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Abstract. The main aim of this paper is to extend the single-agent
policy gradient method for multiagent domains where all agents share
the same utility function. We formulate these team problems as Markov
games endowed with the asymmetric equilibrium concept and based on
this formulation, we provide a direct policy gradient learning method. In
addition, we test the proposed method with a small example problem.

1 Introduction

Applying multiagent reinforcement learning to large, realworld applications re-
quires the use of function approximators such as neural networks. The recently
proposed numeric methods for multiagent reinforcement learning deal mostly
with value function approximation. In this paper, we propose an alternative ap-
proach by extending the direct policy gradient method proposed by Sutton et
al. in [6] for multiagent domains.

The focus in this work is on team problems, i.e. problems in which all agents
share the same utility function. We model the interaction between the agents
as a Markov game endowed with the asymmetric equilibrium concept. Due to
the sequential nature of the decision making and the shared utility function,
the multiagent learning problem reduces to a form that is very close to the
single-agent reinforcement learning. We provide a convergent learning rule that
solves this learning problem and based on this rule, we formulate a direct policy
gradient method. In addition, we test the proposed method with a small example
problem.

2 Multiagent Reinforcement Learning

This section is mainly concerned with the basic problem settings and definitions
of multiagent reinforcement learning based on Markov games. We start with
some preliminary information about Markov games and then proceed to their
solution concepts which are essential for the rest of the paper.
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2.1 Markov Games

With multiple agents in the environment, the fundamental problem of using
single-agent Markov decision processes is that the approach treats the other
agents as a part of the environment and thus ignores the fact that the decisions
of these agents may influence the state of the environment.

One possible solution to this problem is to use competitive Markov decision
processes, Markov games. In a Markov game, the process changes its state accord-
ing to the action choices of all agents and it can thus be seen as a multicontroller
Markov decision process. Formally, we define a Markov game as follows:

Definition 1. A Markov game ( stochastic game) is defined as a tuple (S, A1, . . .
, AN , p, r1, . . . , rN ), where N is the number of agents, S is the set of all states, Ai

is the set of all actions for each agent i ∈ {1, N}, p : S ×A1 × . . .×AN → ∆(S)
is the state transition function, ri : S×A1× . . .×AN → � is the reward function
for the agent i. ∆(S) is the set of probability distributions over the set S.

As in the case of single-agent Markov decision processes, we need a policy
πi, i.e. a rule stating what to do, given the knowledge of the current state of the
environment, for each agent i:

πi : S → Ai, ∀i ∈ {1, N}. (1)

In Eq. (1), the policy πi is assumed to be stationary, i.e. there are no time
dependents in the policy. The value for each state-actions tuple is

Qi
π1,...,πN (s, a1, . . . , aN ) = ri(s, a1, . . . , aN )

+ γ
∑

s′
p(s′|s, a1, . . . , aN )V i

π1,...,πN (s′), (2)

where ri(s, a1, . . . , aN ) is the immediate reward for the agent i when actions
a1, . . . ,
aN are selected in the state s and V i

π1,...,πN (s) is the value of the state for the
agent i.

2.2 Equilibria in Markov Games

In multiagent reinforcement learning, it is not sufficient to maximize the expected
utilities of individual agents. Instead, our goal is to find an equilibrium policy
πi
∗ for each agent i. A Nash equilibrium policy is defined as follows:

Definition 2. If N is the number of agents and Πi is the policy space for the
agent i, the policies π1

∗ , . . . , π
N
∗ constitute a Nash equilibrium solution of the

game if in every state s the following inequality holds for all πi ∈ Πi and for
all i:

V i
π1∗,...,πi,...,πN∗

(s) ≤ V i
π1∗,...,πN∗

(s).
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The first reinforcement learning method utilizing the Nash equilibrium di-
rectly was proposed by Hu and Wellman in [1] and [2]. The Nash equilibrium is
an appropriate solution concept if the roles of the learning agents are symmet-
ric. If the roles are not symmetric, i.e. some agents decide their actions prior the
other agents, the action decision process becomes sequential and the Stackelberg
equilibrium should be used instead of Nash equilibrium. In this paper, we study
sequential decision problems of two agents in which agent 1 makes its decision
prior to agent 2. In this case, the policy function of agent 2 is also the function
of the action enforcement of agent 1. Formally, the policy function of agent 2
takes the following form:

π2 : S × A1 → A2. (3)

The update rules for agents 1 and 2 are as follows [3]:

Q1
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q1

t (st, a
1
t , a

2
t )

+ αt[r1
t+1 + γ max

b∈A1
Q1

t (st+1, b, T b)] (4)

Q2
t+1(st, a

1
t , a

2
t ) = (1 − αt)Q2

t (st, a
1
t , a

2
t )

+ αt[r2
t+1 + γ max

b∈A2
Q2

t (st+1, g(st+1), b)],
(5)

where T is an operator conducting the response of agent 2 (assumed to be unique)
and g(st) is the action enforcement of agent 1 in the state st. In team games, the
rewards are the same for both agents and therefore one Q-function is sufficient
for describing the whole system. In this case, the Stackelberg solution reduces
to the MaxMax-solution and the corresponding update rule (the same for both
agents) is as follows:

Qt+1(st, a
1
t , a

2
t ) = (1 − αt)Qt(st, a

1
t , a

2
t )

+ αt[rt+1 + γ max
b∈A1

max
c∈A2

Qt(st+1, b, c)].
(6)

The application of the asymmetric learning model to team games also gives a
new justification for the use of the MaxMax-operator. However, if there exists
an ordering among the agents and both agents know and agree on it, the use of
Stackelberg solution solves the possible equilibrium selection problem. A thor-
ough discussion on asymmetric multiagent reinforcement learning can be found
in [3].

3 Policy Gradient Methods for Multiagent Domains

In this section, we extend the policy gradient method proposed by Sutton et al.
in [6] for multiagent domains. We restrict our attention only to the start state
formulation of the problem in which the goal of the agent is to maximize his
expected discounted utility starting from the specific state. We start the section
by introducing the concept of joint policy function. For brevity, all mathematics
is presented for the case of two agents.
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3.1 Joint Policy Function

We extend the stochastic parametrized policy function to multiagent domains by
setting the variables of the function to consist of the state and the joint actions
performed by the agents. Formally, this can be expressed as follows:

π(s, a1, a2; θ) = P (a1, a2|s; θ), (7)

where θ is an arbitrary parameter vector. The distribution defines the probability
of selecting the joint action (a1, a2) in the state s ∈ S.

3.2 Policy Gradient

The object function of the policy gradient method is the expected utility in the
start state s0:

ρ(s0, π) = Vπ(s0) =
∑

b∈A1

∑

c∈A2

π(s0, b, c; θ)Qπ(s0, b, c). (8)

By differentiating Eq. (8) with respect to an arbitrary parameter θ we get the
following equation (derivation of this equation follows the derivation of the single-
agent case in [6]):

∂ρ

∂θ
=

∑

s∈S

dπ(s)
∑

b∈A1

∑

c∈A2

∂π(s, b, c; θ)
∂θ

Qπ(s, b, c), (9)

where dπ(s) is the discounted weight (probability) of reaching state s starting
from the initial state s0 and following π. It is a real number and therefore we
can exclude it from (9) and still get an unbiased estimate of the gradient if the
state transitions are sampled by following π.

Now the only remaining step is to find a suitable approximator for the nor-
mally unknown Qπ function. Let the function f(s, a1, a2; ω) be our approxi-
mation for Qπ that is parametrized with the vector ω. Moreover, if we set an
additional restriction that the function f fulfills the compatibility property [6]:

∂f(s, a1, a2; ω)
∂ω

=
∂ ln π(s, a1, a2; θ)

∂θ
(10)

it can be shown that the error due to the use of the function f in place of Q is
orthogonal to the gradient of the policy function π. Hence we can replace the
function Q with the function f in Eq. (9).

3.3 Value Function Approximation

A natural way to update the parameters ω is to minimize the following error
function at each time step t:

Et =
1
2
[rt+1 + γ max

b∈A1
max
c∈A2

f(st+1, b, c; ω) − f(st, a
1
t , a

2
t ; ω)]2. (11)
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In this paper, we use the Gibbs distribution as a policy function, i.e.:

π(s, a1, a2, θ) =
eθT φ(s,a1,a2)

∑
b∈A1

∑
c∈A2 eθT φ(s,b,c)

, (12)

where φ(s, a1, a2) is a unit vector with the element corresponding to state-actions
tuple (s, a1, a2) set to one. Correspondingly, the compatible function approxima-
tor f takes the linear form:

f(s, a1, a2, ω) = ωT [φ(s, a1, a2) −
∑

b∈A1

∑

c∈A2

φ(s, b, c)π(s, b, c)]. (13)

In the above equation, the second term containing two sums is, in fact, the value
of the state s and does not depend on the action choices a1 and a2. Therefore
this term does not change the direction of the policy gradient in Eq. (9) and it is
possible to learn the parameters ω by using the standard learning rule presented
in Eq. (6).

3.4 Extensions to General-Sum Problems

There are two ways to extend the above policy gradient method to general-sum
problems:

1. Agents update the policy distribution π separately. In this case the goal is
to find a policy that maximizes the total (summed) utility of the agents.

2. Agents use the conditional distributions, conditioned with the opponent’s
action
choice, to update π. A sketch of the method can be found in [4].

In both cases, the problem is that there is no convergent learning rule for
teaching the parameters of the compatible function approximator f and therefore
we restrict our attention to team games only.

4 Empirical Tests

In this section, we test the proposed policy gradient method with a simple soccer
game that was originally proposed in [5]. In this game, there are three players
(agents): one fixed-strategy opponent and two learning agents that constitute
a team. The game is played on a 5 × 6 field illustrated in Fig. 1 (left). In this
figure, the cell marked with G1 is the goal for the learning agents and the cell G2
for the fixed-strategy agent. The agents are capable of moving to four cardinal
directions or staying in the current cell. There can be only one agent in a cell
simultaneously. The agent having the ball loses it when colliding with another
agent. In addition, each learning agent is capable to pass the ball to its team
mate located within 2 cells.

A state consists of the agents’ positions and the ball possession information.
Initially the fixed strategy agent is located in the left half of the field and the



738 Ville Könönen

learning agents in the right half of the field. The ball possession is selected
randomly. The game ends when the agent possessing the ball reaches a goal
cell. The cell G1 produces the payoff of 1 and G2 the payoff of -1. When the
agent with the ball reaches the goal, players are returned back to random initial
positions. After the agents select their actions using the Stackelberg equilibrium
concept, the actions are carried out in random order. This induces stochastic
state transitions to the Markov game. The fixed strategy player always moves
toward the agent possessing the ball and when it gets the ball, it moves directly
toward its goal cell.

We taught the model with 50000 games. The learning rate was decayed lin-
early with time in both value-function and policy function estimation. The dis-
count factor γ = 0.9 and the maximum length of the game was restricted to 50
moves. During the learning, action selections were sampled from the joint policy
function π. Additionally, the model was tested with 1000 games. In Fig. 1 (right),
the average number of wins (averaged from 20 test runs) is plotted against the
number of training rounds. From this figure, it can be seen that the number
of wins increases along the number of training rounds. However, the system
learns very fast in the beginning of the learning process, after that the learning
continues but is not so dramatic.
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Fig. 1. Left: the game field in the soccer example. The cell G1 is the goal for the
learning agents and the cell G2 for the fixed strategy opponent. Right: The number of
wins plotted against the number of the training rounds.

5 Conclusions

We justified the use of the global maximum value of the state in the value
function estimation by using the asymmetric learning model and based on this
estimate, we provided the direct policy gradient method. Additionally we tested
the policy gradient method with a simple example problem. Although the state-
actions space was relatively large, the method learned very fast.

In future research, we will continue the development of the policy gradient
method for general-sum games. Additionally, the method will be tested with
larger problem instances.
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