
DYNAMICAL FACTOR ANALYSIS OF
RHYTHMIC MAGNETOENCEPHALOGRAPHIC ACTIVITY

Jaakko Särelä
�
, Harri Valpola

�
, Ricardo Vigário

��� �
, and Erkki Oja

�

�
HelsinkiUniversityof Technology
NeuralNetwork ResearchCentre

P.O. Box 5400,FIN-02015HUT, Finland

�
GMD - FIRST
Kekuléstr. 7

D - 12489Berlin, Germany
{Jaakko.Sarela, Harri.Valpola, Ricardo.Vigario, Erkki.Oja}@hut.fi

ABSTRACT

Dynamical factor analysis (DFA) is a generative dynam-
ical algorithm, with linear mapping from factors to the ob-
servations and nonlinear mapping of the factor dynamics.
The latter is modeled by a multilayer perceptron. Ensem-
ble learning is used to estimate the DFA model in an unsu-
pervised manner. The performance of the DFA have been
tested in a set of artificially generated noisy modulated si-
nusoids. Furthermore, we have applied it to magnetoen-
cephalographic data containing bursts of oscillatory brain
activity. This paper shows that DFA can correctly estimate
the underlying factors in both data sets.

1. INTRODUCTION

Recent advances in blind source separation (BSS) have pro-
vided new and powerful algorithms for the analysis of electro-
and magnetoencephalographic signals (EEG and MEG re-
spectively). For a selection of reviews in this field see [1, 2].
In spite of the very useful results obtained using classic BSS
approaches, it is often clear that these algorithms fail to fully
model the underlying signals. For example, independent
component analysis (ICA, [3]) assumes the signals to be
random samples from non-Gaussian distributions, which is
not a very plausible signal model for time-series with time-
structure. On the other hand, algorithms taking implicitly
the dynamics into account (see, e.g., [4]), do not provide
an explicit generative model for the observed data. With-
out a generative model, it is difficult to reliably estimate the
observation noise. This is a serious shortcoming regarding
MEG applications, where the signal-to-noise ratio can be
extremely poor.

In this paper we introduce a generative dynamical algo-
rithm for noisy measurements. This algorithm is dynami-
cal factor analysis (DFA), and it exploits a Bayesian treat-
ment called ensemble learning [5, 6]. Ensemble learning
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provides a general framework to learn generative models
from a given data set and it can be used for model selec-
tion, e.g., in the determination of the most probable number
of underlying factors to the observations. It also provides
uncertainties for the learned parameters thus automatically
performing regularisation.

Here we will apply DFA to learn factors from both ar-
tificially generated signals, consisting of mixtures of modu-
lated sinusoids, and MEG measurements containing bursts
of rhythmic activity.

Cortical electromagnetic rhythms have been observed
and studied since the early EEG and MEG recordings. It
is believed that spontaneous brain rhythms are mainly asso-
ciated with a cortical resting state, and thought to respond
quicker to incoming signals than a silent system would. The
spectral content and reactivity of spontaneous brain rhythms
are affected, e.g., by vigilance, several brain disorders, de-
velopment and ageing. Oscillatory brain activity thus gives
an overall view of brain function and is therefore routinely
monitored in clinical EEG recordings.

A typical way to characterize brain rhythms is through
their respective frequency bands. The most common rhythm,
present mainly over the parieto-occipital and occipital cor-
tex, has frequencies in the interval 8–13 Hz, and is labeled
as � -rhythm. Oscillations within the interval 14–30 Hz are
often labeled as

�
-rhythms. For a more comprehensive dis-

cussion regarding EEG and MEG, and their spontaneous
rhythms see, e.g., [7, 8].

From a signal processing viewpoint, in particular when
applying ICA algorithms in BSS, brain rhythmic activity
constitutes a great challenge. Due to their typical burst-like
nature, rhythmic activities may present very weak high or-
der moments, rendering them indiscernible from Gaussian
processes. These, as we know, would then be very hard to
separate, unless additional information is present [9, 10].
Such information should make use of the intrinsic temporal
dynamics present in each rhythm.
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2. MODEL

The dynamical factor analysis model is a very general model
of complex dynamical processes. Observations � ����� are
assumed to be generated by linear mixing � from hidden
states � ����� including Gaussian white additive noise � ����� .
Additionally each state � ����� for all

�
is generated from the

previous states � ���
	���
by a nonlinear mapping � with a

Gaussian innovation process � �����
. Mappings � and � are

assumed to be independent of time. Thus we have a two
part model:

� ������� ��� ������� � ������ ������� � � � ����	������� � ������� (1)

The nonlinear mapping � is modelled by a two-layer
MLP network [11] with sigmoidal tanh’s as the hidden layer
nonlinearities. This gives the mapping

� � � ��� � ������� �"!��$# � �&%'�(�*)
(2)

Note that only the change in the states is modelled by the
MLP network. Figure 1 illustrates the model graphically.
Dark circles correspond to the observations � ����� , empty cir-
cles are the states � ����� and the circles with sigmoids inside
represent the hidden units of the MLP network.

Notice that there is only a single delay in (2). When
time-series are predicted directly in the observation space,
i.e. auto-regressive models are used, (see e.g. [11]), it is
common to use several time instances of history as the in-
puts. In state-space models a single delay suffices, because
some of the states can represent the dynamics. For exam-
ple a free projectile movement can be modelled using three
previous positions of the moving object, but it can also be
modelled using the position, the speed and the acceleration
of the object as the states.

2.1. Dynamics in blocks

Factor analysis defines the mapping up to a rotation. This
means that the learned states can be mixtures of each others,
though they are not correlated [12]. The dynamical mapping
defines the rotation, but it is very slow to learn, if the MLP
network is fully connected.

In MEG signal analysis it is often crucial to learn the ro-
tation, since we are mainly interested in the characteristics
of the states, not in prediction. For this reason the dynamics
of the factors is forced to be block-wise (see Fig. 1), which
simplifies the network and encourages the model to find in-
dependent source processes. If the factors are modulated
sinusoids as is the case in rhythmical activity, blocks of two
factors suffice.

x(t)

s(t − 1) s(t)

x(t − 1)

Fig. 1. Part of the graphical model. Dark units are states, empty
units the observations and the ones with a sigmoid inside corre-
spond to the MLP dynamics. Direction of the arrows correspond
to the direction of the causality (observations are caused by states
and next states are caused by previous states).

3. ENSEMBLE LEARNING

The aim of learning in Bayesian framework is to calcu-
late the posterior density function + �-,'.�/�0 12�

, where
13�� � �4���.5�5�5�(. � ��67���

,
,8�9� � �4���.5�5�5�:. � ��67���

and
/

contains all
the model parameters. The posterior is obtained from the
Bayes’ theorem: + �-,'.�/�0 12��� + �$1;0 ,'.�/<� + �-,�0 /:� + �=/:�?> + �$12�

.
The likelihood of the observations given the model (1,2)

can be written as:+ �$1;0 ,'.�/<���A@ B C D + ��E
B �����50 � ������.�/:��A@ B C D F ��E B ������G�H B � ������.�IKJML(�=NPO B ���:. (3)

where
F ��E(GRQ'.?S:T�

denotes a Gaussian distribution over
E

with mean
Q

and variance
S T

,
H B

is the U th column vector of
the mixing matrix � and

O B
is a hyperparameter specifying

the noise variance. The likelihood + �-,�0 /:� of the states � is
specified similarly using the function � instead of the linear
mapping

H B
. All the parameters of the model have hierarchi-

cal Gaussian priors. For example the noise parameters
O B

of
different components of the data share a common prior [13].

Ensemble learning [5, 6] is a recently developed method
for fitting a parametric approximation to the exact posterior
density function + �-,'.�/�0 12�

. The true posterior is approx-
imated by a density V �-,'.�/:� with a simple factorial form.
The misfit of the approximation is measured by Kullback-
Leibler divergence between the approximation and the true
posterior:W � V �-,'.�/:�50 0 + �-,'.�/'0 12�����YX[Z�\^] C _a`Rbdc egf V �-,'.�/:�+ �-,'.�/�0 12�Ph �

(4)
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The posterior distribution can be written as + ��� .�/'0 � ���+ ��� .�/(.�� �?> + ��� �
. The normalizing term + ��� �

cannot usu-
ally be evaluated, and therefore the actual cost function used
in ensemble learning is

� � X bdc egf V ��� .�/<�+ ��� .�/(.�� �h � W � V ��� .�/<�50 0 + ��� .�/�0 � ���	 c egf + ��� ���A	 c egf + ��� ��� (5)

Ensemble learning has been previously used for non-
linear state-space models [14, 12], where both observation
and dynamical mappings are nonlinear. This more general
model can naturally learn linear mappings too, but we pre-
fer linear model of observation since it is highly plausible
in MEG [8].

3.1. Form of the posterior approximation

The cost function can be minimized efficiently if a suitably
simple factorial form for the approximation is chosen. We
use V �=/(.�� ��� V �=/<� V ���R�

, where V �=/:���
	 B V ��� B � is a prod-
uct of univariate Gaussian distributions, i.e. the distribution
for each parameter

� B
is parameterized with mean �

B
and

variance ��
B
. These are the variational parameters of the dis-

tribution to be optimized.
The approximation V �-,(� takes into account the posterior

dependences between �
B �����

at consecutive time instances.
It has a form V ��� � ��	 B�� V � � B �4�����	 D V � � B �����50 � B ����	�������

.
The value �

B �����
depends only on �

B ���'	 ��
at previous time

instant, not on the other ��� ���[	 ��
with ���� U . The distri-

bution V � � B �����50 � B ���[	 ����
is a Gaussian with mean that de-

pends linearly on the previous value:
Q B ������� �

B �����M����
B ��� 	�g.����K� � B ���'	Y���	 �

B ���'	Y����
, and variance ��

B �����
. The vari-

ational parameters of the distribution are �
B �����

,
��
B ����	 �g.����

and ��
B �����

.

3.2. Learning scheme

Minimisation of the cost function (5) is based on iterative
gradient-based search. In general the learning proceeds in
batches. After each sweep through the data the distribu-
tions V ���R�

and V �=/:� are updated. There are slight changes
to the basic learning scheme in the beginning of training.
The hyperparameters governing the distributions of other
parameters are not updated to avoid pruning away parts of
the model that do not seem useful at the moment.

If some initial guesses can be given to the factors, the
learning process is much faster. In this case we are inter-
ested in rhythmical activity, i.e. signals with varying time
structure and simple frequency content.

We suggest that DFA would be initialized with band-
pass filtered principal components of the data. Cut-off fre-
quencies for the band-pass filters can be set manually look-
ing at the power spectrum of the principal component or the

process can be automated by finding important bumps in it.
Also prior information can be used to set the filters.

For periodical signals, robust prediction of the dynamics
of the signal is achieved, when there are, in addition to the
real signal, another factor � > N shifted to the original one.
This can be achieved if the frequency responses of the band-
pass filters are set to be zero on band

�
� .�N � � . Then inverse

Fourier transform does not become real, but has real and
imaginary parts. Real part corresponds to the normal band-
pass filtered signal, and the imaginary part corresponds to� > N shift of it. It is suspected that the factor initialized using
the imaginary part will not be connected to the observations
at all, but is used only for the dynamics.

4. EXPERIMENTS

4.1. Artificial modulated sinusoids

To test the algorithm, we generated three modulated oscil-
lation signals, following the model:

� ���������! \ D�`#"%$ � � ������.
(6)

i.e., each signal corresponded to a sinusoid with ampli-
tude

�  \ D�` . Each �
�����

and
� �����

were sampled from follow-
ing distributions:

�
��& �(' F*) &".�� T�+-,/. 0�132

(7)

�
�����4' F*)

�
����	����.�� T�+ , 2

(8)
� ��& �(' F ) &".�� T�+%56. 0�132

(9)
� �����4' F*) � ����	���(�&Q'.�� T�+ 5 2 .

(10)

with parameters:
O  \ 7 ` ���g.�O/8"\ 7 ` � �g.�O  ��	RNM� 9M.�O 8 �	RNM.�Q � N �;: > :=< , where : is the average frequency of the

sinusoid and :>< � N=&>&
Hz is the sampling frequency. Fre-

quencies were randomly chosen from uniform distributions
between

��?".5�Ng�
,
�4�6@".5�/9g�

and
�4�6A".�NM��

Hz. These three orig-
inal signals can be seen in Fig. 2.

0 200 400 600 800 1000

3

2

1

Fig. 2. Three artificially generated modulated sinusoids.

Three linear mixtures were generated from the original
signals. The weights of the mixing matrix were randomly
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picked from uniform distributions between
�4	 �g.5��

. White
Gaussian noise with variance ���

� &"� 9
was added to each

mixture. These mixtures are depicted in Fig. 3.

0 200 400 600 800 1000

3

2

1

Fig. 3. Three mixtures of artificially generated modulated sinu-
soids.

DFA factors were initialized using the scheme described
in section 3.2 with predefined filters with pass-bands of 8–
12, 13–15 and 19–21 Hz cut-off frequencies. Weights of the
linear mapping were initialized to the maximum likelihood
estimates. Results of learning after 2000 iterations of DFA
are shown in Fig. 4.

0 200 400 600 800 1000

6

5

4

3

2

1

Fig. 4. Results of learning after 2000 iterations of DFA..

The learned linear mapping is shown as Hinton graph
in Fig.5. Note that the weights from the even factors to
the observations are practically zero as expected (see end
of Sec. 3.2).

4.2. Rhythmic MEG data

The usability of DFA in practice was tested in spontaneous
rhythmic MEG measurements of a female subject. Of the
possible 122 channels and several minutes of recording, a

1 2 3 4 5 6

1

2

3

sources

ob
se

rv
at

io
ns

Fig. 5. Means of the weights of the linear mapping after learn-
ing in artificial case. Dark colour correspond to negative values,
lighter colour to positive values.

period of 10 seconds and a selection of 12 MEG channels
was used (for complete information on the measuring de-
vice, as well as the MEG itself see, e.g., [8]). The data was
sampled at :=< � N=&>&

Hz, and high-pass filtered with cut-off
frequency of

�
Hz. This data is shown in Fig. 6. During

the second half of the measurement period, the subject was
asked to close her eyes, resulting in the appearance of clear
� -rhythm in various sensors. This can be seen, e.g., in the
short-time Fourier transform of the first channel (Fig. 7),
where also the

9=&
Hz power line is visible.

0 1 2 3 4 5 6 7 8 9 10
12

11

10

9

8

7
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5

4

3

2

1

time / s

Fig. 6. Short fragment of MEG recording over twelve channels.

The factors were initialized using the manual initializa-
tion scheme presented in sec. 3.2, with predefined filters
with pass-bands of 1–8, 8–12, and 49–51 Hz. These choices
were made based on the power spectrum of the data. Six
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Fig. 7. Short time Fourier transform of the first channel of MEG
recordings. � -rhythm is visible in the latter half of the channel.

blocks of two sources were learned using DFA. Means of
their time courses are shown in Fig. 8 and their short-time
Fourier transforms in Fig. 9. The first two factors are very
clear � -rhythms, starting around 4 seconds. The first one
corresponds to the component associated with the observa-
tions, whereas the second is the � > N delayed version (see
table 1 for mean squared weights of each factor in the linear
mapping).

1st 2nd 3rd 4th 5th 6th
a 0.12 0.13 0.05 0.06 0.01 0.01
b 0.00 0.01 0.02 0.01 0.02 0.02

Table 1. Mean squared weights of the linear observation map-
ping times the variances of the sources in MEG case. Columns
correspond to different blocks and rows to factors in blocks.

A careful look at the 2a and 2b factors, and their respec-
tive spectrograms, tells us that a different � -rhythm is as
well present in the measurements. Although the frequency
content of these signals is very close to the one of the pre-
vious components, the time activations differ significantly.
In fact, the main activation of factor 2a lies between the 8th
and 9th seconds. This result opens good prospects for the
use of DFA in identification, differentiation and characteri-
zation of rhythmic brain activity.

Another important information that we can extract from
Figs. 8 and 9, is that a frequency component, around 20 Hz,
faintly present in the original data, has been successfully re-
covered by factor 4a. In fact, even the weights of the linear
mapping (see Table 1) give this component as an impor-

0 1 2 3 4 5 6 7 8 9 10

6b

6a

5b

5a

4b

4a

3b

3a

2b

2a

1b

1a

time / s

Fig. 8. Factors learned from MEG recordings.

tant one. Note that no frequency range around 20 Hz has
been used during the initialization stage, showing that DFA,
although privileging the frequency contents that have been
used, can learn other dynamics present in the data.

Factors 3a and 3b capture both phases of the
9=&

Hz
power line.
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Fig. 9. Short-time Fourier transforms of the factors learned from
MEG recordings. The topmost row correspond to the factors 1–3
etc.
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5. DISCUSSION AND CONCLUSION

As in many other BSS approaches, DFA assumes that the
set of observations � ����� are linear mixtures of underlying
hidden factors � ����� . Unlike most approaches, it assumes
that each realization of the states can be nonlinearly mod-
eled from their previous realizations. Using a very general
and efficient Bayesian approach, the algorithm is capable of
uncovering the hidden states. Furthermore, and due to its
generative nature, the models found by DFA can easily be
used to draw predictions from the observations. In fact, the
state of each factor, at a given time instant, determines its
state at the successive time instant.

DFA performs an explicit modeling of the factors. The
dynamical part of DFA can determine, at each realization�

of the observation � ����� , which portion corresponds to the
underlying estimated factors, � ����� , and which corresponds
to noise, � ����� . DFA can therefore deal better with noisy
signals than algorithms that are uncapable of such explicit
modeling, even though they may be using implicitly some
temporal information.

Ensemble learning favors simpler and smoother mod-
els. Furthermore, the predictions are made over a collection
of models. The probability of overfitting to a particularly
strong, but very peaky, posterior is therefore very small. Be-
cause DFA uses ensemble learning to estimate the models
for the factors, these are less prone to overlearning, and per-
form automatically some form of regularization.

Due to its modular nature, it is as well easy to foresee
future updates of the present DFA structure, to accomodate
further algorithmic developments. As an example, some
model of the nonstationarity of the data could be estimated.

In this paper we have given two illustrations of the re-
sults one can obtain when using DFA on rhythmic data. The
first, in a “controlled environment”, has let us understand
the mechanisms of its functioning. The second, using MEG
data, patented its potential application to real-world record-
ings.

Further research, covering a wider range of sensors, will
allow us to make a more serious use of DFA in the deter-
mination and separation of spontaneous brain oscillations.
Then it will be possible to better map the location of the
brain areas involved in the production of such oscillation.
Even though DFA is a computationally demanding tech-
nique, it is expected that it will provide, in the near future,
physicians and brain researchers with a very nice tool for
the analysis of brain rhythms.
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