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We investigate the recently found stationary vortex cluster states in dilute atomic Bose-Einstein
condensates confined by a nonrotating trap, and also present a new stationary three vortex clus-
ter. We find the stationary states by minimizing directly an error norm for the stationary Gross-
Pitaevskii equation, and study the dynamic and energetic stability of the resulting states by solving
the corresponding Bogoliubov equations for the elementary excitations. The results are verified by
integrating the time-dependent Gross-Pitaevskii equation. Contrary to previously reported results,
the stationary states were observed to be both energetically and dynamically unstable. The dynam-
ical decay rate of the clusters is typically very slow, but it should be experimentally observable. The
most promising circumstances to experimentally generate and observe these structures and their

dynamics is in weakly dissipative condensate systems, using phase-imprinting techniques.

The quantum phase-coherence of the alkali atom Bose-
Einstein condensates (BECs) implies them to have super-
fluid properties when rotated. Since the condensate flow
is irrotational, these systems respond to external rota-
tion by creating vortex lines with quantized circulation.
Condensate states containing a single vortex line were
first created using Raman transition phase-imprinting
methods [1] and by rotating the system with a laser
spoon [2, 3]. Later, vortex lattices containing more than
one hundred vortices have been created by the latter
technique [4, 5]. Recently, also multiquantum vortices
were created using topological phase engineering meth-
ods [6, 7]. Based especially on the development of phase-
imprinting methods [8-11] it is to be expected that even
more complicated vortex clusters can be created in the
future.

Atomic BECs are interacting systems, and their non-
linearity implies the dynamics to be in general quite com-
plicated. Especially interesting is the dynamics of states
containing several vortex lines. Vortex dynamics is still
under investigation even in noninteracting systems, in
which the motion of vortex lines is essentially determined
by four factors: the shape of the vortex line, the shape
of the background condensate wave function, the inter-
action between vortex lines and possible external forces
[12]. In interacting systems, the nonlinearity still adds
the complexity of the problem. However, when all these
factors balance each other in a specific way, it is possi-
ble to find stationary vortex cluster states. Recently, it
was shown that there exist a multitude of stationary clus-
ters, so-called H-clusters for noninteracting trapped wave
fields [13]. One of these clusters, the quadrupole cluster
shown in Fig. 1(c), was also shown to have a stationary
counterpart for interacting BECs, but in general there
does not exist a simple correspondence between station-
ary clusters in the interacting and noninteracting cases.
For example, the recently found stationary vortex dipole
state shown in Fig. 1(a) exists only in sufficiently strongly

interacting systems and, hence, can be viewed as solitonic
state [14], see also Ref. [15]. By observing the dynamics
of the dipole and quadrupole states after imposing ini-
tial perturbations on them, it has been argued that these
states are dynamically stable [13, 14]. Another important
issue is the energetic stability of these states—at finite
temperatures the thermal cloud provides the condensate
a dissipative mechanism, and the fate of stationary states
is determined by energetics.

In this paper we study in detail the structure and
both the energetic and dynamic stability of the above-
mentioned stationary dipole and quadrupole vortex clus-
ters, and also present a new stationary cluster consisting
of three vortices. We search stationary vortex cluster
states using a gradient method to directly minimize an
L? error norm for the Gross-Pitaevskii equation. The
advantage of our method compared to energy minimiza-
tion methods is that it finds the nearest stationary state
even if it is not a local energy minimum, as turns out
to be the case for the vortex cluster states. In fact,
they are local mazima of energy with respect to cluster
size. The local dynamic and energetic stability of the re-
sulting stationary vortex cluster states is investigated by
solving the Bogoliubov equations for them. Excitations
with negative energies but positive norm were found for
all the clusters, implying their local energetic instability.
In addition, and contrary to previously published results
[13, 14] stating that the vortex dipole and quadrupole
clusters are dynamically stable, we find also excitations
with imaginary frequencies for all the cluster states. The
existence of the imaginary modes implies that infinitesi-
mal perturbations may grow exponentially in time, e.g.,
in the case of a doubly quantized vortex these excita-
tions are responsible for the splitting of the vortex state
into two singly quantized vortices [16, 17]. The dynamic
instability of the vortex cluster states was confirmed by
integrating the Gross-Pitaevskii equation in real time for
states in which a small amount of unstable excitation was



added to the stationary state wave function. In addition,
we have used energy minimization methods to investigate
the total energy of cluster states as functions of their size,
and in this way enlightened their global energetic stabil-
ity properties.
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FIG. 1: Density profiles of a stationary vortex dipole (a),
tripole (b) and quadrupole (c). The separations of the out-
ermost vortices are marked by d2, d3 and d4 for the dipole,
tripole and quadrupole, respectively. The plus signs in the
vortex core denote vortices and minus signs antivortices. The
strength of the interactions g is 170 for the vortex dipole and
160 for the tripole and quadrupole.

At sufficiently low temperatures, the thermal gas com-
ponent can be neglected and, hence, the dynamics of a
harmonically trapped dilute atomic BEC is determined
by the time-dependent Gross-Pitaevskii (GP) equation
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where the nonlinear Hamiltonian H = H [¢)] containing
the condensate wave function v (r,t) itself is given by

Hly) = ——Vz + Vi (r) + gloo(x, ). (2)

Above, the external potential Vi, (r) = $m(wjz® +wiy® +

2
w?2?) is used to trap the atoms having mass m and the
strength of the interactions is governed by parameter g =
4rh’a/m written in terms of the s-wave scattering length
a. The condensate wave function is normalized according
to [|¢|?dr = N, where N is the total number of atoms
in the condensate.

In the following we are interested in the energy of var-
ious vortex cluster states, and their stability. The total
energy of the condensate can be calculated as

Bl = [ o) (- o 4 Tiew)) o)
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On the other hand, the local stability of the stationary
solutions #(r,t) = ¢(r)e” ! of the GP equation can be
determined from the quasiparticle spectrum given by the

Bogoliubov equations

Lugy(r) + ng (r)vg(r) = €quq(r),
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where £ = — V2 + Vi (r) — o+ 29| (1) 2, uy (r), vy (x)
are the quasiparticle amplitudes, and ¢, is the energy of
the mode specified by quantum numbers ¢. If the spec-
trum for a stationary state contains an anomalous ex-
citation with positive norm [ [|uq(r)|* — |vy(r)|?] dr but
negative energy €, < 0, the state is locally energetically
unstable, and decays in the presence of dissipation and
quantum fluctuations. Vice versa, if the positive-norm
spectrum is strictly positive, the state is locally ener-
getically stable. Also dynamic stability can be inferred
from the Bogoliubov equations: If there exists an excita-
tion for which the energy €, has nonvanishing imaginary
part, the state is dynamically unstable and small initial
perturbations begin to grow exponentially in time.

The Hamiltonian (2) of the system is obtained by func-
tional differentiation of the energy functional (3)
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where the conjugate v *of the order parameter may be
regarded as independent of ¢). Thus, the local energy
minima may be found by minimizing the energy func-
tional with steepest descent method using H[¢] ¥ (r,t) as
the gradient. However, since the stationary states turn
out to be not local minima of the energy, this method
cannot be used to find them Instead, we define a func-
tional Fih, u] = [ |(H[¢)] — p)t(r)|>dr, which clearly has
global minima only at the stamonary solutions of the GP
equation, for which the functional vanishes. Thus, we
searched stationary states using the gradient
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On the other hand, the chemical potential that minimizes
the functional is obtalned as Nu = [¢*(r)H[y]y(r)dr.
As in the case of the energy minimization, the total num-
ber of the particles IV is to be held constant during the
minimization procedure.

For simplicity and computational convenience, we con-
sider only the effectively two-dimensional pancake ge-
ometry with w, > w, := w, = w,, such that the z-
dependence of the condensate wave function and the low-
est energy quasiparticle amplitudes can be taken to be
of the simple factorized form e~w=*"/2 This simplifies
the GP and Bogoliubov equations and, actually, they be-
come essentially independent on the trapping frequency
wy. The resulting dimensionless GP equation is
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where the dimensionless quantities denoted by tilde are
obtained from the original ones by scaling the length
by a, = \/h/(mw,), the time by w ! and the energy
by hw,. Here we choose the normalization condition
[ [¥(7)|2dF = 1, which implies the strength of the interac-
tion to be § = 4v/2rNa/a,. Equation (7) shows that the
only physical parameter we need to fix is §, which we take
to be 160 for the vortex tripole and quadrupole and 170
for the vortex dipole, except for the results presented in
Fig. 2, where the value 160 is used for all the cases. These
parameters correspond, for example, a BEC of NV =~ 9000
23Na atoms with s-wave scattering length @ = 2.75 nm
trapped using the frequency w, = 27 x 200 Hz.

The vortex dipole shown in Fig. 1(a) is a pair of a
vortex and an antivortex, whereas there is one vortex
in the center of the condensate and two antivortices be-
sides it in the vortex tripole, see Fig. 1(b). As shown
in Fig. 1(c), the vortex quadrupole consists of two vor-
tices and two antivortices opposite to each other. The
total angular momentum and topological charge of the
vortex dipole and quadrupole vanishes. However, the
novel vortex tripole holds, in general, a nonzero angular
momentum—even when stationary.

Let us now consider a minimal energy vortex tripole
configuration with the cluster size ds, see Fig. 1(b). Due
to symmetry and energy conservation, the vortex sepa-
ration must remain constant in temporal evolution, and
the three-vortex chain can only rotate clockwise or coun-
terclockwise if not being stationary. For ds — 0, the vor-
tices coalesce into one antivortex in the center, and the
rotation of the chain must be in the clockwise direction
seen from the positive z-direction. On the other hand,
for increasing dz such that the antivortices disappear in
the boundary region of the condensate, one is left with
one vortex in the center, and an counterclockwise rota-
tion is expected. Between these extremes, there should
be a critical separation d§ for which the tripole cluster is
stationary. This indeed turned out to be the case.

To find good initial values for the method of the steep-
est descent for the functional F[i, u], we first minimize
the total energy functional using as initial ansatze wave
functions in which the vortex phases are printed by hand.
In this initial minimization process, we fix the conden-
sate phase. The locations of the phase singularities, the
vortices, are thus conserved in the minimization process.
The energies of the BECs obtained by this method are
shown as functions of the cluster sizes ds, d3 and d4 in in
Fig. 2 for the vortex dipole, tripole and quadrupole, re-
spectively. From these energy curves we can immediately
make two important observations. First of all, we note
that all the clusters have a critical vortex separation df
for which the configuration energy is stationary with re-
spect to the vortex separation parameter d;. Thus for all
the clusters we have a candidate 9§ for a stationary state.
On the other hand, we see that all the energy curves
are concave, with the stationary points corresponding to
maxima of the constrained energy. This suggests that
none of the possible stationary clusters is energetically

stable.
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FIG. 2: Energy of the vortex dipole (dashed line), tripole
(solid line) and quadrupole (dash-dotted line) as functions of
the distances d2, ds and ds, respectively. The strength of the
interactions is § = 160 for all the configurations.

The stationary states {¢{} are found by minimizing
the functional F[t, u] with the method of the steepest
descent by using {1§} as initial wave functions. Rela-
tive errors F[v*, u]/(Np?) < 1072! were found for all the
cluster configurations, which justifies that the states {¢)7}
are, in fact, very accurate stationary states. The config-
urations shown in Fig. 1 were obtained by this method.

To verify the stationarity and to investigate stability
of the vortex clusters, we solved the Bogoliubov equa-
tions for the states {¢f}. All the quasiparticle spectra
contain a condensate mode with energy having magni-
tude smaller than 107%%w,, confirming that the wave
functions satisfy the stationary Gross-Pitaevskii equation
and thus that the clusters are stationary states. Further-
more, all the spectra contain at least one negative-energy
anomalous mode, implying the states to be energetically
unstable—note that this was already suggested by the
fact that the stationary clusters correspond to local max-
ima of the constrained energy curves presented in Fig. 2.
Finally, the computations revealed that the Bogoliubov
equations had solutions with non-real eigenvalues, sug-
gesting that all the clusters are dynamically unstable.
The computed Bogoliubov energies of the lowest modes
are shown in Table L.

Re(e2) | Im(e2) ||Re(es) | Im(es) ||Re(es) | Im(eq)
—0.56 0 —0.69 0 —1.1 | £0.31
0 |%£0.017 0 |£0.046( —0.48 0
1.0 0 0 |=+0.60|—-0.48| 0
1.0 0 0.97 0 0 |£0.010
1.2 0 1.0 0 1.0 0

TABLE I: Energies of the lowest elementary excitations in
the unist of hw, for the vortex dipole, tripole and quadrupole
are denoted as ez, ez and e3, respectively. The strength of
the interactions § is 160 for the vortex dipole and 170 for the
tripole and quadrupole.



The Bogoliubov equations yield the response of the
system to infinitesimal perturbations. Therefore, it is
convenient to test the dynamical stability of the system
also in the regime where the perturbations are allowed
to grow to be macroscopic, which is accomplished by
adding a small perturbation with imaginary energy to
the stationary state and by solving the dynamics from
the time-dependent GP equation. For all the three dif-
ferent clusters, the vortices in the perturbed states were
first observed not to move noticeably in time when the
small perturbation had not yet grown to be macroscopic.
After a time interval denoted as T, the vortex dipole was
observed to rotate clockwise or counterclockwise depend-
ing on the initial perturbation. The interval T was also
observed to be larger for smaller initial perturbations.
For an example, interval length for a vortex dipole in the
present calculations was about 200/w, when the popula-
tion of the excited mode was approximately 10 particles.
Small imaginary part of the energy of the excitation was
also observed to yield large time interval T'.

The vortex dipole with different types of random noise
was reported to be robust under temporal evolution in
Ref. [14] up to maximum times of the order of 1000/w,.
However, it is not clear was a asymmetric trap used, what
was the particle number, and what was the exact form of
the perturbations. It is possible that the perturbations
imposed did not excite the rotational mode or that the
parameters of the system were such that the vortex dipole
was, indeed, dynamically stable. Our preliminary calcu-
lations show that complex modes exist in a wide range of
the total particle number. However, the detailed study
of the excitation spectra as a function of particle num-
ber and trap asymmetry is out of the scope of the recent
studies and is left for future research.

From all of the thee types of vortex clusters in question,
only the perturbed vortex dipole state preserves its shape

in the temporal evolution. The vortices in the quadrupole
tend to drift to the center of the condensate and annihi-
late each other. Depending on the initial perturbation,
one of the antivortices in the vortex tripole drift to the
edge of the BEC and a leftover vortex dipole remains in
the condensate. These inspections suggest that the vor-
tex dipole is in some sense the most stable structure of
these configurations.

In conclusion, we have studied several stationary vor-
tex clusters in pancake-shaped nonrotating BECs. The
stationary states were found in very high precision using
the method of the steepest descent to directly minimize
the GP error norm. As far as the authors are aware this
method has not been previously used to search station-
ary states of BECs. The stability of the vortex dipole,
tripole and quadrupole was studied in terms of the ele-
mentary excitations using the Bogoliubov equations and
macroscopic perturbations using the time-dependent GP
equation. Both methods showed that the cluster configu-
rations are both energetically and dynamically unstable.
The detailed dependence of the stability of the stationary
vortex clusters on the system parameters is left for future
research which could solve the apparent contradiction of
the results to the ones presented in Refs. [13, 14]. It is
also an interesting question whether the recently discov-
ered [18] genuinely three-dimensional structures, namely
vortex stars, parallel vortex rings and perpendicular vor-
tex rings, have counterparts in interacting BECs.
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