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Abstract

In this paper, the extraction of the coupling-of-modes
(COM) model attenuation parameter v in a finite grating
is considered. We use test structures comprising identical
transmitting and receiving transducers and a grating cen-
tered in the acoustic channel along the propagation direction
of the surface acoustic wave (SAW). The extraction proce-
dure proposed is based on studying the magnitude of the
ratio of the reflection and transmission coefficients of the
grating, R/T, obtained through time gating from the S pa-
rameter measurements of the test devices. In particular, it is
found that the level of the notches of R/T directly depends
on the attenuation of SAW in the grating. A simple closed-
form expression for the attenuation normalized to the grat-
ing length, yAo, depending on the characteristics of |[R/T|, is
given. The proposed method is applied to the measurement
data for selected grating topologies to yield estimates of the
attenuation.

I. INTRODUCTION

The coupling-of-modes (COM) model [1] is widely
used as a preliminary design tool for surface-
acoustic wave (SAW) devices. The reliability of the
model is strongly dependent on the accuracy of the
COM parameters. There are established methods
for the extraction of the reflectivity of the grating
and the velocity therein [2], but the attenuation re-
mains difficult to address. In our previous work, es-
timates were obtained through simulations for long
and short reflectors [3,4]. Here, we present a pro-
cedure for the extraction of the attenuation para-
meter in a finite grating. Our technique is based
on the analysis of the frequency-dependent scatter-
ing parameters of the simulated and/or measured
responses of tailored test structures. The level of
notches of the ratio of the reflection and transmis-
sion coefficients of the grating, |R/T|, is used for
determining the normalized attenuation.
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Background and methodology for the analysis of
the frequency responses of the test structures are
discussed in Sec. II. Theoretical derivation leading
to an analytic equation for the normalized atten-
uation parameter is presented in Sec. III, and the
results obtained by applying the proposed proce-
dure to experimental data are shown and discussed
in Sec. IV.

II. METHODS

A schematic of the test structures used in this
work is shown in Fig. 1. The test structure frame-
work comprises two interdigital transducers (IDTs)
connected to the electric ports 1 and 2, having 15
fundamental-mode electrodes with the periodicity
p (Ao = 2p) each and a center-to-center separation
of 600 pym. The metallisation is aluminium and
the substrate 128° LiNbOgs. The grating studied
is centered in the acoustic channel defined by the
IDTs, thus yielding equivalent lengths of propaga-
tion path for the waves reflected from and trans-
mitted through the grating. The grating consists
of either short-circuited or floating electrodes. The
relative bandwidth of the IDTs at ports 1 and 2,
measured as the distance between the first zeros of
the transfer function, can be approximated as

2

BWipT = (1)

Nﬁnger pairs

To properly address the characteristics of the grat-
ing, the distance between the first zeros of the reflec-
tion coefficient should be lower than that given by
Eq. (1). See Fig. 2 for an illustration manifesting
the IDT response and the magnitude of the ratio
of the reflection and transmission coeflicients of a
grating. In this connection, very short reflectors in-
cluding only few fingers are not suitable due to their
wideband response possibly comparable to or wider
than that of the IDTs. Very long reflectors, on the
other hand, imply a large number of multiple reflec-
tions and, with the exception of the zeros of the re-
flection response, a vanishing transmission through
the grating. A compromise in the number of fingers
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Fig. 1. Schematic of the gratmg test structure. The distance
between the centers of the transmitting and receiving
IDTs (N1 = N¢2 = 15) is 2wy = 600 pm and the aperture
is W =100 pm. Here, the grating has floating electrodes.

combines a rather narrow response with a transmis-
sion signal reliably measurable at all frequencies of
interest. Here, short-circuited gratings having 20 or
40 electrodes are considered, the metallization ra-
tio and thickness varying within a/p = [0.43, 0.53,
0.63] and h/Xg = [5%, 6.5%, 8%)], respectively. Due
to the higher reflectivity per wavelength of floating
electrodes [4], open-circuited gratings having equiv-
alent electrode cross-section profiles but a number
of electrodes one half (10 or 20) of that of their
short-circuited counterparts are studied. The pe-
riodicity of the IDTs and the gratings is 0.8 pm,
which yields a center frequency close to 2.5 GHz for
the substrate used (128° LiNbO3).

The response of the setup in Fig. 1 is that of a
delay line (IDTs) perturbed by a grating. Multiple
SAW reflections between the IDTs and the grating
manifest themselves as ripples. Using the time gat-
ing procedure [5] in a manner described in Refs. [3,
4], the contributions of the pulse reflected once from
the grating and registered at port 1 (S};" Zfated)
and the pulse transmitted directly through the grat-
ing and registered at port 2 (SEmeEed) can be
separated. Their frequency-domain representations
within the IDT bandwidth, free of multiple-transit
ripples, then illustrate the grating characteristics. A
reference signal (S5 can be obtained from a
correspondingly timé—gated response of a test struc-
ture with the grating absent. Comparing the signals
carrying information on the grating to the reference,
one obtains the frequency-dependent reflection and
transmission coefficients of the grating:
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Fig. 2. Response characteristics addressed when extracting

the reflectivity of the grating. The solid curve is the
ratio of the magnitudes of the reflection and transmission
coefficients of a gratlng (|R/T\ = [S11, gr|/|S21]), where
the first notches (f} o and £l o) around the maximum
(fmax(|S11, ge|/|S21])) define the grating stopband. The
first notches of the transducer frequency response of the
test structure (dashed curve, f1 ;pt and f3 ;pT) indicate
the range of feasibility. Here, the grating within the test
structure is short-circuited, has 40 electrodes and the

metallisation ratio a/p = 0.63. The aluminium thickness
h/)\o = 8%.

In order to obtain R and T, 2-port data of the de-
vice studied and that of the reference device are
required. When experimental data is acquired, the
possible inaccuracies in the measurements affect the
results. However, the need of two separate measure-
ments can be avoided by apprehending that the es-
sential features of the reflection response are repro-
duced in the ratio of the reflection and transmission
respounses [6],

E B S;ilrfleg—rgated (3)

T Sgllme—gated
In particular, the notches of |R/T| are found at the
same frequencies as those of the reflection coefficient
|R|. An example of the measured magnitude of the
ratio of the reflection and transmission coefficients
is shown in Fig. 2. The transmission response of
the test structure illustrating the IDT characteris-
tics (main lobe defined by the first notches f1 ipr
and f2 ;pr) is also shown.

Note that in our geometry in Fig. 1, due to the
equal distances from the grating to the IDTs, not
only the contributions of the IDTs are canceled in
R/T of Eq. (3) but also the factors responsible for
the propagation phase and attenuation on free sur-
face disappear.



It can be easily shown (see below) that for a weak
ideal reflector (k — 0), in a lossless case, the ratio
|R/T| exhibits a sin(z)/z-type behaviour as a func-
tion of frequency with numerous minima, or zeros,
on both sides of the main lobe. The presence of
attenuation adjusts these minima into notches of fi-
nite level. A high level of attenuation results in the
smoothening of the notches and, for a long struc-
ture, the notches may completely disappear. In
this paper, we show that measuring the depth of
the notches of |R/T| provides a direct method for
determining the attenuation in periodic reflecting
gratings.

III. THEORY
A. Attenuation

According to the notation of Ref. [7], the COM
reflection and transmission coeflicients for a grating
of length L are

R_ ik*sin(AL)
A cos(AL) + id sin(AL)’
T_ A
~ Acos(AL) + i sin(AL)’

(4)

(5)

where

(6)

is the frequency detuning with losses incorporated

in v, and
A =+/62—|k|?. (7)

Here, & is the reflectivity. The ratio of the reflection
and transmission coefficients, according to the COM
theory, is obtained dividing Eq. (4) by Eq. (5):

f—f.
0 =27 — iy =09 — iy
v

R rk* sin(AL)
i — ®)

For the n'" zeros around the main lobe (n # 0),
AL =dnr= A, = i%. 9)

Assuming that the attenuation does not appreciably
shift the zeros of R/T in frequency, we may omit -y
from ¢ of Eq. (6) and from A of Eq. (7) and write
for the n'" zero at f,:

f, — f;
don, = 2m———,
\4
nm
Don = /06, — k[P > 7= (10)
~ 2, (PT\?
d0n = |52+ (F5) .

In the general case, we have

where the term —72 was neglected. This simplifica-
tion implies the assumption that A2, = 03, —|x[? >
~2, i.e., that the attenuation is not too strong. This
is justified since the value of A is close to zero only
in the immediate vicinity of the stopband edges, and
the zeros of |R/T| are farther apart. Further, pro-
vided that A3, > ~2, the complex term under the
square root in Eq. (11) is small, and we obtain from

the Taylor expansion

6077,7 6077,7
A, ~Apn |1 - = Agp — .
0 < ZA%TL) 0 ZAO”

(12)

Let us now approximate R/T at the notches. Sub-
stitution of Eq. (12) into Eq. (8) yields

R "50””’L) . (3)

T " Aon

*
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notch

where the (small) complex part of A, was dropped
from the denominator. Noting that sin(Ag,L) = 0,
Eq. (13) can be further reduced into

R K* . Oon YL

T ~ cos(Agy,L)sinh <0A—7> . (19)

notch On On

For the notches, Ag,LL = =+nmw, and thus
cos(AppL) = £1. Assuming that do, YL < Agp,
the hyperbolic sine may be approximated by its ar-
gument. Then,

R

T

*Son7L *Son7L?
SEEL 027 == (;Z ’
Ag,, nm

(15)

notch
where the latter form, obtained by inserting Ay,
from Eq. (10), indicates that the finite value of R/T
at the notches is determined by the attenuation in
the gratings. This is the key point in this paper.
The values of the magnitude of R/T at the notches
are direct measures of the attenuation. Note that
for small values of reflectivity x, 0o, /n% ~ 1/n, i. e.,
the magnitude of R/T at notches is inversely pro-
portional to the notch order n. Moreover, for a
real-valued &, the ratio R/T at the notches becomes
real while for the center of the stopband it is purely
imaginary. Taking dy,, from Eq. (10), and denoting
f, — f. = Af,, we find after a few manipulations a
form in which the reflectivity is normalized to the
wavelength and the attenuation is associated with
the grating length:
2 (Af,) (L)’
R ~ iﬁ <T"> <>\—0) (K*Xo)vL. (16)

T

notch



For the fundamental mode of operation one wave-
length equals the width of two electrode periods, Ag
= 2p and the grating length is L = (N — 1)Ag/2.
Then, Eq. (16) may be approximated as

fundamental

R

T
notch 5 (17)
2 (Af,\ [Ng -1 .
~+— (f_) <IT) (I‘i )\0) ("}/)\0),

n2m

where the normalized form of attenuation yAg is
displayed.

The formula (17) may be interpreted in simple
terms for an array of reflecting elements. For weak
reflectivity, neglecting multiple reflections, one may
estimate the signal reflected from the array of re-
flecting elements, evaluated at the first notches,
from the following elementary consideration. In a
Bragg condition, 4. e., at the center frequency f,
all the reflected contributions are in phase and thus
sum up. This can be represented as the sum of N
parallel vectors of equal magnitude, see Fig. 3. If
the reflectivity for a single element is kA\g/2 = kp,
where p = A\/2 is the periodicity of the array, the
total reflectivity is obtained as R = N - (kAo/2) - A
=N-(kp) - A.
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Fig. 3. Schematic of the condition for synchronous reflec-
tion in the absence of multiple reflections. a) Setup for
reflection. A is the incident signal and the partial re-
flected signals R; of equal magnitude sum up in phase to
yield the total reflected signal R. p = Ao /2 is the period
of the array. b) Phase diagram. The reference phase is
that of the first reflected contribution.

In the case of operation at frequencies detuned
from the center frequency (f = f. + Af), in the sim-
plified model with the multiple reflections ignored,
there is a regular phase shift Ap = 27 Af/f. between
the reflected partial signals. Then the magnitude
of the reflection coefficient is smaller than in the
synchronous case of Fig. 3. The associated vector
sum is illustrated in Fig. 4(a). For a certain detun-
ing value, one arrives at a diagram approximating a
circle, where the resultant reflectivity vanishes, see
Fig. 4(b). This corresponds to the first notch of the
reflection coefficient. The radius r of the circle is

Fig. 4. Vector representation of an asynchronous reflection in
the absence of attenuation and multiple reflections. The
partial reflected signals R; of equal magnitude sum up
with a regular phase shift. a) General case. b) Circular
diagram corresponding to vanishing reflection.

Fig. 5. Vector representation of an asynchronous reflection,
with finite attenuation, in the absence of multiple reflec-
tions. The partial reflected signals R; having magnitudes
decreasing with index ¢ sum up with a phase shift. Here,
the case yielding a minimum value of total reflection co-
efficient is shown.

roughly equal to the sum of the magnitudes of the
reflection contributions divided by 2.

If a finite attenuation is present, the magnitude
of the contributions of reflectivity R; gradually de-



creases. Consequently, the radius r in Fig. 4(b) is no
longer constant but also decreases and the zero of
reflection coefficient is transformed into a minimum
value, see Fig. 5. On comparison of Figs. 3 and 5, it
is evident that the minimum of the reflected signal
is in phase quadrature (shift of 90°) with respect to
the synchronous reflection.

The minimum amplitude of Ry at the first notch
can be estimated. Let us approximate the decrease
of amplitude for the last reflected contribution Ry
as

ARy = kpA — kpAe 2PN = (kp)(YAoN)A, (18)

where a low total attenuation is assumed and y\g
is expressed in nepers per wavelength. The factor 2
originates from the propagation of the incident wave
through the grating, L, = Np, and the propagation
of the contribution reflected from the N** element of
the array (Rx). Then, the average decrease of am-
plitude for the reflected signals is (kp)(yAoN)/2-A =
(kp)(yp) N- A. The total decrease in the sum of the
magnitudes of the N reflected contributions is thus
N - (kp)(7p) N - A = (kp)(yp) N*- A. To obtain the
corresponding decrease in the length of the radius,
the decrease in the sum of the magnitudes of the
reflected contributions can be evaluated from two
semicircles with radii r; and rgna;, resulting in the
approximation

(sp) () N?
2T ’

I'y — I'final =

(19)

which roughly corresponds to half of the minimum
of the reflected amplitude R™i". Along with this
reasoning, the estimated first minimum of the re-
flection coefficient is

Rei . (kp)(yp)N®  N?

Comparing Eq. (20) to Eq. (17) with n = 1, it is ev-
ident that the two results given by the two different
approaches closely resemble each other, in particu-
lar, if one takes into account that in the region of

the first notch,
Afy
Nea ~ 1.
()~

From Eq. (17), an estimate for A is obtained:

R fundamental
An’m | |
T
notch

’y>\0 - AL
82| (Na = 1% mol

(20)

(21)

: (22)

where |Af,, /f.| is the deviation from the center fre-
quency of the grating, defined by the frequencies
fi .. and f5 . corresponding to the n'™™ notches of

R/T|

8T

Afn _ fg,glr - fIlz,glr (23)
fC fil,gr + fg,gr '

According to the COM model, the notches in the
magnitude of the reflection coefficient are found at

Ay _ (12 (mho)’
£, o2 2L
B |k Aol 2+ n 2
- o Ng—1/"

and the reflectivity |kA\g| may be substituted in

Eq. (22) to yield
R fundamental
notch

Af\2 " 2
| e -2 \/( i) - (x1)

(25)
The physical interpretation of Eq. (24) is that multi-
ple reflections render the grating effectively shorter.
For very long gratings, the waves do not penetrate
to the ends of the grating at the stopband frequen-
cies. Then, the effect of the grating length is neg-
ligible. For short gratings, the term with L2 in the
denominator is the dominating term in Eq. (24).
The coupling-of-modes (COM) model is derived for
counterpropagating waves in a periodic system of
perturbations. Thus, the accuracy of the model in
the case of a short reflector with pronounced end
effects is reduced. The extraction of |kAg| from
Eq. (24) implies obtaining a small value via the
subtraction of two relatively large values, which
is disadvantageous for the accuracy. It is evident
that Eq. (24) is accurate only if the term ()\g/2L)?
is small. In this paper, alternative methods are
applied for the extraction of the reflectivity, and
Eq. (22) is used to evaluate the attenuation para-
meter.

According to Eq. (17) the depth of the notches
of [R/T| increases with the deviation from the cen-
ter frequency. Since the relative deviation from f
at the notches, Af,/f., is roughly proportional to
the notch order n, the level of |R/T| at the notches
should be inversely proportional to n. This can be
verified simply by following the guidelines of the el-
ementary estimation. The vector representation for
asynchronous reflection in Fig. 5 is illustrated for a

(24)

Yo =

Af,
fo
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Fig. 6. Schematic of the total reflection amplitude R at

the first minima of the reflection response obtained as
a vector sum for the asynchronous lossy condition. The
circles (o) and squares (O) indicate the cumulative vector
sum for the first and second notches of the reflection re-
sponse. Attempts to reduce R to the absolute minimum
were not made.

reflecting array with 40 elements in Fig. 6. The vec-
tor sums simulating the total complex reflectivity at
the first two minima of the reflection coefficient in
the absence of multiple reflections are shown. At-
tempts to reduce R to the absolute minimum were
not pursued. However, it is clearly seen that the
level of the reflection coefficient at the notches de-
creases with the notch order n.

This feature is also observed in the measured
|IR/T| response, illustrated in Fig. 7. In the par-
ticular case presented here, the first upper notch
(f},2) is evidently at a higher level than the lower
first notch (£}, ;). The reason for this feature is
likely to be the scattering of the Rayleigh SAW into
the bulk—in the form of a slow shear bulk wave
(SSBAW)—which begins within the grating on 128°
LiNbO3 at frequencies in the region of the first up-
per notch of |R/T].

Here, the normalized attenuation values are ob-
tained from the first lower notch of the ratio |R/T|.

B. Reflectivity

For the center frequency, the detuning dg in
Eq. (6) equals zero. Estimates for the normal-
ized reflectivity can be extracted from the center-
frequency values of the magnitudes of the reflec-
tion and transmission coefficients, or from the ratio
|R/T|. For simple expressions, one may evaluate
the lossless case (v = 0 in Eq. (6)) from Egs. (4),
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Fig. 7. Magnitudes of the reflection and transmission coeffi-
cients (|R|, |T|) and their ratio (|JR/T|) as a function of
frequency for a finite grating. The first (fi,gr and f%,gr)
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Here, the grating has 40 short-circuited electrodes with
a/p = 0.63.

(5) and (8):

Kol = Catanh(R()),  (26)

Ao 1
|kAo|T = —acosh (—) ,
L IT(f,)]
A R(f,
|kAo|r/T = roasinh <‘T§fj§ > . (28)
However, nonzero attenuation affects the accuracy
of the results. Inclusion of v in Eq. (6) leads to the
expressions

(27)

ik* sinh(AL)
f.) = , 2
R(f) Ac cosh(A.L) + vsinh(A.L) (29)
A
T f(‘ - = y
(k) Ac cosh(A.L) + vsinh(A.L) (30)
R(f.) ix*sinh(A.L)
= 1
T(f.) A. ’ (31)
where A, = /72 + |K|%. (32)

Since we have an estimate for the loss normalized
to the input power observed in the measurements,

Loss=1— R = |T|? =1—e 2%, (33)
we can evaluate y(f.):
log, (|R(£,)* + |T(£,)|?
- e (REP TR

2L ’
where |R| and |T| are obtained from Eq. (2). Know-
ing the attenuation at the center frequency, v(f.),



we can estimate the reflectivity iteratively from any
of Egs. (29)—(31). For the iteration, we use the New-
ton method:

f(kn)
f/(kn)’

where f(k) = 0 is any of the functions Egs. (29)—
(31) with all terms on left-hand side, and f'(k) is
its derivative. The initial value used is |kAo| taken
from Eqgs. (26)—(28), respectively.

A comparison of the lossless and lossy cases
is shown in Fig. 8, where |R(f.), |T(f.)| and
IR(f.)/T(f.)| are shown as a function of |kAql.
The curves for the lossless cases are obtained from
Egs. (4), (5) and (8), and those for the lossy cases
from Egs. (29)—(31), having |kAg| as a variable.
The center-frequency attenuation, obtained from
Eq. (34) and used as a parameter in Eqgs. (29)—
(31), is extracted from the measured response of a
test structure having an open-circuited 20-electrode
grating with a/p = 0.53. The illustration indicates
that the smallest relative change in the reflectivity
due to the inclusion of the losses is obtained for
|R(f.)/T(f,)|. For |[R(f.)| and |T(f.)|, the discrep-
ancy is large. For the latter, the deviation appears
particularly pronounced for low values of reflectiv-
ity. The effect observed in Fig. 8 is a consequence
of the fact that attenuation always decreases the
signal level. The magnitude of the reflection coef-
ficient, obtained from the measured frequency re-
sponse, is reduced due to the attenuation. Thus,
the reflectivity evaluated using Eq. (26) is underes-
timated. Similarily, the magnitude of the measured
transmission coefficient is lowered by the presence of
attenuation, which implies an overestimation of the
reflectivity in Eq. (27). As for the ratio of the re-
flection and transmission coefficients, Eq. (28), the
effect of the attenuation is to a large extent can-
celed since the reference measurement—with grat-
ing losses absent—is not needed. The reflected and
transmitted waves propagate a comparable distance
inside the grating, compensating for a significant
part of the attenuation.

Furthermore, in both the lossy and lossless curves
of |[R(f.)| and |T(f,)|, there are areas where the
slopes are close to zero. Consequently, small
changes in the values of the reflection or transmis-
sion coefficients result in large shifts in the reflectiv-
ity values obtained. This property also complicates
the convergence of the iteration procedure. Our
consideration agrees to that of Ref. [6]: the ratio
of the reflection and transmission coefficients is the
most accurate method for determining the reflectiv-

Knil = Kn — (35)
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Fig. 8. Depencences of |[R(f,)|, |T(f,)| and |R(f.)|/|T(f,)| on
[£Xo| for the lossy and lossless cases.

ity of a grating.

Due to the attenuation incorporated in the mea-
surement results, Eqs. (4), (5) and (8)—as well as
the Newton iteration applied to Egs. (29)—(31)—
produce different values for |kAg|. For a weak total
reflectivity of the grating, the energy scattered from
the grating into the bulk may be comparable to or
even larger than the energy reflected. In such a case,
the relative decrease induced in the reflection coef-
ficient, equal to 50% or more of the lossless value,
leads to a serious underestimation of the normalized
reflectivity. This is manifested in all the methods
for extracting |kAo| which employ the reflected sig-
nal S'f{?:fated, Egs. (4), (8), (29) and (31). Exam-
ples of extracted values of reflectivity are shown in
Fig. 9.

IV. RESULTS

The method proposed for directly evaluating the
attenuation was applied to the ratio R/T obtained
from measured S parameter data. The parameter
Ao estimated from Eq. (22) at the first lower notch
of |R/T| is presented in Fig. 10. The results for
a grating with 20 floating electrodes and for a 40-
electrode short-circuited grating are shown for se-
lected aluminium thicknesses h/\ and metallisation
ratios a/p. For the purpose of comparison, values
obtained for 3-electrode open- and short-circuited
gratings through simulations [4] are also shown.
The values extracted from experimental data are in-
dicated by solid lines and markers with black face,
while the reference values obtained from simulations
of short reflectors are plotted with dash-dotted lines
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Fig. 9. Reflectivity (X+0) of a grating extracted by applying
the Newton iteration of Eq. (35) to the center-frequency
value of measured |R/T|, Eq. (31). The average values
are denoted with solid lines and large markers while the
error bounds are indicated by small markers. (a) Grat-
ing with 20 floating electrodes. (b) 40-electrode short-
circuited grating.

and markers with white face. Every experimen-
tal point is a statistical average of several measure-
ments.

The magnitude of the normalized attenuation for
the 20- and 40-electrode gratings is lower than that
obtained for short gratings. This is expected since,
for fundamental-mode reflectors, an infinite periodic
grating exhibits no synchronous scattering into the
bulk at the Bragg frequency. The attenuation due
to the scattering from the ends of the grating is
probably canceled when R/T is considered. On the
contrary, for a short structure, the periodicity has a
weak influence and the end effects are emphasized.
The attenuation extracted from the measured re-
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Fig. 10. Attenuation (X + o) inside a grating extracted ac-
cording to Eq. (22) from the first lower notch (fgr1)
of |R/T| of the measured responses. The average val-
ues are denoted with solid lines and large markers with
black face. The error bounds are indicated by small
markers with black face. For comparison, the atten-
uation evaluated for short gratings (No = 3), obtained
through simulations [4], is also shown (dash-dotted lines,
markers with white face). (a) Grating with 20 floating
electrodes. (b) 40-electrode short-circuited grating.

sponses does not exhibit a behaviour similar to that
in short reflectors as functions of h/Ag or a/p. It is
likely that in some cases, e. g., for a short-circuited
grating having a/p = 0.43, the reflectivity is under-
estimated, see Sec. III-B. The normalized attenu-
ation obtained by Eq. (22) would then be overes-
timated. The high values of attenuation obtained
for open-circuited gratings with a/p = 0.43 can not
be explained by an underestimated value of the re-
flectivity, though. It is evident from Fig. 10(a) that
the said data points are are subject to considerable



statistical variation. A likely explanation for the
result lies in the inaccuracies in the electrical mea-
surements, not originally carried out in view of the
requirements of high precision of the new character-
ization technique proposed in this work.

The purpose of the present paper is to demon-
strate a method for the extraction of the attenua-
tion parameter y\g. Further investigations on opti-
mizing the test structure geometry and careful mea-
surements are necessary for effective application of
the method described.

V. DISCUSSION

We have shown that an investigation of the ra-
tio of the reflection and transmission coefficients of
a grating, R/T, yields valuable information about
the attenuation of SAW in the grating. In particu-
lar, the levels of the notches are determined by ~.
Both an elementary estimation and the COM model
show that, in the presence of weak attenuation, the
notches are transformed from zeros of the reflection
coefficient into sharp minima with a signal level pro-
portional to the attenuation parameter and phase
orthogonal to that of the center of the stopband.
This relation allows, for the first time, to directly
measure the attenuation in a grating. First exam-
ples for such measurements given for 128° LiNbOs5
at 2.5 GHz indicate that careful control of the fabri-
cation and high-precision measurements are needed
for the application of the proposed technique. The
investigation of the ratio R/T also allows one to
extract the reflectivity of a grating with a better
accuracy than that obtained using the reflection or
transmission coeflicients separately.
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