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Abstract. The Bloch oscillating transistor (BOT) is a device, where single elec-

tron current through a normal tunnel junction enhances Cooper pair current in a

mesoscopic Josephson junction leading to signal amplification. In this paper we de-

velop a theory, where the BOT dynamics is described as a two-level system. The

theory is used to predict current-voltage characteristics and small-signal response.

The transition from stable operation into hysteretic regime is studied. By identifying

the two-level switching noise as the main source of fluctuations, the expressions for

equivalent noise sources and the noise temperature are derived. The validity of the

model is tested by comparing the results with simulations and experiments.

PACS numbers: 74.78.Na, 85.25.Am, 85.35.Gv

I. INTRODUCTION

The Bloch oscillating transistor (BOT)1−5 is based on tuning the probability of interlevel

switching in a mesoscopic Josephson Junction (JJ). The equivalent circuit is shown in Fig.

1(a). The current IC at the collector(C) -emitter(E) -circuit is controlled by the base current

IB leading to transistor-like operation. The physics is based on controlling the state of the

JJ by means of quasiparticles tunneling through the normal tunnel junction connected to

the base electrode (B).

The state diagram as function of the (quasi)charge QI is shown in Fig. 1(b)
6, where also

the transitions are illustrated. It is assumed that the Josephson coupling energy EJ is smaller

or of the same order as the charging energy EC = e2/2CΣ, and that R, RT1, RT2 � RQ. Here

CΣ = C1 + C2 is the total capacitance of the junctions, R is the collector resistor, and RT1

and RT2 are the tunnel resistances. The quantum resistance RQ = h/4e2 ≈ 6.5 kΩ. We

assume that C is biased at a point, where VC � e/CΣ. The charge tends to relax through

the collector resistor RC towards VCCΣ. Here VC is the collector voltage. If the system is

initially at the lowest band (|QI | < e in the extended band picture we are using), at QI = e

it is likely that a Cooper pair (CP) tunneling through the JJ returns the system back to

QI = −e. Repeating this cycle, the Bloch Oscillation6, leads to a net current through the
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C-E circuit. We call the lowest band with allowed Cooper pair conduction the ”first level”.
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FIG. 1: (a) Schematic circuit of a BOT connected to a source and a load. Source RS is connected

to the base electrode B and load RL to the collector electrode C. The lead capacitances from the

electrodes to the ground are CB and CC . The BOT itself consists of a Josephson Junction (JJ) con-

nected to E, a normal tunnel junction connected to B and large RC � RQ resistor connected to C.

All three components are further connected to a superconducting node, which has small capacitance

to the ground. (b) The state diagram of the JJ and the possible transitions.

A competing process with the CP tunneling is the Zener tunneling7, which provides a

mechanism for an upwards transition. Zener tunneling takes the system to the upper bands

(|QI | > e). Cooper pairs are allowed to tunnel only near the band gaps |QI | = ne, where n is

an integer. However, in the limit of small EJ/EC the Zener tunneling probability increases

very rapidly as function of the band index n. Therefore CP tunneling is virtually blocked

for |QI | > e. This enables us to treat the system as a two-level system. The ”second level”

consists of the higher bands with blocked CP tunneling. Downwards transitions are induced

by one or more quasiparticles tunneling through the base junction (see Fig. 1(b)). Tuning the

quasiparticle tunneling probability by changing base voltage or current leads to the control

of average current through the C-E circuit, and thus to transistor-like characteristics.
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The BOT was recently experimentally realized3, and simulations showed that its prop-

erties can be quantitatively predicted with a computational model5. It is potentially useful

in cryogenic applications such as readout circuits of radiation detectors, or measurement of

small currents in quantum metrology. The aim of this article is to gain more insight into

the BOT and to study the noise properties. To be able to do so, we derive an analytic the-

ory, and study its applicability by comparing the results to computational and experimental

data.

II. ANALYTIC THEORY

In the theory derived below, BOT is modelled as a mapping of voltages VB and VC into

currents IB and IC . We assume that a single tunneling event will not affect the voltages.

This is the case, since CB, CC � CΣ in a practical experimental setup.

We assume that 1 � EC/kT � RC/RQ and EJ � EC , which means that the Cooper

pair tunneling rate reduces to a delta spike centered at |QI | = e 8,9. This recovers our inter-

pretation of the two-level system. We also assume that C2 � C1 and neglect quasiparticle

tunneling through the JJ. Below unnecessary subscripts for capacitances and charges are

dropped, i.e. C ≡ C2 ≡ CΣ, R ≡ RC , RT ≡ RT1 and Q ≡ QI ≡ Q2. We analyze only the

regime, where VC > e/C and V ′
B < 0, since this is interesting for the amplifier operation.

Here we have defined V ′
B = VB − VC .

The collector and base currents are written as

IC =
1/Γ↑

1/Γ↑ + 1/Γ↓
IS − IB (1)

IB = − 〈Ne〉 e

1/Γ↑ + 1/Γ↓
, (2)

The transition rates between the two levels are Γ↑ and Γ↓. The ”saturation current”, i.e.
current through the JJ at the first level, is IS = 2efB, where fB is the Bloch oscillations

frequency. The number of electrons needed to induce a downwards transition is 〈Ne〉. Here
we have neglected the possibility of single-electron tunneling, when the system is at the first

level. This is justified, since typically the voltage |V1| is below the gap voltage in that case.
The Eqs. (1) and (2) give general IV characteristics for the BOT.

Between tunneling events dQ/dt = (VC − Q/C) /R. By integrating from Q = −e to

Q = e, i.e. over one Bloch period one gets fB, and consequently

IS =
2VQ

R

[
ln

(
VC/VQ + 1

VC/VQ − 1
)]−1

, (3)

where we have defined VQ = e/C.

The upwards tunneling rate (the Zener tunneling) can now be written as10
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Γ↑ =
IS

2e 〈N〉 , (4)

where

〈N〉 = exp
(

IzR

VC − VQ

)
− 1 (5)

is the average number of Cooper pairs in one sequence of Bloch oscillations. One sequence

here means the time between tunneling down to the first level and tunneling back to the

second level. The Zener avalanche current is Iz = πeE2
J/8�Ec.

The downwards tunneling at low temperatures and for large R is exclusively due to single

electron tunneling through the base junction. It is generally impossible to calculate exact

analytic expressions for 〈Ne〉 and Γ↓. We proceed, however, by giving approximations in
two limits. For VC < 2VQ one electron always suffices to induce a downwards transition.

Assuming further the low-temperature and large resistance limit of base electrode tunneling

rates, and that the transient is short compared to the inverse of the tunneling rate, it

follows11

〈Ne〉 = 1 (6)

Γ↓ = − 1

CRT

(
V ′

B

VQ
+
1

2

)
. (7)

If VC > 2VQ the first electron tunneling through the base junction does not necessarily

cause a transition to the first level, but some of but intralevel transitions occur instead. In

this limit we have solved the problem numerically, and searched for a proper fitting function.

The result is11.

〈Ne〉 = 0.04
(

RT

R

)2

(8)

× exp
(
0.3 exp

(
1.8

VC

VQ

+ 0.27
VCV ′

B

V 2
Q

− 0.2V
′
B

VQ

))
+ 1

Γ−1
↓ = 1.2e

R+RT

V ′
B

(1− 〈Ne〉) (9)

+RC

(
2.5

RT

R
+ 1.1

)(
VQ

V ′
B

)2

.

The fit is accurate, when RT � R. The weaker dependence indicated by the unity term in Eq.

(8) and (2.5RT /R+ 1.1) (V ′
B/VQ)

2 term in Eq. (9) dominate at VC ≈ 2VQ and large |V ′
B|. In

this case only one quasiparticle is needed to induce a downwards transition. This is possible,

if the tunneling occurs during the transient immediately after the Zener tunneling, while still
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Q (t) < 2e. The exp(0.3 exp(...))-term dominates, when several tunneling events are needed

to induce an interlevel transition. The very strong dependence is roughly explained as

follows. Let us assume that 2VQ < VC < 3VQ and the island charge is initially Q ≈ CVC (see

Fig. 1). Now at least two quasiparticles tunneling rapidly one after another are needed to

induce a downwards transition. The quasiparticle tunneling probability is at its maximum,

when Q ≈ CVC . However, after the first tunneling event Q drops down to CVC − e and

therefore the probability also drops. Hence the probability for the second quasiparticle to

tunnel before the charge relaxes back to Q > 2e is small. The charge therefore tends to

oscillate between Q ≈ CVC and Q ≈ CVC − e for a long time before the rather improbable

event at Q < 2e happens. This generates a large quantity of intralevel transitions thus

increases 〈Ne〉 and decreases Γ↓.

III. COMPARING NUMERIC, ANALYTIC AND EXPERIMENTAL IV CURVES

In this Section we compare the results with the numerical model5 based on the phase-

correlation theory8,9. Earlier, it has been found to agree well with experimental results.

Thus we believe that it provides evidence on the applicability of the analytic theory, though

in the limit of large R, a simpler quasiclassical theory6 should work as well. Also a direct

comparison to experimental data is performed below.

In Fig. 2(a) we show a simulated set of IC − VC curves (open circles), where the base

is voltage biased. The base voltage V ′
B is varied, while other parameters are R = 1.5 MΩ,

C = 0.2 fF, RT = 12 MΩ, EJ/EC = 0.1, T = 40 mK and ∆ = 1.5 mV. Corresponding

analytic curves (solid lines) are calculated from Eq. (1) using the approximation of Eqs.

(6) and (7) when calculating 〈Ne〉 and Γ↓. The agreement is reasonably good. An error
is caused by the finite temperature and the superconducting energy gap, when calculating

the quasiparticle tunneling rate of the base junction. If the tunneling rates are computed

numerically from the phase-correlation theory, the agreement is improved especially at low

values of V ′
B as denoted by the dashed lines in Fig. 2(a).

The remaining disagreement is related to the temperature dependence of Cooper pair

tunneling probabilities. Even if EC/kT is as high as about 120, incoherent Cooper pair

tunneling enhances Cooper pair current at VC ≈ VQ = 800 µV. The lower value of simulated

IC at larger values of VC was found to be due to the fact that after a Cooper pair tunnels

through the JJ, it can immediately tunnel into the opposite direction due to incoherent

Cooper pair tunneling. This effectively suppresses 〈N〉 , or equivalently enhances Γ↑. The
effect is especially visible in Fig. 2(b), where a set of simulations with a current biased base

electrode is performed for the same device. The simulated curves (solid circles) fall below

the theoretical curves (lines) IC = (2 〈N〉 + 1) IB (see also Section IV), i.e. the current gain

is suppressed. However, if we artificially forbid the ”Cooper-pair back-tunneling” in the

simulation (open squares in Fig. 2(b)) the agreement is clearly improved. This shows that
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FIG. 2: (a) Computed IC−VC plots with R = 1.5 MΩ, C = 0.2 fF, RT = 12 MΩ, EJ/EC = 0.1, T =

40 mK and ∆ = 1.5 mV (open circles). The base voltage has been varied as V ′
B = −2.5e/C, -3.0e/C,

-3.5e/C, -4.0e/C, -4.5e/C from down to top. Solid lines represent analytic values calculated from

Eq. (1) together with approximations from Eqs. (6) and (7). Dashed lines are corrected analytic

curves, which take base junction nonlinearity at the finite temperature into account. (b) Computed

IC−IB plots for the same device (solid circles) at VC =1.25e/C, 1.5e/C, 1.75e/C from up to down.

The open squares shows the same simulation without ”Cooper pair back-tunneling” and lines show

analytic predictions.

the effect indeed is the main factor suppressing the current gain in the point of operation

governed by approximation given in Eqs. (6) and (7). Another mechanism due to sponta-

neous downwards transitions was discussed in Ref.4, but it was found to be insignificant in

this case.

As the tunnel resistance of the base electrode is decreased and the Josephson coupling

increased in simulations and experiments citedel1,5, the active bias region moves towards

higher VC indicating that the approximation of 〈Ne〉 and Γ↓ given in Eq:s (8) and (9) becomes
relevant. In Fig. 3(a) a set of simulations with parameters similar to those considered above,

with exceptions RT = 375 kΩ, EJ/EC = 0.2 and ∆ = 0 for the base junction (i.e. we have

assumed that the base junction is a NIN junction here). At the upper set it is again shown a
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set of simulated and analytic IC−VC curves showing a reasonable agreement. The agreement

is again further improved by forbidding the ”Cooper-pair back-tunneling” in the simulation,

which is shown in the lower set of curves.

Fig. 3(b) shows the situation for a dataset with decreaced EC . The topmost set consists

of analytic curves, where at VC � 2VQ ≈ 270 µV approximation of Eqs. (6) and (7) and

at VC � 2VQ approximation of Eqs. (8) and (9) is used. The two lower sets are simulated

at T = 20 mK and T = 300 mK. Although again qualitatively similar, at T = 20 mK the

main source of disagreement is the enhancement of Γ↑ at a finite temperature. At T = 300

mK the spike is spread, since at relatively large temperatures (now EC/kT ≈ 2.6) also Γ↓ is
increased due to incoherent Cooper pair tunneling in a same sense as indicated in Ref.4.

Fig. 4 shows a comparison of experimental (see Refs.3 and5 for detalis) and calculated IV

curves. The experiment (Fig. 4(a)) was performed with a current biased base electrode, and

the characteristic curves have also been solved for constant IB in Fig. 4(b). The calculated

data is discontinuous at VC = 2VQ, due to the different dynamics of downward transitions
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FIG. 3: (a) Computed IC−VC plots for a device otherwise similar to that of Fig. 3 except RT = 375

kΩ, EJ/EC = 0.2 and ∆ = 0 (an NIN base junction). The base voltages are V ′
B = −1.0e/C, -

1.5e/C, -2.0e/C, -2.5e/C from down to top (open circles) . Analytic IV curves (solid lines) are

calculated from (1) together with approximations from Eqs. (8) and (9). The upper set (lifted by

1.5 nA for clarity) shows the result with the full simulation model, while the lower set shows the

result without ”Cooper pair back-tunneling”. (b) Analytic and computed IC − VC plots for a device

having R = 500 kΩ, C = 1.2 fF, RT = 250 kΩ, ∆ = 200 µV and EJ/EC = 0.3. The two topmost

sets have been lifted by 0.5 nA and 0.8 nA for clarity.
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FIG. 4: Comparison of (a) experimental5 and (b) calculated data. The parameters are R ≈ 23 kΩ,

C≈ 1.2 fF RT ≈ 27.3 kΩ and EJ/EC = 0.7. The base current is varied from -3.6 nA to -0.4 nA

from up to down.

as explained in Section II. The experimental data is not quite in the validity range of the

theory, mainly due to the small value of R ≈ 23 kΩ. Now R/RQ ≈ 0.4EC/kB. Thus the

experimental data is partially washed out by fluctuations not included in the theory.

IV. LINEARIZED MODEL AND AMPLIFIER PROPERTIES

To analyze the BOT as an amplifier, we next linearize the model around a point of

operation. The linearization is formally given as


 iC

iB


 =


 Gout gm

gx Gin




 vC

vB


 , (10)

where iC , iB, vC , vB are the small-signal components of collector and base currents and

voltages, i.e. small variations around the point of operation. The definitions of small-

signal parameters are Gin = (∂IB/∂VB)VC
, gm = (∂IC/∂VB)VC

, gx = (∂IB/∂VC)VB
and

Gout = (∂IC/∂VC)VB
. By using the definitions and Eqs. (1) and (2) one now obtains the

small-signal responce as function of device and bias parameters. Note that VB is kept con-

stant in the last two partial derivations. This is the natural choice, if the circuit shown

in Fig. 1(a) is used. However, if the emitter is voltage biased instead of the collector, V ′
B

should be fixed instead. The choice does not have an effect on the analysis below, since

we will be assuming small RL, whence VC is constant (see Fig. 1(a). This renders gx and

Gout redundant. In other words, we assume here that the BOT is read out with a current

amplifier.

For some purposes it is also useful to define the current gain. β = − (∂IC/∂IB)VC
=

−gm/Gin. By evaluating gm and Gin from the definitions, this is given as
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FIG. 5: A graphical representation of the small signal model of the BOT in the limit of small RL.

The noise added by the BOT is represented with equivalent noise sources in end en.

β =
1

e

IS

Γ↑ 〈Ne〉 (1− βB)
+ 1. (11)

Here we have defined

βB = −Γ↓ (Γ↑ + Γ↓)
Γ↑ 〈Ne〉

(
∂ 〈Ne〉
∂VB

/
∂Γ↓
∂VB

)
(12)

In the approximation of Eq. (6) βB is zero, since 〈Ne〉 is constant. Using Eqs. (8) and (9)
instead makes values βB ≈ 1 possible. We call βB the ”hysteresis parameter” of the BOT.

The noise model for the BOT in the limit of small RL is shown in Fig. 5. The signal

and the noise from the source are described as current generators isg and in,S in parallel

with the source resistance RS. The input and output impedances are Rin = 1/Gin and

Rout = 1/Gout. The current generator βiB at the output accounts for the gain. The noise

added by the BOT is represented in a standard fashion (see e.g.13) by equivalent voltage

and current noise generators (en and in, respectively) at the input. According to Fig. 5 the

output noise of the BOT excluding the contribution of the source (in,S = 0) at the output is

S
1/2
i,out =

1

Rin +RS
βS1/2

en +
1/Rin

1/Rin + 1/RS
βS

1/2
in , (13)

where Sen and Sin are the spectral density functions corresponding to en and in, respectively.

Note that en and in and are fully correlated with equal phases in our model. We next choose

S1/2
en =

2IS

−gm

√
Γ↓Γ↑

(Γ↑ + Γ↓)
3 (14)

S
1/2
in =

2IS

β

√
Γ↓Γ↑

(Γ↑ + Γ↓)
3 . (15)

Physically, the noise current at the output of the BOT Si,out is obtained by assuming that the

dominant noise mechanism is the two-level switching noise due to collector current switching

between values IC ≈ 0 and IC = IS. It can be shown, that with selections of Eqs. (14)
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and (15), Eq. (13) produces the output noise in accordance to the theory of a two-level

fluctuator(see e.g.12). Furthermore, the generators are independent of RS. However, the

backaction noise (i.e. the noise current iBA through or voltage accross RS) is not correctly

predicted by the model.

The noise figure, defined as the ratio of total noise at the output divided by the noise

contributed by the BOT, is F = 1 + Si,out

[
(βRS)

2 (Rin +RS)
2 Sin,S

]−1
, where Sin,S =

4kT0/RS is the spectal density function of in,S and T0 is a reference temperature. One gets

optimum impedance Ropt and corresponding minimum noise temperature Tn by minimizing

F with respect to RS and using the definiton F = 1 + Tn/T0. It follows

Ropt =

√
Sen

Sin
= |Rin| (16)

Tn =
1

kB

√
SenSin =

|Rin|Sin

kB
. (17)

The correlation of the two sources shows in Eq. (17) in such a way that the prefactor is

1/kB instead of 1/2kB, which is the case for uncorrelated sources. The difference stems from

the fact that now the amplitudes of the two sources rather than the powers are summed.

If the approximation of Eqs. (6) and (7) is used to evaluate 〈Ne〉 and Γ↓ (whence also
βB = 0), one gets for some gain and noise parameters

β = 2 〈N〉+ 1 (18)

S
1/2
in =

√
− 4e

RT

(
V ′

B +
VQ

2

)(
1 +

Γ↓
Γ↑

)−3

(19)

Ropt = RT (1 + Γ↓/Γ↑)
2 (20)

Tn = − 4e
kB

(
V ′

B +
VQ

2

)(
1 +

Γ↓
Γ↑

)−1

. (21)

In this mode the BOT acts as a simple ”charge multiplier”, where one electron trigs 〈N〉
Cooper pairs, thus β = 2 〈N〉 + 1. The current noise can also be expressed as S

1/2
in =

2
√

eIB (1 + Γ↓/Γ↑)
−1. In the limit of small Γ↓/Γ↑ the Bloch oscillation sequences are short

compared the total length of the ”duty cycle” 1/Γ↓ + 1/Γ↑. Then the equivalent current
noise can be understood to be simply the shot noise of the input current. In that case

S
1/2
in = 2

√
eIB. The prefactor 2 instead of more familiar

√
2 is due to the random length

of charge pulses as opposed to the standard shot noise. With large Γ↓/Γ↑, or with long
Cooper pair sequences, the noise drops. The impedance also increases because single electron

tunneling is forbidden during the Bloch oscillations. One should remember, however, that

this is strictly true only in the absence of base junction leakage current.
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As noted above, the spectral noise density of the backaction noise current (iBA in Fig.

5) in general differs from Si,in. It can be shown, that for either Γ↑/Γ↓ � 1 or Γ↑/Γ↓ � 1,

it is exactly that of the base current shot noise, i.e.
√
2eIB. The maximum suppression

of iBA occurs at Γ↑ = Γ↓, where the fano factor is 1/2. The reason for the difference in
the equivalent current noise and the backaction noise is, that in the limit of large Γ↓/Γ↑
the output current noise becomes fully anticorrelated with iBA. Thus iBA does not directly

determine the current resolution, or vice versa. To minimize the backaction noise, the

device should be operated at a low base current. The low limit is here is set by spontaneous

downwards transitions due to incoherent Cooper pair tunneling4.

If the approximation from Eqs. (8) and (9) is used instead of Eqs. (6) and (7) for

calculating Γ↓ and 〈Ne〉, the dominating terms are in many cases those dependent on βB

especially if βB ≈ 1. Here we give estimates of some gain and noise parameters. The

derivation details and other parameters are shown in Ref.11. The hysteresis parameter is

βB = 0.02

(
R

RT

)2

exp

(
πe2R

16�

(
EJ

Ec

)2
)

, (22)

while some other quantities of interest are

β ≈ 1.2 (1− βB)
−1 (23)

S
1/2
in ≈ 12e√

RC

(
RT

R

)
β−1 (24)

Ropt ≈ R

2
β (25)

Tn ≈ 50EC

kB

(
RT

R

)2

β−1 (26)

As βB → 1 the current gain β diverges. However, the trade-off is that the optimum

impedance Ropt also diverges. The fluctuation at the output does not depend on βB, so

the current noise S
1/2
in and the noise temperature Tn decrease at the same time.

The physics in this limit can be understood as follows. With very large βB the main effect

of increasing VB is increasing the number of electrons 〈Ne〉 needed to cause a downwards
transition (see Eq. 12). This leads to decreasing IB, i.e. negative input conductance. With

very small βB the only effect of increasing VB is decreasing Γ↓. This leads to increasing
IB, i.e. positive input conductance

14. At intermediate values, i.e. βB ≈ 1, the input

conductance is close to zero. The effect is that a small change in IB causes a large change in

VB. Consequently Γ↓, and thus also IC change considerably. This leads to the enhancement

of the current gain. Since the noise at the output is not enhanced comparably, this leads to

decrease of the equivalent current noise and the noise temperature.

A set of simulated IC − IB and IB − VB-plots with a varying Josephson coupling are

shown in Figs. 6(a) and (b). The parameters were chosen so that the device is realizable
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with Al-tunnel junctions (see the Caption of Fig. 6). Current biased base electrode was

assumed. This shows how the current gain and the input impedance increase without limit,

as βB approaches unity. As βB exceeds unity the curves become hysteretic. If the source

resistance RS is large, hysteresis is a manifestation of negative input conductance. Therefore

a sufficient stability criterion for all source resistances is βB < 1. For small source resistances

the device is stable independently of βB. The simulated IV curves become hysteretic at

EJ/EC ≈ 0.25. According to Eq. (22) EJ/EC ≈ 0.32 leads to βB = 1. It is also worthwhile

to compare the stability criterion to experiments. In Ref.5 the two samples have βB ≈ 0.07
and βB ≈ 1500 according to Eq. (22). The first one does not show hysteresis, whereas the
second one does.

The current noise and the minimum noise temperature are shown as the function of

the optimum resistance in Fig. 6(c) and (d). The computational noise data was obtained

by performing a Fast Fourier Transform for the output current and averaging the low-

frequency part. This together with computed small signal paramters gives the equivalent

noise parameters. A correct form of dependencies, i.e. S
1/2
in ∝ R−1

opt and Tn ∝ R−1
opt are

correctly reproduced as compared to Eqs. (24) - (26). Differences in absolute levels can

partially be explained through the inaccuracy of the approximation. To some extent the

differences can also be understood with reference to excess noise mechanisms discussed in

Section V. However, correct forms of dependencies and the order of magnitude are correctly

predicted by the theory.

V. SUMMARY AND DISCUSSION

We have developed an analytic of the BOT based on a two-level system. The two-level

picture has some limitations. It excludes the effect of additional noise due to the finite

band width of Bloch oscillations with finite R or T . It also excludes the additional noise

of the leakage current (due to intraband transitions) through the collector resistance. Also

the evaluation of transition rates at the limit of low T and large R introduces some error.

The agreement with finite temperature data was, however, generally good suggesting that

the approach is sufficient to yield quantitative predictions in the limit under discussion.

Expressions for amplifier properties such as gain, stability, impedance levels and noise pa-

rameters were derived enabling amplifier optimization for a given purpose. It was shown

that equivalent current noise spectral densities below 1 fA/
√
Hz and noise levels below 0.1

K can be obtained with optimum impedance levels of order a few MΩ. According to finite-

temperature simulations the noise temperature of the BOT can also be brought below its

physical temperature.

Most other well-known mesoscopic amplifiers, e.g. single-electron transistor (SET)15 or

single Cooper pair transistor (SCPT)16 are based on controlling a current flow by charging

a gate electrode. The BOT is, on the other hand based on controlling the state of a JJ
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by means of quasiparticle tunneling events. This makes it insensitive to bakcground charge

fluctuations, whence 1/f noise is smaller. This makes it potentially better in low-frequency

applications.

BOT was generally found to work in two modes. The first one is a simple quasiparticle

- 〈N〉 Cooper pair converter. In the second mode intraband transitions play a role. These
can be utilized to enhance amplification and suppress equivalent noise, but make the device

potentially unstable. A stability criterion was derived and quantified by the hysteresis
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FIG. 6: (a) and (b) Computed IC −VC and IB −VB curves (R = 500 kΩ, C = 1.2 fF, ∆ = 200 µV,

T = 20 mK and RT /R = 0.5) The Josephson coupling EJ/EC is varied from 0.18 to 0.28 (from

left to right in (a) and down to up in (b)). (c) The current noise spectral density Sin referred to

input and (d) the minimum noise temperature Tn as function of Ropt. Within each dataset EJ/EC

(or equivalently βB) is varied. In (c) and (d) the parameters are as above with the exceptions of

varying RT /R and T as shown in the legend. The bias point in the simulations with T = 20 mK

is VC = 3.5e/C and VC = 4.5e/C for those with T = 300 mK.
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parameter βB.
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