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Abstract
It is shown that a vortex can be continuously created in a Bose–Einstein
condensate with hyperfine spin F = 2 in a Ioffe–Pritchard trap by reversing the
axial magnetic field adiabatically. It may be speculated that the condensate
cannot be confined in the trap since the weak-field seeking state makes
transitions to the neutral and the strong-field seeking states due to the degeneracy
of these states along the vortex axis when the axial field vanishes. We have
solved the Gross–Pitaevskii equation numerically with given external magnetic
fields to show that this is not the case. It is shown that a considerable fraction of
the condensate remains in the trap even when the axial field is reversed rather
slowly. This scenario is also analysed in the presence of an optical plug along
the vortex axis. Then the condensate remains within the Fz = 2 manifold, with
respect to the local magnetic field, throughout the formation of a vortex and
hence the loss of atoms does not take place.

1. Introduction

It has been observed that the Bose–Einstein condensate (BEC) of alkali atom gas becomes
superfluid [1, 2]. Superfluidity of this system is different from the previously known
superfluid 4He in many aspects. For example, the BEC is a weak-coupling gas for which
the Gross–Pitaevskii (GP) equation is applicable while superfluid 4He is a strong-coupling
system. One of the most remarkable differences is that the BEC has a spin degree of freedom
originating from the hyperfine spin of the atom, and that this degree of freedom couples to
external magnetic fields. Accordingly the order parameter of the condensate is also controlled
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at will by external magnetic fields. Superfluid 3He also has similar internal degrees of freedom,
which, however, are rather difficult to control by external fields [3].

Taking advantage of this observation, we proposed a simple method to create a vortex in
a BEC with the hyperfine spin F = 1 [4, 5]; a vortex-free BEC is intertwined topologically by
manipulating the magnetic fields in the Ioffe–Pritchard trap to form a vortex with the winding
number 2. This is achieved by reversing the axial magnetic field adiabatically while the planar
quadrupole field is kept fixed.

In the present paper, a similar scenario is analysed for a BEC with F = 2, taking 87Rb as
an example. The difference between the present case and that for F = 1 will be emphasized in
our analysis. In the next section, we briefly review the order parameter of BEC with hyperfine
spin F = 2 and the GP equation which describes the time evolution of the order parameter. In
section 3, the ground state order parameter of the BEC in the weak-field seeking state (WFSS)
confined in a harmonic potential is obtained. Then the time evolution of the condensate, as the
axial field is adiabatically reversed is studied by solving the GP equation numerically. Cases
with different reverse time are analysed to find the best possible reversing time for which the
fraction of the remaining condensate in the vortex state is maximized. It is shown that the
condensate at the end of this scenario has the winding number 4. In section 4, the GP equation
is solved in the presence of an optical plug along the vortex axis. The BEC remains in the
Fz = 2 WFSS, with respect to the local magnetic field, throughout the development, and hence
no atoms will be lost during the formation of a vortex. Section 5 is devoted to conclusions and
discussions.

2. Order parameter of F = 2 BEC

2.1. General F = 2 condensate and Gross–Pitaevskii equation

Suppose a uniform magnetic field B parallel to the z axis is applied to a BEC of alkali atoms
with the hyperfine spin F = 2. Then the hyperfine spin state of the atom is quantized along
this axis; the eigenvalue m of Fz takes a value −2 � m � +2, where Fz |m〉 = m|m〉. Let us
introduce the following conventions:

|2〉 =




1
0
0
0
0


 , |1〉 =




0
1
0
0
0


 , |0〉 =




0
0
1
0
0


 ,

|−1〉 =




0
0
0
1
0


 , |−2〉 =




0
0
0
0
1


 .

The order parameter |�〉 is expanded in terms of |m〉 as

|�〉 =
2∑

m=−2

�m|m〉 = (�2,�1,�0,�−1,�−2)
T, (1)

where T denotes the transpose.
The representation of the angular momentum operators Fk (k = x, y, z) for F = 2 is

easily obtained from the well-known formulae

〈2, m|F+|2, m ′〉 = √
(2 − m)(3 + m)δm,m′+1,
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〈2, m|F−|2, m ′〉 = √
(2 + m)(3 − m)δm,m′−1,

〈2, m|Fz |2, m ′〉 = mδm,m′ ,

where F± = Fx ± iFy .
The dynamics of the condensate in the limit of zero temperature is given, within the mean

field approximation, by the time-dependent GP equation with spin degrees of freedom. This
equation, obtained by Ciobanu et al [6] (see also [7]), is written in components �m as

ih̄
∂

∂ t
�m =

[
− h̄2

2M
∇2 + V (r)

]
�m + g1|�n|2�m + g2[�†

n(Fk)np�p](Fk)mq�q

+ 5g3�
†
n 〈2m2n|00〉〈00|2 p2q〉�p�q + 1

2 h̄ωLk(Fk)mn�n, (2)

where summations over k = x, y, z and −2 � n, p, q � 2 are understood. Here, M is the
mass of the atom and V (r) is the possible external potential. The Larmor frequency is defined
as h̄ωLk = γµBk , where γµ � µB is the gyromagnetic ratio of the atom and µB is the Bohr
magneton. The interaction parameters are expressed in terms of the s-wave scattering length
aF , F being the total hyperfine spin of the two-body scattering state, and are given by [6]

g1 = 4π h̄2

M

4a2 + 3a4

7
g2 = 4π h̄2

M

a2 − a4

7
g3 = 4π h̄2

M

(
a0 − a4

5
− 2a2 − 2a4

7

)
,

(3)

where a0 = 4.73 nm, a2 = 5.00 nm and a4 = 5.61 nm for 87Rb atoms. This should be
compared with F = 1 BEC where there are only two types of scattering state and hence two
interaction terms in the GP equation.

2.2. Weak-field seeking state

Suppose a strong magnetic field B is applied along the z axis. Then the components with
Fz = 1 and 2 are in the WFSS while those with Fz = −1 and −2 are in the strong-field
seeking state (SFSS). The presence of two WFSSs leads to an interesting two-component
vortex that is not observed in F = 1 BEC, as we see in the next section. The energy of the
state with Fz = 0 is independent of the magnetic field and will be called the neutral state (NS)
hereafter. Suppose a uniform condensate is in the state with Fz = 2. The order parameter of
the condensate takes the form

|�0〉 = f0(1, 0, 0, 0, 0)T (4)

where | f0|2 is the number density of the condensate. Now let us consider a state which is
quantized along an arbitrary local magnetic field:

B(r) = B

( sin β cos α

sin β sin α

cos β

)
. (5)

Let FB ≡ B · F /B be the projection of the hyperfine spin vector along the local magnetic
field. The WFSS |�〉 which satisfies FB |�〉 = +2|�〉 is obtained by rotating |�0〉 by Euler
angles α, β and γ and is given by

|�(r)〉 = exp(−iαFz) exp(−β Fy) exp(−iγ Fz)|�0〉

= f0e−2iγ




e−2iα cos4 β

2

2e−iα cos3 β

2 sin β

2√
6 cos2 β

2 sin2 β

2

2eiα cos β

2 sin3 β

2

e2iα sin4 β

2




≡ f0|v〉. (6)
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The GP equation restricted within the WFSS is obtained by substituting equation (6) into
equation (2), see the next section.

3. Vortex formation without optical plug

The formation of a vortex in the F = 2 condensate is analysed in this and the next sections.
In the present section, we study the scenario without an optical plug along the vortex axis.
Although some fraction of the condensate is lost from the trap in this scenario, the experimental
set-up will be much easier without introducing an optical plug. In fact, it will be shown below
that a considerable amount of condensate remains in the trap by properly choosing the time
dependence of the magnetic field.

3.1. Magnetic fields

Suppose a condensate is confined in a Ioffe–Pritchard trap. It is assumed that the trap is
translationally invariant along the z direction and rotationally invariant around the z axis. The
quadrupole magnetic field of the trap takes the form

B⊥(r) = B⊥(r)

( cos(−φ)

sin(−φ)

0

)
, (7)

where φ is the polar angle. The magnitude B⊥(r) is proportional to the radial distance r near
the origin; B⊥(r) ∼ B ′

⊥r . The uniform time-dependent field

Bz(t) =
( 0

0
Bz(t)

)
(8)

is also applied along the z axis to prevent Majorana flips from taking place at r ∼ 0 where B⊥
vanishes. Now the total magnetic field is given by

B(r, t) = B⊥(r) + Bz(t) =
( B⊥(r) cos(−φ)

B⊥(r) sin(−φ)

Bz(t)

)
. (9)

Comparing this equation with equation (5), it is found that

α = −φ β = tan−1

[
B⊥(r)

Bz(t)

]
. (10)

It has been shown in the previous work for F = 1 BEC that a vortex-free condensate in the
beginning will end up with a condensate with a vortex of winding number 2 if Bz reverses its
direction while B⊥ is kept unchanged [4, 5]. We expect the same magnetic field manipulation
to lead to the vortex formation in a BEC with F = 2. The uniform axial field Bz(t) must
reverse its direction as

Bz(t) =

 Bz(0)

(
1 − 2t

T

)
0 � t � T

−Bz(0) T < t
(11)

to create a vortex along the z axis. This gives a ‘twist’ to the condensate, leading to the
formation of a vortex with winding number 4, see below.

Before we start the detailed analysis, it will be useful to outline the idea underlying our
scenario. Suppose one has WFSS with FB = 2 in the trap at t = 0. The magnetic field
at r ∼ 0 points in the +z direction (i.e. β ∼ 0) and hence the WFSS takes the form �0 of
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equation (4). Then the angle γ must satisfy γ = −α for the BEC to be vortex-free, see
equation (6). The field Bz(t) vanishes at t = T/2, for which β = π/2, and the hyperfine
spin is parallel to the quadrupole field B⊥. Accordingly one must choose α = −φ for this
condition to be satisfied, see equations (9) and (10). This also implies γ = +φ. When the field
Bz is completely reversed at t = T , the magnetic field at r ∼ 0 points down and hence β ∼ π

there. Substituting α = −γ = φ and β = π into equation (6), one finds the order parameter
at t = T :

|�〉 = f0e−2iφ(0, 0, 0, 0, e−2iφ)T, (12)

which shows that a vortex with winding number 4 has been created.

3.2. Initial state

Suppose a vortex-free BEC is confined in a Ioff–Pritchard trap, whose magnetic field takes
the form (9) and that the condensate is in the eigenstate FB = 2 with respect to the local
magnetic field B with Bz = Bz(t = 0). The condensate wavefunction is then obtained by
solving the stationary state GP equation. Substitution of equation (6) with α = −γ = −φ

into equation (2) yields

− h̄2

2M
∇2( f0vm) + (g1 + 4g2) f 3

0 vm + h̄ωL f0vm = µ f0vm,

where we have put �m ≡ f0vm . Note that the g3 term vanishes identically for the present state.
The condensate wave amplitude f0(r) is taken to be a real function without loss of generality.
The eigenvalue µ is identified with the chemical potential. If one multiplies the above equation
by {vm}† from the left and uses the identity

∑
m |vm |2 = 1 and other identities derived from

this, one obtains the reduced GP equation for f0(r):

− h̄2

2M

[
f ′′
0 +

f ′
0

r
+ (v∗

m∇2vm) f0

]
+ (g1 + 4g2) f 3

0 + h̄ωL f0 = µ f0, (13)

where

v∗
m∇2vm =

[
2

r2
(3 cos2 β − 5) sin2 β

2
− β ′2

]
(14)

comes from the rotation of the five-dimensional local orthonormal frame that defines the order
parameter. The reduced GP equation looks similar to the ordinary scalar GP equation except
that there is an extra term β ′2 in v∗

m∇2vm .
It is convenient to introduce the energy scale h̄ω and the length scale aHO defined by

ω =
√

γµ

M Bz(0)
B ′

⊥ aHO =
√

h̄

Mω
. (15)

For typical values Bz(0) = 1 G, B ′
⊥ = 200 G cm−1 for 87Rb, one obtains h̄ω � 1.69×10−24 erg

and aHO � 0.68 µm. After scaling all the physical quantities by these units, one obtains the
dimensionless form of the reduced GP equation:

−1

2

[
f̃ ′′
0 +

f̃ ′
0

r̃
+

[
2

r̃2
(3 cos2 β̃ − 5) sin2 β̃

2
− β̃ ′2

]
f̃0

]
+ (g̃1 + 4g̃2) f̃ 3

0 + ω̃L f̃0 = µ̃ f̃0, (16)

where the dimensionless quantities are denoted by a tilde. For example, r̃ = r/aHO, f̃0 =
f0a3/2

HO and g̃k = gk/(h̄ωa3
HO). The tilde will be dropped hereafter unless otherwise stated

explicitly.
Figure 1 shows the ground state condensate wavefunction obtained by solving

equation (16) numerically. We have chosen f0(r = 0) = 6 which yields the central
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Figure 1. The initial condensate wavefunction f0(r) in dimensionless form. The radial coordinate
r is also dimensionless.

density n0 ∼ 1.17 × 1014 cm−3. This is roughly of the same order as that realized
experimentally. The difference between the chemical potential and the Larmor energy at
the origin is δµ = µ − ωL = 3.95, which amounts to δµ = 6.68 × 10−24 erg in dimensional
form.

3.3. Time development

Now the time-dependent GP equation (2) is solved numerically with the initial condition
�m = f0(r)vm , with f0 having been obtained in the previous subsection. We have introduced
a tanh-shaped cutoff to mimic the loss of atoms from the trap; particles reaching L � aHO

vanish from the system. We have made several choices of the reversing time T and maximized
the fraction of the condensate left in the trap in the final equilibrium state. The details of the
algorithm are given in [5] and will not be repeated here.

Figure 2 shows the wavefunctions |�m| for the choice T/τ = 1000, where τ = 2π/ωL is
the timescale set by the Larmor frequency at t = 0 and r = 0. One obtains τ ∼ 7.14 × 10−7 s
for the parameters given in the previous subsection. The parameter τ is expected to be the
measure of the adiabaticity. There are two WFSSs possible for F = 2, those with FB = 2
and 1. It turns out that the final vortex state is a mixture of these two states. When the axial field
Bz(t) vanishes at t = T/2, the gaps among WFSSs, SFSSs and NS disappear at r = 0 and the
level crossing takes place there. Then the adiabatic assumption breaks down and some fraction
of the condensate transforms into SFSSs and NS as well as FB = 1 WFSS. Those components
in SFSSs and NS eventually leave the trap and the final condensate is made of FB = 2 and 1
components. It is a remarkable feature of the F = 2 BEC, compared to its F = 1 counterpart,
that the vortex state thus created is a mixture of these two WFSSs. The composite nature of
the final vortex state is best revealed by projecting |�(r)〉 to FB = 1 and 2 states. Let |v〉 be
the vector defined in equation (6) and |u〉 = exp(−iαFz) exp(−β Fy) exp(−iγ Fz)|1〉. Then
�2(r) ≡ 〈v(r)|�(r)〉 and �1(r) ≡ 〈u(r)|�(r)〉 depict the projected amplitudes of |�(r)〉 to
the local FB = 2 and 1 state, respectively. These amplitudes are shown in figure 3 for |�(r)〉
at t = 10 T. It is interesting to note that the FB = 2 component has a winding number 4 while
FB = 1 has 3.

The fraction of the condensate left in the trap at time t has been plotted in figure 4 for
T/τ = 1000. It should be noted that ∼2/5 of the condensate is left in the trap when the system
reaches an equilibrium at t � T .
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Figure 2. Time dependence of the order parameter |�m | for the reversing time T/τ = 1000.
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Figure 3. The projected amplitudes |�2(r)| and |�1(r)| obtained from the order parameter |�(r)〉
at t = 10 T.
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Figure 4. The fraction of the condensate left in the trap, as a function of the dimensionless time
t/τ , for the reversing time T/τ = 1000.
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Figure 5. The fraction of the condensate left in the trap, as a function of T/τ , when the BEC
reaches equilibrium at t � T . The curve is shown for a guide.

Figure 5 shows the fraction of the condensate left in the trap in the equilibrium state
at t � T for various T . It can be seen from this figure that a considerable amount of the
condensate is left in the trap for a wide variety of reversing times T .

In the next section, we analyse the creation of a vortex in the presence of an optical plug
along the centre of the system. It will be shown that the vortex thus created is made purely of
FB = 2 WFSS.

4. Vortex formation with optical plug

The loss of the condensate in the previous section takes place since the energy gaps among
WFSSs, NS and SFSSs disappear at r = 0 when Bz vanishes at t = T/2. One may introduce
an optical plug along the vortex axis to prevent the condensate from entering this ‘dangerous’
region. An optical plug may be simulated by a repulsive potential

V (r) = V0 exp

(
−r2

r2
0

)
(17)
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Figure 6. Time dependence of the condensate amplitude f0 in the presence of the optical plug. The
reversing time is T/τ = 10 000. The condensate amplitudes at t = 0 and T are almost degenerate.

where V0 is determined by the power of the blue-detuned laser while r0 is determined by its
waist size. We take V0 = 9.27 × 10−21 erg and r0 = 5 µm in our computation below.

Now the time-independent GP equation is given by

−1

2

[
f̃ ′′
0 +

f̃ ′
0

r̃
+

[
2

r̃2
(3 cos2 β̃ − 5) sin2 β̃

2
− β̃ ′2 + Ṽ (r)

]
f̃0

]
+ (g̃1 + 4g̃2) f̃ 3

0 + ω̃L f̃0 = µ̃ f̃0

(18)

in dimensionless form, where Ṽ (r) = V (r)/h̄ω. The angle β is given by β(r) =
tan−1[B⊥(r)/Bz(0)]. We will drop the tilde from dimensionless quantities hereafter unless
otherwise stated. The ground state condensate wavefunction is obtained by solving this
equation numerically. We find the relative chemical potential δµ = µ − ωL = 173, which
amounts to δµ = 2.92 × 10−22 erg in dimensional form, and the condensate wavefunction f0

shown in figure 6.
The time-dependent GP equation

i
∂ f0

∂ t
= −1

2

[
f ′′
0 +

f ′
0

r
+

[
2

r2
(3 cos2 β − 5) sin2 β

2
− β ′2 + V (r)

]
f0

]
+ (g1 + 4g2) f 3

0 + ωL f0

(19)

is solved with the initial wavefunction obtained above. Here β = β(r, t) ≡
tan−1[B⊥(r)/Bz(t)]. Figure 6 shows the time dependence of the condensate amplitude as
a function of time for T/τ = 10000, namely T = 71.14 ms in dimensional form. Figure 7
shows the time dependence of the particle numbers of the components �m for the same choice
of T . In contrast with the case without optical plug, the time dependence of the order parameter
is independent of the choice of T , up to a global phase, so long as T/τ is large enough so that
adiabaticity is observed.

The vortex thus obtained has a region near the origin (r ∼ 0) where the condensate cannot
approach due to the presence of the optical plug. The vortex current flows around a multiply
connected region. This situation is analogous to the superconducting current flowing around
a ring. It is natural to expect that a vortex without the optical plug may be obtained if one
withdraws the optical plug after the persistent current is established at t = T . (Note that the
optical plug has been introduced to prevent Majorana flips at r ∼ 0 at t ∼ T/2. Accordingly
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Figure 7. The time dependence of the particle numbers in unit length Nm (t) = 2π
∫ |�m(r, t)|2r dr

for T/τ = 10 000.
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Figure 8. Time dependence of the condensate amplitude f0 for the reversing time T/τ = 10 000.
The potential decays exponentially with the time constant t0 = T for t > T , see equation (20).

the optical plug is not required any longer for t � T .) Let us suppose that the optical plug is
slowly turned off after t = T with the time constant t0:

V (r, t) =
{

V0 exp(−r2/r2
0 ) 0 < t < T

V0 exp(−r2/r2
0 ) exp[−(t − T )/t0] T < t .

(20)

It is found that the condensate oscillates back and forth for small t0. For sufficiently large t0,
however, the condensate smoothly rearranges itself to a vortex state without the optical plug.
Figure 8 shows our numerical result for T/τ = t0/τ = 10 000, for which one still observes
such oscillations.

A vortex with a winding number 4 is thus created without losing any atoms from the
trap. It should be noted, however, that it is technically difficult, albeit not impossible [8], to
introduce an optical plug with a few microns of radius along the centre of the BEC whose
radial dimension without an optical plug is of the order of a few microns.
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5. Conclusions and discussions

The formation of a vortex in a BEC with F = 2 in a Ioffe–Pritchard trap has been considered
by fully utilizing the spinor degrees of freedom. It was shown that a vortex with winding
number 4 is created continuously from a condensate without a vortex, by simply reversing the
axial magnetic field Bz(t). This scenario has been studied with and without an optical plug at
the centre of the vortex. Some amount of the BEC is lost from the trap in the absence of an
optical plug while no atoms are lost in the presence of it. Our numerical analysis shows that
there remains a considerable fraction of BEC even without the optical plug. The introduction
of an optical plug in a trapped BEC is difficult, albeit not impossible.

Our vortex has a large winding number 4 and is expected to be unstable against decay into
four singly quantized vortices in the absence of an optical plug. Whether a vortex with such a
large winding number may be observable depends on how large the lifetime of the metastable
state is compared to the trapping time of the BEC. Our preliminary analysis of the Bogoliubov
equation suggests that the lifetime is of the order of 100 ms and these highly quantized vortices
exist for a considerable duration of time.
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Note added. After we submitted our manuscript, the MIT group reported the formation of vortices according to the
present scenario [9]. They employed hyperfine spin states F = 1 and 2 of 23Na and found that the vortex thus created
had the winding number 2 in the former case while it was 4 in the latter case, consistent with our prediction. The
vortex state has a considerably long lifetime, at least 30 ms after its formation, in spite of the higher winding number,
which suggests that these vortices are rather stable. The stability analysis of highly quantized vortices is outside the
scope of the present work and will be published elsewhere.
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[5] Ogawa S-I, Möttönen M, Nakahara M, Ohmi T and Shimada H 2002 Phys. Rev. A 66 013617
[6] Ciobanu C V, Yip S-K and Ho T-L 2000 Phys. Rev. A 61 033607
[7] Koashi M and Ueda M 2000 Phys. Rev. Lett. 84 1066
[8] Davis K B et al 1995 Phys. Rev. Lett. 75 3969
[9] Leanhardt A E et al 2002 Phys. Rev. Lett. 89 190403


	Copyright: © 2002 Institute of Physics Publishing Ltd. Reprinted with permission from Journal of Physics: Condensed Matter 14, number 49, pages 13481-13491.
	Copyright 2: http://www.iop.org/journals/jpcm


