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Abstract. In this paper we examine how the activation of one indepen-
dent component analysis (ICA) feature changes first and second order
statistics of other independent components in image patches. Essential
for observing these dependencies is normalizing patch statistics, and se-
lecting patches according to activation. We then estimate a model pre-
dicting the conditional statistics of a component using the properties of
the corresponding feature as well as those of the conditioning feature.

1 Introduction

Independent component analysis has been used successfully in analyzing image
data, even though the model is fundamentally insufficient for describing images.
In ICA the observed data is expressed as a linear transformation of latent vari-
ables that are nongaussian and independent. We can express the model as

x = As =
∑

i

aisi, (1)

where x = (x1, x2, . . . , xm) is the vector of observed random variables, s =
(s1, s2, . . . , sn) is the vector of latent variables called the independent compo-
nents (ICs) or source signals, and A is an unknown constant matrix, called the
mixing matrix. The columns of A are often called features or basis vectors. Exact
conditions for the identifiability of the model were given in [2], and several meth-
ods for estimation of the classic ICA model have been proposed in the literature,
see [5] for a review.

The assumption of independence is fundamental in ICA. Most types of nat-
ural data (e.g. image data) do not, however, have such independent (linear)
features that ICA attempts to find. It is important to know about the data
structures not captured by the ICA model. It is possible to use these structures
to extend and improve the ICA model of image data. The usefulness of this ap-
proach can be motivated by the link between ICA features and cortical simple
cell receptive fields, see [7]. Our approach here has similarities to some analyses
made with Gabor functions [1], or with higher-order ICA models [4] and with
our earlier paper [6], but the approach of using a parametric model to predict
the changes in the statistics of one IC due to the activity of another has not, to
our knowledge, been used earlier. We chose our model so that its properties are
easily analyzable, yet is able to capture most of the structure.



2 Analysis of conditional dependencies

We will investigate how the statistics of image patches (image windows, data
samples) change, when we know one specific IC is highly active. By activity we
mean that the absolute value of the estimated IC (|yi|, yi = wT

i x) exceeds
some threshold α. In these cases the component can be considered to describe
something essential appearing in the patch, i.e. part of an edge or line. We denote
the indexes for which IC i exceeds α by

Iα,i = {t | |yi(t)| > α}, (2)

and the subset of the whole data associated with Iα,i by Xα,i.
There are two essential steps of preprocessing we do here that are impor-

tant for observing the statistics. The first is normalizing variances of individual
patches or patch norms (these differ by an irrelevant scaling factor). With this,
and with the reduction of the mean and whitening of the data, contrast variations
between the patches are mostly eliminated. With this normalization, speaking
of activation is more meaningful because a certain level of activation means that
the feature contributes a specified portion of the content (variance) of the patch.

Note that we demand that the patch variances equal unity and that the data
is white simultaneously. The requirement for whitening can be written as

cov(x) = I− 1

n
1, (3)

where the latter term on the right side results from eliminating the patch means.
For fixed t (i.e. for each patch) we require for the mean, variance and norm:

meani(xi(t)) = 0, vari(xi(t)) = 1 ⇐⇒ ‖x(t)‖ =
√

n. (4)

We will later discuss how we enforce all these requirements simultaneously.
The second step of preprocessing before examining the dependencies is nor-

malization by the sign of the active component. There is no inherent sign at-
tached to an image patch as components can be positive or negative mostly
regardless of each other. But, for example two collinear edge detectors may very
well exhibit consistently the same signs when either one is highly active as this
corresponds to having an edge in the patches to which both react. We will de-
note the sign-normalized data associated with independent component i and
threshold α as Zα,i:

Zα,i = {z(t) | z(t) = x(t)sign(yi(t)), t ∈ Iα,i}. (5)

We will denote the vectors in Zα,i as zα,i.

3 Data Selection and Preprocessing

As data we used 24 images of landscapes, plants and animals. The images were
taken with a digital camera (Canon Ixus 400), converted to grayscale, and block



averaged in four by four pixel blocks (and downscaled by the same factor). An
area of 512 by 384 pixels was then selected of each of the downscaled images.
The downscaling should pretty much negate artifacts brought by color interpo-
lation, noise reduction and even compression. The images were saved in a 16-bit
grayscale TIFF-format (after the histograms were stretched to cover the 16-bit
range). The original images, and the 16-bit TIFFs can be found at the web
address http://www.cis.hut.fi/inki/images/.

Next we sampled 200000 12 by 12 pixel patches from these images. The patch
mean was subtracted from each patch. Sometimes, due to the fact that usually
the upper parts of the images are the brightest (e.g. parts of the sky are visible),
even though the mean value has been subtracted from each patch, the pixels still
do not have zero mean. Therefore we randomly assigned a new sign to each of
the patches.

We then whitened the data and normalized the patch variances. As patch
variance normalization affects the covariance of the data, whitening and patch
normalization were repeated (alternately) a total of ten times. After this, the
largest (nonzero) eigenvalue of the covariance matrix was less than a millionth
larger than the smallest. Note that this whole process can be described as whiten-
ing and patch normalization, as it corresponds to multiplying the data with a
matrix (product of all the whitening matrices) and then normalizing the patches.

FastICA [3] in symmetric mode using the hyperbolic tangent nonlinearity
was then used to perform ICA on the data. The basis vectors we found can be
seen on the left side of Figure 1. These are presented here in the original, not
whitened space.

Fig. 1. Left: ICA basis found in normalized data. Right: Mean values of the patches
when normalizing by the sign of the active component and using threshold α = 3.

We will have to limit our analysis of the statistics to a single value of α. As
a compromise between the number of samples, and size of the dependencies, we
selected α = 3 as the baseline value. In this case 87.7 percent of all patches are
included in at least one of the active sets I3,i (Eq. 2), average size of which is
2650 patches, and the active feature contributes at least 6.3 % of patch variance.



4 Dependencies in the ICA basis

In order to analyze the qualities of the dependencies, we decided to estimate a
model where the properties of the features predict the change in the statistics
for a given value of α. So, the inputs are calculated from the properties of the
conditioning and conditioned feature, and the output should be the statistic, e.g.
variance of the conditioned component.

4.1 A model for analyzing the dependencies

In order to estimate the properties of the features, we fitted Gabor functions
to the ICA features on the left side of Figure 1. As Gabor functions we used
real-valued two-dimensional functions:

g(r) ∝ exp(−
2

∑

i=1

r2

i

2b2

i

) cos(2πωr1 + θ). (6)

Here r is the two dimensional position vector, bi:s are the widths in corresponding
dimensions of r, θ is the phase and ω the frequency. Any Gabor function can
now be obtained with a rotation, translation, and scaling of g(r). Let us denote
the angle of this rotation as β.

Our model was of the type

R′

i,j = fl(

l−1
∏

k=1

fk(Gi,j(k))), (7)

where R′

i,j is the estimate of the dependency Ri,j between the conditioning IC
i and the conditioned IC j, Gi,j(k) is the k:th value measured from the features
corresponding to ICs i and j. As fk, k < l we used functions consisting of evenly
spaced five points (the smallest of which is at the smallest value of corresponding
Gi, the largest at the largest value) that were interpolated with piecewise cubic
Hermite interpolation as implemented in Matlab version 6.5.

The function fl consisted of eleven unevenly spaced points. The first point
is at the smallest value of

∏l−1

j=1
fi(Gi), i.e. the zero percent mark, the second

at the five percent mark (where five percent of
∏l−1

j=1
fi(Gi) are smaller), third

at the ten percent mark, then 20%, 35%, 50%, 65%, 80%, 90% 95% and the
final one at the 100% mark. Additionally, fl was required to be monotonically
increasing and positive. We used l = 5 here, and the model had therefore a total
of 31 free parameters. Of these 31 parameters, four are actually redundant, as
the scaling in f5 can offset the scaling in any (and all) of the other functions.

As Ri,j we used the variances of the conditioned components, as well as the
absolute values of the mean values of the conditioned components. Variances
highlight large dependencies better than standard deviations, which is partly
why we chose to model them. Additionally, we achieved best fits with these
choices. We fitted Gabor functions to the ICA features and, in order to have



sensible results, excluded the smallest features that cannot be so well described
as Gabor functions from the analysis. We picked 98 of the best fitting features,
so there were a total of 9506 (= 982 − 98) examples of Ri,j for further analysis.

We used four variables as Gi,j(k):s. The first was Gi,j(1) = log(bi/bj), where
bi and bj are the widths of the fitted Gabors for the conditioning and conditioned
components respectively. The second was a measure of the difference between
the orientations of the components, Gi,j(2) = | sin(βi − βj)|. The third was a
collinearity measure: new features are obtained by ignoring the attenuation of
the Gabors along the edge, i.e. along r2, these new features are normalized (w.r.t.
inner product with themselves), and Gi,j(3) is the absolute value of the inner
product of these new features for the conditioning and conditioned component.
The final variable Gi,j(4) is obtained by discarding the cosine part of the Gabors,
normalizing, and taking the inner product of these new features, i.e. it was an
overlap measure of the functions, which depends on distance and size difference.

Note that of these only the first variable G1 can capture nonsymmetric prop-
erties of the dependency, i.e. if the places of the conditioning and conditioned
component are exchanged, the dependency can change.

4.2 Results

We fitted the model in equation (7) to the statistics for α = 3. The minimum
of

∑

i,j(Ri,j −R′

i,j)
2 was searched by Matlab’s fminsearch -function which uses

the Nelder-Mead method not requiring derivatives. The error we ended up with
was 0.2656 of the variance of Ri,j for second order statistics, and 0.4787 of the
variance of Ri,j for first order statistics.

We have plots of the individual fk:s, k ≤ 4, in Figure 2. The functions for
second order statistics have been plotted with solid lines. The first function f1

shows a maximum at zero, i.e. when the functions are of the same size, and
slightly unsymmetric behaviour (so the model is slightly unsymmetric). The
second variable has a maximum at zero, i.e. when the orientations of the com-
ponents are identical (or differ by π). The third component shows a maximum
when the modified features overlap the most, i.e. are in a sense collinear. The
fourth shows a maximum when the overlap of the features is the greatest. These
functions are plotted in (natural) logarithmic scale, and their precise values do
not matter, for which reason their maximum values have been normalized. The
differences between their ranges does matter, and one can see that this is the
biggest in the case of the fourth function, and smallest in the case of the first
function. This would strongly suggest that the fourth component is the most
important for the fit, and the first is the least important.

We have also plotted the individual fk:s for first order statistics with dashed
lines in Figure 2. As one can see, the fk:s have similar shapes to the corresponding
functions for second order statistics, yet there are differences. Again, judging by
the ranges of the functions, the fourth variable (overlap) appears to be the most
important for the fit, but now the importance of the second variable (difference
of orientation) seems to be smaller, and the third variable (collinearity) appears
to be more important.



We have scatterplots in Figure 3, where on the x-axis are the values obtained
by multiplying the fk(Gi,j(k)):s, k ≤ 4, and on the y-axis the observed values
Ri,j . Both axes are in logarithmic scale. On the left side we have the scatterplot
for the first order statistics, and on the right side the scatterplot for second order
statistics. Also plotted in the figure (with a solid line) is the function fl. The
interpolation of function fl was done on logarithmic scale.
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Fig. 2. Logarithms of the fk:s, k ≤ 4. Top left: Logarithmic difference in feature width.
Top right: Difference in angle. Bottom left: Collinearity measure. Bottom right: Overlap
measure. First and second order statistics with dashed and solid lines, respectively.
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Fig. 3. Logarithm of the observed statistics on the y-axis, log(
∏l−1

k=1
fk(Gi,j(k))) on the

x-axis. Left side: First order statistics. Right side: Second order statistics. Also plotted
in both figures is the correspoding fl.

It appears that for second order statistics, the function fl has a somewhat
sigmoidal shape. This is sensible, as very low values indicate that all the functions
fk give a low value, but already for example insignificant overlap of the features
is enough to make the them virtually independent (and the significance of the



other factors should be reduced). Similar argument can be made of very high
values. It is harder to say anything of the shape of fl for first order statistics.

Another way of exploring how important the different variables are for the
fit is by excluding one variable from the analysis, and fitting the model again.
For the second order statistics, excluding the first variable produced an error of
0.2869, excluding the second 0.3668, excluding the third 0.3084, and excluding
the fourth 0.4775. This supports our earlier conjecture that the fourth variable
is the most important, and the first the least important in the fit.

For the first order statistics, the errors were 0.4923, 0.5128, 0.5846, and
0.6844, for excluding the first, second, third, and fourth variable respectively.
This supports our earlier reasoning that the second variable is not so important
for the fit as the third, which makes sense as collinearity of two features means
they basically describe the same edge at different positions. As can be seen in
Figure 1, the mean values for high activation essentially express how the fea-
ture on average continues (extends to orthogonal dimensions). The mean value
features are longer than the original feature and extend further from the zero
crossing. Orientation is not so important for first order statistics because similar
orientation without collinearity does not produce a consistent edge.

So, one can say that the most important factor for the size of the dependency
(first or second order) is the overlap of the features. Note that the way in which
we measure overlap depends on distance between the features and on size dif-
ference. However, one can’t say that overlap is the only factor to be considered.
We also attempted to use additional parameters (Gi,j(k), k > 4) in the model,
but could not achieve essentially better fits.

4.3 Assessing the validity of the model

In order to test the validity of our model, we also fitted a multilayer perceptron
(MLP) network to the same variables. An MLP should be able to fit into the
dependencies between the parameters, whereas in our model the parameters are
essentially independent w.r.t. their contribution to the dependency, barring for
the effect of fl. We used Matlab’s Neural Network Toolbox for creating and
training the MLP. The input and target variables were the same as earlier.

For second order statistics, with five hidden layer neurons (and as many
parameters as in our model), we obtained a very similar error measure: 0.2625.
But with an MLP it is harder to interpret the properties of the fitted model. With
fifty hidden layer neurons, i.e. a total of 301 parameters, we obtained an error of
0.200. For first order statistics, with five hidden layer neurons, we obtained an
error measure of 0.4580. With fifty hidden layer neurons, the error was 0.3492.
These values are sufficiently close to the errors we obtained with our model with
less free parameters (and less chance of overfitting) for us to say that most of
the information available in the four varibles is captured by our model.

Note also that we can estimate a lower bound for the error in the fit (without
overfitting). We made a new version of the data, where by construction the value
of the conditioning (active) IC does not affect other components. We call this
Uα,i. For each component i and every patch zα,i(t) (Equation 5), we keep the



active component, and select randomly a patch x(t2) from which we take the
other components. We multiply these other components so that the variance of
the new patch is normalized. That is:

uα,i(t)← Pizα,i(t) + (I−Pi)x(t2)

√

n− ‖Pizα,i‖2
‖(I−Pi)x(t2)‖

, (8)

where Pi projects the data into a subspace spanned by component i. We calcu-
lated the variance of Ri,j from this control data, and it was as low as 0.0061 for
second order statistics, even though our best fit with MLP was only 0.200. When
fitting our model and the MLP network, we have the added difficulty of Gabor
parameter estimation and choosing Gabor parameters for further use. This is
significant, especially as the ICA features are not perfectly Gabor functions. We
can assume that this is for a large part responsible for the difference between
the best error and our noise estimate. For first order statistics this lower bound
for the fit was 0.0468, which is still significantly lower than our best fits.

5 Conclusions

Here we studied the residual dependencies in the ICA model for image data by
looking at what effect the activation of one feature has for the first and second
order statistics of other features. Changes in these statistics of a conditioned IC
are linked to the changes in the probability of its activity. We showed how these
changes can be largely explained by a model with a few basic properties of the
features as parameters, including their overlap, collinearity and orientation.

The results obtained here can offer some useful information for image anal-
ysis, or processing, or may offer a small insight into the workings of biological
visual systems.
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