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Square-Matrix Embeddable Space–Time Block
Codes for Complex Signal Constellations

Olav Tirkkonen, Member, IEEE,and Ari Hottinen, Member, IEEE

Abstract—Space–time block codes for providing transmit diver-
sity in wireless communication systems are considered. Based on
the principles of linearity and unitarity, a complete classification
of linear codes is given in the case when the symbol constellations
are complex, and the code is based on a square matrix or restric-
tion of such by deleting columns (antennas). Maximal rate delay
optimal codes are constructed within this category. The maximal
rates allowed by linearity and unitarity fall off exponentially with
the number of transmit antennas.

Index Terms—Clifford algebras, multiple antennas, space–time
block codes, transmit diversity.

I. INTRODUCTION

M ULTIANTENNA techniques have received a lot of at-
tention in the scientific community after Foschini [1] and

Telatar [2] showed that the capacity of the system increases lin-
early with the number of uncorrelated transmit and receive an-
tennas. With a restricted number of receive antennas, a part of
this capacity increase can be realized using transmit diversity.
Within a short time, several schemes have been proposed for a
number of wireless communication systems [3]–[6].

One implementation of transmit diversity, called space–time
trellis coding, was developed by Tarokh, Seshadri, and Calder-
bank [4]. It performs well in slowly fading environments, but it
has the drawback that decoding complexity grows exponentially
with the number of antennas.

Recently, the alternative multiantenna transmit diversity
concept of space–time block coding1 emerged in the work
of Alamouti [5]. It was further developed and put into a
theoretical framework by Tarokh, Jafarkhani, and Calderbank
in [6]. The essential feature of these schemes is their inherent
orthogonality. This guarantees that linear decoding provides
the maximal likelihood result. Even in some systems with fre-
quency-selective fading, orthogonality is almost preserved by
the communication channel, as long as the ensuing intersymbol
interference can be reliably equalized. This is the case, e.g.,
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1Here, we adopt the convention of [6] and use the name space–time block
codes only for codes that are unitary independently of the modulation scheme. In
this terminology, e.g., codes of the kind presented in [3] would not be space–time
block codes.

in wideband code-division multiple-access (CDMA) systems,
where the signaling period is delay spread, and the RAKE
receiver separates the multipaths. For each path, the orthogo-
nality of the multiantenna transmission is almost preserved. In
such systems, space–time block coding is a viable candidate
for providing transmit diversity. Accordingly, the two-antenna
complex modulation space–time block code proposed by
Alamouti has already been accepted as an open-loop transmit
diversity scheme for a third-generation wireless communication
system, namely, the wideband CDMA standardized by 3GPP
(3rd Generation Partnership Project) [7].

The channel model used in this paper is uncorrelated fre-
quency flat block fading channels between a multitude of trans-
mit and at least one receive antenna. The length of the fading
block equals (or is a multiple of the) space–time block code
length. The receiver has complete channel state information, the
transmitter has none.

In space–time block code design, the essential design criteria
are the provided transmit (Tx) diversity, the (symbol) rate of the
code, and the delay. The degree of Tx diversity is characterized
by the number of independently decodable channels. For full
diversity it equals the number of transmit antennas. If multiple
receive (Rx) antennas are deployed, the total diversity degree
is the product of the Tx and Rx diversity degrees. The number
of Rx antennas is, however, irrelevant for the design of orthog-
onal space–time block codes. The (symbol) rate of the code is
the number of symbols transmitted by the code per time epoch.
The delay is the length of the space–time block code frame.
Depending on the underlying modulation scheme, space–time
block codes can be divided into real and complex codes. In this
paper, the goal for designing space–time block codes is to max-
imize the rate and minimize the delay, keeping full diversity.

In [6], the problem of designing rate, full diversity
space–time block codes was completely solved. Rate-real
codes were found for any number of Tx antennas. For up to
eight antennas, these were constructed from orthogonal designs
in two, four, and eight dimensions. An orthogonal design is an
orthogonal matrix with entries , where are real symbols.
For rate , the number of symbols equals the matrix dimension.
For example, the four-antenna real block code constructed in
[6] is based on the orthogonal design

(1)
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For transmission, the orthogonal design is
interpreted as a code matrix defining the connection of the infor-
mation symbols and the channel symbols trans-
mitted from a given antenna during a given time epoch. Each
row is transmitted at a specified time epoch from four different
antennas, and each column is transmitted from a specified an-
tenna at four different time epochs. If the number of Tx antennas

is not equal to the orthogonal design dimensions two, four,
or eight, delay optimal codes for can be constructed by
deleting a column from a higher dimensional orthogonal design,
i.e., by switching off antennas. Thus, for three transmit antennas,
the optimal code can be written by deleting a column from the

matrix above, and optimal five-, six-, or seven-antenna
schemes can be constructed from an orthogonal design.
For more than eight Tx antennas, generalized orthogonal de-
signs were constructed in [6], which give rate-real space time
block codes for any number of Tx antennas. For these, the delay
grows exponentially with the number of Tx antennas. The
minimal delay for a real symbol generalized orthogonal design
with rate is

(2)

Allowing complex signal constellations restricts the available
rate- codes severely; rate-complex space–time block codes
exist only for two transmit antennas [6]. This code was found
by Alamouti [5], and it is based on complex orthogonal designs
(or unitary designs, for short) of the form

(3)

In addition to this unitary design, [6] presents rate-com-
plex codes based on the rate-real codes; transmitting first a
rate– orthogonal design with complex symbols, followed by
transmitting the same orthogonal design with the symbols com-
plex conjugated, produces a complex rate-block code. This
gives rate- codes for any number of antennas, with exponen-
tially growing delay, twice the one given by (2). For example,
the rate- code for four transmit antennas, corresponding to
the rate- real code for four antennas (1), is

(4)

For comparing to specific codes constructed in this paper, the
delays of these rate- codes for up to 16 antennas are of in-
terest. These can be calculated from (2). For five to eight an-
tennas, the rate- code has delay , for nine antennas , for
10 antennas , and for 11 to 16 antennas, the delay is . We
shall see that for up to eight antennas, these codes are not delay
optimal, and for three or four Tx antennas, they are not rate op-

timal either. This can be seen from a rate-code for three and
four transmit antennas which was presented in [6] to inspire fu-
ture work

(5)

Here, and are the real and imaginary parts of the complex
modulation symbols . A three-antenna code is again simply
constructed from the code above by deleting one column.
This code shows an important disadvantage of square matrix
space–time block codes with rate less than one. Even for equal
power constellations (QPSK, -PSK), they are power-unbal-
anced in that the power transmitted from any given antenna
fluctuates in time. For nonequal power constellations (-QAM
etc.), this property of the codes makes the power fluctuations
worse. These (amplified) power fluctuations are problematic in
view of power-amplifier design, as the region of linear amplifi-
cation has to be correspondingly extended. Thus, an additional
criterion may be added for designing space–time block codes:
the power spectrum should be as balanced as possible.

The complex modulation space–time block codes presented
above can be seen as examples of the two categories of space–
time block codes that have been introduced in the literature.
These are the rate-halving codes and square matrix embeddable
codes.

In this paper, the theory of square matrix embeddable space–
time block codes shall be completed. This theory is based on
square matrix maximal rate complex space–time block codes.
We shall see that for square matrix embeddable space–time
block codes, the delay is minimal, and the maximal rate falls off
exponentially with the number of antennas. This is in contrast
to the rate-halving codes, where the rate is fixed to, and
the minimal delay increases exponentially. The simplest forms
of square matrix embeddable space–time block codes are
unitary (complex orthogonal) designs, i.e., square matrices
with elements either a symbol or its complex conjugate, or
.2 We shall see that irreducible3 unitary designs exist only in

dimensions that are powers of two.
In Section II, we clarify what is required from complex mod-

ulation space–time block codes in this paper; linearity and uni-
tarity. We show that these properties imply linear maximum-
likelihood (ML) decoding, and that the rank and determinant
criteria for space–time code design are saturated. In Section III,
we restrict ourselves to square matrix embeddable codes. In the
main theorem of the paper, Theorem 1, the maximal rates for a
given number of transmit antenna are stated. In Section IV, we
give an explicit construction for unitary designs, the simplest
square matrix space–time block codes that achieve the max-
imal rates for a given diversity. In Section V, we consider uni-
tarily transformed codes, and prove Theorem 2 which states the

2With this terminology, the code matrix (3) is a unitary design, whereas (5) is
not. Both are square matrix complex modulation space–time block codes. The
unitary design corresponding to (5) shall be constructed in Section IV.

3Irreducible means not equivalent to a block-diagonal matrix.
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unitary equivalence of all possible square matrix embeddable
space–time block codes with the unitary designs constructed
in Section IV. Section VI rounds off the paper with a discus-
sion. The representation theory of Clifford algebras, which is the
mathematical foundation of the results presented in this paper,
is developed in the Appendix.

II. L INEAR SPACE–TIME BLOCK CODES

We consider a wireless communication system consisting of
transmit antennas and receive antennas. During time

epochs, the system transmits symbols , ,
which are taken from a complex signal constellation. The trans-
mitted symbols are distributed between the antennas and time
epochs by a matrix , the code matrix. The matrix
elements of are linear combinations of the symbols. We
shall only be interested in schemes with , as schemes
with are not linearly decodable.

The characteristics of the block code are compared to single-
antenna transmission of the same symbol stream The ratio of the
transmission rate of the code to this “uncoded” scheme is
the symbol rate of the code. It should be noted that this rate is a
relative modulation rate; a rate less than one does not imply any
coding, nor does it imply any increase in Euclidean distance.
It is just a measure of the efficiency of the use of the antenna
resource.

We shall adopt two conditions for the design of space–time
block codes. These are as follows.

• Unitarity (complex-orthogonality), with the inner prod-
ucts proportional to the sum of the squared amplitudes of
the symbols

(6)

Here is the unit (identity) matrix, and is the
Hermitian conjugate (complex conjugate transpose) of the
matrix . Pseudounitarity in the form (6) is also required
for nonsquare matrices with .

• Linearity in the symbols . The code matrix can be ex-
panded as

(7)

(8)

Here is a set of constant matrices
with complex entries. The real variables and are the
real and imaginary parts of the symbols ,4

and the matrices are linear combinations of the

(9)

The definition of space–time block codes adopted in this paper
is based on these criteria.

4We denote
p
�1 � j.

Definition 1: Complex modulation space–time block codes
are linear mappings of a set of complex symbolsto a code
matrix of transmitted symbols at different antennas and time
epochs. The code matrix is proportional to a unitary matrix, with
the proportionality coefficient .

Everything that follows is based on the criteria of unitarity
and linearity. Combining them, one gets the following algebraic
restriction on the coefficient matrices :

(10)

Any solution of these equations defines a maximal diversity,
rate unitary space–time block code. In [6], the real ver-
sion of this equation, with Hermitian conjugations replaced by
transposes, was used in the spirit of Radon and Hurwitz (see,
e.g., [8]) to find orthogonal designs, pertinent for real modula-
tion space–time block codes. In Sections III and IV, we shall
find all possible solutions of the complexified Radon–Hurwitz
equations (10). First, however, we shall take a look on why these
criteria lead to ML linear decoding, and to optimal space–time
block codes in terms of all design criteria presented in the liter-
ature.

A. Decoding

Using the unitarity (6) and linearity (8) properties of space–
time block codes, it is easy to devise a maximal likelihood linear
decoding scheme for the transmitted symbols.

We assume perfect channel state information at the receiver,
and one-tap channels with the same propagation delay between
all pairs of Tx and Rx antennas.

The channel between theth transmit and th receive an-
tenna is denoted by . All channels are collected into the

channel matrix

...
...

.. .
...

(11)

Correspondingly, the received signal at time epochand re-
ceive antenna is denoted by . The matrix of these
signals is given by

(12)

where is a matrix of additive complex Gaussian white
noise.

The complex symbols can be decoded using the matrices
of (9) and the channel estimates. Indeed, it is a direct con-

sequence of relation (10) that the metric given by the absolute
square of the noise

(13)

gives a symbol-wise linear ML metric for the symbols
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does not depend on . This metric generalizes the metric
presented in [5] for complex block codes to arbitrary matrix
dimensions. Using (10), it is easy to see that

noise

This means that any unitary (6) and linear (8) space–time
block code maximum ratio combines all channels between
the transmit and receive antennas. From a diversity point of
view, this is the optimal result. For the modulation rates and
dimensions allowed by the construction, space–time block
codes are thus optimal space–time codes. In the next section,
we shall see this in terms of design criteria for space–time
codes.

B. Space–Time Code Design Criteria and Space–Time Block
Codes

The main design criteria for space–time codes presented in
the literature are formulated in terms of the codeword difference
matrix . Here and are the code matrices
corresponding to the encoded and possibly erroneously detected
sets of information bits, respectively. Minimizing the pairwise
error probability of deciding in favor of when transmitting

leads to the following design criteria.

• The rank criterion [3]. The diversity gained by the multiple
transmitter scheme is

(14)

To achieve maximal diversity, should have full
rank for all distinct codewordsand .

• The determinant criterion [4]. To optimize performance in
a (Rayleigh) fading environment, should be designed to
maximize

(15)

The prime in the determinant indicates that zero eigen-
values should be left out from the product of eigenvalues
when computing the determinant.

Now we can investigate space–time block codes in terms of
these criteria. From linearity (8) it follows that the codeword
difference matrix inherits the unitarity property (6) of the
code matrix

(16)

Thus, the design criteria are fulfilled.

• Rank criterion. As a unitary matrix, is full-rank for all
distinct codeword pairs. Thus, all space–time block codes
give full diversity, equaling the number of Tx antennas.

• Determinant criterion. As is unitary

This is the maximum given a fixed transmit power.

The defining relations (6) and (8) of space–time block codes
thus give codes that are optimal with respect to the rank and de-
terminant criteria. In the previous section it was seen that the

structure (10), following from unitarity (6) and linearity (8),
guarantees a linear decoding scheme which maximal ratio com-
bines all channels. From diversity point of view this is the op-
timal, so it is not too surprising that the space–time code design
criteria are saturated.

III. SQUAREMATRIX BLOCK CODES ANDCLIFFORDALGEBRAS

All complex modulation space–time block codes presented
in the literature belong to one of two categories. They are either
rate-halving codes, like (4), or square matrix embeddable codes,
like (3), (5) and their restrictions to lesser numbers of antennas.

Definition 2: The category of rate-halving complex modula-
tion space–time block codes [6] consists of codes built from an
orthogonal design and its complex conjugate, halving the rate
of the real modulation code based on the orthogonal design.

Definition 3: The category of square matrix embeddable
complex modulation space–time block codes [5], [6] consists
of codes based on a square code matrix, or a column-wise
restriction of one.

Here, we concentrate on square matrix embeddable codes.
Thus, when proceeding with the analysis of (10), we specialize
to square matrices, i.e., .

If we redefine

(17)

we have , and the form of the algebra (10) remains
unchanged for the ’s. From the relation between and the
other ’s we then see that these should be anti-Hermitian

(18)

The algebra of these remaining’s is now

(19)

This is the defining relation of generators of the Clifford al-
gebra (see, e.g., [9]), which thus is a core concept in constructing
space–time block codes. It is an amusing coincidence that much
of the work on Clifford algebras during the past century has been
related to their applicability to describing matter in space–time.

We have found the following generic prescription for finding
a complex modulation space–time block code.

Proposition 1: Any square matrix embeddable space–time
block code for transmit antennas, transmitting complex
modulation symbols during time epochs, can be con-
structed by the following procedures.

– Finding a representation of the Clifford algebra (19)
in terms of anti-Hermitian matrices ,

.

— Taking a unitary matrix .

— Defining , .

— Using the matrices , to create a
code matrix according to prescription (8).

— If , choosing columns of the constructed
matrix.

Proof: This follows directly from unitarity (6) and lin-
earity (8), as explained when deriving (10) and (18).
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TABLE I
MAXIMAL RATES FORFULL DIVERSITY LINEAR SPACE–TIME BLOCK

CODESBASED ON SQUARE CODE MATRICES

By construction, these complex linear space–time codes have
full diversity, and rate . The codes with minimal dimen-
sions for a given rate are thus delay optimal codes.

In [6], a very strict constraint on the existence of rate-com-
plex block codes was found; they exist only for . Sim-
ilarly, the representation theory of Clifford algebras give very
stringent conditions on the existence of block codes with arbi-
trary rate . These restrictions are derived in the Appendix.
For any given number of symbols to be transmitted, there is a
corresponding minimal dimension for the block code matrix.
The result is the following theorem.

Theorem 1: The maximal achievable rate of a square matrix
embeddable space–time block code withtransmit antennas is

Proof: Follows immediately from Proposition 1 and The-
orem A.1 proved in the Appendix.

Here, is the integer greater or equal to. The results for
the maximal rates are collected in Table I. It is worth noting that
the minimal dimension grows and the maximal rate decreases
exponentially in the number of transmitted symbols. The corre-
sponding codes will be constructed presently.

Comparing to the rate-halving codes constructed along the
principles of [6], the square matrix embeddable codes for five to
eight antennas have the same rate (), but half the delay. The
square matrix embeddable codes for nine to 16 antennas have
a smaller rate ( compared to ), but the delay is shorter
( compared to or ).

IV. UNITARY DESIGNS

In [6], the space–time block codes constructed for real signal
constellations were (generalized) orthogonal designs. These are

matrices with orthogonal columns and , where all
entries come from the set , and the norm of all
columns is . Rate- designs have . For lower
rate designs, one should allow some of the matrix entries to take
the value . For square matrix embeddable complex modulation
space–time block codes, square matrix complex orthogonal de-
signs, or unitary designs for short, are needed.

Definition 4: A rate- unitary design is an matrix
with entries from the set , with ,

and

Thus, unitary designs are a subset of the set of all square
matrix space–time block codes constructed as in Proposition 1,
with particularly simple matrix elements. The anti-Hermitian ir-
reducible representations of the Clifford generators were con-
structed in (A15) in terms of tensor products of matrices.5

Unitary designs are readily constructed from these representa-
tions, choosing , , in (8).

Proposition 2: The -matrices

1I

1I

(20)

with , are rate unitary designs saturating
the maximal rates of Theorem 1. They are delay optimal com-
plex modulation orthogonal designs for the number of antennas
being a power of two.

Proof: This follows directly from Theorem A.2 proved in
the Appendix, Proposition 1, and (8).

Other unitary designs may be constructed from (20) by ap-
plying some of the discrete transformations of

– permuting rows and/or columns of the matrix (20),

— permuting the symbols in (20),

— multiplying a symbol with or in (20),

— conjugating a symbol in (20),

or any combination of these. These transformations correspond
to permutations of the symbols in (8), or to exchanging
the complex and imaginary parts of a symbol, i.e., complex
conjugating and multiplying it with, or to multiplying with a
nontrivial unitary matrix when constructing s from ’s in
Proposition 1.

Still more unitary designs may be constructed by using select
versions of the unitary similarity transform (A16). For example,
a unitary transformation with (A21) that changes roles of the
in a tensor product space, combined with a reordering of the
in (8) would produce different unitary designs.

To be explicit, for , (20) yields the matrix

(21)

5Representations that are not equivalent to a block-diagonal representation
are irreducible. The tensor product of a2� 2 matrix

A =

with am�m matrixB is a2m� 2m matrix which reads in block form

A
B = :

Themth tensor power of a matrixA is defined as


 A = A
A
 � � � 
 = A :
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which is exactly the Alamouti code (3). For , employing
the four-dimensional identity matrix and the five of (A20),
one gets the rate- unitary design

(22)

The design above has two versions of the Alamouti code on the
block diagonal. Compared to code (5), this is of simpler form.

For , one gets the rate- unitary design

(23)

This has the design (22) in the upper left and a complex
conjugate inverted version in the lower right corner.

For practical purposes, it would be beneficial to have as much
self-similarity as possible in the code matrix. Thus, it would be
desirable to, e.g., have a code, where two Alamouti blocks
would be on the block diagonal, and a third symbol would be
encoded on the block off-diagonal. This, however, is impossible.

Proposition 3: No unitary design with maximal symbol rate
exists, which would have only copies of the same design,
possibly multiplied with or , on the block diagonal.

Proof: First consider the case of designs. According
to Proposition 1, no generality is lost if one coefficient matrix
is taken to be unity. Thus, a matrix of the proposed form could
be transformed to the form , where is a design con-
structed from and three Cliff generators. According to The-
orem A.2, these three are unitarily equivalent to .
Without loss of generality, they may be supposed to be exactly
of this form. From this and Proposition 1 it follows that the coef-
ficient matrices encoding the third symbol should anticommute
with . As a consequence of Proposi-
tion A.8 and Theorem A.2, no such matrix exists. The proof for
unitary designs of higher dimensions follows inductively, using
Proposition A.8 and Theorem A.2.

Nonsquare complex orthogonal designs (or pseudounitary
designs) can be constructed by eliminating antennas (columns)
from the designs above. These designs transmitcomplex
symbols during time epochs from antennas.
For , they are delay optimal within the
categories of complex space–time block codes presented in the
literature; the rate-halved and the square matrix embeddable
codes. For example, the rate- schemes for five to eight

antennas, constructed from (23), have only half the delay when
compared to corresponding rate-halving codes presented in [6].

V. UNITARILY TRANSFORMEDBLOCK CODES

Space–time block codes based on unitary designs, treated
above, are codes where all code matrix entries depend only on
one of the signals. A useful generalization is to lift these re-
strictions. In [6], the concept of linear processing block codes
was presented, where the elements were linear combinations of
the symbols to be transmitted, and the matrix remained unitary.
Here such codes are just called space–time block codes.

A constructive way to choose any viable linear combination
is inherent in the construction of block codes in Section III and
the Appendix. Combining the freedom to choosein (17) to
the unitary symmetry of the Clifford algebra in (A16), one can
define the generic concept of unitarily transformed block codes.

Theorem 2: All square matrix embeddable space–time block
codes can be constructed from the unitary designs of (20)
by possibly deleting rows from a matrix of the form

(24)

where is a unitary matrix and is a
special unitary matrix, up to permutations and possibly

one sign change in the set of real and imaginary parts of the
symbols.

Proof: This is a direct consequence of Proposition 1 and
Corollary A.2. The possible sign change corresponds to the
two equivalence classes of irreducible representations in Theo-
rem A.2, and the permutations correspond to permutations in
the set in Proposition 1.

For each block length , this construction gives a
family of block codes with continuous parameters.
This family encompasses all unitary designs of the same dimen-
sions.

The unitary transformations do not change the performance
of the code. They can be used, e.g., to optimize properties of
secondary importance, e.g., the power spectra of the antennas.

As an example, consider the rate- code for four transmit
antennas, (22). A generic special unitary matrix with unit
determinant can be written as

(25)

where the operation is a matrix exponential, and is a
traceless Hermitian matrix, which can be linearly param-
eterized by 15 real parameters.is of the same form, with an
added overall phase factor. All in all, that makes 31 real param-
eters.

All possible generalizations of the code (22) can be con-
structed by applying transformation (24), withand of the
form (25), accompanied by possible (real) symbol permutations
and a sign change. Within this family, one can, for example,
optimize the power distribution of the code so that the average
power transmitted from each antenna at each time epoch is the
same. This problem was addressed in [10].
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One member of this family is the example found in [6], quoted
above as (5). The unitary equivalence of (5) and (22) is given by
the matrices

VI. CONCLUSION

We have proposed a digital communication system which uti-
lizes any number of transmit and receive antennas, with full di-
versity provided by space–time block coding, and generalized
the linear decoding principle of [6] to them. We have classi-
fied all possible linear and unitary space–time block codes with
complex symbol constellations that are square matrices, or can
be constructed from square matrices by deleting columns. The
families of codes found include new complex modulation full
diversity codes for more than four antennas. For five to eight
antennas, these codes have shorter delay than the codes previ-
ously presented in the literature, with the same rate.

Also, we have made a concrete construction generalizing
space–time block codes to unitarily transformed block codes.
This gives a -dimensional continuously parame-
terized family of codes. Within this family, one may,
e.g., optimize the power distribution between antennas. Within
such a family, we have found the simplest form of a space–time
block code for three and four antennas.

From the construction of square matrix embeddable codes
it follows that the only place remaining to look for better
space–time block codes than the ones presented in [6] and here
is to investigate block codes based on nonsquare pseudounitary
matrices that are not columnwise restrictions of a square unitary
matrix. This is an open problem. For example, the construction
in [6] yielding rate- real codes for any number of antennas
cannot be updated to the complex number domain.

The main result of the paper is Theorem 1, which states that
the maximal rate of a square matrix embeddable space–time
block code falls off exponentially with the number of transmit
antennas. This is in constrast to rate-halving codes, which may
have rate for any number of antennas, with an exponentially
increasing delay. These facts imply that linearity and unitarity
are too strict requirements when designing space–time modula-
tions for future high-rate wireless communication systems.

APPENDIX

REPRESENTATIONTHEORY OFCLIFFORD ALGEBRAS

Recall the defining relation of a Clifford algebra (19).

Definition A.1: Cliff is the algebra over generated by
objects which are anticommuting

(A1)

square roots of -unity

(A2)

The basis of Cliff is

(A3)

The number of basis elements is the number of all nonordered
combinations of objects

The basis can be constructed by observing that a product of more
than generators can be reduced to the product of at most
one of each generator by using the defining relations (A1) and
(A2).

Due to the inherent role of complex numbers in communica-
tions, we are interested in representations in terms of complex
numbers.

Definition A.2: An -dimensional representation of an al-
gebra is a homomorphism from the abstract algebra to a linear
algebra of operators acting on .

A representation of an algebra is completely specified by a
representation of its basis, which again is completely specified
by a representation of the generators. For a Clifford algebra, we
are thus interested in representations of the generators. In
an -dimensional representationis represented by , the

-dimensional identity matrix, and the generators are anticom-
muting matrices that square to .

To start, we recall some basic concepts in representation
theory.

R1: Irreducible representations are representations with no
invariant subspaces.

R2: Completely reducible representations can be decom-
posed to a direct sum of irreducible representations.
They are equivalent to block-diagonal representations,
with irreducible representation matrices on the block
diagonal.

R3: Two representations and of the algebra are
equivalent, if a similarity transform exists so that

In the sequel, the expression “irreducible representation” is
taken to mean an equivalence class of irreducible representa-
tions, according to R3. There is a subtle point regarding the
concept of equivalence of representations, and irreducibility,
when comparing to the treatment of Clifford algebras in the
mathematical literature, see, e.g., [11]. We shall return to this
when the results are stated.

To find a complete classification of the representations of
Clifford algebras, we shall use the fact that a double cover of
the basis of a Clifford algebra (all elements ofmultiplied by

), can be interpreted as a finite group.

Proposition A.1: The set of elements

(A4)
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is a finite group with respect to (w.r.t.) the multiplication in
Cliff . The order of is .

Proof: The multiplication is associative, the unit is, and
the inverse of the element is

The number of elements in the group is twice the number of
basis elements.

Note that when is interpreted as a finite group, the repre-
sentation of does not necessarily have anything to do with

times , and similarly, for a generic , . Symbols
and are just symbols denoting group elements with some

specified multiplication rules with the other group elements, of
the form

The element may be represented by any matrix (or number)
so that the multiplication table of the group is fulfilled. Nonde-
generate representations where can
be constructed from representations of Cliff.

Corollary A.1: A restriction of a representation of Cliffto
its basis gives a representation of. A restriction of an irre-
ducible representation gives an irreducible representation. Re-
strictions of two nonequivalent representations give nonequiva-
lent representations. These representations ofare nondegen-
erate, . Inversely, nonequivalent nondegenerate
irreducible representations of may be extended to nonequiv-
alent irreducible representations of Cliff.

Proof: These are trivial consequences of the relation of an
algebra and its basis, and Proposition A.1. The inverse property
is proved by a trivial embedding of into .

Now we may concentrate on finding all irreducible represen-
tations of , which thus include all irreducible representations
of Cliff . First, recall the following.

R4: Unitary group representations are representations in
terms of unitary matrices.

Due to the square root of property (A2), unitary represen-
tations of the Clifford generators are anti-Hermitian

(A5)

Moreover, any two of the three properties of unitarity, anti-Her-
miticity and squaring to , imply the third. Here we are in-
terested in Clifford representations due to their relation to a set
of complexified Radon–Hurwitz matrices satisfying (10),
i.e., due to the unitarity property of the code matrix (6). For this,
the representations we are looking for are exactly the anti-Her-
mitian, and thus unitary representations of. These are gener-
ated by collections of anticommuting, anti-Hermitian, unitary
matrices with complex entries.

This is the crucial difference between complex and real mod-
ulation space–time block codes. For real modulation codes, we
restrict to antisymmetric representations of the Clif-
ford algebra, and thus look for a family of anticommuting, anti-
symmetric, orthogonal matrices. This is a restriction, as a Her-

mitian antisymmetric matrix may be made anti-Hermitian by
multiplying with , whereas a symmetric anti-Hermitian matrix
cannot be made antisymmetric. With this restriction, the theory
of Clifford algebra representations reproduce the rates found in
[6], see [12].

A. The Representation Theory of

To construct the representations of the finite group, re-
call some basic theorems pertaining to representations of finite
groups [13].

FG1: Every representation of a finite group is equivalent to
a unitary representation.

FG2: Every representation of a finite group is completely
reducible.

FG3: The order of the group is the sum of the squares of the
dimensions of the irreducible representations.

FG4: The number of equivalence classes of irreducible rep-
resentations equals the number of conjugacy classes
(subsets of the group with ).

Finally, we shall need Schur’s lemma.

SCH: If , where is a finite-
dimensional representation, then .

First observe that for odd , Cliff , and have a central
element (an element that commutes with everything) in addition
to :

Proposition A.2: For odd , the product of all generators is
a central element, it commutes with all elements in.

Proof: First consider the commutation of the product of
all generators with a generator

For odd , the product commutes with all generators, and thus
also with all products of generators, i.e., with all elements in the
group .

Now we proceed with finding the conjugacy classes of.

Proposition A.3: For even , has conjugacy
classes, for odd , it has conjugacy classes.

Proof: Two elements of either commute or anticom-
mute, as they are associative products of elements that anticom-
mute or commute. If an element commutes with all elements
in a group, it forms a conjugacy class by itself. If it anticom-
mutes with some and commutes with the rest, it forms a conju-
gacy class together with itself. By definition and com-
mute with all elements in and are alone in their respective
conjugacy classes. According to Proposition A.2, and

for odd commute with all elements, and are thus
alone in their respective conjugacy classes. If , there are
no further elements. For , the remaining elements anti-
commute with some other elements. Consider ,
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. If , the element
with exists, and it anticommutes with

It remains to consider the product of all generatorsfor even
. Take

(A6)

Consequently, for even , the conjugacy class consists of
. Thus, there is one conjugacy class for each ele-

ment in , one for , and for odd , one extra for .

The finite group has a host of irreducible one-dimensional
(1-D) representations, where are both represented by. The
simplest is the trivial representation, where all generators, and
thus all elements are represented by. These degenerate rep-
resentations are clearly not representations of Cliff, but they
have to be taken into account when classifying the irreducible
representations of .

Proposition A.4: The finite group has at least 1-D
irreducible representations, which are degenerate, .

Proof: Take , for each of the generators
or , and

This choice is an irreducible 1-D representation of. The
number of different representations is the number of choosing

or for each of the generators, i.e., .

This leads to an immediate classification of all representa-
tions of with even .

Proposition A.5: The finite group has irre-
ducible representations. One is -dimensional, are 1-D.

Proof: From Proposition A.3 and FG4 it follows that
has irreducible representations. From Proposition A.4,
one has 1-D irreducible representations. This leaves one
additional irreducible representation. From Proposition A.1, the
order of is . Applying FG3 one has for the dimension

of the remaining irreducible representation

(A7)

This means that .

The existence of a central element in with odd leads
to a straightforward connection between nondegenerate repre-
sentations of and , and thus for Cliff and
Cliff .

Proposition A.6: A nondegenerate representation
of can be extended to two nonequivalent nondegenerate
representations of . If is irreducible,

are irreducible.
Proof: From Proposition A.2, the product of all generators

is a central element. From Schur’s lemma it follows that in all
finite-dimensional (and thus in this case, all irreducible) repre-
sentations of

where is a proportionality constant, and is the dimension
of the representation. In a nondegenerate representation,

may be fixed by checking that the representation respects
. This gives two solutions, , which

correspond to two representations. The representations
may now be generated from a nondegenerate representation

of the subgroup generated by, ,
isomorphic to , by taking6

(A8)

(A9)

These two representations are clearly nonequivalent. Suppose
that a similarity transform would exist that would transform one
representation to the other. It would change the sign of .
Also, it would leave all , invariant, and
thus also their product. This, however, should be proportional to

. This is a contradiction. From the definition of irreducible
representations, it follows that if is irreducible, so are

.

Finally, one may classify all representations of with odd
.

Proposition A.7: The finite group has ir-
reducible representations. Two are dimensional,
are 1-D.

Proof: From Proposition A.3 and FG4 it follows that
has irreducible representations. From Propo-

sition A.4 one has 1-D irreducible representations. This
leaves two additional irreducible representations. These are the
two -dimensional irreducible representations constructed
according to Proposition A.6 from the -dimensional
irreducible representation of that exists according to
Proposition A.5.

As a consistency check, consider FG3. From Proposition A.1,
the order of is . The sum of the squared dimensions
of the irreducible representations found in Proposition A.7 is

consistent with FG3.

6The slightly awkward numbering of the generators here is chosen to stream-
line the notations in the main body of this paper.
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B. The Representations of Cliff

The dimensions and numbers of representations of Cliff
follow directly from the results proved in the previous subsec-
tion.

Theorem A.1:Cliff has one equivalence class of irreducible
representations for even, and two equivalence classes for odd

. These representations are -dimensional.
Proof: This is a direct consequence of Propositions A.5

and A.7, and Corollary A.1.

According to FG1, each of the equivalence classes of irre-
ducible representations of constructed in the previous subec-
tion includes at least one unitary irreducible representation. Due
to the anti-Hermiticity requirement (18), we are interested in
those representations.

The attentive reader might notice a discrepancy between the
number of irreducible representations in Theorem A.1 and re-
sults in the mathematical literature, see, e.g., [11]. There, two
irreducible representations exist only for evenin .
The reason is that here, representations as matrix algebras over

are considered (Definition A.2), and equivalence is defined
in R3 only up to automorphisms that can be realized as simi-
larity transformations. Equivalence of representations of alge-
bras are usually up to all automorphisms. In Clifford algebras,
some outer automorphisms, e.g., reflections, may not be real-
ized as similarity transformations. The argument relating The-
orem A.1 to the results presented in [11] goes as follows. For
even , the proportionality constant in the central element in
Proposition A.6 squares to, so that the representations of
and are the same up to a sign, see (A9). For odd,
there is an additional factor of. Thus, the dimension of the ir-
reducible representations of Cliff as matrix algebras over

are for even , but for odd . Due to this,
considered as matrix algebras over, the two representations
of Cliff discussed above are equivalent w.r.t. nonsimilarity
outer automorphisms if is odd, and nonequivalent if is
even.

In constructing explicit representations of Clifford algebras,
we shall use the following anticommuting matrices:

(A10)

For later convenience, these have been chosen so thatand
are anti-Hermitian, and is Hermitian. All three are unitary.
Their products are given by

(A11)

First consider the case of two anticommuting objects . An
anti-Hermitian representative of the 2-D irreducible representa-
tion of Cliff can be constructed as

(A12)

The anti-Hermiticity and unitarity of these matrices guarantee
that they square to .

Now consider representations of Clifford algebras with an
even number of generators .

Proposition A.8: Cliff can be represented as a tensor
product of copies of representations of Cliff.

Proof: For each , define
, where

(A13)

The inverse of this mapping is constructed by exchanging the
with . Due to the even number of elements in , the

two elements in each anticommute

and square to . Further, and commute for .
Without loss of generality, take . Consider one of the four
commutations

The other three commutations are similar. The commutation re-
lations of these commuting pairs of two anticommuting
elements may thus be realized as a -fold tensor product
of two representations of Cliff, e.g., (A12)

(A14)

Inverting (A13), one gets a representation of Cliff .

This leads to a explicit characterization of all representations
of Cliff .

Theorem A.2:The matrices

...

...
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(A15)

are representatives in terms of anti-Hermitian generators of
the two equivalence classes of irreducible representations of
Cliff . An irreducible representation of Cliff may be
constructed by dropping from the representations above.

Proof: The representation of Cliff constructed in
Proposition A.8 is nondegenerate. According to Theorem A.1,
it must be a representative of the only equivalence class of
irreducible representations of Cliff . Inverting (A14) using
(A13), (A11) one gets the representation matrices ,

in (A15). The representation of is con-
structed as in (A9). According to Proposition A.6 and Theorem
A.1, this gives the two irreducible representations of Cliff .
From the anti-Hermiticity of and the Hermiticity of

it follows that the matrices (A15) are anti-Hermitian by
construction.

Corollary A.2: All irreducible representations of Cliffwith
anti-Hermitian generators may be constructed from (A15) by a
similarity transformation with a unitary matrix

with determinant

(A16)

Proof: This follows from the definition R3 of equivalence
of representations, and that only unitary similarity transforma-
tions preserve anti-Hermiticity. The restriction to special unitary
matrices comes from the fact that a possible overall
phase factor in commutes with all matrices, and thus cancels
in a similarity transformation.

C. Examples

For constructing unitary designs, Clifford algebras with an
odd number of generators are relevant. The representations of
Cliff are generated by (A15) with

(A17)

Further, the representations of Cliffare given by (A15) with
. The two commuting pairs of anticommuting combi-

nations of the generators are given by (A13) with permuted in-
dexes

(A18)

Their representation in terms of matrices (A13) is

(A19)

and, consequently, . From (A18), (A19) we
then get

The remaining generator may be represented by

The constructed representation of Cliffreads in matrix form

(A20)

Different but equivalent representations may be constructed
by applying the unitary similarity transforms (A16). Of partic-
ular interest when constructing unitary designs are representa-
tions where all matrix elements are . Such may be con-
structed e.g., by transformations that change the basis in some
of the tensor product spaces. Thus, e.g.,

(A21)

exchanges the matrices and and changes the sign of in
the th tensor product space.
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