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Abstract

This paper introduces an application of financial risk management methods to the deregulated electricity markets. A

framework for the Monte Carlo performance simulation of a power portfolio is presented. The optimal portfolio se-

lection problem is addressed and a numerical method is implemented. Numerical results of simulation and optimization

are presented in the Nordic electricity market. The results suggest that the risk management methods of the paper can

be applied to the everyday electricity market practice.
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1. Introduction

The deregulation of the electricity market

brings competition to the previously monopolistic

market, where the risk of loss has been small.

Electricity cannot be stored and it is bought pri-
marily for consumption. The new electricity mar-

ket is highly volatile in comparison to any security

or commodity market. Actors in the market are

exposed to substantial risks caused by the volatile

market conditions. In the tightening competitive

environment, the optimal management of these

new risks is the focus of energy utilities worldwide.

This study provides a solution for the problem of

optimal risk aware power portfolio management

in the deregulated electricity markets.

The deregulation of the electricity markets has

introduced electricity exchanges that trade spot
electricity and electricity derivatives in a similar

manner as stocks and other securities are traded in

the financial market. Common electricity deriva-

tives are forward and futures contracts, European

options on forward contracts, and Asian options

on spot electricity. The customary bilateral elec-

tricity contracts are often more complex. The non-

storability of physical electricity and the seasonal
effects make the electricity market different from

the financial markets. Most importantly, there are

no analytical formulas for the majority of elec-

tricity derivatives prices and all analysis must rely

on numerical methods. This paper shows that with

proper modifications some of the methods of the
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financial markets are applicable in the electricity

markets.

A classical problem in the risk management

field is that of the optimal portfolio selection. A

general numerical framework for the optimal

portfolio hedging in the financial market is pre-
sented by Keppo and Peura [12]. This paper uses

the same approach, but the financial setting is

converted to the electricity markets and the opti-

mal portfolio selection problem is formulated as a

static optimization problem in order to get fast

and practical results for energy companies. The

standard methods in the energy sector rely on the

well-known Markowitzian portfolio optimization.
These methods are restricted to only few basic

instruments and are not easily adaptable to cover

more complex energy derivatives. The portfolio

optimization framework of this paper is capable of

covering wide range of instruments, for example,

end consumer tariff sales as formulated by Keppo

and R€aas€aanen [13] and generation assets like in [6].

The optimization problem considered in this
paper is the maximization of the expected utility

from the electricity portfolio. Utility functions

model the agent’s preferences to expected profit

making in comparison to the risks taken. The

general utility functions are approximated in the

numerical procedure where the stochastic utility

maximization problem is converted to a deter-

ministic non-linear programming problem with the
use of the Monte Carlo simulation. For a discus-

sion about the performance and implementation

of Monte Carlo methods, see e.g. [3].

Fleten and Wallace [8] and Fleten et al. [9] study

a scenario-based approach for solving the optimal

portfolio management problem in electricity mar-

kets. The main advantage of the Monte Carlo

approach over the scenario-based approaches is
the possibility to easily include several stochastic

variables that are evaluated simultaneously with-

out seriously affecting the computational perfor-

mance.

A central problem in the financial risk analysis

is the actual quantification of the risks. A popular

approach is the so-called value at risk measure that

gives the worst potential loss at a given risk level,
see e.g. [11]. Introductory work for the imple-

mentation of value at risk techniques to the elec-

tricity market is presented by Blanco [2] and

Pilipovic [16]. The Monte Carlo method of this

paper is capable of producing the value at risk

measure even for complex portfolios in the elec-

tricity markets. The advantage of the method in

this paper is the possibility to optimize power
portfolios against the given risk measure.

The rest of the paper is organized as follows:

Section 2 introduces the stochastic processes used

in the paper. Section 3 derives the optimal port-

folio by using the stochastic processes and Section

4 describes how Monte Carlo simulation is used in

solving the optimization model parameters. Sec-

tion 5 illustrates the model with numerical exam-
ples. Finally Section 6 concludes.

2. The model

2.1. Overview

This paper presents a basic stochastic model
where a static portfolio that contains the instru-

ments of interest is simulated in the electricity

market over time. The stochastic processes that

model the uncertainties in the market are for ex-

ample electricity spot price, marginal production

cost, and consumption processes. A model for the

electricity spot price is presented. Inclusion of new

stochastic components to represent demand and
other load uncertainty is possible in the gen-

eral stochastic framework of the paper. Demand

models have been extensively studied previously,

see e.g. [4] or [17].

It is assumed that the incomplete electricity spot

market is completed with the derivatives market,

i.e., it is assumed that there are electricity futures

for each future spot quote. Market frictions, such
as the transaction costs and taxation, are ignored.

This idealized setting guarantees preliminary re-

sults and gives a basis for further development.

Despite its shortcomings the model is of immediate

practical value to the market participants.

2.2. Electricity price processes

In the every day financial practice it is often

assumed that the price processes of the underlying
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assets follow geometric Brownian motion with

constant parameters. The modeling of the elec-

tricity spot price process needs to be done differ-

ently because of the seasonal effects and other

commodity like characteristics of electricity.

Exact formulation of the stochastic spot price
process is beyond the scope of this paper. Elec-

tricity price process modeling has been studied by

Deng [5] and Pilipovic [16]. General discussion

about commodity price processes is found for ex-

ample in [7] or [18]. Another approach is to use a

market model to calculate the theoretical equilib-

rium price of the market, see e.g. [8]. The equi-

librium model produces spot price scenarios from
historical or simulated data, while in the statistical

process-based approaches these data are used to

estimate the parameter values of the processes.

The possible weakness with some of the pre-

sented models is the inconsistency between the

spot price forecast that the models explicitly or

implicitly give and the real futures prices in the

market, i.e., the model is likely to show fictional
arbitrage opportunities between the spot and fu-

tures market. The modeler must take care in order

to avoid unintentional speculation against the

market with her or his model. Direct quantitative

methods like the one in this paper could be haz-

ardous unless real market prices are used.

Non-storable physical electricity is not a tra-

dable asset and there is no arbitrage connection
between expected future spot prices and corre-

sponding futures prices. However, it may be ar-

gued that if a futures price is higher (lower) than

the corresponding expected spot price, then the

participants in the market are selling (buying) fu-

tures contracts and this excess selling (buying) will

remove the difference between the expected spot

price and future price. In this paper, it is assumed
that the expected spot price for time T, EðxðT ÞÞ, is
equal to the current time t futures price, f ðt; T Þ, for
the same time period. In other words, it is assumed

that the forward curve of electricity prices is used

as the forecast for the spot electricity prices. Fur-

ther, it is assumed that the price distribution

around the expected value is lognormal. It is well

known that this is not a perfect approximation for
spot electricity because the price distributions for

the prices for physical spot electricity are in reality

more fat-tailed. In the numerical calculations it is

necessary to use average values to describe the spot

prices of discrete time periods and then the log-

normality assumption holds better.

The volatility of the price process needs to be

either estimated from the historical data or calcu-
lated implicitly from the available option quotes.

In most markets there are not enough historical

data to provide reliable estimates of the volatilities.

The scarcity of option prices and the lack of ana-

lytical pricing formulas make the calculation of the

implied volatilities difficult. In the numerical ex-

amples of this paper, historical volatility is used.

2.3. Financial model

The model is set in a continuous-time proba-

bility space ðX;F; P Þ for a time period ½0; T �. Here

X is the set of possible realizations, F is a r-
algebra in X, and P is a probability measure

defined on F. The N stochastic factors in the

market are given by xðtÞ ¼ ðx0ðtÞ; x1ðtÞ; . . . ; xNðtÞÞ
that follows a continuous-time Itôo process

dxðtÞ ¼ lxðt;xÞdt þ rxðt;xÞdzðtÞ; ð1Þ

where lxðt;xÞ : ½0; T � � X ! RN is the local growth

of xðtÞ and rxðt;xÞ : ½0; T � � X ! RN � RN is the

local volatility of xðtÞ. These functions are as-

sumed to satisfy the technical growth and Lips-

chitz conditions, which means that the functions
that give the growth and volatility of the stochastic

factors are finite and smooth enough, see e.g. [15].

The vector zðtÞ consists of N uncorrelated Wiener

processes that determine the uncertainties in the

market. The change of the value of a variable zðtÞ
in an infinitesimal time interval dt is �

ffiffiffiffiffi
dt

p
, where �

is a Gaussian stochastic variable. The components

of xðtÞ include e.g. spot price, marginal cost, and
consumption processes. It is possible to include

other stochastic factors like currency exchange

rates for the use of currency derivatives, or

weather indexes for weather derivatives.

One possible Itôo process is the market price

model for the electricity spot price described

above. Assume that there are market quotes that

give the expected value, EðxðtÞÞ, of spot price and
the estimated variance, varðxðtÞÞ, is known for all

times t 2 ½0; T �. The market price model assumes
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that the returns of the prices are lognormally dis-

tributed. The expected value and variance given by

the forecast are

EðxðtÞÞ ¼ xð0Þetlð0;tÞ; ð2Þ

varðxðtÞÞ ¼ xð0Þ2e2tlð0;tÞ½erð0;tÞ2 � 1�; ð3Þ

where xð0Þ is the current spot price, lð0; tÞ is the

growth rate and rð0; tÞ is the volatility of the un-

derlying asset from current time to time t. The
growth rate lð0; tÞ is readily solved from Eq. (2).

Substituting (2) into (3) and doing some algebraic

manipulation give

rð0; tÞ2 ¼ ln½varðxðtÞÞ=EðxðtÞÞ2 þ 1�: ð4Þ

It is also possible to calculate the local time de-

pendent growth rate lðtÞ from the given forward

curve because the growth from current time to

time t must result from the local growth in ½0; t�,
and the same applies to the local volatility. Alter-

native method is to estimate the local functions
directly from the available data. The local growth,

lðtÞ, and the local volatility, rðtÞ, can then be used

in combination with the formulation of the price

processes, xðtÞ, to take into account the forward

curves.

2.4. Instruments and portfolio

There are M derivative instruments in the

market whose prices are given by a state price

vector sðxðtÞ; tÞ 2 RM . From Itôo’s lemma the pro-

cess followed by sðxðtÞ; tÞ is

dsðxðtÞ; tÞ ¼ lðxðtÞ; tÞdt þ rðxðtÞ; tÞdzðtÞ; ð5Þ

where lðxðtÞ; tÞ : RN � ½0; T � ! RM and rðxðtÞ; tÞ :
RN � ½0; T � ! RM � RN are continuous functions

that satisfy the growth and Lipschitz conditions

and zðtÞ contains the same Wiener processes as

in the factor process (1). Instruments are physi-

cal electricity contracts, electricity derivatives, or

other financial instruments, for example, currency

derivatives. The exact formulation of the price of

an instrument depends on the characteristics of the
instrument.

The physical and financial electricity contracts

and other financial instruments are combined in a

portfolio. The vector p 2 RM gives the contents of

the portfolio that is held static over the whole time

period. The prices of the instruments are given by

sðxðtÞ; tÞ, and the underlying market variables are

in xðtÞ. The underlying assets of the instruments

can be assigned freely. For example, a production

unit can be modeled as an exchange option from
marginal cost process to the spot price process.

The wealth from the portfolio at the end of the

simulation period is

W ¼ pTsðxðT Þ; T Þ; ð6Þ

where sðxðT Þ; T Þ 2 RM contains the prices of the

instruments at the end of the inspection period and

pT is the transpose of p.

3. Optimal portfolio

The optimality of the portfolio depends on the

risk preferences of the optimizing agent. The use of

a utility function models these risk preferences.

The utility function, U, is assumed to be strictly

increasing, concave and twice continuously differ-
entiable. The estimation of the decision makers’

risk preferences and utility function to a quanti-

tative level is a formidable task. A rough estimate

may be found by examining the decision makers’

previous actions and reactions to presented alter-

natives that can be generated e.g. with the model

of this paper.

The optimal portfolio is searched starting from
a given initial portfolio, p0. Optimization is done

with respect to the change in the position of the

portfolio, h 2 RM , given by

h ¼ p � p0: ð7Þ
The objective function of the optimization is the

expected utility given from the portfolio wealth.
The wealth of the portfolio depends on the con-

tents of the portfolio and the instrument prices and

payoffs. The change of any instrument in the

portfolio may be constrained from below and

above. If the item is non-tradable then both limits

are set to zero, and for tradable products these

limits can reflect the liquidity of the market and

trading limits of the agent. The optimization
problem is
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max
h

EfU ½W �g; ð8Þ

s:t: Ah6 b; ð9Þ

where matrix A and vector b give the constraints to
the change. The feasible area given by the con-

straints is a convex set. In general, an analytical
solution to the optimization problem (8) and (9) is

not available due to the complexity of the price

processes and derivative instruments, and a nu-

merical approximation of the problem is required.

The approximation is done in two stages, first the

optimization problem is converted to a non-linear

programming problem and then the estimates that

are needed to solve the optimization problem are
estimated with Monte Carlo simulation.

Taylor’s approximation of U ½W � around the

initial wealth W0 ¼ pT
0 s is

UðpTsÞ � UðpT
0 sÞ þ hT oU

op
ðpT

0 sÞ

þ 1

2
hT oU

2

o2p
ðpT

0 sÞh þ �ðh3Þ; ð10Þ

where the residual term �ðh3Þ is such that

lim
h!0

�ðh3Þ
khk3

¼ 0: ð11Þ

The residual term is assumed to be small with

small changes around the initial position and it is

ignored.

Substituting Taylor’s expansion (10) to the op-
timization problem (8) gives

max
h

E UðpT
0 sÞ

�
þ hT oU

op
ðpT

0 sÞ þ
1

2
hT oU

2

o2p
ðpT

0 sÞh
�
:

ð12Þ
The constant term UðpT

0 sÞ does not have an effect

on the optimization and it is ignored. Define vec-

tor a 2 RN as

a ¼ E
oU
op

ðpT
0 sÞ

� �
; ð13Þ

and matrix V 2 RN�N as

V ¼ E
oU 2

o2p
ðpT

0 sÞ
� �

: ð14Þ

It is assumed that the matrix V is invertible. The

assumption is valid almost surely if the tradable

assets are linearly independent, i.e., if the payoffs

of the instruments are not identical or close to

identical. With the definitions (13) and (14), the

problem is to maximize

JðhÞ ¼ hTaþ 1

2
hTVh ð15Þ

over h so that the constraints on the change of the

portfolio given by (9) hold. The objective function

is concave because of the concavity of the utility

function. If the values of a and V are known, then

the optimization problem can be solved using

traditional methods. The estimation of a and V
with Monte Carlo simulation is presented in the

following section.

If there are no constraints, the necessary con-

dition for the optimal solution gives the solution to

the problem as

h� ¼ �V�1a: ð16Þ
The concavity of the utility function guarantees

that the second-order necessary condition for the

optimality of the solution is fulfilled. The solution

for the non-constrained case (16) resembles very
closely the solution of the static Markowitzian

portfolio optimization problem and gives practical

and very fast solutions.

A method of constrained optimization is called

for in the more general case with constraints on the

changes in the portfolio. The solution is guaran-

teed to exist because the objective function is

concave and the feasible area is convex, see e.g.
[14]. The well-posedness of the problem makes it

readily solvable with a wide variety of non-linear

programming methods that are available today.

4. Portfolio simulation

4.1. The Monte Carlo method

There are several methods for derivative valu-

ation in the financial market, see e.g. [10]. The

Monte Carlo simulation method suits for large

portfolios, complex and possibly path dependent

instruments, and several market variables. Simu-
lation is a feasible method in the electricity market

because of the lack of analytical formulas for the
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prices of the derivatives and the exotic instruments

with links to the physical spot market.

The Monte Carlo method simulates the con-

tinuous-time stochastic factors that are given by

xðtÞ. When the realization of xðtÞ is known in one

simulation round, the prices of the instruments,
sðxðtÞ; tÞ, are calculated from the given analytical

formulas or approximations. Several rounds of

simulation give the estimates needed to the port-

folio optimization, and an approximation of the

distribution of the future payoffs of the portfolio.

4.2. Evaluating portfolio

Consider a continuous-time Itôo process

dxðtÞ ¼ lðt;xÞxðtÞdt þ rðt;xÞxðtÞdzðtÞ; ð17Þ
where lðt;xÞ is the growth of xðtÞ, rðt;xÞ is the

volatility of xðtÞ and zðtÞ follows a basic Wiener

process. The process is discretized by dividing the
time interval ½0; T � into N subintervals of equal

length Dt. Assuming that l and r are non-sto-

chastic and constants, the discrete version of the

Itôo process in (17) is

Dx ¼ lxDt þ rxDz: ð18Þ

Change in the variable z following a basic Wiener
process is

Dz ¼ �
ffiffiffiffiffi
Dt

p
; ð19Þ

where � is a random sample from a standardized

normal distribution. Substituting this to the pro-

cess (18) gives

Dx ¼ lxDt þ rx�
ffiffiffiffiffi
Dt

p
: ð20Þ

In the case of the price processes presented in

this paper the values of the growth l and volatility

r are estimated from market data for each time
step, and it is assumed that they are constant over

the length of the discrete time step. The parameter

values are assumed to be known also with other

models. The values of the normal distributed

random variable � are drawn from a random

number generator. The initial state of the simula-

tion is fixed and Eq. (20) is used to recursively

calculate the following states. The paths of the
assets, xðtÞ, can be stored and the value of any

instrument whose price, sðxðtÞ; tÞ, depends only on

time and the paths of the assets up to the current

stage in the simulation can be determined.

A large number of simulation runs produce an

approximation of the distribution of the outcomes

of all the instruments in the portfolio. The total

portfolio or any subset of it is available for risk
analysis. The approximation of the distribution

makes it possible to estimate the expected value or

a risk measure of the portfolio. The number of

simulations that is required to give reliable results

is relatively small. For simple portfolios, a few

thousand simulation rounds usually provide an

indication of true values of the observed variables.

Performing a quick analysis for small portfolios is
therefore very fast even with moderate computing

capacity. The exact number of simulation rounds

and convergence properties depends on the com-

plexity of the stochastic processes and derivative

instruments that are simulated. A more detailed

analysis of the convergence of the simulation is

found in [12].

4.3. Solving the optimization problem

Simulation gives the estimates that are needed

when the optimal portfolio selection problem is

solved. An estimate for the objective function is

given by

JðhÞ ¼ hT~aaþ 1

2
hT ~VVh; ð21Þ

where the vector ~aa and matrix ~VV are given by

~aa ¼ 1

I

XI

i¼1

oU
op

ðpT
0 siÞ

� �
� E

oU
op

ðpT
0 sÞ

� �
; ð22Þ

and

~VV ¼ 1

I

XI

i¼1

oU 2

o2p
ðpT

0 siÞ
� �

� E
oU 2

o2p
ðpT

0 sÞ
� �

: ð23Þ

A single simulation run i gives a single realiza-

tion of the prices of instruments in si. The deriv-

atives of the utility function give single realizations

ai and V i. The recursive updating rules for ~aa and ~VV
in the course of simulation are

~aai ¼ ~aai�1 þ
1

i
ðai � ~aai�1Þ; ð24Þ

~VVi ¼ ~VVi�1 þ
1

i
ðV i � ~VVi�1Þ: ð25Þ
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At the beginning of simulation, ~aa0 and ~VV0 are

set equal to zero vector and matrix. The outputs,

ai’s and V i’s, of simulation runs are independent

and identically distributed random variables, and

the first two moments of ai and V i are finite. The

simulated averages, ~aai in (24) and ~VVi in (25), con-
verge to the expected values given by (22) and (23)

by the law of large numbers when the number of

simulation runs goes to infinity.

5. Numerical results

5.1. Framework

The electricity market in the examples is the

Scandinavian market with spot and futures trad-

ing. Physical electricity is traded in the spot market

and financial trading concentrates on futures

contracts that are settled against the average spot

price of the delivery period of the contract. There

is also a market for options and more exotic
products. The focus of the examples is on the fu-

tures and forward contracts because of their pro-

found importance and best liquidity at the

moment. All the monetary values are given in

euros (EUR).

Exchange quoted futures prices give the ex-

pected value of the electricity spot price in the

model. The Scandinavian market quotes futures
prices for several years ahead. The first few weeks

are quoted directly, then the weeks are combined

to blocks of four to five weeks, and later the blocks

are combined to season products, which cover the

year in three periods roughly corresponding to the

winter and summer seasons. Spot prices are quo-

ted for each hour of the day in the spot market.

The intraday and day-to-day fluctuations of the
electricity prices do affect the risk management

problem especially if instruments in the portfolio

have large variation in their load profiles. How-

ever, forecasting spot prices in an hourly level for

long time periods is not feasible. Weekly and daily

profiles for the prices can be used if there are data

for the profiles of the instruments in the portfolio.

The examples of this paper do not consider the
weekly profiles but only weekly average values.

The aggregation of the hourly data for longer time

periods removes the extreme values from the price

distribution and it is assumed that the weekly av-

erages are lognormally distributed.

Fig. 1 presents the weekly averages of the spot

price realizations for each year from 1996 to 2000,

the expected value of the spot price model, and the
5% and 95% probability limits of the price model.

The futures quotes that give the expected value of

the spot price are from the closing prices of the

Nord Pool power exchange on the 2 January 2001,

and the historical data are obtained from the Nord

Pool power exchange. The weekly expected prices

of the spot price forecast are obtained from the

quotations by fitting a smooth curve continuously
to the whole time period and taking care that the

averages for the time periods remain the same as

the market quotes. The probability limits are ob-

tained using the spot price model and historical

volatility that is estimated from the spot price re-

alizations of the years from 1996 to 2000. The in-

terpretation of the probability limits is that the

spot price is within the probability limits 90% of
the time over a large number of simulations. It is

clear that using more than five sample values to the

estimation of the limits would improve their reli-

ability but there are no more reliable market data

available at the moment.

The spot price for the year 1996 is higher than

for the other years. The hydro inflow during 1996

was below the normal level and this caused a
shortage of hydropower generation that is usually

around 50% of the yearly production. As a result,

more expensive thermal power was used to cover

the yearly demand. The years from 1997 to 2000

had all more than the normal level of hydro inflow

and this was one of the reasons for which the

prices of those years were lower than for the year

1996. The market expectations on the 2 January
2001 are discounting a year similar to the years

from 1997 to 2000.

The expected values of spot price are used to

calculate the local drift parameters of the spot

price process according to formula (2). The local

volatilities are estimated directly from the histori-

cal years by calculating the variance of five sample

values for each week. The calculated values enable
the simulation of the spot price processes using the

Monte Carlo methodology presented in Section 4.
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The particular results of optimization are opti-

mal with respect to the utility function and selec-

tion of risk parameters. The utility function in the
examples has the form

UðW Þ ¼ �e�kðW�W0Þ=W0 ; ð26Þ
where k is the value of the risk parameter,W is the

wealth of the portfolio, and W0 is the wealth of the

initial portfolio. The utility function is concave

when k is non-negative. A larger risk parameter

represents more risk averse preferences while a

smaller risk parameter gives a more neutral atti-

tude towards risks. The risk parameter is 2.0 in the

examples, which represents a fairly conservative
risk attitude.

For each example, Monte Carlo simulation is

performed and the expected values of the portfolio

and instruments are calculated. The value at risk

measure is presented with the risk level of 5% in

order to follow the change of the risks of the

portfolios. The non-linear programming problem

of expected utility maximization is solved with the
gradient projection method of Rosen, see [1], in all

the examples.

5.2. Electricity user

The first example considers an industrial elec-
tricity end user that has a fixed electricity con-

sumption of 50 MW for the time period from 8

January to 30 December 2001, i.e., from the be-

ginning of week 2 to the end of week 52. The

market is analyzed on the 2 January 2001. The end

user purchases physical electricity from the spot

market at the spot price. The optimization prob-

lem of the end user is to decide how much of the
electricity is bought from the spot market at spot

price and how much is hedged beforehand with the

use of financial futures contracts. The end user

benefits from leaving the spot purchases unhedged

if the realization of the spot price is lower than the

current futures prices, but the user is exposed to

spot price realizations that are higher than the

futures prices.
First the totally unhedged case is considered.

The portfolio of the end user consist only of the 50

MW of consumption between weeks 2 and 52 of

2001. The expected value of the spot price for the

time period in question is around 14.8 EUR/MWh
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Fig. 1. Realizations of Nord Pool spot prices in years 1996–2000, the expected value of the spot price and the 5% and 95% probability

limits for the spot price assuming a lognormal distribution used in the examples.
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and the total consumption is 428.4 GWh. Thus,

the analytical expected value of consumption is

EUR )6.33 million but there is no way of directly

calculating the analytical value at risk measure.

The expected result and risk for the end user are

estimated with 10,000 rounds of Monte Carlo
simulation. The expected value of the portfolio is

EUR )6.3 million which matches the analytical

value, and the value at risk is found to be EUR 1.4

million at the 5% risk level. This means that in 95%

of the cases the portfolio is not expected to devalue

more than EUR 1.4 million down from the ex-

pected value.

Because of the electricity price risk, the user
takes an initial hedge position of 30 MW of futures

contracts for the whole time period in order to

reduce the uncertainty of her position. The ex-

pected result and risk for the portfolio containing

both the 50 MW of consumption load and 30 MW

of futures contracts are estimated with 10,000

rounds of simulation. The expected value of the

portfolio is EUR )6.3 million after the hedge and
the value at risk drops to EUR 0.6 million. The

expected value of the portfolio does not change

because futures price is equal to the expected value

of the forecasted spot price.

The optimization model presented in this paper

is used to find an optimal hedge level for the end

user, given the chosen initial position, the utility

function (26), and two risk parameters of k ¼ 1:0
and k ¼ 2:0 representing two different attitudes

towards risk. Table 1 presents the results of opti-

mization for the portfolio. The change in con-

sumption of electricity is constrained to zero, but

the results of the optimization show that a further

6 MW should be hedged with futures contracts if

the attitude towards risk is more neutral, i.e., the

risk parameter is equal to 1:0. If the risk prefer-

ences are more risk averse, i.e., k ¼ 2:0, then an

additional of 17 MW is hedged. The hedge posi-

tion changes because the arbitrarily chosen initial

hedge position was not in accordance with the risk

attitude implicitly given by utility function and

risk parameter. The changes in the expected value
and value at risk of the portfolio are again simu-

lated with 10,000 simulation rounds. The uncer-

tainty of the portfolio is reduced as the unhedged

position reduces with both chosen risk preferences.

The value at risk at the 5% risk level drops ac-

cordingly to EUR 0.4 million with larger risk

taking capability and to EUR 0.1 million with the

more conservative attitude.
The electricity consumption is constant over

time in the example, but it is possible to use a more

complicated model for the demand. For example,

a stochastic consumption process that is correlated

with the spot price process can be simulated with

the Monte Carlo method. The end user con-

sumption can be linked to the consumption pro-

cess and included to the portfolio, after which the
simulation proceeds in a similar manner as above.

5.3. Electricity generator

The second example presents a baseload elec-

tricity generator with a production capacity of 50

MW for the time period from the week 2 to week

52 in 2001. The production capacity is held fixed,
but the marginal cost of production varies due to

the changes in fuel costs. The electricity generation

unit is modeled with two contracts. First, 50 MW

is ‘‘bought’’ from the production unit with the

marginal production cost and then the same 50

MW are sold to the spot market with the spot

price. The optimization problem of the generator

is to decide how much of the production capacity

Table 1

The contents and the expected result and value at risk measure of the initial portfolio and optimized portfolios of the electricity end

user with risk parameters k ¼ 1:0 and k ¼ 2:0

Item Before optimization Optimization with k ¼ 1:0 Optimization with k ¼ 2:0

Consumption (MW) )50 ! )50 )50
Hedge position (MW) 30 ! 36 47

Expected value (millions of EUR) )6.3 ! )6.3 )6.3
Value at risk (millions of EUR) 0.6 ! 0.4 0.1
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is hedged now and how much is sold to the spot

market at the spot price.

Fig. 2 presents the expected value and the 5%

and 95% probability limits of marginal produc-

tion cost of the generating company, and the ex-

pected value of the electricity spot price. The
marginal production cost is modeled as a sto-

chastic variable with a given forecast for the ex-

pected value and volatility of the process. The

marginal production cost corresponds roughly to

the production costs of a coal-fired combined heat

and power production plant. The use of forecasts

implicitly takes into account the possible long-

term correlations between the marginal cost and
spot price processes, and in the short term the

processes are assumed to be uncorrelated. It is

assumed that the observed company is relatively

small compared to the market and thus the pro-

duction of the company does not have an effect

on the spot price.

First the unhedged situation is analyzed. The

average expected marginal production cost is 12.5
EUR/MWh and the production volume is 428.4

GWh. The analytical expected total cost of pro-

duction is EUR 5.37 million and the analytical

expected value of spot sales is EUR 6.33 million,

just as in the case of electricity end user. The ex-

pected value of production is EUR 0.96 million. A

set of 10,000 simulations is performed. The ex-

pected value of the total cost of production is EUR
5.3 million and the expected value of the spot

electricity sales is EUR 6.3 million. The total ex-

pected value of this portfolio is EUR 1.0 million

and the value at risk is EUR 1.4 million. The value

at risk is very large compared to the expected value

of the portfolio and the generator decides to hedge

30 MW of the electricity sales with a futures con-

tract. A new set of 10,000 simulations shows that
the value at risk reduces to EUR 0.8 million as a

result of the hedge.

The optimal hedging level is determined by the

optimization method using conservative risk pa-

rameter of k ¼ 2:0. Table 2 gives the results of the

optimization starting from the initial portfolio

with the generation unit and a 30 MW hedge po-

sition in a futures contract. Changes in the physi-
cal generation and sales are restricted to zero. The

hedge position with the futures contract increases
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to 45 MW and as a result the value at risk reduces
to EUR 0.7 million. Note that although it is as-

sumed that the electricity generator and end user

have the same attitude towards risks in the case

where k ¼ 2:0, the generator hedges 2 MW less of

the capacity. This is due to the uncertainty in the

marginal production costs. Hedging too much of

the electricity sales would expose the producer to

the price risk from the marginal production costs
as there would be no possibility of gaining extra

profits from electricity sales even if the production

costs are high.

As in the situation of electricity end user, the

framework is capable of covering more compli-

cated production assets. For example, the pro-

duction capacity of a combined heat and power

plant may be tied to a stochastic temperature index
that is simulated with the Monte Carlo method, or

if there are derivatives for hedging against fuel

price movements, the optimal hedging levels can

be obtained in a similar manner as for the elec-

tricity derivatives.

6. Conclusions

This paper presents an integrated framework for

the optimal management of a combined physical

and financial power portfolio. As illustrated in the
examples the model can be applied to the Scandi-

navian electricity market. The framework is able to

cover other energy markets, telecommunications,

and other non-financial markets if the processes

determining the uncertainties are known and can

be modeled, and that the instruments in the market

can be described using these processes.

Direct application of the financial theory to the

electricity market is not possible. Electricity is a

non-tradable asset that cannot be stored. If there

are futures contracts for each time interval, they
can be used as tradable assets and the electricity

market becomes more like the financial market.

However, the analytical formulas from the finan-

cial market must still be applied carefully. In this

paper, the electricity instruments are evaluated

using numerical methods that adapt more easily to

the electricity markets.

The accuracy of analysis depends on the models
for the price processes that determine the values of

the electricity contracts. In this study, the expected

value of the spot price is taken directly from the

futures quotations in the market and a lognormal

weekly price distribution is assumed using historical

data to estimate the volatility of the price. There are

not enough historical data to provide reliable esti-

mates on model parameters at the moment, and
further research of the price process models is nee-

ded. However, the model used in this paper gives

one possible starting point for further analysis.

The numerical results given by the approach in

this paper are reasonable when compared with the

corresponding results from the financial market.

The results of the optimization are consistent with

intuition and e.g. the value at risk measure. The
distribution of the outcomes is sufficient to analyze

and manage most of the risks. Handmade scenario

analysis would bring additional information about

the risks of the portfolio.

The deregulation of the electricity markets in-

evitably gives birth to competitive market places

and with them a new set of rules for risk man-

agement. This paper suggests that the financial
methods can be helpful in the risk analysis if the

unique properties of the electricity market are

taken into account.
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Table 2

The contents and the expected result and value at risk measure

of the initial portfolio and optimized portfolio of the electricity

generator with risk parameter k ¼ 2:0

Item Before

optimization

After

optimization

Generation (MW) 50 ! 50

Spot sales (MW) )50 ! )50
Hedge position (MW) )30 ! )45
Expected value

(millions of EUR)

1.0 ! 1.0

Value at risk

(millions of EUR)

1.4 ! 0.7
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