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We study the construction of holonomy loops numerically in a realization-independent
model of holonomic quantum computation. The aim is twofold. First, we present our
technique of finding the suitable loop in the control manifold for any one-qubit and
two-qubit unitary gates. Second, we develop the formalism further and add a penalty
term for the length of the loop, thereby aiming to minimize the execution time for the
quantum computation. Our method provides a general means by which holonomy loops
can be realized in an experimental setup. Since holonomic quantum computation is
adiabatic, optimizing with respect to the length of the loop may prove crucial.
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1. Introduction

We study the implementation of a quantum computer numerically using so-called non-Abelian
holonomies. Holonomic quantum computation (HQC) was suggested by Zanardi and Rasetti
in Ref. [1] and further developed, e.g., in Refs. [2, 3, 4, 5, 6, 7, 8]. In order to build a work-
ing quantum computer of N qubits, one has to be able to produce any unitary operations
in U(2V), i.e. time-evolutions, on the qubits. In holonomic quantum computation, these
operations are achieved by selecting a degenerate qubit system and allowing for an adiabatic
time-development that does not change the degeneracy structure. Even though the Hamil-
tonian in this subspace is completely trivial, it turns out that a non-Abelian and irreducible
gauge potential appears, using which any unitary evolution can be carried out. As the word
holonomy itself suggests, we drive the system around loops in the control-parameter space (or
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manifold) and after each loop there is a nontrivial change in the state of the system. This is
a generalization of the famous Berry phase [9] to a degenerate system.

This paper is organized as follows. In Section 2 we first review the concept of non-Abelian
holonomy. Then in Section 3 we introduce our realization-independent model. Namely, we
consider the general setting for non-Abelian holonomy and unitary gate construction in a
three-state system. This part applies to a much wider class of research topics in modern
physics than just quantum computation. Many physical systems may be suitable for the actual
implementation of this model. Section 4 is the main part of the work. There we first consider
the generic algorithm for numerically finding implementations of holonomic quantum gates.
We have previously studied the computational construction of holonomic quantum gates in
Ref. [10]. There we limited our attention, however, to the solution of the inversion problem
itself; we showed that one can numerically find a holonomy loop corresponding to a desired
gate. Here we further extend the concept to actually optimizing with respect to the length
of the path. We find some new and more efficient implementations of holonomic quantum
gates. Because holonomic quantum computation is adiabatic and hence time-consuming, it
is important to optimize the construction of quantum gates. We argue that our optimization
method could also be extended to dynamical quantum computation. Section 5 is devoted to
discussion.

2. Non-Abelian Holonomy

We briefly outline the concept of non-Abelian holonomy associated with adiabatic change
of control parameters. This is necessary not only to establish notation conventions but also
to rectify certain confusion appearing in the literature on the definition of the holonomy
operator. The concept was first introduced by Wilczek and Zee in Ref. [11]. Other excellent
references are Zee [12] and Mostafazadeh [13].

Let us consider a family of Hamiltonians {H)} parameterized by A € M, where M is a
manifold called the control manifold. The local coordinate of ) is denoted by \* 1<i<m=
dim M). We assume that there are only a finite number of eigenvalues e4()) (1 < k£ < R) for an
arbitrary point A of M and that no level crossings take place through all of M. The eigenvalue
er(A) is assumed to be gg-fold degenerate independently of A. This degenerate subspace will
be denoted by H(A). Then the Hamiltonian is expressed as an N x N hermitian matrix,
where N = ZkRzl gk-

Let us denote the orthonormal basis vectors of () as {|ka; A\)};

Hy|ko; A) = ex(N)|ka; A), (Ja; AkB; A) = 0jkdap- (1)

Note that there are U(gy) degrees of freedom in choosing the set of basis vectors {|ka; A)}.

Suppose the control parameter A is varied continuously over M. It is assumed that the
variation is so slow that the adiabaticity condition is fulfilled, i.e., transitions between the
different energy levels are negligible. We will be concerned with a particular subspace, the
ground state H1, for example. We will drop the index k = 1 hereafter to simplify the notation.
Let us take a basis vector |a; A(0)) at ¢ = 0 and study how the state develops as a function
of time. We may assume that e(A) = 0 for any A € M, possibly after first readjusting the
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zero-point of the energy. Now our task is to solve the Schrédinger equation

2 1)) = iy al®) 2

with the initial condition |1 (0)) = |a; A(0)). It follows from the adiabaticity condition that
the solution of the above equation may always be expanded in the form

[Ya(®) =D 18; A(£)) Upal(t)- 3)

B=1

The unitarity of the matrix Ug, follows from the condition (g(t)|¥a(t)) = dga. By substi-
tuting Eq. (3) into Eq. (2), we find that

g

o == 3 (70| | 170 Vs (@

v=1

The formal solution of the above equation is readily obtained as
t
U(t) = Texp (—/ A('r)d'r)
0
t t T
= I- / A(r)dr + / dT/ dr' A(T)A(T") + ... (5)
0 0 0
where 7 is the time-ordering operator and

A3a(®) = (B3| 20 ). (6)

Let us define the Lie-algebra-valued connection one-form

0
Ape = <ﬂ; A() \5

o )\(t)> dXi (7

by which U(t) may be expressed as

At)
U(t) = Pexp (— /)‘(0) .A) , (8)

where P is the path-ordering operator. Note that A is anti-Hermitian; Af = —A.
Suppose that the path A(¢) is a loop v(¢) (0 < ¢ <T) in M, such that v(0) = v(T) = Xo.
Then it is found after traversing the loop 7y that the resulting state is

[$a(T)) =D 18 X0)Upa(T). (9)
B=1
The unitary matrix
U, =U(T) =Pexp (— f( A) (10)
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is called the holonomy associated with the loop . It is clear that U, is independent of the
parameterization for the loop but only depends on the geometric image of the loop in M.
Suppose the initial state is a superposition

g
Z (in)|o; Ao)-

Then the linearity of the Schrodinger equation leads to the final state

[$(T)) = cp(out)|5; Ao)

Me | Mm

183 20)Upa (T)ca(in) (11)

Il
i

B

which implies that cg(out) = 3 Uga(T)cq(in). Thus, we confirm that U is indeed the matrix
representation of the time-evolution operator with the standard ordering of indices. In this
context, it is crucial that the summation in Eq. (3) goes over the first index 3.

The space of all the loops based at \g is denoted as

Lo (M) = {7 : 0, T] = M|y(0) = 7(T) = Ao} (12)
The set of the holonomy
Hol(A; Xo) = {Uy| v € Lo (M)} (13)

has a group structure and is called the holonomy group. The product is just an ordinary matrix
product. It is easily seen that Hol(\A; \g) is isomorphic to Hol(A4; A1) for any Ao, \; € M if
M is arcwise-connected. It is clear that Hol(A) C U(g) since U(g) is the maximal possible
group in C9, which preserves the norm of a vector. The connection A is called irreducible if
Hol(A) = U(g). We assume that our control manifold is always arcwise-connected and we
omit the explicit quotation of the base point from now on.

3. Three-State Model and Quantum-Gate Construction

3.1. One-qubit gates

To realize the idea outlined in the previous section, we employ a simple model Hamil-
tonian called the three-state model as the basic building block for our strategy. This is a
3-dimensional Hamiltonian defined by

Hy, = €2)(2 =

oo

0 0
0 0 (14)
0 0

at the base point A\g € M. The first column (row) of the matrix refers to the auxiliary state
|2) with an energy € > 0 while the second and the third columns (rows) refer to the vectors |0)
and |1), respectively, having vanishing energy. The computational subspace (qubit) consists of
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the last two vectors. In spite of the fact that the qubit operation takes place in this subspace,
the auxiliary state |2) is necessary since the Hamiltonian trivially vanishes otherwise.

The control manifold M of the Hamiltonian (14) is the complex projective space CP? =
U(3)/(U(2) x U(1)). This is seen most directly as follows: The most general form of the
isospectral deformation of the Hamiltonian is of the form H, = W, H,, WJ;, where W, € U(3).
Note, however, that not all the elements of U(3) are independent. It is clear that H, is
independent of the overall phase of W.,, which reduces the degrees of freedom from U(3) to
U(3)/U(1) = SU(3). Moreover, any element of SU(3) may be decomposed into a product of
three SU(2) matrices as follows

Bl Qi 0 ﬂ_z 0 Q2 1 9 0
W’y = —Q ﬂl 0 0 1 0 0 ﬂg a3 B (15)
0 0 1 —az 0 B 0 —as fs

where the a; and the 3; satify the relation |a;|> + |3;|*> = 1. This decompostion is know
as the Givens decomposition. We put a; = e'%i sin 0; and B; = e'¥i cos 0;. It is clear that
H, is independent of Us since UsH), Ug = H),. This further reduces the physical degrees
of freedom to SU(3)/SU(2) = §5. This is not the end of the story, however, since CP? is
real four-dimensional and we have to get rid of a phase from S5. Accordingly, we have to
“gauge away” two redundant parameters in the product U; U, which contains altogether six
parameters. These redundancies are easily identified by writing the product out explicitly.
The result depends only on the combination ¢ — 12 and not on individual parameters.
Accordingly, we may redefine ¢5 as ¢2 —1)3 to eliminate 2. Furthermore, after this redefinition
we find that the Hamiltonian depends only on ¢; —; and ¢2 — 1; and hence 1; may also be
subsumed by redefining ¢; and ¢2, which reduces the independent degrees of freedom down
to CP% =~ §5/8*.

Let [2%, 22, 23] be the homogeneous coordinate of CP? and (1,£;,&;) be the corresponding
inhomogeneous coordinate, where £; = 22/2',£2 = 23/2! in the coordinate neighborhood
with z! # 0. If we write £, = r1e?* the above correspondence, i.e. the embedding of CP?2
into U(3), is explicitly given by ) = tan=! 74 and ¢ = pi.

The connection coefficients are easily calculated in the present model and are given by

g, — <Sin0262¢2_¢1) —sinOQeOi(d’zrbl)) , (16)

Ag, = (8 8) , (17)

A= (Lianmomensiensr iaboase ) 09
Ags = (8 —isi0n2 02) ’ (19)
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where the first column (row) refers to |0) while the second one refers to |1). Using these
connection coefficients, it is possible to evaluate the holonomy associated with a loop v as

Uy = Pexp <— f{(Aold@l + Ag,dbz + Ag,d¢1 + A¢2d¢2)) : (20)
el
Now our task is to find a loop that yields a given unitary matrix as its holonomy.

3.2. Two-qubit gates
Let us next consider a two-qubit reference Hamiltonian
Hf:lubit =H} ® I3+ I3 ® HY,, (21)

where Hf\”b are three-state Hamiltonians and I3 is the 3 x 3 unit matrix. Generalization to
an arbitrary N-qubit system is obvious. The Hamiltonian scales as 3V, instead of the 2V in
the present model.

‘We want to preserve the multipartite structure of the system in constructing the holonomy.
For this purpose, we separate the unitary transformation into a tensor product of single-qubit
transformations (W2®W?) and a purely two-qubit rotation W22 which cannot be reduced
into a tensor product of single-qubit transformations. Therefore, we write the isospectral
deformation for a given loop v as

Hg-qubit — Wg-quit(W,;,l ® Wéz)Hi;qubit (W,;I ® W,?)TW,g-qubitT- (22)

The advantage of expressing the unitary matrix in this form is easily verified when we write
down the connection coefficients for the one-qubit coordinates. Namely, the two-qubit trans-
formation does not affect the one-qubit transformation at all;

B; A>

a 8 a
= <a;/\ ‘(W7 ®Wf)137(Wv ® W)

0
Aiag = <a; A ‘WJG—'WWV

B; A> ;
where 7% denotes a one-qubit coordinate.
There is a large number of possible choices for Wg'q“bi", depending on the physical real-
ization of the present scenario. To keep our analysis as concrete as possible, we have made
the simplest choice

Wf—qublt — WE = ez§|11)(11| (23)
for our two-qubit unitary rotation. Let
H, = Hy®oL+L®H,

h?1+htl,1 hl{2 hg3 h%2 0 0 hgllB 0 0
hgl hgl+hg2 h1273 0 h%Z 0 0 h(f3 0
hgl hg2 hg1+hg3 0 0 h;2 0 0 h?S
hgl 0 0 h"212+h’l;1 th h?3 hg3 0 0
= 0 h31 0 RS, h3a+h3, R, 0 h3s 0
0 0 hgl hgl th hgz'i'h:l;a 0 0 hg3
h;l 0 0 h;Z 0 0 hg3+h’l{1 hiZ hl{S
0 hgl 0 0 th 0 h’gl hg3+hg2 th

0 0 hgy 0 0 h3s h3: h3s  hiz+h3s
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be a two-qubit Hamiltonian before W is applied. Then after the application of W to Hﬁ, we
obtain for the full Hamiltonian

2-qubit __ 7 1
H’y = W§H7W§
h(ﬁthlfl h%s . h%s hi, 0 0 his 0 0
ha1  hiithzy  has 0 his 0 0 his 0
hgl hgz hil1+hgs 0 0 his 0 0 hl{se_lg
h3y 0 0 h3y+hly kY, his h3s 0 0
= 0 h3y 0 h3y  h3y+hi, hga 0 h3s 0
0 0 h3y hg1 hgz hgz+hgs 0 0 hgseils
h3 0 0 h3s 0 0 hgs+hi; ki, hgse_lze
0 hgy 0 Y h3, Y h’gl hg3+h32 h33571€
0 0 hg et 0 0 hgye®®  R3e*®  R3se* hgz+hl,
(24)
As for the connection, we find
0 0O 0
L_|0o0o0 0 o5
¢t~ 1000 0 (25)
0 0 0 icos26gcos?6}

where the rows and columns are ordered with respect to the basis {|00), |01),]10), |11)}. It
should be apparent from the above analysis that we can construct an arbitrary controlled
phase-shift gate with the help of a loop in the (62, £)- or (67, £)-space. Accordingly, this yields
the CNOT gate with one-qubit operations, as shown below.

3.3. Some Examples

Prior to proceeding to present in the next section the numerical prescription to construct
arbitrary one- and two-qubit gates, it is instructive to first work out some important examples
whose loop can be constructed analytically. In particular, we will show that all the gates
required for the proof of universality may be obtained within the present three-state model.

The first example is the 7 /8-gate,

1 0
U7r/8 = < 0 ei7r/8 ) . (26)
By inspecting the connection coefficients in Egs. (16-19), we easily find that the loop
(62,¢2) : (0,0) = (w/2,0) = (7w/2,7/8) — (0,7/8) — (0,0). (27)

yields the desired gate. Note that the loop is in the (s, #2)-plane and that all the other
parameters are fixed at zero. Explicitly, we verify that

o = o et (5 Ao )
X exp (—% Ag, |92=7r/2) exp (—g Ao, |¢2:0)

= exp (—% .A¢2|92=7r/2) . (28)
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The next example is the Hadamard gate

H:%(i _11) (29)

Instead of constructing H directly, we will rather choose to use the decomposition

—in T s
H=e"/?exp (15%) exp (zzoy) .
It is easy to verify that the holonomy associated with the loop
(62,01) : (0,0) = (w/2,0) = (/2,8) — (0,8) — (0,0) (30)
is exp(¢oy), while that associated with the loop

(61,02,61) : (0,0,0) = (7/2,0,0) = (7/2,7/2,0) = (7/2,7/2, )
— (7/2,0,a) — (0,0,a) — (0,0,0) (31)
is exp(iao,). Here again, the rest of the parameters are fixed at zero. Finally, we construct

the phase-shift gate e?®, which is produced by a sequence of two loops. First we construct a
gate similar to the J-shift gate using (cf., the 7 /8-shift gate)

(01,61) : (0,0) — (7/2,0) — (w/2,8) — (0,6) — (0,0). (32)
This loop followed by the similar loop in the (62, ¢)-space yields the e?-gate as

(01,451,92,(1)2) : (0, 0,0,0) — (0,0,71’/2,0) — (0,0,71'/2,(5) — (0,0, 0, (5)
- (ana 0, 0) - (71'/2107 0, 0) - (71'/2, 4,0, 0) - (0’5a 0, 0) - (ana 0, 0) (33)

Finally, the controlled-phase gate U(©) = exp(i©|11)(11]) can be implemented with the
loop

(05,¢) : (0,0) = (7/2,0) = (7/2,0) — (0,0) — (0,0). (34)
4. Numerical Results

4.1. Loop-Finding Algorithm

In this Section we numerically study the construction of holonomic quantum gates for the
three-state model. The three-state model is in a way the simplest possible model for holonomic
quantum computing while still maintaining the tensor-product structure which is necessary
for exponential speed-up. We have previously shown [10] how to solve the inverse problem of
finding loops corresponding to desired quantum-logic gates. We have presented several exam-
ple solutions for various one- and two-qubit gates. We demonstrated, e.g., how to construct
the Hadamard gate, the CNOT, the SWAP, and the two-qubit Fourier transform in a single
loop. We concluded that our three-state model is capable of universal quantum computing.
Here we will extend the scenario by adding a penalty term for the length of the path. We
will also introduce and test a method for optimizing with respect to the length directly but
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with a penalty term arising due to excess deviation from the desired gate. In this manner one
may efficiently combine loops. Even though these measures will not result in a change in the
quantum-computational complexity, it may be possible to significantly reduce the multipliers
in front of the highest-order terms in the expression for the CPU execution time. In other
words, the big-O notation is the same, but nevertheless, much of the computation time may
be saved.

First we review our basic algorithm and show some new example gates. Namely, each loop
< in the parameter space corresponds to a gate U,. We wish to solve the inverse problem; We
look for a 4 that corresponds to U. We further restrict ourselves to the space of all polygonal
loops. If V is the space of all possible loops with the given base point, then Vi will be the
space of all those polygonal loops that have k vertices in addition to the base point. Here of
course Vi C V. This problem can be formulated as an optimization problem. One needs to
find 4 such that

F) =T -U,llr (35)

is minimized over all v € V;, We aim at the minimum value to be zero. Here | - ||[r denotes
the Frobenius norm defined as ||A||r = 1/Tr (AtA).

For one-qubit gates, the dimension is 4k whereas in the case of two-qubit gates the di-
mension is 9k. We used the polytope algorithm [15] to solve this problem. The reason for
employing this method is the extremely complicated structure of the objective function. In
Fig. 1 we have plotted a 2D section of the function values. This figure was obtained by using
the line joining two known minima of a certain one-qubit gate along with a randomly chosen
perpendicular direction. Thus derivative-based methods are not expected to perform well.

The calculation of the holonomy requires evaluating the ordered product in Eq. (10). The
method used in the numerical algorithm is to simply write the ordered product in a finite-
difference approximation by considering the connection components as being constant over a
small difference in the parameters §+;.

For instance, we attempted to find a loop corresponding to the Hadamard gate. We have
previously given a different implementation of this gate [10]. The resulting loop is illustrated
in Fig. 2. Note that this optimization was carried out in V3 meaning that there are three
vertices other than the reference point. We have taken the origin to be this reference point.
The length of this example loop is 12.01 in the Euclidean approximation. To give an example
of a two-qubit gate, we have included in Fig. 3 a loop that yields the well-known two-qubit
quantum version of the Fourier transform. This loop is again different from the example
solutions of Ref. [10]. Thus one is convinced that the solution is by no means unique. For
instance, the solution depends strongly on the initial configuration of the polytope algorithm.
Hence, there is ample motivation to search for shorter loops.

To show more clearly the power of our technique, we have plotted in Fig. 4 the error as a
function of function evaluations for three independent runs. The attempted logical operation
was the Hadamard gate. We see that the convergence seems to be exponential. Moreover,
a few hundred evaluations of f(7y) is enough to achieve an error as low as 1078. We argue
that one can achieve arbitrarily small errors by running the algorithm long enough. Numerical
rounding errors will, though, complicate things slightly. It is important from the experimental
point of view just to achieve low enough errors.
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Fig. 2. Loop in the parameter space that implements the Hadamard gate with L(yg) = 12.01.
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Fig. 3. Loop 7rourier in the parameter space that gives the two-qubit Fourier gate.

L(YFourier) = 63.35. The error was below 10713,
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Fig. 4. Error as a function of iterations for the Hadamard gate.

4.2, Length-Penalty Optimization

We now proceed to develop the formalism for reducing the length of the loops. We tried
adding a penalty term to the objective function see, e.g., Ref. [14]. This function is defined
as

0, if L(7) < Liax
P() = " (36)
vL(y)?, otherwise

where L(7) is the length of the path 7; here p and v are adjustable parameters. Note that
the length need not be Euclidean. Our numerical experiments below will, though, use the
Euclidean approximation. To be strict, however, we would have to relate the four parameters
of our Givens decomposition to the base manifold CP? of the bundle U(3) in the case of
one-qubit gates. Then we would employ the CP? metric to evaluate the length of the loop in
the optimization algorithm. Hence the lengths of the loops here should be interpreted with
caution. Moreover, since HQC is purely geometrical, the operation should be independent
of how fast the loop is traversed. Note, however, that a shorter loop may be traversed more
quickly without spoiling the adiabaticity requirement.

It should be clear from the structure of Eq. (36) that the penalty functions are designed to
have built-in constraints. In the allowed region, i.e., where the length does not exceed L.y,
the problem is unchanged. There will be a rapidly growing penalty term elsewhere. From the
point of view of the optimization algorithm, short loops are preferred.

Figure 5 illustrates another example solution to the problem of finding a two-qubit Fourier
gate but this time with the restriction Ly,,x = 40. We have chosen a penalty function with the
parameters p = 2 and v = 1000. The solution tends to be on the surface L(y) = Lyax, at least
for short Ly .. This may be interpreted to originate from the scarcity of the minima for short
loops. Tests show that adjusting the maximum length upwards does not result in a solution
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very near to the boundary but rather a solution is found in the middle of the volume. One is
inclined to deduce from all this that the number of solutions to the minimization problem is
huge. This particular loop is shorter than our earlier construction, but not much. However,
our first example in Fig. 3 had a loop length of 63.35, such that a remarkable improvement
has been achieved.

1

15|
1
1
05|
05|
Sl -~ —
0| 0
-0.5|
-0.5|
-1
-1
-15]
= -05 0 05 1 15 Bl -05 0 05 1 15
07 0§
1 1
1. 1
4 1
05
0.5
S S
IS
o
-0.5|
-0.5| a

I

-1 -05 0 9o 05 1 15 =1 -0.5 0 e 05 1 15
1 1

Fig. 5. Length-optimized loop for the quantum Fourier transform in V1g. Here L(vYrourier) ~ 39.96
and the error is below 10713 with 200 discretization points per edge.

A more impressive reduction of length may be seen in Fig. 6. We have previously shown
[10] an implementation of the SWAP gate that had a length of 107.85. The gate given below
has a length of just 29.99. We managed to cut off a major redundant portion of the path.
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Fig. 6. Length-optimized loop for SWAP in V10. Here L(yswap) =~ 29.99 and the error is below
10~13 with 200 discretization points per edge. The loop presented in Ref. [10] had a length of
107.85.

/14


inftla
Text Box


4.3. Error-Penalty Optimization

We can take the concept of length-penalty optimization one step further. Once we know some
loop that produces the desired gate, we may switch the roles of the length of the loop and
that of the error. Namely, we assign a penalty function that penalizes for excess error while
the main contribution comes from the length. In this manner we can try to make increasingly
improved loops that yield the very same quantum gate. That is, we minimize the function

F(v) = L(v) + P2(7) (37)

where the penalty term is this time given by

_J0, if f() < €max
Pa() = {uf(fy)p, otherwise. (38)

Here f() is the error just as previously. This elaboration of the penalty-function technique
proves quite powerful.

A good example of the technique is given by the CNOT gate which we may easily perform
analytically. We take an implementation of the CNOT

(62,65,6%,€) =(0,0,0,0) — (0,7/2,0,0) — (0,7/2,7/4,0) -
(0,0,7/4,0)  — (0,0,0,0) — (/2,0,0,0) -
(7/2,0,0,7)  — (0,0,0,7) — (0,0,0,0) -
(0,7/2,0,0) — (0,7/2,—m/4,0) — (0,0, —7/4,0) —
(0,0,0,0).

as the initial guess of the optimization task where the vertices are joined linearly. This loop
is naturally in V;; but we also add an extra vertex in the middle of each edge such that
the loop is more flexible and therefore belongs to V3. The resulting loop after error-penalty
minimization is shown in Fig. 7. This figure, as well as all the figures in this section, was
obtained by first using poor accuracy and then by minimizing further with improving accuracy
starting from the initial guess thus obtained. The starting length was 18.8496 and as can be
seen from the length of this loop 14.03, the solution has improved considerably. This is just
one example of the power of our technique. Due to the success of the method we are yet more
convinced that the acceptable solutions are extremely dense in parameter space.

The use of the Euclidean metric is particularly well motivated in the context of error-
penalty optimization. Of course, the underlying physical setting might suggest using a special-
ized metric that would relate some experimental “cost” to certain areas of the base manifold.
For example, it is not clear which shape of the manifold one should choose, analogously to
the situation between ellipsoids and spheres. In the present scenario we have two objectives:
a low error and a short path. If there emerges a redundant contribution adding to the length
from some part of the manifold where the parameterization is not one-to-one, this excess
length can be removed without affecting the solution. Since we are also aiming at reducing
the Euclidean length, any redundant contributions tend to disappear in practice due to the
minimization algorithm. An analogy is provided by the unit ball S2%; if one were to do a
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Fig. 7. Result of the error-penalty minimization of an initially known CNOT loop in V23. Here
L(ycnoT) =~ 14.03. The original loop was in V11, had a length of 18.85 and actually consisted of

three individual loops.
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27 turn on one of the poles, there would be an Euclidean contribution that would have no
meaning. This excess length would disappear in the minimization process, though.

5. Discussion

We have numerically studied the construction of holonomic quantum gates. Our method is
capable of finding the loop in the parameter space corresponding to any one- or two-qubit
gate in a three-state model. It seems reasonable that the method would also work in other
models. The optimization task is too difficult for derivative-based methods as can be seen in
the pictures we have presented. The polytope algorithm has, however, proved useful in this
task. Moreover, our previous calculations prove the three-state model that we have presented
capable of universal HQC. We discussed example solutions for the Hadamard gate and the
two-qubit Fourier transform without length considerations. It is easy to construct a set of
universal gates for the model analytically. Numerical results are, though, far superior since
they realize a given unitary matrix with a shorter single loop.

In the present paper we have developed a method for minimizing with respect to the length
of the loop, thus making the implementation of these holonomies as quick as possible. We have
first investigated adding a penalty term for excess length and then experimented swapping
the roles of the length and the error. Provided that one already knows some implementation
of a desired gate, this latter technique can be used to combine loops in an efficient manner.
The results that we have obtained appear promising. The main result is that the optimization
problem can be solved even though the landscape is quite rough. For one- and two-qubit gates
a regular PC suffices.

It must be emphasized that it certainly is desirable for the loop to have the shortest possible
length to achieve fast operation speed without sacrificing the adiabaticity. As a preliminary to
our optimization scheme, we neglected the underlying metric of CP? ~ U(3)/U(2) x U(1) and
pretended as if we were working in a manifold with an Euclidean metric. We demonstrated
that our scheme works reliably. We are currently engaged in a more ambitious program with
the CP? metric properly taken into account. We believe that our optimization method could
also be extended to more conventional quantum-computing schemes. Then, however, time
would appear explicitly in the minimization.

A few remarks are in order about our method. The fact that the optimization landscape
is rough does not imply that HQC would be sensitive to errors. Namely, physical errors do
not just move one vertex but rather there are deviations all along the path. To which degree
this causes errors would constitute a separate study. Furthermore, increasing the number of
vertices does not result in an improved accuracy: For one-qubit gates it is enough to have
22 — 4 independent parameters and for two-qubit gates 42 = 16 parameters. This is because
U(2"N) is parameterized by 22V real parameters. Recall that the number of optimization
variables is either 4k or 9k. With k£ = 1 one cannot, however, obtain a non-trivial holonomy.
More vertices might mean less length, though.

The speed-up must be considered in terms of the adiabatic time. Short loops can always
be traversed slowly but they may also be traversed more quickly. It is important to reduce
the operation time to fight the effect of decoherence. Thus the optimization of quantum gates
is a very well motivated task.

We wish to point out that all the rotations in CP? are available with a construction using
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superconducting nanostructures [17].
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Note added in proof It was brought to our attention that the minimization of the loop
length for a given holonomy has become known as the ”isoholonomic problem”, named in
analogy with the ”isoperimetric problem” in which the area surrounded by a loop with fixed
length is maximized. See, e.g., R. Montgomery, ”Isoholonomic problems and some applica-
tions”, Commun. Math. Phys. 128, 565-592 (1990). In Montgomery’s paper, this mini-
mization problem is written in the form of a differential equation. In our approach, however,
this does not work since there occur too many local minima. Therefore, we consider our
minimization algorithm a far more practical scheme.
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