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Square-Matrix Embeddable Space—Time Block
Codes for Complex Signal Constellations

Olav Tirkkonen Member, IEEEand Ari Hottinen Member, IEEE

Abstract—Space-time block codes for providing transmit diver- in wideband code-division multiple-access (CDMA) systems,
sity in wireless communication systems are considered. Based onwhere the signaling period is> delay spread, and the RAKE
the principles of linearity and unitarity, a complete classification receiver separates the multipaths. For each path, the orthogo-
of linear codes is given in the case when the symbol constellations . - o '
are complex, and the code is based on a square matrix or restric- nality of the multlantenna transmlssmr_] IS leos_t preserveq. In
tion of such by deleting columns (antennas). Maximal rate delay SUch systems, space—time block coding is a viable candidate
optimal codes are constructed within this category. The maximal for providing transmit diversity. Accordingly, the two-antenna
rates allowed by linearity and unitarity fall off exponentially with  complex modulation space-time block code proposed by
the number of transmit antennas. Alamouti has already been accepted as an open-loop transmit

Index Terms—Clifford algebras, multiple antennas, space-time diversity scheme for a third-generation wireless communication

block codes, transmit diversity. system, namely, the wideband CDMA standardized by 3GPP
(3rd Generation Partnership Project) [7].
I. INTRODUCTION The channel model used in this paper is uncorrelated fre-

guency flat block fading channels between a multitude of trans-

M ULTIANTENNA techniques have received a lot of atyyjt and at least one receive antenna. The length of the fading
tention in the scientific com_mumty after Fosqh|n|[1] a”q_alock equals (or is a multiple of the) space—time block code
Telatar [2] showed that the capacity of the system increases lighgth. The receiver has complete channel state information, the
early with the number of uncorrelated transmit and receive apsnsmitter has none.

tennas. With a restricted number of receive antennas, a part of, space—time block code design, the essential design criteria

this capacity increase can be realized using transmit diversitys the provided transmit (Tx) diversity, the (symbol) rate of the
Within a short time, several schemes have been proposed fige and the delay. The degree of Tx diversity is characterized
number of wireless communication systems [3]-[6]. _ by the number of independently decodable channels. For full
One implementation of transmit diversity, called space—timg, e rsity it equals the number of transmit antennas. If multiple
trellis coding, was developed by Tarokh, Seshadri, and Caldgtzeive (Rx) antennas are deployed, the total diversity degree
bank [4]. It performs well in slowly fading environments, butits the product of the Tx and Rx diversity degrees. The number
has the drawback that decoding complexity grows exponentialy Ry antennas is, however, irrelevant for the design of orthog-
with the number of antennas. ~ onal space-time block codes. The (symbol) rate of the code is
Recently, the alternative multiantenna transmit diversifhe number of symbols transmitted by the code per time epoch.
concept of space-time block codingmerged in the work Thg gelay is the length of the space—time block code frame.
of Alamouti [5]. It was further developed and put into0 &yepending on the underlying modulation scheme, space—time
theoretical framework by Tarokh, Jafarkhani, and Calderbagl,ck codes can be divided into real and complex codes. In this

in [6]. The 'essenFiaI feature of these ;chemes is 'Fheir inhgr%%er’ the goal for designing space—time block codes is to max-
orthogonality. This guarantees that linear decoding providgsize the rate and minimize the delay, keeping full diversity.
the maximal likelihood result. Even in some systems with fre- |, [6], the problem of designing ratd, full diversity

guency-selective fading, orthogonality is almost preserved Q}Sace—time block codes was completely solved. Rateal

the communication channel, as long as the ensuing intersympglies were found for any number of Tx antennas. For up to
interference can be reliably equalized. This is the case, eggnt antennas, these were constructed from orthogonal designs
in two, four, and eight dimensions. An orthogonal design is an
Manuscript received March 21, 2000; revised September 9, 2001. The risthogonal matrix with entriesx;, wherex; are real symbols.
terial in this paper was pfesented in part at the Finnish Wireless Commupipr ratel, the number of symbols equals the matrix dimension.
o N M 2. 2 & e €01 example, the four-antenna real block code constructed in
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For transmission, the orthogonal desigiix:, x2, z3, z4) is timal either. This can be seen from a r&tét code for three and
interpreted as a code matrix defining the connection of the infdour transmit antennas which was presented in [6] to inspire fu-
mation symbols:, 2, x3, x4 and the channel symbols transture work

mitted from a given antenna during a given time epoch. Each

1 1
row is transmitted at a specified time epoch from four different 1 2 vz vz 73
antennas, and each column is transmitted from a specified an- _gE o 1, _1 .,
. . °2 “1 V3 3 Wolks:
tenna at four different time epochs. If the number of Txantennas C' = | | . _ R I )
N is not equal to the orthogonal design dimensions two, four, ZA Uz A Toitlyz —Z2 )N
or eight, delay optimal codes fd¥ < 8 can be constructed by 1

* 1 * : :
deleting a column from a higher dimensional orthogonal design, vz Vit w2t S
i.e., by switching off antennas. Thus, for three transmit antenng@fare o, andy; are the real and imaginary parts of the complex
the optimal code can be written by deleting a column from th&gdulation symbols;. A three-antenna code is again simply
4 x 4 matrix above, and optimal five-, six-, or seven-antenngnstructed from the code above by deleting one column.
schemes can be constructed fromsar 8 orthogonal design. This code shows an important disadvantage of square matrix
For more than eight Tx antennas, generalized orthogonal dguce—time block codes with rate less than one. Even for equal
signs were constructed in [6], which give rdteeal space time yower constellations (QPSKY/-PSK), they are power-unbal-
block codes for any number of Tx antennas. For these, the dei’ﬁéed in that the power transmitted from any given antenna
grows exponentially with the number of Tx antenids The  fjyctuates in time. For nonequal power constellatid’s QAM
m.inimal de_Iay for a real symbol generalized orthogonal desi@@c_), this property of the codes makes the power fluctuations
with rate1 is worse. These (amplified) power fluctuations are problematic in
view of power-amplifier design, as the region of linear amplifi-
cation has to be correspondingly extended. Thus, an additional

Allowing complex signal constellations restricts the availablgfitérion may be added for designing space—time block codes:
rated codes severely; ratecomplex space—time block codeg® Power spectrum should be as balanced as possible.
exist only for two transmit antennas [6]. This code was found The complex modulation space-time block codes presented

by Alamouti [5], and it is based on complex orthogonal desigi@0ve can be seen as examples of the two categories of space—
(or unitary designs, for short) of the form time block codes that have been introduced in the literature.

These are the rate-halving codes and square matrix embeddable
zZ1 Z2 } codes.

T = 16|_(N—1)/8J 2|'10g2(1+(l\7—1) mod 8)] . (2)

C) In this paper, the theory of square matrix embeddable space—
time block codes shall be completed. This theory is based on

In addition to this unitary design, [6] presents rag& com-  square matrix maximal rate complex space—time block codes.
plex codes based on the rateeal codes; transmitting first a\we shall see that for square matrix embeddable space—time
rate-1 orthogonal design with complex symbols, followed by|ock codes, the delay is minimal, and the maximal rate falls off
transmitting the same orthogonal design with the symbols cogkponentially with the number of antennas. This is in contrast
plex conjugated, produces a complex rafe-block code. This tg the rate-halving codes, where the rate is fixed @, and
gives ratet /2 codes for any number of antennas, with exponefhe minimal delay increases exponentially. The simplest forms
tially growing delay, twice the one given by (2). For examplesf square matrix embeddable space—time block codes are
the rate1/2 code for four transmit antennas, corresponding fGhitary (complex orthogonal) designs, i.e., square matrices
the ratei real code for four antennas (1), is with elements eithet- a symbol or its complex conjugate, or
0.2 We shall see that irreducit§lainitary designs exist only in

C(o, 2) = {

—z5 2]

21 22 Z3 247 . .
dimensions that are powers of two.
R A TA A In Section Il, we clarify what is required from complex mod-
—23 24 Z1 —22 ulation space—time block codes in this paper; linearity and uni-
vy s 7 2 t_arity. We show that these properties imply linear maximum-
Clz, 22, 23, 2) = |« % s x| (4 likelihood (ML) decoding, and that the rank and determinant
. criteria for space—time code design are saturated. In Section Il
R AL TR A3 we restrict ourselves to square matrix embeddable codes. In the
—25 2 2 =23 main theorem of the paper, Theorem 1, the maximal rates for a
R N given number of transmit antenna are stated. In Section IV, we

give an explicit construction for unitary designs, the simplest
For comparing to specific codes constructed in this paper, tbguare matrix space—time block codes that achieve the max-
delays of these raté/2 codes for up to 16 antennas are of inimal rates for a given diversity. In Section V, we consider uni-
terest. These can be calculated from (2). For five to eight ag@rily transformed codes, and prove Theorem 2 which states the
tennas, the rate/2 code has dela%' for nine antennas?, for 2With this terminology, the code matrix (3) is a unitary design, whereas (5) is
10 antennas4, and for 1_1 to 16 antennas, the delayis. We not. Both are square métrix complex modulation space—time t;lock codes. The
shall see that for up to eight antennas, these codes are not dehary design corresponding to (5) shall be constructed in Section IV.
optimal, and for three or four Tx antennas, they are not rate op3irreducible means not equivalent to a block-diagonal matrix.
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unitary equivalence of all possible square matrix embeddableDefinition 1: Complex modulation space—time block codes
space—time block codes with the unitary designs constructae linear mappings of a set of complex symbg|do a code

in Section IV. Section VI rounds off the paper with a discusmatrix of transmitted symbols at different antennas and time
sion. The representation theory of Clifford algebras, which is tlegochs. The code matrix is proportional to a unitary matrix, with
mathematical foundation of the results presented in this papiye proportionality coefficient/ ", |zx|?.

is developed in the Appendix. Everything that follows is based on the criteria of unitarity

and linearity. Combining them, one gets the following algebraic
restriction on the coefficient matrices:

We consider a wireless communication system consisting of ; ;
N transmit antennas ant! receive antennas. Duririfj time PP+ B = 265 = 1. (10)

epochs, the system transm#s symbolszy, & = 1, ..., K, Any solution of these equations defines a maximal diversity,

which are taken from a complex signal constellation. The traq%{teK/T unitary space—time block code. In [6], the real ver-

mitted symbols are d'St.”bUted between the arltennas and_ U808 of this equation, with Hermitian conjugations replaced by
epochs by & x N matrix C(z), the code matrix. The matrix

elements of(») are linear combinations of the symbels We transposes, was used in the spirit of Radon and Hurwitz (see,
Z . . .
; . e.g., [8]) to find orthogonal designs, pertinent for real modula-
shall only be interested in schemes with> N, as schemes g, [8]) g ans, p

. ) tion space—time block codes. In Sections Il and IV, we shall
with 7" < N are not linearly decodable. ;? b

Il. LINEAR SPACE-TIME BLOCK CODES

The ch teristics of the block cod diosi nd all possible solutions of the complexified Radon—Hurwitz
€ charactenstics ol the block code are compared 10 SINgiy 4o ns (10). First, however, we shall take alook on why these
antenna transmission of the same symbol stream The ratio of !

o o2 . . eria lead to ML linear decoding, and to optimal space—time
transmission rate of the code to this “uncoded SC“‘W@“ 'S block codes in terms of all design criteria presented in the liter-
the symbol rate of the code. It should be noted that this rate i
relative modulation rate; a rate less than one does not imply any
coding, nor does it imply any increase in Euclidean distanc

K: Decodin
It is just a measure of the efficiency of the use of the antenna g

resource. _ Using the unitarit_y (6) and Iine_arity (8) p_roperties_ of space—
We shall adopt two conditions for the design of space—tin%ne bl_ock codes, itiseasyto dev_lse a maximal likelihood linear
block codes. These are as follows. decoding scheme for the transmltted_ symbol_s. _
o ) ) ) We assume perfect channel state information at the receiver,
* Unitarity (complex-orthogonality), with the inner prod-ang one-tap channels with the same propagation delay between
ucts proportional to the sum of the squared amplitudes gji pairs of Tx and Rx antennas.
the symbols The channel between theth transmit andnth receive an-

oto — 21 5 tenna is denoted by,,,,,. All channels are collected into the
= Ek: EA R 6) N x M channel matrix

. o . . . 1 G2 ... M
Herely is theN x N unit (identity) matrix, and’" is the

Hermitian conjugate (complex conjugate transpose) of the o 21 Q22 G2M (11)
matrix C. Pseudounitarity in the form (6) is also required : : : ’
for nonsquare matrices with > N.

N1 QN2 ... QNM

« Linearity in the symbols;. The code matrix can be ex-

panded as Correspondingly, the received signal at time epoelind re-
ceive antennan is denoted by-,,,. TheT x M matrix of these
signals is given by

-
(]~

C = (2B + 288) @

R=C(z)a+n (12)

-
=
-

= (@ Por—2 + YrPor—1). (8) wherenisal x M matrix of additive complex Gaussian white
k= noise.

The complex symbols;, can be decoded using the matrices
[3,? of (9) and the channel estimaté&sindeed, it is a direct con-
sequence of relation (10) that the metric given by the absolute
square of the noise

—

Here{s.};~;" is a set o2K constantl’ x N matrices
with complex entries. The real variables andy;. are the
real and imaginary parts of the symbels= 2 + jyu,*
and the matriceg,jE are linear combinations of the,

M(z) = Tr[@Td] Te[(R — C(2)&) (R — C(2)a 13
BE = LBk + Pk 1). ©) (2) &' a] Tr[( (z)a)'( (z)a)]  (13)

gives a symbol-wise linear ML metric for the symbals

The definition of space—time block codes adopted in this paper _
is based on these criteria. M(z) = zk: Mi + Mo

4We denotey/—T = j. Mu(z) = |Te[RI B & + a7 (87) T R] — Te[a @z
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M, does not depend o). This metric generalizes the metricstructure (10), following from unitarity (6) and linearity (8),
presented in [5] fo2 x 2 complex block codes to arbitrary matrixguarantees a linear decoding scheme which maximal ratio com-
dimensions. Using (10), it is easy to see that bines all channels. From diversity point of view this is the op-
Tr[RT/J,ja 1 aT(ﬁ;)T] = Trfata]z, + noise timal, so it is not too surprising that the space—time code design
criteria are saturated.
This means that any unitary (6) and linear (8) space-time

block code maximum ratio combines all channels betwegi souare MATRIX BLOCK CODES AND CLIFFORD ALGEBRAS
the transmit and receive antennas. From a diversity point of

view, this is the optimal result. For the modulation rates and All complex modulation space-time block codes presented
dimensions allowed by the construction, space—time blolkthe literature belong to one of two categories. They are either

codes are thus optimal space—time codes. In the next sectigh¢-halving codes, like (4), or square matrix embeddable codes,
we shall see this in terms of design criteria for space—tinlfge (3), (5) and their restrictions to lesser numbers of antennas.

codes. Definition 2: The category of rate-halving complex modula-
ion space—time block codes [6] consists of codes built from an

) ) L ) i
CB:. dSpace—Tlme Code Design Criteria and Space-Time BIOCkrthogonal design and its complex conjugate, halving the rate
odes of the real modulation code based on the orthogonal design.

The main design criteria for space—time codes presented irb finition 3- Th " f tri beddabl
the literature are formulated in terms of the codeword difference—¢"!on € catégory of squareé matrix embeddablée

matrix D,, = C. — C... HereC. andC. are the code matricescomplex modulation space—time block ches [5], [6] consis.ts

corresponding to the encoded and possibly erroneously detedt &(_)d_es based on a square code matrix, or a column-wise
sets of information bits, respectively. Minimizing the pairwiséesm(:tIon Ghone.

error probability of deciding in favor of’. when transmitting ~ Here, we concentrate on square matrix embeddable codes.
C. leads to the following design criteria. Thus, when proceeding with the analysis of (10), we specialize

éo square matrices, i.€l; = N.

» The rank criterion [3]. The diversity gained by the multipl If we redefine

transmitter scheme is

diversity = minRank[D!_D..] < min[T, N].  (14) M= ﬁgﬁk’ k=0,...,2K-1 17
ere we havey, = 1y, and the form of the algebra (10) remains
To achieve maximal diversityD!,. D.. should have full unchanged for the’s. From the relation between, and the
rank for all distinct codewords ande. other~’s we then see that these should be anti-Hermitian
» The determinant criterion [4]. To optimize performance in V= -, E=1,...,2K—1. (18)
a (Rayleigh) fading environment; should be designed to L
maximize The algebra of these remaininds is now
YWY + ik = =261, Jk=1...,2K -1 (19)
This is the defining relation of generators of the Clifford al-
The prime in the determinant indicates that zero eigeg_ebra(see,e.g., [9]), which thus is a core concept in constructing

values should be left out from the product of eigenvalué@ace_time block codes. It is an amusing coincidence that much
when computing the determinant. of the work on Clifford algebras during the past century has been

_ _ _ _ related to their applicability to describing matter in space—time.
Now we can investigate space-time block codes in terms of\we have found the following generic prescription for finding
these criteria. From linearity (8) it follows that the codeword complex modulation space—time block code.

difference matrixD.. inherits the unitarity property (6) of the  Proposition 1: Any square matrix embeddable space—time

m#in det/[D}.D..]. (15)

code matrixC' block code forN transmit antennas, transmittilg complex
Di D.. = Z |2k, e — 25 o * Ay (16) modulation symbols during” > N time epochs, can be con-
' " ’ ’ structed by the following procedures.
Thus, the design criteria are fulfilled. —  Finding a representation of the Clifford algebra (19)
« Rank criterion. As a unitary matrix)... is full-rank for all in terms of anti-Hermitiaril” x 7" matricesyx, k =
distinct codeword pairs. Thus, all space—time block codes Lo, 2K — 1.
give full diversity, equaling the number of Tx antennas. — Taking a unitary matrix3, € U(T).
» Determinant criterion. AD,.. is unitary — Defining i = Govi, k=1, ..., 2K — 1.
det[D}_D..] = Z |2k, e — 20 |2V — Using the matriceg, k = 0, ..., 2K — 1 to create a
' = 7 code matrixC(z) according to prescription (8).
This is the maximum given a fixed transmit power. — If N < T, choosingV columns of the constructédx 7°

The defining relations (6) and (8) of space—time block codes matrix.

thus give codes that are optimal with respect to the rank and de- Proof: This follows directly from unitarity (6) and lin-
terminant criteria. In the previous section it was seen that tearity (8), as explained when deriving (10) and (18). O
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TABLE | Thus, unitary designs are a subset of the set of all square
MAXIMAL RATES FORFULL DIVERSITY LINEAR SPACE-TIME BLOCK matrix space—time block codes constructed as in Proposition 1,
CODESBASED ON SQUARE CODE MATRICES . . . . . S
with particularly simple matrix elements. The anti-Hermitian ir-

Ix aniennas deiay SymlbOIS ralte reducible representations of the Clifford generators were con-
3 7 3 1 structed in (A15) in terms of tensor products2oft 2 matrices?
3t04 4 3 3/4 Unitary designs are readily constructed from these representa-
Sto8 8 4 1/2 tions, choosingdy =1,x-1, B =y, k=1, ..., 2K —1in (8).
91016 16 5 5/16 ’ ) _
2K-2 11 1o 2K -1 | 2K 1 K K/2F1 Proposition 2: The2%~1 x 25-1-matrices
C(E) = 21(1|2K—1 + ®K_10'3)/2
By.cons'truction, these complex linear s_pace.—tlime ches have + 2 (U1 — K 1o3)/2
full diversity, and rateK’/N. The codes with minimal dimen- K
sions for a given r_ate are thqs delay opt|_mal codes. + Z(®K—k]12)
In [6], a very strict constraint on the existence of rateem- b2
plex block codes was found; they exist only for = 2. Sim- 0 =z -
ilarly, the representation theory of Clifford algebras give very @ { Jr— } @ (®""o3) (20)
2y

stringent conditions on the existence of block codes with arbi-
trary rateK’/N. These restrictions are derived in the Appendiwith o3 = [(1J ff], are rateK /2%~ unitary designs saturating
For any given number of symbals to be transmitted, there is athe maximal rates of Theorem 1. They are delay optimal com-
corresponding minimal dimensia¥ for the block code matrix. plex modulation orthogonal designs for the number of antennas
The result is the following theorem. being a power of two.

Proof: This follows directly from Theorem A.2 proved in

Theorem 1: The maximal achievable rate of a square matrieﬁe Appendix, Proposition 1, and (8) 0

embeddable space—time block code witliransmit antennas is
) Other unitary designs may be constructed from (20) by ap-
[logy N +1 X ’ _
plying some of the discrete transformations of

2[logy N1
Proof: Follows immediately from Proposition 1 and The- —  Peérmuting rows and/or columns of the matrix (20),
orem A.1 proved in the Appendix. O — permuting the symbol§z; } | in (20),
Here, [o] is the integer greater or equaldoThe results for ~— Multiplying a symbol with—1 or +j in (20),
the maximal rates are collected in Table I. It is worth noting that —  conjugating a symbol in (20),

the minimal dimension grows and the maximal rate decreases I .
S : or any combination of these. These transformations correspond
exponentially in the number of transmitted symbols. The corres

sponding codes will be constructed presently. 0 permutations of the symbols, in (8), or to exchanging

Comparing to the rate-halving codes constructed along thhee _complex and |mgg|n_ary_pa_rt§ of a symb_ol, €. <_:omp|ex
onjugating and multiplying it with, or to multiplying with a

principles of [6], the square matrix embeddable codes for five ﬁ%ntrivial unitary matrixd, when constructingds from~'s in
eight antennas have the same rat&j, but half the delay. The y 0 i

square matrix embeddable codes for nine to 16 antennas hl;\r/oposition L.
d . &till more unitary designs may be constructed by using select
a smaller rate/16 compared td /2), but the delay is shorter

versions of the unitary similarity transform (A16). For example,

(16 compared ta2, 64, 128, or 256). a unitary transformat?gn with (XZl) that che(mge)s roles ofothz
in a tensor product space, combined with a reordering ofthe
in (8) would produce different unitary designs.

In [6], the space—time block codes constructed for real signalTo be explicit, forK” = 2, (20) yields the2 x 2 matrix
constellations were (generalized) orthogonal designs. These are 0
T x N matrices with orthogonal columns and < 7', where all C=z(12+03)/24+ 21y —03)/2+ [ } (21)
entries come from the sétta; } i, € R™, and the norm of all -z 0
columns isz,?zl z3. Rated designs haveé{ = 7. For lower  SRepresentations that are not equivalent to a block-diagonal representation
rate designs, one should allow some of the matrix entries to tefk@irreducible. The tensor product oa< 2 matrix
the valued. For square matrix embeddable complex modulation qe {m m}
space—time block codes, square matrix complex orthogonal de- T
signs, or unitary designs for short, are needed.

IV. UNITARY DESIGNS

@91 @99

with am x m matrix B is a2m x 2m matrix which reads in block form

Definition 4: Arate-K /N unitary design is aiv x N matrix A0 B = |:a11B ‘1123:|
C with entries from the set0} U{ 2, £jzi HS |, with 2, € C, ) 401 B @B
and Themth tensor power of a matrix is defined as
K RQUA=ZAQAR---Q=A.
| ——
cto = Z |22 [P 1N times

k=1
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which is exactly the Alamouti code (3). Féf = 3, employing antennas, constructed from (23), have only half the delay when
the four-dimensional identity matrix and the figg of (A20), compared to corresponding rate-halving codes presented in [6].
one gets the ratd/4 unitary design

V. UNITARILY TRANSFORMEDBLOCK CODES

zZ1 22 z3 0
C— -z 21 0 —=z 22) Space-time block codes based on unitary designs, treated
o -2 0 Py 29 | above, are codes where all code matrix entries depend only on

0 . one of the signals. A useful generalization is to lift these re-
%3 %2 1 strictions. In [6], the concept of linear processing block codes

The design above has two versions of the Alamouti code on t#@s presented, where the elements were linear combinations of

block diagonal. Compared to code (5), this is of simpler formthe symbols to be transmitted, and the matrix remained unitary.
For K = 4, one gets the raté/2 unitary design Here such codes are just called space—time block codes.

A constructive way to choose any viable linear combination

[ 21 2o zz O z2 O 0 0 7 is inherent in the construction of block codes in Section Il and
2 2 0 —z3 0 -z 0 0 the Appendix. Combining the freedom to chp(;fs)ein anto
N . the unitary symmetry of the Clifford algebra in (A16), one can
-z 0z = 0 0 -2z 0 define the generic concept of unitarily transformed block codes.
C = 0 = —= a0 0 0 #4 . Theorem 2: All square matrix embeddable space—time block
—z; 0 0 0 2 oz oz 0 codes can be constructed from the unitary desigf& of (20)
0 =z 0 0 -z n 0 —z3 by possibly deleting rows from a matrix of the form
0 0 zz 0 —2 O z1 Z2 C’(E’) —Uc®mV (24)
L O 0 0 -2 O 23— 21

»3 wherel is a2 —1 x 25—1 ynitary matrix andV’ is a2~ x
(23) oK special unitary matrix, up to permutations and possibly

This has thes/4 design (22) in the upper left and a comple>?ne sign change in the set of real and imaginary parts of the

conjugate inverted version in the lower right corner Symbols.
Jug . . gnt. ' Proof: This is a direct consequence of Proposition 1 and
For practical purposes, it would be beneficial to have as mu&rollary A.2. The possible sign change corresponds to the
self-similarity as possible in the code matrix. Thus, it would b, o

desirable to, e.g., havedax 4 code, where two Alamouti blocks rer?m?gwglr?;iﬁeda:rsriz t(;ilg;esdléglr?(laesr?)%rc?stgntzar%Z?;EoLZe;-
would be on the block diagonal, and a third symbol would o P P P

2K—1 ; 4
encoded on the block off-diagonal. This, however, isimpossib g_e set{ i }i=o ~ in Proposition 1. =
For each block lengtfi” = 2/~ this construction gives a
family of block codes witt2?X—1 — 1 continuous parameters.

This family encompasses all unitary designs of the same dimen-

Proposition 3: No unitary design with maximal symbol rate
exists, which would have only copies of the sa?ne 2 design,
possibly multiplied with+1 or £j, on the block diagonal.

Proof: First consider the case dfx 4 designs. According sions.— .
. o . e . The unitary transformations do not change the performance
to Proposition 1, no generality is lost if one coefficient matrix

is taken to be unity. Thus, a matrix of the proposed form coug(Ie égi;;rdei.mﬂ;?agig Ze ustii, eo.\?v.értz oepg;glzi tﬁreogﬁgﬁiaosf
be transformed to the forrh, @ C5, whereC; is a design con- yimp €9 P P )

structed froml, and three Cliff generators. According to The- As an example, con5|_der the_ raﬁ¢4_ code for fqur t_rans”ﬁ”
e . . antennas, (22). A generic special unitdry 4 matrix with unit
orem A.2, these three are unitarily equivalent{o o2, +jos. ) .
. : eterminant can be written as
Without loss of generality, they may be supposed to be exactly
of this form. From this and Proposition 1 it follows that the coef- .
ficient matrices encoding the third symbol should anticommute V =exp{iW} (25)

With 1; @ 01, 1 ® 03, 1, ® 03. AS & consequence of Proposis oo thecr, operation is a matrix exponential, aft is a

tlon A8 anq Theore_m A.2,_no sugh matrix eX'.StS' The prOOf.fqraceless Hermitiad x 4 matrix, which can be linearly param-
unitary designs of higher dimensions follows inductively, using, . i e by 15 real parametefs.s of the same form, with an
Proposition A.8 and Theorem A.2. - added overall phase factor. Allin all, that makes 31 real param-

Nonsquare complex orthogonal designs (or pseudounitaters.
designs) can be constructed by eliminating antennas (columnshl possible generalizations of the code (22) can be con-
from the designs above. These designs trandthitomplex structed by applying transformation (24), withandU of the
symbols during2“—! time epochs fromV < 2~ antennas. form (25), accompanied by possible (real) symbol permutations
For25-2 11 < N < 25-1 they are delay optimal within the and a sign change. Within this family, one can, for example,
categories of complex space—time block codes presented in dptimize the power distribution of the code so that the average
literature; the rate-halved and the square matrix embeddaptaver transmitted from each antenna at each time epoch is the
codes. For example, the ratg¢2 schemes for five to eight same. This problem was addressed in [10].
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One member of this family is the example found in [6], quoted The basis of Cliff, is
above as (5). The unitary equivalence of (5) and (22) is given
©) yed (Dand @2 SOVenly _ iy ugle=1. ... L}

the matrices
L m
U{H%i

m=2 =1
The number of basis elements is the number of all nonordered
combinations ofL. objects

|Br| = EL: <€> =2,

=0

1<k <kipr < L}. (A3)

o O O
OO = O
Obl—\OO
= O OO
<
I
] o O =
] S O
S sk =
Sk ok oo

VI. CONCLUSION
- . . Thebasis can be constructed by observing that a product of more
We have proposed a digital communication system which u hanZ generators, can be reduced t& the product of at most

lizes any number of transmit and receive antennas, with full dj- e of each generator by using the defining relations (A1) and
versity provided by space—time block coding, and generalizt >

the linear decoding principle of [6] to them. We have classi-
fied all possible linear and unitary space—time block codes wi
complex symbol constellations that are square matrices, or
be constructed from square matrices by deleting columns. The

families of codes found include new complex modulation full Definition A.2: An N-dimensional representation of an al-
diversity codes for more than four antennas. For five to eiggebra is a homomorphism from the abstract algebra to a linear
antennas, these codes have shorter delay than the codes padgibra of operators acting an.

ously presented in the literature, with the same rate.

Due to the inherent role of complex numbers in communica-
ns, we are interested in representations in terms of complex
bers.

Al h d ¢ ructi | A representation of an algebra is completely specified by a
S0, we have made a concrete construction genera 'Z'Pegpresentation of its basis, which again is completely specified

space—time block codes to unitarily transformed block COd%ﬁl a representation of the generators. For a Clifford algebra, we

c > 5 i : ) ) _ : _
Th!s gives atT + N7 -2 dlmensu_)ngl co_ntmuo_usly Parame-,re thus interested in representations of the generaiorh
terized family of " x N codes. Within this family, one may,

o SRR ' an N-dimensional representatichis represented b{,, the
e.g., optimize the power distribution between antennas. With b P i

X . - dimensional identity matrix, and the generators are anticom-
such a family, we have found the simplest form of a space—tlrﬂﬁmng matrices that square tall y .
block code for three apd four antennas. . To start, we recall some basic concepts in representation
From the construction of square matrix embeddable co %ory.
it follows that the only place remaining to look for better
space—time block codes than the ones presented in [6] and hereR1: Irreducible representations are representations with no
is to investigate block codes based on nonsquare pseudounitary  invariant subspaces.
matr?ces thaF are not columnwise restrictions of a square unit_ary R2: Completely reducible representations can be decom-
matr|x. .Th".c’ is an open problem. For example, the construction posed to a direct sum of irreducible representations.
in [6] yielding rated real codes for any number _of antennas They are equivalent to block-diagonal representations,
cannot be_updated to the comp!ex number doma_m. with irreducible representation matrices on the block
The main result of the paper is Theorem 1, which states that diagonal.
the maximal rate of a square matrix embeddable space-time
block code falls off exponentially with the number of transmit R3: Two representation® and R’ of the algebraA are
antennas. This is in constrast to rate-halving codes, which may equivalent, if a similarity transformy” exists so that
have ra‘_[d/z for any number of antennas, vyith an exponen_tial_ly R'(a) = VR(a)V, Vae A
increasing delay. These facts imply that linearity and unitarity
are too strict requirements when designing space—time mod

. X . T L”"fl'the sequel, the expression “irreducible representation” is
tions for future high-rate wireless communication systems.

taken to mean an equivalence class of irreducible representa-
tions, according to R3. There is a subtle point regarding the

APPENDIX concept of equivalence of representations, and irreducibility,
REPRESENTATIONTHEORY OF CLIFFORD ALGEBRAS when comparing to the treatment of Clifford algebras in the
Recall the defining relation of a Clifford algebra (19). mathematical literature, see, e.g., [11]. We shall return to this

when the results are stated.

To find a complete classification of the representations of
Clifford algebras, we shall use the fact that a double cover of
the basis of a Clifford algebra (all elements®iultiplied by
+1), can be interpreted as a finite group.

square roots of -unity Proposition A.1: The set of elements

v =1, Vk=1,..., L. (A2) Gr = Br U {-blb € B} (A4)

Definition A.1: Cliff , is the algebra oveR generated by.
objectsyx, kK =1, ..., L, which are anticommuting

WY ==V VE#J (A1)
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is a finite group with respect to (w.r.t.) the multiplication inmitian antisymmetric matrix may be made anti-Hermitian by

Cliff . The order ofGy, is 2111, multiplying with j, whereas a symmetric anti-Hermitian matrix
Proof: The multiplication is associative, the unitisand cannot be made antisymmetric. With this restriction, the theory
the inverse of the elemest [T\ ; v, is of Clifford algebra representations reproduce the rates found in

[6], see [12].

i(_l)[%] H Vi - .
im1 A. The Representation Theory®f

The_ number of elements in the group is twice the number of To construct the representations of the finite grakp re-
basis elements. U call some basic theorems pertaining to representations of finite

Note that wherg;, is interpreted as a finite group, the repre9"ouPs [13].

sentation of—1 does not necessarily have anything to do with FG1: Every representation of a finite group is equivalent to
—1timesly, and similarly, for a generie-b, b € 5. Symbols a unitary representation.

—1and-bare just symbols denoting group elements with SOMe g5, Eyery representation of a finite group is completely
specified multiplication rules with the other group elements, of

reducible.
the form i
FG3: The order of the group is the sum of the squares of the
(-Db = (=b), VbeBg dimensions of the irreducible representations.

(=1(=b) = b, Vbe By FG4: The number of equivalence classes of irreducible rep-
The element-1 may be represented by any matrix (or number) resentations equals the ”U_mbf{ of conjugacy classes
so that the multiplication table of the group is fulfilled. Nonde- (subsetss’ C G of the group withy ™ .Sg C S=V g €9).
generate representations wh@¢-1) = —R(1) = —1y can  Fjpally, we shall need Schur’'s lemma.

be constructed from representations of Gliff _ o
o _ _ SCH: If R(g)A = AR(g) Vg € G, whereR is a finite-
Corollary A.1: A restriction of a representation of Cljffto dimensional representation, thein~ 1.

its basis gives a representation@f. A restriction of an irre- ] ]
ducible representation gives an irreducible representation. ReFirst observe that for odd, Cliff ., andgy, have a central
strictions of two nonequivalent representations give nonequil€ément (an element that commutes with everything) in addition

lent representations. These representatiodg,afre nondegen- tol:
erate,R(1) = —1y. Inversely, nonequivalent nondegenerate proposition A.2: For oddL, the product of all generators is
irreducible representations gf, may be extended to nonequiv-g central element, it commutes with all element§jn

alent irreducible representations of Cjiff _ Proof: First consider the commutation of the product of
Proof: These are trivial consequences of the relation of g{) generators with a generator

algebra and its basis, and Proposition A.1. The inverse property . L .
is proved by a trivial embedding dfl, —1} into IR. O H (L—k) - 5
S yive =D wve T v
=1 =1

Now we may concentrate on finding all irreducible represen- j=k+1
tations ofG,, which thus include all irreducible representations L
of Cliff ;.. First, recall the following. = (D)0 T e

R4: Unitary group representations are representations in i=1
terms of unitary matrices. For oddL, the product commutes with all generators, and thus

Due to the square root ef1 property (A2), unitary represen- also with all products of generators, i.e., with all elements in the

tations of the Clifford generators are anti-Hermitian groupgr.. U
’YZ — fykfl = — Vi k=1,...,=0L. (A5) Now we proceed with finding the conjugacy classe¢ pf

Moreover, any two of the three properties of unitarity, anti-Her- Proposition A.3: For evenL, G, has2’ + 1 conjugacy
miticity and squaring to-1, imply the third. Here we are in- classes, for odd,, it has2” + 2 conjugacy classes.
terested in Clifford representations due to their relation to a set Proof: Two elements ofj;, either commute or anticom-
of L + 1 complexified Radon—Hurwitz matrices satisfying (10)nute, as they are associative products of elements that anticom-
i.e., due to the unitarity property of the code matrix (6). For thisnute or commute. If an element commutes with all elements
the representations we are looking for are exactly the anti-H#r-a group, it forms a conjugacy class by itself. If it anticom-
mitian, and thus unitary representations;ef These are gener- mutes with some and commutes with the rest, it forms a conju-
ated by collections of. anticommuting, anti-Hermitian, unitary gacy class together with itself. By definition1 and—1 com-
matrices with complex entries. mute with all elements ig7;, and are alone in their respective
This is the crucial difference between complex and real modenjugacy classes. According to Proposition qule ~; and
ulation space—time block codes. For real modulation codes, wq'[le ~; for odd L commute with all elements, and are thus
restrict to antisymmetriey? = —+) representations of the Clif- alone in their respective conjugacy classed. K 1, there are
ford algebra, and thus look for a family of anticommuting, antiro further elements. Fat > 1, the remaining elements anti-
symmetric, orthogonal matrices. This is a restriction, as a Hemmmute with some other elements. Consiggr=T1.", .,
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ki < kiy1.1f 1 < m < L, the elemeny,,, = H;’;l Vhei VL, Proposition A.6: A nondegenerate representati®yy o
with &, ¢ {k;}72, exists, and it anticommutes witf, of G2 > can be extended to two nonequivalent nondegenerate
1l 1l representation§€§'i,(71 of Gox_1. If Rox_o is irreducible,
:l: . .
o — H Vi, Vi H Yooy Vi Ra_, are irreducible. N
iy iy Proof: From Proposition A.2, the product of all generators
m—1 m—1 is a central element. From Schur’'s lemma it follows that in all
=(—1)™ H Vi, H Viey V!, Ve f|n|te—<j|men5|onal (and thus in this case, all irreducible) repre-
i=1 j=1 sentations offor_1
m—1 m—1 2K —1 2K —1
(-1 2m—1 L L = — / . - - L
(=1 H Vhes Veerr, H Vie; Ve 9 g H R(v;) = My < R(71) :A(_l)ls 1 H R(v:)
=1 j=1 i1 =2

It remains to consider the product of all generatgrSor even

L. Takeg' = ~r, where ) is a proportionality constant, amdl is the dimension

of the representation. In a nondegenerate representation,

' s L1 L A may be fixed by checking that the representation respects
gLy = H yireyr = (=" H VL R(v2r_1)% = —1x. This gives two solutions\ = +j*, which
=t —1 =t correspond to two representations. The representaRdns ,
=(=1)""dgr. (A6) may now be generated from a nondegenerate representation
Consequently, for everl, the conjugacy class consists ofR2x—2 Of the subgroup generated by, £ =2, ..., 2K — 1,

{gr., —gr.}. Thus, there is one conjugacy class for each eligomorphic toG, _», by taking

ment inB;, one for—1, and for oddL, one extra for-g;,. O i
Rak—1(m) =Rax—2(m); k=2,...,2K -1 (A8)

The finite groupG, has a host of irreducible one-dimensional 2K 41
(1—D) representations, whetel are both represented by The RE () =+ H Rar—2(7i). (A9)
simplest is the trivial representation, where all generators, and b

thus all elements are representedlbyrhese degenerate rep- . ]
resentations are clearly not representations of Gliffut they These two representations are clearly nonequivalent. Suppose

have to be taken into account when classifying the irreducitifeat @ similarity transform would exist that would transform one
representations afy.. representation to the other. It would change the sigR0f; ).

N o . Also, itwould leave alR(v;), ¢ = 2, ..., 2K —1 invariant, and
~ Proposition A.4: The finite groupgy, has at least™ 1-D  thys also their product. This, however, should be proportional to
irreducible representations, which are degenefdfe;1) = 1. (). Thisis a contradiction. From the definition of irreducible

Proof: Take R(+1) = 1, for each of the generatorsygpresentations, it follows that /.5 _» is irreducible, so are
R(£v) = 1 orR(xv) = —1, and RE_,. O
- o Finally, one may classify all representation with odd
i=1 i=1 '

This choice is an irreducible 1-D representationdyf. The  Proposition A.7: The finite groupg?,(_l_has22_l"—1 +21ir-
number of different representations is the number of choosifgfucible representations. Two a¥* ~? dimensional2**~*
+1 or —1 for each of thel, generators, i.e2”. O are 1-D.

his | . . lassificati £ all Proof: From Proposition A.3 and FG4 it follows that
. This eads' to an immediate classification of a represent‘:@tik,i1 has22X ~1 12 irreducible representations. From Propo-
tions of G;, with evenL.

sition A.4 one hag?%—! 1-D irreducible representations. This
Proposition A.5: The finite groupG.x has2?%X + 1 irre- leaves two additional irreducible representations. These are the
ducible representations. One2& -dimensional22X are 1-D.  two 2K —1_dimensional irreducible representations constructed
Proof: From Proposition A.3 and FG4 it follows thgs, ~ according to Proposition A.6 from the”~*-dimensional
has22 + 1 irreducible representations. From Proposition A.4{reducible representation d»x » that exists according to
one has2?X 1-D irreducible representations. This leaves orfaroposition A.5. U
additional irreducible representation. From Proposition A.1, the
order ofG,  is 2°%+!. Applying FG3 one has for the dimension,
N of the remaining irreducible representation

22[&'-1—1 — 22]&' X 12 + N2. (A?)
This means thav = 2. O

As a consistency check, consider FG3. From Proposition A.1,
e order ofGo i is 225, The sum of the squared dimensions
of the irreducible representations found in Proposition A.7 is

22[&’—1 X 12 + 2 X (2[&’—1)2 — 22[&’

The existence of a central elementdp with odd L leads consistent with FG3.

to a straightforward connection between nondegenerate repre-

sentations 0k —2 and Gz -1, and thus for Cliftx_> and  erpe sligntly awkward numbering of the generators here is chosen to stream-
Cliff o 1. line the notations in the main body of this paper.
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B. The Representations of Cfiff Proof: For eachk = 1,...,K — 1, define Efiék) =
The dimensions and numbers of representations of ;Cliff y2x—1, 72x }, Where

follow directly from the results proved in the previous subsec- 22

tion. Y2r—1 :(_j)k_l H Yi Y2k—1
Theorem A.l:?liﬁ 1 has oge equival.enlce clasls of irre?ucit()jlg ;;12

representations for evely and two equivalence classes for o . N

L.pThese representatigﬂs axg/2 -diqmensional. For = (=D }:[1 RARELS (A13)

Proof: This is a direct consequence of Propositions A

and A.7, and Corollary A 1. ?he inverse of this mapping is constructed by exchanging the

with ;. Due to the even number of elementg[iif~, > i, the
According to FG1, each of the equivalence classes of i”f?/\'/
ducible representations Gf, constructed in the previous subec-
tion includes at least one unitary irreducible representation. Due .
to the anti-Hermiticity requirement (18), we are interested in '2—172k = H Vi 121 H Vi V2K
those representations. 2’:_12 - =t
The attentive reader might notice a discrepancy between the
H Vi H Vi V2kY2k—1
j=1 =1

: Pl G R
0 elements in eacfil, ~ anticommute
2k—1 2k—2

number of irreducible representations in Theorem A.1 and re-
sults in the mathematical literature, see, e.g., [11]. There, two

. . . . . 2k—2 2k—2

irreducible representations exist only for ev€nn L = 2K —1. _ H ' H ‘ e

The reason is that here, representations as matrix algebras over - L Y Y2k [ Yi V2k—1 = —Y2kV2k—1
j= e

C are considered (Definition A.2), and equivalence is defined ) )

in R3 only up to automorphisms that can be realized as sindind square te-1. Further,Cl, = andCL,  commute fork # I.

larity transformations. Equivalence of representations of alg@fithout loss of generality, take> k. Consider one of the four
bras are usually up to all automorphisms. In Clifford algebrasgmmutations

some outer automorphisms, e.g., reflections, may not be real- 2k—1
ized as similarity transformations. The argument relating The- 35, 135, = H i H ¥ H ¥
orem A.1 to the results presented in [11] goes as follows. For im1 =1  j—2k

evenk, the proportionality constaritin the central elementin 2k—1  2-1  2k—1

Proposition A.6 squares tg so that the representations af = H Vi H v; H i = Yoi—1Y2k—1-

and [[:2; are the same up to a sign, see (A9). For ddd Fi gy R

there is an additional factor ¢f Thus, the dimension of the ir- The gther three commutations are similar. The commutation re-
reducible representations of Chiff ., as matrix algebras over |a4ons of thesd — 1 commuting pairs of two anticommuting

2K -2 2K—1 H .
R are2”"~* for even K, but2°" " for odd K. Due to this, gjements may thus be realized a&a- 1-fold tensor product
considered as matrix algebras oWy the two representations ¢ nyo representations of Cliff e.g., (A12)

of Cliff 55 _1 discussed above are equivalent w.r.t. nonsimilarity

2k—1 2{—-1

by K—-1-k k—

outer automorphisms if{ is odd, and nonequivalent K is R(Yor—1) = (®" ) @ o1 @ (@)
even. R(For) = (@ 17F1) @ 02 @ (@" ' 1). (A14)
In constructing explicit representations of Clifford algebrasfnverting (A13), one gets a representation of GHff O

we shall use the following anticommutirgx 2 matrices:
This leads to a explicit characterization of all representations

[ o1 0 710 .
01—{_1 0} 02—{j 0} 03—{0 _1} (A10) of Cliff ..
For later convenience, these have been chosen sotlaaido, Theorem A.2:The matrices

are anti-Hermitian, ane; is Hermitian. All three are unitary. Rv2)=L0Lole... @leos
Their products are given by

K—QYtimes
Y2 = jos. (A11) Ryvza)=Lbeolbele...®1cos

First consider the case of two anticommuting objdcts 2. An K —2 times
anti-Hermitian representative of the 2-D irreducible representa-

tion of Cliff; can be constructed as (120) )
Ryor) = 1@ ...0 1,00, ®03®...Q 03
R(n) =01  R(y)=o2. (A12) R T ——
1 —1—K times v — unes

The anti-Hermiticity and unitarity of these matrices guarantee RY2r1) =1 ©...0 LR @030 ...0 03
that they square te-1. — —
Now consider representations of Clifford algebras with an

even number of generatofs= 2K.

K—1—k times k—1 times

Proposition A.8: Cliff ;i_» can be represented as a tensor R(v2k—2) =01 ®03R...Q 03
product of K" — 1 copies of representations of Cliff K—2 times
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Rlvr—1)=020730 .- © 0y and, consequenti§g (v2ys) = 1, ®jos. From (A18), (A19) we
K—2 times then get
RO =+igs0050 . 00 (A15) R(7) =i(~12 @ jos)(o1 & 1) = 01 @ 0
o time R(ys) =i(~1 ®jo3)(02 © 1) = 03 @ 0.

are representatives in terms of anti-Hermitian generators

the two equivalence classes of irreducible representations

Cliff y_1. An irreducible representation of Cliff,_» may be R(v1) = £jR(v2v3) R(ya)R(¥5)

constructed by droppin@(fyl)_from the _representations abqve. =F(12 ® 03)(01 © 03)(02 © 03) = Fjos @ 03.
Proof: The representation of Cliffi_» constructed in _ ) ) )

Proposition A.8 is nondegenerate. According to Theorem A 1he constructed representation of Glifeads in matrix form

%ﬁe remaining generator may be represented by

it must be a representative of the only equivalence class of r 0 1 0 07 o j 0 0
irreducible representations of Cliff _». Inverting (A14) using -1 0 0 O j 0 0 O
(A13), (A1l1l) one gets the representation matridesy; ), =1 00 01 =10 0 o j
k=2,...,2K — 1in (Al15). The representation ef is con- L 0 0 -1 0] LO 0 j O
structed as in (A9). According to Proposition A.6 and Theorem -0 0 1 07 0 0 j O
A.1, this gives the two irreducible representations of Gjff ; . 0 0 0 -1 0 0 0 —j
From the anti-Hermiticity ofo;, 0» and the Hermiticity of 7~ | _1 o o 0 =1 0 0 0
a3 it follows that the matrices (A1l5) are anti-Hermitian by L 01 O 0. LO —j 0 0
construction. O i 0 0 0

Corollary A.2: Allirreducible representations of Cliffwith y=+ 0 —j 0. 0 (A20)
anti-Hermitian generators may be constructed from (A15) by a 0 0 -0
similarity transformation with &L%/21 x 2LE/2] unitary matrix 0 0 0 ]
V" with determinantt Different but equivalent representations may be constructed

by applying the unitary similarity transforms (A16). Of partic-
Riw) = VTR(’V’“)V' (AL6) uI};r Iijnptgregt when cor?structingyunitary desig(ns aZe rep?resenta-
Proof: This follows from the definition R3 of equivalencetions where all matrix elements afg-1, +j}. Such may be con-

of representations, and that only unitary similarity transformatructed e.g., by transformations that change the basis in some
tions preserve anti-Hermiticity. The restriction to special unitayf the tensor product spaces. Thus, e.g.,

matricegdet V = 1) comes from the fact that a possible overall Kel—k b—1

phase fictor 11% co)mmutes with all matrices, al;d thus cancels ¥ — © 1@ (o1 +02)/V20" " 1z (A21)
in a similarity transformation. [0 exchanges the matrices ands, and changes the sign 6f in

the kth tensor product space.
C. Examples
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odd number of generators are relevant. The representations ofhe authors wish to thank Dr. R. Kashaev, Dr. K. Kalliojarvi,
Cliff 3 are generated by (A15) with' = 2 and Dr. P. Pasanen for conversations on the subject of this paper.
Rirz) = REFERENCES
R(%) —o2 . [1] G. J. Foschini, “Layered space-time architecture for wireless commu-
R(’Yl) =+y2v3 = Hjos. (A17) nication in a fading environment when using multi-element antennas,”

. . . . Bell Labs Tech. J, Autumn 1996.
Further, the representations of Clifire given by (A15) with  [2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” AT&T Bell

K = 3. The two commuting pairs of anticommuting combi- - Ijags'clsntem?/llTPeclgi M?\ﬂmg- ‘I]BUTIE 1935\-/\/ Y. Kuo. “Sianal desian 1
. . . . .-C. Guey, M.P. Fitz, M.R. Bell, and W.-Y. Kuo, “Signal design for
nations of the generators are given by (A13) with permuted in- transmitter diversity wireless communication systems over Rayleigh
dexes fading channels,” ifProc. IEEE Vehicular Technology Conf. (VTC'96}
pp. 136-140.
Y2 = Y2 [4] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space—time codes for
. high data rate wireless communication: Performance criterion and code
T3 =73 construction,”IEEE Trans. Inform. Theorwol. 44, pp. 744-765, Mar.
N, = i 1998.
& T727374 [5] S. M. Alamouti, “A simple transmitter diversity scheme for wireless
Y5 = —jVoY3Vs- (A18) communications,”|[EEE J. Select. Areas Commurvol. 16, pp.
1451-1458, Oct. 1998.
Their representation in terms 8fx 2 matrices (A13) is [6] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
codes from orthogonal designdEEE Trans. Inform. Theoryol. 45,
R()=1L oo pp. 1456-1467, July 1999.

(

- [7] 3rd Generation Partnership Project; and Technical Specification Group
('73) =1L ®o Radio Access Network. (1999, Dec.) Physical channels and mapping of
(’~Y4) =0 ® 1y transport channels onto physical channels (FDD), (3G TS 25.211 version

3.1.0). [Online]. Available: ftp://ftp. 3gpp.org/Specs/December_/25_se-
(¥5) =02 ® 1 (A19) ries/25211-311.zip.



TIRKKONEN AND HOTTINEN: SQUARE-MATRIX EMBEDDABLE SPACE-TIME BLOCK CODES 395

[8] A. V. Geramita and J. Seberry, “Orthogonal designs, quadratic formg11] J. C. Baez. (2001, May) The Octonions. [Online]. Available: http://xxx.

and Hadamard matrices,” lcecture Notes in Pure and Applied Mathe- lanl.gov/abs/math/0105155.

matics New Yourk: Marcel Dekker, 1979, vol. 43. [12] O. Tirkkonen and A. Hottinen, “The algebraic structure of space—time
[9] W. E. Baylis, Ed.,Clifford (Geometric) Algebras With Applications to block codes,” inProc. Finnish Wireless Communications Workshop

Physics, Mathematics and EngineeringBoston, MA: Birkhauser, 200Q May 2000, pp. 80-84.

1996.

[13] A. O. Barut and R. Raczk&heory of Group Representations and Ap-
[10] O. Tirkkonen and A. Hottinen, “Complex space—time block codes for plications Singapore: World Scientific, 1987.

four Tx antennas,” irProc. IEEE GLOBECOM’0pvol. 2, Nov. 2000,

pp. 1005-1009.



	Copyright: © 2002 IEEE. Reprinted with permission from IEEE Transactions on Information Theory 48, number 2, pages 384-395.


