
c© 2004 IEEE. Reprinted from the Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN-2004), Budapest, Hungary, pp. 1793–1798.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of Helsinki
University of Technology’s products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing
to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

Hybrid Model for Multiagent
Reinforcement Learning

Ville Könönen
Neural Networks Research Centre
Helsinki University of Technology

P.O. Box 5400, FI-02015 HUT, FINLAND
ville.kononen@hut.fi

Abstract— In this paper we propose a new method for re-
ducing space and computational requirements of multiagent
reinforcement learning based on Markov games. The proposed
method estimates value functions by using two Q-value tables or
function approximators. We formulate the method for symmetric
and asymmetric multiagent reinforcement learning and discuss
also some numerical approximation techniques. Additionally, we
present a brief literature survey of multiagent reinforcement
learning and test the proposed method with a simple example
application.

I. INTRODUCTION

Reinforcement learning methods have attained lots of atten-
tion in recent years. Although these methods and procedures
were earlier considered to be too ambitious and to lack a
firm foundation, they have now been established as practical
methods for solving Markov decision processes. However, the
requirement for reinforcement learning methods to work is that
the problem domain where the methods are applied obeys the
Markov property. In many real-world problems this property
is not fully satisfied but many reinforcement learning methods
can still handle these situations relatively well. Especially, in
the case of two or more decision makers in the same system
the Markov property does not always hold and more advanced
methods should be used instead. One possible solution is to
use competitive Markov decision processes since there exists
a suitable theoretical framework for these processes and some
learning methods have also been proposed.

Earlier work with multiagent reinforcement learning based
on Markov games deals with methods where the whole state-
action space is modeled with one complex function approxi-
mator. If opponents are modeled directly in the reinforcement
learning method, as in the case of Markov games, the space
and computational requirements of the learning model grow
very quickly with the size of the problem instance. However,
in many problems it is not necessary to model opponents’
behavior in each state, i.e. it is possible to use a single-agent
learning model in some states and a multiagent model in other
states and agents can still perform almost optimally.

In this paper, we approach the problem by introducing a
hybrid model and proposing appropriate learning methods for
symmetric and asymmetric learning. The main idea of the pro-
posed method is to divide the state space into two subspaces
and to model the Q-function by using two separate Q-value

tables. In addition, we discuss some numerical approximation
techniques for this model and propose a suitable metric for
evaluating the usefulness of a multiagent learning model in a
particular state.

Multiagent reinforcement learning methods have been dis-
cussed earlier by many authors. Littman introduced a Q-
learning method for Markov games with two players and a
zero-sum payoff structure in [6]. This method is guaranteed
to converge from arbitrary initial values to the optimal value
functions. However, the zero-sum payoff structure can be a
very restrictive requirement in some systems and thus Hu and
Wellman [2] extended this algorithm to general-sum Markov
games. Unfortunately, their method is guaranteed to converge
only under very restrictive conditions. These limitations are
relaxed in [7] and in [10] by adding some additional infor-
mation about roles and payoff structures of the agents in the
system.

Our previous contributions in the field of multiagent re-
inforcement learning include an asymmetric multiagent re-
inforcement learning model [3]. Additionally, we have pro-
posed numerical methods for multiagent reinforcement learn-
ing in [4] and [5].

We begin the paper by introducing the background and basic
solution concepts of game theory. Then we briefly go through
the theory behind Markov decision processes and introduce
some learning methods used with multiagent reinforcement
learning problem. Finally, we propose our hybrid model and
test the proposed method with a simple example problem.

II. GAME THEORY

This section is mainly concerned with the basic problem
settings and definitions of game theory. We start with some
preliminary information about mathematical games and then
proceed to their solution concepts which are essential for the
rest of the paper.

A. Basic Concepts

Mathematical games can be represented in different forms.
The most important forms are the extensive form and the
strategic form. Although the extensive form is the most
richly structured way to describe game situations, the strategic
form is conceptually simpler and it can be derived from the

kononen
© 2004 IEEE. Reprinted, with permission, from the Proceedings of the International Joint Conference on Neural Networks (IJCNN-2004), Budapest, Hungary, pp. 1793-1798.

extensive form. In this paper, we use games in strategic form
for making decisions at each time step.

Games in strategic form are usually referred to as matrix
games and particularly in the case of two players, if the payoff
matrices for both players are separated, as bimatrix games. In
general, an N -person matrix game is defined as follows:

Definition 1: A matrix game is a tuple Γ =
(A1, . . . , AN , r1, . . . , rN), where N is the number
of players, Ai is the strategy space for player i and
ri : A1 × A2 × . . . × AN →

�
is the payoff function for

player i.
In a matrix game, each player i simultaneously implements

a strategy ai ∈ Ai. In addition to pure strategies Ai, we allow
the possibility that the player uses a random (mixed) strategy.
If we denote the space of probability distributions over a set A

by ∆(A), a randomization by a player over his pure strategies
is denoted by σi ∈ Σi ≡ ∆(Ai).

B. Equilibrium Concepts

In decision problems with only one decision maker, it is
adequate to maximize the expected utility of the decision
maker. However, in games there are many players and we
need to define more elaborated solution concepts. Next we
will shortly present two relevant solution concepts of matrix
games.

Definition 2: If N is the number of players, the strategies
σi
∗
, . . . , σN

∗
constitute a Nash equilibrium solution of the game

if the following inequality holds for all σi ∈ Σi and for all i:

ri(σ1
∗
, . . . , σi−1

∗
, σi, σi+1

∗
, . . . , σN

∗
) ≤ ri(σ1

∗
, . . . , σN

∗
)

The idea of the Nash equilibrium solution is that the strategy
choice of each player is a best response to his opponents’
play and therefore there is no need for deviation from this
equilibrium point for any player alone. Thus, the concept
of Nash equilibrium solution provides a reasonable solution
concept for a matrix game when the roles of the players are
symmetric. However, there are decision problems in which one
of the players has the ability to enforce his strategy to other
players. For solving these kind of optimization problems we
have to use a hierarchical equilibrium solution concept, i.e.
the Stackelberg equilibrium concept. In the two-player case,
where one player is acting as the leader (player 1) and the
another as the follower (player 2), the leader enforces his
strategy to the opponent and the follower reacts rationally to
this enforcement.

The basic idea is that the leader enforces his strategy so
that he enforces the opponent to select the response that leads
to the optimal response for the leader. Algorithmically, in the
case of finite bimatrix games where player 1 is the leader
and player 2 is the follower, obtaining a Stackelberg solution
(a1

s, a
2
s(a

1)) can be seen as the following two-step algorithm:

1) a2
s(a

1) = arg maxa2∈A2 r2(a1, a2)
2) a1

s = arg maxa1∈A1 r1(a1, a2
s(a

1))

In the step 1, the follower’s strategy is expressed as a
function of the leader’s strategy. In the step 2, the leader
maximizes his own utility by selecting the optimal strategy
pair. The only requirement is that the follower’s response is
unique; if this is not the case, some additional restrictions must
be set.

III. MULTIAGENT REINFORCEMENT LEARNING

With two or more agents in the environment, the funda-
mental problem with single-agent Markov Decision Processes
(MDPs) is that the approach treats the other agents as a part
of the environment and thus ignores the fact that the decisions
of the other agents may influence the state of the environment.

One possible solution is to use competitive multiagent
MDPs, i.e. Markov games. In a Markov game, the process
changes its state according to the action choices of all the
agents and can thus be seen as a multicontroller MDP. For-
mally, we define a Markov game as follows:

Definition 3: A Markov game (stochastic game) is defined
as a tuple (S,A1, . . . , AN , p, r1, . . . , rN), where N is the
number of agents, S is the set of all states, Ai is the set of all
actions for each agent i ∈ {1, N}, p : S × A1 × . . . × AN →
∆(S) is the state transition function, ri : S×A1×. . .×AN →

�
is the reward function for the agent i. ∆(S) is the set of

probability distributions over the set S.
Again, as in the case of single-agent MDP, we need a policy

πi for each agent i (the policy is assumed to be stationary):

πi : S → Ai,∀i ∈ {1, N}. (1)

In multiagent systems this policy function is not necessarily
deterministic. However, here we assume that the randomiza-
tion is performed inside the policy function and therefore πi

returns actions directly. The expected value of the discounted
utility Ri for the agent i is the following:

V i
π1,...,πN (s) = Eπ1,...,πN [Ri|s0 = s]

= Eπ1,...,πN

[

∞
∑

t=0

γtri
t+1|s0 = s

]

,
(2)

where ri
t+1 is the immediate reward for agent i after the state

transition and γ is a discount factor. Moreover, the value for
each state-action pair is

Qi
π1,...,πN (s, a1, . . . , aN)

= Eπ1,...,πN [Ri|s0 = s, a1
0 = a1, . . . , aN

0 = aN]

= ri(s, a1, . . . , aN)

+ γ
∑

s′

p(s′|s, a1, . . . , aN)V i
π1,...,πN (s′).

(3)

Contrast to single-agent MDPs, finding the optimal policy πi
∗

for each agent i can be seen as a game theoretical problem
where the strategies the players can choose are the policies
defined in Eq. (1).

A. Solving Markov Games

In the case of multiagent reinforcement learning, it is not
enough to maximize the expected utility of individual agents.
Instead, our goal is to find an equilibrium policy of the Markov
game, e.g. a Nash equilibrium policy. The Nash equilibrium
policy is defined as follows:

Definition 4: If N is the number of agents and Πi is the
policy space for agent i, the policies π1

∗
, . . . , πN

∗
constitute

a Nash equilibrium solution of the game if the following
inequality holds for all πi ∈ Πi and for all i in each state
s ∈ S:

V i
π1
∗
,...,πi,...,πN

∗

(s) ≤ V i
π1
∗
,...,πN

∗

(s)

It is noteworthy that Definition 4 coincides with Definition 2
when individual strategies are replaced with policies. The
Stackelberg equilibrium concept can be extended for policies
in similar fashion. We refer to methods built on Markov games
with the Nash equilibrium concept as symmetric methods and
to methods that utilize the Stackelberg equilibrium concept as
asymmetric methods.

For brevity, learning algorithms are presented next only in
the case of two agents and in the asymmetric model the agent
one is acting as the leader and the agent two as the follower.

B. Symmetric Learning in Markov Games

As in the case of single agent reinforcement learning, Q-
values defined in Eq. (3) can be learned from observations
on-line using some iterative algorithm. For example, in the
two-agent case, if we use Q-learning, the update rule for the
agent 1 is [2]:

Q1
t+1(st, a

1
t , a

2
t) = (1 − αt)Q

1
t (st, a

1
t , a

2
t)

+ αt[r
1
t+1 + γNash{Q1

t (st+1)}],
(4)

where Nash{Q1
t (st+1)} is a Nash equilibrium outcome of the

bimatrix game defined by the payoff function Q1
t (st+1). The

corresponding update rule for the agent 2 is symmetric.
Note that it is guaranteed that every finite matrix game

possesses at least one Nash equilibrium in mixed strategies.
However, there exists not necessarily Nash equilibrium point
in pure strategies and therefore Nash{Q1

t (st+1)} in Eq. (4)
returns the value of a mixed strategy equilibrium.

C. Asymmetric Learning in Markov Games

In the asymmetric case with Q-learning, we get the follow-
ing update rules for the agents:

Q1
t+1(st, a

1
t , a

2
t) = (1 − αt)Q

1
t (st, a

1
t , a

2
t) + αt[r

1
t+1

+ γ max
b∈A1

Q1
t (st+1, b, T b)]

(5)

Q2
t+1(st, a

1
t , a

2
t) = (1 − αt)Q

2
t (st, a

1
t , a

2
t) + αt[r

2
t+1

+ γ max
b∈A2

Q2
t (st+1, g(st+1, a

c
t+1), b)],

(6)

where g(st, a
c
t) is the leader’s enforcement and T is a mapping

T : A1 → A2 that conducts the follower’s best response to
the leader’s enforcement.

Above presented algorithms do not define how one selects
the current state-action tuple (st, a

1
t , a

2
t). For example, it is

possible to select states and actions pure randomly. However,
it is often more efficient to explore state-action space by cal-
culating an equilibrium solution of the matrix game associated
with the current state and then deviate from this solution with
some small probability, e.g. by using softmax action selection
method.

IV. HYBRID MODEL

In the previously discussed learning methods there is a
matrix game associated with each state. In many applications,
it is not necessary to learn the exact model of the opponent
in each state. By including problem specific information, the
overall structure of the Markov game can be significantly
simplified and agents can still perform almost optimally. This
also reduces the computational requirements needed to solve
the problem. We start the section by introducing the notation
used with the partitioned state space and then proceed to
the actual learning methods used with this hybrid model. For
brevity, all mathematics in this section is presented in the case
of two agents. However, the extensions to arbitrary number of
agents are straightforward.

A. Partitioning State Space

The main idea of our method is to divide the state space
into two subspaces: one that contains all states with utility
values for single agent only (simple states, SS) and the other
containing states with matrix games (complex states, SC). In
the simple states it is possible to reduce the matrix games to
vectors containing utility estimates for the agent and hence the
learning process reduces to normal single-agent reinforcement
learning. Note that this reduced learning model is consistent
with the multiagent reinforcement learning model based on the
Markov game since in the single-agent case, the Nash operator
simply reduces to the maximum of the expected payoff values.

The overall learning process divides into four different cases
depending on the types of the current and the next state of the
system. This division is illustrated in Fig. 1. Next we will
present the exact learning rules for the hybrid model in all
cases.

Max

s

s’

s

s’

s’s’

s s

Max

f

f

Fig. 1. Four different cases in the hybrid multiagent reinforcement learning.
The f operator is used here to evaluate values of matrix games.

B. Learning Rules in the Hybrid Model

Actual learning rules used with the hybrid model depend on
the current state and the state transition of the system. Thus,
we get four different learning rules that are symmetric for both
agents i = 1, 2.

1) Case 1: st ∈ SS and st+1 ∈ SS :

Qi
t+1(st, a

i
t) = (1 − αt)Q

i
t(st, a

i
t)

+ αt[r
i
t+1 + γ max

b∈Ai
Qi

t(st+1, b)]

2) Case 2: st ∈ SC and st+1 ∈ SS :

Qi
t+1(st, a

1
t , a

2
t) = (1 − αt)Q

i
t(st, a

1
t , a

2
t)

+ αt[r
i
t+1 + γ max

b∈Ai
Qi

t(st+1, b)]

3) Case 3: st ∈ SS and st+1 ∈ SC :

Qi
t+1(st, a

i
t) = (1 − αt)Q

i
t(st, a

i
t)

+ αt[r
i
t+1 + γf{Qi

t(st+1)}]

4) Case 4: st ∈ SC and st+1 ∈ SC :

Qi
t+1(st, a

1
t , a

2
t) = (1 − αt)Q

i
t(st, a

1
t , a

2
t)

+ αt[r
i
t+1 + γf{Qi

t(st+1)}]

In the above equations, the operator f{Qi(st)} evaluates
the games associated with the states st. Possible choices for
the operator f are for example the Nash equilibrium (leading
to symmetric learning) operator or the Stackelberg equilibrium
operator (leading to asymmetric learning). Note that albeit the
learning rules are similar for both agents, the implementation
of the operator f does not have to be symmetric and hence
the actual learning rules could be different.

C. Numeric Approximations

Solving problems with large state-action spaces requires
the use of function approximators such as neural networks.
The traditional approach is to use function approximators to
estimate value functions of the learning agents directly. A
natural extension to the hybrid model is to estimate the Q-
function with two function approximators: one for the simple
states and one for the complex states, see Fig. 2.

The actual learning of the approximators can be done
e.g. using a VAPS-like learning rule for multiagent domains,
see [4]. Note that the use of two distinct approximators
for multiagent reinforcement learning is one instance of the
Occam’s razor principle in the sense that the agent’s Q-
function is modeled with as simple model as possible with
regard to the problem specific a priori information.

In addition, the hybrid model reduces computational re-
quirements of evaluating the value of a state. For example,
if we are using the Nash equilibrium concept, general com-
putational complexity of the problem is still unknown. On the
other hand, the complexity of finding the maximum element
from a fixed set of elements is linear.

SS SCa2a1a

Fig. 2. An example of two approximators used to approximate utility
functions in the hybrid model. Left: approximator for the simple states, right:
approximator for the complex states.

D. Evaluating Dependencies between Agents

The division of the state space can be accomplished by
using problem specific a priori information. However, it is
also possible to try to evaluate dependencies between agents
in a particular state, i.e. to calculate how much the agent’s
payoff values depend on the opponent’s action choices. Let
aij be the Q-value of the agent 1 (acting as a row player in
the corresponding matrix games) when he selects the action
i and the opponent selects the action j. Then it is sufficient
to measure the total difference of the columns in the payoff
matrix. Formally this can be expressed as:

d = β

N−1
∑

i=1

N
∑

j=i+1

M
∑

k=1

|aki − akj |
p

1

p

, (7)

where M and N are the numbers of action choices for the
agent 1 and the agent 2, respectively. β is a scaling coefficient,
perhaps a function of M and N , and p ≥ 1 is an arbitrary
parameter. Clearly, d is zero if and only if all columns in the
corresponding payoff matrix are equal. In the next section, we
demonstrate the metric with a simple example problem.

The metric proposed in Eq. (7) can not be used for packed
Q-tables or function approximators. Hence, if the metric
is used online for deciding which states should be packed
(transferred to Ss), the actual packing can be done only once.
Moreover, it is hard to evaluate the cost of the packing online.
The only reliable way to do the evaluation is to compare the
performance of the original and the packed system side-by-
side.

Note that the above proposed metric depends on the absolute
difference of utility values. In many problems, particularly
in control problems, it would be more desirable to take into
account only the ordering of the different actions.

V. EXAMPLE APPLICATION

In this section, we solve a simple example problem by using
hybrid multiagent reinforcement learning methods (symmetric
with the Nash operator and asymmetric) discussed earlier in
this paper. This problem is a variation from the commonly used
grid world problem, which is used for testing single-agent and
multiagent reinforcement learning algorithms in many works,

e.g. in [9], [8], [1] and [7]. Our test case is the same as in [2],
where the problem was solved using a tabular version of the
symmetric multiagent reinforcement learning algorithm.

A. Grid World Example

In a grid world problem, we have a grid world containing
16 cells and two competing agents (Fig. 3). The agents start
from the lower corners 1 and 2, respectively, and on each round
they can move to adjacent cells (4-neighborhood). In addition,
there are two distinct goal positions, one for each agent. The
agents get large positive payoffs when they reach the goal
positions. In the symmetric learning model both agents get
small negative payoffs when they try to move to the same
position and the agents are returned back to their original
positions. In the asymmetric learning model, only the agent
1 (leader) gets the negative payoff and thus tries to avoid the
collision by its enforcements. Hence, the ultimate goal of the
agents is to reach the goal cell using as few moves as possible.

G2 G1

1 2

Fig. 3. The game board used in the example problem. Agents are initially
located in the cells marked with numbers 1 and 2. Goal cells are marked with
G1- and G2-symbols.

B. Associated Markov Game

We characterize the problem with the following Markov
game:

• A state in this problem is a pair s = (p1, p2), i.e. the
positions of agents. Hence, the state space of this example
consists of 16*16=256 states.

• Both agents get a positive payoff of 0.9 when they find
the right goal cell.

• The action set for both agents is Ai = {Left, Right, Up,

Down}, i = 1, 2. The agents are restricted to stay on the
game board.

• The discount factor γ is 0.99.
• Both agents select their actions by using the softmax

action selection method.
• In the asymmetric model the agent 1 is acting as the

leader.
• In the symmetric model, if the agents collide both agents

get a negative reward of -0.1 and in the asymmetric model
only the leader gets this negative reward.

• In the symmetric model, the Nash solution concept is
used. The solution is calculated by using the Lemke-
Howson algorithm that is fully deterministic. Both agents
always select the first equilibrium.

Critical points in the grid world problem are states where the
agents have an option to take moves that lead to the same cell,
i.e. states where the distance between agents is exactly 2 cells.
Therefore, it is possible to reduce the problem by using single-
agent reinforcement learning in all states where the distance

between agents is more than 2 cells. Note that the number
of these critical points increases much slower than the total
number of states when the size of the game board is enlarged.

The learning rate parameter α and the temperature param-
eter in the softmax action selection are modified linearly with
time. Note that the learning rate decaying scheme used in
the simulation runs does not obey the conditions defined in
stochastic approximation theory. However, in real problems,
the learning rate decaying scheme satisfying these theoretical
conditions often induces very slow convergence and thus this
kind of scheme is seldom used in real-world applications and
in empirical research.

When an agent reaches the goal position, the agents are
moved back to their initial positions (randomized cells on the
game board excluding goal cells) and the learning process
is restarted with a new episode. The maximum length of
the episode is restricted to 10 moves. We repeated test runs
(learning of the optimal payoff function) 50 times in every test
case. Some equilibrium paths generated by the hybrid model
(both asymmetric and symmetric reinforcement learning) are
illustrated in Fig. 4.

Fig. 4. Three optimal paths generated by both symmetric and asymmetric
multiagent reinforcement learning models.

In Table I, averaged learning times are presented. All
simulations were ran by using one 1 GHz Alpha processor.
In both cases, with symmetric and asymmetric models, there
were a significant improvement on the learning time when the
hybrid model was used. Additionally, the asymmetric model
was much faster than the symmetric model.

TABLE I

AVERAGED LEARNING TIMES (CPU TIME IN SECONDS) FROM 50 TEST

RUNS. ALL TEST RUNS WERE RAN ON ONE 1 GHZ ALPHA PROCESSOR.

normal hybrid
symmetric 237 180
asymmetric 78 48

In Fig. 6, we test two different states in our example problem
by using the metric proposed in Eq. (7) with p = 2. The
coefficient β was the inverse of the total number of the
summations in Eq. (7). The compared states are shown in
Fig. 5. The model used in the comparison was the asymmetric
model and the metric is calculated only for the agent 1 (leader).
The state corresponding to positions marked with 1 gets lower
values than the state marked with 2 since both agents are
capable to reach the goal position and to end the game in
the state 2. This induces strong dependence of the opponent’s
action choices for both agents.

The convergence curves of the hybrid model in the asym-
metric case are shown in Figs. 7 and 8. Convergence properties

2

1

12

2

2

11

Fig. 5. Example positions used for dependency measurements. States
discussed in the text are marked with boldfaced numbers. Agents are marked
with normal font.

0 2 4 6 8 10

x 10
4

0

0.05

0.1

0.15

0.2

Iteration

D
ep

en
de

nc
e

Position 1
Position 2

Fig. 6. Leader’s dependence of the opponent’s actions.

in the symmetric case are analogous. Both agents converged
with an equal pace. Moreover, the convergence of the simple
states is slower than the convergence of the complex states
since learning process converges quickly to the paths contain-
ing mostly complex states. With larger boards, the relative
portion of the simple states is larger and these states are visited
more frequently.

0 2 4 6 8 10

x 10
4

0

0.01

0.02

0.03

0.04

0.05

Iteration

C
ha

ng
es

 in
 Q

−
va

lu
es

Leader
Follower

Fig. 7. Convergence of the asymmetric model. Simple states.

VI. CONCLUSIONS AND FUTURE RESEARCH

A novel method for multiagent reinforcement learning was
presented in this paper. The proposed method divides the state
space into two subspaces: one containing states where the
opponent is not modeled and the another where the opponent is

0 2 4 6 8 10

x 10
4

0

0.01

0.02

0.03

0.04

0.05

Iteration

C
ha

ng
es

 in
 Q

−
va

lu
es

Leader
Follower

Fig. 8. Convergence of the asymmetric model. Complex states.

modeled. Additionally, the proposed method was tested with a
simple example problem. As most of the computational burden
of the multiagent reinforcement learning methods come from
equilibrium point calculation, the hybrid model reduces the
time needed to learn the payoff function significantly.

Numerous papers have been written on model-free learning
in Markov games. However, there are no many applications
built on multiagent reinforcement learning methods based
on Markov games. Thus, in future research, we will test
these learning methods with applications, e.g. from automated
pricing domain.

REFERENCES

[1] Amy Greenwald and Keith Hall. Correlated-Q learning. In Proceed-
ings of the AAAI-2002 Spring Symposium Workshop on Collaborative
Learning Agents, Stanford, CA, 2002. AAAI Press.

[2] Junling Hu and Michael P. Wellman. Multiagent reinforcement learning:
Theoretical framework and an algorithm. In Proceedings of the Fifteenth
International Conference on Machine Learning (ICML’98), Madison,
WI, 1998. Morgan Kaufmann Publishers.

[3] Ville J. Könönen. Asymmetric multiagent reinforcement learning. In
Proceedings of the 2003 WIC International Conference on Intelligent
Agent Technology (IAT-2003), Halifax, Canada, 2003. IEEE Press.

[4] Ville J. Könönen. Gradient based method for symmetric and asymmetric
multiagent reinforcement learning. In Proceedings of the Fourth Inter-
national Conference on Intelligent Data Engineering and Automated
Learning (IDEAL 2003), Hong Kong, China, 2003. Springer-Verlag.

[5] Ville J. Könönen. Policy gradient method for multiagent reinforcement
learning. In Proceedings of the 2nd International Conference on
Computational Intelligence, Robotics and Autonomous Systems (CIRAS
2003), Singapore, 2003.

[6] Michael L. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Proceedings of the Eleventh International
Conference on Machine Learning, New Brunswick, NJ, 1994. Morgan
Kaufmann Publishers.

[7] Michael L. Littman. Friend-or-Foe Q-learning in general-sum games.
In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML 2001), Williamstown, MA, 2001. Morgan Kaufmann
Publishers.

[8] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, NY,
1997.

[9] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA, 1998.

[10] Xiaofeng Wang and Tuomas Sandholm. Reinforcement learning to play
an optimal Nash equilibrium in team Markov games. In Advances in
Neural Information Processing Systems, volume 15, Cambridge, MA,
2002. MIT Press.

