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It has been shown that a vortex in a Bose-Einstein condensate with spin degrees of freedom can be created
by manipulating with external magnetic fields. In the previous wdthys. Rev. A61, 063610(2000] an
optical plug along the vortex axis has been introduced to avoid Majorana flips, which take place when the
external magnetic field vanishes along the vortex axis while it is created. In the present work, in contrast, we
study the same scenario without introducing the optical plug. The magnetic field vanishes only in the center of
the vortex at a certain moment of the evolution and hence we expect that the system will lose only a fraction
of the atoms by Majorana flips even in the absence of an optical plug. Our conjecture is justified by numeri-
cally solving the Gross-Pitaevskii equation, where the full spinor degrees of freedom of the order parameter are
properly taken into account. A significant simplification of the experimental realization of the scenario is
attained by the omission of the optical plug.

DOI: 10.1103/PhysRevA.66.013617 PACS nuntber03.75.Fi, 67.57.Fg

[. INTRODUCTION B,. An optical plug along the axis was introduced & and
[6] to avoid possible Majorana flips near the axis, which may

Alkali-metal atoms become a superfluid upon Bose-take place wheiB, passes through zero. It is expected, how-
Einstein condensatioBEC) [1,2]. The superfluid properties ever, that trap loss due to Majorana flips may not be very
of the system were considered to be essentially the same afgnificant if the “dangerous point|B|=0 is passed fast
those of superfluidHe, in spite of the fact that the former is enough and that considerable amount of the BEC remains in
a weakly coupled system while the latter is coupled stronglythe trap as the result. This process should not be too fast,
In contrast with*He, however, alkali-metal atoms have in- however, such that the adiabatic condition is still satisfied. It
ternal degrees of freedom attributed to the hyperfine Bpin is a very difficult task to introduce a sharply focused optical
and, accordingly, the order parameter hag|2 1 compo- plug along the center of the condensate whose radius is of
nents[3,4]. The atoms?Na and’Rb have|F|=1, for ex- the order of a few microns. Accordingly we expect that an
ample, and their order parameters have three componen®xperimental realization of our scenario will be much easier
similar to the orbital or the spin part of the superfliide. ~ Without the optical plug. In the present paper, therefore, we

These degrees of freedom bring about remarkable differanalyze our scenario by numerically integrating the multi-
ences between the BEC of alkali-metal atoms and that ofomponent Gross-Pitaevskii equation.
“He. The hyperfine spin freezes along the direction of the This paper is organized as follows. In Sec. I, we outline
local magnetic field when a BEC is magnetically trapped. Ifthe order parameter and the Gross-Pitaevskii equation for an
a BEC is trapped optically, on the other hand, these degred§|=1 BEC. In Sec. lll, the Gross-Pitaevskii equation is
of freedom manifest themselves and various additional pheintegrated numerically to analyze the time dependence of the
nomena, such as the phase separation between the differdrgler parameter. It will be shown that merely half of the
spin states that have never been seen in supeﬁ‘lﬂ(}j may condensate is lost from the trap if the time dependence of the
be observed. external magnetic field is chosen properly. Section 1V is de-

It was suggested ifi5] and [6] that a totally different Vvoted to conclusions and discussions. In the Appendix, it is
process for the formation of a vortex in a BEC of alkali- shown that the formation of a vortex in the present scenario
metal atoms is possible by making use of the hyperfine demay be understood in terms of the Berry phase.
grees of freedom to “control” the BEC. Suppose a BEC is
confine_d in a Ioffe—_Pritchard trap. _Then a vortex-state With || SRpER PARAMETER AND GROSS-PITAEVSKII
two units of C|rculat|c_)n can be con.tmuously cregted from the EQUATION OF |F|=1 BEC
vortex-free superfluid state by simply reversing the axial
magnetic fieldB,, parallel to the loffe bars. This field is Let us briefly summarize the order parameter and the
created by a set of pinch coils and can be easily controlledsross-Pitaevskii equation for a BEC with the hyperfine spin
Four groups have already reported the formation of vortice& =1 to make this paper self-contained. The readers should
with three independent metho@ig—11]. Our method is to- be referred to Refd3] and[6] for further details.
tally different from the previous ones in that the hyperfine The order parameter of a BEC witf| =1 has three com-
spin degrees of freedom have been fully utilized. The preseronents¥;(i = —1,0,+ 1) with respect to the basis vectors
paper is a sequel {®]. Here, we conduct further investiga- |i) defined byF,|i)=i|i). The order parametg®) is then
tions on the formation of a vortex by reversing the axial fieldexpanded as
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B:(1)

for certain purposes. The order parameter is now expressed
as

(W)= > Wwili). E
i=0,*x1 .
K=l
. g B(N=B'r
It turns out, however, that another set of basis vectors 4 N
_ . _ . ; < L -
|a) (a=x,y,z), defined byF,a)=0, is more convenient Z 0 T T (arb. unit
5
2
=

|\If>: E lIra|a->'
a=xy.z FIG. 1. The schematic time dependence of the axial fgld
) ) ) ) The field B, reverses the sign in an interval of tinfe while the
The transformation matrix froft¥;} to {W,} is found in[6].  quadrupole fieldB, remains fixed. The field,(t) is fixed at the
The most general form of the Hamiltonian fi#f|=1 at-  valueB,(T)=—B,(0) for t>T for further evolution.
oms, which is rotationally invariant except for the Zeeman

term, is B, (r)cog—¢)
N N 91 4 B (1= BL(r)sin(—¢) (5)
H_/J“N:f ba _ﬁv M ’pa'}'E(‘ﬁawa) 0
+%|¢a¢a|2+i8abcwl_c¢;¢b der, 1) and a uniform axial field
0
wherefio .= v,Ba, v,=ug/2 being the gyromagnetic ra- B(h=| O 6)
tio of the atom. The coupling constants are given by 0= ) '
B(t
4’7Tﬁ2 47Tﬁ2 ao_a2
= 8 = T3 (2)  Here ,¢,2) are the cylindrical coordinates. The magnitude

B, (r) is proportional tor near the axis~0; B, (r)=B'r,

h —27 —24 121 with B being a constant. The system is assumed to be uni-
wherea, S nm andi 6 nm[12] form along thez direction for calculational simplicity. Our
analysis should apply to a cigar-shaped system as well.

Suppose we reverse tiBe field slowly, while keepind3,
fixed as shown in Fig. 1. It was shown in Ref§,6] that a

The Heisenberg equation of motion derived from the
above Hamiltonian is

., IPa

i% =[y, H-— MN] vortex with two units of circulation will be formed if we start
at with a vortex-free BEC. In these papers, an optical plug was
72 introduced along the vortex axis to prevent the atoms from
=| - %VZ—M Yat 91(l ) escaping from the trap wheB=B, + B, vanishes at =0
=T/2. Accordingly, the order parameter remains within the
+g, l,bbl//b)k//;JriSabchcl/fb- 3) weak-field seeking stat@VFS9 throughout the scenario.

We suspect, however, that the BEC may be stable even
é(vithout the optical plug sincB vanishes only imr=0 at the
time t=T/2. This will be justified by solving the Gross-
Pitaevskii equation numerically below. In contrast with the
previous work, we have to take the full degrees of freedom
of the order parameter into account since the energies of the

By taking the expectation value of the above equation in th
mean-field approximation,(y )= ¥, where ¥,
=(i,), we obtain

2
i% 'Nlaz — h_v2_lu W+ gy | V2P + gy (V)2 E three hyperfine stategthe strong-field seeking state, the
ot 2m a’ 1 al 2 a : ;
weak-field seeking state, and the neutral $tate degenerate
t+ieapcw V- (4) whenB=0.
This is the fundamental equation that we will use in the rest B. Initial state
of this paper. We first solve the Gross-Pitaevskii equation in the station-
ary state to find the initial order-parameter configuration and
Ill. CREATION OF A VORTEX the corresponding chemical potential. There is a sufficient

gap between the weak-field seeking state and the other states
att=0 and the BEC may be assumed to be purely in the

Suppose we confine a BEC in an loffe-Pritchard trap withweak-field seeking state. Let us parametrize the external
a quadrupole magnetic field magnetic fieldB with the use of the polar anglesandg as

A. Magnetic fields
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The anglegB vanishes ar=0 (note thatB, =0 atr=0),

hence we findV, ;=¥ ;=0 while ¥_,;xe'(*" M0 there.
For the order parameter to be smoothrat0, we have to
choose

y=a=—¢. (13

Accordingly, the order parameter takes the form

cosB cosg—i sing

R =_O io| — . s
FIG. 2. Polar anglesd,8) parametrizingd andl||F. Va \/Ee cosp Sm.¢ | cosé (14
—sing
Sl'n,BC(.)Sa in the ¥, basis and
B(r,t)=B,(r)+B,(t)=|B|| sinBsina |, (7) |
cosB f (1—cosp)e”?
0 o
Y.=—| —2sinpe'¢ 15
wherea= — ¢ for the quadrupole field and b2 V2 B (15)
1+cosp
| 1BL(N)] _ _ .
B=tan B,0] | (8) in the ¥; basis. It follows from Eq(15) that the state with
z

[=—2 (8=0) has a vanishing winding number, while that
Since the hyperfine spiR is antiparallel withB, we must  with i=2 (B=m) has the winding number 2. Accordingly,

have the former state may be continuously deformed to the latter
state by changing from 0 to = smoothly, resulting in the
—sinB cosa formation of a vortex with winding number 14,15. It is
i=| —singsina |, 9) shown in the Appendix that this phase may also be under-

stood in terms of the Berry phase associated with the adia-
—cosp batic change of the local magnetic field.

~ The stationary Gross-Pitaevskii equation is given by
wherel is a unit vector parallel té-, see Fig. 2.

The most general form for the order parameter yielding V2 5 o
the abovd vector is - ﬁwa+gl|qf| Wt gV V] tieapVpoc=uVs.
o (16)
¢ cospBcosa+ti Sina
__0 i N —i - By substituting the WFSS order parameter in Ety) into
Y _=——¢ 17| cosBsina—icosa | =f 1 k
a € A ova, (10 Eq. (16), we obtain

—sing
where{v,} represents the “phase,” whilfy, is the amplitude h? ) g% 1
of the order parameter. In mathematical terfns,} defines T om Ve 7_E(7_8 cosp+cos28) | fo
the local SO(3) frame or the “triad” of the real orthonormal
vectors{m,n,i}, where +7,B(Nfotg1fe=pufo. 17

1 s P, Note that there appears an extra taﬁ'ﬁthat is missing if
vfﬁe (m+in),, l=mxn. (1D this BEC is described by a scalramely, U(1) order pa-
rameter. This term originates fronilvzua and represents the

It should be noted that the above order parameter takes t@tation of the local SO(3) frame. In ordinary physical set-

same form as that of the orbital part of the superfiig-A.  Ungs, however, this term is smaller than tBeterm by a

_3 . . .
One may obtain more insight if the order parameter in Eq@ctor of /w, ~10"" and hence its effect may be negligible

10) is rewritten in the¥; basis ag13 in the following arguments.
(10 ! 113] The amplitude of the external magnetic field has an ap-

Le-ia(1- cosp) proximately harmonic potential profile near the origin,
_ 1 B(r,t)=BE(r)+BZ(t)=yB'’r’+B(t)
v,=fe — —sing . (12

\/E B'2

Lei(1+cosp) B0 am,m " 4
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Jo® WFSS NS SFSS
12 o0 [Pwrss| 20 |Wrsl 20 [Werss|
8 10 —\ 10 10
6 0 r 0 r 0 r
0 2 4 6 0 2 4 6 0 2 4 6
4 20 |Pwess| 20 | Fsl 20 | Wsgss!
2 t=T/2-1
| . 10 10 10
i 2 3 4 5 6 7 8 0\ | f ,
FIG. 3. Condensate wave functidg(r). The condensate wave 0 2 4 6 0 2 4 6 0 2 4 6
function and the radial coordinate are scaleday?? and a0, o0 |*wess! o0 (sl 50 | ¥srss|
respectively, and hence are dimensionless. =T2+1

10 10 10 \
. . r I
It turns out to be convenient to scale the energies by the 0 o 0

0 2 4 6 0 2 4 6 0 2 4 6

energy-level spacingiw at t=0 and the lengths by the

harmonic-oscillator lengtla,,o, where 20 IT‘:’Ffl 20 | ¥l 20 |Wsss|
10 10 10
’ylu 0 r 0 r 0 r
w=B’ VmBZ(O)’ (19 0 2 4 6 0 2 4 6 0 2 4 6
20 | Pwess| 20 | Fns! 20 | Wsgss|
1=1200T

[7 10 10 10
aHO: % (20) 0 r 0 14 0 r

0 2 4 6 0 2 4 6 0 2 4 6

If we take #Na and substituteB,(0)=1 G and B’ FIG. 4. Temporal development of the order parameltrgrsd.
=300 Glcm, we findao~9.14< 1071 um andf w~ 3.49 |Wngl, and| ¥ gesd for T=107, wherer~1.43 us. The graphs are

X 10~ 24 ergs. For the same choice of the parameters, ngotted fort=0 (initial statg, t=T/2— 7 (slightly beforeB,=0 is
have w, (r =0t=0)~4.40x 10° rad/s-1.330¢ 10w, It is crosseq, t=T/2+ 7 (slightly afterB,=0 is crossef andt=T (B,

PN is completely reversed Furthermore,B, is fixed to B,(T)=
reasonable to assume=2m/w (r=0t=0)~1.43 us to be —B,(0) for t>T. The bottom row shows the order parameters at
the measure of the adiabaticity.

=1200T. The order parameters and the radial coordinate are plot-
After these scalings, the dimensionless Gross- P|taevsk{|5,d in units ofa;;3? anday, respectively.

equation takes a simpler form

IVa 1., 2 2% o
1 2 Jt :_EV Vot go| V|5V o+ go(V)* W3 +ieanVporc -
—5'?2?0+ E(r)+Z+TZ(7—8 cosB+cos 28) | T, (22)
8r
4 ~f _7F 21) The initial condition is
V.=fo(r)v,, (23

whereT =r/ayo,fo="foale, n=multio, B=y,B/fio, and
01=01/a’ o w~0.0378. A similar scaling fog, yieldsg,  Wherefy(r) is obtained in Sec. Il B a_nda .is Qefined in Eq.
~—0.00132. Note that the singularity a0 vanishes if (10). The condensate cannot remain within the weak-field
seeking state during the formation of a vortex and we have to
utilize the full degrees of freedom of the order parameter
Q’a. The Gross-Pitaevskii equation has been solved numeri-
cally to find the temporal development of the order param-
eter whileB, changes as

,8(?) approaches to zero fast enougﬁaso. The tildes will

be dropped hereafter whenever it does not cause confusio
The eigenvalueu may be obtained numerically. FofNa
with B, and B’ given above, we finqu—%w, (r=0;t=0)
=3.66, which amounts to 1.2810 2% ergs in dimensional
units. Figure 3 shows the corresponding condensate profile
fo(r). B,(t)=B,0)|1—

T (0<t<T) (24

C. Time development with several choices for the reversing tiffieAdiabaticity is

The time development of the condensate wave function isiot guaranteed at~T/2 when the energy gaps among the
obtained by solving the Gross-Pitaevskii Hg), which is  WFSS, the neutral statdNS), and the strong-field seeking
written in dimensionless form as state(SFSS disappear. We expect, however, that this break-

013617-4



METHOD TO CREATE A VORTEX IN ABOSE. .. PHYSICAL REVIEW A 66, 013617 (2002

WFSS NS SFSS WFSS NS SFSS
o0 |'Wwess| 20 |Pxsl 20 | Wsrss| o0 | Fwrss| 20 | "l 20 | Wsgss|
=0 t=0
10 10 10 10 10 10
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0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
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0 L Y N A r 0 1y AR AN 4
0 2 4 86 0 2 4 6 0 2 4 6 0 2 4 86 0 2 4 6 0 2 4 6
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r
0 LAY AN 0 r 0 LA "I
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
20 |Wwess| 20 | Pl 20 | Wapss | o0 | '"wessl 20 | sl 20 | Mspssl
t=T =T
10 10 10 \ 10 10 10
0 N 720 N 2 r 0 AN AN 4
0 2 4 6 0 2 4 B8 0 2 4 6 0 2 4 6 0 2 4 B8 0 2 4 6
20 [Wwss| 20 sl 20 ["Pspss| 20 | "P'wssl 20| sl 20 [Wsgss|
t=50T t=4T
10 10 10 10 10 10
0 I o rl g L 0 Il oy r
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
FIG. 5. Same as in Fig. 4, but far=100r, 7~1.43 us. The FIG. 6. Same as in Fig. 4, but f@r=1000r, 7=1.43 us. The

graphs are plotted far=0,t=T/2— 7,t=T/2+ 7,t=T, andt=50T. graphs are plotted far=0t=T/2— 7,t=T/2+ 7,t=T, andt=4T.

down of adiabaticity is not very significant to the condensataOeing reflected at~r,. Thus particles that reach beyond
since it takes place only along the condensate axis for a ShOLtrO disappear from (t)ﬁe trap. The parametegsand \_are

period of time. introduced for i
) . purely computational purposes and should not
We project¥’, thus obtained to the local WFSS, NS, and be confused with any realistic experimental settings.tAs

SFSS by defining the projection operators to the respectivg.r’ the condensates in SFSS and NS disappear from the

states as trap and the particle number reaches its equilibrium value.
Huov=v.0f  Mer=u.ul The bottom row of Figs. 4, 5, and 6 shows the wave func-
Wab™Fa¥by SSabT Hath e tions after the equilibrium is attained.
_ Figure 4 shows the behavior of the condensate when
Mnab= 6ab— Hwap— Mgap, 25 . ;
Nab™Tab Tiwab — 17sab @9 _ 105 In this caseB,(t) is reversed so fast that most of the
where particles remain in the WFSS &t T/2— 7 and they are sud-
1 . . 1 . .
ua:\—E(mHn)a, ua:\—E(m—ln)a (26) 1.0—1

define the local WFSS and SFSS SO(3) frames, respectively. NEYN©F

Figures 4, 5, and 6 depict the amplitudes of the wave
functions att=0, T/2— 7, T/2+ 7 and T for T=10r, 100r, 0.5
and 1006. Figures 7, 8, and 9 show the particle numbers
within the trap for the same choicesfTo simulate the trap
loss, we introduced a function

1 r—ro 00 200 400 600 800 1000 1200
h(r)= 5 1—tan|‘( N ) (27) vT
) ) ) ) FIG. 7. The ratioN(t)/N(0) as a function of/T for the revers-
with ro=30 and\=2. The wave functionV',(r) is multi-  jng time T=10r. Here N(t) is the number of atoms/unit length

plied by h(r) after each step of the Crank-Nicholson algo- along the vortex axis at time The magnetic field8, decreases
rithm. The parametar, roughly corresponds to the trap size, monotonically for G<t/T<1, but is kept fixed to—B,(0) for T
while \ is taken large enough to prevent the wave functionst, see Fig. 1.
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N(t>>T)/N(0)
1.0 .
N(YN(O) | 0.5}
05} o4r
0.3}
0.2}
0
0 10 20 30 40 50 o1l
T '
FIG. 8. Same as in Fig. 7, but faf=100r. o 15 5 25 3 35 4

: . log. (Th)
denly converted into the SFSStat T/2+ 7. These particles 10

in the SFSS and the NS are eventually lost from the trap as g, 10. Ratio of the residual particle number to the initial par-

t—, see Fig. 7. ticle number as a function of lgg{T/7). The crosses are the results
Figures 5 and 6 show that the behavior of the condensaigf our numerical calculation while the interpolating curve is intro-

is qualitatively similar forT=100r andT=1000r. The con-  duced as a guide.

densate is transferred from the WFSS to the SFSS more ef-

ficiently at t=T/2— 7 for T=1000r, which leads to more . . . .

WFSS components at=T/2-+ 7 in this case. At a later time with two units of cwculapon. Thus we conclude thgt a vortex

t>T, the condensate is found to oscillate in the trap with the ! be creatgd, even |n'the.absence of an optical pIu.g, by

frequency~ . simply reversing the axial field3,. We expect that this
We have also analyzed the caBe 100 00 and found no makes the experimental realization of the present scenario

qualitative difference compared to the case1000r. There much easier than that with an optical plligé]

are slightly more of the NS component in the former case at

t=T/2— 7 than the latter case, which leads to less particles in

its equilibrium state at>T.

_ It is certainly desirable to have more _particles remaining \we have analyzed a simple scenario of vortex formation
in the trap when a vortex is created. Figure 10 shows the, 5 spinor BEC. An axial magnetic field is slowly reversed
ratio of the final particle number to the initial particle num- \yhile the quadrupole field has been kept fixed in an loffe-
ber as a function of the reversing tirffie Note that the final pritchard trap, which results in a formation of a vortex with
particle number is evaluated when the equilibrium iSthe winding number 2. The spinor degrees of freedom have
reached. It is found that a considerable amount of the compeen fully utilized which renders our scheme much simpler
densate £1/3) is left in the trap for a wide range of the compared with other methods.
reversing times 1< T/ 7= 194- _ o Since the vortex thus created has a higher winding num-

In summary, our numerical calculations indicate that aper, jt is metastable and eventually breaks up to two singly
large fraction of the BEC remains in the trap whBpis  quantized vortices. The lifetime of the metastable state is
reversed with proper choices of the reversing tieAl-  quite an interesting quantity to evaluate since its magnitude,
though there remain SFSS and NS components-at, they  compared with the field-reversal tinie and the trap time,
eventually disappear from the traptat T when the equilib- ;|| be crucial to determine the ultimate fate of the vortex.
rium is reached. The condensate is converted into a state A similar analysis with arfF=2 BEC is under progress
and will be published elsewhere.

Note added in proofThe MIT group reported the forma-

IV. CONCLUSIONS AND DISCUSSIONS

1.0 tion of vortices according to the present scenti6).
N(t)/N(O) }
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APPENDIX: VORTEX FORMATION AND BERRY PHASE F:=+1 (¢=T) z
It is shown that the formation of a vortex in our scenario y
is understood from a slightly different viewpoint. Namely, Ci AACZ G £
we show that the phase appearing in the end of the process 2 — é ) L 2
may be identified with the Berry phase associated with the Gl e™ 7
adiabatic change of the magnetic field.
Let a point on the unit sphere in Fig. (Bl denote the F:=-1(t=0)
hyperfine spin state witk=1. All the spins near the origin (a) )
r=0 haveF,=—1 att=0 and hence correspond to the
p0|nts near the South pole NOW the aXlaI flag monotonl_ FIG. 11. Formation Of a vortex in the present Scenario may be

cally decreases such that eventually all the spins near thighderstood in terms of the Berry phase associate.dlwith each spin.
origin haveF,~+1 att=T and hence are expressed by theWhen|B,|>|B.| att=0, all the spins near the origin ha¥e=
points near the north pole. The path a spin follows on the_ 1 With the same phase. Due to the “twisting” of the spins during
unit sphere depends on the position of the spin relative to thg‘le evolution, they obtain different phases depending on the trajec-

. . : : tories they follow.(b) shows four spins at=T/2 whereB, van-
origin. Figure 11b) shows the configuration of four hyper- . ) . . z o
fine spinsF att=T/2, whenB, vanishes an is determined ishes. The spin 1 follows the trajectory denoteddyyin (a) starting

. A from the south pole and ending at the north pole. Similarly the spins
by the quadrupole field. The pa@y, in Fig. 11(a) shows the 2, 3, and 4 in(b) follow the trajectoriesC,,C,, and C, in (a),

trajectory of the spin 1 in Fig. 1b) follows whent is varied respectively. The shaded area/P< ¢=,0=B=) in (a) is the
from 0 (8=0) to T(B=). Similarly the pathC, in Fig.  sg|id angle subtended by the paths andC,. Since this area mea-
11(a) is the trajectory of the spin 2 in Fig. (), and so on.  syresr, the spin 2 has a phase relative to that of the spin 1 at
When the spins 1 and 2 left the south polé-a0, they had  t=T. Similarly the spins 3 and 4 obtain phases and 3, respec-
the common phase factor, whiletat T they obtain the rela- tively, relative to that of the spin 1 at=T.

tive phase equal to the solid angle subtended by the trajec-

toriesC, andC,. The shaded area in Fig. (HL shows this  4), respectively, wherB, is completely reversed. Accord-
area that subtends the solid angte Similarly the paths 1 ingly, as one completes a loop surrounding the origin, one
and 3(1 and 4 subtend the solid angler2(3), resulting in  measures the phase change of dbserving that a vortex
the relative phase2(37) between the spins 1 and(Band  formation has taken place.
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