is a broad area of work, and *ho@ar ICA” is highly non-unique as
a problem (Hyvarinen and Pajunen, 1999).

The mixing matrixAB, the observed data vectot® and the independent, latent source vectors
s all consist now of binary vectors {0,1}M. The basic model in Eq. 3.22 is replaced by a Boolean
expression

n
B=\/alns, i=12....M (3.23)
j=1

whereA is Boolean AND andv Boolean OR. Instead of using Boolean operators Eq. 3.23dcoul
be writtenx® = U (ABs?) using a step functiotd as a post-mixture non-linearity (Taleb and Jut-
ten, 1999). The mixture can be further corrupted by binangeioexclusive-OR type of noise is
considered in Publication 6.

On one hand, the basic ICA cannot solve the problem in Eq. iB.8&neral (Bingham, 2003).
The methods for post-non-linear mixtures (Taleb and Juit@®9) that assume invertible non-linearity
cannot be directly applied either. On the other hand, it ssgossible that the basic ICA could work
for data emerging from sources and basis vectors that asessgnough”. Consequently, we exper-
imented in Publication 6 how far the performance of the bE&# can be pushed, using reasonable
heuristics, without elaborating something completely newthis thesis, the experiment can be seen
as a feasibility study for using ICA as done in Publication ttene the data was close to binary. In
the context-awareness applications of this thesis, pliagry sources, observed values, and mixing
process could surely be expected. Furthermore, theremailaisproblems in other application fields,
prominently in text document analysis where such data i®emered. Bingham (2003) surveys
approaches related to the binary latent variable problepmeaally within the scope of document
analysis. Since the basic ICA model is not the optimal chfiicbandling such problems in general,
probabilistic models and algorithms have recently beerld@ed for this purpose (Bingham et al.,
2002; Seppanen et al., 2003).

In the procedure of Publication 6, the estimated linear ngljxhatrixA is normalized by dividing
each column with the element whose magnitude is largesatrctiilumn. Second, the elements below
and equal to 0.5 are rounded to zero and those above 0.5 to one:

AB—UAA-T) (3.24)

where the diagonal scaling matrk has elements

i where (3.25)

- smaxd)

ming; if |[min&| > |maxd;|
maxg; otherwise.

smaxg;) = {
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where ma¥; means taking the maximum and ndirthe minimum element of the column vectgr
Matrix T contains thresholds, here we §gt= 0.5,Vi, 15 As supposed, this trick works quite well
with sparse data argkewness B°) works better than kurtosis as a basis for the objective fanct
on a wide range of sparsity data, except for noisy data.

But still, why does the basic ICA not give substantial resirdtPublication 5? Two reasons can
be considered: Firstly, it may well be that the context datscdbed in Publications 5 and 7 does not
emerge from a model that is close enough to what can be solitacdbasic (or thresholded) ICA.
Secondly, although we see a clear temporal dependencedrevents in the signals, the result of
ICA estimation is permutation invariant since the modelridrestantaneous (memoryless) mixture.
To sum up, an independent latent variable model is poténiigkeful for the context recognition
problem, but the data at hand requires more effort. Suphgsatdinstantaneous mixing model of
the data is not enough but the time structure has to be consids well.

15Note that there are typos in Eq. 4 of Publication 6 and it de¢sarrespond to the scaling proper made in the experiments.
Here, Egs. 3.24 and 3.25 give the correct procedure that etk u



Chapter 4

Data mining and user interfaces

4.1 Emerging user interface paradigms

Context-awareness

Publications 5 and 7 are relateddontext-aware computin@chilit et al., 1994) which has become
recently a major topic in human-computer interaction sssgMoran and Dourish, 2001). Context-
aware computing involves adaptive/intelligent Uls andeotipplications that react to or benefit from
the context intelligently. It is related to the frameworkutfiquitous (pervasive) computing (Weiser,
1991) and often appears together with “wearable compu{€es'tingdon et al., 1999; Golding and
Lesh, 1999; Laerhoven and Cakmakci, 2000; Laerhoven &Q02; Pascoe, 1998) and other emerg-
ing research fields of human-computer interaction (Morah@ourish, 2001). A more conservative,
user-centric approach to modeling context is taken in lisabiudies where one analyzes and mod-
els the context of use in advance, e.qg., by field or labora&stg, and uses that knowledge in interface
and product design (Holtzblatt, 2003; Maguire, 2001).

Sensor-based mobile-awareness

We concentrate more specifically orobile-aware application€hen and Kotz, 2000). The benefits
of context-awareness are prominent in mobile communinatiehere the communication situations
can vary a lot. The mobile terminals are becoming more ancersophisticated in their function
yet smaller in their size. User interaction could be madéeeasd less intruding if the mobile
terminal recognized the user’s current context and adagstéshctions accordingly without constant
attention from the user (Chen and Kotz, 2000). In particitaiblications 5 and 7 focus @ensor-
based mobile-awarenegSlarkson et al., 2000; Golding and Lesh, 1999; Mantyija&003; Schmidt
etal., 1999a).

Personalization

Many issues in mobile-aware Uls have to do wirsonalizatioras well. Blom and Monk (2003)
have studied and discussed user-centric personalizatiappearance, and use the following def-
inition of personalization (of technology): “...a procdbsit changes the functionality, interface,
information content or distinctiveness of a system to iaseeits personal relevance to an individ-
ual”.

The adaptive keyboard in Publication 8 is a straight-fodieguplication in the field of person-

49
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alization and adaptive Uls. In general, the effects of peatipation are not confined to cognitive
ease of use but include also aspects that are related te psesonality, emotions and group identity.
For example, feeling of personality and ownership, reftectf personal or group identity, improved
aesthetics, being-in-control, attachment to the systemsipagply having change or fun are aspects of
why people personalize their mobile phones (Blom and MoAk3).

Adaptive and multimodal interfaces

Mobility leads to rapid change of usage contexts and peapléd to prefer different ways of using
their personal mobile devices. This give rise to a growingdchfor user- and context-adaptivity—
context-awareness and personalization relate to the veltbdfadaptive interfaceslameson (2003)
lists typical tasks of adaptive user interfaces: functifmrssupporting the system ugadapting the
interface, automatizing routine tasks)ioformation acquisition(supporting browsing, spontaneous
provision of information by situation). The same tasks a@ppe context-aware applications as well
(cf. Sec. 4.2.2). Characteristically, context-awarerfesgses in adapting to the context of use in
addition to directly adapting to the user’s preferences. Wilenot pursue usability in this thesis,
but obviously, usability challenges of the adaptive Ulshsas predictability, transparency, control-
lability, unobtrusiveness, and privacy (Jameson, 2008)easential in mobile-aware interaction as
well.

Furthermore, using on-board sensors to determine useitad¢buchesmultimodal interfaces
that process several combined user input modes in a cotedimaanner (Oviatt, 2003). Though,
this thesis does not consider explicit multimodal contifch @levice, we point out that the research
challenges of context recognition (Sec. 4.3) are simildhtse of multimodality: how to fuse infor-
mation from several simultaneous and/or sequential inmdes and events and how to integrate the
inputs on feature level and at a higher, semantic level ({©&a03). In general, machine learning is
needed to take use of non-explicit inputs from the diffeieptit modes and other user information
(Jameson, 2003; Oviatt, 2003).

4.2 Context-awareness

4.2.1 What does “the context” mean—in this context?

In context-awareness studies, there are different opaatdefinitions and categorizations of con-
text. These definitions identify different context clas¢asdimensions) and features of context-
aware applications. A widely cited operational definitiomnh Dey and Abowd (1999) and Dey et al.
(2001) state that “context” is

“...any information that can be used to characterize tlhsgdn of entities (i.e., whether

a person, place, or object) that are considered relevahetmteraction between a user
and an application, including the user and the applicati@miselves. Context is typi-

cally the location, identity and state of people, groupsl emmputational and physical

objects.”

Golding and Lesh (1999) state shortly that context-awaere“the ability to detect aspects of the
user’s internal or external state”. Furthermore, Dey andwdb(1999) define that context-awareness
is about giving relevant information and/or services to tiser where relevancy depends on the
user’s task and the context. These are obviously rather déflaitions; deducing what is “relevant
information” is anything else but a simple task (DourishQ20Greenberg, 2001; Mantyjarvi et al.,
2003).
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We have based the formation of “contexts” on a bottom-up nma&clearning construction from
low-level features. The approach is similar to that of Sattrat al. (1999a) who consider “contexts”
as higher-level abstraction, e.g., extracted patternecided rules, of the primitive features obtained
from various information sources. We have adopted alsodb& of using a variety of simple, cheap
sensors for various phenomena, acceleration, light, saiad(Golding and Lesh, 1999; Laerhoven
etal., 2001; Schmidt et al., 1999b).

Schilit et al. (1994) recognize the following, three gemhgrpes of contexts or environments:

1. User contextlescribes the “human factors”, the situation from the sgaoint of view, includ-
ing the social situation, and the user’s status and actilzibgation is an important and easily
operationalized indicator of user context, but reflectiohthe user context can be found in
phone profile settings, calendar markings, or current use.@f, communication devices. Set-
ting explicit information sources, context tags, accdesiba short range network can be used
to label important places and services (Want et al., 199@mneSaspects of the social context
could also be inferred from an ad hoc network of mobile deviz@ried by the people nearby
(Mantyjarvi et al., 2002a).

2. Physical contexbf the user and the device is important in sensor-based sxabibreness. It
is assumed that the physical context can be used to gaimiafan about the user context. In
order to resolve the physical context, a piece of ambientin&tion can be obtained by directly
monitoring the user’s environment and actions, and pos#ile user him/herself, using a set
of on-board different sensors (Golding and Lesh, 1999; Sdhet al., 1999b; Mantyjarvi
et al., 2003). The physical location can be obtained fromvagasion system, like the Global
Positioning System, or from the mobile network cell.

3. Computing contexdiescribes the world of the device itself: available conméids, computa-
tion and application resources, networks, access to otheceks and services etc. This is the
dimension that we wish to make easy-to-use, or even ineisibf the user.

Obviously,timeis also an important descriptor of the context. It can becased to user or phys-
ical context. Chen and Kotz (2000) add time as a separatethfouain category to the previous
ones. Eventually, enumeration of dimensions or featuresrmther simplistic approach and miss
many dynamical aspects of context (Greenberg, 2001; Dp2304). When one comes to think of
it, contextawareness-if taken to the utmost—is about making an artificial intgdihce that reacts
reasonably in changing social surroundings, so the detigeld have commonsense-based knowl-
edge on the world and human intentions (Minsky, 2000). Harghe straight-forward thinking of
prior, fixed elementary features is instrumental for oudesgiory and constructive machine learning
approach, something to start with.

4.2.2 Context-aware applications

Dey and Abowd (1999) characterize context-aware functites, based on earlier categorizations
by Schilit et al. (1994) and Pascoe (1998), as follows:

1. Automatic execution of a servigethe category that Schilit et al. (1994) identifiescastext-
triggered actions A sensor-based example: if we know from the context infdiomathat
the user is running, the font used in the display can be larg§amilarly, audio volume can
be adjusted to compensate for higher levels of noise (Sdhenial., 1999b; Mantyjarvi and
Seppanen, 2003). Another example of such an applicatiendentext reminder (Schmidt
et al., 1999b) that is triggered by a certain context. Fomg{a, the reminder “remember to
buy milk” could be switched on near a grocery. Another typ@ample of context triggered
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service is an automated profile change (Schmidtet al., 1983p, the phone is setinto “silent”
when the opera night begins.

2. Presentation of information and services to usseludes sharing user context with others.
For example, one can show one’s own context to others in dgod@cilitate communication
with mobile phones (Schmidt et al., 200®roximate selectionexemplifies also this class of
functionalities, e.g., the user can be shown an adaptiveflisearby auxiliary devices such as
printers (Schilit et al., 1994).

3. Tagging of context to information for retrievéihdexing by context). The segmentation of
the context time series in Publication 7 can be understoddgrsng the context stream for
retrieval of interesting context changes. For examplejgn 42 the context is used to create a
narrative of what happened: the user is not required to whtkvhole video.

Development and widespread use of context-aware applitatequire common software tools
and conceptualization (Dey et al., 2001), standardization consideration of privacy issues. A
broad selection of issues on context-awareness and susmapslividual applications can be found
in (Moran and Dourish, 2001) and other articles of the santeme, as well as in (Chen and Kotz,
2000; Mantyjarvi et al., 2003; Dey and Abowd, 1999; Schingickl., 1999b).

4.3 Context data mining

4.3.1 Context recognition

This thesis does not present very specific context appicati The issue isowthe context could
be extracted from data in general, i.he context recognitianMantyjarvi (2003) defines context
recognition as “the process of extracting, fusing and cdimgerelevant data from [context] sources
to a representation to be utilized in the application.” Rgtlons 5 and 7 highlight the problem of
context recognition as an interesting application for daitsing and machine learning.

One solution for context recognition is a designed, ruleeddanction, see e.g., (Mantyjarvi and
Seppanen, 2003). The knowledge base for such functionsemnplemented by the system designer
but also the user can customize the context-aware funditipmath appropriate tools (Mantyjarvi
et al.,, 2003). There is, however, a problem in the previoyg@ach: when the available set of
context features, contexts and functions grow, it is nosifda anymore to expect the user or a
system designer to be able to plan everything in advancee(erg, 2001). Also learning to use
such systems can be cumbersome: Mantyjarvi et al. (2088)rt that users sometimes found it
difficult to customize context dependent applications famiselves on a quite similar setting that
appears in Publications 5 and 7.

In a supervised machine learning approach for contexteriggactions, the device autonomously
learns what actions or applications the user prefers ingbegnized contexts and suggests automat-
ing some of these. A requirement for this kind of applicatiorbe successful is that the contexts
can be classified. A naive Bayesian classifier is applieditticecontext features in (Korpipaa et al.,
2003) and to a more general set of sensor sources Goldingestd(L999) for indoor navigation.
Different work in using multiple acceleration signals irsgge or body movement identification are
given in (Mantyjarvi et al., 2001b; Mantyla et al., 2Q00aerhoven et al., 2002). (Clarkson and
Pentland, 1999) and Clarkson et al. (2000) experiment wittidn Markov models to determine and
classify the occurrence of audio-visual contextual evéois a wearable video camera. Laerhoven
et al. (2001) present a combination of a SOM and hidden Mankogels for on-line recognition of
contexts on sensor data in wearable computers.
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In our unsupervised pattern recognition approach, the aito form contexts as higher-level
attributes (patterns) by fusing simple and understand&imary or fuzzy attributes (features) de-
scribing device position, user movements and ambient Aglitsound level. We try the feasibility
of forming new attributes by using independent componemigdiane-series segmentation. Principal
components are used for exploratory stage to visualizeuws®ldontext sources. At this stage, we do
not present supervised recognition results, but explae#ta and the methods.

Collecting information from on-board sensors (Publicasi® and 7) was quite simple and, in
our study, the sensors are the only data sources that priofadenation on ambient context. In gen-
eral, it would be rather unwise to stubbornly infer user eghfrom ambient physical measurements
alone and discard information obtained from the logs ofedéht applications, e.g., calling, mes-
saging, using calendar, or profiling. Moreover, we focus @o@omous context recognition system
in the study, although specialized “context tags” and otlmtext infrastructure embedded in the
environment would be a valuable source of information irctica. Arranging the collection of all
this additional information would have required considéeanore effort and added the complexity
of the study. For example, at the stage of this study the egipdins running in the phone and the Ul
actions could not be logged with reasonable effort. Howeverassume that the same data-analysis
methods can be extended to data sources other than the spenibrs used in this study.

4.3.2 Acquiring context data and features

In general, the set of sensors were selected so that thed, gize and availability would be suitable
to a mobile device—the criteria frequently used in sensmel wearable computing. Furthermore,
using video images was not considered. Working assumptiame that recording image of the
environment is often not possible in typical use of mobilepdand that image recognition probably
needs more processing power than touch, accelerationcamd pressure signals. Identification of
user movements and gestures based on acceleration sgyasilsi in context-awareness as explained
earlier. In this study, rather simple features “stablef8table” and “walking”/’running” are used.
They were extracted based on the power of different frequéaads of the acceleration signal;
Mantyjarvi (2003) describes the relevant sensors antife@xtraction methods in more detail.

In Publications 5 and 7, the context features are calledt&odmtoms” to underline that they are
givena priori and the rest of the context inference emerges from th@se features have been se-
lected so that they reflect everyday concepts. This easesstadding the meaning of the extracted
context and integrating fuzzy inference or other rule bgsads to the same system (Mantyjarvi
et al., 2001b, 2003). All context features are in the rajog#, including both binary attributes and
attributes that are fuzzy relations. For example, we salahmdbient noise is “low”, “medium”, or
“high” instead of presenting a single attribute. This eas@sbining various kinds of information
sources that might be accessible. For example, calend&irmgaror semantic descriptions of loca-
tions like “meeting” or “Helsinki” would be inherently synotic. Therefore, Himberg et al. (2003)
and Flanagan et al. (2002) use thenbolic clustering maff-Flanagan, 2003), a method specialized
for symbolic data, to cluster context data.

4.3.3 Context recognition is context fusion

In this thesis, we confine to an off-line system where the edrdtoms are collected first, and the
recognition is made on the data set. In an on-line systenahiegt atoms would come in as a stream
from which the frequently occurring or otherwise interegtpatterns were inferred continuously. The

1schmidt et al. (1999a) call the features derived from sesigoralscontext cuesDey et al. (2001) use the narnentext
widgetfor the software components that return preprocesseddwal-tontext information from the sensors.
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patterns, clusters or segments, are labeled with a new sgtrdfols that forms a higher-level context
representation. Flanagan et al. (2002) preswiantaneouandsequential fusioof context data as
follows:

Instantaneous fusion

In instantaneous fusioa higher-level context is generated by the fusion of loveeel context at-
tributes at time instartt For example, simultaneous occurrence of “running” andwesy station”
might imply “being late”. In practice, the same “true” coxteloes not always produce exactly
the same context attributes either due to variations in tivir@nment or simply by the imperfec-
tion of feature extraction. However, one can characteheedata by clustering ti clusters, e.g.,
(Mantyjarvi et al., 2001a; Flanagan et al., 2002). Thesits can be labeled with symbols which
form a set of new, higher-level context attributes. Theteltisg tendency of the data is quite evident
also in the visualization of Publication 5 presented in Bid.. See also Fig. 4.2 where the clustering
algorithm of (Flanagan et al., 2002) is used to find six chssie the data, and different Ul profiles
are associated with these clusters (contexts) (Himberg, &03). (Note that the test scenario, and
thus, the data, is not the same in Figs. 4.1 and 4.2.)

The basic clustering allows only one prototypic “context’tte active simultaneously. Publica-
tion 5 demonstrates the possibilities of PCA and ICA in cenfigsion (Salam and Erten, 1999). It is
still an instantaneous fusion but, especially in the testls ICA, the aim is to find several contexts
(latent sources) that can be active independently at the same. This is an important difference to
the other approached surveyed in this thesis.

Sequential fusion

Enumerating instantaneous states as context does notsaflelbopv our figure of situations in every-
day life. The order of events tell important information aha is lost if the temporal structure of
data is ignored as in instantaneous fusiSeguential fusionf context information source(s) into a
higher-level context is about finding event episodes (Hardl €2001). For example, “browsing bus
time table”,"walking-inside” succeeded by “walking-dagiit” might imply “heading for a bus stop”.
Segmentation of context data helps in finding such eventhighilights changes in the context. See

Fig. 4.2.

The two modes of information fusion can be combined in a hidriaal manner and/or mixed. On one
hand, the recognized clusters/segments serve as higletctmtexts that show which combinations
of the basic features form common patterns in the data. Oottier hand, the can be used as new
features for the next level of recognition. Here, the contegognition is hierarchical context fusion.
Unsupervised learning is a general tool to begin with. Thaais problem with the unsuper-

vised learning is that it lacks a unique, data driven way afdiag whether the extracted higher-level
context, if any, are relevant. However, in Publications 8 @nthe contexts and the extracted patterns
are quite well aligned with common sense when the eventsinitteo recordings of the text scenar-
ios. If optimized predictions of preferred application@s)service(s) and different context mapping
are desired, some form of supervised learning would obiychedp.
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4.4 Adaptive keyboard

4.4.1 Textinput methods for handheld devices

Text input methods for handheld devices are intensivelgistusince the small size of a mobile de-
vice challenges traditional keyboard design. Many diffé@pproaches have been proposed: a de
facto standard in mobile phones seems to be the multi-tabadepossibly accelerated to “one-tap”
with linguistic disambiguation technique, such as the otaek text input system T8. Folded or
miniaturized Qwerty or half-Qwerty keyboards are oftersfbke solutions (MacKenzie and Soukor-
eff, 2002).

Soft keyboards

Touchscreen—which is used in Publication 8—is a commoncehtm produce a soft keyboard and
other input techniques. A potential alternative for pradga soft keyboard is an optically projected
keyboard (Tomasi et al., 2003)A remote sensing and pattern recognition method must betosed
recognize which of the virtual keys the user types (Mamyjjét al., 2002b; Tomasi et al., 2003). The
problem with a typical soft keyboard is that it misses thess#ions produced by the mechanical one
which makes, e.g., eyes-free entry difficult (MacKenzie &odkoreff, 2002). Up to some extent,
this can be compensated with sound effects (Tomasi et &3)26lowever, the soft keyboard is very
reconfigurable and gives potential to various novel inppliaptions.

Optimal layouts for fast typing

By using soft keyboard, it is easy to reconfigure the keyb&araut according to the usage situation
or other purposes. For example, there are different mettowd®mpletely reconfiguring a keyboard
for fast typing on a specified language for a general user Rdazie and Soukoreff, 2002; Zhai
et al., 2002). A generally and theoretically optimal layfartwriting speed can be computed based
on the linguistic statistics and quantitative models ofrys&formance on such tasks (Fitts, 1954;
Ward et al., 2002; Zhai et al., 2002). The predicted expeitinvgrspeed of best optimized layouts is
reported to increase to 41-43 wpm—well over the soft, stah@averty keyboard having 30 wpm
(MacKenzie and Soukoreff, 2002).

Other manual input modes

Touchscreen makes it possible to create other manual inpdési These include recognizing hand-
writing or specialized graffiti, or strokes (MacKenzie arabforeff, 2002; Ward et al., 2002). Learn-
ing, adaptation and prediction are potential boostersufon snethods also (Vuori et al., 2000; Vuori
and Laaksonen, 2002; Ward et al., 2002). The acceleratimsosdased recognition techniques can
also be applied to manual input devices: Partridge et abZpand Wigdor and Balakrishnan (2003)
report methods for text input by tilting the device.

2T9 is a registered trademark of Tegic Communications, Inc.

SHowever, it seems that the projection technique in (Tomiasi.e2003) only allows a fixed layout, still.

“Note that the predicted expert input speed on the commordy nse-tap with disambiguation also exceeds 40 wpm
(Silfverberg et al., 2000). Such estimates are often modsédipredictionsinstead of empirical tests. Evaluation of such
methods is difficult in general (MacKenzie and Soukoref)20
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4.4.2 Adaptive personalization of a numeric keyboard

Publication 8 proposes a prototype of an “ergonomically’spealized keyboard design that would
adapt to user’s personal style of typing but retain the gdrayout of the keyboard. Instead of
proposing a completely new input method for a handheld @evie aim at slightly changing the
conventional, numeric keyboard. The purpose is not to chaimg original global order of the keys
but just to adjust the positions of the keys.

The individual physiology of the hand and personal fashibtyping are not captured by the
general models typically used in keyboard optimizatiorthmabsence of a well-established model,
we started by exploring the problem based on a very simptailegitechniquée. The problem with
this adaptation strategy is that the size of the keys may groall unconstrained.

Based on the qualitative results, we believe that the idélaegbersonalized keyboard in Publica-
tion 8 is promising, but the same results indicate that thirg procedure should be extended—and
the adaptation algorithm redesigned. For example, thetsféd the learning curve and test procedure
fatigue should be properly canceled. The users graded thyetiad keyboard positively, but such a
grade might be upward biased. A proper evaluation of thenpi@lesuccess of such a feature would
require also measuring other factors than typing speedadt liere the effects of novelty, potential
upgrade of ergonomics, user feelings and the objectiv@paence measures are intertwined.

5Anecdotally, this application goes in line with the clusitgrand visualization theme of this thesis. The idea of tirisl k
of an adaptive keyboard came substantially from visuatimadf K-means algorithm on two dimensional data.
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Figure 4.1: PCA visualizations on context data. The timésaylot on panel (a) gives the values of
the 1st principal component of part of the data. The bar ¢hgranel (a) gives the frequencies of the
values of the 1st principal componentin all data. A cleastdting structure is reflected already in

this plot. One can say that certain value levels of the 1sicipal component can be interpreted as
contexts. Using PCA as a 2D proximity preserving projectotlemonstrated in panel (b) using the
1st and 2nd principal components. The lines link the doti¢ctime axis, where the 1st principal

component is decoded as a gray level bar. Note that the &sas0 is not the same as in Fig. 4.2
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Figure 4.2: Time series segmentation to eleven minimunamae segments and clustering to six
clusters. The black horizontal bars show the activatiomefdontext atoms. The thumbnail images
with the vertical segment borders 1-10 show what happenthe aiegment borders (=putative con-
text changes). The colored horizontal bars show into whitheosix clusters the time instant belongs
to. Certain Ul profiles have been manually associated with eluster. We know, e.g. that the clus-
ter labeled with green is about walking outside while théopeis about sitting in the office. Picture
below the time series representation show the user at tifrdts and the associated Ul profile. (The
black vertical line below thumbnail image 5 show the locatid t=110 s in the time series.) In this
case, the phone uses keypad lock and outdoors profile siaeesén is walking outside.



Chapter 5

Conclusions and future directions

In this thesis, | have developed data mining and visuabratiethods, to meet some of the practical
needs in different applications involving multidimensabsignals: industrial processes, biomedical
signals, and sensor-based mobile-awareness and perstiaali In particular, | have presented

— new ways to develop further the SOM as a data visualizatiethad, e.g., to be used in process
analysis,

— an exploratory method of investigating the stability oAl€stimates, e.g., in brain research,

— applications of data mining methods in mobile-awarenedgarsonalization, i.e., using PCA,
ICA and time-series segmentation in mobile-awarenessaasithple, adaptive algorithm in
keyboard design, and

— enhancements and modifications of algorithms so that tlweydabe better applicable to the
data or problem at hand, i.e., the fast fixed-point algoritbntime series segmentation and
a heuristic solution to the problem of finding a binary miximgtrix and independent binary
sources.

The methods of (visual) data mining presented here aredetkfor assisting research and devel-
opment. According to my experiences, rapid developmenwadlization also helps communicat-
ing and demonstrating ideas. This has been especiallybhlalirathe research on context-awareness
and personalization. Presenting even demonstrative imggiéation of ideas helps making decisions
in projects, evaluating what the anticipated problems ame, claiming intellectual property rights.
This is a communicative task for visualization: Bengtssbal (1996, 1997) study visualization as
a means of facilitating communication and planning withiigieeering and other communities.

A wide, challenging and important topic within visual datinimg would be to move on from
creating techniques to comparing them with user tests oblgmos and techniques on a large scale.
But meanwhile, there are a lot of immediate developmentstefbe taken, e.g, in the visual data
mining toolIcassq the implementations of clustering and visualization $tidae made more scal-
able. Furthermore, several datasets could be compareke metar future, the toolbox will surely be
developed in this direction.

In scope of context-awareness studies in this thesis, theaph described in (Flanagan et al.,
2002) seems promising, and the next step is collecting afséther data, and most importantly,
data on genuine user actions in order to get hands on anypeladations. Another topic in this area
would be to develop the adaptive keyboard further and tegtipact on users in real applications.
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| have motivated the research of context-awareness andn@ization by using examples of
triggered actions, e.g., inferring some everyday eventraagdping a specific action to that. It is
easy to make up such illustrative examples but, in realitlghsfunctions are often not so easily
implemented. Typical, rational examples of triggeredawi such as “silence the ring tone, if X",
are quite vulnerable to distracting false operation andensfiptable behavior. Moreover, | have left
many aspects spanning from system architecture standticaizo usability design.

Furthermore, the examples of automated, triggered actimans have hidden the fact that the
emerging user interface paradigms are not just makingiegiservices and applications easier to
use. More generally, they create new types of potentialiegins, interaction modes, and social
implications. | believe that jocularity, feel of persorraiion, social relations, lifestyle, games, and
entertainment are at least as important boosters for dgvejgersonalization, context-awareness,
and multimodality than making interaction maeéfective i.e., “the device easier to use”. In fact,
applications related to entertainment or lifestyle mighbgrovide less failure-critical applications.
There is probably a lot of potential in marketing, adventisand behavior surveillance for such
techniques—with privacy issues intertwined. Analyzingitext by measurements instead of user
surveillance or diaries involving user input, can also bedfieial for usability research.

Socially important digital media, like WWW, news, and Intet chats, among others, are al-
ready very important application areas of data mining. énse that the number of sensory and other
streaming information from new type of personal and ubipstdevices is steadily growing. In gen-
eral, context recognition is a very challenging machinerlegy problem since it ultimately requires
that a machine should have common-sense reasoning to ceawtilyday situations. Especially in
mobile-aware applications, one must further considerithgdd power and computation resources
of a mobile device. Developing algorithms for efficient extiion, aggregation and analyze of rele-
vant information from diverse sources is one of the key issnehis area. This surely presents new
challenges for data mining as well as for machine learnirggimeral.
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