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Bankruptcy Analysis with Self-Organizing Maps in
Learning Metrics

Samuel Kaski, Member, IEEE, Janne Sinkkonen, and Jaakko Peltonen

Abstract—We introduce a method for deriving a metric, locally
based on the Fisher information matrix, into the data space. A
self-organizing map (SOM) is computed in the new metric to
explore financial statements of enterprises. The metric measures
local distances in terms of changes in the distribution of an
auxiliary random variable that reflects what is important in the
data. In this paper the variable indicates bankruptcy within the
next few years. The conditional density of the auxiliary variable
is first estimated, and the change in the estimate resulting from
local displacements in the primary data space is measured using
the Fisher information matrix. When a self-organizing map is
computed in the new metric it still visualizes the data space in a
topology-preserving fashion, but represents the (local) directions
in which the probability of bankruptcy changes the most.

Index Terms—Bankruptcy analysis, Fisher information matrix,
information metric, learning metric, self-organizing map.

I. INTRODUCTION

BANKRUPTCIES have such a great importance on the
financing models and business life in general, that their

analysis has become almost its own field of science. They
have been widely studied in economics, and most data analysis
methods have been suggested to the problem. A traditional
benchmark for these methods has been the bankruptcy predic-
tion problem, but we argue that at least as important from the
practical point of view is to develop methods for analyzing
and understanding the different corporate behavior types and
their relation to bankruptcy. In this task, the self-organizing
map (SOM) [1], [2] has been found a valuable tool, mainly
because of its good visualization capabilities. The present paper
introduces a further development of SOM-based data analysis.
Our results show that it yields maps with enhanced visualiza-
tion of bankruptcy risk, and a statistically better separation of
bankruptcies from healthy companies. The methodology can
also be directly utilized in other application areas.

The success of unsupervised algorithms, such as the SOM and
clustering methods, depends crucially on the metric, the mea-
sure of the distance between the objects of interest. The metric,
on the other hand, depends on which kinds of variables have
been chosen to represent the objects, i.e., on variable selection
and feature extraction. These processing steps affect even super-
vised methods although many supervised methods are in prin-
ciple, given unlimited resources, universal approximators. The
old problem of feature extraction or variable selection, that is,
choosing how to represent the input data, persists as a crucial
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unsolved research topic in pattern recognition, neural computa-
tion, and data analysis.

At its simplest, feature extraction reduces to choosing and
scaling the input variables, but more generally it is a nonlinear
mapping of the input space to a space that is more suitable for
further processing. Successful feature extraction stages are usu-
ally tailored for the task at hand using expert knowledge or
heuristic rules of thumb. There is often, however, some implicit
auxiliary information available about the relevance of the fea-
tures of the input. For instance, in a classification task the rele-
vant features are those that separate between the classes.

Implicit information about the relevance of the features may
also be available for unsupervised descriptive data analysis
tasks. A relevant classification of the samples may be known
and the goal may be to find a natural grouping for them; a
grouping that reflects the classification but may, for example,
discover subclasses. Another example is process monitoring in
which some indicator of the performance of the process may be
associated with each data vector. The quality of the end product
could be a suitable indicator. The goal would then be to find
out factors affecting the performance of the process.

Our ultimate aim is to develop algorithms that take such aux-
iliary information into account in order to explicitly transform
the original metric of the input space. The space is locally scaled
so that the new (local) distances will measure the change of
the auxiliary information (for a preliminary account see [3]).
Proximity relations or, loosely speaking,1 topology of the input
space is still retained. Note that by contrast, a change of the
metric that does not preserve the proximity relations would map
some close-by points of the input space to very different fea-
ture values, and the generalization power originating from the
smoothness of the model would be lost.

For computational reasons the new metric is best suited for al-
gorithms that rely mostly on local distances of the input space.
The SOM is one example. When an unsupervised algorithm
learns using the new metric, the learning process is a useful com-
bination of supervised and unsupervised learning. The prox-
imity relationships of the input space are preserved as is typical
of unsupervised methods, while the metric (local scaling of the
space) is induced in a supervised manner.

We will apply the new metric to analyze the bankruptcy risk
of enterprises on the basis of financial statements. The setting
is similar to that of Kiviluoto and Bergius [4]–[6]. They have
used SOMs to extend bankruptcy analysis from traditional
straightforward prediction of bankruptcy to visual exploratory
analyses of the relationship between the financial statements

1Even though the mapping is continuous it is not topology preserving since
it may be projective.
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and the bankruptcy risk of different kinds of enterprises.
We complement their studies by using the new metric in the
SOM-based exploratory analyses. The enterprises are organized
on a SOM in such a manner that the analysis will concentrate
on the (local) factors that affect the probability of bankruptcy
most. We will then explore the results to find out the important
dimensions for various kinds of enterprises.

II. THE METRIC

We wish to transform the distance measure of the data space
so that it will concentrate on the important differences between
data samples and disregard irrelevant dimensions. It may be
clear that it is impossible to construct such a metric without
some auxiliary, prior knowledge about the importance of the
differences. In this work we assume that there isauxiliary data
available (more details below), and that the auxiliary data im-
plicitly defines what is important or relevant.

The new metric is to belearnedbased on a data set, and
used as a distance measure for subsequent analysis and visu-
alization of the set. The metric is constructed so that it reflects
the local importance of different directions in the data space.
For example, it could measure how much changes in the finan-
cial state of a company affect the bankruptcy risk of that kind of
enterprise. Due to its locality, the distance measure is capable
of revealing different factors for different kinds of enterprises.
Moreover, since the distance measure is defined in the original
data space, it is straightforward to interpret the results in terms
of the original variables, here the indicators of financial states.
For example, if the distances for a company type are large along
the axis corresponding to the profitability, then profitability con-
tributes to the bankruptcy risk of such companies.

In exploratory data analysis applications the similarity rela-
tionships between the data samples, the enterprises, can be vi-
sualized with methods such as the SOM, precisely in the same
way as previously. The only difference is that the relative dis-
tances of the enterprises will change. If they are different along
an important dimension (actually the nonlinear route of minimal
length) their distance is large, whereas if they are different only
along an irrelevant dimension they will become very close to
each other.2

A. Learning Metric: The Principle

We seek to describe the similarity relationships of items
of the data space by utilizing the information within the joint
distribution of the data andauxiliary data . Denote the joint
probability density function (pdf) by . We will call

the primary data, and denote the associated random
variable by .

Denote the random variable that produces the auxiliary data
by . It is assumed that theor, more specifically, the condi-
tional distributions implicitly convey information about
which kinds of similarity relationships are important in the data.
In our present application to bankruptcy analysis, theare bi-
nary and indicate whether an enterprise goes bankrupt within

2In practical computations we will use local approximations to the nonlinear
routes, which is sensible for algorithms such as the SOM that depend mostly on
local distances.

the next three years, and theare feature vectors derived from
the financial statements. The important changes in the financial
state are then those that change the probability of bankruptcy,
the distribution .

A change in distributions can be measured by the Kullback-
Leibler divergence . An old result [7] gives a formula for the
local Kullback-Leibler divergence as

(1)

where

(2)

is the Fisher information matrix and denotes expectation
over the possible values of, conditioned on . Here the Fisher
information matrix is the representation of the tensor of the
new metric in the original Euclidean coordinates in whichis
also presented. The matrix is positive semidefinite, and it defines
the local scaling of the directions of the input space at the point

. We then define the new local metric of the data space as

(3)

In the new metric the conditional density changes evenly
in all directions, at all points of the input space.

Note 1: The Fisher information matrix was originally de-
rived for measuring the effect that a change in the modelparam-
etersproduces on the probability distributions that the models
generate [8]. The resulting distance is called (Fisher) informa-
tion distance or (Fisher) information metric in the information
geometry literature (see, e.g., [9]–[11]). Here we measure the
effect of a change in thelocation in the primary data space to
obtain a metric there. We will call the resulting metric theFisher
metricand call the approachsemisupervisedsince the auxiliary
distribution in a way supervises the construction of the metric.

Note 2: The new metric (3) is defined locally, for close-by
points and , and global distances are defined by path
integrals. In principle there exists another, more straightfor-
ward alternative: to simply measure the distance betweenany
nonlocal pair and by . Such a measure
might be useful for some applications but its disadvantage is
that it would completely override the original structure of the
data space. Two points with identical density estimates,
and , would have a zero distance even if the points were
originally far away. If some kind of generalizability exists over

, it would be destroyed by the change of the topology. In fact,
the original representations would not be needed at all, and
the data points could be simply represented by distributions
in the -space. All information contained in the primary data
would then be lost.

An additional disadvantage would be that the new represen-
tations cannot be interpreted in terms of the original data vari-
ables, at least not without further analyses. In the bankruptcy
application it is of prime importance to know which aspects of
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the financial state of a company are related to changes in its
bankruptcy risk and our method focuses on this problem.

B. Learning metric: Computation

The conditional probability distribution is usually es-
timated from a data set , . Any method
that produces differentiable estimates is potentially useful. The
choice of the estimator is discussed in Section II-C; for the mo-
ment assume tentatively that we have an estimate of the
conditional density available.

The estimate could in principle be used in place of
in (2), (3) to approximate the new metric. However, for

numerical computations it is not necessary to form the Fisher
information matrix explicitly, for one can get the squared local
distances directly from

(4)

The new metric can be used in any supervised or unsupervised
method; in Section III we will describe how to use it to compute
SOMs for visualization and exploratory data analysis purposes.

If only partially labeled data are available, it is best to use a
pdf estimator with the ability to utilize such data. The Gaussian
mixture model MDA2, described in Section II-C, can be easily
extended for partially labeled data as it is usually optimized by
the EM algorithm. After the pdf estimator is fixed, using par-
tially labeled data with the new metric is straightforward, for
the metric is defined into the primary data space and therefore
can be computed with the knowledge about the primary sample

only.
A demonstration of the new metric for an artificial, easily vi-

sualizable two-dimensional (2-D) two-class data set is presented
in Fig. 1.

Note 1: Nonlocal distances can be defined as the minimal
path integrals of the local distances, minimum taken over all
possible paths. This generates a Riemannian metric (for general
treatments of the related information geometry, see [9]–[11]).
In practice, the computation of the integrals would be extremely
tedious and we will below resort to local approximations which
are sensible for methods that rely mostly on local distances (see
Section III).

Note 2: If the estimate is very uneven or the Fisher
metric spans an unpreferably low-dimensional space, the metric
can be “regularized” by mixing it with the original Euclidean
metric of , resulting in the metric tensor represented by

(5)

where is a small positive constant ( ) and is the
identity matrix.

C. Metrics from Two Kinds of pdf Estimates

Our goal here is to estimate the probability density of
the auxiliary random variable, conditioned on . Plenty of al-
ternative methods are available. Many of them have been devel-
oped for classification purposes (for reviews see e.g., [12], [13]).

Fig. 1. The metric generated by a pdf estimate for a 2-D two-class data set (N

= 1000). The first class is sampled from a symmetrical Gaussian withp(c) =
(the topmost cluster in the figure), the second from a sum of two Gaussians (the
bottom clusters). For all the Gaussians,� = 0.6, and the mutual distances of the
centers are equal to unity. The gray-scale background illustrates the marginal
densityp(x), and the small line segments (or dots) depict the dominant direction
and relative distancesd in the local metric. Distances are nonzero only in the
directions where the conditional density changes. The pdf was estimated with a
Gaussian Parzen estimator (� = 0.4).

Most such methods would typically be suboptimal for our pur-
pose, however, because a good classifier optimizes the (some-
times implicit) pdf estimate near the class borders or, more gen-
erally, near the area where the decision criterion reaches critical
values.

In principle, any estimator which produces differentiable es-
timates of the conditional densities could be used. In this paper
we skip the discussion about the merits of different estimators
and rely on two classical methods. The first is a computation-
ally intensive but well-performing nonparametric estimate, the
(Parzen) kernel estimator, and the second is a Gaussian mixture
model. Both estimators can be expressed within the same gen-
eral mixture density form.

Let us consider an additive mixture model in which the
generating component densities are identified with the discrete
random variable . The value of is if the th component
generator has generated the current data sample. We assume
that and are conditionally independent given the value of

. Then the joint density generated by theth component is

We will model by a coefficient , by , and
by a function parameterized by . In this

notation the model for the joint density of the data is

(6)
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where has been used to denote the whole set of parameters of
the model.

By applying the Bayes rule, an estimate of the conditional
density is obtained as

(7)

The kernel estimator and the mixture density model differ in
their parameterizations. Estimation of the parameters in these
special cases will be discussed in more detail below. For the
moment, assume that the values of all the parameters of the con-
ditional density estimate (7) are known.

It is shown in Appendix A that if the component densities
are Gaussians with equal diagonal covariance matrices

and means then the distance in (4) becomes

(8)

The parameter governs the width of the Gaussians and there-
fore the smoothness of the resulting pdf estimates. A method for
choosing the value of when the new metric is used for learning
SOMs will be described later in Section IV-B: A suitable like-
lihood measure is proposed, and the value of the sigma can be
selected to maximize the measure in the learning or validation
set.

1) Kernel Estimation: In kernel density estimation the com-
ponent densities are called kernels; the number of ker-
nels is equal to the number of data points, and the parameters

are set to the data samples, . The prior probabilities
are set to . The parameter if in the th data
pair the value of is . Otherwise . The
only free parameter left to be estimated is the varianceof the
kernels.

2) Gaussian Mixture:When the component densities in the
model (7) are chosen to be Gaussians parameterized by their
means, the model is equivalent to the mixture discriminant anal-
ysis 2 in [14] (cf. also [15]; the relation between mixture dis-
criminant analysis and our work will be discussed in more de-
tail in Section II-D). Now , , and will all be estimated
from the data. Formulas for estimating the model with the EM
algorithm [16] are presented in Appendix B.

D. Related Works

According to our knowledge the introduced principle is new.
Works in which some aspects resemble our approach exist, how-
ever. Amari and Wu [17] have augmented support vector ma-
chines by making an isotropic change to the metric near the
class border. In contrast to this, our change is nonisotropic and
changes the metric everywhere. Jaakkola and Haussler [18] in-
duced a distance measure into a discrete input space using a gen-
erative probability model. The crucial differences are that they

do not use external information, and that they do not constrain
the metric to preserve topology.

In some earlier works auxiliary information has been incor-
porated directly into the representations of the data (see, e.g.,
[2], [19]; note, however, that the goal in these works is different
from ours). The auxiliary information can be encoded for ex-
ample in the 1-out-of-C manner and concatenated to the data
vectors . The main problem of this approach, for our purposes,
is the arbitrary relative scale of the primary and auxiliary data. If
the relative scale of the auxiliary data is too small, the primary
data will dominate in the distance measure, whereas our goal
is to measure changes in the auxiliary data and represent these
changes as the distance measure of the primary data space. If
the relative scale of the (discrete) auxiliary data is too large, on
the other hand, then the data vectors will effectively be divided
into separate clusters, each corresponding to one possible value
of the auxiliary variable. The proximity relations (topology) of
the original data space will then be destroyed.

Mappings from the original space to a new lower- or equal-di-
mensional space, which is the general definition of feature ex-
traction, have a relation to our method. Automatic methods for
optimizing such mappings, for example by maximizing mutual
information, have been proposed [20], [21]. Unlike in a stan-
dard separate feature extraction stage, however, the change of
the metric in our method defines a manifold which cannot in
general be projected to a Euclidean space of the same or lower
dimensionality. Therefore, no dimensionality-preserving or di-
mensionality-reducing mapping with the same local properties
exists which means that the change of the metric is a more gen-
eral operation than feature selection by a dimensionality-pre-
serving (or dimensionality-reducing) nonlinear mapping.

The change of the metric can additionally be interpreted as a
kind of nonlinear version of linear discriminant analysis (LDA;
for applications of LDA in finance see, e.g., [22]). The LDA
finds a linear transformation, defined globally for the whole
data space, that aims at maximizing class separability. In a more
recently proposed variant called mixture discriminant analysis
[14], [15], a set of Gaussian kernels are fitted to data by op-
tionally constraining the dimensionality of the subspace within
which the kernels are allowed to reside. In contrast to LDA and
the newer variants, we transform the input space locally to make
the class distribution change isotropically, or with the same rate
in every direction. This allows inspection of the class distribu-
tions even more closely.

Note that the discriminant analysis is commonly used for
two tasks: acquiring classifications and understanding the rela-
tionships between classes by visualizations. Our model is more
closely related to the latter task, whereas LDA usually empha-
sizes the former.

The classical canonical correlation analysis has recently been
generalized by replacing the linear combinations with nonlinear
functions [23], [24]. Our framework could as well be adapted
to the task of finding statistical dependencies between two data
sets by replacing the discrete auxiliary random variable with a
parametrized set of features computed from an auxiliary contin-
uous random variable, which will be explored in future work.
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III. SELF-ORGANIZING MAPS IN THEFISHERMETRIC

In principle, any model that utilizes local distances could be
adapted to use the Fisher metric (4). In this work we derive the
on-line SOM algorithm for the new metric and use it in data
analysis.

A. The Self-Organizing Map

The SOM [1], [2] is a regular grid of units, with a model
vector associated with each unit. During the learning
process the model vectors are gradually modified to follow
the distribution of the input data in an ordered fashion: model
vectors close-by on the map lattice attain close-by locations in
the input space. 2-D map grids can be used to visualize various
properties of the input data in data analysis applications.

The SOM algorithm iterates two steps. The index of the win-
ning unit closest to the current input sample at time is
first sought by

arg (9)

where is a distance function, commonly Euclidean. Then the
model vectors are adapted according to

(10)

If is the Euclidean distance, the adaptation rule becomes the
familiar

(11)

Here is the so-called neighborhood function, a de-
creasing function of the distance between the unitsand
on the map lattice. The height and width of decrease
gradually in time. For more details see [2].

B. SOM in the New Metric

To organize SOMs in the Fisher metric that is determined
by the differences between the estimated posterior distributions

, we first construct a pdf estimator for the distributions. To
find the winning unit for the data sample , we then calculate
distances to the set of model vectors, and find the one closest to

. In general, the distances will be nonlocal.
To compute nonlocal distances, a search for the minimal path

integral would be required, where differential distances along
the paths would be defined by (4). Here we will approximate
the nonlocal distances by the local distance measure (4), com-
puted around the data sample . The winning unit will then
be found with (9). If is small, this approximation will be fair,
whereas for far-off points the approximation will be rougher.

The assumption is that the approximation is locally accurate
enough to preserve the order of the distances, so that the model
vector actually closest in the Riemannian metric (defined as
the shortest path from to ) is equal to the computed
from the local approximation. This is sensible since model vec-
tors that are close to (as measured by the true nonlocal dis-
tances) are also likely to have small , so the local approxi-
mation will not usually affect which unit becomes the winner.

Occasionally this may still happen, so the true test of the good-
ness of the approximation will be the experimental results. The
results of the case study in Section IV are favorable.

As in the original SOM, the model vector of the winning
unit and units in its neighborhood are updated into the direction
where the distance decreases most rapidly, and
proportionally to the magnitude of the change. In a Euclidean
metric, the update is given by the gradient .
The Fisher metric, however, is a Riemannian metric, and
steepest descent in a Riemannian metric is given by the
so-called natural gradient [25]. Generally, the natural gradient
is equal to the conventional gradient multiplied by the repre-
sentation of the metric tensor (a matrix), inverted. Because in
the original coordinate system the metric tensor is represented
by the Fisher information matrix, the natural gradient in these
same coordinates is given by

(12)

Assuming that and are close to each other, (12) coincides
with the direction of the shortest path fromto .

In conclusion, the update rule in the Fisher metric is the same
as in the Euclidean SOM, (11). The difference lies in the defini-
tion of the winner, (9), where the distance measure is in general
defined by (4), and in the case of Gaussian kernel-based pdf es-
timators by (8).

C. A Demonstration

The effect of the change of the metric on SOM is demon-
strated in Fig. 2 for a six-dimensional (6-D) three-class toy data
set. We computed a SOM in both the original Euclidean metric
and in the Fisher metric, and visualized the posterior class dis-
tribution on the SOMs. As can be seen in the figure, the classes
are more distinctly and orderly separated on the SOM computed
in the Fisher metric. Most notably the unimodality of the distri-
bution of each class is clearly visible.

In data analysis applications the same SOM grid can be used
for visualizing other aspects of the data as well. Such displays
will be used in Section IV.

D. Computational Complexity

Each iteration of the SOM algorithm consists of the selection
of the winning SOM unit for the current input, and an update
of the model vectors. Since the update rule in the Fisher metric
is unchanged from the Euclidean case, the computational
complexity of the update is the same, i.e.,
for a neighborhood function that covers the whole map grid.
Here is the dimensionality of the input and is the
number of SOM units.

To select the winner, distances must be calculated from the
input to each SOM unit. Using the local distance approximation,
this can be done by computing the Fisher information matrix
first, or by directly calculating the distances. The first alternative
requires operations,
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(a) (b) (c)

(d) (e) (f)

Fig. 2. A demonstration of the difference between SOMs computed in the Fisher metric and in the Euclidean metric. The primary data was 6-D and multinormally
distributed, i.e.,x � N (0; I). The auxiliary data was divided into three smoothly changing Gaussian classes, i.e.,p(cjx) = G(x�m ; � )= G(x�m ; � ),
whereG(x; � ) is the probability density atx given by the distributionN (0; � I). The class centersm were placed evenly around the origin so thatkm k = 1,
and the variance� was 0.81. The size of the data set was 3382 points. A pdf estimate was generated using the Parzen model, with� = 1:0. SOMs were then
trained to the data with the stochastic algorithm (9), (11). Posterior probabilities of the classes (according to (7) for the Parzen estimate) evaluated at the model
vectors of the SOM are shown for the two SOMs (size: 40 by 40 units) organized to represent the same data set in the Fisher (a) class 0, (b) class 1, (c) class2) and
in the standard Euclidean (d)–(f) metric. The probability 0.767 is shown with the lightest shade and the probability 0.040 as pure black.

where is the number of classes and is the number of
mixture components in the pdf estimate. The second alternative
requires operations. If the dimen-
sionality is small compared to the number of classes and the size
of the SOM, then computing the Fisher information matrix ex-
plicitly may be faster; otherwise it is preferable to calculate the
distances directly.

In the better method (MDA2) of the present case study there
are 10 kernels, the number of classes is 2, the dimensionality
is 23, and the winner search therefore requires about twice
the amount of computation required for the simple Euclidean
metric.

Note that there exist several speedup methods for the SOM
(see, e.g., [26]). We have not investigated in detail their use with
the Fisher metric but many of them are applicable.

IV. A PPLICATION TO BANKRUPTCY ANALYSIS

The method presented in the previous chapters is applied
below to a bankruptcy analysis task. Traditionally, most of the
quantitative studies on bankruptcy have been directed toward
prediction. The two dominating approaches in the bankruptcy
prediction problem have been classification and probability
estimation. In a classification task, based on the present and
possibly also past data, the companies are divided into two
groups: those that are likely to go bankrupt within a certain

time interval, and those that are not. In probability estimation,
the aim is to get estimates of the probability of bankruptcy
within certain time interval—a simplified version of this is
to rate the companies according to their bankruptcy risk,
without requiring the ratings to be true probabilities. Naturally,
probability estimation (and risk rating) models also offer a
basis for classification.

A seminal work on bankruptcy prediction was performed by
Altmanet al.(summarized in [22]), who applied linear discrim-
inant analysis to this problem. Later, almost every statistical
method, including neural-network approaches, has been pro-
posed (see, e.g., [27]–[36]). Generally, it has been observed that
some of these methods, especially more “advanced” ones such
as neural-network models, have slightly overperformed LDA.
However, in all cases the improvement has been quite small,
excluding the studies where only training set performance has
been reported, or where the data set has been very small.

Another view, complementary to the bankruptcy prediction
problem, is here referred to as bankruptcy analysis: trying to
understand the different corporate behaviors and their relation
to the risk of bankruptcy. A very influential qualitative work in
this area has been carried out by Argenti [37]. One of his ob-
servations was that there are several different bankruptcy types
(“failure trajectories”) that differ in their causes, symptoms,
and length. Along these lines of thought, a research project in
Helsinki University of Technology has attempted to quantify
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and visualize these different behavior patterns [5], [6], [38],
[39]. Because the present study is closely related to this project,
some of its findings and also challenges are briefly summarized
below.

First, the SOM does not increase the accuracy in bankruptcy
prediction, but is very useful in visualizing the present state of a
company and possible directions of its future development—the
analyst gets a much more accurate idea of the state of the com-
pany from the visualization on a SOM than from a single scalar
estimating the bankruptcy risk.

Second, different types of corporate behavior (trajectories)
can be identified with the SOM.

Third, one problem with the visualization using an SOM is
that when the data has an intrinsic dimensionality higher than
that of the SOM grid, discontinuities in the mapping some-
times result. For instance, a single cluster of high bankruptcy
risk may appear multimodal on the SOM. The Fisher metric ap-
proach, described in previous chapters, is likely to help with this
problem, for the manifold spanned by the Fisher metric is of
lower dimensionality than the original data space.

Thus, the primary goal in this section is to use the new
methods to better understand the (nonlinear) dependencies be-
tween bankruptcies and financial indicators. The dependencies
are converted into a metric of the input space, and we use the
SOM to visualize the dependencies in a concise form. Because
the metric is chosen to describe changes in the bankruptcy
sensitivity, the SOM should emphasize features of the input
space that are (locally) contributing to bankruptcies.

In this section, we will for brevity call a SOM computed in the
Euclidean metric SOM-E, and a SOM computed in the Fisher
metric SOM-F.

A. Data

The financial statements were from Finnish small and
medium-sized enterprises. The line of business, age, size, and
completeness of the available data were used as the selection
criteria, but no data was otherwise rejected on the basis of
“atypicality.” In the data set there were 6195 financial state-
ments given by about 1500 companies. Of these statements,
158 concerned companies that have gone bankrupt.

In this paper, we do not take into account the development
of companies in time. Multiple statements from the same enter-
prise but from different years are treated as independent sam-
ples.

We used a set of 23 common financial indicators including
measures of growth, profitability, solidity, liquidity, and opera-
tional efficiency; the samples of the primary data spacewere
23-dimensional real vectors. The indicators were preprocessed
(each separately) using histogram equalization. The auxiliary
random variable was binary, indicating whether the statement
was followed by a bankruptcy within three years.

B. Methods

The data was randomly divided into an estimation set and a
test set of roughly equal sizes. Two pdf estimates, the first based
on Parzen estimation with Gaussian kernels and the second on
a Gaussian mixture with ten mixture components, were fitted
to the estimation set. Hexagonal SOMs of the size of 2010

units were then computed both in the Euclidean and in the Fisher
metric, the latter derived from the pdf estimates.

1) Verification measures:In this section, we present a mea-
sure of goodness for verifying that the SOM-F reflects aspects
of the input data that are relevant to the risk of bankruptcy. There
are three components affecting the goodness: 1) the quality of
the pdf estimator; 2) the accuracy by which the SOMs represent
the probability of bankruptcy3; and (3) the quality of the visual-
izations, i.e., the smoothness and quality of organization of the
SOMs.

We will not measure the first component; it is assumed that
the standard pdf estimators are adequate. The accuracy of repre-
sentation will be measured by the log-likelihood of the test data
given the estimates at the locations of the winner units

(13)

Regarding the quality of visualizations we will resort to visual
comparisons between visualizations obtained by SOM-E and
SOM-F.

The likelihoods obtained by the two pdf estimates and
SOM-E and SOM-F were computed for a wide range of values
of the parameter , from the order of the average distance
between two closest data points to the order of the maximal dis-
tance. The likelihood obtained directly from the pdf estimator
was computed to find out an approximation of the best possible
performance, and a model always predicting prior probabilities
of the classes served as a lower limit of useful results.

Note: The likelihood used for measuring the accuracy of rep-
resentation has a connection to the quantization error that is
commonly used for measuring the quality of SOMs. The quan-
tization error is defined to be the average distance from the
original data to the winning SOM units, .
In SOM-F, the corresponding measure would be the Kullback-
Leibler divergence between the posterior distributions
and . Assuming that and are close to each
other, the squared difference can be computed using the Fisher
information matrix as in (4). However, since the measure is
based solely on estimates of pdfs and not on the data itself, mini-
mizing the quantization error in the estimated Fisher metric does
not guarantee that the map represents the real data. There exists
a simple remedy: If the estimate is replaced by the real
distribution , then the Kullback-Leibler divergence mea-
sures deviance of the representation from the true pdf. It can be
easily shown that the average divergence between and

is approximated by a linear function of the likeli-
hood (13).

2) Visualization of the results:In addition to the usual visu-
alization methods available for all SOMs, with SOM-F one can
visualize correlations between bankruptcy sensitivity and direc-
tions of the data space. The amount of scaling of a direction,
revealed by the quadratic form , measures the effect of
the direction on the bankruptcy sensitivity. We will visualize the
magnitudes of these scalings at the most easily interpretable di-
rections of the data space, the original variables of the data.

3Note that although this accuracy can be measured by the prediction accuracy,
our goal is not to simply maximize prediction accuracy but to quantify accuracy
of visualizations.
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(a)

(b)

Fig. 3. The accuracy of the SOMs computed in the Euclidean metric (SOM-E)
and in the Fisher metric (SOM-F) in representing the probability of bankruptcy,
measured by the likelihood of data at the locations of the best-matching SOM
units (13). (a) The pdf is estimated with the Gaussian kernel (Parzen) estimate.
(b) The pdf is estimated by a Gaussian mixture having ten mixture components.
The curve marked by “pdf” provides an approximate upper limit: it is the
likelihood at the data points instead of at the best matching units. The curve
marked bya priori provides the lower limit of sensible results, obtained by the
best constant estimates. The parameter� governs the smoothness of the pdf
estimates.

The relative amount of scaling in the direction of the coordi-
nate axis is given by

(14)

where is the unit vector parallel to the axis. A large value of
indicates a strong effect by the variable, locally around

.

C. Results

The likelihoods of SOM-E and SOM-F in the test set are
shown in Fig. 3 as a function of the parameterwhich gov-
erns the smoothness of the pdf estimates. The SOM-F, as ex-
pected, performs clearly better than the Euclidean SOM. The

SOM-E is roughly equal only for the kernel-based pdf estimate
when is very small—then the pdf estimate and the resulting
Fisher metric are probably very uneven. The location of a finan-
cial statement on the SOM-F is thus a more accurate predictor
of bankruptcy than the location of the statement on the SOM-E.

To test the statistical significance of the performance differ-
ence, the data was divided into ten separate sets. At each test
round, one set was used as the test data and the other sets as the
training data. The likelihood curves of the SOM-E and SOM-F
were calculated for the test sets (using the MDA2 estimate), and
the peaks of the curves were compared with the sign test. The
SOM-F outperformed the SOM-E ( ).

Still, the variation of the financial indicators on SOM-F dis-
plays (Fig. 5) is remarkably smooth, comparable to the smooth-
ness of the SOM-E displays. Moreover, the bankrupt compa-
nies are visually clearly separated on both SOMs, in the sense
that their distribution is unimodal and that the posterior class
densities change smoothly on the map (Fig. 4). In summary,
the good organization and visualization capabilities of the SOM
have been maintained or even improved while the Fisher metric
has increased the prediction accuracy.

The relative scaling of the coordinate axes in the new metric
can be visualized as easily understandable overviews of the rel-
ative importance of the input variables. Some examples are pre-
sented in Fig. 6. The nonconstant values of the suggest that
nonlinear effects exist, which would justify the use of nonlinear
models for this data set.

V. DISCUSSION

We have introduced a new method for deriving metrics from
the estimated posterior distribution of an auxiliary relevance-in-
ducing variable, and used it in computing SOMs. The metric
is based on the Fisher information matrix, which results from
a local approximation of the Kullback-Leibler divergence be-
tween the posterior densities at close-by points in the primary
data space. In the new metric the estimated posterior probabil-
ities change evenly in all directions. In other words, the metric
represents local contribution of the directions of the data space
to changes in the relevance-indicating random variable.

We computed a SOM in the Fisher metric and applied it to the
visualization of bankruptcy sensitivity as a function of several
quantitative financial indicators. The SOM was more accurate
in representing the (estimated) probability of bankruptcy than
an Euclidean SOM while the visual quality of the maps was
comparable or improved.

The Fisher metric can be used for discovering and visual-
izing locally relevant dimensions, and as a kind of automatic
feature-extraction stage. We have presented one way of visual-
izing the contributions of the input variables to the Fisher metric.
In general the visualization of the metric tensor as a function of
the primary data space is a subject for further experimentation
and research.

When used as a kind of feature extraction stage the method
has the nice property that it changes the metric while still pre-
serving the proximity relations of the original data space. For a
pdf estimator which approaches the real pdf when the number of
data grows, the results are independent of the original coordinate
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(a) (b)

(c) (d)

Fig. 4. The separation of bankruptcy-prone and healthy companies on the
SOMs. (a)– (b) The estimate of the probability of bankruptcy at each map
unit in (a) SOM-F and (b) SOM-E. The estimate is the posterior density
of the Gaussian mixture model at� = 0:31. The darkest shade denotes
probability 0.12; the lightest denotes probability 0.002. (Note that the prior
probability of bankruptcy is small, just 0.022.) The actual relative frequency
of bankruptcies in the test set for each map unit is shown in (c) for SOM-F
and in (d) for SOM-E. The frequency graphs are noisy since the number of
bankrupt companies was small. White: no bankruptcies, black: two thirds of all
companies have gone bankrupt.

system, and therefore of the metric, of the data. Preservation of
the proximity relations is, of course, a natural requirement for
sensible operation of further processing stages like the SOM; if
the topology of the original space is not worth preserving then
it is best to use a suitable (discontinuous) preprocessing stage.

It may be worth noting that the change of the metric affects the
density of . In the Fisher metric, the density of changes to

. This change reduces the density of data at the
points of the -space where the posterior probabilities
change rapidly. If this is undesirable, a modified Fisher metric
with a constant magnification factor can be used.

In finding the relevant local features of the input space, the ex-
traction of the Fisher metric is similar to the recently introduced

Kullback-Leibler clustering algorithm [40], [41]. This connec-
tion will be detailed in future papers.

In summary, we have extended the SOM-based exploratory
analyzes of the factors affecting bankruptcy risk in different
kinds of companies by the new learning metric. The Fisher
metric derived from pdfs improved the accuracy with which the
visual maps represent bankruptcy and even the quality of the
visualizations. Bankruptcy analysis from financial statements is
a common task, and it is relatively well known which features
are meaningful; moreover, the effective dimensionality of
meaningful data spaces is small. It is therefore hard to improve
on the methods that are already in use in this field. Hence,
the Fisher metric is likely to be even more useful when the
structure of the data is less known and there is little justification
for manual feature selection.

APPENDIX A
DERIVATION OF THE DISTANCE FOR THEMIXTURE MODEL

The gradient of (7) is

and hence

For a Gaussian having a diagonal covariance matrix

and hence

(15)

Using (7), the expression in brackets can be simplified to

(16)
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(a) (b) (c)

(d) (e) (f)

Fig. 5. The distribution of the values of three financial indicators on (a–c) SOM-F and (d–f) SOM-E. An index of (a) and (d) profitability; (b) and (e) liquidity;
(c) and (f) capital structure. The Fisher metric for SOM-F has been computed from a Gaussian mixture estimate with� = 0:31.

Plugging (16) into (15) yields

(17)

and plugging (17) into (4) yields (8).

APPENDIX B
EM ESTIMATION OF THE GAUSSIAN MIXTURE MODEL OFJOINT

DENSITIES

We used the EM algorithm to maximize the likelihood of the
model (6). The value of the random variablethat indicates
which generator has produced each data item is considered as
the missing data. The value of for the data sample
is denoted by . The data are assumed to be independent and
identically distributed.

As an initialization we set and
, where denotes the number of component

generators and denotes the number of possible values of
. The are initialized by the K-means algorithm.
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(a) (b)

(c)

Fig. 6. The relative contributionsr (x) to the change in the bankruptcy
sensitivity, plotted as gray levels on the map display, for the indicators of Fig.
5. The relative contribution of the profitability indicator (a: scale from 0.007
to 0.080) decreases and the contribution of the capital structure indicator (c:
scale from 0.0002 to 0.215) increases at the bankruptcy zone (the stripe in the
top left corner), while the contribution of the liquidity indicator (b: scale from
0.001 to 0.013) is very low.

The E-step consists of two sub-steps. First the joint distri-
bution of the missing data is inferred, and then the expected
log-likelihood of the model with respect to this distribution is
computed, conditioned on the old parameters and the data.

Given the old set of parameters , the joint distribution of
the missing data is

(18)

Below we will generally use the superscript (0) to refer to the old
parameters. The probability that the mixture
component has generated the data sample is

It can be shown that the expected log-likelihood of the
model (6) with respect to the distribution (18) is

In the M-step the expected log-likelihood is maximized. It
can be shown that with respect to the the maximum is at

(19)

For the the maximum is at

(20)

where is the number of data samples, and for theat

(21)
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