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this thesis, we study the elementary excitations of an irrotational condensate within a recently developed systematic second «
perturbation theory. The collapse and revival of certain elementary excitations is discovered.
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condensates, a novel stationary state, a vortex tripole holding finite angular momentum is presented. Also the lowest elemen
excitations of the so-called vortex dipole, tripole, and quadrupole states are studied.

Keywords Bose-Einstein condensation, vortex, non-linear phenomena

uDC 530.145:532.527:538.941 Number of pages 49
ISBN (printed)  951-22-7439-6 ISBN (pdf) 951-22-7440-X
ISBN (others) ISSN 1456-3320

Publisher  Helsinki University of Technology, Materials Physics Laboratory

Print distribution

[0] The dissertation can beread at http://lib.hut.fi/Diss/







In memoriam
Martti M. Salomaa






- vii -

Acknowledgements

This work has been carried out in the Materials Physics Laboratory at the Helsinki
University of Technology during the years 2002-2004. CSC-Scientific Computing Ltd
is acknowledged for computational resources. Financial support from the Finnish Cul-
tural Foundation, the Foundation of Technology, the Research Foundation of Helsinki
University of Technology and the Academy of Finland is appreciated.

I thank my supervisor Prof. Martti Salomaa for providing excellent working condi-
tions for the research and Dr. Tech. Sami Virtanen not only for instructing my doctoral
thesis, but also for instructing two special assignments and my Master’s thesis on Bose-
Einstein condensation. I am also indebted to Prof. Mikio Nakahara who offered me an
opportunity to collaborate with him in the area of topological vortex creation while I
was an undergraduate student. Special expression of gratitude is devoted to Dr. To-
moya Isoshima for his altruistic participation in my research and to Dr. Tapio Simula
for constructive discussions. Furthermore, I acknowledge my co-authors Prof. Tetsuo
Ohmi, Prof. Kazushige Machida, Dr. Takeshi Mizushima, M.Sc. Hisanori Shimada, Dr.
Shin-ichiro Ogawa, and M.Sc. Noaki Matsumoto for their contribution to my research
on Bose-Einstein condensation and M.Sc. Juha Vartiainen, M.Sc. Ville Bergholm, and
M.Sc. Laura Koponen for collaboration on quantum computation. Also M.Sc. Antti
Niskanen, M.Sc. Teemu Ojanen, M.Sc. Niko Marola, and all other people who have
joined the inspiring discussions in the Theory Room are acknowledged.

Finally, I warmly thank my family Timo Motténen, Anita Mikkonen, Milla M6tténen
and Katariina Mikkonen for continuous support and my bride-to-be Hanna Kukkonen
for her endless love and kindness.

“The meaning of life is
encapsulated in three words:
It’s my life. “

Otaniemi, November 2004

Mikko Mottonen



- vili —

List of Publications

This Thesis is a review of the author’s work in the field of quantized vortices and ele-

mentary excitations in Bose-Einstein condensates of dilute atomic gases. It consists of

an overview and the following publications in this field:

L.

I1.

ITI.

IV.

S-i. Ogawa, M. Mottonen, M. Nakahara, T. Ohmi, and H. Shimada, Method to
create a vorter in a Bose-Einstein condensate, Phys. Rev. A 66, 013617 (2002).
(© 2002 American Physical Society.

Mikko Mé&ttonen, Naoki Matsumoto, Mikio Nakahara, and Tetsuo Ohmi, Continu-
ous Creation of a Vorter in a Bose-Einstein Condensate with Hyperfine Spin F=2,
J. Phys.: Condens. Matter 14, 13481 (2002). © 2002 IOP Publishing Ltd.

M. Mottonen, T. Mizushima, T. Isoshima, M. M. Salomaa, and K. Machida, Split-
ting of a doubly quantized vorter through intertwining in Bose-FEinstein conden-
sates, Phys. Rev. A 68, 023611 (2003). (© 2003 American Physical Society.

M. Mé6ttonen, S. M. M. Virtanen, T. Isoshima, and M. M. Salomaa, Stationary vor-

tex clusters in nonrotating Bose-Einstein condensates, (2004, submitted to Phys.
Rev. A).

M. Mottonen, S. M. M. Virtanen, and M. M. Salomaa, Collapse and revival of
excitations in Bose-Einstein condensates, (2004, accepted to Phys. Rev. A). ©
2004 American Physical Society.

Throughout the overview, these papers are referred to by their Roman numerals.



Author’s Contribution

The research presented in this dissertation has been carried out in the Materials Physics
Laboratory at the Helsinki University of Technology during the years 2002-2004.

The author has been active in writing all the papers I-V and paper V was mainly
written by him. In papers I-1I, the author has carried out all the numerical computations
for which he had developed all the codes and methods. In paper III, the author developed
a parallel processing code to solve the equations of motion in three-dimensional complex
space and used it to obtain the results. For the paper IV, written based on the author’s
initial ideas, he developed the method to find the exceptional stationary states of the
nonlinear Gross-Pitaevskii equation. In the studies of paper V, the author developed
numerical tools to implement the second order perturbation theory for dilute condensates
and produced all the results in the paper.



List of Abbreviations

The following acronyms are used in the overview:

BEC  Bose-Einstein condensate
BCS Bardeen-Cooper-Schrieffer
WFSS Weak-field seeking state
SFSS  Strong-field seeking state
NS Neutral state

GP Gross-Pitaevskii

HFB  Hartree-Fock-Bogoliubov



Contents
Acknowledgements vii
List of Publications viii
Author’s Contribution ix
List of Abbreviations X
Contents X1
1 Introduction 1
2 Zero-Temperature Mean-Field Theory 7
2.1 Scalar condensates . . . . . . . .. ... 7
2.2 Vortex states . . . . . . . . .. 10
2.3 Spinor condensates . . . . .. . ... 14
2.4 Splitting of a doubly quantized vortex . . . . . . . .. .. ... ... 17
3 Finite-Temperature Mean-Field Theories 22
3.1 Zeroth order theory . . . . . . . . ... ... 22
3.2 First and second order theories . . . . . . . . . ... ... .. ... ... 24
3.3 Energies and decay of excitations . . . . ... ... . 0oL 26
4 Summary 30
References 32
Errata 37

Abstracts of Publications I-V 38






1 Introduction

In 1924, Albert Einstein received a request to translate an original work of Satyendra
Nath Bose to be published in Zeitschrift fiir Physik. In the manuscript, Bose gave an al-
ternative derivation of the Planck distribution for the black-body radiation spectrum [1].
Extending Bose’s ideas to massive noninteracting particles, Einstein realized that these
bosons, particles with integer spin, could condense into the ground state of the system
at low temperatures [2,3]. Referring to the discoverers of the phenomenon, the macro-
scopic occupation of a single quantum state at low temperatures is called Bose-Einstein
condensation.

The original work of Bose and Einstein involved only noninteracting bosons and,
hence, it was argued that the condensation may be an anomality of the ideal gas ap-
proximation. Nevertheless, Fritz London suggested in 1938 that the then recently found
superfluid “*He could be a realization of a Bose-Einstein condensate (BEC) [4,5]. Since
superfluid *He is a strongly interacting system, it cannot be exhaustively treated with
known microscopic theories and the exact characteristics of the lambda transition, i.e.,
the phase transition into the superfluid state, remain unclear. However, the condensate
fraction of superfluid “He was determined in 1995 using neutron-scattering measure-
ments [6] and Monte Carlo simulations [7]. Due to strong interactions between the *He
atoms, only about 10% of the atoms are in the condensed state and hence superfluid *He
is far from a pure BEC. In addition, the Bardeen-Cooper-Schrieffer (BCS) transition re-
sponsible for superconductivity [8] in ordinary superconductors and the phase transitions
of superfluid *He may be interpreted as the formation and simultaneous Bose-Einstein
condensation of fermion pairs, but these systems deviate even more from an ideal bosonic
gas.

Wide interest was devoted to dilute atomic gases in the 1960’s in order to find a
quantum system close to the ideal BEC. Before it was possible to reach this goal, major
development was to be achieved in the field of trapping and cooling neutral atoms [9-12].
In laser cooling, laser fields with frequency just below the resonance are directed to the
atom cloud from all directions in order to slow down the atoms. Whereas the moving
particles absorb the Doppler up-shifted photons moving towards them with a higher
probability than the Doppler down-shifted photons moving in the same direction with
the atoms, the emission of the photons has no preferred direction. It only takes some
microseconds to cool the atoms to the “Doppler limit” which is approximately 1 mK at
the typical resonance frequencies [13].

For typical peak particle densities 10'' — 10*® ¢m=3, the condensation temperature
Tixc is in the temperature range 1072 — 10~% K. Thus, further cooling of the atom cloud
is necessary. In principle, the simplest cooling technique is evaporative cooling, in which
the atom trap is opened in such a way that the most energetic particles escape from the
system which is subsequently thermalized to a lower temperature. Using evaporative
cooling, trapped atoms have been cooled down to 50 nK. Other widely used cooling



methods include sub-Doppler laser cooling and laser “sideband” cooling.

The trapping of neutral atoms is conventionally based on shifting of atomic energy
levels in magnetic fields produced using coils, laser fields, or both [10-15]. The Zeeman
energy of some atomic states increases with increasing field, and vice versa for some
other states. The states of the first type are called weak-field seeking states (WFSSs)
and the latter ones strong-field seeking states (SFSSs). In addition, there may be states
in which atomic spins are orthogonal to the local magnetic field and, hence, these states
are unaffected by the magnetic field to the first approximation. These states are called
neutral states (NSs). The Zeeman energy, responsible for the confinement of the atoms,
is mainly determined by the orientation of the electronic spins since the nuclear magnetic
moment is negligibly small compared with the magnetic moment of the valence electron.
However, the nuclear spin has a strong effect on the orientation of the electron spin for
the alkali atoms in weak magnetic traps. For example, the ?*Na and 8"Rb atoms may
have hyperfine spin* 1, for which there exists one WFSS, one SFSS and one NS.

A rather new result [16] of classical electromagnetic theory forbids the magnetic
field to have a maximum in free space. Thus, only WFSSs can be trapped in a purely
magnetic trap. On the other hand, all the hyperfine states can be trapped in optical
traps which are realised with lasers having a frequency far below (red detuned) or above
(blue detuned) the resonance frequency, giving rise to a conservative attractive or a
repulsive force, respectively [14,15]. Since the optical potential is proportional to the laser
intensity, the laser field should be inhomogeneous in space. Combinations of magnetic
and optical traps are so-called magneto-optical traps [17], for which the frequency of
the spatially homogeneous laser field is close to resonance and, in addition, there is a
weak inhomogeneous magnetic field which adjusts the resonance frequency of the atoms,
resulting in the strength of the optical potential to be inhomogeneous. However, the
energy transfer and spin flips due to nearly resonant laser field render it impossible to
achieve condensation in magneto-optical traps.

In the beginning of the 90’s, the most promising candidates for neutral atoms to
form a gaseous BEC were the alkali atoms, since their atomic excitation spectra dove-
tailed with the frequencies of the available lasers. Finally in 1995, a breakthrough took
place when Andersson et al. at JILAT, Davis et al. at MIT? and Bradley et al. at Rice
University managed to observe BECs of 8"Rb [18], 2*Na [19] and “Li [20] atoms in mag-
netic traps, respectively. These trail-blazing experiments gave a remarkable boost to
both the experimental and theoretical investigation of BECs in alkali atom vapours.
To date, over 100 different groups have achieved atomic condensation and new atomic
species have been added to the family of BECs including spin-polarized hydrogen [21],
8Rb [22],metastable *He [23,24], *'K [25] and '33Cs [26].

In December 2003, the observation of Bose-Einstein condensation of both “°K, and

*Hyperfine spin 2 is also possible for these atoms.
tJoint Institute for Laboratory Astrophysics, University of Colorado at Boulder.
tMassachusetts Institute of Technology.



6Liy molecules was reported [27-29] and already in January 2004 the observation of con-
densed fermionic atom pairs of °K [30], “the Fermi condensate”, attracted worldwide
media publicity and scientific attention. The difficulties in imaging the fermionic conden-
sate were overcame in the BCS-BEC crossover by changing the interaction between the
atoms in a such way that molecular BEC was formed and the BEC was then observed. It
was also shown that without the fermionic condensate the formation of molecules is much
slower and actually the observed BEC corresponds to the original fermionic condensate.
The reason why this discovery is especially inspiring, is that the temperature at which
the condensation takes place is as high as 7% of the Fermi temperature. In comparison
with the Fermi temperatures of present superconductors, the 7% would correspond to a
temperature much higher than room temperature.

The Bose-Einstein condensate of dilute alkali atom gases is not only interesting since
it better fits the original work of Bose and Einstein than superfluid *He, superconduc-
tors or superfluid *He, but also since it is directly observable using optical imaging
techniques and it forms a highly controllable macroscopic quantum system. The mag-
netic and optical trapping potentials may be adjusted to have a multitude of shapes
and the interactions between the atoms may be tuned in a wide range using Feshbach
resonances [31,32]. Even the sign of the s-wave scattering length describing the interac-
tions between the atoms in these dilute BECs at ultralow temperatures [33,34] can be
reversed. These peculiar properties of dilute BECs render them ideal systems on which
to develop and test thermal quantum field theories [35].

In the zero-temperature limit, it is commonly assumed that all the atoms are in the
condensed state of the WFSS and the system may be characterized by a single complex
field called the order parameter. The squared magnitude of the order parameter yields
the particle density and its phase gradient is proportional to the coherent particle flow
of the condensate. The dynamics of the order parameter are governed by the Gross-
Pitaevskii (GP) equation whereas the excitations of the stationary states are described
by the Bogoliubov eigenvalue equations which have been proven to be highly accurate
for temperatures T < Type [36-39]. Due to interactions between the particles, the
GP equation is nonlinear and, therefore, analytically solvable only in rare cases. Since
the Bogoliubov equations contain the stationary-state order parameter, they can only be
solved analytically in just the same cases as also the GP equation. Hence, numerical tools
are needed, in general, to study the characteristics of BECs even at zero temperature.

The simplest way to take the finite temperature into account is to calculate the num-
ber of thermal atoms using the excitations obtained from the Bogoliubov equations in
the Bose distribution function and adjusting the number of condensed particles such
that the total number of particles matches the desired value. A more accurate theory
is obtained within the so-called Popov approximation to the Hartree-Fock-Bogoliubov
(HFB) theory [40,41]. In the HFB-Popov theory, both the GP equation and the Bo-
goliubov equations are generalized to include an effective potential arising from the
distribution of the thermal particles. These equations are solved self-consistently for a



given total number of particles. In comparison with the measured excitation energies at
JILA [42], the HFB-Popov theory yields the same energies within an accuracy of 5% for
temperatures 7' < 0.67 ¢ [43].

A lot of theoretical effort has been devoted to explaining the anomalous behaviour
of the excitation energies above 0.6T,y using static [44-51] and kinetic [52-56] theories.
The second order theory presented in Refs. [50,51] uses systematic perturbation theory
to take into account the interaction terms in the Hamiltonian. Recently, this theory
was extended to include time-dependent external perturbations used to drive the system
in the experiments [42], leading to fair agreement with the measured energies and the
damping rates for the collective modes [57,58]. The perturbation is only introduced
to excite the measured density oscillations of the condensate and is, of course, absent
in thermodynamic equilibrium. Without the time-dependent perturbation, the second
order theory, however, does not show the anomalous energy shift. Thus the energy
shift may be argumented to be a result of the measurement techniques rather than
characteristics of the excitations in the thermal equilibrium. In the light of these results,
it is possible that the HFB-Popov theory describes the elementary excitations in the
thermodynamic equilibrium quite accurately even at temperatures above 0.6755c.

The implementation of the second order theory is computationally challenging and
there exist only a few numerical investigations thereof in the literature [57,59,60]. In
Paper V, the second order theory is applied for the first time to pancake-shaped conden-
sates and the excitation spectra and the dynamics of the excitations are investigated.
The dynamics of certain modes are demonstrated to show a collapse and revival phe-
nomenon which has been mentioned in the previous literature [50,51], but not calculated
exactly. Moreover, the second order theory is used to qualitatively explain the recent
observation of the Beliaev process in the dynamics of the so-called scissors mode [61,62].

One fundamental question is whether the atomic BECs are superfluid. Superfluid
properties are closely associated with the ability to sustain frictionless flow, which is
related to the stability of vortices. Quantized vortices are topological defects in the
complex-valued order parameter. There is an integer multiple, the quantum number of
the vortex, of 27 phase winding encircling a vortex which induces an azimuthal particle
flow, i.e., angular momentum. Since the phase winding is discrete and the order param-
eter is a continuous function, the phase winding is the same along every loop encircling
close enough to the vortex line. This implies a phase singularity along the vortex axis,
where the continuous order parameter must vanish.

Quantized vortices were first discovered in superconductors [63] (1964) using neutron
diffraction and in superfluid *He [64] (1974) with a photographic technique making use
of electron bubbles trapped in vortex cores. After the first physical realizations of alkali
atom BECs, there was a wide debate that vortices should also occur as excitations of the
coherent condensate. Many methods were suggested to create vortices and in 1999 the
first vortex was created in an alkali atom BEC [65] using a phase imprinting method.
In the phase imprinting method, the order parameter obtains its phase from that of



an additional laser field. Vortices may also be created by stirring the condensate with a
focused laser beam [66—68] or by rotating the magnetic trapping potential [69]. However,
vortices thus created were all single-quantum vortices. Since the quantum number of the
vortex is proportional to the angular momentum it sustains, a naive guess would be
that by increasing the rotation frequency of the trapped condensate, one could create
multiquantum vortices. This turned out not to be the case, but instead, vortex lattices
of up to about 100 singly quantized vortices were observed [70] due to the fact that the
energy of a vortex is roughly proportional to its squared quantum number.

In Refs. [71,72], a topological method to create multiquantum vortices was proposed.
In this method, the BEC is confined in a magnetic trap and it was shown that a multi-
quantum vortex can be created by reversing the bias magnetic field of the Ioffe-Pritchard
trap [14,15]. In addition to the magnetic trap, a narrow optical potential was introduced
and focused into the center of the condensate to avoid the spin flips which may take place
when the magnetic field vanishes. The laser field was in the core of the multiquantum
vortex created and hence, strictly speaking, a persistent current analogous to the ones
in superconducting rings was created rather than a vortex. This method has not been
verified experimentally since the requirement of the narrow laser beam causes additional
difficulties. Nevertheless, it is shown in Papers I and II that roughly half of the par-
ticles escape from the trap in the absence of the laser provided that the bias field is
reversed with the right speed. Using the scenario of Papers I and II, the first vortices
with quantum numbers two and four were experimentally observed in dilute BECs [73].

The experimentally realized double-quantum vortices were observed to have a lifetime
of at least about 20 ms. Since the doubly quantized vortex state of the harmonically
trapped BEC is known to be dynamically unstable [74], i.e., small perturbations can
grow exponentially in time, the vortex was expected to split into two singly quantized
vortices. In Paper III, this splitting is investigated in cigar-shaped condensates used in
the actual experiments and it was observed that the two vortex lines intertwine as they
split. This intertwining is a purely three-dimensional phenomenon which remains to be
verified in the experiments. However, the actual splitting has recently been observed in
cigar-shaped BECs [75] in harmony with the results of Paper III.

In Paper IV, some rotationally asymmetric stationary states of pancake-shaped BECs
are investigated. The existence and dynamical stability of two of these states, namely
a vortex dipole and quadrupole, was first reported in Refs. [76,77]. Nevertheless, the
energetic stability of these states remained unanswered. In our studies, the states proved
to be both energetically and dynamically unstable. Moreover, a novel state, vortex
tripole, involving one vortex in the center of the BEC and two off-axis antivortices at
the same distance from the center was introduced. All the three vortices in the tripole
are collinear. If the distance between the vortex and the antivortices is small (large),
the antivortices precess in the clockwise (counterclockwise) direction. Hence, there must
exist a certain distance over which the state is stationary. Moreover, the stationary vortex
clusters turned out not to be local minima of the free energy, but rather saddle points.



Hence, the most promising circumstances to experimentally generate these structures
are in weakly dissipative condensate systems, using phase-imprinting techniques.

The structure of this overview is the following. In Sec. 2, we discuss the zero-
temperature mean-field theory for weakly interacting BECs. We introduce the scalar
order parameter and review the derivation of the GP and the Bogoliubov equations. We
also present these equations for a spinor-valued order parameter and discuss the topolog-
ical method to create multiply quantized vortices. Furthermore, the splitting of doubly
quantized vortices and the asymmetric stationary states are investigated.

Section 3 is devoted to the presentation of the second order theory for Bose-Einstein
condensed vapours. By using systematic perturbation theory we derive the GP and
Bogoliubov equations more rigorously than in Sec. 2. They are the starting point for
the second order theory, ¢.e., the zeroth order approximation. The first order theory
turns out to be essentially the HFB-theory for which, motivated by the complete second
order theory, the Popov approximation can be applied. Finally, the energies and decay
of elementary excitations is studied within the second order theory.



2 Zero-Temperature Mean-Field Theory

In this section, we derive the GP equation to solve the dynamics of the BECs and the
Bogoliubov equations to find the excitation spectra of stationary states. The derivation
is accomplished using the field operator and assuming that it is fully described by the
condensate order parameter at zero temperature. A more rigorous derivation of the
equations is given in Sec. 3. The GP and Bogoliubov equations are used in Secs. 2.2
and 2.4 to study the properties of stationary vortex clusters and doubly quantized vor-
tices, respectively. In Sec. 2.3, we present the GP equation for a spinor condensate with
the hyperfine spin F' = 2 and show how it can be used to create a fourfold quantized
vortex state.

2.1 Scalar condensates

In this subsection, we consider a BEC trapped in a magnetic potential for which the
magnetic field does not vanish in the region of the BEC. Hence, only the WFSS is
trapped and spin flips to the other spin states may be taken to be negligible. The WFSS
can be described by a single complex-valued order parameter ®(r), which is the quantum
expectation value of the field operator

oo

U(r) = ir)as, (2.1)

1=0

where the single-particle wave functions {t;(r)} form an L?*-complete orthonormal basis
and the symbol a; denotes the usual bosonic annihilation operators of the ith single-
particle state. Due to the spontaneously broken gauge symmetry [78,79], the expectation
value of the field operator is nonzero in the presence of the condensate. The absolute
value of the order parameter yields the density of the condensed particles n, = |®(r)?
and, hence, the order parameter may be presented as

®(r) = /ne(r)e), (2.2)

where we have introduced the phase function S(r). The velocity of the superfluid flow
is defined as

v = W:;(r). (2.3)

These equations also hold at finite temperatures, but in that case the total number of
particles N also includes contributions from the thermal gas.

In terms of the field operator in Eq. (2.1), the Hamiltonian of the many-particle
system is given by

H= /@T(r)ﬁ(r)@(r)dr—ké// W)t (e )V (r — o) (r')U(r)drdr, (2.4)



where the operator iL(r) is the single-particle Hamiltonian in the Schrodinger picture
and V(r — r’) is the interatomic two-body interaction potential. In dilute BECs, the
interaction potential may be approximated by an effective delta-function potential [14,15]

V(r—r1') = gd(r—1'), (2.5)
where the interaction strength g may be expressed using the two-body s-wave scattering
length @ and the atomic mass m as

_ dnha

g=—" (2.6)

This approximation does not hold at high energies, which leads to divergences of certain
quantities which, however, can be renormalized properly. The single-particle Hamilto-
nian may be written as

h(r) = ===+ Virap(r), (2.7)

where the trapping potential Vi, (r) consists of a magnetic field and, possibly, an ad-
ditional optical field. However, the optical field should be non-confining or it should be
applied after the condensate has relaxed into a pure WFSS for the scalar condensate
approximation to be valid.

We use the Heisenberg picture where time development is contained in the operators.
In the Heisenberg picture, the temporal development of operators is obtained from the
Heisenberg equation of motion

ihd,(r, t) = [U(r, t), H]. (2.8)
The canonical commutation relations of the annihilation and the creation operators

[ai,a;] =6, lal,al]=0, and [a;a;]=0 (2.9)
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yield the equal-time commutation relations for the field operators
[F(r), W) = 6(r =), [¥(r), ()] =0, and [¥(r), ()] =0. (2.10)

Using the commutation relations (2.10) and the interatomic potential of Eq. (2.5), the
Heisenberg equation of motion for the field operator assumes the form

0 (r, 1) = [ﬁ(r,t) v g\iﬂ(r,t)xif(r,t)] U(r, 1), (2.11)

In the zero-temperature limit, thermal and quantum fluctuations of the field operator
are negligible and the field may be accurately described by its expectation value, i.e., the
equation of motion for the order parameter ®(r,t) = (¥(r, t)) is obtained from Eq. (2.11)
by replacing the field operator with the order parameter. This substitution yields the
GP equation

h?v?

Zhat(I)(I',t) = om

+ Virap(r) + g|®(r, 1) |*| @(r, 1), (2.12)




which was originally independently obtained by Gross [80] and Pitaevskii [81]. Owing to
the non-linear term arising from the interactions between the atoms, the GP equation is
also referred to as a nonlinear Schrodinger equation. This terminology may be somewhat
misleading, since the Schrodinger equation for any pure quantum state is always linear.
However, one must recall that the GP equation is not an equation for a pure quantum
state of the system, but rather an effective equation for the matter field describing the
average particle distribution and velocity of the BEC.

In addition to the temporal evolution of the BEC, the GP equation may be used to
find certain stationary states of the form ®(r,t) = e~*/"®(r) of the system, for which
the chemical potential is denoted by p. In particular, the ground state of the system of
N particles is obtained by finding the stationary state corresponding to the minimum of
the energy functional

i h?v? g )
B(®) = /fI) () [—% F Viap(r) + 18P | B(x)dr, (2.13)
which may be obtained from Eq. (2.4) by replacing the field operator by the order
parameter. Since the absolute squared value of the order parameter yields the particle
density, the minimization must be accomplished under the constraint [ |®(r)[*dr = N.

The elementary excitations of the stationary states play an important role in the study
of BECs [14,15]. These excitations are defined as small fluctuations whose energies and
shapes may be used to analyze the behaviour of the BECs exposed to small external
perturbations [74]. Let us write the field operator in terms of the order parameter and
the fluctuation operator as W(r,t) = ®(r, ¢) + 1(r, ). By neglecting all but linear terms
of 1[1(r, t) in the Heisenberg equation of motion we obtain

h?V?2

o + Virap () + 29/ ®(1)|? 1[)(r,t) + gsz(r)z/ﬁ(r, t). (2.14)

iRy (r, t) = [
By inserting the Bogoliubov transformation
P(r,t) = Z[uk(r)e*i(eﬁ“)t/hak + v (r)elEr gl (2.15)
k

to this equation, we obtain the Bogoliubov equations

T e A
—M(r) =L(r) ) \ v(r) vk (r)

where uy(r) and vi(r) are the quasiparticle amplitudes, €4 the quasiparticle energies with
respect to the chemical potential p, and where the operators £(r) = H® — y+ 2g|®(r)[?
and M(r) = g®%(r) have been introduced. In addition, the quasiparticle amplitudes

must satisfy the orthogonality relations

[ 61,0 = vitwr )] dr = 5 (2.17)
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for the Bogoliubov transformation to be canonical.

The stationary states of any system correspond to a local minimum, a local maximum
or a saddle point of the energy functional. Once the stationary solution of the GP equa-
tion is found, the Bogoliubov equations may be used to analyse the energetic stability of
the state; if all the modes have a positive energy, the state must be a local minimum of en-
ergy. On the other hand, the states having negative-energy excitations are always saddle
points of the energy functional. It should be noted that the Bogoliubov equations are not
Hermitian and, therefore, the existence of imaginary energy eigenvalues is not excluded.

For example, the doubly quantized vortex state, ®(r) = /nc(r, z)e*™?

expressed using
the cylindrical coordinates (7,6, z), is known to sustain imaginary-frequency modes [74]
which imply the dynamical instability of the state, ¢.e., infinitesimal perturbations can
lead to exponentially growing fluctuations. In the case of a doubly quantized vortex,

these fluctuations tend to split the vortex into two single-quantum vortices.

2.2 Vortex states

In this subsection, we focus on stationary states of pancake-shaped BECs that contain
several vortices*. The external potential used to trap the condensate may be accurately
approximated with a harmonic potential

mwy 5 MWy 5 MW

Virap(r) = 5 T° + 5 Y+ 22, (2.18)

where w; is the oscillator frequency in the direction 7. The geometry of the pancake-
shaped system is chosen such that w, > w, ~ w, and, hence, the z dependence of
the order parameter may be taken to be independent of the other coordinates [74]. To
be more precise, we approximate ®(r) = ®(r,0)o(z) expressed using the cylindrical
coordinates (r,#,z). By multiplying the GP equation with normalized ¢*(z) from the
left-hand side and integrating over z, it becomes effectively two-dimensional

h2 2
OB (r,0,1) — | — 2v

+‘/:crap(r) +92D|(I)(7“, 97 t)|2 +EZ (I)(Taeat)a (219)

where gon = ¢ [ |o(2)|'dz/ [|o(2)|*dz and E, is the single-particle energy in the z di-
rection. Actually, the same equation is obtained, apart from different scaling of the
interaction parameter, by assuming a homogeneous condensate along z, i.e., w, = 0.
The easiest example of a vortex line in a BEC is the one located at the center of
a rotationally symmetric condensate for which w, = w, = w,. In this case, the phase
function of the order parameter is of the form S(r) = k6. Here, the winding number
of the vortex is denoted by x and the absolute value of the order parameter is obtained
from the state having the lowest energy and being of the form ®(r,6) = |®(r)|e*?. For
k = 0, there is no vorticity and the solution found is the global minimum of energy and

*For a review on vortices in dilute BECs, see Ref. [82].
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for other winding numbers the state found is a saddle point of the energy [82]. Since the
phase of the order parameter is not well defined along the vortex axis where the phase
singularity occurs, the continuous order parameter must vanish there. The velocity field
for the state ®(r,0) = |®(r)]e™? can be calculated from Eq. (2.3) as

voTrg (2.20)
mr

where 0 is the unit vector in the azimuthal direction. The velocity of the vortex diverges
along the vortex line but, however, the kinetic energy does not diverge since the particle
density vanishes. Equation (2.20) shows that the particles flow encircling the vortex line,
which is analogous to a classical vortex. The average angular momentum per particle
related to the vortex state in question is (®|L,|®)/N = hx along the z direction.

In general, the position of a vortex line is defined as the location of the phase singu-
larity. In practice, the vortices are commonly observed as holes in the particle-density
profile, but in numerical simulations of the GP equation, of course, the phase of the
order parameter may also be examined directly. In Fig. 2.1(a), the particle density and
the phase of a stationary vortex dipole state is illustrated. The radius of the vortex core
is approximately given by a parameter called the healing length

£ = (8mnea)™?, (2.21)

where the density of the condensed particles, is regarded as the average background
density at the same position as the vortex line but in the absence of the vortex. Since
the condensate density in the ground state is smaller at the edges of the condensate than
in the middle, the further away the vortex is located from the center of the condensate,
the larger the vortex core is. This phenomenon is shown in Fig. 2.1(b), in which a
stationary vortex tripole is presented.

A condensate state containing only a single vortex is stationary only if the vortex
is located at the center of the condensate since off-axis vortices tend to precess in the
direction of the superfluid flow, i.e., clockwise for an antivortex and counterclockwise
for a vortex, see Eq. (2.20). This precession is due to the buoyancy force acting on the
vortex which arises from the fact that the energy of the system decreases as the radial
distance of the vortex from the center of the trap increases. Nevertheless, the energy of
the system must be conserved during temporal evolution and the vortex precesses along
a constant-energy curve. The force balancing the buoyancy force is the so-called Magnus
force [83-86] which arises from the precessional motion and circulation of the vortex line.
To a good approximation, the Magnus force may be written as [14,15]

Fatag = mne(K X Veore), (2.22)

where the vorticity vector kK = 2whikz/m, and the velocity of the vortex core is denoted
by Veore- In conclusion, the faster an off-axis vortex precesses, the greater the energy
gradient is in the radial direction.



Figure 2.1: Density profiles (upper panels) and phase func-
tions S(r) (lower panels) for a vortex dipole (a), tripole (b) and
quadrupole (c). The spatial coordinates are in units of micrometers.

Let us now consider a vortex dipole, such as that in Fig. 2.1(a). The distance between
the vortex and the antivortex is denoted by dy and the energy Es(ds) is defined as the
energy minimum with the restriction that the distance of the phase singularities is ds.
The definitions are analogous for the vortex tripole and quadrupole, see Figs. 2.1(b)-(c).
The ground state of the system is obtained in the limit dy — 0 for the vortex dipole and,
hence, the energy gradient with respect to the distance is positive for sufficiently small
ds. On the other hand, the ground state is also obtained in the limit dy — oo. Thus,
there must exist at least one point d§ which is a local maximum of energy with respect
to dy. In Fig 2.2, we have plotted the energies of a vortex dipole, tripole and quadrupole
as functions of the vortex separations. A local maximum is seen in each of the graphs.
The maxima indicate the existence of stationary states near these extremal points.

To prove that these stationary states do exist, we used the wave functions obtained
from the energy minimization procedure as the initial conditions and used the method
of steepest descent to find the stationary states. The method of the steepest descent is
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Figure 2.2: Energy of the vortex dipole (dashed line), tripole (solid
line) and quadrupole (dash-dotted line) as functions of the distances
ds, d3 and dy, respectively.

based on moving towards the negative gradient of the functional F[®] to be minimized.
Since the functionals we consider are invariant under conjugation, i.e., F[®] = F[®*], the
variation of the functional with respect to ®(r) is obtained by functional differentiation
with respect to ®*(r). For example, the left-hand side of the GP equation (2.12) is
obtained as

_ E[®,0" + 6% — E[®, &°]
Vo E[®] =: lim 50

where E[®] is the energy functional in Eq. (2.13) and H[®] is the nonlinear Hamiltonian

— H[D]O, (2.23)

of the the GP equation (2.12). Since the number of particles is to be conserved in the
minimization process, we minimized E[®] — pN instead of just the energy functional
and the gradient becomes (H|[®] — p)®(r). The Lagrange multiplier 4 must be adjusted
in such a way that the resulting total number of particles is N, or if the number of
the particles is allowed to change during the minimization process, we may fix . Since
the norm F[®] = ||(H[®] — p)®||? vanishes for stationary states and is positive for all
other states, stationary states may be found by minimizing the norm using functional
differentiation

Vo F[®] = {(H[®] — 11)* + 2gRe [®* (H[D] — 11)®]} P. (2.24)

Even though the Hamiltonian operator H[®] is nonlinear, it is treated in Eq. (2.24) as
a linear operator which only depends on the order parameter ®, not on the state it
operates to. The convergence of the method towards the stationary vortex cluster states
is monotonic and errors F[®]/(Npu?) less than 1072 were obtained for all the states in
question.

The method of steepest descent for the ground state of the GP equation has been
studied in Ref. [87], in which also a Sobolev gradient preconditioning is presented to en-
hance numerical convergence. Excited stationary states were also studied in the context
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of nonlinear optics by directly minimizing the error. However, this direct minimization
was not used when the vortex dipole and quadrupole were introduced in Refs. [76,77], in
which it was argued that the configurations were dynamically stable in certain parameter
ranges. In Paper IV, the energetic instability of these states was shown by calculating the
energy graphs of Fig. 2.2 from the GP equation and by solving the Bogoliubov equations
which yielded the excitation spectra for the vortex dipole, tripole and quadrupole with
negative-energy modes. The spectra of all the three cluster configurations showed also
imaginary eigenvalues, suggesting that the stationary states are dynamically unstable;
certain infinitesimal perturbations of the stationary state lead to finite perturbations
during the temporal evolution. This observation was verified by adding the imaginary
frequency modes to the initially stationary vortex clusters, which resulted in peculiar
temporal development for each of the configurations. The vortex dipole was observed
to precess and, hence, to preserve its shape. On the other hand, the vortices in the
quadrupole moved towards the center of the condensate, mutually annihilating each
other. Finally, one of the antivortices in the vortex tripole escaped to the edge of the
condensate, while the remaining two vortices formed a vortex dipole. Thus the vortex
dipole may be considered as the most stable configuration studied in this thesis.

2.3 Spinor condensates

The actual nature of the alkali atom BECs is a spinor field, since the atoms possess spin
degrees of freedom, e.g., the nuclear spin of 8’Rb and ?»*Na is I = 3/2 which together
with the electron spin J = 1/2 results in a hyperfine spin F' =1 or 2. In this subsection,
we discuss the case of a hyperfine spin F' = 2 since the phenomena observed in this case
also include those of F' = 1. The order parameter is given by

F

B(r) = Y Di(r)|k), (2.25)

k=—F

where we have chosen the spinor basis {|k)} such that it is the eigenbasis of the z
component of the hyperfine spin operator F, with eigenvalues {k}; F,|k) = k|k). In this
basis, we may also write the order parameter as a vector ® = (®y, By, Py, @ 1, P ,)7
and the spin operators as

01 000 0O -1 0 0 O 200 0 0

1 0 v 00 1 0 —v 0 O 010 0 O
Fob=10 v 0 v 0,F,=4|0 w 0O -v O0]|,F,=]10 00 0 01,

00 v 01 0o 0 v 0 -1 000 =1 0

00 0 10 0 0 O 1 0 000 0 =2

where v = /3/2.
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The Gross-Pitaevskii equation for the spinor condensates is of the form [88,89)]

2

V24 Vop(r) + g1 Y (@]’ P

n=—2

+ Z Z 92 [(I)L(Fk)npq)l?} (Fk)qu)q

ke{xz,y,z} n,p,q=—2

0 h?
h—®,, = | ——
! ot 2m

2
+ Y 5g3®h(2m2n|00)(00[2p2q ), P,

n7paq:72

2
1
+ > ZfWLk(Fk)mnq’m (2.27)

ke{x,y,z} n=-2

where the optical potential V,(r) is independent of the spin degree of freedom and
the Larmor frequencies wy, = ppBy/h are described by the Bohr magneton pp and
the external magnetic field B. The projection of the two-atom state |2p2g) to the two-
atom state with vanishing total spin is denoted by (00|2p2¢). The three interaction
parameters

_Anh? day + 3ay _ AnhPay —ay _Anl? (a9 —as 20y — 204
g1 = m 7 y §2 = m 7 ; 93 = m 5 7 )
are obtained using the s-wave scattering lengths ag = 4.73 nm, a; = 5.00 nm and

as; = 5.61 nm for the different channels of ®"Rb [88]. The last term in Eq. (2.27),
containing the contribution from the magnetic trap, may be expressed as the matrix

2B, B € 0 0 0
Be B, %BLGW 0 0
KB i i
B = 7 0 %BLG ¢ 0 %BLB ¢ 0 , (229)
0 0 %BLe_w —-B, B e
0 0 0 B e -2B,

where we have assumed that the magnetic field is of the form

B, (r, z) cos(¢)
B=| —B,(r,z)sin(¢) | . (2.30)
B,(r, z)

The eigenvectors of B having positive eigenvalues are referred as WESSs, zero eigenvalue
as NS and negative eigenvalues as SF'SSs. In particular, the WFSS, and WFSS; (SFSS,
and SFSS;) correspond to the eigenvalues pp and pup/2 (—up and —up/2), respectively.
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The eigenvector for WFSS, turns out to be

cost(5/2)
2% cos3(3/2) sin(3/2)
wy = | V6e?? cos?(5/2) sin?(5/2) |, (2.31)
2e31? cos(3/2) sin®(3/2)
e* sin*(3/2)

where 8 = tan™!(|B_|/|B.]|) is the angle between the magnetic field and the z axis. By
fixing the spin and phase degrees of freedoms to wy, the GP equation (2.27) for the
spatial part of the order parameter f(r) is obtained as
2
pI () = 5 wiV () + V(D) F () + (g + 40 F(6) + A f(r), (232
where the absolute value of the Larmor frequency wy, = ug|B|.

The topological method to create a multiquantum vortex may be understood directly
from Eq. (2.31). Let us consider a setup in which the radial part of the magnetic field
B, vanishes and the WFSS, is an eigenstate of F}, i.e., all the spins of the atoms are
pointing in the direction of the magnetic field. While the magnetic field is being reversed
adiabatically, the state remains in the WFSS, presented by Eq. (2.31) and, finally, when
the field points exactly towards the negative z direction, the phase factor e**?, has been
added to the order parameter. In the case of the hyperfine spin F' = 1, the added phase
factor is €%2?, see Paper I.

The reversing of the magnetic field can be accomplished by holding the perpendicular
field zero, which is not efficient, since spin flips to other spin states may occur anywhere
in space when the field B, vanishes. However, the region of the spin flips may be reduced
to the z axis, if a finite B, is considered. The case F' = 1 was studied in Refs. [71, 72],
in which the optical potential was chosen to mimic a tightly focused blue-detuned laser
beam in the center of the magnetic trap. The strength of the potential was high enough
for the particles to be repelled from the center and, hence, the temporal evolution of
the system was determined by the GP equation for the WFSS obtained, to a good
approximation, using Eq. (2.32) with the replacement p — ihd;. Naturally, the order
parameter obtained contained a vortex according to our definition, but strictly speaking
there was only a persistent current rather than a vortex, since there were no particles
near the phase singularity. In Paper II, the use of an optical plug for the hyperfine spin
F = 2 was studied. The temporal evolution of the total particle density is shown in
Fig. 2.3 which illustrates how the position of the peak particle density is shifted towards
the origin when the magnetic potential becomes steeper with decreasing magnitude of
the B, field.

In Paper II, removal of the optical plug after the vortex creation is demonstrated.
After the removal, some oscillatory modes are seen in the condensate density. These
oscillations arise from non-adiabatic changes in the optical potential and could be de-
creased by reducing the speed of the field removal. In the physical realizations, the finite
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Figure 2.3: (color online) Temporal evolution of the total particle
density as the bias field B, is being reversed during the topological
vortex formation. The reversing time is denoted by 7.

lifetime of the condensate restricts the removal time such that at least small oscillations
should remain. In Paper I, the topological creation of vortices in BECs with hyperfine
spin F' = 1 was studied without the use of the optical plug.

After the publication of Papers I and II, the experimental realization of the topolog-
ical vortex-formation scenario seemed to be promising since the theory was developed
for the already realized BECs in a loffe-Pritchard trap, in which the reversing of the
magnetic field may be realized by reversing the electrical current in the coils creating the
field B,. However, the inclusion of the optical plug would have demanded additional ap-
parata and refinements. In Papers I-1I, the full spin degrees of freedom were taken into
account and it was shown that the vortex can actually be created even in the absence of
the optical potential. In this setup, the reversing time T" was adjusted such that roughly
only one half of the particles escaped from the trap due to spin flips to the NS and the
SE'SSs. For the hyperfine spin F' = 1, the method resulted in a doubly quantized vortex
state, see Paper I. On the other hand, both of the two WFSSs of the F' = 2 condensate
are trapped and the topological vortex formation produces a mixture of three- and four-
fold quantized vortices. In Fig. 2.4, square roots of the particle densities for the WFSS;
and the WFSS, are shown after the particles in the NS and the SFSSs have escaped
from the trap. Since both of the trapped spinor states contain a noticeable fraction of
the particles, the state cannot be considered a scalar condensate with a given vorticity.

2.4 Splitting of a doubly quantized vortex

Soon after the theoretical work on topological vortex formation without the optical plug
was published, Leanhardt et al. reported on experimental realizations of two- and fourfold
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Figure 2.4: Amplitudes of the projection of the order parameter
to the (a) WFSS, and (b) WFSS; after the untrapped components
have escaped from the trap. Due to topological phase imprinting, the
WEFSS, (WFSS;) has the phase winding 87 (67) about the z-axis.

quantized vortices using this technique [73]. They employed the hyperfine spin states
F =1 and F = 2 of *Na atoms and measured the angular momentum per particle to
be approximately 2h for F' = 1 and 4h for F' = 2. The multiply charged vortices were
held in the trap for up to 20 ms and the states were not observed to decay.

The experiments [73] raised two important questions: why was the angular momen-
tum per particle measured to be (—4.44-0.4)h, whereas the theory predicts a value below
4h, and why are the multiply charged vortices not observed to split into singly quantized
ones although they should be dynamically unstable? While the first question remains
unanswered, the latter puzzle is investigated in this subsection following Paper II.

In Sec. 2.2, it was stated that the energy of the vortex dipole must be a decreasing
function of the vortex separation d, for small enough ds, i.e., the force arising from the
interactions between the vortices points towards the center of the system in the limit
dy — 0. For two vortices a and b far apart in a homogeneous BEC, the transformation
Kqe — —Kq reverses the sign of the interaction force between the vortices. One thus
expects the attraction of the vortex dipole to change into a repulsion of a vortex pair.
Another indication of the energetical instability of a doubly quantized vortex is obtained
by calculating the average kinetic energy (T') of the state representing a straight vortex

line ®(r) = \/nc(r, z)e™? in the center of condensate. One obtains
h*V? h? 1 nek?
o — Sdr=— [ SN |02+ =0, + 02 ) \/ne + —5— ¢ dr. 2.
/ < 2m> r=g - { n<ar+ra+az> n+r2}r (2.33)

The last term in this equation is quadratic in the quantum number x, which suggests that
vortices with multiple charge are energetically less favourable than the singly quantized
ones. Actually, this is the reason why a vortex lattice [70] rather than a multiquantum
vortex is observed in rapidly rotating harmonically trapped condensates. The above



— ]_9 —

arguments may be misleading since they do not properly take into account the modifica-
tions in energy due to density modulations of the condensate and the trapping potential.
However, the solution of the Bogoliubov equations shows that the doubly quantized vor-
tex is not only energetically unstable, but it may also be dynamically unstable. The
imaginary part of the complex-frequency mode responsible for this dynamical instability
is shown in Fig. 2.5 as a function of the interaction strength an,(z) = a [ ®(r)dzdy for
a condensate being homogeneous in the z direction. These results, originally discovered
in Ref. [74], yield the initial decay rate of the state.

0.2
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Im(w,) [o,]

0.05

0 10 20 30 40 50 60
an;

Figure 2.5: Imaginary part of the complex-frequency mode respon-
sible for the dynamical instability of a doubly quantized vortex state
is shown as a function of the interaction strength an, = a [ ®(r)dzdy
for a condensate being homogeneous along the z direction.

In Paper 111, the full dynamics of the decay of doubly quantized vortices is studied in
the homogeneous and inhomogeneous cases. Let us consider a cigar-shaped condensate,
for which the linear density an,(z) is 2-dependent. The linear density vanishes at the
tips of the cigar which correspond to the first instability region of the homogeneous
case in Fig. 2.5. Provided that an,(0) < 11 , there are no other instability regions
and the splitting of the vortex is expected to begin from the ends of the condensate.
This analogy with the homogeneous situation has been verified by solving the temporal
evolution of the system using the fully three-dimensional GP equation and by solving
the Bogoliubov equations, for which the amplitude of the mode corresponding to the
complex eigenvalue was localized mainly near the ends of the BEC. Figure 2.6 displays
these results for the case of two splitting domains; an,(0) &~ 13. The linear density an,(z)
is shown in Fig. 2.6(a), in which the regions with a thick line represent values of an, for
which the homogeneous system is dynamically unstable. The modes with the highest
imaginary frequencies, shown in Fig. 2.6(b), are localized mainly in these regions, i.e.,
the splitting of the doubly quantized vortex is expected to start from the ends and also
at the center of the condensate. Figure 2.6(c) justifies this prediction by showing the
isosurfaces of the particle density at ¢ = 18.1 ms and 41.4 ms after a sudden change in
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the trap asymmetry w,/w, : 1 — 1.01. The asymmetry triggers the splitting mechanism
in the regions of the complex-frequency modes. The splitting is faster at the ends of the
condensate, consistent with the fact that the modes concentrated in this region possess
larger imaginary parts of the frequency than the other modes.
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Figure 2.6: (color online) (a) Linear density an, as a function of the
z coordinate. The regions marked with a thick line represent values of
an, for which the homogeneous system is dynamically unstable. (b)
Imaginary part of the excitation spectrum. The mode marked with
the square is concentrated in the center of the condensate and the
modes marked with circles at the ends. (c) Isosurfaces of the particle
density of the condensate and the z-integrated particle densities at
t = 18.1 ms and ¢ = 41.4 ms after the sudden change in the trap
asymmetry wy/w, : 1 — 1.01.

As shown in Fig. 2.6(c), the two vortices intertwine as they split. This phenomenon
is due to the fact that the precession frequency of a straight vortex pair arising from the
repulsive interaction between the vortices depends on their distance. Since the distance
is zero in the regions where the splitting has not yet began and finite in the other regions,
it is necessary for the vortices to intertwine. The intertwining is observed to be quite
strong and therefore it is difficult to detect the splitting only from the z-integrated
particle densities shown in Figs. 2.6(c) and 2.6(d). Naturally, the regions where the
splitting has not yet began also affect the average particle density in a similar way.

In Ref. [75], the splitting of a doubly quantized vortex was experimentally studied in
2Na condensates for the hyperfine spin state F' = 1. The vortex was created using the
topological vortex formation and the system was let to evolve for the time 7, after which
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the z-integrated particle density was measured. The particle densities indicated whether
the vortex had split or not. This process was carried out with several hold times 7, and
particle numbers and the result was that the shortest time 7. for which the splitting
is observed became a monotonically increasing function of the particle number. This
behaviour is consistent with the theoretical studies of Paper I1I*, since as the maximum
linear density rises from value 4 to 11, the fraction of the particles in the regions where the
splitting mechanism is very slow also increases. This phenomenon is seen as an effective
increase of the vortex lifetime, when it is determined on the basis of the z-integrated
particle density. The existence of the second peak in Fig. 2.5 is observed as the decrease
in the derivative of 7. with respect to the maximum linear density for an,(0) 2 11. This
analysis of the resuls of Ref. [75] has not been published previously.

*The analysis in Ref. [75] may give an impression that the experimental results cannot be understood
using the results of Paper III. Calculations which fit the exact experimental setup are being executed
and the results will be published in future.



- 22 —

3 Finite-Temperature Mean-Field Theories

This section is devoted to the presentation of the finite-temperature second order theory
for excitations in partially condensed alkali atom gases developed by Morgan et al. [50,
51,59]. This theory utilizes systematic perturbation theory to take into account the
interaction terms in the Hamiltonian. The extension of the theory presented in Refs. [57,
58], also takes into account external time-dependent perturbations of the system, but
this is beyond the scope of this overview. Following Refs. [50,51] and Paper V, we present
the so-called zeroth, first and second order theories in Secs. 3.1 and 3.2. In Sec. 3.3, we
utilize the second order theory to investigate the energies and decay of the excitations
in a pancake-shaped BEC.

3.1 Zeroth order theory

The starting point is the usual second-quantized Hamiltonian for structureless bosons

~ I UC T | . Aot o
H = Z<z|h|j>a§aj +3 Z(zg|V|km>a2a}akam, (3.1)
ij ijkm

where the creation and annihilation operators az and a;, as well as the single-particle
Hamiltonian A and the interparticle potential V', were introduced in Sec. 2.1. We choose
to employ the canonical ensemble with a fixed total number of particles N. Note that in
the finite-temperature theory the total number of particles is expressed as the sum of the
condensed and the excited particles as N = N, + Ny, whereas in the zero-temperature
theory of Sec. 2, the number of the thermal particles was approximated to vanish. Since
the state |0) is considered to be the condensate state, NNV, is also referred as Ny. The
operators for the particle numbers are given by Ny = &g&o for the condensate state and
N, = P &L&k for the excited states.

By defining the bosonic number-conserving operators d; = [(No + 1)~'/2aq]%d;, one

can decompose the Hamiltonian (3.1) as follows:

H= 24: H; + O(No[0/No]*/?), (3.2)

=0



where

. R

H = N [<0|h|0>+—N0<00|v500>}, (3.3)

o = \/NOZ[ ilh]0) + No{ 20|VS|00>] &l +hec., (3.4)
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H, = Z[<¢|ﬁ|j> u51j+2N0<oZ|VS|jo>]@@-
ij#£0
+Z{ (i7]V*|00)ala ]T-i—h.c} + 11(Ney), (3.5)

ij7#0

o=y [\/No(zy|Vs|k0>d alé +h.c.}, (3.6)
ijk#0

H = Y 2(2]|Vs|km>a Gl i, (3.7)
ijkm#0

and § = Ny — (Nex) is the number fluctuation operator of the noncondensate particles.
The symmetrized matrix elements of the two-particle interaction potential V(r) are
defined as 1

(17|VoIkm) = S[{ig |V Ikm) + (el VIkm))],

and p as
= (0|h|0) + No{00[V*|00),

where the average number of atoms in the condensate state is given by Ny = N — (Nex>.
In the above equations, the averages (...) refer to quantum expectation values and h.c.
stands for hermitian conjugate.

In the zeroth order approximation, one solves the ground state |0) of H, alone, which
makes the linear Hamiltonian H; to vanish. The equation for the ground state in the
coordinate space becomes the GP equation (2.12), but in the notation of this section
we use an orthonormal single-particle basis (;(r) = (r|i) and, thus, we have to make the
substitution ®(r) = v/Ny(o(r) into Bq. (2.12). To diagonalize Hs, we employ the Bogoli-
ubov transformation f3; = Z#O (UZ*J - Vi ;) This results in the Bogoliubov equa-
tions (2.16), in which the quasiparticle amplitudes are related to the transformation
by ui(r) = 3,0 UG (r) and vi(r) = >, Vi;¢j(r). One should note that the Bo-
goliubov equations have the zero-energy solution {ug(r),vo(r)} = {o(r), —¢(j(r)}, and
projection to this homogeneous solution should always be subtracted from the quasipar-
ticle amplitudes.

To calculate the lowest-order mean fields, i.e., the density of the thermal atoms p(r) =

> iiz0 G (X)Gi(T )(a &;) and the so-called anomalous average £(r) = .o G (T)Gi(r)(@;d4),
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we express the particle operators in terms of quasiparticle operators, yielding

pr) = D [(lusle)” + [os(e) ") + [os(r) 7] (3-8)
i#£0
K(r) = > ui(r)v}(r)(2n; + 1), (3.9)

i#£0

In principle, the quasiparticle populations n; = (BIB) should be calculated from the
requirement that the canonical partition function Z. = Z{m} e PE({n}) minimizes the
free energy F = —kpT log Z.. However, to a fair approximation [90] one may use the non-
interacting quasiparticle gas result n; = (27 'e’% — 1)1, where the fugacity is calculated
from the relation z = Ny/(1 + Ny). The effective delta-function potential used as the
interparticle potential in this overview is inapplicable at high energies and leads to an
ultraviolet divergence in the anomalous average which has to be renormalized in a proper
way, see Paper V.

In this zeroth order theory, we solve the GP equation for some Ny, after which we
compute the excitation spectrum and the number of the excited particles Nex = [ p(r)dr.
This process must be iterated to find such an Ny that the total number of particles
satisfies N = Ny + Nex. Thus the only contribution of the thermal gas to the excitation
energies and the condensate is through the change in the number of the condensed
particles. This zeroth order theory does not converge to the one used in Sec. 2 in the
limit T — 0 since the thermal particle density has a temperature-independent term.
This residual fraction of the particles arises directly from the atomic interactions.

3.2 First and second order theories

In calculating the perturbative corrections to the zeroth order theory corresponding to
Egs. (2.12) and (2.16), it is convenient to first calculate the improved condensate wave
function (y(r) from the generalized Gross-Pitaevskii (GGP) equation

_%VQ + Virap (r) + Nog|Go(r) [ + 29p(r) | Co(r) + Uor(r) G5 (x) = 115G (x),  (3.10)

which is obtained by minimizing (H) + (H,). Expressing the terms in the Hamiltonian
as
H;i[G] = H;[Go] + AH,, (3.11)

one finds the perturbative Hamiltonian

Hperr = AHo + AH, + AHy + Hy + H, (3.12)

where the non-quadratic terms H; and H, are to be calculated using the improved
condensate wave function.
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The perturbation term AHy s just a real number and can easily be taken into account.
In addition to it, in the first order perturbation theory only the terms AH, and H,
containing even numbers of quasiparticle operators contribute to the energy shift

Epert(s, 1) = <S|f{pert|5>a (313)

where |s) is an eigenstate of the quasiparticle occupation number. Within the second
order perturbation theory, one can in fact neglect the terms AH, and H, since it turns
out that their contributions are of the same order of magnitude as the contribution of
the other terms in the third order perturbation theory [50,51]. Thus, one only needs to
calculate

r|AH, + H;|s)|?
Epe(5,2) = {r El_E"' i (3.14)
s s r

The quasiparticle energies are calculated as total energy changes of the system when

the corresponding quasiparticle occupation number is increased by one while the total
number of particles is held constant, i.e., E, = E(Ny — ANy, ny,n9,...,n, +1,...) —
E(No,n1,ns,...), where AN, = [ dr[|u,(r)|*+ |v,(r)[*] is the amount of particles trans-
ferred to the mode p. This yields the corrected excitation energy

E,(2') = ¢, + AEY + AE},

shape

+AEP + ABS(Y), (3.15)

where the A-terms are given in Paper V and the complex energy parameter 2z’ should
not be confused with the fugacity. The need to compute the quasiparticle energies as
functions of 2’ is naturally related with the fact that one takes into account quasiparticle
interactions, though only to the lowest order, and the quasiparticle states are no more
energy eigenstates having infinite lifetimes. In addition, in computing the quasiparticle
energies 2’ must have a small imaginary part acting as a regularizer for the otherwise
divergent expressions for the second order energy shifts. One may note that setting
2" = ¢, yields the usual Rayleigh-Schrédinger perturbation theory, while the Brillouin-
Wigner perturbation theory corresponds to solving the equation E,(2') = 2'.

Calculating the excitation energies as functions of 2’ yields the dynamics of the ex-
citations in the following way: The time-evolution operator U(t) of the system may be
written in terms of the Fourier transform of the resolvent operator G(2') = (2’ — H)™
as [91]

™

Ult) = _h /oo e~ “m[G (hw — i0)]dw. (3.16)

o

Let us define the projection of the resolvent to the state p as G,(z) = (p|G|p), which
may be approximated to the second order as

Gylw) = [ — Ey()] ™, (3.17)

Finally, it is seen that the imaginary part of the projected resolvent Fj,(w — i0) =
Im[G,(w — i0)] gives the spectral distribution of the mode p and the Fourier transform
of F,(w) yields its time dependence.
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In conclusion, the second order theory may be used to calculate the energies and
the dynamics of the quasiparticles. First the GP equation (2.12) is solved together with
the Bogoliubov equations (2.16) for a given total particle number N = Ny + Nex. Then
the GGP equation (3.10) is solved, after which the spectrum Fj,(w) may be extracted
for each excitation p using the energy corrections in Eq. (3.15). In addition, one has
to take care of proper ultraviolet renormalization in all calculations; the quantities x(r)
and AEY are to be replaced by their renormalized values given in Paper V.

A first order theory is obtained from the second order theory by only taking the cor-
rection terms from the first order perturbation theory. However, the equations obtained
turn out to match with those of the HFB theory which is known to display an energy gap
in the spectrum in the homogeneous limit. This energy gap introduces an anomalous
dependence of the lowest-energy modes on the trapping frequency. The simplest gapless
theory known is the HFB-Popov theory [40,41] obtained by neglecting the anomalous
correlation. Thus, a useful first order theory is obtained from the second order theory by
putting x(r) and AEY(2') equal to zero by hand. The omission of the computationally
awkward second order correction renders the first order theory to be computationally
more convenient than the second order theory.

3.3 Energies and decay of excitations

In this section we consider a BEC of N = 2000 ?Na particles in a pancake-shaped
trap for which w, < w,. The trapping frequency in the tight direction is chosen to be
w, = 21 x 350 Hz. The z-dependence of the order parameter may be taken to be of
the Gaussian form o,(z) = e */(202) //a,71/? and the harmonic oscillator lengths of the
trap are a; = \/h/mw;. It turns out that by measuring length in units of a, and the
time in w !, the GP equation for the system (2.19) becomes independent of the radial
trapping frequency w,. Hence, the computed results apply for any physical value of w,
with the restriction w, < w,.

The fraction of the condensed particles is plotted in Fig. 3.1, from which we iden-
tify the condensation temperature Tyz. as the point at which the condensate fraction
obtains its maximum second derivative with respect to temperature. The energies of
the low-lying modes are presented as functions of temperature in Fig. 3.2 in which the
angular-momentum quantum numbers of the modes in the order of increasing energy
are go = 1, 2, 0, and 1, which correspond to quanta of / in the angular momentum per
particle. The mean values of the spectral distributions of the excitation energies within
the second order theory are shown, in addition to the corresponding HFB-Popov results.
The second order theory is probably not reliable above or in the vicinity of Ty, although
we present its predictions also in this regime. No systematic behaviour of the second
order corrections is seen in Fig. 3.2. For the high-lying modes, however, it is reported
in Paper V that the second order theory yields systematically larger energies compared
with the HFB-Popov results.
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Figure 3.1: Condensate fraction as a function of temperature (solid

line), and the exact result 1—(7'/Tgpe)? for the non-interacting system
(dashed-dotted line).

In Fig. 3.2, the dashed line corresponds to the energy hw, of the exact center-of-mass
oscillation modes, the Kohn modes. According to the generalization [92,93] of Kohn'’s
theorem [94], a system of harmonically trapped interacting particles in any eigenstate
of the Hamiltonian has an eigenstate with the amount Aw; higher energy, i.e., the exact
diagonalization of the Hamiltonian should yield a spectrum that contains the eigenenergy
hw;. The Bogoliubov theory, in which the thermal gas component is neglected, implies
the Kohn modes to have this exact energy. In the higher-order theories, the mean fields
and their interactions with the condensate are to be taken into account in such a way
that the results are consistent with the Kohn theorem. Figure 3.2 shows that within the
second order theory the energy of the Kohn mode is very close to iw, for temperatures
T < 0.8T55.. Taking into account perturbation-theoretical terms beyond the second
order contributions, energies even closer to the exact result should be obtained.

The lowest mode with vanishing angular momentum is the breathing mode, cor-
responding to uniform scaling oscillations of the condensate. In the case of a two-
dimensional harmonically trapped gas interacting via the contact potential, it has been
shown using the scaling symmetry of the Hamiltonian that there exists a state that has
the energy 2w, in excess to that of the ground state [95]. This excitation is identified
as the breathing mode. The Bogoliubov theory yields exactly the energy 2hw, for the
breathing mode, while the Popov and the second order theories do not, as can be seen in
Fig. 3.2. Since the interaction potential has to be renormalized and, hence, it deviates
from the contact potential used in Ref. [95] for modes with high energy, the applicability
of the exact result is somewhat questionable at high temperatures, where the physics is
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Figure 3.2: Temperature dependence of the mean energies of low-
lying modes corresponding to the angular-momentum quantum num-
bers g9 = 1, 2, 0, and 1, in the order of increasing energy. Dots
correspond to the second order theory, and the solid lines to the
HFB-Popov theory. The dashed line indicates the exact energy hw,
of the Kohn modes.

not determined by the low-lying modes alone. It is shown in Fig. 3.2 that the energy of
the breathing mode is lower than 2Aw, and the deviation increases with temperature.

In experiments and theoretical studies, the decay of excitations is commonly char-
acterized only by the damping rate related to the exponential decay of the oscillation
amplitude. For infinite systems, the excitation spectrum is continuous and the spec-
tral distributions Fj,(w) of the excitations have Lorentzian forms, implying indeed an
exponential decay of the mode oscillations. The mean value of the Lorentzian gives the
mode frequency and its width the damping rate. However, for trapped finite systems
the spectrum is discrete and the spectral distributions generally have more complicated
forms. Especially, the dynamics implied by these distributions can be more complicated
than just the simple exponential decay. Using the computed spectral distributions of the
oscillations, we have studied the validity of the exponential-decay approximation for the
finite system under question.

The spectral distribution and the dynamics of the second lowest mode with the
angular momentum quantum number ¢y = 1 at the temperature 7' = 0.647} is shown
in Fig. 3.3. The distribution is obviously far from Lorentzian form, consisting of several
asymmetrically separated peaks. The collapse and revival behaviour is clearly seen when
the amplitude of the oscillation seems to vanish but then grows again in time. In Paper V,
a strong collapse and revival of the breathing mode was also studied but, in that case, the
phenomenon may be an artefact of the second order theory arising from the accidentally
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resonant Beliaev process between the Breathing and the Kohn modes. Nevertheless, our
calculations have showed collapse and revival of many elementary excitations for which
the resonance has no effect.
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Figure 3.3: (a) Spectral distribution F'(w) of the second lowest mode
with the angular momentum £ per particle and (b) its Fourier trans-
form at the temperature 1" = 0.647 ;..

In conclusion, we have studied the temperature dependence of the excitation energies
of the ground state in a pancake-shaped BEC. This, as well as the observation of the
collapse and revival effect within the second order theory was first accomplished in
Paper V. In addition, a comparison of the second order theory with the exact results for
the Kohn and the breathing modes has not been carried out in the literature prior to
Paper V.



4 Summary

The main objective of this thesis is to study vortices and elementary excitations in dilute
atomic Bose-Einstein condensates.

In Papers I-1I, the topological phase imprinting method was simplified in order to
make it more accessible to the experiments. In this method, the condensate atoms are
in a WFSS and trapped in a loffe-Pritchard magnetic trap. To create the vortex, the
electrical current producing the bias magnetic field is reversed. Soon after the publication
of these results, the first two- and fourfold quantized vortices were produced by the MIT
group.

In the theoretical investigations of Papers I-1I, it was observed that whereas the
topologically created doubly quantized vortex is pure, the fourfold quantized vortex state
is actually a mixture of angular momenta 4%/ and 3A per particle. Therefore, the doubly
quantized vortex was chosen as the topic of Paper III, in which the dynamics of the
splitting of the vortex into two singly quantized vortices was modelled in a cigar-shaped
trap. The main result of the paper was the finding that there exists a close analogy
between the effectively two-dimensional and the true dynamics of the splitting. The two
singly quantized vortices were observed to intertwine as they separate, which implies
the observation of the splitting to be more favourable in the transverse directions of the
cigar compared with the longitudinal direction. Recently, the splitting of the doubly
quantized vortex was observed by the MIT group and the results were in harmony with
our theoretical predictions.

Stationary vortex clusters are considered in Paper IV. This work is an extension of
earlier work, in which the existence of complex clusters was shown in the non-interacting
limit and the dynamical stability of the vortex dipole and quadrupole was demonstrated
in the interacting system. In our research, we showed explicitly that the vortex dipole
and quadrupole obtained were, in fact, stationary to a very high precision. However,
the states were found to be both dynamically and energetically unstable in terms of the
Bogoliubov equations and the Gross-Pitaevskii equation. We also introduced a novel
structure called a vortex tripole, a non-axisymmetric stationary state holding finite an-
gular momentum in a non-rotating harmonic trap.

Paper V is devoted to the study of the previously developed second order theory for
BECs at finite temperatures. This theory was applied for the first time to pancake-shaped
condensates, for which the excitation energies and their decay was computed. Especially,
the collapse and revival effects in the dynamics of the excitations was observed. In
addition, the accuracy of the theory is tested by comparing its predictions to the exactly
known results for the breathing mode and the Kohn modes.

In a nutshell, this thesis includes original, experimentally realized, theoretical results
on the creation and stability of vortices in BECs. Furthermore, new results have been
presented in the area of stationary vortex states. Although the study of the second
order theory of excitations in BECs is presented in only a single paper, the work was
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very demanding both theoretically and computationally. Possible new areas of research
include further developing the topological formation of vortices, studying the dynamics
of the spinor mixture state created in the MIT experiments, describing in detail the
experiments on the splitting of the doubly quantized vortex, extending the stability
analysis of vortex clusters to three-dimensional or anharmonically trapped structures,
and applying the second order theory to the stability analysis of the singly quantized
vortex.
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Abstracts of Publications I-V

L.

I1.

ITI.

IV.

It has been shown that a vortex in a Bose-Einstein condensate with spin degrees
of freedom can be created by manipulating with external magnetic fields. In the
previous work [Phys. Rev. A 61, 063610 (2000)] an optical plug along the vor-
tex axis has been introduced to avoid Majorana flips, which take place when the
external magnetic field vanishes along the vortex axis while it is created. In the
present work, in contrast, we study the same scenario without introducing the op-
tical plug. The magnetic field vanishes only in the center of the vortex at a certain
moment of the evolution and hence we expect that the system will lose only a
fraction of the atoms by Majorana flips even in the absence of an optical plug. Our
conjecture is justified by numerically solving the Gross-Pitaevskii equation, where
the full spinor degrees of freedom of the order parameter are properly taken into
account. A significant simplification of the experimental realization of the scenario
is attained by the omission of the optical plug.

It is shown that a vortex can be continuously created in a Bose-Einstein condensate
with hyperfine spin F' = 2 in a loffe-Pritchard trap by reversing the axial magnetic
field adiabatically. It may be speculated that the condensate cannot be confined in
the trap since the weak-field seeking state makes transitions to the neutral and the
strong-field seeking states due to the degeneracy of these states along the vortex
axis when the axial field vanishes. We have solved the Gross-Pitaevskii equation
numerically with given external magnetic fields to show that this is not the case.
It is shown that a considerable fraction of the condensate remains in the trap even
when the axial field is reversed rather slowly. This scenario is also analysed in the
presence of an optical plug along the vortex axis. Then the condensate remains
within the F, = 2 manifold, with respect to the local magnetic field, throughout
the formation of a vortex and hence the loss of atoms does not take place.

The stability of doubly quantized vortices in dilute Bose-Einstein condensates of
2 Na is examined at zero temperature. The eigenmode spectrum of the Bogoliubov
equations for a harmonically trapped cigar-shaped condensate is computed and it is
found that the doubly quantized vortex is spectrally unstable towards division into
two singly quantized vortices. By numerically solving the full three-dimensional
time-dependent Gross-Pitaevskii equation, it is found that the two singly quantized
vortices intertwine before decaying. This work provides an interpretation of recent
experiments [A. E. Leanhardt et al., Phys. Rev. Lett. 89, 190403 (2002)].

We investigate the recently found stationary vortex cluster states in dilute atomic
Bose-Einstein condensates confined by a nonrotating trap, and also present a new
stationary three vortex cluster. We find the stationary states by minimizing di-
rectly an error norm for the stationary Gross-Pitaevskii equation, and study the
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dynamic and energetic stability of the resulting states by solving the correspond-
ing Bogoliubov equations for the elementary excitations. The results are verified
by integrating the time-dependent Gross-Pitaevskii equation. Contrary to previ-
ously reported results, the stationary states were observed to be both energetically
and dynamically unstable. The dynamical decay rate of the clusters is typically
very slow, but it should be experimentally observable. The most promising circum-
stances to experimentally generate and observe these structures and their dynamics
is in weakly dissipative condensate systems, using phase-imprinting techniques.

. We study the energies and decay of elementary excitations in weakly interacting
Bose-Einstein condensates within a finite temperature gapless second order theory.
The energy shifts for the high-lying collective modes turn out to be systematically
negative compared with the Hartree-Fock-Bogoliubov-Popov approximation and
the decay of the low-lying modes are found to exhibit collapse and revival effects.
In addition, perturbation theory is used to qualitatively explain the experimentally
observed Beliaev decay process of the scissors mode.
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