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Abstract—In this work, we study theoretically the oper-
ation of long surface acoustic wave reflectors, comprising a
large number of electrodes, at the fundamental and second
harmonic frequencies on the 128� LiNbO3 substrate for var-
ious electrode thicknesses and metallization ratios. Numer-
ical simulations utilizing tailored test structures and time
gating indicate that the reflectivity of the second-harmonic
reflectors can be very high for certain geometries. Further-
more, our simulations suggest that inside the stopband the
total losses for the second harmonic are of the same order
as those for operation at the fundamental harmonic.

I. Introduction

The classic 128◦ YX-LiNbO3 crystal cut is widely used
in TV surface acoustic wave (SAW) filters and, re-

cently, in SAW tags, because of its low level of spurious
bulk-wave generation and the relatively high piezoelectric
coupling. However, the factor limiting the range of ap-
plications of 128◦ LiNbO3 is the weak reflectivity of the
aluminium electrodes at the fundamental harmonic fre-
quency. Low reflectivity implies a large number of fingers
in the reflector gratings, which complicates the efforts to
comply with the size limitations. Moreover, for certain ap-
plications, such as low-loss devices or SAW tags, a low
reflectivity is quite a restrictive feature.

The motivation for studying higher-harmonic reflectors
is that considerable reflectivities may be obtained on sub-
strates, such as 128◦ YX-LiNbO3, where the reflectivity
at the fundamental harmonic is low [1]. This result is to
some extent unexpected since the conventional model of
reflections is that of a mismatched delay line, see, e.g.,
[2], which yields for the reflectivity κ of a single electrode
a sinusoidal dependence on the width of the electrode a,
κ ∝ sin(βa) with β = 2π/λ. The typical reasoning is that
this function attains a maximum for an electrode having
the width of a quarter of the wavelength λ. Evidently, the
same function yields zero reflectivity for an electrode half
a wavelength wide. At least for strong reflectors, none of
the statements is actually valid, since the contribution of
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the energy-storage effect [1] is known to result in a finite
reflectivity for half-wavelength electrodes. Moreover, even
without mass-loading, the purely electrical contribution to
the reflectivity for a λ/2-wide electrode is quite high [3].
This strong reflectivity of the second-harmonic reflectors is
an intriguing observation. A combination of the low spuri-
ous level of 128◦ YX-LiNbO3 with a high reflectivity would
be very attractive for SAW sensor and tag applications.

The properties of reflectors with finite electrode thick-
ness at harmonic frequencies have not been extensively
studied. Experimental work in this direction has been car-
ried out, e.g., by Campbell and Edmonson [4], who stud-
ied the properties of a harmonic one-port resonator on 64◦

YX-cut LiNbO3.
In this work, we attempt to characterize, by theoretical

means, long reflectors comprising a large number of elec-
trodes. As our method of investigation, we apply a two-
step procedure. First, the velocities v and the reflectivities
in the gratings are initially characterized using a simulator
applying the finite element and boundary element meth-
ods (FEM, BEM) for infinite periodic electrode arrays [5].
Considerably slower, but more realistic, FEM/BEM simu-
lations of finite structures [6] are then applied to evaluate
the reflectivity and the attenuation. Preliminary results of
this work have been published in [7] and [8].

II. Simulations of Infinite Periodic Arrays

The infinite periodic simulator was used to extract the
velocity v and normalized reflectivity κλ0 in a second-
harmonic grating as a function of electrode thickness h/λ0
and metallization ratio a/λ0. To evaluate the accuracy of
the infinite periodic approximation, the coupling-of-modes
model (COM) was employed to characterize a test struc-
ture encompassing an interdigital transducer, IDT (v and
κλ0 for fundamental-mode operation), and two reflectors
operating at the second harmonic frequency (v and κλ0
for second-harmonic operation; see Fig. 1(a)).

There are methodological difficulties related to the nu-
merical characterization of infinite periodic electrode ar-
rays operating at the second harmonic. For even-order har-
monic frequencies f2n = nv/p, where p denotes the pitch
of the array, the electromechanical coupling coefficient of
the SAW eigenmodes tends to vanish. In this case the elec-
trodes are separated by a distance equal to an integer num-
ber of λ and, for synchronous excitation, the waves gener-
ated by adjacent fingers in a standard IDT are in opposite
phase and interfere destructively. To circumvent the prob-
lems with electric sources, we follow the general idea of
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Fig. 1. (a) Resonator with second-harmonic reflectors. pt is the pitch
in the transducer, λg is the period in the reflector grating. (b) Nu-
merical experiment, where an infinite periodic grating is driven by
mechanical forces acting at the interface between the electrodes and
the substrate.

mechanical excitation, a possibility mentioned by Ventura
et al., in the context of fundamental harmonic operation
[9]. Mechanical sources, i.e., oscillating stress forces �T (x)
acting at the electrode-substrate interface, are employed
to drive the grating in the harmonic configuration with
the excitation wavenumber γ close to zero (see Fig. 1(b)).
The resulting resonances in such a numerical experiment
enable one to detect the edges of the stopband and, hence,
the center frequency and reflectivity.

III. Test Structure for Rigorous Simulations

The complete dispersion relation—especially the atten-
uation due to the scattering into bulk waves—remains dif-
ficult to evaluate from simulations of infinite electrode
arrays. Further complications are the potentially signifi-
cant losses due to SAW-BAW scattering at the disconti-
nuities between the reflectors and the IDT, not included
in the simulations for periodic arrays. Hence, rigorous
FEM/BEM simulations of finite structures [6] are carried
out. The COM model is employed to analyze the results
of the simulations and to compare them with those of the
periodic FEM/BEM simulator.

By introducing proper test structures, rigorous simula-
tions also offer a means to estimate the losses originating
from bulk scattering. In this work, a structure consisting of
a transmitting transducer, two receiving split-finger trans-
ducers, a reflector placed between the receiving transduc-
ers, and gaps with different widths between the building
blocks of the test structure (see Fig. 2), is used to ad-
dress the scattering losses. The responses in the receiving
transducers (ports 2 and 3), calculated in terms of the Y-
parameters, contain contributions attributed to multiple
reflections from the reflector and the transmitting (port
1) transducer. However, the reflections from the receiving

Fig. 2. Test structure for simulations of long reflectors. For 128◦
LiNbO3, the values Nt1 = 10, Nt2 = Nt3 = 8, Ng = 80, λ0 = 2 µm,
W = 32 µm, w1 = 100 µm, w2 = 170 µm, and w3 = 30 µm are used.

transducers are negligible due to the split-finger geometry.
Through time gating, the direct signal transmitted from
the source transducer and received at the first split-finger
transducer can be separated from the contribution of the
signal reflected back from the grating. Correspondingly,
the direct signal received in the second split-finger trans-
ducer can be identified.

The relatively small number of electrodes in the trans-
ducers implies that they are not optimized for SAW gener-
ation or reception. The reason for the split-finger geometry
in the receiving transducers is an attempt to minimize the
perturbation to the SAW caused by the IDT at port 2. Be-
cause of the mismatching, the minimal detectable level of
SAW (see below) is limited by the spurious bulk waves and
the EM feedthrough registered by the output transducers.

The bandwidth of an interdigital transducer, measured
as the distance between the first zeros of the transfer func-
tion, can be estimated as

BWIDT =
2

Nfinger pairs
. (1)

Thus, choosing a small number of electrodes in the trans-
mitting transducer (port 1) implies a wideband input sig-
nal. A large number of electrodes in the grating under in-
vestigation leads to a narrowband grating response, which
can thus be analyzed accurately, see, e.g., Fig. 4.

The frequency step ∆f and the simulation bandwidth
B were chosen as 2 MHz and 1 GHz, thus, yielding a 501-
point frequency grid. In the time domain, according to

T =
1

∆f
,

∆t =
1
B

,

(2)

the time span T and the interval between the temporal
points ∆t become 500 ns and 1 ns, respectively.

Using the rigorous FEM/BEM simulator, the duration
of the calculation increases fast as a function of the overall
number of electrode fingers. For example, with a 500-MHz
PC, the simulation time for 501 frequency points for the
test structure of Fig. 2 with 80 strips in the grating is about
13.5 h and that for 160 strips in the grating approaches
75 h.
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Fig. 3. Time-domain responses for the test structure in Fig. 2: (a) Sig-
nal transmitted from port 1 and received at port 2. (b) Signal trans-
mitted from port 1 and received at port 3. The symbols refer to
the different partial signals; see the text. The vertical dashed lines
confine the contributions of the direct signal and the signal reflected
once from the grating. Here, a/p = 0.50, p = λ0, and h/λ0 = 5%.

IV. Time Gating

Inverse Fourier transform is used for the time gating.
Typical illustrations of the signals observed at ports 2 and
3 are shown in the time domain in Fig. 3. In both of the fig-
ures, the vertical dashed lines denote the truncation limits
used in the time-gating procedure.

In Fig. 3(a), the different signal contributions are la-
beled α–φ. Taking the SAW velocity to be 3980 m/s, it is
easy to see that the label α corresponds to the partial sig-
nal propagating the distance 100 µm directly from port 1
to port 2, see the description of the test structure in Fig. 2.
The case β, corresponding to a propagation distance of
about 100 + 170 + 170 µm = 440 µm, is the first reflected
contribution from the grating. Similarly, the partial sig-
nal labeled χ implies one reflection from the grating and
another from the transmitting transducer (port 1). The re-
sponses δ, ε, and φ correspond to multiple reflections from

Fig. 4. Direct signal contribution transmitted from port 1 and re-
ceived at port 3 in the frequency domain. The notch in the middle,
a consequence of the grating stopband, is used to evaluate the reflec-
tivity of the grating. Here, a/p = 0.50, p = λ0, and h/λ0 = 5%.

the grating and port 1. Note that the response clearly in-
dicates that the reflections from the split-finger transducer
at port 2 can be neglected: the first contribution, includ-
ing a reflection from port 2, is propagation three times
across the gap w1, i.e., 300 µm, which corresponds to a
propagation time of about 75 ns.

Fig. 3(b) displays the signal transmitted from port 1
and observed at port 3. The first maximum, labeled γ,
corresponds to the propagation distance of roughly 100 +
170+160+30 µm = 460 µm, i.e., a direct propagation path
through the grating. The peaks labeled η can be related to
a triple-transit signal reflected once from the grating and
once from the transmitting transducer.

The time-gated frequency response of the direct signal
observed at port 3 (|Yd

31|) is depicted in Fig. 4. The most
apparent difference with respect to the direct signal re-
ceived at port 2 (|Yd

21|, see Fig. 7) is the notch originating
from the grating stopband. In addition, losses occurring
along the propagation path between ports 2 and 3 lower
the power level of the signal.

The source being in port 1, it is justified to assume
that the admittances observed at ports 2 and 3 are—via
the electric currents at the ports 2 and 3, which they
represent—proportional to the corresponding acoustic-
wave amplitudes. Thus, energy comparison serves as a
method for evaluating the losses

|Yd
21|2 ≥ |Yr

21|2 + |Yd
31|2, (3)

where the superscripts d and r refer to the direct and re-
flected signals, respectively.

In what follows, the results of the simulations are inter-
preted in the framework of the COM model.
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Fig. 5. (a) Velocities and (b) reflectivities for second-harmonic reflec-
tors on 128◦ YX-cut LiNbO3, determined from simulations of infinite
periodic gratings.

V. Results of Simulations of Infinite Periodic
Arrays

The periodic structure simulator with mechanical
sources was used to determine the velocity and reflectivity
on the 128◦ YX-cut LiNbO3, supporting a Rayleigh wave,
as functions of the metallization ratio, a/λ0, and the rel-
ative electrode thickness, h/λ0. The materials parameters
by Kovacs et al. [10] were used for LiNbO3. The aluminum
electrodes were assumed rectangular and isotropic.

The velocities and reflectivities obtained are illustrated
in Fig. 5. The velocities are notably (almost 50 m/s) higher
than those for operation at the fundamental frequency.
The effect is probably due to the reduced screening of the
electric fields by the electrodes. The velocities tend to be
quite sensitive to the metallization ratio. Consequently,
even though the critical dimensions are twice as large as
they would be if reflectors operating at the fundamental
frequency were used instead, precise control over the elec-
trode width may nevertheless be required.

Fig. 6. Simulated resonator response vs. COM model on 128◦ YX-
LiNbO3 with h/λ0 = 5% and metallization ratio 0.5. The structure
is of the type shown in Fig. 1(a).

The reflectivity increases strongly with the electrode
thickness, reaching a value as high as 20% for h/λ0 = 8%.
Such an excellent reflectivity is a somewhat unexpected
result, especially when compared with the rather poor re-
flectivity for the fundamental harmonic. For all the thick-
nesses studied, the maximum reflectivity is achieved for
a/λ0 close to 0.4.

VI. Results of Rigorous Simulations

In further studies, a rigorous FEM/BEM simulator [6]
was utilized to obtain improved estimates for the reflec-
tivity and the attenuation for Rayleigh waves in a long
reflector on 128◦ YX-cut LiNbO3. Again, the materials
parameters by Kovacs et al. [10] were used, and the alu-
minum electrodes were assumed rectangular and isotropic.

The simulation of a finite one-port resonator with
h/λ0 = 5% and a/p = 0.5 is displayed in Fig. 6. Also
shown is the admittance obtained from COM with the pa-
rameters determined from the periodic FEM/BEM simu-
lations. The agreement is reasonable. No significant atten-
uation is predicted in the simulations, suggesting that the
second-harmonic reflectors on 128◦-cut LiNbO3 indeed are
promising for applications demanding high reflectivity.

A. Attenuation

The energy balance, derived from the simulation results
for the test structure (see Fig. 2) having the particular
grating geometry of h/λ0 = 5% =̂ 1000 Å and a/p = 0.5, is
shown in Fig. 7. The inequality in (3) is clearly manifested.

For reflectors operating at the second harmonic, it can
be readily seen that in the reflector passband regions close
to the stopband, the total losses are on the order of 5 to
7 dB. This value is about one order of magnitude higher
than that estimated for the fundamental mode of opera-
tion, around 0.7 to 1.2 dB.
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Fig. 7. (a) Energy balance for the structure shown in Fig. 2. The
dashed vertical lines indicate the grating stopband and the lower
and upper passbands. (b) The energy balance for an equivalent test
structure with the reflector operating at the fundamental frequency
(Ng = 160, p = λ0/2). The substrate is 128◦ YX-LiNbO3 with
h/λ0 = 5% and metallization ratio 0.5.

However, in the reflector stopband region, the attenua-
tion is significantly reduced for the second-harmonic mode
of operation (see dashed curve in Fig. 7(a)), while no sys-
tematic change is observed for the fundamental-mode re-
flector (see dashed curve in Fig. 7(b)). Actually, we see
little, if any, increase in the losses in the stopband com-
pared with the case of the fundamental harmonic reflec-
tor. This is likely to be the consequence of the short pen-
etration depth of the wave into the reflector due to the
high reflectivity. Hence, the losses attributed to scatter-
ing, present in the whole frequency range, are limited in
the stopband. Furthermore, a comparison of simulations,
including and excluding resistivity, suggests that the resis-
tive losses are practically negligible in the second-harmonic
reflector, while for the fundamental harmonic operation, it
can not be justified to disregard the resistivity, at least for
large apertures.

Fig. 8. Attenuation in the stopband normalized to the effective pen-
etration depth in units of λ0, |κλ0|−1 for the grating operating at
the second harmonic as a function of a/λ0 and h/λ0.

Fig. 8 shows the attenuation in the grating stopband
for operation at the second harmonic frequency, obtained
via rigorous simulations for the test structure of Fig. 2,
as a function of a/λ0 and h/λ0. Attenuation values for
the second-harmonic grating in the lower and upper pass-
bands, taken as frequency ranges between the notches and
the stopband in the energy balance image (see Fig. 7),
are shown in Fig. 9. Only the total losses are calculated
from the energy balance. To define the attenuation coef-
ficient (per wavelength), we normalize these losses to the
length of the grating. However, this procedure would not
have much sense for stopband frequencies. In the grating
stopband, as opposed to the total grating length in λ0 in
the passband, the losses are normalized to |κλ0|−1, the
effective penetration depth into the grating given by the
COM model. The resulting attenuation in the stopband is
roughly twice the value for the passband attenuation.

For the fundamental harmonic, the losses in the pass-
band are smaller than those for the second-harmonic grat-
ing (see Fig. 7). In the stopband, the evaluation of losses
is often aggravated due to ripples originating from the
time-gating procedure. Therefore, the values obtained are
subject to a larger uncertainty than those for a grating
operating at the second harmonic. Most of the attenua-
tion values obtained for the fundamental harmonic case,
in Nepers, were between γλ0

∣
∣
LPB = 0.8 . . .1.05 · 10−3,

γλ0
∣
∣
SB = 0 . . . 1.5 · 10−3, and γλ0

∣
∣
UPB = 2 . . . 4 · 10−3,

in the lower passband, stopband, and the upper passband,
respectively.

The origin of this attenuation, although not studied in
detail, is in the intrinsic material losses included in the
calculations of Green’s functions within the FEM/BEM
software, scattering at the ends of the grating, and resistive
losses due to the finite conductivity.
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Fig. 9. Attenuation in the passband normalized to the length of the
grating, in units of λ0, operating at the second harmonic as a function
of a/λ0 and h/λ0. (a) Lower passband. (b) Upper passband.

B. Reflectivity

The reflectivity per wavelength |κλ0| can be estimated
from Y31 (see Fig. 4) as

T =
1

cosh (|κλ0|Nλ0)
, (4)

where T is the amplitude transmission coefficient of the
grating at the center of its stopband, and Nλ0 is the length
of the grating in units of λ0. The resulting value for the
test structure with Ng = 80, h/λ0 = 5%, and a/λ0 = 0.5
is found to be about 6.5%, less than the 10% calculated
for an infinite periodic structure.

However, especially if the reflectivity is large, the depth
of the notch in Fig. 4 is subject to a considerable uncer-
tainty. This is due to the relatively low SAW amplitude
level (see Section III), the stepsize of the frequency grid

Fig. 10. Reflectivity as a function of a/p and h/λ0. (a) Grating oper-
ating at the fundamental harmonic (Ng = 160, λ0 = 2p). (b) Grating
operating at the second harmonic (Ng = 80, λ0 = p).

and the time-gating procedure. In order to obtain an im-
proved approximation for |κλ0|, we use for the width of
the stopband

|κλ0|
π

=
SBW

f0
⇔ |κλ0| = 2π

fu − fl

fl + fu
, (5)

where fl and fu are the frequencies denoting the lower and
upper edges of the stopband, respectively, and SBW =
fu − fl stands for its width. Since the level at which the
stopband is evaluated affects the result, we use an iteration
procedure where the expression for the above theoretical
amplitude transmission coefficient is used to evaluate the
actual minimum level at the notch and, further, the correct
level for stopband width. For low reflectivities, this method
suffers from the large stepsize in the frequency grid, and
(4) is utilized as such, instead.
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The reflectivities obtained for gratings operating at the
fundamental and second-harmonic frequency, expressed in
|κλ0|, are shown in Fig. 10. The results are in good agree-
ment with those obtained via FEM/BEM simulations for
infinite periodic structures (see Fig. 5).

VII. Discussion

We have numerically investigated long reflectors oper-
ating at the second-harmonic frequency on 128◦ LiNbO3.
A FEM/BEM simulator for infinite periodic arrays and a
rigorous FEM/BEM simulator were used. The results ob-
tained suggest that high reflectivities can be achieved with
reasonable electrode thicknesses.

According to our simulations, the losses due to BAW
scattering inside the grating with periodicity p = λ0 in-
crease proportionally to the thickness of the aluminium
electrodes. Outside the stopband, they are significantly
higher than those for the fundamental-mode reflector with
p = λ0/2. However, inside the stopband we observe a
strong decrease of the losses since the SAW penetrates
only a limited distance inside the grating, and the waves
are reflected before having the chance to dissipate their
energy via scattering into the bulk of the substrate.

References

[1] R. C. M. Li and J. Melngailis, “The influence of stored en-
ergy at step discontinuities on the behaviour of surface-wave
gratings,” IEEE Trans. Sonics Ultrason., vol. 22, pp. 189–198,
May 1975.

[2] K.-Y. Hashimoto, Surface Acoustic Wave Devices in Telecom-
munications. Berlin: Springer, 2000, p. 27.

[3] S. V. Biryukov, Y. V. Gulyaev, V. V. Krylov, and V. P.
Plessky, “Surface Acoustic Waves,” in Inhomogenous Media.
Berlin: Springer, 1995, pp. 320–321.

[4] C. K. Campbell and P. J. Edmonson, “Conductance measure-
ments on a leaky SAW harmonic one-port resonator,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, pp. 111–116,
Jan. 2000.

[5] J. Koskela, V. P. Plessky, and M. M. Salomaa, “SAW/LSAW
COM parameter extraction from computer experiments with
harmonic admittance of a periodic array of electrodes,” IEEE
Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46, pp. 806–816,
July 1999.
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