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Independent Component Approach to the Analysis of
EEG and MEG Recordings

Ricardo Vigário*, Jaakko Särelä, Veikko Jousmäki, Matti Hämäläinen, and Erkki Oja

Abstract—Multichannel recordings of the electromagnetic fields
emerging from neural currents in the brain generate large amounts
of data. Suitable feature extraction methods are, therefore, useful
to facilitate the representation and interpretation of the data.

Recently developed independent component analysis (ICA) has
been shown to be an efficient tool for artifact identification and
extraction from electroencephalographic (EEG) and magnetoen-
cephalographic (MEG) recordings. In addition, ICA has been ap-
plied to the analysis of brain signals evoked by sensory stimuli. This
paper reviews our recent results in this field.

Index Terms—Independent component analysis (ICA), blind
source separation (BSS), unsupervised learning, electroen-
cephalography (EEG), magnetoencephalography(MEG), artifact
removal, auditory evoked field (AEF), somatosensory evoked field
(SEF).

I. INTRODUCTION

W ITH the advent of new anatomical and functional
imaging methods, it is now possible to collect vast

amounts of data from the living human brain. It has thus
become very important to extract the essential features from
the data to allow an easier representation or interpretation of
their properties. Traditional approaches to solve this feature
extraction or dimension reduction problem include, e.g.,
principal component analysis (PCA), projection pursuit, and
factor analysis. This paper focuses on a novel signal processing
technique, independent component analysis (ICA), which al-
lows blind separation of sources, linearly mixed at the sensors,
assuming only the statistical independence of these sources.

Electroencephalograms (EEG) and magnetoencephalograms
(MEG) are recordings of electric and magnetic fields of sig-
nals emerging from neural currents within the brain. The chal-
lenges presented to the signal processing community by the re-
searchers employing EEG and MEG include the identification
and removal of artifacts from the recordings and the analysis of
the brain signals themselves.

In Section II, we present a short description of the indepen-
dent component analysis theory, together with an algorithm ca-
pable of performing such analysis. In Section III, we validate
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the application of the ICA model to EEG and MEG. The use of
ICA for identification of artifacts in EEG and MEG as well as
the decomposition of event-related activity is presented in Sec-
tion IV.

II. ICA

A. The Model

ICA [2], [8], [10], [13], [20] is a novel statistical technique
that aims at finding linear projections of the data that maximize
their mutual independence. Its main applications are in feature
extraction [12], [25], and blind source separation (BSS) [2], [8],
with special emphasis to physiological data analysis [29], [31],
[33], [19], [3], [23], [34], [17], and audio signal processing [28].

As in many other linear transformations, it is assumed that at
time instant the observed -dimensional data vector,

is given by the model

(1)

The source signals, , are supposed to be sta-
tionary, independent and, together with the coefficients of the
mixing matrix , unknown. The goal is to esti-
mate both unknowns from , with appropriate assumptions
on the statistical properties of the source distributions. The so-
lution is sought in the form

(2)

where is called the separating matrix.
The general BSS problem requiresto be an ma-

trix of full rank, with (i.e., there are at least as many
mixtures as the number of independent sources). In most algo-
rithmic derivations, an equal number of sources and sensors is
assumed. Furthermore, only up to one source may be Gaussian.

In model (1), schematically illustrated in Fig. 1, we omit ad-
ditive noise; some analysis of the noisy model can be found in
[16] and [30].

B. The FastICA Algorithm

In the FastICA algorithm, to be described below, the initial
step is whitening or sphering. By a linear transformation, the
measurements and , for all , are made uncorre-
lated and unit-variance [14]. The whitening facilitates the sepa-
ration of the underlying independent signals [21]. In [15], it has
been shown that a well-chosen compression, during this stage,
may be necessary in order to reduce the overlearning (overfit-
ting), typical of ICA methods. The result of a poor compression
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Fig. 1. Schematical illustration of the mathematical model used to perform the
ICA decomposition.

choice is the production of solutions practically zero almost ev-
erywhere, except at the point of a single spike or bump. In the
studies reported in this paper, the number of important sources
(both in the artifact detection and the averaged evoked response
experiments) is assumed to be smaller than the total amount of
sensors used, justifying such signal compression.

The whitening may be accomplished by PCA projec-
tion: , with . The
whitening matrix is given by , where

is a diagonal matrix with the
eigenvalues of the data covariance matrix ,
and is a matrix with the corresponding eigenvectors as its
columns. The transformed vectors are called white or
sphered, because all directions have equal unit variance.

In terms of , the model (1) becomes

(3)

and we can show that matrix is orthogonal [7]. There-
fore, the solution is now sought in the form:

(4)

Uncorrelation and independence are equivalent concepts in
the case of Gaussian distributed signals. PCA is therefore suf-
ficient for finding independent components. However, standard
PCA is not suited for dealing with non-Gaussian data, where
independence is a more restrictive requirement than uncorrela-
tion. Several authors have shown [20], [10], [5], [9], [13] that
higher-order statistics are required to deal with the indepen-
dence criterion.

According to the Central Limit Theorem (CLT), the sum of
independent random variables, with identical distribution func-
tions approaches the normal distribution astends to infinity
[26]. We may thus replace the problem of finding the indepen-
dent source signals by a suitable search for linear combinations
of the mixtures that maximize a certain measure of non-Gaus-
sianity.

In FastICA, as in many other ICA algorithms, we
use the fourth-order cumulant also called the kurtosis.
For the th source signal, the kurtosis is defined as

. denotes the math-
ematical expectation value of the bracketed quantity. The
kurtosis is negative for source signals whose amplitude has
sub-Gaussian probability densities (distributions flatter than
Gaussian), positive for super-Gaussian (sharper than Gaussian),
and zero for Gaussian densities. Maximizing the norm of the
kurtosis leads to the identification of non-Gaussian sources.

Consider a linear combination of a white random
vector , with . Then and

, whose gradient with respect tois .
The FastICA [14] is a fixed point algorithm which, max-

imizing the absolute value of the kurtosis, finds one of the
columns of the separating matrix (noted ) and so iden-
tifies one independent source at a time. The corresponding
independent source signal can then be found using (4). Each
th iteration of this algorithm is defined as

(5)

In order to estimate more than one solution, and up to a max-
imum of , the algorithm may be run repeatedly. It is, neverthe-
less, necessary to remove the information contained in the solu-
tions already found, to estimate a different independent compo-
nent each time. For details, see [14].

All studies reported in this paper were carried out using
MATLAB code, based on the FastICA package [1].

III. V ALIDATING THE ICA MODEL

IN ELECTROENCEPHALOGRAPHY

(EEG)/MAGNETOENCEPHALOGRAPHY(MEG)

The application of ICA to the study of EEG and MEG signals
assumes that several conditions are verified: the existence of sta-
tistically independent source signals, their instantaneous linear
mixing at the sensors, and the stationarity of both the source sig-
nals and the mixing process.

The independence criterion applies solely to the statistical
relations between the amplitude distributions of the signals in-
volved, and not to considerations upon the morphology or phys-
iology of certain neural structures. However, the different nature
of the sources of the artifacts from those of the actual brain sig-
nals has been the driving thought to the application of ICA to the
removal of artifacts from EEG and MEG. Analysis of the distri-
butions of artifacts such as the cardiac cycle, ocular activity or
a digital watch has shown the statistical independence approxi-
mation to be accurate.

Furthermore, often the search for independent components
can be replaced by a search for maximally non-Gaussian linear
transformations of the data. Typically, the artifacts encountered,
as well as the different components in evoked field studies,
present clear non-Gaussian distributions. Although the direct
independence criterion may sometimes be difficult to justify,
the ICA model may still be useful.

Rhythmic activity in the brain poses a different problem.
In fact, pure oscillatory activity has negative kurtosis. Yet in
reality this neural activity often comes as bursts of limited time
span. Depending on the length of these bursts, the sign of the
kurtosis may be positive. In the worst case, the global kurtosis
may even be zero, i.e., the desired component is then interpreted
as Gaussian. An illustration of the changes in kurtotic behavior
is shown in Fig. 2, where a sinusoidal signal is masked with
Gaussian windows of different durations. A different strategy
may be required to cope with this problem, such as using
methods based on the time correlation in the data [4], [35].
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Fig. 2. Changes in kurtotic behavior of bursts of oscillatory signals, as a
function of the duration of the burst.

Fig. 3. A subset of 12 spontaneous MEG signals from the frontal, temporal
and occipital areas. The data contains several types of artifacts, including ocular
and muscle activity, the cardiac cycle, and environmental magnetic disturbances.
Adapted from [29].

Because most of the energy in EEG and MEG signals lies
below 1 kHz, the quasistatic approximation of Maxwell equa-
tions holds, and each time instance can be considered separately
[11]. Therefore, there is no need for introducing any time-de-
lays, and the instantaneous mixing model is valid. The linearity
of the mixing follows from the Maxwell’s equations as well.

The nonstationarity of EEG and MEG signals is well docu-
mented [6]. When considering the underlying source signals as
stochastic processes, the requirement of stationarity is in theory
necessary to guarantee the existence of a representative (non-
Gaussian) distribution of the sources. Yet, in the implementa-
tion of the batch FastICA algorithm, the data are considered as
random variables, their distributions estimated from the whole
data set. This removes the strict requirement of stationarity.

The stationarity of the mixing process corresponds to the ex-
istence of a constant mixing matrix . In the dipole source
model used throughout this paper, the mixing stationarity leads
to the existence of sources with fixed locations and orientations,
with amplitude varying with time. Such models [27], [24] have
been extensively and efficiently used in the analysis of MEG
data, which justifies the use of constant mixing vectorsin
our ICA model.

IV. THE ANALYSIS OF EEGAND MEG DATA

A. Artifact Identification and Removal from EEG/MEG

When performing EEG or MEG measurements, physicians
have often to deal with considerable amounts of artifacts, that
may render impossible the extraction of valuable information

Fig. 4. Six independent components extracted from the MEG data containing
several artifacts. For each component the left, back and right views of the field
patterns are shown. Full lines stand for magnetic flux coming from the head,
and dotted lines the flux inwards. Adapted from [29].

(a) (b) (c) (d)

(e)

Fig. 5. Results of the application of FastICA to averaged brain MEG
responses to a vibrotactile stimulation. (a)-(c) present, respectivelly, a sample
of the original MEG data, the whitened and the independent signals. Each tick
corresponds to a time interval of 100 ms. (e) shows the field patterns associated
with the first two independent components, and the localization of IC1 and IC2
superimposed onto an MRI scan.
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Fig. 6. Principal (a) and independent (b) components found on the auditory evoked field study. Each tick in (a) and (b) corresponds to 100 ms, going from100
ms before stimulation onset to 500 ms after. In (c) and (d), the four IC’s are plotted after scaling to one left and right MEG original signal.

therein. The amplitude of an artifact may well exceed that of
brain signals, thus obscuring the brain activity. Moreover, many
artifacts resemble the neural responses, leading to a misinter-
pretation of the resulting data. Typical artifacts, present in many
EEG and MEG measurements, include eye and muscle activity,
the activity of the heart, and environmental electric and mag-
netic disturbances.

Recent research on artifact identification in EEG and MEG
recordings, using ICA, has been reported in, e.g., [19], [29], and
[31]. Fig. 3 presents a subset of 12 MEG signals, from a total
of 122 used in the experiment. Several artifact structures are ev-
ident, such as eye and muscle activity. These can be extracted
using ICA, as shown in Fig. 4 (IC1 and IC2 are clearly activa-
tion of two different muscle sets, whereas IC3 and IC5 are, re-
spectively, horizontal eye movements and blinks). Furthermore,
other disturbances with weaker signal-to-noise ratio, such as the
heart beat and a digital watch, are as well extracted (IC4 and
IC5, respectively). For each component the left, back and right
views of the field patterns are shown. These field patterns are
given by the corresponding mixing vector.

B. Multimodal Event-Related Components

The application of ICA in studies of event-related brain ac-
tivity was first introduced in the blind separation of auditory
evoked potentials in [22]. This method was further developed
for the analysis of magnetic auditory and somatosensory evoked
fields (AEFs and SEF’s, respectively) in [33] and [32]. We will
review here the most relevant results obtained in our studies.

Most of the time we are combining information from several
sensory systems to perceive the world. In this example, we show
how ICA can be used to analyze responses to simultaneous so-
matosensory and auditory stimulation. Vibrotactile stimuli were
presented to the subject via a balloon, coupled to a loudspeaker
through a tube. Both tactile and the concomitant auditory stimuli
were thus present [18], [32]. The results of an ICA for these data
are shown in Fig. 5.

The evoked responses elicited by the two stimuli peak at dif-
ferent latencies, which is already evident from the signals at
some MEG channels, as shown in Fig. 5(a). The somatosensory
signal peaks at around 60 ms after the stimulus onset, whereas

the auditory peaks later, around 110 ms. Nevertheless, in most
of the recorded signals this separation is far from complete.
Fig. 5(b) shows the results obtained after whitening (PCA pro-
jection), where we can see that the mixing is still present. In 5(c),
auditory and somatosensory responses are clearly separated in
the first two independent components. The corresponding field
patterns in Fig. 5(d), together with the superimposition of the
corresponding dipolar sources on MRI slices in 5(e), agree with
results obtained by conventional methods for this type of brain
responses.

C. Segmenting Auditory Evoked Fields

A final experiment, using only averaged auditory evoked
fields, illustrated the decomposition capabilities of ICA in
such setups. The stimuli consisted of 200 tone bursts that were
presented to the subject’s right ear, using 1s interstimulus
interval. These bursts had a duration of 100 ms, and a frequency
of 1 KHz [33].

As in the previous experiment, we can see from Fig. 6(a) and
(b) that PCA is unable to resolve the complex brain response,
whereas the new ICA technique produces cleaner and sparser
responses. From Fig. 6(c) and (d), it is visible that IC1 and
IC2 correspond to responses typically labeled as N1m, with the
characteristic latency of around 100 ms after the onset of the
stimulation. IC1, with a shorter latency, is particularly strong in
the left hemisphere, as can be seen in 6(c). Conversely, IC2 is
nearly solely responsible for the N1m component in the right
hemisphere. Another component, IC4, exhibiting a longer la-
tency (around 180 ms), fully explains the later responses in the
contra-lateral brain hemisphere (see [33] for the field patterns
associated to these IC’s).

V. CONCLUDING REMARKS

In this paper, we have shown examples of ICA in the analysis
of biomagnetic brain signals. A special emphasis has been given
to the justification of the ICA model for EEG and MEG signals.

The FastICA algorithm is suitable for extracting different
types of artifacts from EEG and MEG data, even in situations
where these disturbances are smaller than the background brain
activity.
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ICA has shown to be able to differentiate between somatosen-
sory and auditory brain responses in the case of vibrotactile
stimulation. In addition, the independent components, found
with no other modeling assumption than their statistical inde-
pendence, exhibit field patterns that agree with the conventional
current dipole models. The equivalent current dipole sources
corresponding to the independent components fell on the brain
regions expected to be activated by the particular stimulus.

Finally, we have shown that the application of ICA to an av-
eraged auditory evoked response nicely isolates the main re-
sponse, with a latency of about 100 ms, from subsequent compo-
nents. Furthermore, it discriminates between the ipsi- and con-
tralateral principal responses in the brain. ICA may thus facili-
tate the understanding of the functioning of the human brain, as
a finer mapping of the brain’s responses may be achieved.
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