(© 2004 TEEE. Reprinted from the Proceedings of the International Joint Con-
ference on Neural Networks (IJCNN-2004), Budapest, Hungary, pp. 1097-1102.

This material is posted here with permission of the IEEE. Such permission of
the IEEE does not in any way imply IEEE endorsement of any of Helsinki
University of Technology’s products or services. Internal or personal use of
this material is permitted. However, permission to reprint/republish this ma-
terial for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE by writing
to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

© 2004 IEEE. Reprinted, with permission, from the Proceedings of the International Joint Conference on Neural Networks (IJCNN-2004),

Budapest, Hungary, pp. 1097-1102.

Asymmetric Multiagent Reinforcement Learning
In Pricing Applications

Ville Kéndnen and Erkki Oja
Neural Networks Research Centre
Helsinki University of Technology

P.O. Box 5400, FI-02015 HUT, FINLAND

{ville.kononen,erkki.oja}@hut.fi

Abstract— Two pricing problems are solved by using asymmet-
ric multiagent reinforcement learning methods in this paper. In
the first problem, a flat pricing scenario, there are two competing
brokers that sell identical products to customers and compete
on the basis of price. The second problem is a hierarchical
pricing scenario where a supplier sells products to two competing
brokers. In both cases, the methods converged and led to very
promising results. We present a brief literature survey of pricing
models based on reinforcement learning, introduce the basic
concepts of Markov games and solve two pricing problems based
on multiagent reinforcement learning.

I. INTRODUCTION

Reinforcement learning methods have recently been estab-
lished as practical tools for solving Markov decision processes.
The main assumption behind these models is that the environ-
ment of the learning agent obeys the Markov property, i.e. state
transition probabilities depend only on the state of environment
and the action selections of the learning agent. For example,
in multiagent settings, the Markov property does not always
hold and this can lead to suboptimal results. One way to
circumvent this problem is to use Markov games which are
natural extensions of Markov decision processes to multiagent
settings.

The main aim of this paper is to test asymmetric multiagent
reinforcement learning methods with two pricing problems. In
the first problem, there are two competing brokers that sell
identical products to customers and thus compete on the basis
of price. This pricing problem was originally proposed by
Tesauro and Kephart in [10], where the problem was solved by
using a single-agent reinforcement learning method. The pro-
posed method led to very good results in the cases where only
one of the agents is learning and the other keeps its pricing
strategy fixed. If both agents learn, the proposed method did
not always converge. In this paper, we model the problem as
a Markov game and solve it by using asymmetric multiagent
reinforcement learning. The proposed method converged in
every case and the results were very promising. Moreover,
we propose and solve a two-level pricing problem with two
competing brokers and a supplier that sells products to these
brokers.

The idea of using a heuristic approach to model foresight
based agent economies was originally proposed by Tesauro
and Kephart in [9]. The approach was then extended to utilize
Q-learning in [10]. When pricing applications contain a large

number of possible prices, the state and action spaces become
huge and lookup-table-based reinforcement learning methods
become infeasible. To overcome this problem, the Q-function
was approximated with different function approximators in [8]
and [7].

Our previous contributions in the field of multiagent re-
inforcement learning include an asymmetric multiagent re-
inforcement learning model [3]. Additionally, we have pro-
posed numerical methods for multiagent reinforcement learn-
ing in [4] and [5].

The paper is organized as follows. In Section Il, mathe-
matical preliminaries of game theory and the relevant solution
concepts are covered in brief. In Section Ill, we go briefly
through the theory of multiagent reinforcement learning based
on Markov games and in Section IV, we present two pricing
problems and solve these problems by using asymmetric
multiagent reinforcement learning. In the final section, con-
cluding remarks and some suggestions for the further study
are presented.

Il. GAME THEORY

This section is mainly concerned with the basic problem
settings and definitions of game theory. We start with some
preliminary information about mathematical games and then
proceed to their solution concepts which are essential for the
rest of the paper.

A. Basic Concepts

Mathematical games can be represented in different forms.
The most important forms are the extensive form and the
strategic form. Although the extensive form is the most
richly structured way to describe game situations, the strategic
form is conceptually simpler and it can be derived from the
extensive form. In this paper, we use games in strategic form
for making decisions at each time step.

Games in strategic form are usually referred to as matrix
games and particularly in the case of two players, if the payoff
matrices for both players are separated, as bimatrix games. In
general, an N-person matrix game is defined as follows:

Definition 1: A matrix game is a tuple T =
(AL, AN L N, where N is the number
of players, A is the strategy space for player i and

kononen
© 2004 IEEE. Reprinted, with permission, from the Proceedings of the International Joint Conference on Neural Networks (IJCNN-2004), Budapest, Hungary, pp. 1097-1102.

i Al x A% x L.
player .

In a matrix game, each player i simultaneously implements
a strategy a* € A’. In addition to pure strategies A?, we allow
the possibility that the player uses a random (mixed) strategy.
If we denote the space of probability distributions over a set A
by A(A), a randomization by a player over his pure strategies
is denoted by 0% € 3¢ = A(AY).

x AN — R is the payoff function for

B. Equilibrium Concepts

In decision problems with only one decision maker, it is
adequate to maximize the expected utility of the decision
maker. However, in games there are many players and we
need to define more elaborated solution concepts. Next we
will shortly present two relevant solution concepts of matrix
games.

Definition 2: If N is the number of players, the strategies
ol,...,a] constitute a Nash equilibrium solution of the game
if the following inequality holds for all o € X and for all i

ri(ai,...,ai_l,ai,aiﬂ,...701\7) < 7“7"(01 ...,aiv)

*9

The idea of the Nash equilibrium solution is that the strategy
choice of each player is a best response to his opponents’
play and therefore there is no need for deviation from this
equilibrium point for any player alone. Thus, the concept
of Nash equilibrium solution provides a reasonable solution
concept for a matrix game when the roles of the players are
symmetric. However, there are decision problems in which one
of the players has the ability to enforce his strategy to other
players. For solving these kind of optimization problems we
have to use a hierarchical equilibrium solution concept, i.e.
the Stackelberg equilibrium concept. In the two-player case,
where one player is acting as the leader (player 1) and the
another as the follower (player 2), the leader enforces his
strategy to the opponent and the follower reacts rationally to
this enforcement.

The basic idea is that the leader enforces his strategy so
that he enforces the opponent to select the response that leads
to the optimal response for the leader. Algorithmically, in the
case of finite bimatrix games where player 1 is the leader
and player 2 is the follower, obtaining a Stackelberg solution
(al,a?(a')) can be seen as the following two-step algorithm:

1) a?(a') = argmax,z2c 42 72(al, a?)

2) al = argmax i1 7 (at, a(al))

In the step 1, the follower’s strategy is expressed as a
function of the leader’s strategy. In the step 2, the leader
maximizes his own utility by selecting the optimal strategy
pair. The only requirement is that the follower’s response is
unique; if this is not the case, some additional restrictions must
be set.

Note that saying that the leader is capable to enforce his
action choice to the follower does not always mean that the
leader has an advantage over the follower. In some games, the
leader relinquishes his power by announcing his strategy first.

I1l. MULTIAGENT REINFORCEMENT LEARNING

With two or more agents in the environment, the funda-
mental problem with single-agent Markov Decision Processes
(MDPs) is that the approach treats the other agents as a part
of the environment and thus ignores the fact that the decisions
of the other agents may influence the state of the environment.

One possible solution is to use competitive multiagent
MDPs, i.e. Markov games. In a Markov game, the process
changes its state according to the action choices of all the
agents and can thus be seen as a multicontroller MDP. For-
mally, we define a Markov game as follows:

Definition 3: A Markov game (stochastic game) is defined
as a tuple (S,Al,..., AN p.rt ... rN), where N is the
number of agents, S is the set of all states, A’ is the set of all
actions for each agent i € {1, N}, p: S x Al x ... x AN —
A(S) is the state transition function, % : Sx Al x...x AN —
R is the reward function for agent i. A(S) is the set of
probability distributions over the set S.

Again, as in the case of single-agent MDP, we need a policy
7 for each agent i (the policy is assumed to be stationary):

78— A" Vi€ {1, N}. (1)

In multiagent systems this policy function is not necessarily
deterministic. However, here we assume that the randomiza-
tion is performed inside the policy function and therefore =’
returns actions directly. The expected value of the discounted
utility R* for the agent i is the following:

Vir an(8) = Em__ox[Ri|so = o]
x)
D Afrialso = s,
t=0

where r{ , is the immediate reward for agent ¢ after the state
transition and ~ is a discount factor. Moreover, the value for
each state-action pair is

=F.

N
yeees T

jrl,...,ﬁN(S’a/la"waN)
= EW17,..,7TN[Ri|SO = S,a(l) — a17 B .’aév — aN]
=ri(s,a',... a") (3)

+ vzp(s'|s, at,. .. ,aN)V;'l’“ﬂN(s’).
s/

Contrast to single-agent MDPs, finding the optimal policy !
for each agent ¢ can be seen as a game theoretical problem
where the strategies the players can choose are the policies
defined in Eq. (1).

A. Solving Markov Games

In the case of multiagent reinforcement learning, it is not
enough to maximize the expected utility of individual agents.
Instead, our goal is to find an equilibrium policy of the Markov
game, e.g. a Nash equilibrium policy. The Nash equilibrium
policy is defined as follows:

Definition 4: If IV is the number of agents and II? is the
policy space for the agent 4, the policies 7!, ..., 7Y constitute

a Nash equilibrium solution of the game if the following
inequality holds for all = € II* and for all i in each state
ses:

It is noteworthy that Definition 4 coincides with Definition 2
when individual strategies are replaced with policies. The
Stackelberg equilibrium concept can be extended for policies
in similar fashion. We refer to methods built on Markov games
with the Nash equilibrium concept as symmetric methods and
to methods that utilize the Stackelberg equilibrium concept as
asymmetric methods.

For brevity, learning algorithms are presented next only in
the case of two agents and in the asymmetric model the agent
one is acting as the leader and the agent two as the follower.

B. Symmetric Learning in Markov Games

As in the case of single agent reinforcement learning, Q-
values defined in Eq. (3) can be learned from observations
on-line using some iterative algorithm. For example, in the
two-agent case, if we use Q-learning, the update rule for the
agent 1 is [2]:

Qt1+1(stva%va?) = (]- - at)Qtl(St7a%7a?)
+ oufrfyy + YNash{Q} (s141)}],

where Nash{Q}(s;;1)} is the Nash equilibrium outcome of
the bimatrix game defined by the payoff function Q}(s¢y1).
The corresponding update rule for the agent 2 is symmetric.

Note that it is guaranteed that every finite matrix game
possesses at least one Nash equilibrium in mixed strategies.
However, there exists not necessarily Nash equilibrium point
in pure strategies and therefore Nash{Q; (s;+1)} in Eq. (4)
returns the value of a mixed strategy equilibrium.

4)

C. Asymmetric Learning in Markov Games

In the asymmetric case with Q-learning, we get the follow-
ing update rules for the agents:

Qtl-&-l(staa%aa?) = (1 - O‘t)Qtl(Stvaivaf) + O‘t[rtl-i-l 5
+ ymax Q! (511, b, Th)] ©)
be Al
Q?H(st,a%,af) =(1- at)Qf(sha%,a?) + Oét[TtQJrl

+ ’Yilé%(Q?(St+1v 9(8t4+1,0¢11),0)],

(6)

where g(s¢, af) is the leader’s enforcement and 7" is a mapping
T : A' — A? that conducts the follower’s best response to
the leader’s enforcement.

Above presented algorithms do not define how one selects
the current state-action tuple (s;,a},a?). For example, it is
possible to select states and actions pure randomly. However,
it is often more efficient to explore state-action space by cal-
culating an equilibrium solution of the matrix game associated
with the current state and then deviate from this solution with
some small probability, e.g. by using softmax action selection
scheme.

IV. PRICING PROBLEMS

In this section, we apply above discussed asymmetric multi-
agent reinforcement learning method to two pricing problems.
In both problems, there are two competing agents (brokers)
that sell identical products and compete against each other on
the basis of price. At each time step, one of the brokers decides
its new price based on the opponent’s, i.e. other broker’s,
current price. After the price has been set, the customer either
buys the product at the offered price or buys not the product
at all. The objective of the agents is to maximize their profits.
We begin the section by modeling the interaction between
the two brokers as an asymmetric multiagent reinforcement
learning problem. Additionally, we propose a hierarchical
pricing problem of three agents, in which one of the agents is
acting as a supplier that sells products to the brokers.

A. Flat Pricing Problem

In [10], Tesauro and Kephart modeled the interaction be-
tween two brokers as a single-agent reinforcement learning
problem in which the goal of the learning agent is to find
the pricing strategy that maximizes its long time profits.
Reinforcement learning aids the agents to prevent “price
wars”, i.e. repeated price reductions among the brokers. As a
consequence of a price war, the prices would go very low and
the overall profits would also be small. Tesauro and Kephart
reported very good performance of the approach when one
of the brokers keeps its pricing strategy fixed. However, if
both brokers try to learn simultaneously, the Markov property
assumed in the theory of MDPs does not hold any more and the
learning system may encounter serious convergence problems.
In this paper, we model the pricing system as a Markov game
and test the proposed learning system with two economical
models.

In the simple economical model (the Shopbot model [1]),
the customer buys the product from the broker with the
lowest price. At each time step, after the customer has done
his purchase decision, brokers get their immediate profits
according to the utility functions defined as follows:

1 H 1 2
11 . 2y_) pr—c ifp<p
u(p,p){ 0 otherwise)
and
2 : 1 2
2,1 oy | pP—c ifp >p
u (P p)_{ 0 otherwise, 8)

where p', p? € P are the current prices of the broker 1 and the
broker 2, respectively, and the ¢ € [0,1] is a fixed marginal
cost of the product. In this paper, all prices lie in the unit
interval and the parameter ¢ = 0.2.

In the second, more complex economical model (the Price-
Quality model [6]), there is a quality parameter associated with
each broker and the customers make their purchase decisions
in a quality-aware manner. Denoting the quality parameter for
the broker 1 as ¢' and for the broker 2 as ¢ (¢* > ¢?), we

get the following utility functions for the brokers [6]:

(¢' —p")(p' —c(q")) f0<p' <p?
u' (pt,p?) = or p! > ¢?
(' =)' —c(qh)) ifp* <p' <¢?
. %)
an
2 N2 2 if O < 2 1
w2 (pt, p?) _{ (()q p*)(p* = c(¢?)) ;;OZ_p]l?) <p
(10)

where c¢(q?) represents the cost of producing the product .
Note that we assume here that there is an infinite number of
customers who all behave as described in [6]. Hence, the above
utility functions are simply profit expectations for the brokers.
In this work, we use the following linear cost function:

c(q") = 0.1(1.0 + ¢%).

Furthermore, we set the quality parameters as follows: ¢! =
1.0 and ¢®> = 0.9. This parameter setting was observed to
generate price wars when the agents use simple myopic pricing
strategy (i.e. they make their decisions directly based on the
above declared utility functions) in [10].

We make the assumption that the brokers do not decide their
decisions simultaneously, i.e. there is an ordering among the
decision makers. Hence, we model the system with the follow-
ing Markov game endowed with the asymmetric equilibrium
concept:

o The state is the current price of the broker 2.

o The broker 1 is acting as the leader and hence decides
its price prior to the broker 2. Hence, as the state is the
current price of the broker 2, the utility of the broker 1
depends only on its price selection and the current state.

o The broker 2 is the follower and its utility value depends
on the leader’s enforcement and its own price selection.

At each time step, the broker 1 calculates a Stackelberg
equilibrium point of the matrix game associated to the current
state and makes its pricing decision based on this solution.
After that, the broker 1 announces its price decision to the
broker 2 who, in its turn, maximizes its utility value based on
this enforcement. This process is illustrated in Fig. 1.

The corresponding update equations for the brokers 1 and
2 are as follows:

Qi (i _1.pi,07) = (1 —)Qi (71,1, 1})

(11)

12
+aulu (0, 780) + ymas QL b, 0D

and
QiH(thflap%ap?) =(1- at)QtQ(p?A’p%’p?) (13)

+ ou[u?(py,p7) + 7 max Q7 (p7, g(pi,af),b)l,

where ~ is the discount factor, operator 7b conducts the
follower’s response to the leader’s action choice b and g(-) is
the leader’s enforcement. Note that the learning method does
not need any prior model of the opponent, not even the above
defined utility functions.

In our test runs, the number of different pricing options
was 25 for both agents and the Q-learning was implemented

broker 1 broker 2 broker 1

2
pt—l pt1 pt—l pf pt
—_— —_—

Fig. 1. Timeline of the price decisions in the fit pricing problem. Price
symbols below dots describe states and symbols above arrows price decisions.

80

701

[D
o o
T T

Cumulative profit
5

30t
20t
101, Broker 1
—— Broker 2
0 L L L T J
0 0.2 0.4 0.6 0.8 1

Discount factor

Fig. 2. Averaged profi ts in the fit pricing model with the Shopbot pricing
function. All data points are averages of 1000 test runs each containing 100
pricing decisions for both agents.

by using a simple tabular implementation. During training
each state-action tuple was visited 1000 times. Learning rate
parameter o was decayed according to the following equation:
1.0
) (4
where n(-) is the number of visits in the state-action tuple.
In the testing phase, the initial state (price of the broker 2)
was selected randomly and one test run consisted of 100
pricing decisions per broker. In Fig. 2, the cumulative profit
(average from 1000 test runs) of each agent is plotted against
the discount factor + in the case of the Shopbot pricing model.
Respectively, in Fig. 3 the cumulative profit is shown in
the case of the Price-Quality model. In the Shopbot model,
the average profit of the broker 1 grows monotonically as
the discount factor increases. Also the profit of the broker
2 increases albeit not monotonically. Moreover, the use of
small discount factor v = 0.1, corresponding to very shallow
lookahead, leads to relatively high profits compared to v =
0.0. The use of higher discount factors further increases profits
but the growth is not so dramatic. In the Price-Quality model,
the profits grow steadily as the discount factor is increased.
The convergence of the agents’ Q-value tables in the case
of Shopbot model is illustrated in Fig. 4, where the Euclidean
distance between Q-value vectors from consecutive training
rounds is plotted against the round number. Two cases with
discount factors 0.3 and 0.9 are plotted for both brokers. It
can be seen that the algorithm converged very fast in every

201
15¢

-

10f

Cumulative profit

Broker 1
—— Broker 2

0 0.2 0.4 0.6 0.8 1
Discount factor

Fig. 3. Averaged profits in the fet pricing model with the Price-Quality
pricing function. All data points are averages of 1000 test runs each containing
100 pricing decisions for both agents.

4.5¢

—— y=0.3, broker 1
4 y=0.3, broker 2
i --- y=0.9, broker 1

35?\ -— y=0.9, broker 2

3h

2,51

2,

1.5

Changes in Q-values

1

0.5¢

Iteration

Fig. 4. Convergence of the Q-values in the fet pricing model.

case, although with high ~ values the convergence is much
slower than with low values of ~. The convergence properties
of the algorithm in the case of the Price-Quality model are
analogous.

B. Two-Layer Pricing Problem

We now extend the above system to handle two-layer agent
hierarchies. In addition to the flat pricing problem setting, there
is now a supplier that sells products to both brokers. At each
time step, one of the brokers decides its new price based on
the opponent’s current price (other broker) and the price set by
the supplier. The supplier, in its turn, decides its action based
on the asymmetric solution concept. The customer buys the
product of the lowest price. After the customer’s decision, the
brokers get their profits according to their immediate utility
functions presented in Egs. (15) and (16). The utility values
for the supplier are shown in Egs. (17) and (18) in the case

where the brokers 1 and 2 are charged, respectively.

e FA - bR
U
st = { 370 Gl <
s = {37 s ™ 8

In Egs. (15)—(18), p' and p? are the prices of the brokers 1
and 2, respectively, s is the price of the supplier and [€ [0, 1]
is the largest fraction of the broker’s price that the broker is
willing to pay to the supplier. As in the flat pricing problem,
c is a marginal cost of the product. ¢ could also be associated
with some quality parameter, perhaps different for each broker.
However, in this study, the parameter has a fixed and equal
value for each broker.

At each time step, the customer purchases the product from
the broker having the lowest price. If the supplier is charging
too much from the broker (expected profit of the broker is too
low), the broker does not buy the product from the supplier
and the utility drops to zero for the supplier and the broker.

In this problem, we use reinforcement learning to aid the
agents in anticipating the long-time consequences of their price
decisions on both levels of the agent hierarchy. The supplier
does not know the fraction [and therefore it is reasonable
to apply learning, e.g. reinforcement learning, also for the
supplier.

We make the simplifying assumption that the broker 2 keeps
its pricing strategy fixed, i.e. it decides its price based on
the immediate utility value defined in Eq. (16). Further, the
supplier also keeps its pricing strategy fixed with the broker
2. Fig. 5 illustrates this relationship.

Supplier

Broker 1 game

3

Broker 2 game

3

Fixed

Broker 2

Broker 1
Fixed

Fig. 5. Supplier-broker relationship.

In the corresponding Markov game, the state is the oppo-
nent’s (other broker’s) last price and the action is the current
price decision. The update rules for the supplier and the broker
1 are as follows:

Qi1 (07, st mp) = (1 —)Q5 (17, se,pt)

S S 19
+at[u1(pi,pf,8t;l)+wglealg<Qt1(p?+1,b,Tb)] (19)

and
Q107 56,0¢) = (1 —) Qy (17 54,07)
+ ayfu' (pf,pi, se3 1)
+7 Ilfleagi Q: (p§+17 g(p§+17 ag11),b)],

(20)

where p?,, is obtained from the fixed game between the
supplier and the broker 2. The Q-value tables are initialized
by using profit functions (15) and (17).

The parameter [has a value of 0.8 and the producing cost
for the supplier is ¢ = 0.2 per product. The number of the
pricing options was 25 for all agents and the maximum price
for the supplier was 0.8. The training phase was conducted as
in the case of the flat pricing model. In the testing phase,
the initial prices were selected randomly and one test run
consisted of 100 pricing decisions per broker. In Fig. 6, the
cumulative profit (average from 1000 test runs) of each agent
is plotted against the discount factor ~. As we can see from this
figure, the average profit of the supplier grows monotonically
as the discount factor increases. Moreover, the broker 1 learns
a pricing strategy that leads to a moderate growth in the
profits compared to the myopic case. The optimizing broker
(broker 1) rises its price to the maximum in some situations
and therefore has slightly lower profits than the static broker.
However, the cumulative profits are much higher also for the
broker 1 than in the myopic case.

90r,

Supplier
80H —— Broker 1
- - Broker 2

701

601

501

40f

301

Cumulative profit

20

101

0.4 0.6
Discount factor

Fig. 6. Averaged profi ts in the two-layer pricing model. All data points are
averages of 1000 test runs each containing 100 pricing decisions for both
agents. The maximal possible profit is 100 for the brokers and 200 for the
supplier.

The convergence of the agents’ Q-value tables is illustrated
in Fig. 7. The convergence properties of the algorithm were
similar to the flat pricing model.

V. CONCLUSIONS AND FUTURE RESEARCH

Two pricing problems based on asymmetric multiagent rein-
forcement learning were presented in this paper. The proposed
learning methods have stronger convergence properties than
single-agent reinforcement learning methods in multiagent

| — y=0.3, supplier
‘ y=0.3, broker 1
2 51 .
2 --- y=0.9, supplier

» | - - y=0.9, broker 1

] |

>]

3 4

I> |

o |

£ 150

7] ! '\

g i

c

<

e

(@]

600
Iteration

Fig. 7. Convergence of the Q-values in the two-layer pricing model.

environments. The methods converged in every test case and
led to very promising results.

Tabular implementations of the multiagent reinforcement
learning based pricing models become intractable as the num-
ber of pricing options increases. Therefore, we are going to
apply numerical methods, both value function based and direct
policy gradient methods, to these pricing problems.

REFERENCES

[1] Amy R. Greenwald and Jeffrey O. Kephart. Shopbots and pricebots. In
Proceedings of the International Conference on Artifi cial Intelligence
(IJCAI’'99), Stockholm, Sweden, 1999. AAAI Press.

[2] Junling Hu and Michael P. Wellman. Multiagent reinforcement learning:
Theoretical framework and an algorithm. In Proceedings of the Fifteenth
International Conference on Machine Learning (ICML’'98), Madison,
WI, 1998. Morgan Kaufmann Publishers.

[3] Ville J. Kdndnen. Asymmetric multiagent reinforcement learning. In
Proceedings of the 2003 WIC International Conference on Intelligent
Agent Technology (IAT-2003), Halifax, Canada, 2003. |IEEE Press.

[4] VilleJ. Kéndnen. Gradient based method for symmetric and asymmetric
multiagent reinforcement learning. In Proceedings of the Fourth Inter-
national Conference on Intelligent Data Engineering and Automated
Learning (IDEAL 2003), Hong Kong, China, 2003. Springer-Verlag.

[5] Ville J. Kdnodnen. Policy gradient method for multiagent reinforcement
learning. In Proceedings of the 2nd International Conference on
Computational Intelligence, Robotics and Autonomous Systems (CIRAS
2003), Singapore, 2003.

[6] Jakka Sairamesh and Jeffrey O. Kephart. Price dynamics of verti-
caly differentiated information markets. In Proceedings of the First
International Conference on Information and Computational Economics
(ICE’98), Charleston, SC, 1998. ACM Press.

[71 Manu Sridharan and Gerald Tesauro. Multi-agent Q-learning and
regression trees for automated pricing decisions. In Proceedings of
the Seventeenth International Conference on Machine Learning (ICML-
2000), Stanford, CA, 2000. AAAI Press.

[8] Gerald Tesauro. Pricing in agent economies using neural networks and
multi-agent Q-learning. In Sequence Learning: Paradigms, Algorithms,
and Applications, volume 1828 of Lecture Notes in Artifi cial Intelli-
gence. Springer-Verlag, 2001.

[9] Gerald Tesauro and Jeffrey O. Kephart. Foresight-based pricing algo-

rithms in an economy of software agents. In Proceedings of the First

International Conference on Information and Computational Economics

(ICE’'98), Charleston, SC, 1998. ACM Press.

Gerald Tesauro and Jeffrey O. Kephart. Pricing in agent economies

using multi-agent Q-learning. In Proceedings of Workshop on Game

Theoretic and Decision Theoretic Agents (GTDT 99), London, England,

1999.

(10]

