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Abstract. Denoising source separation is a recently introduced frame-
work for building source separation algorithms around denoising pro-
cedures. Two developments are reported here. First, a new scheme for
accelerating and stabilising convergence by controlling step sizes is in-
troduced. Second, a novel signal-variance based denoising function is
proposed. Estimates of variances of different source are whitened which
actively promotes separation of sources. Experiments with artificial data
and real magnetoencephalograms demonstrate that the developed algo-
rithms are accurate, fast and stable.

1 Introduction

In denoising source separation (DSS) framework [1], separation algorithms are
built around a denoising function. This makes it easy to tailor source separation
algorithms for the task at hand. Good denoisings usually result in fast and
accurate algorithms. Furthermore, explicit objective function is not needed, in
contrast to most existing source separation algorithms.

Here we report further developments of two aspects. First, we introduce a new
method for stabilising and accelerating convergence which is inspired by predic-
tive controllers. Second, we develop further the signal-variance-based denoising
principles. The resulting algorithms yield good results in terms of signal-to-noise
ratio (SNR) and exhibit fast and stable convergence.

2 Source separation by denoising

Consider a linear instantaneous mixing of sources:

X = AS + ν, (1)

? Funded by the European Commission, under the project ADAPT (IST-2001-37173)
and by the Academy of Finland, under the project New information processing
principles.

?? Funded by the Academy of Finland.

C.G. Puntonet and A. Prieto (Eds.): ICA 2004, LNCS 3195, pp. 65–72, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



66 Harri Valpola and Jaakko Särelä
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Fig. 1. a) Original data set , b) after sphering and c) after denoising. After these steps,
the projection yielding the best signal-to-noise ratio, denoted by arrow, can be obtained
by simple correlation-based learning.

where the N ×T matrix S are the sources, the M ×T matrix X are the observa-
tions and there is noise ν. If the sources are assumed Gaussian, this is a general,
linear factor analysis model with rotational invariance.

DSS, as many other computationally efficient ICA algorithms, resorts to
sphering. In the case of DSS, the main reason is that after sphering, denois-
ing combined with simple correlation based estimation akin to Hebbian learning
(on-line) or power method (batch) is able to retrieve the signal with the highest
SNR. Here SNR is implicitly defined by the denoising. The effect of sphering
and subsequent denoising is depicted in Fig. 1.

Assuming that X is already sphered and f(s) is the denoising procedure, a
simple DSS algorithm can be written as follows:

s = wT X (2)

s+ = f(s) (3)

w+ = Xs+T (4)

wnew = orth(w+) , (5)

where s is the source estimate (a row vector), s+ is the denoised source esti-
mate, w is the previous weight vector (a column vector), w+ is the new weight
vector before and wnew after orthonormalisation (e.g., deflatory or symmetric
orthogonalisation as in FastICA [2]).

Note that if X were not sphered and no denoising were applied, i.e., f(s) = s,
the above equations would describe the power method for computing the princi-
pal eigenvector. When X is sphered, all eigenvalues are equal to one and without
denoising the solution is degenerate, i.e., any unit vector w is a fixed point of
the iterations. This shows that for sphered X, even the slightest denoising f(s)
can determine the convergence point.

If, for instance, f(s) is chosen to be low-pass filtering, implicitly signals are
assumed to have relatively more low frequencies than noise and the above itera-
tion converges to the signal which has the most low-frequency components. On
the other hand, if f(s) is a shrinkage function, suppressing small components
of s while leaving large components relatively untouched, signals are implicitly
assumed to have heavy tails and thus super-Gaussian distributions.
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It is possible to begin with an objective function g(s) in which case the de-
noising can be chosen1 to be the gradient: f(s) = ∇g(s). In practice, denoising
functions can easily be designed without explicitly starting from objective func-
tions. They often work exceedingly well and good denoisings result in fast and
accurate algorithms.

3 Accelerating and stabilising convergence by spectral

shift and adaptation of learning rate

If the denoising function is not able to reduce noise significantly more than signal,
the basic DSS iterations (2)–(5) may converge slowly. This is closely related to
the fact that power method converges slowly if the largest eigenvalue is only
slightly larger than the next largest. Consequently, convergence in DSS can be
accelerated in a very similar manner as in power method.

A well-known speedup for power method is spectral shift. It is based on
modifying an iteration of the form w+ = Aw into w+ = Aw + βw. In the
original iteration, it holds w+ = λw at the fixed points and consequently w+ =
(λ + β)w after the modification. The fixed points remain the same but the
eigenvalues λ are shifted by β, hence the name spectral shift.

If all eigenvalues are large and their differences are small, convergence can be
greatly accelerated by using β which is negative and whose absolute value is close
to the second largest eigenvalue. On the other hand, power method converges to
the eigenvector that corresponds to the eigenvalue having the largest absolute
value. This means that instead of finding the principal component, the minor
component is obtained with negative enough β.

In DSS, (3) can be modified into

s+ = α(s)f(s) + β(s)s (6)

without changing the fixed points as long as α(s) and β(s) are scalar functions.
Since α(s) only scales the source estimate, from now on we assume α(s) = 1.

In DSS, s+sT /T plays the role of the eigenvalue [1]. Since Gaussian signals
are the least desirable ones in source separation, a reasonable choice for β is the
one that shifts the eigenvalue of Gaussian signals to zero:

β = E{f(ν)νT /T} , (7)

where ν is a normally distributed signal.
It is interesting to note that the fixed-point equation of FastICA [2] can

be interpreted within this framework although normally the speedup used in
FastICA is justified as an approximation to Netwon’s method. In [1], it was
shown that if β(s) is based on a linearisation of f(s) around the current source
estimate s, the spectral shift (7) will be

β(s) = − trJ(s)/T , (8)

1 There is some freedom in this choice because there are several denoising functions
which have the same convergence points. They are given in (6).
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which is identical to the one used in FastICA. Here J(s) is the Jacobian of f(s).
Interpreting the speedup as a spectral shift corresponding to Gaussian noise
gives an intuitive explanation to why FastICA is able to extract both super- and
sub-Gaussian signals with the same nonlinearity: power-method-like iterations
converge to the eigenvector whose eigenvalue has the largest magnitude. The
sign of the eigenvalue is different depending on whether the component is super-
or sub-Gaussian but the magnitude increases when moving away from Gaussian
signal whose eigenvalue has been shifted to zero.

In general, iterations converge faster with the FastICA-type spectral shift (8)
than with the global Gaussian approximation (7) but the latter has the benefit
that no gradients need to be computed. This is important when the denoising is
defined by a complex nonlinear procedure such as median filtering.

Neither of the spectral shifts, (7) or (8), always results in stable or fast con-
vergence. Sometimes the spectral shift is too large, which due to the nonlinear-
ity of denoising typically leads to oscillatory behaviour: the iteration oscillates
between two weight values. Some other times the spectral shift is too modest
leading to slow convergence characterised by small changes of w in the same
direction during several iterations.

For this reason, we have suggested a simple stabilisation rule [1]: instead of
updating w into wnew defined by (5), it is updated into

wadapted = orth(w + γ∆w) (9)

∆w = wnew − w , (10)

where γ is the step size. Originally γ = 1, but if the consecutive steps are taken
in nearly opposite directions, i.e., the angle between ∆w and ∆wold is greater
than 179◦, then γ = 0.5 for the rest of the iterations. There exist a stabilised
version of FastICA as well [2] and a similar procedure has been used in practice.

The above modification is able to stabilise convergence in case of oscillations
but sometimes the spectral shift is too small and then an increase in step size
would be appropriate, i.e., γ > 1. We propose a simple rule for adapting γ which
is inspired by predictive controllers used in robotics: a simple but slow and possi-
bly unstable reactive controller is used for teaching a new, predictive controller.
Usually stable and rapid convergence are difficult to achieve simultaneously, but
in this setup the new controller can be both faster and stabler.

Translated in our problem, the old slow and unstable controller is the weight
modification rule which proposes a modification of weight according to (10).
The new controller is implemented by (9), i.e., it modifies the step size. The
new controller tries to do immediately what the old controller would do in the
future. The step at the previous time instant was apparently optimal if the step
proposed at this time instant is orthogonal with it. If not, γ should have been
different and, assuming that the optimal γ is constant, the gamma used at this
time step should be

γnew = γold + ∆wT
old∆w/||∆wold||

2 . (11)

As it does not seem productive to take steps in the direction opposite from what
is suggested by ∆w or to take extremely short steps, we require that γ ≥ 0.5.
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The above adaptation of γ has turned out to be very useful and it can both
stabilise and accelerate convergence. According to (11), γ keeps increasing as
long as the steps are taken to the same direction and decreases if they are taken
backwards.

4 Denoising based on estimated signal variance

Several denoising procedures based on masking the source estimate were pro-
posed in [1]. The basic idea is to multiply the source estimate by a positive
envelope, a mask which has low values when SNR is low and vice versa. Depend-
ing on how the mask is computed, several types of prior information about the
sources can be used for separation.

A simple and well-founded mask can be obtained from the maximum-a-
posteriori (MAP) estimate. Assuming that the signals are Gaussian with chang-
ing variance σ2

s(t) (for related methods, see, e.g., [3]) and additive Gaussian noise
σ2

n, the MAP estimate of the signal is

s+(t) = s(t)
σ2

s(t)

σ2
tot(t)

, (12)

where σ2
tot(t) = σ2

s(t) + σ2
n(t) is the total variance of the observation. Masking

then boils down to estimating σ2
s(t) and σ2

tot(t) from the observations.

A näıve estimate of the signal variance is σ2
s(t) ≈ s2(t). It can be improved

by low-pass filtering in time, e.g., by convolving with a Gaussian kernel. Simple
estimation of the baseline noise-level σ2

n was suggested in [1] resulting in a sim-
ple DSS algorithm. However, from the viewpoint of the estimated signal, other
signals should be treated as noise. DSS algorithm using the above approximation
separates easily the signal subspace from noise but the separation in the signal
subspace is slow and may even fail. In [1], this was solved by using σ2µ

s (t) with
µ > 1 in (12). This way the mask does not saturate so quickly for large signal
variances, giving competitive edge to the source which is strongest. A close con-
nection to the familiar tanh-nonlinearity was shown: f(s) = s − tanh s has the
same fixed points as f(s) = tanh s but the former can be interpreted as s masked
by a slowly saturating envelope.

In this paper, we propose a new and better founded solution to the sepa-
ration problem. One can simply whiten the estimated total variance σtot(t) by
a symmetric whitening matrix. This bares resemblance to proposals of the role
of divisive normalisation on cortex [4] and to the classical ICA-method called
JADE [5]. Whitening naturally requires that all sources are estimated simul-
taneously and deflation approach is thus not applicable. The total variance is
obtained by smoothing s2(t) as described above. We obtain σ2

s(t) by taking
the positive part of the whitened σ2

tot(t). Whitening here includes removing the
mean. Separation by (12) is accelerated significantly because the differences be-
tween the envelopes of source estimates are actively emphasised.
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179−rule predictive rule
0

100

200

400

600

ite
ra

tio
ns

a: gamma update

no shift
FastICA
fixed shift

whiten var smooth tanh tanh
0

2

4

6

8

S
N

R
 / 

dB

b: denoising function

Fig. 2. Speedup tests. a) Effects of spectral shift and step-size adaptation on conver-
gence speed. The leftmost bar not fully shown. b) Average SNRs for different denoising
functions: variance whitening and tanh with and without smoothing.

5 Experiments

In this section, we show that the developed algorithms are fast, stable, accurate
and produce meaningful results. First, in Sec. 5.1, we demonstrate the different
spectral shifts and step-size adaptation. Then the accuracy of different denoising
algorithms is tested with artificial data (Sec. 5.2). Finally, we demonstrate the
separation capability and convergence speed of the variance-based-denoising in
real MEG data (Sec. 5.3).

5.1 Speedup comparison

In Sec. 3, we reviewed two spectral shifts that can accelerate convergence in
DSS algorithms. Later in the section, we proposed two additional methods to
adapt these spectral shifts to increase stability. In this section, we compare these
adaptive-spectral-shift methods together with the stability improvements in de-
flatory separation. The data consists of M = 50 channels and T = 8192 time
samples of rhythmic magnetoencephalograms (MEG) [6, 1]. The data was pre-
processed as in [1] to enhance weak phenomena. Simple f(s) = s − tanh s was
used as the denoising function. DSS was run to extract 30 components from this
data and average number of iterations was calculated. To be fair for all the meth-
ods, each of them was run until convergence, where the angle between old and
new projection vectors (w and wnew) was less than 0.0001◦. We then measured
the number of iterations that had taken w within 0.1◦ of the final solution.

The results are shown in Fig. 2a. Both types of spectral shift and γ adap-
tation always accelerated convergence. Convergence without any speedups took
on average more than 1500 iterations. Without γ adaptation, the FastICA-type
scheme (8) converged faster on average than the fixed-shift scheme (7), but γ
adaptation reversed the situation. Standard FastICA used about 50% more it-
erations than the best method.
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5.2 Comparison of denoising functions

We next compare DSS schemes based on source-variance estimates to the clas-
sical tanh-based approach in symmetrical separation of artificial signals. The
signals were generated as follows. First, six signals were generated by modulat-
ing Gaussian noise with slowly changing envelope. Then the signals were divided
into two subspaces, three signals in each. In each of the subspaces, the signals
were modulated by another envelope common to all the signals in the subspace.
The common envelopes of the subspaces were stronger than the individual en-
velopes of the sources. Finally, the unit-variance signals were mixed linearly
(with M = N). Mixing coefficients were sampled from normal distribution and
Gaussian noise with variance σ2

ν = 0.09 was added.
One hundred different data sets were generated and DSS was used to separate

the sources with three different denoising functions. Two methods were based
on smoothed estimate of source variance. Either the whitening scheme described
in Sec. 4 or tanh-based scheme were used in order to promote separation, the
tanh-mask being 1 − tanh[σtot(t)]/σtot(t). If σ2

tot(t) = s2(t), this reduces to the
popular tanh-nonlinearity. With these methods, spectral shift was computed by
assuming that the mask does not significantly depend on any individual source
value, i.e. −β equals to the average of elements of the mask. The third method
was the popular tanh-nonlinearity with FastICA-type spectral shift. The step
size was adapted by the 179-rule.

As before, the algorithms were run until convergence. The average SNRs of
the separation over the one hundred runs are shown in Fig. 2b. Smoothing the
variance estimate clearly improves the SNR with tanh-nonlinearity. Variance
whitening achieved comparable SNR but used significantly less iterations.

5.3 MEG signal separation

Finally, we used the DSS algorithms and acceleration methods studied in the
previous sections to separate sources from rhythmic MEG data. The whole data
set (M = 122 and T = 65536) was used and 30 components were extracted using
the same denoising functions as in the previous section. Both the 179-rule and
the predictive rule (11) were tested. The number of iterations was taken to be
the limit where the projection vector w of the slowest converging component
reaches 0.1◦ of the final projection. Enhanced spectrograms of some interesting
components extracted by the variance-whitening DSS are depicted in Fig. 3a.

Tanh-nonlinearity with smoothed variance estimate extracted similar compo-
nents, but the usual tanh-nonlinearity without smoothing seemed to have trouble
in finding the weak steady frequencies shown in the bottom row of Fig. 3a. The
processing times of different denoising functions and different step size adapta-
tions are shown in Fig. 3b. Since the computational complexity of one iteration
depends on the denoising function, the total CPU-time is reported. Compared to
the variance-whitening DSS, the tanh-nonlinearities used more than two times
more processing time, independent of the step-size adaptation. Compared to the
179-rule, the adaptive γ reduced the total processing time by 20–50 %, depending
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Fig. 3. a) Spectrograms of some of the sources separated using variance whitening.
Time on the horizontal and frequency on the vertical axis. b) Used processing time for
different denoising functions and step sizes.

on the denoising function. Tanh-nonlinearity with smoothed variance estimate
used a fixed spectral shift and benefitted more from adaptation of γ than the
plain tanh-nonlinearity with FastICA-type spectral shift.

6 Conclusion

DSS framework offers a sound basis for developing simple but efficient and accu-
rate source separation algorithms. We proposed a method for stabilising and ac-
celerating convergence and showed that convergence is faster than with FastICA.
Additional benefit is that gradient of the nonlinearity is not needed. We also
proposed a new denoising procedure which was justified as the MAP-estimate of
signals with changing variance. Denoising which makes use of non-stationarity
of variance was shown to yield better results than the popular tanh-nonlinearity
as measured by SNR in the artificially generated data. The variance-whitening
DSS also extracted cleaner signals in MEG data, while the tanh-nonlinearity
had difficulties with some weak but clear phenomena. Whitening the estimated
variances of different sources significantly improved convergence.
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