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Abstract 
 
This thesis studies the reliability of telecommunications equipment, its components, and 

the systems made using those components. Special attention is paid to creating stronger 

links between the reliability analyses performed at different hierarchy levels. 

The thesis starts with a temperature derating study. It is found out that the generic 

handbook based procedures may not always be very attractive, as they do not take 

satisfactorily into account the actual lifetime requirements. An alternative approach is 

proposed as a remedy to the current situation. 

Thermal cycling requirement handbooks are surveyed, and based on the findings some 

enhancements are proposed. Next, a component and product specific approach to create 

thermal cycling requirements is suggested. When applying the new approach several 

factors can be taken into account: the product’s lifetime requirement, the field 

environment, the reliability test result, and the statistical distribution of the component 

population. A new method of how to predict the reliability of a component population that 

is addressed to several, different field environments is presented. 

Ceramic, leadless components are studied by testing and by utilizing Engelmaier’s 

analytical solder fatigue model and Finite Element (FE) simulations. A new approach to 

interpret the solder joint height in conjunction with solder castellations is introduced. 

Based on this, a very good correlation between the test results and the predictions based on 

Engelmaier’s model can be obtained. The parameter sensitivity of both the Engelmaier’s 

model and the FE analysis are studied and compared. Error margins based on the 

parameter sensitivity studies are given. 

Time-averaged hazard rate functions are studied in order to be able to use component level 

test data in simplistic parts-count method type reliability predictions. Finally, the 

availability of a full 3rd generation telecommunications network is studied. 

Keywords: reliability, availability, MTTF, MTBF, hazard rate, derating, solder joint, 

fatigue, 3rd generation telecommunications network. 
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1 Introduction 

Reliability engineering is becoming a multidisciplinary science. In earlier days, reliability 

engineering was considered as equal to applied probability theory and statistics. 

Nowadays, the reliability research area has been clearly sub-divided into smaller entities. 

The research topics may be divided by the methodology it applies; mathematics based 

approaches have a long history, especially in reliability analysis of large systems, while 

physics based approaches are being introduced, especially in component level studies. 

New concepts in mathematics are swiftly being introduced to reliability engineering. These 

include, for example, fuzzy logic [1] and Petri Nets [2]. Physical reliability science has 

benefited from the increasing computing power that has enabled accurate modeling of 

complex structures [3], [4], [5]. 

The specialization trend has many desired implications: The accuracy of reliability 

predictions is getting better [6], and therefore the required safety margins have become 

smaller. Research in specialized areas also has a tendency to create better results than 

those achieved when working on a wide research area. One might even state that through 

specialization, reliability is becoming a science instead of being more or less a philosophy. 

However, specialization has also some negative impacts. The most obvious one is that as 

reliability specialists are nowadays focusing on their area of interest only, the interaction 

between different research topics is getting weaker. In a worst-case scenario, reliability 

experts cannot understand anymore the neighboring research area problems. Now, it is 

already evident that component level reliability analysis cannot be fully applied at higher 

system hierarchy level reliability considerations. On the other hand, the component level 

reliability requirement should originate from system level requirements.  

In this thesis, one of the main objectives is to provide some useful tools to link component 

and system level reliability considerations. The ultimate goal would be to create a holistic 

approach, in which reliability data could be fully applied and not depend on which 

hierarchy level it originated. Interaction between different reliability experts can create 

useful ideas that would never occur if the experts would only focus on their specific area. 
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Instead of optimizing the reliability performance of some specific area, much more could 

be gained if all reliability information can be fully utilized. This gives freedom to make 

clever choices related to component selection, printed wiring board partitioning, and 

product and system architecture. 

Although a wide area, from physical component level to system level reliability studies, is 

covered in this thesis, in-depth analysis on each of the sub-sections is performed. This is 

necessary in order to create new results that are scientifically valuable. Nonetheless, the 

focus is always to obtain useful results on specific areas that help in creating stronger links 

between different research areas.  

In the following chapters, mostly ceramic components will be analyzed from the reliability 

point of view. New methods to guarantee the reliability requirements to be fulfilled will be 

presented. The analysis is based on the application of physical models and statistical 

methods. The analysis starts with Chapter 3, where the effect of constant temperature on 

active devices is studied and a new temperature derating method is proposed.  

The effect of temperature cycling is studied in the two following chapters. First, the 

general methodology, of how thermal cycling tests are usually interpreted and of how the 

requirements are set, is studied by analyzing the IPC (the Institute for Interconnecting and 

Packaging Electronic Circuits) guidelines. In this part, the general methodology to create 

generic requirements is critically reviewed. Then, certain ceramic components with a 

second level interconnection reliability risk are tested and the results are analyzed by 

utilizing the developed component specific reliability requirement methodology. Test 

methods, statistical analysis, and physical modeling are described in this section. 

Computer simulation results and results obtained by utilizing analytical solutions are also 

compared. This part includes a comparison of test results and forecasted results, the field 

performance prediction benchmark, and the applicability study of the computer 

simulations and analytical methods. 

A link between component level reliability estimates and the analysis of a printed wiring 

board (PWB) and higher-level entities is established in Chapter 7. The inconsistency 

between component level test results with increasing hazard rate and the higher-level 
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reliability analysis with constant failure rate assumption is discussed. Methods to estimate 

the time-dependent hazard rate function are compared and the best solutions are proposed. 

Following that, component level test result information is ready to be applied in simplistic 

parts-count type reliability estimations. 

Finally, the effect of introducing high-risk components at system level is studied. As an 

example, 3rd generation telecommunications network performance is evaluated. Useful 

simplifications when modeling the availability of the network are presented. It is shown, 

that the different viewpoints (component vs. system level) may result in an opposite 

conclusion on the applicability of the component. 
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2 Component Level Reliability Analysis 

2.1 The Definition of Reliability 

Reliability may be defined in several ways. The definition to be used in this thesis is the 

commonly used definition adapted from [70]: 

“Reliability is the probability that an item operating under stated conditions will survive 

for a stated period of time.” 

The above definition has its roots in military handbook MIL-STD-721C [7]. The above 

definition is valid for non-repairable hardware items. The “item“ may be a component, a 

sub-system or a system. If the item is software instead of hardware, the definition will be 

somewhat different [8].  

2.2 Empirical Models 

Component level reliability analysis conventions have their background in the military and 

space industries. As the components used in these applications were clearly safety critical, 

it was necessary to create qualification criteria and reliability prediction methods [9]. 

These reliability prediction models were typically based on large field failure databases. 

The empirical models give a generic estimate for a certain component or technology. 

Although, also being based on empirical data, the effect of field environment was taken 

into account by ‘factors‘ responsible for the degradation effects related to temperature, 

voltage, or some other stress factor. The temperature dependence was taken into account 

by the so-called Arrhenius equation [10] that was originally developed when modeling the 

rate of chemical reactions.  

However, although since the early 1970s the failure rates for micro-electronic devices have 

fallen ca. 50% every 3 years [11] and the handbook models were updated on the average 

every 6 years, the models became overly pessimistic. Finally, in 1994, the U.S. Military 

Specifications and Standards Reform initiative led to the cancellation of many military 

specifications and standards [12]. This, coupled with the fact that the Air Force had re-



 5 

directed the mission of the Air Force Research Laboratory (the preparing activity for MIL-

HDBK-217) away from reliability, resulted in MIL-HDBK-217 becoming obsolete, with 

no government plans to update it.  

The cancellation of MIL-HDBK-217 was by no means the end of empirical models. 

Several similar kind of handbooks still exist, such as Bellcore Reliability Prediction 

Procedure [13], Nippon Telegraph and Telephone (NTT) procedure [14], British Telecom 

Handbook [15], CNET procedure [16], and Siemens procedure [17]. The predicted failure 

rates originating from different standards may, however, deviate from each other [18]. 

Empirical models can, in principle, also take into account early failures and random 

failures, which is not usually the case when considering physical models. Empirical 

models are also easy to use. 

2.3 Physical Models 

Each physical model [19], [20] is created to explain a specific failure mechanism. First, the 

testing is performed, the failed samples are analyzed, and the root cause for the failures is 

discovered [21]. Then, a suitable theory that would explain the specific failure mechanism 

is selected and used in order to calculate the acceleration factor and the predicted mean-

time-to-failure (MTTF) value. This means, that the acceleration factor relevant to the 

failure mechanism is not usually known prior to the testing and analysis of the root cause. 

Physical modeling may be based on either an analytical model or on Finite Element 

Analysis (FEA) simulations. Physical models are most widely applied in solder joint 

fatigue modeling. Some other phenomena that have been studied by physical models are 

electromigration [22], and other thermally induced failure mechanisms [23].  

When applying physical models it is possible to study the effects of material properties, 

dimensions, and field environment. The problem lies in the large parameter sensitivity of 

these models. Many models are applying exponential or power equations. The generic 

solutions to second-order differential equations, usually solved by running FEA 

simulations, are of exponential type. Therefore, even slightly inaccurate parameter values 

may result in tremendous errors. Despite this fact, proper error estimates are given far too 
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seldom, although some examples of this do exist [24], [25]. Another aspect that may 

possibly degrade the level of confidence towards predictions based on physical models is 

the fact that the models are developed in a well-controlled laboratory environment and 

there is little reliability data originated in a real field environment [6].   

Presently, there are still situations in which no model that would explain the failure 

mechanism encountered can be found. In those cases, no prediction based on physical 

models can be given. Physical models usually address to wear-out phenomena and 

therefore, are of little value if early failures or random failures are in question. The 

exception to this is overstress events that can be analyzed by stress-strength analysis. Also, 

methods to assess early failures of defective sub-populations are being developed [26]. 

2.4 Development in Component Reliability 

Despite the fact that there has been evident progress in component quality and reliability 

[11], there are some signs of degradation of component reliability. One reason for this is 

the abandoning of the military handbooks that provided clear guidelines. Therefore, 

common requirements on acceptable reliability levels do not exist. Today’s market is 

driven by consumer electronics instead of electronics that require long-lasting, high-

reliability performance. This has sometimes resulted in a lack of components conforming 

to high-reliability requirements. This lack has caused some problems, especially in the 

application areas where long lifetime and high reliability are required, such as military [27] 

and telecommunications infrastructure products [28]. 

New surface mount component types without interconnection leads cannot always be 

adapted due to their limited reliability in demanding applications [29]. Several new 

component types have been introduced to the market, but the second level interconnection 

reliability of all these components is not at a sufficient level. In Figure 1, some thermal 

cycling test results are depicted [30]. It can be easily seen, that most of the components do 

not conform to the no-failures-in-1000-cycles criterion.  
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Figure 1. Thermal cycling (-40…+125°C, 1-hour cycle) test results of some leadless 

components. Characteristic lifetimes in cycles are depicted [30]. 

The complexity of the products is increasing. This may also create further demands on 

component reliability. Outsourcing of the design and the manufacturing of IP blocks do 

not eliminate the responsibility of the end-product manufacturer. Outsourcing may even be 

seen as threat to reliability and quality, unless the end-product manufacturer carefully 

communicates the reliability targets, and controls the fulfillment of the reliability 

requirements. 

2.5 Reliability Information 

As discussed earlier in this chapter, there are different ways to estimate the reliability of 

electronic components. In order to be able to evaluate the usefulness of such estimates, 

there should be some key criteria selected for this. One key issue is how much we can rely 

on the reliability data. Reliability prediction with no correlation to the actual field 

performance is of little value. It is also vital that the data is available at times when it is 

useful. After its service life, it is possible, at least in theory, to know exactly the reliability 

performance of a certain component population. However, this information may not be 

very useful, as the components have already failed and there is no means anymore to affect 
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the retrofit costs. Therefore, timely information that is based on the best knowledge 

available would be most desirable for the majority of engineering purposes. 

In Figure 2, some reliability information sources are judged based on the two 

aforementioned criteria: the level of confidence on the reliability information and the time 

span when the information is available. The graph may be somewhat subjective, but 

should still be quite illustrative. The ranking of the methods based on the level of 

confidence may be open for discussion. The term ‘level of confidence’ is used here loosely 

to describe how accurate or trustworthy the information is. Level of confidence should not 

be confused with the confidence limits or confidence intervals that have exact definitions 

in statistics. 

 

Figure 2. Reliability information sources; the level of confidence of the information and 

the time when the information is available. 
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When a component is selected for use in a design, the first indication of its reliability can 

be based on similar item data. If a similar component has already been used for several 

years, it is probable that in-house field failure databases can estimate the forthcoming 

reliability of the introduced component. If the component has not been utilized in a similar 

product, it is still possible to obtain some generic estimate of its reliability based on the 

handbooks discussed in Section 2.1. However, it should be noted that such data might be 

based on out-of-date data. 

If there is no field data available, physical modeling may also give an initial estimate. 

Physical modeling is comprised of the utilization of a suitable analytical model and/or a 

computer simulation analysis. As physical modeling without calibration information may 

not be very accurate, it is expected that in-house field data in the initial phase would be 

superior to physical predictions in terms of level of confidence. However, if the generic 

handbook values are based on old data, the physical models may give a more accurate 

lifetime prediction. 

Only after the reliability testing has been performed it is possible to improve the quality of 

reliability predictions. The physical models can utilize the test results as an input 

(calibration data). After this, a more accurate lifetime prediction for the component can be 

obtained. Moreover, after the test has been concluded, it is possible to compare the test 

results of the component to similar items that have been tested in the same way and whose 

field failure data is available. This enables the reliability prediction to be based on concrete 

data; if the component has performed in the same way as the reference item, it is also 

probable that the component studied will have approximately similar field reliability 

behavior. If the component has performed worse than the item on which field data exists, it 

is expected that the field reliability performance will be somewhat worse than the 

reference, and vice versa. 

The test itself also gives valuable information. If some early failures occur in a test it is a 

clear signal that there will most likely be early failures in the field as well. This is very 

important information, which may be very difficult to obtain unless one actually tests the 

component. Physical models usually predict the wear-out of the components only, and 
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therefore may be of little value when it comes to predicting early failures. The exception to 

this is overstress events that can be analyzed by stress-strength analysis. Empirical models 

may be better at taking early failures into account. However, currently, they are not 

updated very often, and therefore may be either pessimistic or they may not contain 

information on the new component type at all. 

The shape of the test data curve resembles the bathtub curve used commonly within the 

reliability community. The early failure, random failure and wear-out regions are easily 

recognizable. However, as the level of confidence – instead of hazard rate – is the 

parameter monitored, it is expected that the shape of the curve deviates somewhat from the 

conventional bathtub curve. The occurrence of early failures in a test environment is a 

relatively reliable indicator that real concerns in the field environment are likely to take 

place. As the test continues, and failures occur, it may be more difficult to predict if these 

failures are going to be induced also by the real environment during the life span of the 

component. The random-failure region obtains a relatively small level of confidence value 

as it is expected that only a minor share of component population is going to fail during 

this period of time. After wear-out phenomena start to occur, the confidence level is 

expected to rise again. This time, the level of confidence is, however, less than in case of 

early failures, as more time has elapsed since the test started. Therefore, it is more difficult 

to estimate if failures due to wear-out are going to be recorded during the lifespan of the 

component. 

Despite the lack of information on early failures, many times they are responsible for the 

majority of field failures. This is especially true when it comes to consumer products, 

whose expected lifetime is limited and therefore wearing out of electronic components is 

not very probable. Early failures are due to design bugs, manufacturing faults, and quality 

problems. They should also be considered in conjunction with professional 

telecommunications equipment. As telecommunications equipment usually have a long life 

expectancy, both early failures and wear-out have to be taken care of. 

After the early failures period in testing, there is usually a period of time, during which not 

many failures occur. This is often called the ‘random failure’ section of the bathtub curve. 
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As only a minor share of the equipment fail during this period, the level of confidence is 

usually low due to limited number of failure observations. In order to gain an acceptable 

level of confidence, thousands of items should be tested [39]. This is, however, in conflict 

with the number of test items usually available and the limited test resources. 

As discussed earlier, the information on the wear-out period during the test can be used as 

input data for other prediction methods. 

After the product has been launched in the field, field failure data starts to accumulate. 

Ideally, field data would be the most accurate source of reliability information. 

Unfortunately, the field data may not always be very useful for reliability engineers. There 

are several reasons for this. The failure analysis is not always thoroughly performed. This 

is due to the fact that the primary interest of the repair personnel is to repair the product, 

not to analyze the cause of failure. The field data also contains some failures that are not 

actually due to the inherent reliability level of the components. These failures include, for 

example, misuse of the product. Of course even this kind of information may be valuable, 

if it is considered that improving the durability of the product is needed. Also, the load 

history of the failed component is usually lacking, which makes it difficult to understand 

how the failure was actually initiated. Despite these words of caution, much can be gained 

if field failure data is utilized effectively. If constantly monitored, the field failure data can 

provide useful information on subjects of improvement. Improvements based on field data 

can usually be implemented during the lifetime of the product. 

However, field data is valid only for a limited time. Technological advances are mostly 

responsible for this. It may be that the reliability performance of the component improves 

very much when the technology gets more mature. This has occurred in conjunction with 

integrated circuit technology, where constant improvements take place. According to MIL-

HDBK-217 version A, a 64 kB RAM would fail in 13 seconds [31]. This very pessimistic 

prediction is a most unfavorable example of empirical models. Nowadays, the RAM 

capacity is several thousand times larger than in the example given, and still RAMs are not 

considered as reliability concerns. Another cause for field failure data becoming obsolete 

is the fact that components and component technologies have a natural life span. Due to 
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technology-obsolescence cycle, technologies will be replaced by some other technologies 

and therefore reliability estimates using the old technologies are of no interest. 

2.6 Component Level Reliability Analysis in This Thesis 

In this thesis, the reliability analysis at component level focuses on two aspects: the effect 

of constant temperature on (semiconductor) devices (Chapter 3) and the effect of cyclic 

thermal loads on solder joints (Chapters 4-6). The selection is motivated by the practical 

needs in those areas.  

Derating affects heavily the component selection and the thermal design of products. 

Therefore, it would be expected that this procedure is well motivated and that the derated 

temperature is selected so that the component after derating meets the reliability 

requirements, but on the other hand, the derating should not add too large safety margins. 

Too large safety margins may easily result in unnecessary and expensive cooling 

arrangements. Also, the utilization of certain components may be limited in vain due to 

unrealistic derating procedures. 

The reconsideration of derating practices has become more important as 

telecommunications is adapting WCDMA technology, where heat dissipation may become 

an issue both in case of terminals and infrastructure equipment. This is due to the high 

linearity requirement for the RF components, which in turn has inevitably resulted in 

relatively small PAE (Power Added Efficiency) figures. Small PAE value indicates that a 

large share of electrical energy is converted into heat.  

Semiconductor manufacturing processes have developed greatly during the last decades. 

This has resulted in higher yields, smaller number of defects and better quality of the 

manufactured devices. Therefore, derating practices that were developed earlier on, may 

add unnecessarily large safety margins.  

As discussed earlier in this chapter, the failure rates of micro-electronic devices have fallen 

radically since the early 1970s, thus, the microelectronic devices themselves are not 

currently presenting as large risk as they did in the past. On the other hand, consumer 
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electronics has taken the leading role in the industry. This has resulted in the pronounced 

requirements for small size and weight and low cost. This, in turn, has resulted in the wide 

utilization of leadless component attachments. When component leads are not used, the 

assembly becomes more rigid and the external loads – that were earlier taken partly by the 

leads – are now almost fully addressed to solder material. The increased loading of the 

solder material presents a risk that must be assessed, especially if products with long 

lifetime expectancy are in question. An additional risk lies in the adaptation of new lead-

free solder materials [84] that are going to replace old SnPb material system. Lead-free 

solder materials are not discussed in this thesis; the future research will concentrate on this 

aspect. However, most of the findings of this thesis can be applied also in conjunction with 

lead-free solder materials.  



 14

3 The Effect of Constant Temperature 

3.1 Introduction 

Temperature derating is the practice of using an electronic device in a narrower 

operational environment than its manufacturer designated limits. The purpose of this is to 

lower the stress level on the device and thus to extend the device’s lifetime. The derating 

guidelines provided limit the environmental stresses by using linear relationships. Usually, 

the junction temperature of an active device, Tj, is limited to a certain percentage of the 

maximum rated temperature given by the device manufacturer. However, the reliability of 

electronic devices typically has non-linear, often exponential, temperature dependence. 

Therefore, the conventional derating procedures may result in not optimal lifetime 

extensions.  

In this chapter, the effect of using linear derating guidelines on lifetime is studied. After 

that, an alternative derating approach, that takes better into account the temperature 

dependency of the lifetime, is introduced.       

3.2 Background 

Derating has its roots in military industry practices that were developed in order to 

increase the lifetime of the devices used in high-reliability products. Military standards 

[32], [33] were created to give generic guidelines on how to perform derating. Besides the 

military industry, the electronics industry also, in general, adopted this approach, and 

currently, most companies have their own derating guidelines. Some military standards 

have been abolished by now, but there is still a need for generic derating guidelines. 

Reliability Analysis Center (RAC) has recently published a new version of their electronic 

derating guideline [34] that serves this purpose.  

Derating has raised a heavy debate. It has been questioned whether derating has any merits 

in terms of reliability or if it is just causing extra costs to those who are applying it, 

without any significant reliability performance increment [35]. It is also claimed that the 

reliability of active devices does not only depend on the constant maximum temperature, 
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but also on the temperature excursions and temperature gradients. In many cases, those 

may have a more serious effect on reliability than the constant temperature has. 

Furthermore, in some rare cases, relatively high temperature may be advantageous, for 

example, in the case of hot electrons. Another example on this is the increment of fracture 

toughness of some electronic packaging materials at high temperatures. Nevertheless, 

temperature has a significant effect on reliability. The actual form of temperature 

dependency depends on the specific failure mechanism. Sometimes even uprating has been 

proposed [36] in order to be able to utilize more cost-efficient technologies/components to 

replace expensive ones. However, this approach has not, at least yet, reached common 

acceptance [37]. 

In this chapter, the effect of derating on the lifetime of electronic devices is studied. The 

lifetime of the devices studied is assumed to follow a simple Arrhenius-type relationship. 

As the temperature dependence of Arrhenius lifetime model is exponential, it is expected 

that the lifetime of the derated device be increased more than linearly, when applying 

linear derating on temperature.  

The effect of parameter uncertainties on lifetime prediction is studied, as well. Finally, a 

new derating procedure that utilizes a physical lifetime model and compensates for the 

parameter uncertainty is proposed. 

3.3 The Effect of Derating on Lifetime  

In the following, the Arrhenius lifetime model is utilized. The reasons for selecting this 

model are twofold: it is very simple, and it has a very strong temperature dependency, 

typical to many lifetime prediction models. Moreover, according to a recent survey all 

companies studied continue to rely on the Arrhenius methodology in lifetime prediction 

[38]. However, although Arrhenius lifetime model is utilized, it is expected that similar, 

large parameter sensitivity would have been noted if some other physical lifetime model 

were chosen, instead. This is due to the fact almost all physical lifetime models have either 

exponential or power-law type temperature dependency [23]. 
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The Arrhenius model suggests that the lifetime t  of a component, having a temperature-

activated failure mechanism, has the following form [39]: 

kT
aE

oett = ,   (1) 

where ot  is constant, aE  is activation energy, k  is Boltzmann’s constant, and T  is 

temperature in Kelvin degrees. Let’s assume that the reliability of an identical device is 

monitored at two temperatures 1T (initial) and 2T (derated). The ratio of the lifetimes at 

these temperatures can be written 
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where 21 TTT −=∆  and 12 /TTDRK = . Looking at the above equation, it is noted that the 

lifetime depends on the activation energy, the initial temperature 1T , and the ‘derating 

factor’ KDR . Activation energy aE  obtains different values depending on the 

semiconductor technology and failure mechanism. Typical values range from 0.3 to 2.6 eV 

[40]. 

Although activation energy is a useful concept, some words of caution are in place. 

Activation energy may be temperature dependent, i.e., the values given are typical values 

for a certain temperature range. The temperature dependency is due to non-linear material 

behavior. Despite this, the temperature range, where the activation energy value actually 

was obtained, is not always mentioned. If activation energy is heavily temperature 

dependent, it may be impossible to utilize Arrhenius’ law. Furthermore, a certain failure 

mechanism may have a relatively wide range of possible activation energy values. 

Therefore, there is a possibility of selecting a wrong activation energy value although the 

failure mechanism would have been correctly identified. Measuring the lifetime at multiple 

temperatures and obtaining the activation energy based on the temperature dependency of 
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the lifetime enables to obtain accurate, manufacturing process specific activation energy 

value.  

As temperature derating is typically performed utilizing Celsius degrees, it is useful to be 

able to present KDR factor in terms of Celsius degrees CoDR , as well: 
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where )(1 CT o  is the initial temperature. )(/)( 12 CTCTDR Co oo=  is the ‘derating factor’ 

that is often used to derate the maximum rated temperature. It should be noted that the 

above equation results in an undefined value when )(1 CT o = 0 ºC. This is due to division 

by zero in CDo  term. In practice, this is not an issue, as usually )(1 CT o >>0 ºC. The derated 

temperature )(2 CT ° is obtained by multiplying the maximum rated temperature by CoDR . 

The actual derating procedure may be more complicated than presented above, but all such 

procedures are based on linear transformation of the maximum rated temperature. 

Equation (2) may also be presented in terms of lifetimes as: 
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This is a simple form and easy to utilize. 

3.4 Parametric Study 

Typical derating procedure is simply using linear transformation of maximum rated 

temperature (in Celsius degrees). This seems not to be very sensible as lifetime depends 

exponentially on temperature (in Kelvin degrees). Acceptable reliability of the component 

during operational use is the ultimate goal of derating, therefore it would be expected that 

derating procedure would operate using lifetime, not temperature. Actually, it does not 
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matter which value the (derated) temperature obtains as long as the lifetime requirement is 

met.  

The purpose of this section is to demonstrate that derating based solely on CoDR  may 

result in a variety of lifetimes and therefore cannot be considered as a viable way to extend 

lifetime. It will be shown that similar derating procedure when utilized on different devices 

may result in either an acceptable lifetime, or alternatively, it is also possible that derating 

lowers the maximum acceptable temperature too much.  

Let’s select the following values for the parametric study: aE =0.4 eV, )(1 CT o =150 °C 

(initial temperature), and )(2 CT o =125 °C (derated temperature). The derating from 150 °C 

to 125 °C corresponds to a ‘derating factor’ of CoDR =0.83. 

In Figure 3, the effect of derating on lifetime is depicted. It is noted that when derating by 

a factor of 0.83, a double lifetime is gained compared to the initial situation. The large 

effect of temperature on lifetime can be clearly seen. Therefore, even minor changes in the 

temperature may have a profound effect. The effect of derating on lifetime is far from 

being linear. Careful control on the operational temperature is therefore of utmost 

importance. It can be clearly seen that there is a significant potential for lifetime extension, 

if it is possible to lower the temperature further. 
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Figure 3. The effect of the ‘derating factor’ CoDR  on the lifetime of an electronic 

component. 

If the derating factor would have remained the same, but the initial (not derated) 

temperature would have been higher, the related relative lifetime extension could have 

been even larger, as can be seen in Figure 4.  

As discussed earlier, activation energy aE  gains values over a wide range, typically 

0.3…2.6 eV, depending on the failure mechanism. As Arrhenius relation has an 

exponential dependency on this parameter value, the expected lifetime of the component 

depends heavily on the activation energy (Figure 5). Therefore, derating procedures that do 

not take into account the differing failure mechanisms and the related different activation 

energy values seem to be quite rough. The same derating procedure may result in 

completely different lifetime extension. The effect of activation energy may be up to two 

decades. 
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Figure 4. The effect of initial temperature 1T  on the lifetime of an electronic component. 

Figure 5. The effect of activation energy on the lifetime of an electronic component. 
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This short demonstration should already make it clear that conventional derating procedure 

is quite rough and that the hoped-for life elongation may obtain almost any value. 

Therefore, a more refined derating procedure, that takes into account the temperature 

dependency of the lifetime, is needed. 

3.5 The Need for a New Derating Procedure 

In Section 3.4 it became apparent that as the lifetime is quite heavily dependent on 

temperature, derating has its motivation. By derating one can gain lifetime extension by 

lowering the temperature below the maximum rated temperature. Although the failure 

mechanism would not directly depend on constant temperature, lowering of the maximum 

temperature can still have a positive effect. This may occur, for example, in case of 

failures due to temperature cycling. Limiting the temperature range of the temperature 

cycling by its high-temperature end can increase the lifetime of the components.  

The lifetime expectations of the product and the reliability requirements should specify if 

derating is required or not. Whilst components used in consumer products with a short 

lifetime expectation may not need to be derated, the products that have long lifetime 

expectations usually require derating to fulfill the reliability expectations. Derating may 

also be needed, in case a component with a low initial reliability level is about to be 

utilized in an application that requires a long lifetime [41]. 

On the other hand, the criticism against derating seems to be felicitous when it comes to 

the way it is applied in many cases. Far too often this methodology is applied ‘blindly’; not 

considering what can actually be gained in terms of lifetime increment if this procedure is 

applied. This was demonstrated in the previous section. It is clear that different 

components, component technologies, manufacturing processes, failure mechanisms, and 

the related lifetime prediction models should be studied carefully in order to be able to 

effectively utilize this procedure. It is vital to utilize correct parameter values. The 

parameter sensitivity related to Arrhenius is a characteristic that is also common to other 

physical reliability models [23]. Many of these models are assuming that lifetime has an 

exponential or a power dependency on temperature. 
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Another aspect worth noting is that derating is performed utilizing Celsius degrees, 

although the lifetime prediction models are typically presented in terms of Kelvin degrees. 

Therefore, the true effect of derating on lifetime may be even more difficult to realize, 

unless careful lifetime analysis is performed. 

Utilizing linear derating procedures does not seem to be very reasonable as the 

temperature dependency of the electronic devices is not linear. It would also be expected 

that the derating procedure would somehow take into account the true temperature 

dependency of the component. Therefore, it is proposed that physical lifetime models 

should be used as a basis for creating the derating procedures. This can be done, for 

example, by setting a goal for lifetime in the field environment and then finding out the 

required temperature reduction that the physical reliability model proposes. This approach 

is demonstrated in the following Section 3.6. 

The careful analysis of the failure mechanism, its temperature dependency, and the related 

lifetime is a very tedious task. However, the end result may be cost savings resulting either 

from the reduced warranty costs or the ability to utilize inexpensive components in 

relatively demanding applications. As the reliability models are very parameter sensitive, 

care must be taken so that accurate parameter values are utilized; generic values 

originating from handbooks may not be accurate enough. Quite often semiconductor 

manufacturers have readily the data that is needed to estimate the safe operational 

temperature. This data is recommended to be utilized. 

3.6 The New Derating Procedure 

3.6.1 General 

In the following section, Arrhenius lifetime model is used as a basis for derating. First, the 

lifetime requirement is set. Then, the temperature corresponding to this lifetime 

requirement is derived. After that, the parameter sensitivity is taken into account by further 

lowering the temperature so that the lifetime requirement 2t  can guarantee fulfillment, 

even in a scenario where all the parameter uncertainties add up. 
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Taking into account uncertainty is a standard procedure in circuit simulations when it 

comes to electrical performance. Uncertainty of electrical parameters is usually accounted 

for by running Monte-Carlo simulations [42]. Certain failure mechanisms occurring at IC 

level have been studied by circuit simulation [43], [44]. Failure mechanisms studied 

include electromigration [45] and the degradation due to hot electrons [46]. However, 

derating procedures, as such, have been based on the assumption of nominal lifetime 

performance of certain component technologies [34] - without any specific consideration 

of uncertainty. 

Finally, a step-by-step example on this methodology is given. One should, however, note 

that this methodology is not to be limited to Arrhenius type lifetime models, but can be 

applied in conjunction with any physical lifetime model. 

3.6.2 Setting the reliability target 

First, the reliability target for the component in field environment is set. The target can be 

stated, e.g., as %1)10( =yearsF . This means, that at the end of component’s lifetime (10 

years) 1% of the whole component population is allowed to have failed. Some alternative 

lifetime lengths and failure percentages may be considered, as well. The requirement 

setting depends heavily on the application, the complexity of the product and the reliability 

target for the whole product. All this should reflect the target setting. Therefore, product 

specific reliability targets should be preferred over fixed reliability requirements. 

3.6.3 Obtaining the temperature to fulfill the requirement 

After that, the reliability requirement is translated into a temperature value. After studying 

the temperature dependency of the lifetime of the component, this can be done. Let’s say 

that the lifetime requirement is fulfilled if temperature is equal to 2T . If all components 

would be identical, keeping the temperature below this value would guarantee the 

fulfillment of the lifetime requirement. However, statistical lifetime behavior of the 

component population is expected. This must be taken into account by further lowering the 
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obtained temperature in order to make sure that the fulfillment of the reliability 

requirement is guaranteed at all times.  

3.6.4 Obtaining uncertainty values and taking into account their effect 

As derating should guarantee an acceptable operation even if the component studied 

performs worse than the component of average quality, it is necessary to add some safety 

margin to the derated temperature. One way to do this is to estimate the effect of 

uncertainties on the lifetime of the component - and after that - to compensate for those by 

lowering the temperature to a value '
2T  that satisfies the fulfillment of the reliability 

requirement at all times. 

Next, the needed equations are derived, after which, uncertainty and its effect on lifetime 

is estimated, and finally, a step-by-step example on the whole derating procedure is given. 

One can solve Equation (2) for lifetime 2t  
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To estimate the maximum uncertainty maxU  related to 2t , based on the individual 

uncertainties related to parameters iX  used, it can be stated that [11]  

max,
1

2
max iX

n

i i
U

X
tU ∑

= ∂
∂= ,  (6) 

where 
max,iXU  is the maximum uncertainty related to parameter iX  and n  is the number of 
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In the above, it has been assumed that all three parameters are independent of each other. 

The partial derivatives can be easily derived. The uncertainties are due to measurement 

uncertainties and statistical variation in and between manufacturing processes and 

manufacturing lots. 

When the maximum uncertainty maxU  of lifetime 2t  is known, how much extra derating is 

needed can be calculated so that even in the worst-case scenario (all uncertainty terms add 

up), the lifetime requirement is still fulfilled. The derated temperature '
2T , taking into 

account parameter uncertainties, can be calculated by writing the lifetime requirement in 

this case as max2
'
2 Utt += .  After inserting these values into Eq. (5) and solving for '

2T , it 

can be written that 
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Each uncertainty component should preferably be estimated based on actual test data. As 

actual lifetime vs. temperature data on a specific component and failure mechanism 

represents the most accurate data available, it is believed that using this data results in the 

most realistic uncertainty estimate. Furthermore, this approach results in a derated 

temperature value that guarantees an optimal acceptable operation during the whole 

lifetime, but on the other hand, does not add unnecessarily large safety margins. 

The uncertainty related to the last term of Eq. (7) is expected to originate from temperature 

measurement uncertainty. The measurement of ambient temperature is a quite 

straightforward task, and therefore, it is expected that the uncertainty originating from this 

is relatively small, let’s say ± 1 °C. However, if junction or channel temperature of an 

active device is considered, the accurate measurement is quite much more demanding due 

to small dimensions of the semiconductor device and the limited resolution of the infrared 

cameras. Therefore, if the device is powered, the uncertainty related to temperature 

measurement is expected to obtain a much larger value, in the range of ± 2 °C. 
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The lifetime 1t  measured at an elevated temperature 1T  is expected to obtain fluctuations 

due to statistical behavior of the component population. A common practice is to assume 

that the components tested possess a constant hazard rate and that the probability density 

function is an exponential [70]. If making this assumption, it is possible to account for 

statistical fluctuation by utilizing confidence limit values related to exponential 

distribution. This means that the measured hazard rate value measλ  is replaced by a larger 

value related to a selected confidence level (CL) value. An usual choice used in the 

semiconductor industry is CL=60%. The upper confidence limit (UCL) for the hazard rate 

can be written as [70] 
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where 2
,υχCL  is the chi-squared distribution value with υ  degrees of freedom and acct  is the 

accumulated number of device hours. Based on the above, the uncertainty related to the 

lifetime 1t  can be described by 
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This approach to estimate the uncertainty is very simple and easy to apply. The drawback 

of the above is that it is based on an assumption that the lifetimes of the component 

population would follow an exponential distribution. This is not necessarily realistic in all 

cases. The utilization of some other lifetime distribution and the related confidence limits 

is possible, as well. The selection of using exponential distribution is motivated by the fact 

that it is the standard choice used by most semiconductor device manufacturers. 

The uncertainty related to activation energy may be estimated graphically from the 

lifetime-temperature curve, as shown in Figure 6. The uncertainty of the activation energy 

usually lies in the range of ± 0.05 eV [47]. 
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Figure 6. Lifetime data obtained from the accelerated life test and the derated 

temperatures. 

An example: 

The new derating method is demonstrated here by a step-by-step example. Let’s assume 

that the reliability requirement for the component is that 1% of the population is allowed to 

have failed after 10 years of operation. Reliability tests at elevated temperature have been 

run and Figure 6 presents the results. The activation energy obtains a value of 0.7 eV and 

ot =0.01047 h. The absolute maximum temperature the manufacturer suggests is 

)(1 CT o =150 °C. 

%1)10( =yearsF  translates to a hazard rate value of 115 FITs (or mean lifetime of 
6107.8 ⋅  h) assuming that lifetime is exponentially distributed. This requirement can be 

met if temperature is kept below )(2 CT o =122.5 °C (Figure 6). 
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Nominal values and uncertainties related to parameters are listed in Table 1. The 

uncertainty related to term 1T  originates from uncertainties in temperature measurement, 

as discussed earlier in this section. The uncertainty related to activation energy is obtained 

by studying Figure 6. As can be seen, all data points do not follow exactly the fit line. 

Therefore, the slope (=activation energy) may obtain an alternative value. The uncertainty 

is estimated by obtaining the maximum deviation of the data points from the fit line. 

The uncertainty related to the lifetime result at 150 °C is estimated by utilizing the upper 

confidence limit. The test run consisted of 4580 vehicles out of which 2 failed during the 

1000-hour test period. Therefore, the measured failure rate was FITsmeas 437=λ . As the 

test was time-truncated, the degrees of freedom obtains the value of 22 +⋅= rυ , where r  

is the number of failed items. In this case, 6222 =+⋅=υ . When selecting the confidence 

level CL=60%, the chi-squared distribution obtains a value of 2.62
6%,60 =χ . Therefore the 

upper confidence limit obtains the value of FITsUCL 677=λ  and using Eq. (10) the 

uncertainty related to lifetime at temperature )(1 CT o =150 °C is estimated to be 6108.0 ⋅  

hours. 

As now all the uncertainty components are known, the maximum uncertainty can be 

calculated by using Eq. (7). The results are listed in Table 2. It is noted that due to the 

large parameter sensitivity, the maximum uncertainty maxU  is ca. 46 % of the lifetime 

value 2t . The most significant uncertainty factor originates from the measured lifetime in 

the accelerated life test. The second most important factor is the uncertainty related to the 

activation energy value. In order to obtain smaller uncertainty values, larger sample sizes 

should be tested for longer times. This is not always easy due to limited test resources.  

Already keeping the operational temperature below )(2 CT o =122.5 °C could guarantee the 

fulfillment of the reliability requirement in a nominal situation. After utilizing Eq. (8), the 

new, derated temperature of =)('2 CT o 115.4 °C is obtained. This value is higher than the 

value suggested by the new RAC derating manual [34] for silicon devices (95 °C) in 

severe environment. The higher allowable temperature enables to reduce the cooling 
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arrangements and thus can result in lower costs. Using the new derating procedure makes 

it possible to use the component studied in applications where components with better 

thermal and/or electrical performance are traditionally employed. 

Table 1. The parameter values used in uncertainty analysis. 

Parameter Nominal value Uncertainty Unit 

1t  6103.2 ⋅  6108.0 ⋅±  h 

aE  0.7 05.0±  eV 

1T  423 2±  K 

The new derated temperature '
2T  adds some extra conservatism to the design compared to 

the case when utilizing 2T , but it is necessary to somehow take into account the huge 

effects related to possible wrongly chosen parameter values. It is possible to utilize some 

other estimate for the uncertainty instead of the maximum error. One choice could be the 

uncertainty U  given by [48] 
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The maximum uncertainty in Eq. (6) is based on the assumption that all the uncertainty 

terms would add up. In case there are many parameters, this is highly improbable. When 

maximum uncertainties are utilized, the uncertainty estimate value is increased. Eq. (6) 

presents the ultimately unfortunate case. Eq. (11) is probably more ‘realistic’ estimate on 

uncertainty, as nominal uncertainty terms are utilized and the errors not necessarily add up. 

The choice which uncertainty estimate to use is somewhat speculative, but if one wants to 

guarantee that derating can guarantee acceptable performance of the component even in 

the most unfortunate circumstances, the maximum uncertainty of Eq. (6) is preferred. 

When utilizing U , a more moderate derating would be sufficient. In this case, the derated 

temperature would have been )('2 CT o =116.6 °C, assuming that the uncertainty terms 
iXU  
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were equal to uncertainty terms 
max,iXU  of the maximum uncertainty. The difference 

between this estimate and the temperature obtained by utilizing the maximum uncertainty 

is therefore not very large.  

In an ideal situation, the exact statistical distributions of each parameter value would be 

known and this knowledge could be used to solve the lifetime distribution of the 

components in the field environment. In case the lifetime prediction model has many 

parameters, Monte-Carlo simulation would be needed in order to be able to estimate the 

lifetime distribution. However, in practice, this complete information is rarely available. 

Therefore, the method introduced in this section is considered to be a more feasible choice. 

Table 2. Uncertainty terms gained utilizing Eq. (7). 

Uncertainty 

term max,1
1

2
tU

t
t
∂
∂  

max,

2
aE

a
U

E
t

∂
∂  

max,1
1

2
TU

T
t
∂
∂  maxU  

Value/ h 6101.3 ⋅  5103.8 ⋅  4105.5 ⋅  6100.4 ⋅  

 

3.7 Conclusions 

In this chapter, the effect of temperature derating on lifetime has been analyzed. The 

conventional, linear derating approach to temperature does not seem to be sensible for 

electronic devices. Understanding on the temperature dependency of the lifetime of 

electronic components should be employed, instead. This is demonstrated here by 

introducing a new derating method that utilizes a physical lifetime model.  

The introduced derating procedure is based on the actual lifetime requirement of the 

component and the sole purpose of the derating procedure is to fulfill this requirement 

under all circumstances. When test information from semiconductor manufacturer is 

available, it is possible to base the derating on specific component type and failure 

mechanism. This data is used as an input when estimating the required temperature that 

fulfills the lifetime requirement. However, physical lifetime models have very large 
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parameter sensitivity. To avoid premature failures, it is therefore necessary to take into 

account the effect of uncertainties in the derating process. This is accomplished by 

lowering the temperature in order to guarantee the safe operation of the component 

population, even if the parameters deviate heavily from their nominal values. 

Utilizing the new derating method, optimal operational temperature is obtained. 

Furthermore, cost savings due to reduction of unnecessary cooling arrangements can be 

gained, as operation at higher temperatures may be allowed. 
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4 Commentary on the IPC Surface Mount Attachment 

Reliability Guidelines 

4.1 Introduction 

The rest of this thesis concentrates on studying the effect of thermal excursions on solder 

joint reliability. This is started with a survey on a surface mount attachment reliability 

guidelines by IPC. 

The Institute for Interconnecting and Packaging Electronic Circuits (IPC) has published 

guidelines and standards related to surface mount solder attachments. The latest standard 

IPC-9701 was published in 2002. In this chapter, the general methodology for creating the 

aforementioned documents and the related qualification requirements are reviewed and 

discussed. Corrections to the standards and guidelines are also proposed. The corrections 

are related both to the use of formulas and to inaccuracies in the units used.  

4.2 Background 

The Institute for Interconnecting and Packaging Electronic Circuits (IPC) has published 

guidelines and standards related to surface mount solder attachments based on Werner 

Engelmaier’s work on solder joint interconnection reliability. During the early 1980s, a 

semi-empirical solder joint fatigue model that is the basis for both IPC-SM-785 [49] and 

IPC-9701 [50] documents, was created. The model is based on general fatigue life models 

for metals developed by Morrow [51] and Manson [52]. These models have parameters 

whose values may be difficult to obtain, as they are somewhat abstract in nature.  

After extensive testing and curve-fitting procedures, Engelmaier could transform these 

representations into a model that has parameters that are easy to understand and measure, 

such as physical dimensions, material parameters and thermal cycling characteristics. 

Besides having easily applicable parameters, Engelmaier’s model is relatively accurate due 

to the semi-empirical nature of the model. The model includes a 2-parameter Weibull 
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lifetime distribution. It gives a reliability prediction both for leaded and leadless solder 

attachments.  

The model has some limitations. It should not be applied to leaded components that have 

very stiff or very compliant leads. It does not take into account all structural details. For 

example, it makes no difference whether the component lead configuration is of peripheral 

or area array type. Therefore, by using Engelmaier’s model accurately describing the 

actual physical situation may not always be possible. 

This chapter first describes Engelmaier’s model. Then, the general methodology used in 

creating the IPC guidelines is described and discussed. After that, the failure-free criterion 

and the applicability of the guidelines are covered. Finally, some corrections related to 

formulas used in IPC-SM-785 are proposed [53]. 

4.3 Engelmaier’s Model 

Engelmaier’s model is a semi-empirical physical model that was developed by extensive 

testing to modify the Coffin-Manson type solder fatigue model and give it a more easily 

applicable form. The Engelmaier model mostly has easily measurable parameters, such as 

physical dimensions and material parameters. However, not all structural details (for 

example, the shape of the solder ball/column) can be taken into account when using this 

model.  

Engelmaier proposes not to use this model below 0 °C, as the failure mechanism changes 

from creep fatigue into elastic/plastic fatigue when cooling the solder material under 0 °C. 

Therefore, the use of this model in conjunction with -40…+125 °C temperature cycling or 

a similar test profile may not be recommended. 

Engelmaier’s model gives an estimate of the solder joint reliability both for leaded and 

leadless component packages. 

The acceleration factor ).(. tFA  according to Engelmaier’s model can be written in the 

form 
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where use denotes the operational environment and test the accelerated (test) environment. 

∆D  is the cyclic hysteresis energy at complete stress relaxation, )(testfc  is the 

temperature cycling frequency in the accelerated environment, )(usefc  is the temperature 

cycling frequency in the operational environment and c  is the fatigue ductility exponent 

defined by 
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where Tsj  is the average temperature of the solder (in Celsius degrees) and tD   (in 

minutes) is the half-cycle dwell (= time of the half cycle – time used in temperature 

transitions). Cyclic hysteresis energy ∆D  receives different values depending on whether 

the component is leaded or without leads. In the case of a leaded component, we get 

 ( )
( ) ..3/2

2

917.0 js

eDD

hAMPa
TLFKD ∆∆=∆ α   (14) 

where F  is an empirical non-ideality factor, which obtains values between 0.7..1.5, KD  is 

the diagonal flexural stiffness of the lead, LD  is half of the maximum distance between 

two solder joints, ∆α  is the difference of the coefficient of thermal expansion values of 

the component and the substrate (absolute value), eT∆  is the equivalent cycling 

temperature swing, 3/2A  is 2/3 of the solder-wetted pad area, and .. jsh  is the height of the 

solder joint.  

In case of a component without leads, the cyclic average shear strain is 
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When the values for ∆D  into Eq. (12) are introduced, the acceleration factor value for a 

component with leads is gotten 
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and for the component without leads 
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The approximate nature of Eqs. (16) and (17) should be noted. This will be discussed 

further in Appendix A. 

4.4  The Methodology for Creating Reliability Requirements 

It is a demanding task to create a general reliability requirement for components. This 

requirement should depend, for example, on the lifetime specification, the complexity of 

the product and the acceptable field return level. However, this kind of information varies 

depending on the application, the product, and the specification. Therefore, some kind of 

compromise is needed if general requirements are to be given. IPC documents have been 

successful in giving this kind of general level advice on the acceptance criteria of certain 

components in certain specific applications.  

In IPC-SM-785, Table 2, both typical use conditions and suggested accelerated test 

profiles, and the related required thermal cycle numbers for certain specific service lives 

are given. Furthermore, the requirements are sub-divided based on the application area. 

These include consumer electronics, computers, telecommunications, commercial aircraft, 

automotive, space, and military avionics. For each category an acceptable risk level is 
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given. This is presented in terms of an acceptable percentage of failed items at the end of 

the lifetime of the product.  

In the following sections, the above-described method to create reliability requirements is 

discussed. 

4.4.1 Use environment 

Use environments are very difficult to specify. There are several reasons for this. One 

major reason is that there is not much actual measured data on the use environment. Even 

if it exists, the question remains, which kind of data to apply. Meteorological data that is 

available for different regions of the globe might be used. Of course, there is a large scatter 

of temperature values depending on the geographical location and time of year and, 

usually, there is a large daily variation.  

If it is considered that the temperature variation is not due to the ‘outside world’ but to the 

product’s internal heat generation/cooling, then of course this kind of data should be used 

instead. 

Figure 7. Average thermal profile based on measurements inside telecommunications 

equipment. 
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Also, in this case the question remains, which temperature should be measured? It is 

evident that there are large temperature gradients in the electronic apparatus, as certain 

power devices and processors are almost solely responsible for the heat generation. 

Therefore, it should be studied where exactly the temperature was measured and whether 

this data can also be considered representative in general.   

Due to temperature fluctuations it is evident that some kind of approximation is needed in 

order to be able to reduce the complex temperature behavior into a simple thermal cycle 

profile. This is necessary as the temperature profile is based either on meteorological data 

or on in-situ electronic apparatus measurements. 

The above argumentation should show that it is a complex task to select a generic thermal 

cycling profile representative of a whole product segment, such as telecommunications 

equipment. In IPC-SM-785, the typical telecommunications use condition is selected to be 

one daily cycle from +10 °C to +45 °C. It seems that this profile has been selected based 

on meteorological data. This, however, seems to be in conflict with data that has been 

recorded in actual telecommunications equipment. The data recorded by us shows that 

there are several thermal cycles per day, which are due to cooling (Figure 7). The data has 

been collected from a Site Support Cabinet (SSC) located in an outdoor environment in 

Cyberjaya in Malaysia. Therefore, it seems that the assumption for the use environment 

used in IPC-SM-785 is not always directly applicable.  

Criticism on the selection of field environment can also be found in the literature. In [54] 

the field environment proposed by IPC-SM-785 for computer applications was considered 

to be acceptable in general level, although it was noted that the obtained temperature 

depended very much on the computer platform. The maximum temperature rise on PWB 

level varied in the range +4…+32 °C. IPC-SM-785 suggests a generic value of eT∆ = 20 

°C for computers. 

4.4.2 Test environment 

IPC-SM-785 proposes not to use the lifetime prediction model below 0 °C, as the failure 

mechanism changes from creep fatigue to elastic/plastic fatigue when cooling the solder 
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material under 0 °C. Therefore, the IPC-SM-785 and IPC-9701 documents, both 

recommend to use a 0…+100 °C thermal cycling test profile. The use of a -40…+125 °C 

temperature cycling test profile or similar is not recommended. However, IPC-9701 also 

provides the acceleration factors for the three non-conforming thermal cycling profiles, 

such as the -40…. +125 °C profile mentioned above. 

In IPC-SM-785, the required number of thermal cycles is tabulated for each application 

category. For example, for telecommunications equipment with a 20-year lifetime 

expectancy, 14,600 cycles are required if the component is leadless. Beyond 14,600 

cycles, a maximum of half of the test population is allowed to fail. In IPC-9701, 

application-specific requirements are no longer given. However, the acceptance criterion 

for the preferred thermal cycling profile, 0…+100 °C is 6,000 failure-free cycles. 

One obvious observation is that if one follows the requirements in the IPC documents, 

very long test times can be expected. 14,600 1-hour thermal cycles, as proposed by IPC-

SM-785, require over 600 days to complete. Even the 6,000 failure-free cycles proposed 

by IPC-9701 takes 250 days, in other words, more than 8 months. Test times this long are 

not ideal for practical testing purposes. 

The argument used in the IPC documents to limit the thermal cycling temperature 

excursion only to positive Celsius degrees was that the failure mode changes below 0 °C 

as solder material properties change. However, there is evidence that similar kinds of 

failure modes are obtained despite the fact that certain thermal cycling profiles may 

include negative Celsius degrees [54], [55].  

Also, in our tests, it has been noted that when two different temperature profiles are used 

and one of them violates the IPC-SM-785 guideline, similar kinds of solder fatigue 

phenomena are noted. The temperature profiles of the tests are depicted in Figure 8. Our 

test vehicles consisted of 5 different solder-castellated ceramic components assembled on 

an FR-4 printed wiring board. The failure mode was inspected by cross-sectioning the test 

items, and it was identified as solder fatigue. Furthermore, the fact that the shape factor β  

value was not affected by the thermal cycling profile also supports the conclusion that the 
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failure mode was the same in both tests. Usually, if the failure mode changes, so does the 

shape factor value. If the failure mode remains the same, the β  value remains the same as 

well. Only one component (B) indicates any change of the β  value. In this case, a 

significantly smaller β  value in Test 2 compared to Test 1 was obtained. This can, 

however, be explained by the fact that only a few components (4 out of 15) actually failed 

during Test 2, and therefore there were only a few data points available. This fact adds 

uncertainty to the Weibull parameters obtained after the curve fitting, and therefore the β  

value obtained may not be a very representative one. 

Figure 8. Two thermal cycling profiles used in the reliability tests. 

Moreover, it was noted that there was a clear correlation between the mean number of 

cycles in the two tests (Table 3). This fact can be easily seen when looking at the ratio 

1

2
η

η , where 2η , 1η  are the characteristic lifetimes for the test profiles 2 and 1, 

respectively. The ratio obtained values from ca. 3.3…3.9. This indicates that even highly 

accelerated tests may be correlated easily. 

+125

-40

+100

0

0

1 h

20 min TIME

TIME

TE
M

PE
RA

TU
RE

TE
M

PE
RA

TU
RE

+125

-40

+100

0

0

1 h

20 min TIME

TIME

TE
M

PE
RA

TU
RE

TE
M

PE
RA

TU
RE



 40

Table 3. Test results of the reliability tests using two temperature profiles. 

Component Test 1, -40…+125 °C, 1-

hour cycle 

Test 2, 0…+100 °C, 20-

minutes cycle 1

2
η

η  

A 1η =609, 1β =7.8 2η =1988, 2β =8.3 3.27 

B 1η =1072, 1β =8.9 2η  =4210, 2β =3.5 3.93 

C 1η =612, 1β =9.1 2η  =1919, 2β =6.9 3.13 

D 1η =663, 1β =5.4 2η =2228, 2β =5.9 3.38 

E 1η =365, 1β =10.1 2η  =1277, 2β =11.1 3.50 

 

4.4.3 Assumptions within the requirements 

The IPC-SM-785 and IPC-9701 documents both give solid guidelines on the minimum 

number of cycles until a certain share of the test items is allowed to fail. In Table 2 in IPC-

SM-785 these numbers are clearly stated. One may, however, wonder how these numbers 

have been obtained, as this is not explicitly explained in the documents. It is not a very 

difficult task to discover the procedure after some consideration. In this section, the 

procedure is described: The test requirement is based on the field reliability requirement. 

This is presented as an acceptable share of failed items at the end of the lifetime of the 

component. Both the acceptable share of failed items and the lifetime of the component are 

dependent on the use category. For example, in the telecommunications use category it is 

assumed that the lifetime is either 7 or 20 years, and that an acceptable share of failed 

items at the end of the lifetime is 0.01%. 
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Table 4. Acceleration factor values used when creating IPC-SM-785 thermal cycle 

requirements. 

Use category Acceleration 

factor, 

lifetime 

assumption 1 

Acceleration 

factor, 

lifetime 

assumption 2 

Attachment 

type,      

leadless (ll), 

leaded (ld) 

Consumer 3.3 3.0 ll 

 9.5 8.7 ld 

Computer 15.9 15.0 ll 

 340.1 320.2 ld 

Telecomm 5.0 4.6 ll 

 51.9 47.1 ld 

Aircraft 21.2 16.0 ll 

 800.8 600.6 ld 

Automotive 2.3 1.9 ll 

 7.3 6.0 ld 

Military ground & ship 0.7 0.6 ll 

 2.3 2.0 ld 

Space, leo 120.5*) 12.2 ll 

 149.8 150.4 ld 

Space, geo 4.2 3.5 ll 

 39.4 33.1 ld 

Military avionics, a 3.8 6.9 ll 

 104.8 108.5 ld 

Automotive, under hood 1.5 1.4 ll 

 1.0 0.9 ld 

 

*) The correct value should be 12.1. 120.5 is a value that is gained from the reliability 

requirement given by the IPC-SM-785, Table 2. 
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This may be a reasonable assumption, but it can be argued that some other values might 

have been chosen as well. This is especially true when it comes to the share of failed 

items, as 0.01% seems to be quite a tough requirement. Usually a 1-3% limit is used. 

After the field requirement is selected, this requirement is converted into a test 

requirement. There are two things that must be considered: first, the test requirement is for 

50% of failed items instead of, for example, the 0.01% requirement for the field 

environment. Secondly, the acceleration effect of the test environment compared to the 

actual field environment must be taken into account. 

To take into account the translation along the Weibull distribution from x% to 50%, the 

number of cycles in the field requirement must be multiplied by the factor: 

β
1

)01.01ln(
5.0ln









− x

 .   (18) 

This factor gives the value of 9.12, assuming that x =0.01 and β=4 (This is the assumption 

for leadless components in IPC-SM-785. For leaded components β=2).   

The acceleration factor used to convert the field requirement into a test requirement is not 

stated in the documentation, but it can be easily deduced when looking at the requirements. 

The number of cycles in the field environment must be divided by the acceleration factor 

used in order to obtain the number of cycles in the test environment.  

When using both of the above transformations, the acceleration factor is obtained for the 

20-year lifetime telecommunications application having a test requirement of 14,600 

cycles as follows: A.F.(N)=((365⋅20)⋅9.12)/14,600=4.56. This acceleration factor value is 

quite reasonable, but it should, however, be remembered that there is no generic 

acceleration factor value. It always depends on the specific component used, the 

attachment type and even on the printed wiring board and its characteristics. Moreover, the 

shape factor β values that IPC-SM-785 proposes are somewhat smaller compared to the 

values often recorded both in the literature [56] and our tests (cf. Table 1). As values given 
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by Eq. (18) are very dependent on the shape factor value, the use of arbitrary values has a 

big effect on the requirement to be created. For example, if the true shape parameter value 

is β=10, then the factor defined in Eq. (18) would be 2.42. This results in an almost 4 times 

larger thermal cycle test requirement than the one given in IPC-SM-785. Therefore, it is 

evident that the IPC-SM-785 requirements in Table 2 should not be taken as such, but that 

the true statistical behavior of the component population should be investigated and only 

after that is it possible to use an Eq. (18) type of translation along the Weibull distribution.  

For the sake of thoroughness, the acceleration factors that were used in the creation of the 

IPC-SM-785 document, Table 2, are deduced and tabulated in Table 2. In most cases, the 

acceleration factor is for the test environment 0…+100 °C, 1-hour cycle. It is noted that 

there is a wide variety of acceleration factor values. In general, they seem to be acceptable 

– keeping in mind, once again, that in principle no generic acceleration factor values exist. 

The reader familiar with a specific use category should now be able to judge if the 

acceleration factor values are relevant or if other values might be more representative. 

There is one misspelling in the space low earth orbit (leo) category requirement for a 5-

year lifetime in the original document. This results in an acceleration factor value of 120.5 

instead of 12.1. To correct this, the 5,900-cycle requirement in IPC-SM-785 should be 

changed to 59,000 cycles. 

4.4.4 The Failure-Free Cycles Criterion 

The required number of test cycles given in the IPC documents is very large in many use 

categories. This is mostly due to the relatively mild test environment (0…+100 °C, 1-hour 

cycle). The other explanation for the long test times is that it is required that the test should 

be continued until 50% of the items have failed. Long test times are not very practical, 

especially when considering the time pressure in the qualification of new components and 

products.  

In order to shorten test times, Equation (17) in the IPC-SM-785 document gives a way to 

turn the 50% requirement into a failure-free requirement. This requirement 

%)0,(testN will result in shorter test times compared to %)50,(testN . The Eq. (17) is 
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discussed in more detail in Appendix A. The use of the failure-free criterion may lead to 

pitfalls related to statistical considerations. For example, it may be that a poor quality 

component happens to be selected for the test population. Then the whole population will 

be judged (rejected) based on one single component that, in actual fact, is not 

representative of the full component population. If the test was continued after the first 

failure, then there would be a possibility to look at the full component population and no 

false judgment, based on one single weak component, would be made. On the other hand, 

as many times there is no possibility to test statistically, meaningful sample sizes, there is a 

risk that components of exceptionally high quality only are selected for the test population. 

In this case, the first failure indication would be recorded too late and the test result would 

be a non-justified ‘pass’. 

4.5 The Applicability of the Guidelines 

Reliability considerations are performed at three levels at least: at component level, at 

PWB level and at product/system level. The IPC guidelines are solely related to 

component level considerations. However, it would be very useful if component level 

reliability data could also somehow be utilized in higher hierarchy level reliability 

evaluations. 

Currently, the component level reliability requirement given by the IPC documents is not 

affected by the complexity or the architecture of the product. This means that any possible 

redundancy is not taken into account. It is just assumed that an acceptable share of failed 

items at the end of the product’s lifetime is a well-enough defined link to the higher-level 

reliability considerations. However, as discussed earlier, the acceptable share of failed 

items in the IPC documents is not necessarily representative in all cases. 

An alternative approach would be to turn the test results into figures that can also be easily 

applied to the PWB and product level reliability considerations. This can be done, for 

example, by applying the reliability block diagram (RBD) technique [57], where the 

interconnection reliability of the component would be one additional block in the total 

reliability calculations. RBD is a well-known technique, and the solution to the diagrams 
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can be found either in closed-form, if the product is not very complex, or by simulation if 

the closed-form solution is not easy to obtain.  

A clear advantage of using RBD is that the whole product can be analyzed simultaneously 

against the product reliability target, not only against a fixed component level requirement. 

It is also possible to take into account the fact that one single component or multiple 

similar components are used. Furthermore, the redundant elements may be considered. 

One additional benefit is that availability and maintenance can be evaluated as well. This 

is not possible if a fixed criterion, such as those given by the IPC guidelines, is applied. 

One approach to analyze PWB level reliability is to utilize calcePWA software developed 

by Maryland University [58]. This software enables to study several possible failure 

mechanisms that may occur, depending on the load conditions the PWB assembly 

experiences. The software includes product modeling, stress assessment, and failure 

modeling capabilities. The user is supported with material, environmental profile, and 

failure models. It is also possible to update these databases.  

The main purpose of this software is to highlight design flaws in an early development 

phase. The software serves this purpose well. However, as physical lifetime models are 

sensitive to parameter values, good care must taken if accurate lifetime predictions are 

expected. The generic values, such as material properties, given by the software may not 

always be accurate. The user should confirm that the values selected present the actual 

situation before running the simulation tool. Another word of caution is related to the 

models utilized. For example, in case of interconnection failure assessment first order 

models are employed. More refined tools, such as finite element simulators, are not 

utilized. This fact results in limited capabilities to take into account structural details, and 

in some cases, limited prediction accuracy. However, as this software tool is primarily 

meant to be applied in an early product development phase, it is expected that it serves this 

purpose well enough. 
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4.6  Discussion 

In this chapter, the IPC guidelines for solder attachment are reviewed and discussed. In 

particular, the thermal cycling test requirements are discussed. The assumptions used in 

creating the requirements are revealed. They include assumptions on the use environment, 

the acceptable share of failed items at the end of the product’s lifetime, and the shape 

parameter value of the Weibull distribution. In general, the values used seem to be in the 

range typically recorded. However, in some cases it may be argued that not all selections 

are valid. For example, the use environment and the resulting acceleration factor for 

telecommunications equipment might have been chosen differently. Moreover, the pre-

selected Weibull shape parameter values seem to be too small in the light of our 

experience. Shape factor values that are too small give rise to a too stringent reliability 

requirement. 

At a more philosophical level, it might be argued as to whether generic reliability 

requirements with a fixed thermal cycle count should be given at all. This is because there 

are several parameters that have a very large impact on the requirements. Therefore, even a 

small deviation in the assumed parameter values may result in a much altered requirement 

level. However, generally accepted guidelines are useful as they provide common rules. 

Having common rules makes communication between component suppliers and customers 

easier, as there is a mutual understanding on the reliability requirement on which the 

components should conform. 

In order to obtain the best accuracy level, the acceptance of a component should be 

considered case-by-case, and not based on generic guidelines. By doing so, accurate 

parameter values can be utilized. They include the acceleration factor value for a specific 

component and a specific use environment. The acceleration factor value may be obtained, 

for example, with analytical models, such as Engelmaier’s model, or with thermo-

mechanical simulations. Also, if the Weibull shape parameter value used is from the tests 

actually run on the component, the true quality distribution of the component is utilized in 

the creation of the requirement. 
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Creating component-specific reliability requirements is a very demanding task. Only 

trained persons are able to perform the testing, the statistical analysis of the results and the 

lifetime prediction. Therefore, creating component-specific requirements is both time-

consuming and labor-intensive. For those who do not have the capability or the time 

needed, the generic requirements given by the IPC guidelines are a good alternative. 

The test profile suggested in the IPC documents is relatively mild and results in very long 

test times. There is an effort to compensate for this by concluding the test after the first 

failure in the test. This approach raises certain statistics-related concerns. Also, it can be 

shown that when using a more stringent test profile the failure mechanism may not always 

change, although the IPC guidelines claim that this is so. 

One shortcoming in the requirements given is that they do not depend on the product’s 

complexity, the architecture of the product and the number of components used. In order to 

obtain a better link to the product level reliability considerations, a reliability block 

diagram technique in conjunction with the interconnection reliability assessment could be 

used. The interconnection reliability of a single component would be an additional 

reliability block. 

Finally, some errors found in the IPC documents are rectified in Appendix A. 
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5 Analysis of Ceramic Leadless Components 

5.1 Introduction 

In the previous chapter, a handbook-based approach of setting 2nd level interconnection 

reliability requirements was reviewed. In this chapter, an alternative, component-specific 

approach is discussed. The approach is demonstrated by actual test data on five leadless 

ceramic components. These components are tested and the results are interpreted by 

utilizing a component-specific reliability requirement tool created for this purpose. The 

analysis starts with thermal cycling tests that are run using two temperature profiles:          

–40…+125 °C 1-hour cycle and 0…+100 °C 20-minutes cycle. The test results are 

interpreted with statistical analysis combined with Finite Element Analysis (FEA).  

The second part of this chapter consists of the interpretation of the test results utilizing the 

tool created. By using the tool it is possible to evaluate if the test result is compatible with 

the component level reliability requirement given. 

5.2 Background 

Ceramic leadless chip carriers (CLLCC) have several desired properties: they have high 

thermal conductivity, it is possible to create hermetic cavities inside them, and the size of 

such components can be small, as both the footprint and the thickness of the packages is 

small. However, due to coefficient of thermal expansion (CTE) mismatch between the 

ceramic components and the organic printed wiring boards (PWB), there is a reliability 

risk related to the second level interconnections. This risk is pronounced in case of 

CLLCCs as this component type does not have any leads that would add some flexibility 

to the interconnections.  

The reliability issues related to CLLCC type components have already been studied for 

some time [59]. In the mid-1980s, it was recognized that the solder column size and shape 

have a profound effect on the reliability [60]. Studies on SnPb solder materials are known 

from the literature, but lately studies on lead-free solder materials have also been published 

[61], [62], [63], [64], [65]. 
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In this chapter, five leadless ceramic components are tested and the results are interpreted 

by utilizing a method created for this purpose. The analysis starts with thermal cycling 

tests that are run using two temperature profiles: –40…+125 °C 1-hour cycle and   

0…+100 °C 20-minutes cycle. After the tests are run, failure analysis is performed. The 

lifetime data is analyzed by utilizing Weibull distribution. In the Weibull analysis phase, it 

is also studied if the test data contains some early failures or if the test data seems to 

consist purely of components in the wear-out region. Then the acceleration factor that 

relates the test result and the field lifetime is calculated by utilizing Finite Element 

Analysis (FEA).  

The second part of this chapter consists of the interpretation of the test results by utilizing 

a tool created for this purpose. The tool enables taking into account several aspects of the 

test results, such as, how many items were tested, what was the share of failed items, what 

is the lifetime requirement of the component and what was the test profile used.  

5.3 Test Setup 

Thermal cycling tests were run employing two cycle profiles [66]: the first one was a        

–40…+125 °C test with 1-hour cycle time and the second one was a 0…+100 °C test with 

a cycle time of 20 minutes.  

In Figure 8, Section 4.4.2, the test profiles are depicted. It is noted that in addition to 

having a smaller temperature excursion, a thermal cycle in 0…+100 °C test is three times 

shorter than the one in –40…+125 °C test. The smaller temperature excursion of the 

0…+100 °C test is expected to alleviate the test compared to –40…+125 °C, but the higher 

cyclic frequency will accelerate the fatigue phenomena and therefore may compensate for 

the smaller temperature swing. 

The idea behind using two temperature profiles was to test if the –40…+125 °C test will 

create failure mechanisms different to the ones observed in the 0…100 °C test. It has 

sometimes been claimed that this would be the case [49]. However, opposite results have 

also been recorded in the literature [67]. 
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5.4 Test Vehicles 

The test board used was a FR-4 board (CTE=16…21 ppm/°C) with the OSP surface finish. 

The thickness of the board was 1.6 mm (8 layers). 

The test vehicles consisted of five component types. Four of them were IF frequency SAW 

filters and one was a crystal clock oscillator. Each component had two manufacturers 

except for one SAW filter, which had three manufacturers. All component packages were 

manufactured of alumina (CTE=7 ppm/°C) and they were assembled on a PWB by using 

castellated solder attachments. Due to the interconnection structure the amount of solder 

material between the component and the PWB was small (typically 50…70 microns). 

Solder fillets on the side of the components consists of a thicker layer of solder material 

(200…400 microns). 

In Table 5, components, component package types and component manufacturers are 

listed. 

Table 5. Ceramic test vehicles. 

Component Package Manufacturers 

a, SAW IF filter QCC12 I, II 

b, SAW IF filter DCC18 I, II, III 

c, SAW IF filter QCC12B II, III 

d, Crystal clock oscillator 2560NK component IV, V 

e, SAW IF filter QCC10B II, III 

 

The DCC18 package was of dual-in-line (DIL) type, whereas all others were of quad type, 

in other words, there were solder joints on all four sides of the component. The crystal 

oscillator had solder contacts at four corners. 
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It should be noted that the component package codes are according to the manufacturer 

datasheets. The detailed geometry measures and the details on the components can be 

found in the manufacturers’ Web pages. 

5.5 Test Results 

During the tests, the test vehicles were continuously monitored using an event detector 

apparatus. Failure events could therefore be accurately recorded. The –40…+125 °C test 

lasted for 1,000 cycles, whereas 0…+100 °C test continued for 3,008 cycles. After 

completing the tests, a thorough failure analysis, including cross sectioning and X-ray 

inspection, was performed.  

The test results were analyzed by using a 2-parameter Weibull distribution. First, it was 

attempted to fit components of the same type from different vendors as one population, but 

it became apparent that there were quite large performance deviations between 

components from different manufacturers. Therefore, the components from different 

manufacturers had to be analyzed separately; otherwise the convergence of the fit would 

have been quite poor. Some apparent early failures were taken out from the test results 

before the Weibull distribution was fitted to the test results.  

5.6  Statistical Analysis of the Results 

2-parameter Weibull distribution was used as a default fitting function. This selection was 

motivated by the good fit of our experimental data. This will be shown in this section. 

Similar, good fit results have been recorded also in case of lead-free solder materials [63]. 

Another obvious choice, instead of 2-parameter Weibull distribution, would have been 3-

parameter Weibull distribution. This is due to the fact that in case of wear-out, an 

incubation period without failures is expected [5]. Therefore, 3-parameter Weibull 

distribution, with the failure-free period of time γ  included, would have been an 

appropriate choice. A more detailed discussion on the selection of the statistical 

distribution functions can be found in Section 7.7. 
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In most cases, the selection of 2-parameter Weibull distribution proved to be acceptable. 

However, in some cases, early failures occurred and their existence did complicate the 

analysis somewhat. Even small amounts of early failures can deteriorate the convergence 

of the fitting, especially when small sample sizes are considered. In order to gain a better 

fit, it was necessary to distinguish early failures from the rest of the population. However, 

this was not a straightforward task to accomplish. In the literature, some methods on how 

to analyze results containing data consisting of the ‘main’ population and the ‘freak’ 

population are presented, cf., for example, [68], [69] for suspended data technique and [70] 

for infant mortality distribution parameter estimation methods. Because in this case only 

individual freak data points, and not multiple data points, were recorded, the methods 

mentioned earlier could not be applied. Instead, some new method was needed in order to 

distinguish the freak data points from the main population and to gain an acceptable curve 

fitting result.  

In most cases, it was easy to visually recognize the apparent deviations from the main 

population, but some general, ‘neutral’ criterion was still needed. For this purpose, a term 

called Comparison Ratio ( .).RC was introduced. This term gives an indication if the data 

point representing the first failure fits well the main population. The definition of the 

Comparison Ratio ( ..RC ) is 

 
failurest

n

N
N

RC t

1

/1.. =  ,   (19) 

where 
tnN /1  is the number of cycles to first failure according to Weibull distribution (or 

some other distribution) after fitting the whole data to Weibull function, and failurestN1  is 

the number of cycles to first failure observed in the test. The rule of thumb selected was 

that the curve fitting is considered successful, if ..RC  lies in the range 0.9…1.1. As an 

example, the data with one early failure and the Weibull fit, functioning with and without 

the early failure data point is depicted in Figure 9.  

There was one component (component c, from manufacturer II) whose test population 

fitted relatively poorly the 2-parameter Weibull distribution. This is probably due to some 
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other underlying statistical distribution that the component population might have. In this 

case, a low value of ..RC  factor was related to a poorly chosen distribution function, and 

not due to the inclusion of early failure data. This was verified by utilizing 3-parameter 

Weibull distribution instead of 2-parameter Weibull distribution (Table 6), after which 

larger correlation coefficient ρ  indicated a better convergence (-40…+125 °C test, ρ : 

0.9366->0.9925; 0…+100 °C test, ρ : 0.9502->0.9884). 

Table 6. 3-parameter fit results of component c, vendor II. 

3-parameter 

Weibull 

parameters 

-40…+125 °C 

test 

0…+100 °C 

test 

γ  454 1273 

β  1.8 1.8 

η  143 598 

 

Figure 9. Test data with early failure data point and the effect of that in the fitting of the 2-

parameter Weibull distribution.   

0

10

20

30

40

50

60

70

80

90

100

0.0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0

# cycles

%
 fa

ile
d

Test data
Weibull fit w/ early failure
Weibull fit, early failure removed



 54

Sometimes it has been argued, that the use of 2-parameter Weibull distribution is not in 

line with historical failure data [71]. Also, it has been claimed that the use of this 

distribution may result in false conclusions related to the reliability of the component, 

especially when small values of cumulative distribution function are concerned. However, 

in our case, the 2-parameter Weibull distribution was successful in explaining the 

underlying component statistical behavior (Table 31, in Appendix B). 

Looking at Table 31, one can conclude that the failure mechanism is not changing due to 

different thermal cycle test profiles. This is due to the fact that the 2-parameter Weibull 

distribution shape parameter β  is not affected by the different test profiles. The failure 

analysis further confirms this conclusion as the failure mechanism in the case of both test 

profiles was recognized as solder fatigue. 

It looks like that the characteristic lifetimes in terms of number of thermal cycles scale by 

a factor of ca. 3. This means that it takes approximately 3 times more cycles in      

0…+100 °C compared to –40…+125 °C until the same share of components has failed. 

However, as the cycle time in the case of the 0…+100 °C test was only 20 minutes and 

one cycle in the –40…+125 °C test lasted for one hour, the two tests induce failures almost 

simultaneously time-wise.  

The performance differences between the vendors proved to be significant. Although 

virtually identical components from different manufacturers were studied, lifetime 

differences of up to a factor of 2 could be noticed. The reason for the performance 

difference probably lies in the different solder column shapes and different amount of 

solder in the interconnection area. This will be discussed in more detail in Section 6.3.2. In 

Figure 10, the solder columns of two virtually identical components (e) from two vendors 

are depicted. The difference in the solder width W is clearly visible. 
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a) 

 

 

b) 

Figure 10. Solder interconnections of two identical components (e) from two different 

vendors. a) Vendor: II. W=400 microns. b) Vendor: III. W=220 microns.   

5.7 Finite Element Analysis 

Finite Element Analysis was run on each of the test vehicle structures. Test data was used 

to calibrate the FEA model. Four thermal profiles were selected to be able to study the 

effect of field environment, which the components are exposed to. Those are listed in 

Table 7. 
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Table 7. Test and field environment profiles. 

 Cycle profile 

 Test  

-40…+125°C 

Test 

0…+100°C 

Fast soft Fast hard Day soft Day hard 

Start temp. [°C] 25 25 27.5 37.5 30 50 

Max. temp. [°C] 125 100 37.5 75 40 80 

Min. temp. [°C] -40 0 17.5 40 20 20 

Time min->max 

[min] 

15 5 8 5 360 360 

Dwell time at 

max [min] 

15 5 43 5 360 360 

Time max->min 

[min] 

15 5 10 34 360 360 

Dwell time at 

min [min] 

15 5 3 5 360 360 

 

Structural details were carefully modeled. For example, solder pad sizes and solder fillet 

geometries were input separately for each component. The acceleration factor values 

obtained are listed in Table 8. 

It is noted that there are significant differences in ).(. NFA  values depending on the 

component type and the field environment the components are about to be subjected to. 
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Table 8. Acceleration factors obtained by FEA modeling [82]. 

 ).(. NFA  -40…+125°C ).(. NFA  0…+100°C 

Component Fast 

soft 

Fast 

hard 

Day 

soft 

Day 

hard 

Fast 

soft 

Fast 

hard 

Day 

soft 

Day 

hard 

a 167.6 44.6 122.4 5.4 66.0 17.6 48.2 2.1 

b 84.6 25.1 64.9 7.5 27.6 8.2 21.1 2.5 

c 80.8 20.6 55.1 6.1 29.7 7.6 20.3 2.2 

d 48.8 13.8 36.5 5.0 21.8 6.1 16.3 2.2 

e 175.0 48.8 128.4 7.3 59.0 16.4 43.2 2.5 

5.8 Interpretation Tool 

In order to validate designs prior to the product launch, the test vehicles are tested. To take 

into account the acceleration of degradation processes due to test severity, acceleration 

factor ).(. NFA  is used. It converts the test result testN  into a number of cycles fieldN  in 

the field environment 

test

field

N
N

NFA =).(. .   (20) 

In order to obtain the acceleration factor value, there are a few options: some analytical 

models, such as Engelmaier’s model [115] and Norris-Landzberg’s model [72]. It is also 

possible to use Finite Element Analysis (FEA) simulations in order to obtain the 

acceleration factor value, as we did in the previous section. 

The acceleration factor values for a leadless assembly are typically in the range of 

1…1000, but however, they depend on the actual test vehicle (geometry, physical 

properties, etc.), the physical properties related to the assembly, the test setup, and the 

expected field environment. In Figure 11, some typical test and field environments and the 
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factors relating those to each other are seen. -40…+125 °C temperature cycle is quite often 

used as a validation test for new technologies [50]. IPC-SM-785 [49] proposes a    

0…+100 °C thermal cycle to be used, instead. 

The differences in test profiles result in different test results (in other words, Acceleration 

factor 1 and Acceleration factor 2 obtain unequal values). Therefore, it seems that there is 

a need for a conversion factor that relates the test results from different test profiles. For 

practical engineering purposes, introducing a conversion factor is useful. However, care 

must be taken that the failure mechanism is the same in both tests before utilizing the 

conversion factor concept.  

Let’s define the conversion factor ( ).(. NFC ) as 

1

2).(.
test

testNFC
η
η

=    (21) 

where 12 , testtest ηη  are the characteristic lifetimes (Weibull parameter, which is equivalent 

to the number of cycles when 63.2% of the samples being tested have failed) obtained in 

two different tests. In case some other statistical distribution is utilized, the relevant 

lifetime parameter related to the distribution should be employed, instead. 

 

Figure 11.  Factors relating the test and the field lifetime performance. Field environment 

is adapted from the IPC-SM-785 guideline [49]. 
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Tests are typically run until at least half of the test vehicles have failed. In the field 

environment, the acceptable risk level (in other words, the share of failed components) can 

vary, depending on how crucial the component is and how stringent the reliability 

requirement is. Therefore, it is evident that the risk level must be taken into account when 

comparing test results and field reliability requirements. This can be accomplished by 

introducing a statistical factor ..FS  

 ( )

β
1

01.01ln

11ln
..


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FS t ,  (22) 

where p  is the number of failed devices in the test, tn  is the total number of devices 

tested, x  is the maximum allowable percentage of failed devices in the field environment, 

and β  is the shape parameter of the 2-parameter Weibull distribution. 

Based on the above-introduced factors, let’s define the minimum number of thermal cycles 

)/( tnpN  in a test that the field environment reliability goal requires as 

 
).(.).(.

..%)(
)/(

NFCNFA
FSxN

npN field
t ⋅

⋅
= ,  (23) 

where %)(xN field  is the number of thermal cycles that the devices are addressed in the 

field environment after which %x  failures is acceptable. ).(. NFA , ).(. NFC and ..FS  

have been defined earlier by Eqs. (20), (21) and (22), respectively. 

Now, it is possible to check arbitrary test results against the field environment reliability 

requirement %)(xN field . 

An example:  Let’s assume that the reliability requirement in the field environment is that a 

maximum of 1% failed components is allowable after 10 years of operation. If, assuming 

that there is 1 daily thermal cycle, the total number of thermal cycles the component 
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experiences in the field environment during 10 years time is 3650%)1( =fieldN . After 

performing a –40…+125 °C test, the following results are obtained: η =820 cycles and 

β =7. Furthermore, we know that the acceleration factor of the 0…+100 °C test is 

).(. NFA =5 and that the conversion factor between the 0…+100 °C and the -40…+125 °C 

tests is ).(. NFC =3. Then, we obtain ..FS =1.94, and from Eq. (23), %)2.63(N =471 

cycles. Because η > %)2.63(N , the test result can be considered as acceptable.  

5.9 Interpretation of the Test Results 

In the previous section, we created a method to correlate the thermal cycling test results 

with the reliability requirement for the field environment. By using this methodology it is 

possible to judge if components are applicable in certain field environments with certain 

reliability requirements. Four different field environments were already introduced earlier 

in Table 7 and the related acceleration factors for each of the components were calculated 

(Table 8). Furthermore, if we assume that the component should last for 10 years and that 

at the end of its lifetime =x 1% failed devices is acceptable, we can create the requirement 

data %)2.63(N  according to Eq. (23) shown in Table 9. The ratio of the characteristic 

lifetime value η  actually recorded in the test and the required characteristic lifetime 

%)2.63(N  is presented in parenthesis in Table 9. This gives insight on how the 

performance recorded in the test compares to the required one. As the acceleration factors 

for both test profiles were known, the use of a conversion factor in this case was not 

needed ( ).(. NFC =1).  

It is noted that only if the field environment is of the ‘day soft’ type, test results of the 

components can be considered acceptable.  In many cases there is a considerable deviation 

from the required performance.   
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Table 9. Applicability of tested components in different use environments with 10-years 

lifetime requirement. 1%-failed items at the end of the lifetime is acceptable. 

 %)2.63(N  ( %)2.63(/ Nη , %), -40…+125°C %)2.63(N  ( %)2.63(/ Nη , %), 0…+100°C 

Component Fast soft Fast 

hard 

Day soft Day 

hard 

Fast soft Fast hard Day soft Day 

hard 

a 778(19) 3822(4) 47(306) 1074(13) 1867(33) 9150(7) 114(544) 2608(24) 

b 1799(17) 7923(4) 104(292) 902(34) 11162(13) 49091(3) 649(219) 5477(26) 

c 1467(42) 7521(8) 96(640) 864(71) 5407(53) 27611(10) 352(811) 3244(88) 

d 4098(17) 18933(4) 243(291) 1777(40) 9334(35) 43587(7) 555(581) 4111(79) 

e 785(44) 3677(9) 48(715) 836(41) 2181(70) 10254(15) 132(1149) 2288(66) 

 

5.10 The Effect of Mixed Field Environments 

5.10.1 Background 

In the previous section, the applicability of components in one individual field 

environment was discussed. In the following, a more realistic case, where the component 

population is addressed to a mixture of field environments, is studied. The ‘mixture of 

environments’ can be interpreted in such a way that the component population is divided 

into groups that are placed in different geographical locations for their full lifetime. The 

underlying principle is to study the environmental effects on reliability in a case, when the 

field environment is not the same for the whole population. 

The environment that an electronic component experiences varies depending on its 

geographical location, the mechanics of the product, the cooling approach used and the 

amount of time the component is active/powered. The field environment variation can be 

taken into account using different approaches. Based on the environmental information 

available, field environment profiles [73], [74], [75] and the related acceleration factors [6] 
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have been represented by their typical values. The overly averaged data may, however, 

result in reliability predictions with poor accuracy. As there is a huge variation within and 

between different field environments, it would be natural to consider the field 

environments as a set of different environments, instead of having one generic 

environment. An approach on how to handle this will be introduced in the following 

Sections, 5.10.3-5.10.4. 

5.10.2 Mixture-of-Distributions Concept 

Mixture-of-distributions concept is well known in the literature [76]. In their paper, 

Hansen and Thyregod discuss it as a phenomenon as such and in conjunction with 

competing-risks concept. Mixture concept is applied in case of early failures, as it is 

believed that the component population may be divided into two; standard components and 

those with initial defects. With the mixture concept the reliability behavior of the whole 

population may be handled if the underlying statistical distributions of the two sub-

populations are known. All the statistical functions have been derived in the reference. 

Wear-out has been studied by utilizing the competing risk concept, instead. According to 

[76], different wear-out mechanisms are expected to follow different statistical 

distributions. In case of competing risks, the competing failure mechanisms are operating 

on all the components simultaneously. The mathematical treatment is based on the 

utilization of competing risk composition. Finally, combination of mixtures and competing 

risks are established and their use is demonstrated. 

In the following, the mixture-of-distributions concept will be applied for the first time in 

case of multiple field environments. The failure mechanism is assumed to be the same in 

the field environments, but the failures are expected to take place at different times. The 

mixture of distributions is applied in case of wear-out in Section 5.10.3. In Section 5.10.4, 

random failures in multiple field environments scenario are studied.  
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5.10.3 Mixed Environment Analysis 

In the following section, the methodology to account for the mixed population with 

‘standard components’ and those with initial defects [76] is introduced to a case where 

components are reliability-wise similar. It is assumed that only one failure mechanism 

exists and that the components are used in several, different field environments.  

Let’s assume that products having the component under consideration are placed in 

multiple, different field environments. Furthermore, let’s mark the share of components 

placed in each field environment as ip . Then according to [76] the density distribution 

function )(tf , the cumulative distribution function )(tF , and the reliability function )(tR  

for the whole component population may be described by 
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where terms with indexes i are related to functions of n  field environment categories. The 

probability density function )(tf i  in case of 2-parameter Weibull distribution can be 

described as 
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The reliability function for each environment category can be written as 
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and the cumulative distribution function itF )(  obtains the value 

)(1)( tRtF ii −= ,   (29) 

where iFA ..  is the acceleration factor related to a certain field environment. η  and β  are 

obtained after fitting the 2-parameter Weibull distribution to the test data. 

The hazard rate )(th  can be presented as 

 ∑
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with weight functions )(twi defined as 

)(
)(

tR
tRpw ii

i = ,   (31) 

where ip  is the fraction on items placed in environment i. 

An example: Let’s study the component a from vendor I. The thermal cycling result from  

–40…+125 °C indicated that the Weibull parameters are η  =609 cycles and β =7.8. The 

related acceleration factors are listed in Table 8. Keeping in mind the different cycle 

lengths and using Eqs. (26) and (28), the data in Figure 12 is obtained. 
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Figure 12. The reliability functions for different field environments and the combined 

reliability function taking into account the whole population placed in different field 

environments. 

In Figure 12, it was assumed that 40% of devices would be put in a ‘Fast soft’ field 

environment, while the remaining 60% of the components would be placed in three other 

field environments, 20% in each environment. As only a small portion of the components 

in the ‘Day soft’ environment failed after 30 years and during the same time almost all 

components in other field environments failed, the reliability ≈)30( yearsR 0.2 in 

accordance with ip =20% share of components placed in ‘Day soft’. It is noted that the 

reliability function )(tR is decreasing heavily according to the decrease in each individual 

reliability function )(tRi , as expected.  

In Figure 13, the hazard rate is depicted. 
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Figure 13. Hazard rate for different field environments and the combined hazard function, 

taking into account the effect of each population in different field environments. 

It can be seen, that the heaviest maintenance load is expected after ca. 2.5 years. It should 

be noted that in the above figure the repetitive nature of maintenance/repair actions is not 

taken into account.  This means that if the components in a ‘Fast hard’ field environment 

are replaced by similar kind of components, it is expected that they will be 

repaired/replaced again soon. 

The above analysis implies that by selecting a set of field environments and balancing the 

related shares of component populations placed into those, it is possible to predict 

accurately the expected amount of field returns. In some cases, cost-effective and 

reliability-wise intermediate components may be feasible, if the main population is placed 

in a moderate field environment and only a small part of the population is exposed to a 

harsh environment. Then, the small portion placed in the harsh environment may be taken 

care of by preventive maintenance. Also, it is possible to consider whether it would be 

beneficial to use more durable components in the ‘Fast hard’ environment and use weaker 
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components in all other field environments if that does not compromise the reliability of 

the product during its life span. It may also be considered whether it would be beneficial to 

use more expensive and more durable components - also in mild environments - so that 

retrofit costs could be avoided and low cost due to the large volume of purchased 

components could be gained. 

5.10.4 The Effect of Mixed Environments in Case of Random Failures 

In the following section, the effect of mixed environments, when failures are due to 

random occurrence of failures, is studied. The characteristic lifetimes at each field 

environment category is expected to stay the same as in previous section, but the value of 

the shape parameter β  is now set equal to 1. This assumption is in conflict with the test 

results, which indicated that wear-our takes place and therefore the shape parameter β  is 

larger than 1. However, it is interesting to study what if the failures obtained in the tests 

were due to random phenomena and how that would affect the reliability behavior of the 

whole population. 

In Figure 14, the reliability functions for different field environments and the combined 

reliability function are depicted. Compared to Figure 12 the situation is not very much 

changed. As expected, the changes in reliability are smoother because the shape parameter 

has a smaller value.  

The combined reliability function starts to slope down earlier, but on the other hand, it 

does not reach the )(tR =0.2 value even after the 30-years time period. This indicates that 

maintenance should be prepared to continuous repair actions. In this case, preventive 

maintenance is somewhat more demanding to plan, as there is not a very clear instant of 

time after which the occurrence of failures starts to increase strongly. 
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Figure 14. The reliability functions for different field environments and the combined 

reliability function taking into account the whole population in case β =1.  

Looking at Figure 15, this conclusion can be confirmed, as the combined failure rate 

shows a monotonically decreasing behavior. An interesting finding is that although the 

hazard rate function in each individual field environment is constant, the combined hazard 

rate function is not a constant. This apparently controversial behavior can be explained by 

studying Eqs. (30) and (31). Although the hazard rates )(thi  are constant, the weight 

functions iw  are time-dependent.  

This can be seen, e.g., by writing the weight function 1w  in terms of its components as 
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Figure 15. Hazard rate for different field environments and the combined hazard function, 

β =1. 
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All weight functions are depicted in Figure 16. 
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Figure 16. Weight functions in case β =1. 

All the weight functions obtain values ii pw =  at the instant of time 0=t . The weight 

functions in most field environments start to decrease quite soon after the components 

have been placed in the field, as opposed to the weight function of ‘day soft’ environment, 

which increases monotonically during the plotted time period.  

As a conclusion, if a component population with random failures is placed in several, 

different environments, a decreasing total hazard rate is to be expected. This is due to the 

time-dependency of the weighting factors.  

5.11 Conclusions 

In this chapter, five leadless ceramic components have been tested by using two thermal 

cycle profiles. It has been noted, that both test profiles are suitable for inducing solder 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30

Time (years)

w
i

Fast soft
Fast hard
Day soft
Day hard



 71 

fatigue failures. The effectiveness of the tests has been compared and it was discovered 

that the failures occur time-wise simultaneously although the cycle profiles are not similar. 

Significant reliability differences between different component vendors existed. The main 

reason for this proved to be differences in solder fillet shape.  

The developed thermal cycling prediction tool was used to interpret the test results. The 

tested components proved to be suitable for mild field environments, but they cannot be 

recommended for use in harsh environments. 

Taking an average of several field environments results in over-simplification, that in turn 

results in poor accuracy of reliability predictions. Instead, the effect of different field 

environments should be treated as a mixture of different field environments. This approach 

is demonstrated here for the first time in the literature by utilizing the mixture-of-

distributions concept, originally developed to take into account of the initial defects within 

a component population.  
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6  Comparison of Analytical and Simulation Based Reliability 

Prediction Methods 

6.1 Introduction 

In this chapter, the analytical and simulation based reliability prediction methods are 

compared. The analytical model used here is Engelmaier’s solder fatigue model and the 

simulation method is based on thermo-mechanical Finite Element Analysis (FEA) using 

solder material properties defined by Anand [77]. The purpose is to study the reliability 

predictions, their parameter sensitivity, error margins, and the applicability of the two 

methods. Finally, some conclusions based on the results are drawn.  

Although analytical solder joint models are of power equation type and therefore are very 

sensitive to parameter fluctuations, the error margins of the reliability predictions are 

rarely given. Some estimates on error magnitudes do exist [78], [79], but far too often error 

estimates are completely neglected. In general, the same argument holds for what comes 

into FEA simulations, although some examples of error estimates do exist [5]. Lately, the 

response surface technique has given some insight into the parameter sensitivity issue and 

the related large error margins in FEA modeling [80], [81], [82]. 

The cases studied here are adapted from the previous chapter. 

6.2 Error Sources 

As discussed earlier in Chapter 1, reliability predictions are getting more accurate, but they 

may still have very large error margins. The errors related to the lifetime predictions may 

originate from several sources: The raw data on which the models are based and the way it 

is analyzed may result in inaccuracies. In Engelmaier’s case, the parameters for modified 

Coffin-Manson-type power law were gained after comprehensive testing. Within standard 

FEA, ‘calibration curves’ are utilized in order to correlate the plastic work done to the 

number-of-cycles-to-failure figures. It is obvious that the calibration curve does not fit the 

data points perfectly. Therefore, it would be natural that the confidence bounds would be 
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estimated. However, this is rarely accomplished. In Engelmaier’s model, a parameter F, 

‘empirical non-ideality constant’ takes into account at least part of the non-idealities built 

in the model. The parameter F obtains values in the range 1.0…1.5 for column-like 

leadless solder attachments and 0.7…1.2 for leadless solder attachments with fillets [49]. 

Therefore, within the worst-case scenario, the difference between the lifetime predictions 

due to varying value of parameter F may be almost 2 times.  

A further source of inaccuracy comes from the fact that the models may be used outside 

the range (stress/strain/work) they were originally developed for. This happens, for 

example, when calibration curve within FEA is utilized outside the original calibration 

data range. Such extrapolation may result in a severe lack of accuracy, especially if the 

convergence of the original data was already poor.  

Engelmaier’s model was developed using ceramic components [116] and Darveaux’s 

model was first demonstrated by using plastic BGA components [83]. Both models have, 

however, been utilized using several package types and materials assuming that the 

lifetime prediction models are also valid outside the original configuration they are based 

on. In reality, this may not always be the case. Differences between manufacturing 

processes may already create large reliability performance deviations. 

As both analytical and FEA solutions have a strong parameter dependency, one error 

source may be the wrongly chosen parameter values. The erroneous parameter value 

selection may be due to statistical fluctuations. It is also possible that the parameter value 

is not actually measured but originates from some reference, where typical values are 

given. For example, the CTE value of organic PWBs may easily vary within a large range, 

depending on the manufacturer, material, and the amount of copper traces under the 

component. The effect of parameter sensitivity and the resulting error margins are studied 

in detail in Section 6.5. The author is not aware of similar studies in the literature in 

conjunction with solder joint reliability studies, although it is evident that this kind of error 

estimate should always co-exist with lifetime predictions. 

Engelmaier’s model is quite simplistic and therefore it cannot take into account all 

structural details. In FEA modeling, all structural details can be taken into account, in 
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theory. However, typically some structural simplifications are done in order to guarantee 

affordable solution times for simulations. 

Neither Engelmaier’s model nor FEA is useful if the failure mechanism is not of thermo-

mechanical solder fatigue type. This means that the need for understanding metallurgy 

remains despite the progress in thermo-mechanical modeling. The need for understanding 

metallurgy is becoming even more important due to the adaptation of lead-free materials 

[84]. Intermetallics growth in lead-free solder materials [85], [61] has been recognized as a 

major factor affecting the reliability of solder joints. 

Comparisons between the test results and the reliability predictions show some indicative 

values of the absolute accuracy of the models. In [78], it is shown that by utilizing the 

Solder Reliability Solutions (SRS) methodology it is possible to gain better than ±2.5 

times accuracy when compared to the accelerated life test results. According to Darveaux 

[5], better than ±2.0 times correlation between FEA simulation predictions and lifetime 

test results can be obtained. However, in the same paper, it is stated, that the predictions 

obtained by applying different FEA methods diverge at low strain energy values and 

within the worst-case scenario it is possible that a difference of 7 times can be obtained 

between different FEA analysis methods.  

It is well known that different analytical and numerical methods may result in different 

lifetime predictions. The relative accuracy between Anand’s [77] and Darveaux’s FEA 

approaches is estimated to be ±25% [5]. In [74], Coffin-Manson, modified Coffin-Manson, 

Norris-Landzberg, and FEA field performance predictions were compared. The 

acceleration factor values obtained by applying FEA were smaller than the ones obtained 

by analytical formulas. The difference in acceleration factor values varied within the range 

of 3…16 times, depending on the field environment in which the component was about to 

be exposed. In [6], the acceleration factors for four components were analyzed using 

Norris-Landzberg, SRS, and FEA. The acceleration factor values were in closer agreement 

with each other, the deviations being in the range 2…6 times for a component type. Of 

course, relative accuracy does not actually tell if the prediction is accurate or not, it just 

indicates the magnitude of differences between different predictions. 
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6.3 Comparison Between Test Performance Predictions 

6.3.1 Introduction 

In the next two sections, the absolute accuracy of the Engelmaier’s model and FEA are 

compared. In Section 6.3.2, it is studied as to whether the lifetime performance deviations 

of the component e from two vendors can be explained by using the prediction methods. In 

the Section 6.3.3, the test performance of all ceramic components a-e introduced in 

Chapter 5 is compared to the ones obtained by utilizing the lifetime prediction methods. 

6.3.2 Vendor Related Performance Deviations 

In the following, it is investigated, whether differences between the test performance and 

the predictions based on Engelmaier’s model and FEA exist. The component studied here 

is the component e introduced in the previous chapter. Component e had two vendors: II 

and III. Both vendors are studied here, as a large performance deviation existed between 

them. The performance deviation was due to the different shape of solder fillets. The 

length of the solder crack path was shorter for the component with the worse performance. 

The problem in applying Engelmaier equations in conjunction with CLLCCs lies in the 

way the ‘solder joint height’ term is conventionally applied. If the thickness of the solder 

material between the component and the PWB ( '
.. jsh in Figure 18) had been considered as 

this measure – as is usually done – the reliability prediction would have been very 

pessimistic: It would have been anticipated that the solder joints would only last for 33 

cycles in 0…+100 ºC thermal cycling test and for 8 cycles in –40…+125 ºC test. No 

performance deviations due to different vendors and the varying solder fillet profiles 

would have been expected either. These anticipated thermal cycle values are, however, 

grossly in error compared to the actual test results.  

Similar problems when applying Engelmaier’s model in conjunction with CLLCCs has 

also been recognized in the literature. In [60], several CLLCC components assembled on 

ceramic substrates were power-cycled. Different solder fillet shapes were utilized and it 

was found out that the optimal solder joint profile would be of low standoff (=small solder 
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joint height), large fillet type. This is in conflict with Engelmaier’s model, where 

increasing the solder joint height should always result in longer lifetime. Therefore, it 

would have been expected that the optimal solder joint be of tall standoff type. According 

to Engelmaier’s model the fillet shape/the amount of solder material used in the fillet 

should not have any effect on the lifetime of the CLLCC components. This was, however, 

proven not to be the case. The lifetime behavior recorded by the reference and us suggests 

that Engelmaier’s model, if applied in a conventional way, cannot explain the thermal 

cycling test results of the CLLCC components. 

However, if the solder joint height is redefined as perpendicular to the crack path ( .. jsh  in 

Figure 18) a much better correlation with the test results is obtained. It should be noted, 

that the normal is placed approximately in the middle of the crack path along its 

propagation from the solder surface to the edge of the component. This interpretation of 

the solder joint height is actually analogous to the normal Ball Grid Array (BGA) case,  

 

Figure 17. Solder joint height .. jsh  measured in case of BGA. 
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Figure 18. Solder joint height .. jsh as defined here in case of solder castellation. 

where the solder joint height is also defined as the distance between the pads measured 

perpendicular to the crack path (Figure 17). The actual profiles of the solder joints from 

both vendors are depicted in Figure 19 and Figure 20.  

Figure 19. Solder profile of the component e in case of vendor III. 
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Figure 20. Solder profile of the component e in case of vendor II. 

The redefined solder joint height obtain values of 200 and 260 microns, for vendors III and 

II, respectively. When inputting these values together with the other required parameters 

into Engelmaier’s model, the prediction for the test performance shown in Table 10 is 

obtained. 

Table 10. The test performance of the component e from two vendors. The predicted 

characteristic lifetime η  values using Engelmaier’s model and thermo-mechanical FEM 

analysis and the actual values recorded in the temperature cycling tests. 

Vendor (test env.) Engelmaier FEM Actual test result 

III (0…100 ºC) 1064 (-17%) 887 (-31%) 1277 

II (0…100 ºC) 2072 (-6%) 1313 (-40%) 2202 

III (-40…125 ºC) 243 (-33%) 232 (-36%) 365 

II (-40…125 ºC) 464 (-42%) 334 (-58%) 801 
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The selection of the ‘solder joint height’ term proved to be successful, as the predicted 

values obtained now by utilizing Engelmaier’s model are relatively close to the values 

actually recorded in the tests. It looks evident that Engelmaier’s model can explain the 

large test performance deviation between the two vendors by the different solder joint 

shapes and the related differences in the ‘solder joint height’ values. The prediction 

obtained by using Engelmaier’s model proved, in all cases, to be slightly pessimistic, as 

expected [92]. However, FEA proved to be even more pessimistic. 

Although by using Engelmaier’s model it seems that the redefinition of the solder joint 

height is useful, the question remains, is it permissible to use Engelmaier’s model in the 

way described above. The original definition of the cyclic hysteresis energy term D∆  was 

originally defined utilizing shear strain γ∆  concept, as can easily be seen 

γα ∆⋅=∆∆⋅=∆ F
h

TLFD
js

eD

..

.  (34) 

The only deviation between the classically defined shear strain and the cyclic hysteresis 

energy is the non-ideality factor F , whose value is usually close to 1. Shear strain is the 

relative distortion of a solid caused by a force parallel to the planes of the object. It is 

therefore expected that the crack in the solder due to shear strain propagate parallel to the 

direction of the force causing shear strain. When looking at Figure 18, this would implicate 

that the direction of the force should be parallel to the crack path, in other words, pointing 

slightly upwards from the horizontal plane. This, however, may be in conflict with the 

assumption used in Engelmaier’s model that the force should act parallel to the PWB. This 

apparent contradiction can be, at least partly, explained by the fact that the PWB under 

thermal cycling load bends. This means that, in reality, the force related to the CTE 

mismatch may point out of the horizontal plane. This has been verified by Engelmaier 

himself [116], and by some other studies [86], [87], [88], [89] in the case of thermal 

cycling and power cycling  

In the most comprehensive study [86] of those mentioned above, the deformation modes 

are divided into three categories: in-plane displacement, out-of-plane rotation, and out-of-
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plane displacement. The first one represents a typical (horizontal) shear stress situation, 

whereas the last one is related to (vertical) tension strain. The out-of-plane rotation is the 

mode that takes into account the PWB bending. In the reference, a thorough analysis is 

presented where the strains related to all the above-mentioned deformation modes are 

measured during a temperature cycling of –40…+125 ºC. The maximum bend angle was 

measured as α=1 mrad at 55 ºC (Figure 21). At higher temperatures the bending decreases 

due to the stress relaxation related to the solder material plastic deformation. 

 

Figure 21. Ceramic component assembled on organic PWB during thermal cycling at 

elevated temperature. Bending of PWB is clearly visible. 

Although the PWB bend angle α recorded was relatively small, it gives a clear indication 

that the force F  due to the PWB expansion does not point horizontally. Furthermore, it 

can be assumed that the angle β between the horizontal plane and the force F  is larger 

than the bend angle α. Therefore, one may estimate that force F  is almost perpendicular 

to the solder joint height .. jsh , as re-defined earlier. Due to this fact, the strain observed 

can be considered as predominantly of shear type, despite the PWB bending. This, in turn, 

satisfies the requirement related to the utilization of Engelmaier’s model, in other words, 

that the solder fatigue should occur due to shear strain. 
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An explanation, why only solder castellation is taken into account when considering 

fatigue life, needs still to be given. This is due to the fact that according to [90] more than 

90% of the fatigue life of CLLCCs is due to solder castellation. In the reference, the crack 

propagation velocity in different parts of the CLLCC type solder interconnection was 

studied. This information was used as an input when running FE simulations on this kind 

of solder geometry. Only a minor share of fatigue life was due to solder material between 

the component and the PWB. Therefore, the solder joint height may well be re-defined as 

the normal dimension in the middle of the solder castellation.  

6.3.3 Test Performance Predictions of Some Ceramic Components 

In this section the lifetime of components a-e in a test environment is studied. The 

predicted performance using Engelmaier’s analytical model and FEA computer simulation 

is compared to the actual test performance. The difference between the following analysis 

and the one presented in the previous chapter lies in the fact that here average performance 

is considered. This means that the analysis is based on average values and the differences 

due to various vendors are not considered.  

Table 11. The test performance in 0…100 °C thermal cycling test. The deviation from the 

actual test performance is inside parenthesis. 

Component              
η (cycles) 

Average test result Engelmaier FEA 

a 1856 1209 (-35%) 1823 (-1.7%) 

b 4209 2774 (-34%) 3567 (-15%) 

c 1918 2855 (+49%) 1978 (+3%) 

d 2173 3227 (+49%) 2086 (-4%) 

e 1739 1517 (-13%) 1116 (-36%) 
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In Table 11, the actual test performance in 0…+100 °C thermal cycling test and the ones 

predicted are presented.  

It is noted that there are relatively large deviations both in the case of using Engelmaier’s 

model and FEA modeling. One explanation may be that the average performance is 

studied. This means that the actual test result is the arithmetic mean of the characteristic 

lifetimes obtained. In some cases, large deviations due to different vendors could be noted. 

This fact is neglected in the above analysis. Average values for solder joint geometry were 

used when predicting the lifetime, as well. For example, when using Engelmaier’s model 

the solder joint height, as redefined in Section 6.3.2, was assumed to be 300 microns for 

components a and b, and 230 microns for components c-e. 

In Table 12, the actual test performance in -40…125 °C thermal cycling test and the ones 

predicted are presented. 

Table 12.  The test performance in -40…125 °C thermal cycling test. The deviation from 

the prediction of the actual test performance is inside parenthesis. 

Component/  η (cycles) Average test result Engelmaier FEA 

a 594 275 (-54%) 717 (+21%) 

b 981 580 (-41%) 1161 (+18%) 

c 562 614 (+9%) 727 (+29%) 

d 590 708 (+20%) 930 (+58%) 

e 583 343 (-41%) 365 (-37%) 

 

Also in this case, relatively large deviations from the actual test performance can be noted. 

It seems that FEA usually gives somewhat over-optimistic predictions while Engelmaier’s 

model, in most cases, gives over-pessimistic predictions. Based on the results, it does not 
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seem that the absolute accuracy of either of the prediction methods is very good. Unless 

the solder joint height-term in Engelmaier’s model was to be redefined as explained in 

Section 6.3.2, the predictions given by Engelmaier’s model would have been grossly over-

pessimistic. 

It seems, that FEA modeling can predict that component b performs the best in both 

thermal cycling tests. However, using Engelmaier’s model, components c and d 

outperform component b, which is in conflict with reality. The explanation for this may lie 

in the varying pad size of different components. Component b has clearly the largest pads 

(3.6*1 mm2) that extend under the component. The pads of the other components are very 

much smaller and do not extend much under the component. In the above Engelmaier 

analysis, the distance to neutral point (DNP) was assumed to be equal to the distance 

between the two corner-most castellations. This is a valid assumption when it comes to all 

the other components, but in the case of component b, the actual center point of the pad 

lies underneath the component, and therefore the DNP value used is too large resulting in 

an over-pessimistic lifetime prediction. 

By taking into account the true location of the pad center location and using this 

information in redefining the DNP value, a shift from DNP=5.01 mm to DNP’=4.35 mm is 

obtained. When using the redefined DNP in Engelmaier’s model, the following 

characteristic lifetimes are obtained for component b: in 0…+100 °C test η=3924 cycles 

and in -40…+125 °C test η=810 cycles. Since the actual test results were 4209 and 981 

cycles, it is now noted that there is a relatively good agreement between the predictions 

and the actual test results. 

6.4 Benchmark of Field Reliability Predictions 

6.4.1 Introduction 

As the actual field failure data on the components did not exist, it was impossible to study 

the absolute accuracy of the prediction methods when it concerned field lifetime 

performance. However, it is possible to compare the predicted lifetimes obtained by using 

Engelmaier’s model and thermo-mechanical FEA. In this section, the average solder joint 



 84

height, as redefined, was assumed to be 300 microns for components a-b and 230 microns 

for components c-e. 

6.4.2 Comparison of Field Lifetime Predictions 

In Table 13, the characteristic lifetime values obtained by using Engelmaier’s model are 

shown. Also, the difference to the field lifetime values obtained by utilizing FEA is shown. 

At first glance, it looks like that the magnitudes of predicted lifetimes correlate relatively 

well. No deviations greater than 2 times exist. This is somewhat surprising, as it is often 

assumed that FEA modeling is always superior over analytical, sometimes called 1st order 

models  [19]. Therefore, a larger deviation between the predictions would be expected 

based on Engelmaier’s 1st order model and presumably more sophisticated FEA modeling. 

Table 13. Field lifetimes obtained by using Engelmaier’s model. The difference to the 

value obtained by applying FEA modeling is inside parenthesis. 

 Characteristic lifetime, years 

Component Fast soft Fast hard Day soft Day hard 

a 6.0 (-59.2%) 1.4 (-53.3%) 50.2 (-79.1%) 3.5 (-67.3%) 

b 13.0 (+8.3%) 3.1 (+14.8%) 102.7 (-50.3%) 7.0 (-70.8%) 

c 13.6 (+88.9%) 3.3 (+135.7%) 106.4 (-3.3%) 7.3 (-39.7%) 

d 15.5 (+181.8%) 3.7 (+208.3%) 120.2 (+29.2%) 8.2 (-36.4%) 

e 7.5 (-6.3%) 1.8 (+5.9%) 61.5 (-53.4%) 4.3 (-42.7%) 

 

The predicted lifetime of component d seems to deviate the most. The optimism of 

Engelmaier’s prediction related to this may originate from the fact that Engelmaier’s 

model does not make any difference based on how many solder joints are used. It just 

considers the reliability of the corner-most solder joint, as that is usually the most critical 

one. In FEA modeling it is possible to take into account the whole solder attachment 
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configuration. This means that the number of solder joints has an effect on the lifetime 

prediction. The more solder joints, the longer the lifetime. As component e has solder 

joints only in the corners of the component (4 pcs), it is natural that FEA modeling should 

result in a more pessimistic prediction than Engelmaier’s model. 

Another finding is that the ranking based on the lifetime length remains the same when 

using Engelmaier’s model in different field environments. The component e outperforms 

the other components in terms of lifetime under all field environment profiles. This is not 

the case when applying FEA. The best component under a ‘day hard’ profile is component 

b, while within all other profiles, component a seems to have the best performance. 

6.4.3 Calibration of FEA 

FEA predictions are based on the use of calibration curves. Calibration curves are 

obtained by plotting a set of plastic energy values observed by FEA against the related 

characteristic lifetimes recorded in reliability tests. A power equation is fitted in order to 

find parameters to a model that relates arbitrary plastic work divided by the crack length to 

the mean-cycles-to-failure. After that, a certain component, under some specific load 

conditions, can be analyzed, as a correlation between the plastic energy obtained by 

simulation and the test result has been established. Without the calibration curve, it is not 

possible to interpret the plastic energy values obtained by utilizing FEA in terms of 

lifetime. 

According to [5], the crack growth rate can be written as 

4
3

K
aveWK

dN
da ∆⋅=  ,  (35) 

where a is the length of the crack, N is the number cycles, aveW∆  is the average 

viscoplastic strain energy accumulated per cycle for the interface elements, and 3K  and 

4K  are parameters. It may be suspected that the crack does not necessarily propagate at a 

constant rate. Actually, it has been noted in the literature that the crack growth rate is not 

always constant. This is the case especially if castellated solder joints are involved [91].  
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To check the validity of the constant crack growth rate assumption, the test results are 

depicted in Figure 22. It is noted that the assumption of constant crack growth rate is 

reasonable in case of –40…+125 °C test where results match a straight line acceptably. In 

case of 0…+100 °C test, the convergence of the data is not as good. The crack growth rate 

in the case of –40…+125 °C test is 3 µm/cycle, while in the 0…+100 °C test the crack 

growth rate is 0.8 µm/cycle, in other words, ca. one third of the growth rate in                    

–40…+125 °C test, as expected. Here it is assumed that the crack initiates instantly after 

being exposed to thermal cycling. In [5], it was shown that the number of cycles to initiate 

the crack is usually less than 10% of the mean number of cycles to failure. 

Figure 22. Crack length versus the number of thermal cycles in two thermal cycle tests. 

In order to find out the values of parameters 3K  and 4K , the crack growth rate was plotted 

against the plastic strain energy density/cycle obtained by FEA. This can be seen in Figure 

23. 
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Figure 23. Crack growth rate in thermal cycling tests. 

 After curve fitting, the parameter values obtained are 3K =2.0821 4// KMPacyclemµ  and 

4K =1.7294. 

Figure 24. Calibration curve used in FEA. 

In Figure 24, the calibration data used in conjunction with CLLCCs is depicted. 

y = 237.92x-1.9821

R2 = 0.9363

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Plastic energy/crack length (MPa/mm)

# 
th

er
m

al
 c

yc
le

s

y = 2.0821x1.7294

R2 = 0.813

0.1

1

10

0.1 1 10

Plastic strain energy density/ cycle (MPa)

C
ra

ck
 g

ro
w

th
 ra

te
/ c

yc
le

 ( µµ µµ
m

)



 88

The data used to create the calibration curve originates from all the tests run. The curve fit 

seems to be acceptable. However, after having a closer look, it may be noted that, 

especially at higher cycle counts, individual data points deviate from the calibration curve. 

The absolute value of the deviation can be seen in Figure 25.  As the magnitude of the 

error related to the calibration procedure has now been quantified, this information may be 

used later on when estimating the uncertainty of the lifetime predictions. 

 

Figure 25. The absolute value of the deviation between the original data points and the 

fitted calibration curve. 

Instead of using self-created calibration curves, it is possible to utilize generic parameter 

values available [5]. However, it is expected that when utilizing those, much larger errors 

may occur. 

6.4.4 The Calibration of Engelmaier’s Model 

Engelmaier’s semi-empirical model is based on a large amount of test data. The 

approximate nature of this model is presented by the non-ideality factor F with values 
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0.7...1.5. The non-ideality factor gives some flexibility to ‘calibrate’ Engelmaier’s model. 

For example, in [92], a component with gull-wing type extra-compliant leads was analyzed 

by using Engelmaier’s formulas, FEA, and accelerated life testing. A generic value of F 

for leaded components is 1. However, after correlating the Engelmaier’s model with the 

FEA results, an F value of 0.555 was obtained. When considering the actual test results, 

the F value gained was 0.356. This means, that both Engelmaier’s model with typical F 

values (at least by a factor of 4) and FEA (at least by a factor of 2) were more pessimistic 

than the actual thermal cycling test result. 

In the following, the calibration is performed by equating the lifetime observed in the test 

and Engelmaier’s prediction. After that, the field lifetime prediction is obtained simply by 

multiplying the ‘calibrated’ test performance by the acceleration factor given by the 

Engelmaier model. This novel method may help to utilize Engelmaier’s model with better 

accuracy.  After performing the calibration, the field performance predictions given by 

Engelmaier’s model and FEA were actually in closer agreement, as can be seen in Table 

14. 

Table 14. Field performance predictions given by ‘calibrated’ Engelmaier’s model. The 

difference to the values obtained by FEA is inside parenthesis.  

 Characteristic lifetime, years 

Component Fast soft Fast hard Day soft Day hard 

a 11.0 (+24.9%) 2.6(+13.1%) 92.7 (+61.5%) 6.6 (+38.1%) 

b 20.9(-73.8%) 5.0(-85.2%) 164.7 (+20.3%) 11.5 (+51.9%) 

c 10.7(-49.3%) 2.6(-84.4%) 84.4(+23.3%) 5.7 (+53.1%) 

d 11.6(-111.7%) 2.8 (-133.8%) 90.6(+2.6%) 6.1(+52.9%) 

e 10.6 (-32.5%) 2.5 (-48.2%) 87.6(+33.6%) 6.1 (+19.3%) 
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The sum of the differences (percentage) squared can be utilized in demonstrating the 

enhanced correlation between the two lifetime prediction techniques. Without the 

calibration this term obtains the value of 13.6 and after the calibration this term is almost 

halved to a value of 7.3. It seems that the calibration of Engelmaier’s model results in a 

much closer agreement between the results obtained by two lifetime prediction methods. If 

assuming that FEA is more accurate, due to its better capabilities to take into account 

structural details, then by calibrating Engelmaier’s model it is possible to obtain more 

realistic lifetime predictions than without calibration. 

6.5 Parameter Sensitivity 

6.5.1 General 

In this section, the parameter sensitivity of both Engelmaier’s model and thermo-

mechanical FEA modeling are studied.  

It is evident that Engelmaier’s model is very sensitive to parameter changes, because the 

model consists of a power-law equation. Likewise, it is expected that thermo-mechanical 

modeling is prone to parameter fluctuations. This is due to the fact that generic solutions to 

2nd order differential equations are of exponential type. The strong parameter sensitivity 

gives rise to large error margins. Therefore, it is very important that an error estimation is 

given in conjunction with a reliability prediction.  

6.5.2 Parameter Sensitivity  

In this section, it is studied how large changes in terms of characteristic lifetime result 

from a small change of a certain parameter value. In the case of Engelmaier’s model, the 

task is somewhat easy, because the sensitivity to a parameter change iU  may be studied by 

utilizing partial derivatives 

Xi
i

i U
X
NU

∂
∂= ,   (36) 
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where N is the number of cycles, iX  is the ith parameter and 
iX

U  is the uncertainty related 

to the parameter value.  

Since Engelmaier’s model is of analytical form, the calculation of the partial derivates is a 

straightforward task. The situation is not that simple when it comes to FEA, as no 

analytical solutions exist. However, if considering that the uncertainties/parameter changes 

are of infinitesimal magnitude, it is a valid operation to write 

iX
i

i NU
X
NU

i
∆≈

∂
∂= ,  (37) 

where iN∆  is the change in lifetime observed after changing ith parameter from its nominal 

value. 

Let’s first study the component e in test environment. In Table 15, the nominal values, the 

deviations from the nominal values, and the related changes in the number of cycles to 

failure are shown. The changes (percentage) compared to nominal situation are inside 

parenthesis. 

Parameter fluctuations resulted in almost equal magnitudes of uncertainty using both 

methods. Engelmaier’s model is most sensitive to the fluctuations of PWB’s CTE value, 

solder joint height, and DNP. The FEA method is most sensitive to changes in CTE value 

of PWB, CTE of the component, and DNP. The reason that FEA does not recognize solder 

joint height as a top-three factor affecting the solder joint reliability may be due to the 

some simplifications done on solder profile when setting up the simulation. The results 

obtained from the comparison between the two vendors (Table 10) also indicate this, as the 

FEA simulation could not duplicate very accurately the test performance of sample lots 

having different solder joint shapes. 

In Table 16, the corresponding data in field environment is listed. 



 92

Table 15. Parameter sensitivity results in test environment 0…+100 °C for component e. 

The resulting deviation from the lifetime - obtained using nominal parameter values - 

compared to nominal lifetime value is inside parenthesis. 

Parameter Nominal 

value 

Deviation 
iX

i
U

X
N

∂
∂

, 

Engelmaier 

iN∆ , FEA 

CTE, component 
(ppm/ºC) 

7 0.2 91.2 (+4.4%) 98.7 (+7.5%) 

CTE, PWB (ppm/ºC) 18 0.5 -227.9 (-11.0%) -182.9 (-13.9%) 

Solder joint height  
(cm) 

0.026 +3.85% 192.9 (+9.3%) 30.3 (+2.3%) 

Dwell time of half cycle 
(min) 

5 0.3 -42.8 (-2.1%) -0.9 (-0.1%) 

DNP (cm) 0.475 0.01 -105.6 (-5.1%) -69.3 (-5.3%) 

Temperature low (ºC) 0 1 37.7 (+1.8%) 40.1 (+3.1%) 

Temperature high (ºC) 100 1 -62.2 (–3.0%) -43.1 (-3.3%) 

 

In reality, larger deviations from the assumed nominal values may exist. For example, the 

CTE value of the PWB may vary in the range of 16…23 ppm/ºC. 

In this case, it may seem that FEA is much more sensitive to parameter value changes than 

Engelmaier’s model. This is due to the fact that the change in the number of cycles is 

much larger in FEA’s case. It should, however, be remembered that the lifetime prediction 

given by FEA was larger (η =3624 cycles) compared to the lifetime prediction given by 

Engelmaier (η =1559 cycles). Therefore, it is natural that the small changes in parameter 

values in the case of FEA result in larger changes (in cycles) in lifetime prediction than in 

Engelmaier’s case. A better way to compare the parameter sensitivity is to look at the 

change percentages. No large deviations between the two methods can be observed in 

those values. 
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Table 16. Parameter sensitivity results field environment (‘Day hard’) of component e. The 

resulting deviation from the lifetime - obtained using nominal parameter values - 

compared to nominal lifetime value is inside parenthesis. 

Parameter Nominal 

value 

Deviation 
iX

i
U

X
N

∂
∂

, 

Engelmaier 

iN∆ , FEA 

CTE, component 
(ppm/ºC) 

7 0.2 59.3 (+3.8%) 244.2 (+6.7%) 

CTE, PWB (ppm/ºC) 18 0.5 -148.2 (-9.5%) -492.4 (-13.6%) 

Solder joint height (cm)  0.023 +4.35% 141.8 (+9.1%) 145.4 (+4.0%) 

Dwell time of half cycle 
(min) 

360 5 -3.2 (-0.2%) 1.5 (+0.04%) 

DNP (cm) 0.475 0.01 -68.6 (-4.4%) -163.1 (-4.5%) 

Temperature low (ºC) 20 1 46.5 (+3.0%) 201.4 (+5.6%) 

Temperature high (ºC) 80 1 -62.2 (-4.0%) -176.7 (-4.9%) 

 

In a ‘day hard’ field environment, Engelmaier’s model is most sensitive to parameter 

fluctuations of the CTE of PWB, solder joint height, and DNP, as was also the case in the 

test environment. FEA is most sensitive to changes in CTE of PWB, CTE of the 

component, and the low temperature end of thermal cycling profile. 

It should be noted that the parameter deviation values used are somewhat arbitrary. 

However, if interested, the reader may easily select more suitable values and try those, 

instead. 

6.6 Lifetime Predictions with Error Margin Estimates 

In the following analysis, Eqs. (6) and (11) are utilized in order to calculate error margins. 

By using them, the maximum uncertainty and the uncertainty values, respectively, are 

obtained. Utilization of Eqs. (6) and (11) is straightforward when it concerns Engelmaier’s 
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analytical model, as the partial derivates are easy to calculate, because the equations used 

are of closed-form type. However, the situation is somewhat different when it comes to 

FEA, as no analytical solutions exist. In the following paragraphs, the parameter 

fluctuation related uncertainties are evaluated by assuming that the fluctuations are of 

virtually infinitesimal magnitude, cf. Eq. (37). Then, it is a valid operation to write 

∑∑
==
∆≈

∂
∂=

n

i
i

n

i
x

i
NU

X
NU

i
11

max max,
   (38) 

and 
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2
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)( ,  (39) 

where N  is the number of cycles to failure and iN∆  is the change in the number of cycles 

to failure compared to the ‘nominal situation’ related to the deviation of parameter i from 

its nominal value. 

Now, it is possible to obtain the maximum uncertainty and the uncertainty values by 

summing up the uncertainty terms related to individual parameter fluctuations. The results, 

concerning component e, are summarized in Table 17.  

When utilizing Engelmaier’s model in a test environment of 0...100 °C, the uncertainties 

are 340 (761) cycles (in parenthesis the maximum uncertainty values and outside those the 

typical uncertainty values). These values may also be considered as error estimates for the 

lifetime of the component. Therefore, the test performance prediction may be written with 

the error margins as follows: 2072±340 cycles. As the actual test result was 2202 cycles, 

the prediction obtained by applying Engelmaier’s model was within error margins. 
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Table 17. The lifetime predictions with error margins estimated for test and field 

environments of the component e. 

Environment η , cycles 
(test) 

η , cycles 
(prediction) 

U , cycles maxU , cycles Within error 
margins  

Engelmaier 

0…100°C 2202 2072 340 761 Y 

-40…+125°C 801 464 72 148 N 

‘Day hard’ N/A 1559 237 530 N/A 

FEA 

0…100°C 2202 1313 227 446 N 

‘Day hard’ N/A 3624 635 1337 N/A 

 

In –40…+125 ºC test profile, the corresponding uncertainties using Engelmaier’s model 

are 72(148) cycles. In this case, the actual test result does not fit inside the error margins, 

as the result by using Engelmaier’s model was 464±72 cycles and the actual test result was 

801 cycles. Even if the maximum error had been used, the test result would still have been 

outside the error margins.  

When using FEA, the test performance prediction does not fit inside the error margins. 

This implies that not all error sources may have been considered, or that the magnitudes of 

the selected uncertainties are not sufficiently large enough. However, if the uncertainty 

estimated due to the imperfect fit of the calibration curve is added, the error margins in the 

case of FEA may be reconsidered. If doing so, 186 cycles should be added to the 

uncertainty term in the test environment and 625 cycles in the field environment. 

However, even after taking into account this additional error term, the actual test result still 

does not fit inside the error margins. 

It is possible that there is some interaction between different parameters. Then, the 

uncertainty analysis and error estimation should take this into account. However, this is 
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not likely the case in the above analysis, as the parameters, whose sensitivity was studied, 

are independent of each other. 

It is now possible to obtain the lifetime prediction with some error margin values, which 

can give some insight into how trustworthy the predictions may be. The characteristic 

lifetime of component e, when utilizing Engelmaier’s uncalibrated model is 4.3±0.7 years. 

After calibration according to Section 6.4.4, this prediction is 6.1±1.1 years. The lifetime 

prediction when using FEA is 9.9±1.7 years. If the error term related to the calibration 

curve is taken into account, the error margins double and the lifetime prediction becomes 

9.9±3.5 years. It is impossible to decide which of these predictions is the most accurate 

one, since there is no field data with which to compare them available.  

6.7 Discussion 

Engelmaier’s model could be applied in the case of castellated solder joints after 

interpreting the solder joint height in a novel way. The prediction was compared to the 

FEA modeling results. Relatively good correlation between the test performance and both 

the predictions was noted. Even better agreement could be obtained if Engelmaier’s model 

was calibrated by test data. The performance deviation between the two vendors could be 

verified as being due to the different solder joint castellation shapes.  

The analysis showed that both analytical and FEA modeling approaches have relatively 

large parameter sensitivity. This is, of course, unfortunate, but by estimating the parameter 

fluctuations, it is possible to give reliability predictions with proper error estimates. This is 

possible both in the case of analytical and numerical solutions, as was shown. Although 

not widely applied in solder joint lifetime predictions, the error estimates should always be 

given. Estimating errors also provides a possibility to study, which parameters are the most 

critical ones in the design analyzed. Their influence on adding uncertainty may be reduced 

after their effect has been recognized. This can be accomplished, e.g., by measuring the 

actual material parameters. When creating test acceptance criteria, safety margins may be 

set based on uncertainty estimations. 
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Based on the analysis above, the CTE values and the solder joint height were recognized 

as the ones that affect most the lifetime of the solder joint. This manifests the importance 

of using actual measured CTE values. Using handbook values may result in completely 

erroneous lifetime predictions. Virtually identical components may have a significantly 

different lifetime performance if the shape of the solder castellation is different. Therefore, 

detailed quality control of the components is of the utmost importance. It is also important 

to understand the field environment to which the components are going to be addressed, as 

this has a large effect on the forthcoming lifetime. 

Table 18. Properties of Engelmaier’s model and FEA modeling approach. 

Property Engelmaier FEA 

Accuracy Moderate Moderate 

Sensitivity Large Large 

Parameters having the largest 
effect on the lifetime prediction 

CTE (PWB), solder joint 
height, DNP 

CTE (PWB), CTE 

(component), DNP 

Possibility to take into account 
structural details 

Moderate High 

Level of expertise required Moderate High 

Calibration data Not needed Required 

 

FEA modeling requires some ‘calibration data’ in order to correlate a plastic energy value 

to a related characteristic lifetime. Due to an imperfect curve fitting it is expected that a 

certain additional error term is introduced. The effect of imperfect curve fitting may be 

severe, especially if the field environment and the test environment differ widely from 

each other. Creating a credible lifetime prediction, especially for mild environmental 

conditions, may be a demanding task, as the absolute errors due to FEA calibration are 

larger the milder the environment. Errors in lifetime prediction are expected to be large 
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also due to diverging lifetime predictions at low strain energy values when applying 

different FEA methods [5]. 

In Table 18, some key properties of both methods are listed. 

Persons with little experience can utilize Engelmaier’s model, while FEA modeling 

typically requires in-depth understanding of numerical methods and tools.  
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7 Approximate Hazard Rate Selection for System Level 

Reliability Considerations 

7.1 Introduction 

It is well known that only exponential distribution has a constant hazard rate. The constant 

hazard rate is related to some random effects that take place during the lifetime of a 

component (bathtub curve with 1=β in Figure 26). 

 

Figure 26. Bathtub curve and the different failure regions. When Weibull shape parameter 

1<β , failures are predominantly of early failure type, when 1=β , random failures are 

dominant and when 1>β , wear-out is mostly responsible for failures. 

Exponential distribution assumption with constant hazard rate is used quite a lot due to the 

resulting simplicity in system level reliability analyses. When utilizing constant hazard rate 

assumption in parts-count type reliability estimates, the hazard rates of individual 
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components icomp,λ  can be summed up, and the end result is the system level hazard rate 

systemλ  [9]  

∑
=

=
n

i
icompsystem

1
,λλ .   (40) 

The reciprocal of the system hazard rate is the MTTF (Mean Time To Failure) of the 

system 

system
MTTF

λ
1= .   (41) 

Quite a lot of component lifetime data that has been gathered, is presented in terms of 

constant hazard rate. Many system level reliability prediction methods are also giving 

lifetime predictions in terms of constant hazard rate [93]. 

However, in reality, the constant hazard rate assumption is often not valid. Therefore, 

applying exponential distribution may not always be an appropriate choice [94]. Assuming 

a constant hazard rate makes the mathematical analyses easy, but assuming a constant 

hazard rate is in contradiction with the fact that most components fail either in the early 

failure or in the wear-out regime, where the hazard rate is either decreasing or increasing, 

respectively. The hazard rate in those regimes can be taken into account, for example, by 

utilizing Weibull statistics, but not by exponential distribution. Due to this fact there seems 

to be an unbridgeable situation, as component level reliability data can be interpreted by 

applying Weibull statistics, but these results cannot be utilized later on in simplistic system 

level MTTF calculations. 

The relationship between the exponential and the Weibull distributions has already been 

studied in the past and the so-called Weibull-to-exponential transformation has been 

created [95], [96], [97]. The use of this transformation simplifies the estimation of the 

confidence bounds and some other parameters of Weibull distribution. When using the 

transformation, the Weibull data is first transformed into exponential form where the 
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mathematical analyses, for example, the determination of the confidence bounds, are done. 

After that, the results are converted back to Weibull form.  

In our case, the Weibull data (hazard rate) is converted into exponential type data format 

(constant hazard rate) by time-averaging the hazard rate within certain time intervals. The 

approximate information created is readily applicable in parts-count type system level 

reliability analyses. Conversion back to the Weibull regime is not needed. 

7.2 Some Constant Hazard Rate Approximations of the Weibull Distribution  

Exponential distribution and Weibull distribution are of different form and they have a 

different time-dependency. The only exception is the case when shape parameter of 

Weibull distribution β =1, in which case the two distributions are identical, with 

λθη /1== . In this case, Weibull distribution characteristic lifetime η  is equal to the 

Mean Time To Failure (θ ) value of the exponential distribution. At all other times, the 

distributions are not identical and therefore, some approximation is needed in order to 

present the Weibull distribution data in terms of exponential distribution. 

There may be different strategies to create a suitable approximation of the Weibull 

distribution. Although it is impossible to match all the distribution functions (hazard 

function h(t), probability density function f(t), cumulative density function F(t), and 

reliability function R(t)) between the two distributions simultaneously, there is a possibility 

to match perfectly some individual functions. 

After the 2-parameter Weibull data is transformed into constant hazard rate form, it can be 

utilized in MTTF calculations for the whole system. Therefore, it would be beneficial if 

the reliability function of the approximate exponential distribution EXPWBtR →)(  would 

imitate the reliability function of the original Weibull distribution WBtR )(  as closely as 

possible, in other words 

WBEXPWB tRtR )()( ≈→ .   (42) 
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Another criterion to be fulfilled is that the form of the hazard function EXPWBth →)(  should 

be kept as simple as possible, but it should still present the main characteristics of the 

original distribution. This means that preferably EXPWBth →)( =constant at least for some 

time intervals. Still, oversimplification should be avoided when trying to satisfy this 

criterion. Otherwise, some false conclusions might be drawn from the MTTF calculations. 

Typically, the reliability test results of components are of increasing hazard rate type. 

Weibull distribution with two parameters, shape parameter β  and the characteristic 

lifetime η , can fit the data satisfactorily many times. This will be discussed in detail in 

Section 7.7.1. The Weibull hazard rate is of the form [98] 

β

β

η
β 1

)(
−⋅

=
tth .   (43) 

In order to approximate this function, one of the below strategies can be chosen: 

Option 1: Pick some representative value of the hazard function at some selected time t . 

Option 2: Calculate a time-averaged hazard rate value for the whole lifetime. 

Option 3: Calculate a time-averaged hazard rate value for some time intervals. 

Option 4: Pick values from the time-averaged hazard rate curve (option 2) between 

selected time intervals. 

Option 5: Calculate time-averaged reliability function values for selected time intervals 

and based on those, calculate equivalent hazard rate values eqλ  for each time interval. The 

actual procedure will be explained later on in more detail. 

In the following section, the five strategies above are discussed in light of the criteria given 

earlier in this chapter. 

Let’s first give the formal definitions for options 2-5: 
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Option 2 

The hazard rate of the option 2 is defined as the time-averaged value over the whole 

lifetime of the component 

β
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η
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t
.  (44) 

It is noted that this value is dependent on time t . The above approximation is useful, if the 

expected lifetime or lifetime requirement for the component lifetimett =  is known. By 

inserting this value into Eq. (44), it results in one constant hazard rate value for the whole 

lifetime of the component. 

Option 3 

The third option can be calculated in a similar way as above, but this time, the time-

averaged hazard rate will be calculated for selected time-intervals ii ttt −=∆ +1  
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In this case, the hazard rate has a constant value in a selected time interval from it  to 1+it , 

i=0,1,2,…n, where n is the number of time intervals. 

Option 4 

This option is making use of time-averaged hazard rate function defined by Eq. (44). The 

hazard rate values used are defined as tith )( 1+  during selected time intervals 

ii ttt −=∆ +1 . 
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Option 5 

Utilizing option 5 requires a little more rigorous analysis. The strategy is to first solve the 

time-averaged value of the reliability function WBR  for selected time intervals 1... +ii tt . 

This can be accomplished by writing 
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where ),( ⋅⋅Γ  is the incomplete gamma function. In Figure 27, the time-averaged reliability 

function is depicted. 

 

Figure 27. The Weibull reliability function )(tR  (WB), the time-averaged reliability 

function WBR  (<WB>), and the approximate exponential reliability function EXPR  (EXP) 

for time interval 1... +ii tt . 
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The instant in time eqt  ( 1+≤≤ ieqi ttt ), at which the time-averaged reliability function is 

equal to the reliability function of the original Weibull distribution, may be written as 

β
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1ln
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t .   (47) 

In order to obtain the corresponding equivalent constant hazard rate eqλ , exponential 

reliability function EXPR  can be utilized 

t
EXP

eqeR ⋅−= λ .   (48) 

 

 

Figure 28. Hazard rate of Weibull distribution (WB) and the time-averaged value (<WB>). 

To satisfy Eq. (42), it can be required that when eqtt = , WBEXP RR = . After solving for 

eqλ ,  the following is obtained 

Time

H
az

ar
d 

ra
te

WB
<WB>

ti teq ti+1



 106

eq

WB
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
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1ln
λ .   (49) 

In Figure 28, the Weibull and time-averaged hazard rate eqλ  are depicted. 

Later on, it will be shown that option 5 best fulfills the requirement given by Eq. (42). 

However, it may be demanding to calculate numerically the incomplete gamma function 

values accurately when time has large values, especially if β  is large. In general, this is 

due to the lack of numerical solutions that are accurate enough for the incomplete gamma 

function, when variables have very large values. 

7.3 Resulting Functions and Hazard Rates 

In this section, the resulting functions and the approximate hazard rate values are studied 

in detail. 

In Figure 29, all five approximate hazard rate options depicted for a component having 

η =3677 days and β =20 can be seen. The time interval selected in the time averaging was 

5 years. The hazard rate for options 3, 4, and 5 is therefore constant in time-intervals 0…5 

years, 5…10 years, 10…15 years, and 15…20 years. 

The hazard rate for option 1 is selected to be 10,000 FITs corresponding to the hazard rate 

value of Weibull distribution in the middle of the lifetime (10 years=20 years/2). However, 

some other choice might have been justified as well. The hazard rate for option 2 is the 

time-averaged value for the whole 20-year lifetime obtained by utilizing Eq. (44). 

The hazard rate for option 3 was obtained by utilizing Eq. (45) with time-interval ii tt −+1 = 

5 years. Values for option 4 are picked from the curve plotted according to Eq. (44) at time 

instants of 5, 10, 15, and 20 years. The hazard rate for option 5 is calculated by utilizing 

the above-described method (Eqs. (46)-(49)), which is based on time-averaging of the 

reliability function. 
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Figure 29. Weibull hazard rate and five approximate options. The selected time interval 

used in time-averaging is 5 years. 

It is noted that the actual hazard rate obtains values from 4102 −⋅  h to 11101 ⋅  h during the 

component’s lifetime. Therefore, it might not be a good idea to use one single hazard rate 

value, as is the case in option 1. If doing so, there is a danger that the value picked is not 

representative of the risk level of the component at all instants of time. Also, utilizing 

option 2 with only one single hazard rate value results in a similar problem, although in 

this case the selection of the hazard rate is not arbitrary. 

Keeping in mind the criterion stated in Eq. (42), the reliability function of the different 

options (Figure 30) should also be studied. Doing so, it can be noted that a perfect fit 

between the original Weibull reliability function and option 2 exists. The next best choices 

are options 5, 4, and 3. Option 1 has the worst performance. Therefore, it is not a suitable 

choice. 
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Figure 30. Reliability functions of the different approximation options. Option 2 data is 

overlapping with the Weibull data. The time interval used in the time-averaging is 5 years. 

If the exact lifetime expectancy lifetimet  of a component were known prior to the product 

launch, then option 2 would match exactly the original Weibull reliability function at 

lifetimett = . In this case, one would just pick )( lifetimeth  and use that in the MTTF 

calculations. This would represent the time-averaged value over the whole lifetime. 

However, in practice the true expected lifetime is not always known. Moreover, if wear-

out is expected to take place during the operational lifetime, averaging over the whole 

lifetime may result in a very large hazard rate value. This would not give a proper picture 

of the reliability of the component during its early life period. Therefore, option 2 is 

attractive only if the hazard rate does not change much during the lifetime of a component. 

Keeping in mind that  

)(1)( tRtF −= ,   (50) 

it is expected that the approximate options behave similarly when cumulative failure 

function )(tF is concerned. 

Looking at the density function )(tf , it may be noted that all the approximate solutions 

are a poor fit for the original Weibull distribution function (Figure 31). 
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One can also show, that  

∫
∞

<
0

1)( dttf    (51) 

in the case of options 2-4. Therefore, those options cannot be considered as true statistical 

distribution functions. The integration of a true distribution density function over time 

should always be equal to 1 [99].  

 

Figure 31. Reliability density function of the Weibull and those related to the approximate 

solutions. 

When using options 3, 4, and 5, simple constant hazard rate values can be found for some 

selected time intervals, for example, in a tabulated form. This is demonstrated in Table 19 

where the data of the above example is listed. Using option 4 does not gain a hazard rate 

value during time interval 15…20 years due to the lack of accurate numerical solutions to 

incomplete gamma function, as discussed earlier. 
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Table 19. Time-averaged hazard rate values for different approximate options. 

 Approximate hazard rate (FITs) 

Time 

(years) 

Weibull Option 1 Option 2 Option 3 Option 4 Option 5 

0…5 4.0...102 14−⋅  000,10  02.0...10 15−  02.0  02.0  0.001 

5…10 000,200...4.0  000,10  000,10...02.0  000,20  000,10  899 

10…15 8104...000,200 ⋅  000,10  61022...000,10 ⋅  61065 ⋅  61022 ⋅  37857 

15…20 118 10...104 ⋅  000,10  96 105...1022 ⋅⋅  91020 ⋅  9105 ⋅  N/A 

 

This kind of data can be utilized directly in parts-count type system level MTTF 

calculations.  

7.4 Properties of Different Options 

Let’s first look at option 2 in detail. The definitions of the statistical functions of option 2 

are based on the exponential distribution function using the hazard rate obtained from Eq. 

(44). This is accomplished just by replacing the constant hazard rate value λ  by the hazard 

rate value given by the above definition (Eq. (44)). The functions of the exponential 

distribution and option 2 are listed below in Table 20. The distribution functions derived 

for other options were also derived by replacing the exponential hazard rate function with 

the time-averaged hazard rate values.  
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Table 20. Exponential distribution functions and Option 2 related functions. 

Statistical distribution function / Statistical function value 

 Exponential Option 2 

Hazard rate λ=)(th  
t

thth )()( =  

Distribution function tetf λλ −=)(  tth
t

tethtf )()()( −=  

Cumulative distribution 

function 

tetF λ−−=1)(  tth tetF )(1)( −−=  

Reliability function tetR λ−=)(  tth tetR )()( −=  

 

As already shown, the reliability function of option 2 is equal to the original Weibull 

reliability function at any selected instant in time t . Simple relations can be written 

between all statistical functions of 2-parameter Weibull distribution and those of option 2. 

Table 21 lists these relations. Inserting the hazard rate defined by Eq. (44) into option 2 

distribution functions in Table 20 can verify that the relations are correct. 

An important note is that although closed form results can be derived for option 2, option 2 

is not a true distribution function, as it does not satisfy all the criteria required from a true 

reliability statistical function (Eq. (51)). Actually, it can be shown that the integration of 

this function, over time, is equal to β/1 . This may sound a bit odd, as both the cumulative 

distribution function and the reliability function for option 2 get reasonable values and 

reach values in the whole scale (0…1). The explanation for this apparent contradiction is 

simply the fact that the cumulative distribution function, in this case, is defined by making 

use of exponential function - not by actually integrating the distribution density function of 

the option 2 over time. 
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Table 21. Statistical functions of the Weibull distribution, and their relationship to those of 

option 2. 

Statistical distribution function / Statistical function value 

 Weibull Option 2, in terms of 

Weibull distr. 

Hazard rate 
β

β

η
β 1
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= tth  
)(th⋅β  

Distribution function β

ηβ
βη
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ettf 1)(  
)(tf⋅β  

Cumulative distribution 

function 

β

η 







−

−=
t

etF 1)(  
)(tF  

Reliability function β

η 







−
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)(tR  

 

Option 3 fitted both to hazard rate and reliability functions of the true Weibull distribution 

(Figure 29 and Figure 30) relatively accurately. Looking more carefully at the hazard rate 

function of this option, it is noted that at the end of the first time interval, the value of the 

hazard rate function is equal to the time-averaged value of the hazard rate (option 2). 

During the next time intervals, the hazard rate of option 3 starts to approach the original 

(instantaneous) Weibull distribution hazard rate. In actual fact, it can be shown that when 

the number of time intervals n  approaches infinity, the hazard rate functions of option 3 

and instantaneous Weibull distribution approach each other. This is shown in Appendix C. 

The reliability function of option 3 has always got smaller values than the true Weibull 

distribution (Figure 30). 

Option 4 is making use of the time-averaged hazard rate function defined by Eq. (44) at 

the end points of the time intervals. The reliability function is smaller than, or equal to, the 
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original Weibull distribution function at all instants in time. At the end points of the time 

intervals, the reliability function is equal to the values given by the Weibull distribution 

and is smaller elsewhere. Option 4 is a better match to the original Weibull reliability 

function than option 3. 

Option 5 most resembles the original Weibull reliability function among those 

approximations that utilize time intervals. However, for very large time values, the 

calculation of the hazard rate may become cumbersome due to numerical solution 

accuracy limitations discussed earlier. 

7.5 Comparison of the Selected Options 

As discussed already in Section 7.2, there are at least two things that must be taken into 

account, when making practical choices about the hazard rate approximation function. The 

first one is that the reliability function of the approximation should closely imitate the 

original Weibull reliability function. Option 2 is superior to the others in this respect as it 

matches perfectly the original Weibull reliability function. The next best choices are 

options 5, 4, and 3. The use of a single, constant hazard rate value (option 1) has the worst 

accuracy over the lifetime. 

The other important criterion is to keep the expression of the hazard rate as simple as 

possible. By doing so, it is possible to apply the calculated hazard rate values directly into 

the system level parts-count type MTTF calculations. In this respect, option 2 might not be 

a suitable choice, as it cannot be used in a tabulated form. All other options can be 

presented in a simple table form having constant hazard rate values either for the whole 

lifetime or for part of it.  

To satisfy both criteria, option 5 seems to be the best choice, having the possibility to be 

used in a simplistic form (for example, table) and still match reasonably well the true 

reliability behavior of the component. 
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7.6 Selection of Time Intervals 

When using the simplistic time-averaged hazard rates, the time intervals should be selected 

in a way that the reliability behavior can be imitated with acceptable accuracy. In order to 

be able to satisfy this criterion, the reliability function should be plotted in conjunction 

with the hazard rate of the component and then the lifetime should be divided into suitable 

time intervals. There should be at least one, but preferably several, time intervals in which 

wear-out has not yet fully occurred (let’s say, %1)( <tF ). The following time intervals 

may already include the wear-out phenomena related to high hazard rate values, and 

therefore the resulting time-averaged hazard rate value may be large in those intervals. 

When wear-out has occurred almost completely, the hazard rate gets values of infinite 

magnitude and using those in the MTTF calculations will result in a clear message; this 

component will fail at latest in the selected time interval. One interval indicating the end of 

the life of the component is enough for practical purposes.  

7.7 Discussion 

7.7.1 The motivation for selecting 2-parameter Weibull distribution 

In this chapter, the 2-parameter Weibull distribution was selected to present the statistical 

behavior of components that face wear-out phenomena.  Some other choice might have 

been possible, too. The selection of suitable statistical distribution has raised some 

discussion in the science community. In [49] 2-parameter Weibull distribution is 

recommended, whereas in [71] and [100] 3-parameter Weibull is considered superior over 

2-parameter Weibull. Also, lognormal distribution is considered to fit the test results better 

than 2-parameter Weibull distribution. The conclusion that 2-parameter Weibull 

distribution is not very accurately presenting the test data is based on least-squares curve 

fitting results and the related small correlation coefficients obtained when fitting the test 

data to 2-parameter Weibull distribution.  

Another argumentation used against 2-parameter Weibull distribution is that it is expected 

that there is a failure-free period of time (presented by the failure-free time γ  in 3-

parameter Weibull distribution) when testing solder attachments. One fact supporting this 
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is that according to Darveaux [5], it takes some finite time to initiate a crack in the solder 

material. One further observation made is that when fitting the test data to 2-parameter 

Weibull distribution the test data has a tendency to have downward sloping in the 

beginning of the wear-out period [71]. This is believed to indicate that there is a failure-

free time that 2-parameter Weibull distribution cannot satisfactorily take into account. 

Furthermore, it is noted that if using 2-parameter Weibull distribution the reliability 

requirement based on it will be very demanding [71], [100]. 

Now, we try if we can verify that the 2-parameter Weibull distribution is accurate enough 

for practical purposes. The author is aware that using 2-parameter Weibull distribution will 

result in more demanding reliability requirement if very small percentages of failed items 

are considered. This is evident if comparing the behaviour of cumulative distribution 

functions. It is also ‘natural’ to consider that there is a failure-free period of time until first 

items start failing in the test. However, we think that in reality it is not impossible that 

items may fail very early. This may happen if the test vehicles are inherently very weak or 

if the test itself is very harsh. One should remember that as lifetime is often monitored in 

terms of number of cycles, this measure used is discretized, as the length of thermal cycle 

is finite. The first cycle may include the incubation period of some weak components. 

Still, from number-of -cycles viewpoint, it would seem that the failure occurs instantly. 

Therefore, the assumption of incubation period is not necessarily in conflict with the 

selection of 2-parameter Weibull distribution. Furthermore, author is not aware that there 

would be well-documented tests that would prove either 2-parameter or 3-parameter 

Weibull statistics to best describe the behaviour of test population, especially when very 

small cumulative failure percentages, such as 0.01%, are considered. This would require 

testing of hundreds or thousands of items, which is very difficult to arrange in practice. 

Therefore the discussion on the distribution function selection is at least partly speculative, 

as no actual proof exists. 
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Table 22. The top three distribution functions (in ranking order) that best fit the test data 

and their correlation coefficients [63]. 

 Top-3 distributions ( ρ ) 

Test env. Prototype Production 

-40…+125 ºC 

Batch 1 

Lognormal (0.97) 

3-P Weibull (0.97) 

2-P Weibull (0.97)  

3-P Weibull (0.95) 

2-P Weibull (0.92) 

Normal (0.93) 

 

Batch 2 

3-P Weibull (0.97) 

 Normal (0.97) 

 2-P Weibull (0.96)  

2-P Weibull (0.96) 

Lognormal (0.99) 

3-P Weibull (0.99)  

0…+100 ºC 

Batch 1 

Lognormal (0.95) 

3-P Weibull (0.98) 

2-P Weibull (0.97)  

3-P Weibull (0.97) 

Normal (0.98) 

2-P Weibull (0.97)  

 

Batch 2 

3-P Weibull (0.98) 

2-P Weibull (0.97) 

Normal (0.97) 

3-P Weibull (0.99) 

2-P Exp. (-0.94) 

2-P Weibull (0.94)  

+30…+80 ºC 

Batch 1 

3-P Weibull (0.99) 

Lognormal (0.99) 

2-P Weibull (0.96)  

2-P Weibull (0.99) 

Normal (0.97) 

3-P Weibull (0.99)  

 

Batch 2 

3-P Weibull (0.99) 

Lognormal (0.96) 

2-P Weibull (0.96)  

- 

 

 

On conceptual level it is impossible to decide which argumentation is more correct. In [63] 

more than 200 CBGA components assembled using lead-free solder were tested using 

thermal cycling. Weibull++© software was used to fit the test results. Three most obvious 

statistical distributions were observed and their parameters were recorded. Also the 

correlation coefficient ρ  values were recorded in order to check how accurately the 

distribution fits the test data (Table 22). The values for 2-parameter Weibull distribution 

were in all cases very high ( ρ =0.92...0.99). This implicates that the 2-parameter Weibull 
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distribution is a proper selection if applied to solder fatigue lifetime data. However, it must 

be admitted that in most cases 3-parameter Weibull distribution has slightly larger 

correlation coefficient values than 2-parameter Weibull distribution has (Table 22). 

However, the differences measured in terms of correlation coefficient are very small. 

In the references [71] and [100], only least-squares method and the related correlation 

coefficients were used to compare the curve-fitting accuracy. However, there are also 

some other methods to check the accuracy of the curve-fitting results [99]. The ranking 

procedure built-in Weibull++© software was tried. The weighting based - on which the 

ranking was performed - was:  Kolmogorov-Smirnov test 50%, least-squares method 20% 

and maximum likelihood method 30%. In all cases, the 2-parameter Weibull distribution 

proved to be in the top-3 list of distributions among 6 possible distributions.  

Our test data cannot support the ‘downward sloping’ described in [71]. A term defined in 

Section 5.6, Comparison Ratio (C.R.) was used to test if the first failure recorded in the 

test fits well the distribution function selected.  

In Table 23, the C.R. values are shown. In four cases the C.R. value is within 10% of the 

nominal value of 1 representing a very good fit. In four cases the ‘downward sloping’ 

(C.R.>>1) is recognized and in two cases ‘upward’ sloping (C.R.<<1) is noted. The 

reason, that our data does not support the ‘downward sloping’ to be a common 

phenomenon, may be partly explained by the fact that we did not remove ‘drops’ from the 

test data. In [71], some data points were removed as they were considered as ‘early drops’ 

due to ‘data transcription error, test set-up problems, bad test parts, or faulty solder joints’. 

Removing ‘drops’ may have resulted in both the ‘downward sloping’ phenomenon and the 

3-parameter Weibull distribution to appear superior over 2-parameter Weibull distribution. 

One problem related to 3-parameter Weibull distribution lies in the fact that the failure-

free time parameter γ  sometimes obtains meaningless, negative values. This occurred in 3 

out of 11 cases in our test population. Therefore, the use of 3-parameter Weibull is limited 

if meaningful parameters are expected. 
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Table 23. Comparison ratio (C.R.) values for different test set-ups. 

 C.R. 

Test env. Prototype Production 

-40…+125 ºC 1.03 (Batch 1) 1.82 (Batch 1) 

 1.10 (Batch 2) 1.60 (Batch 2) 

0…+100 ºC 1.03 (Batch 1) 1.06 (Batch 1) 

 1.53 (Batch 2) 0.98 (Batch 2) 

+30…+80 ºC 0.86 (Batch 1) 1.22 (Batch 1) 

 0.85 (Batch 2) -      (Batch 2) 

 

Based on our experience 2-parameter Weibull distribution is an acceptable choice due to 

its good correlation to the test data and the parameters that always obtain reasonable 

values. 

7.7.2 Constant failure rate and its origin in the field failure data 

In the field environment, constant hazard rate at the product level is often recorded 

although components may fail due to wear-out phenomena. The reason that we observe the 

exponential portion of the bathtub curve for a population of products is in part because of 

repairs, and in part because of random overstress events through the lifetime of the 

population. If the data is grouped by failure mechanisms, then it is highly doubtful that we 

would see an exponential distribution for each group. It is more likely that we will see a 

collection of Weibull distributions, each with β ≠ 1, indicating that either early failures or 

wear-out mechanism are taking place. However, at the system level, this can be 

represented with an averaged quasi-constant hazard rate. 

7.8 Conclusions 

In this chapter, some options to approximate the Weibull hazard rate are proposed and 

studied. The time-averaged options are studied both from a theoretical and a practical point 

of view. It seems that a reasonable compromise between accuracy and usability, and easy 
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applicability in the MTTF calculations can be found. Attention should be paid to the 

selection of time intervals, so that the true reliability behavior can be imitated with 

reasonable accuracy. 

Option 1 cannot be recommended due to its limited accuracy. Time-averaging over the 

whole lifetime (option 2) is a good choice if the hazard rate does not change very much 

during the expected lifetime of the component. However, if the hazard rate changes 

considerably during the life span of a component, it is recommended that the options with 

time intervals be applied. 

Among options utilizing time intervals, option 5 seems to be the most accurate one. This is 

due to the fact that its reliability function best matches the reliability function of the 

original Weibull function. Option 4 is also a good selection, although its accuracy is not as 

good as that of option 5. In the case of option 3, the time-averaged hazard rates in a series 

of time intervals, approach the instantaneous Weibull hazard rate as the number of time 

intervals approach infinity. Therefore, option 3 is not a very good choice. 

If wear-out is expected during the lifetime of a component, option 5 seems to be the best 

choice due to its acceptable accuracy and easy applicability. The incomplete gamma 

function, utilized when calculating hazard rate values for option 5, may be difficult to 

calculate accurately due to a lack of suitable numerical solutions. This problem is, 

however, expected to take place only in cases when wear-out has already severely 

damaged the performance of the component population. 

The methodology to create time-averaged constant hazard rates described above has been 

successfully utilized in conjunction with the 2nd level interconnection reliability issues. 

This work has been documented in several conference papers [61], [82], [101]. 
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8 The Effect of the Introduction of High-Risk Electronic 

Components into 3rd Generation Telecommunications 

Systems 

8.1 Terminology 

The terminology when considering non-repairable and repairable systems is unfortunately 

far from being well established [57], [98], [102]. In this chapter, at component level 

considerations, the term ‘hazard rate’ is used. In conjunction with repairable systems, 

ROCOF (rate of occurrence of failures) is applied. The hazard rate is a function of the life 

distribution of a single unit and an indication of the ‘proneness to failure’ in a time unit 

after time t has elapsed, while ROCOF is the occurrence rate of failures for a stochastic 

point process.  

In the latter part of this chapter, a repairable system is considered. Some terms need to be 

explained in order to be able to understand the following text. 

IID is an acronym for Independent, Identically Distributed. This term is used in 

conjunction with times to failure in a stochastic process. IID property means that the times 

to failure are independent samples from the same distribution function. 

IIED is an acronym for Independent, Identically Exponentially Distributed. This term 

means that the times to failure are independent samples from the same exponential 

distribution. 

HPP stands for Homogeneous Poisson Process. HPP is a counting process with IIED inter-

arrival times. HPP has a constant ROCOF. 

8.2 Introduction 

In this chapter, the dependability of the 3rd generation telecommunications network 

systems is studied. Special attention is paid to a case when increased-reliability-risk 

electronic components are introduced to the system. Earlier in this thesis, only component 
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level reliability assessments have been performed. However, as discussed in Section 4.5, 

component reliability should be considered in conjunction with reliability targets and 

requirements of larger entities. By doing so, it is easier to set realistic reliability 

requirements for the components based either on the PWB or the product level reliability 

requirements. Thus, the component selection can be optimized, and at the same time, the 

satisfaction of the lifetime expectations can be guaranteed. In the following, the reliability 

assessment is further extended to cover a whole telecommunications system. The 

acceptable operation of the telecommunications system is needed, as it may even be a 

matter of safety, since dropped calls in case of emergency situation are highly undesirable. 

Furthermore, the telecom operators expect that the manufacturers can provide them with 

systems that are trustworthy and perform predictably. 

The chapter consists of three parts: First, the reliability data of four electronic components 

is considered. This includes statistical analysis of the reliability test data, thermo-

mechanical Finite Element Analysis of the printed wiring board assemblies, and based on 

those, a field reliability estimate of the components is given. Second, the component level 

reliability data is introduced into the network element reliability analysis. This is 

accomplished by using a reliability block diagram technique and Monte Carlo simulation 

of the network element. The end result of the second part is a reliability estimate of the 

network element with and without the high-risk components. Third, the whole 3rd 

generation network, having multiple network elements is analyzed. In this part, the 

criticality of introducing high-risk electronic components into 3rd generation 

telecommunications network is considered.    

8.3 Background 

The telecommunications infrastructure industry has a tradition of having demanding 

quality and reliability requirements close to those of military and space applications and 

having similar reliability prediction methods [93], [103]. This is due to the need to 

guarantee high availability of telecommunications systems at all times. This requirement is 

based on telecom operators’ needs and requirements.  
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In the past, the military industry was driving the electronic components industry. At that 

time, high reliability was of the utmost importance and cost was not a major issue. After 

the cold war period, the volume of military industry has diminished. Nowadays, the 

electronic component technologies are driven primarily by consumer industry demands. 

Those include low cost and small size electronic components. Reliability is not always the 

major driver. Therefore, it is not anymore self-evident that all the components in the 

marketplace conform to high reliability requirements. 

In order to satisfy the long-term reliability goals the manufacturers of the infrastructure 

equipment must take an active role in selecting and validating components that are used in 

their products. The component level reliability work should be linked to system level 

dependability goals. In this chapter, reliability qualification, starting from component level 

reliability tests and concluding with network level availability considerations are 

described. 

Similar approaches to link physical lifetime predictions with the higher hierarchy level 

reliability assessment to be presented in this chapter can be found in the literature [26]. 

The methods utilized are partly the same. For example, Monte-Carlo simulation and 

Reliability Block Diagrams (RBD) have been utilized, as will be done also in this chapter. 

However, some fundamental differences exist. In the reference, ‘the system’ studied is a 

semiconductor device and ‘the elementary object’ studied is, e.g., a metal run if 

electromigration of conductors is considered. Here, ‘the system’ is a full 

telecommunications network and ‘the elementary object’ is a component. Furthermore, in 

this chapter, both systems that are repaired and those are not repairable are studied. In the 

reference, the reliability assessment is limited to non-repairable devices.  

The effect of physical failure mechanisms on the functionality of electrical devices has 

been studied in [46] and [104]. These references provide some alternative ways to account 

for physical lifetime models in reliability assessment of larger entities. In these references, 

the link between the physical reliability prediction for an elementary object and the 

functionality of the device is established through circuit simulation techniques. 
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8.4 Component Level Reliability Assessment 

The empirical part of this chapter consists of some thermal cycling tests, the statistical 

analysis of the results of these tests, and the field failure prediction based on Finite 

Element Analysis. 

Three components were tested [105]: The first one (component A) was a Multi-Chip-

Module (MCM) made of Low Temperature Cofired Ceramics (LTCC) (CTE=5.8 ppm/°C) 

material and having a Ball Grid Array (BGA) type of 2nd level interconnection. The size 

of the module was ca. 20 mm*30 mm. All the critical solder balls (φ=1.27 mm) were 

confined in a 7.6mm*7.6mm matrix in the middle of the substrate. Besides the central ball 

matrix, larger 3.4 mm *3.4 mm size pads were also used, where four balls per pad were 

soldered. Special pad metallurgy and other proprietary, structural arrangements were used 

to strengthen the interconnection structure. 

The second component (component B) was an alumina (CTE=7.0 ppm/°C) based Dual In 

Line (DIL) component having solder castellations as an interconnection media. The size of 

the component was 19.0 mm* 6.5 mm. The solder castellations (altogether 12 pcs.) were 

placed in the middle of the longer edges having a pitch of 1.9 mm. 

The third component (component C) was an MCM made of HTCC material (CTE=7.0 

ppm/°C). The size of this BGA (φ=0.80 mm) 21*21 ball matrix was ca. 36 mm* 36 mm. 

The fourth component (component D) was a very large organic BGA component having 

1788 solder balls (φ=0.6 mm) as interconnection media. The thickness of the organic board 

was 1.15 mm and the area was ca. 45 mm * 45 mm. A silicon chip of size ca. 18 mm * 18 

mm was attached to an organic substrate.  The chip was covered with a copper lid. This 

component was not actually tested. The reliability prediction is therefore based on Finite 

Element Analysis only. 

The components were assembled on a 1.6 mm thick FR-4 printed wiring board. The 

thermal cycle was a 1-hour cycle from –40 to +125 °C with 15 minutes dwell times at both 

temperature extremes. The failure analysis consisted of cross-sectioning and visual 

inspection. In some cases, X-ray was also used to discover the failure mechanism. Before 
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the tests were run, there were some doubts whether the harsh test environment could 

induce failure mechanisms that were different from those that take place in the field. To 

check this, some test vehicles were exposed to a more benign 20-minute thermal cycle 

from 0 to +100 °C (Figure 8). However, no signs of change of failure mechanism were 

observed. Therefore, the assumption that the discovered failure mechanism was 

representative of the true failure mechanism to be found also in the field was made. The 

failure mechanism in all cases was solder fatigue. 

8.5 Test Results and Their Interpretation  

After fitting the test results using least-squares method, the Weibull parameters listed in 

Table 24 is obtained. 

It is noted that almost all components had difficulty in passing the often-used no-failures-

in-1000-cycles criterion. The relatively large shape parameter β values reflect the fact that 

the quality deviation of the components tested was small.  

Finite Element (FE) analysis was used to calculate the acceleration factors. The number of 

cycles in the field environment was obtained by multiplying the number of cycles in the 

test environment by the acceleration factor. It was assumed that the components were 

addressed to a ‘Day hard’ thermal cycling in the field. This field environment is described 

in Section 5.7 in detail. The shape parameter was considered to be the same in both test 

and field environments.  

Table 25 lists the predicted field performance of the tested components. 
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Table 24. Reliability test results of the increased-reliability-risk components. 

Component Characteristic lifetime, 

η / # cycles 

Shape parameter, β  

A 1886 5.82 

B 981 7.53 

C 821 5.42 

D 2414* 20 

 

* This value is based on Finite Element Analysis, not on test results. 

The characteristic lifetimes η are relatively large in all cases. This, however, does not 

necessarily guarantee that the reliability of these components would be at an acceptable 

level, as η  represents an instant in time at which 63.2% of the component population has 

already failed.  

Table 25. Field lifetime prediction of the increased-reliability-risk components. 

Component Predicted characteristic lifetime 

in the field, η / years 

Shape 

parameter, β  

A 25.8 5.82 

B 12.9 7.53 

C 11.2 5.42 

D 10.1 20 

 

Therefore, the statistical behavior of the component population needs to be considered. 
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8.6 Network Element Dependability 

8.6.1 General 

Since the four components tested have an increased reliability risk related to their 2nd level 

interconnections, it is important to study what the effect is, if such components would be 

used in a network element (NE). This gives a concrete indication if the components 

studied are at an acceptable reliability level or if they should not be used. In the following 

sections, the network element dependability is studied. NE with and without the high-risk 

components is considered.  

A WCDMA base station (Node B) is used as an example of a network element. It should, 

however, be noted that the reliability figures used here are arbitrary, although the 

magnitude may be close to representative. The same also holds when considering the other 

NEs to be introduced later on in the following section. Actually, it is assumed that the 

lifetime of all network elements are distributed exponentially with Mean Time To Failures 

(MTTF) of 793.95 years (6,955,000 hours). The repair distribution of all NEs is considered 

to be exponentially distributed with a Mean Time To Recovery (MTTR) of 1 hour. The 

reliability function of the exponential distribution is given as [106] 







−

= θ
t

EXP eR ,   (52) 

where MTTF=θ  and t  is time. 

The reliability function of the 2-parameter Weibull distribution is given as [106] 
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where η  is the characteristic lifetime and β  is the shape parameter. 

Because the lifetime of the network is exponentially distributed and the high-risk 

components follow 2-parameter Weibull distribution, the arrangement can be presented as 

a reliability block diagram (RBD), as depicted in Figure 32. 
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Figure 32. Reliability block diagram of a series connection of a network element whose 

lifetime is exponentially distributed (EXP) and a high-risk component with lifetime 

distribution of 2-parameter Weibull type (WB). 

This series configuration represents the most pessimistic scenario, as it is assumed that no 

redundancy is used and that the failure in the high-risk component always causes the 

whole NE to fail. This may not always be the case in reality. 

8.6.2 Non-Repairable NE  

As the complexity of the RBD of the series connection is relatively low, it is possible to 

obtain most of the distribution functions in closed form.  For example, the reliability of the 

NE is given simply as 
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where R  is the reliability function of the NE after the introduction of a high-risk 

component with interconnection related reliability risk, EXPR  is the reliability function of 

the NE without the high-risk component, and WBR  is the reliability function of the 

component having the interconnection related reliability risk. 
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The probability density function )(tf  and the hazard rate function )(th  of the series-

connection can be attained by applying the definitions of the )(tf  and )(th  [106] resulting 

in 
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Now, the reliability behavior can be anticipated, as all the relevant reliability functions of 

the series-connected system are defined. 

In Figure 33, the reliability functions of the series connection of the NE with and without 

the high-risk components are depicted. 

 

Figure 33. Reliability function of the network element with and without the high-risk 

components. 
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It can be seen, that without the high-reliability-risk components the NE performs very 

well. The performance degradation related to the high-risk components is clearly visible. 

Without the high-risk components it would be anticipated that the share of the failed 

components would be less than 5% for the whole 30-year lifetime of the system. However, 

after introducing the new components, the 5% failure limit is already reached after 14, 8, 

6, and 9 years for the NE with components A, B, C, and D, respectively. 

The probability density function of the system, with the high-risk components introduced 

is depicted in Figure 34. It is noted that the reliability behavior of the whole system 

follows, quite closely, the reliability behavior of the critical components, as the peaks in 

the density function are coincidental with the attainable lifetime values of the high-risk 

components. 

Figure 34. Probability density function of the network element with high-risk components 

included. 

Two common measures, the mean lifetime and the variance, for the NE including the high-

risk component can be calculated, but this time the integration must be accomplished 
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And the variance is ( )∫
∞

⋅−=
0

2 )( dttfEtVar . 

The mean and the variance values of the lifetime of the NE are tabulated in Table 26. 

Table 26. Mean lifetime and variance values of the series connection of the network 

element with the high-risk components. 

NE w/ 

component 

Mean, E /  years Var / years 

A 23.5 27.6 

B 12.0 4.3 

C 10.3 5.2 

D 9.77 0.8 

8.6.3 Repairable NE 

When considering a repairable system, the RBD depicted in Figure 32 is interpreted as a 

Superimposed Renewal Process (SRP). This means that the two blocks are renewed 

(=replaced by ‘as good as new’) after they have failed and that the overall SRP observed is 

a superposition of the two independent renewal processes. 

In Figure 35, a general SRP is depicted. It consists of several renewal processes (RP), 

whose superposition is the SRP. The interarrival times nXXXX ,...,, 321  describe the time 

between subsequent failures.  
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Figure 35. Superimposed renewal process. Crosses denote failures and nXXXX ,...,, 321  

are the interarrival times. Times needed to recover the system are not depicted, as they are 

typically much smaller than the interarrival times. 

Drenick has shown that the superposition of an infinite number of independent renewal 

processes approaches a Homogeneous Poisson Process (HPP) after an infinite number of 

system failures has occurred [107]. This means, that although underlying lifetime 

distributions of the individual renewal processes may not be exponentially distributed, the 

lifetime distribution of the superposition of those will approach independent, identically 

exponentially distributed (IIED) behavior when time approaches infinity. In practice, a 

limited number of renewal processes, with only some tens of system failures already 

approach the HPP [102], [111]. The asymptotic behavior is very often assumed, although 

that may not always be the case in reality [102]. 

A repairable system can be analyzed by applying the concept of availability. The steady-

state availability A  is defined as [98] 

MTTRMTBF
MTBFA

+
= ,  (58) 

where MTBF  is Mean Time Between Failures and MTTR  is Mean Time To Recovery. 

Assuming that MTTRMTBF >>  and that the interarrival times nXXX ,..., 21  are 

independent and identically, exponentially distributed (IIED), then MTTFMTBF ≈  can 

be written. When the interarrival times are independent, and identically distributed (IID), 
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but not exponentially distributed, the MTBF  can be approximated by the mean lifetime 

E . The mean lifetime of the Weibull distribution E , can be discovered by utilizing 

Gamma function )(⋅Γ [108] as 

)11(
β

η +Γ⋅=E .   (59) 

The steady-state availability A  of the series connection of two components having 

availabilities 1A  and 2A , can be stated as [98] 

21 AAA ⋅= .   (60) 

By applying the above formulas it is possible to calculate the availability of the NE with 

and without the introduction of the high-risk components. 

In the following sections, it is assumed that a representative value of =MTTR 1 hour for 

both the NE and the high-risk component can be utilized. In Table 27, the results for the 

repairable system are listed. 

Table 27. Steady-state availability, Mean-Time-Between-Failures, and Mean-Down-Time 

values for the network element with and without the increased-reliability-risk components 

[109]. 

Configuration Availability MTBF, years MDT/ year, minutes 

NE only 0.999 999 856 793.95 0.08 

NE w/ comp A 0.999 995 085 23.20 2.58 

NE w/ comp B 0.999 990 445 11.93 5.02 

NE w/ comp C 0.999 988 822 10.20 5.88 

NE w/ comp D 0.999 988 233 9.69 6.19 



 133 

It can be seen that even a single high-risk component may introduce a very serious effect 

on the NE performance, as both MTBF and MDT  are degraded by almost two orders of 

magnitude if utilizing a high-risk component in the NE. Although the example used here 

represents the ultimately unfavorable situation (a series connection), it can be assumed that 

the introduction of high-risk components may also have a serious effect on the NE 

performance in real life. Preventive maintenance would probably be beneficial in this case, 

especially if long lifetime requirements for the NE are used. Preventive maintenance can, 

at least partly, restore the original favorable NE reliability situation. Other options to 

rectify the situation are the replacement of the high-risk component with another one that 

has better reliability performance or by making a design modification. Such a modification 

may mean, for example, the use of a leadframe package, which adds flexibility to the 

interconnection structure and thus enhances the 2nd level interconnection reliability.  The 

realignment of solder joints in order to decrease the distance to the neutral point, or the 

change of solder material or the amount used can be tried as well. The change of solder 

metallurgy may in some cases play an important role. 

The above availability analysis was made under steady-state assumption. In reality, the 

availability values are time-dependent and differ from the above mentioned. 

This can be seen when looking at Figure 36-Figure 39, where the estimated interarrival 

times [ ]iXE are plotted against the number of NE failures. Monte Carlo simulations were 

run in order to calculate the time-dependent interarrival times. The software used was 

Raptor [110]. To guarantee an acceptable convergence of the results, the following number 

of iterations was used: 2000 iterations for 1st and 2nd failures, 1500 iterations for 5 failures, 

1000 iterations for 10 failures, and 500 iterations for 20 and 35 failures. The non-

repairable and the steady-state data are also depicted in the same figures. 
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Figure 36. Estimated interarrival times of the network element with high-risk component 

A. 

 

Figure 37. Estimated interarrival times of the network element with high-risk component 

B. 
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Figure 38. Estimated interarrival times of the network element with high-risk component 

C. 

 

Figure 39. Estimated interarrival times of the network element with high-risk component 

D. 
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Looking at the figures, it is noted that a relatively good correlation between the manual 

calculations (steady-state and non-repairable system data) and the Raptor simulation 

results. It looks like the steady-state is reached already after ca. 10 system failures. The 

fact that interarrival times are approaching a steady-state, constant interarrival time 

condition does not necessarily indicate that the SRP is approaching HPP. This is due to the 

fact that the actual lifetime distribution is not known. It should be of exponential type if 

the process is HPP. When utilizing a shareware version of the Raptor software it was not 

possible to monitor the individual interarrival times. Therefore, it is not possible to verify 

if the lifetime is of exponential type and if the steady-state is truly reached after 10 system 

failures. However, 10 system failures seem to be a smaller number than proposed by Keats 

and Chambal [111]. It should, however, be remembered that the value of 30 system 

failures until the steady-state given by Keats and Chambal is reached is a generic limiting 

value for convergence given for an arbitrary complexity level and underlying component 

statistical distribution. 

However, as the interarrival times (10…24 years) are quite large compared to the expected 

lifetime of the NEs in the field it is clear that it is enough to study the time-interval having 

the first 1…3 failures. Therefore, in the following paragraphs, time-averaged availability 

figures are utilized. 

The time-dependent average availability is defined as [112] 

∫=
T

avg dttA
T

A
0

)(1 ,   (61) 

where T is the time-interval along which the availability is monitored and )(tA is the point 

availability. In the following, =T 20 years was used. After a Monte Carlo simulation 

(2000 iterations) the following availabilities were obtained (Table 28).  
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Table 28. Time-averaged availability values of the network element with increased-

reliability-risk components. 

NE w/ component Mean A(20 years) 

A 0.999 998 810 

B 0.999 993 664 

C 0.999991 849 

D 0.999 990 589 

 

It is noted that when comparing Table 27 and Table 28, the time-averaged availability 

values are slightly larger than the steady-state values, as expected. 

8.7 Dependability of the 3GPP Network System  

8.7.1 Network Architecture 

In the following section, the dependability of the third generation telecommunications 

networks is studied. The topology analyzed is based on 3GPP (3rd Generation Partnership 

Project) Release 99 recommendations. The somewhat simplified model utilized here is 

based on the work of Kumar et al [113]. The simplifications used are mostly related to the 

integration of some NEs, which makes the analysis somewhat easier. The simplified 

version of the network is depicted in Figure 40. A more detailed description can be found 

in the technical specification document (3GPP TS-TS 23.002, 2002 V3.5.0) on the Internet 

[114]. 
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Figure 40. Simplified 3rd generation telecommunications network. 

A network system can be divided into two parts: Access Network (AN) and Core Network 

(CN). Furthermore, Access Network is sub-divided into GERAN (GSM/EDGE Radio 

Access Network) network and UTRAN (UMTS Terrestrial Radio Access Network) 

network. GERAN consists of base station transceivers (BTS) and base station controllers 

(BSC), while UTRAN is composed of base stations (Node B) and Radio Network 

Controllers (RNC). GERAN offers Time Division Multiple Access (TDMA) based radio 

technology, such as GSM and/or GPRS, whereas UTRAN offers Wideband Code Division 

Multiple Access (WCDMA) based radio technology. 

Core Network (CN) has two domains: Circuit Switched (CS) and Packet Switched (PS). 

The CS domain handles real-time type of traffic/services and PS domain handles non-real-

time type traffic/services. 

The Core Network in the following is somewhat simplified. It is assumed that it consists of 

a Mobile Switching Center (MSC), Home Location Register (HLR), Serving GPRS 

Support Node (SGSN), and Gateway GPRS Support Node (GGSN) only. In reality, some 

other functions do exist, but for simplicity’s sake some functions are considered to be 
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mobile subscriber parameters. SGSN is in charge of mobility management, packet transfer, 

charging, and admission control. GGSN is the interface to external data networks. 

In the availability analysis, it is assumed that there are no functional dependencies between 

the NEs. 

8.7.2 Availability Analysis of the 3rd Generation Network 

In the following section: first, it is assumed that in order for the network to be in ‘up’ state 

all NEs need to be functional.  This may add some pessimism to the analysis, as some 

other choice of definition for a functional network could have been chosen. In this 

analysis, the systems with and without the high-risk components are analyzed. In case 

high-risk components are introduced to the system, only Node Bs are considered to contain 

the high-risk components. All other NEs have the generic availability value of =A 0.999 

998 856 at all times. The availability values of Node Bs are chosen to be average 

availabilities calculated for the first 20 years of operation. This is probably the best 

approximation, because the steady-state values seem to be slightly over-pessimistic, as 

discussed in Section 8.6.3. 

In the second case, some Node Bs are allowed to be in ‘down’ state. Also, in this case, all 

other NEs are required to be in ‘up’ state. All the NEs in ‘up’ state can be easily handled 

with a simple multiplication of availabilities, while in case some Node Bs are allowed to 

be in ‘down’ state, k-out-of-n calculus will be deployed. 

In the following paragraphs, the formulas are introduced. The availability of the GERAN 

network consisting of n BTSs per one BSC and m BSCs can be presented as [113] 
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In the above, it is assumed that all BSCs are required to be in ‘up’ state, while some BTS 

elements may be in ‘down’ state. Since in the following analysis all BTS elements are 
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required to be functional, the formula of the GERAN availability can be simplified into 

form 

∏ ∏
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The latter form of the formula comes from the fact that in the following it is assumed that 

all BSCs and BTSs have similar availabilities. The availability of the UTRAN can be 

similarly presented as [113] 
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The 2G- and 3G-service availabilities GservicePSA2  and GservicePSA3  for the PS domain can be 

presented as [9] 
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Maintenance availability ePSmaintenancA  for the PS domain as a whole can be given as [113] 
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For the CS domain the availability formulas strongly resemble the PS formulas given 

above and they are as follows 
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⋅⋅=
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1
2    (68) 
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=
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In all cases, the subscripts of the availability terms refer to the NEs whose availability is in 

question, for example, BTSA  is the availability of the BTS network element etc.  

8.7.3  Analysis Results 

In Table 29, the availability, Mean Time Between Failures (MTBF), and Mean Down 

Time /year (MDT) values are tabulated in case all NEs (including all Node Bs) are 

required to be in ‘up’ state. In the calculations, the number of BTSs was assumed to be 5 

per BSC and the number of BSCs per SGSN element is 10. The number of Node Bs was 

assumed to be 25 per RNC and the number of RNCs per SGSN element was 10. The 

number of SGSNs and MSCs was 2. The network was assumed to include only one single 

HLR and GGSN.  

It is noted that the introduction of high-risk components has a large effect on the 

availability of the network in this case. As expected, the introduction of a high-risk 

component does not have an effect on the 2G functionality. This can be seen when looking 

at Table 29 where the availabilities of the GERAN network and the 2G services for PS and 

CS domains are unaltered by the introduction of the high-risk components. However, the 

3G part of the network suffers quite heavily from the introduction of the high-risk 

components, as the availabilities of the UTRAN network and 3G services are severely 

reduced. This results in the fact that the MDT values of the PS domain increase by a factor 

of 6.6…50.7, and in the CS domain the increment of MDT values is in the order of 

6.6…50.9 times. Looking at the MTBF values, the corresponding degradation of network 

dependability can be noted. 

A much better performance can be expected, if it is assumed that some Node Bs are 

allowed to be in ‘down’ state. In Table 30, this fact is demonstrated. The figures are 
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related to a case, in which one Node B per RNC is allowed to be in ‘down’ state.  The 

improvement is significant, as in this case the yearly downtimes are less than 4 minutes. 

Another interesting fact is that the introduction of the high-risk components has virtually 

no effect on the system availability. It can even be demonstrated that the high availability 

is not affected by the number of Node Bs allowed to be in ‘down’ state (except for the 

case, where all Node Bs are required to be in ‘up’ state). 

The above, somewhat surprising, result can be understood, if a closer look at taken at Eq. 

(64) that defines the UTRAN availability. If kn > , then a very good approximation is 

∏
=

=
m

i
RNCiUTRAN AA

1

,    (71) 

as 
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The latter condition given by Eq. (72) is easily kept in our case, as the average availability 

values of the Node B, even after the introduction of high-risk components, is >0.999 990 

in all cases studied. The conclusion of the above is slightly surprising, in other words, the 

availability of the Node Bs nor the number of Node Bs in the ‘down’ state do not have an 

effect on the availability of the telecommunications network. It should, however, be 

remembered that if the network availability is defined so that all NEs (including all Node 

Bs) must be in ‘up’ state then the effect of introducing high-risk components is profound.  

How to define the network availability, then? Or what is the correct availability value that 

should be used? Is the system ‘up’ even if some Node Bs are in ‘down’ state? Using 

simplistic RBD techniques or other non-state space analysis techniques cannot give an 

answer to these questions. What would be necessary is an in-depth state space analysis that 

can take into account the dependencies of the NEs and the resilience behavior of the 

network and other complex phenomena. The state space analysis techniques include, for 

example, Markov modeling and Petri Nets. However, as the 3rd generation network is a 
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very complex system, it is not very easy to apply these more sophisticated techniques to 

the whole system. Therefore, it would be useful to limit the state space analysis into a 

smaller entity. By doing so, answers may be expected to the question: what is the proper 

way to define the 3rd generation network system. 

It may be assumed that it is probable that one Node B failure does not cause the whole 

network to fail. But what if the number of NEs is something other than 25 pcs? Is the 

approximation stated in Eq. (72) still valid?  

Figure 41. The required availability of a single network element in order to fulfill A>0.999 

999 9995 requirement for a k-out-of-n configuration. 

If it is assumed that the approximation in Eq. (72) is valid, if the 

summation 15999999999.0 ≈= , the required minimum availability can be plotted for a 

single NE in terms of k-out-n ratio as depicted in Figure 41. It is noted that the larger the 

n , the smaller the minimum availability of NEs for a given k/n ratio. Therefore, the Node 

B case with n =25 was a favorable one. The introduction of weaker components had 

virtually no effect at all on the entity. However, if n  is smaller, for example, n =2, then a 

very high availability for individual NEs is needed. For example, in the case where n =2 

and k =1 the required minimum availability is 0.999 977 700. This required value already 

approaches the capability of the NEs with high-risk components (cf. Table 27). Therefore, 

the introduction of high-risk components, in general, is not a straightforward issue. 
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Furthermore, sometimes all NEs are needed to be in ‘up’ state, especially if the NE is 

critical from the network functionality point of view. For example, all SGSN, MSC, HLR, 

and GGSN NEs are required for proper operation of the network. Therefore, it is not 

acceptable that any of those could be in ‘down’ state and that the network would still be in 

‘up’ state. More in-depth state space analysis can also help in this case to reveal the real 

dependencies of the NEs. 

8.8  Discussion 

In this chapter, the dependability of the 3rd generation telecommunications network has 

been covered. Special attention is paid to a case when components with 2nd level 

interconnection related reliability risk have been introduced to Node B NEs. From NE 

availability point of view the introduction of high-risk components has a very profound 

effect, as expected. In order to take this into account, some proper maintenance actions, at 

least, should be planned. Also, it can be considered if the components create such risks that 

those cannot be utilized at all. If a component with a better reliability performance could 

be used instead of the high-risk component, then it is recommended to abandon the high-

risk components studied. Some component design modifications that could amend the 

reliability may also be considered.  

From a network availability point of view, the effect of introducing high-risk components 

to some individual Node Bs may not always be critical. Whether this is the case, however, 

depends a lot on the definition that is used for network availability. The RBD technique 

used here should be complemented with state space analysis in order to get a deeper 

insight into this aspect. That is, however, beyond the scope of this thesis. 

One interesting finding is that if the NE is not critical from a network availability point of 

view and therefore some of the elements are allowed to be in the ‘down’ state then (under 

some special circumstances) the number of NEs in ‘down’ state, or the fact that whether 

the NEs have high-risk components included or not, has virtually no effect on the network 

availability. It should, however, be remembered that this is the case only if availability of 

the NEs is already at a very high level. 
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As a conclusion, it seems that using high-risk components in the higher-hierarchy level 

NEs should be avoided. This is due to the low number of parallel elements and the 

criticality of the whole network performance. Even at lower-hierarchy level NEs the use of 

high-risk components cannot be recommended. This is due to the fact, although not 

studied in this thesis, it is expected that from economical point of view this is not feasible. 

The increased preventive maintenance and retrofit costs may easily overcome the potential 

savings on component costs.  
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Table 29. 3rd generation telecommunications network dependability figures of merit in 

case no network elements in ‘down’ state are allowed. 

 

 NE only NE w/ comp 

A 

NE w/ comp 

B 

NE w/ comp 

C 

NE w/ comp 

D 

GERANA  0.999991360 0.999991360 0.999991360 0.999991360 0.999991360 

UTRANA  0.999962561 0.999701105 0.998415811 0.997962879 0.997648568 

GservicePSA2  0.999982288 0.999982288 0.999982288 0.999982288 0.999982288 

GservicePSA3  0.999924547 0.999401723 0.996833558 0.995929335 0.995302092 

ePSmaintenancA  0.999906980 0.999384165 0.996816046 0.995911839 0.995284606 

GserviceCSA2  0.999982288 0.999982288 0.999982288 0.999982288 0.999982288 

GserviceCSA3  0.999924691 0.999401867 0.996833701 0.995929479 0.995302235 

eCSmaintenancA  0.999907412 0.999384597 0.996816476 0.995912269 0.995285036 

 MTBF, years 

GERAN 13.19 13.19 13.19 13.19 13.19 

UTRAN 3.04 0.38 0.07 0.06 0.05 

2GservicePS 6.44 6.44 6.44 6.44 6.44 

3GservicePS 1.51 0.19 0.04 0.03 0.02 

MaintenancePS 1.23 0.19 0.04 0.03 0.02 

2GserviceCS 6.44 6.44 6.44 6.44 6.44 

3GserviceCS 1.51 0.19 0.04 0.03 0.02 

MaintenanceCS 1.23 0.19 0.04 0.03 0.02 
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 MDT/year, minutes 

GERAN 4.54 4.54 4.54 4.54 4.54 

UTRAN 19.68 157.10 832.65 1070.71 1235.91 

2GservicePS 9.31 9.31 9.31 9.31 9.31 

3GservicePS 39.66 314.45 1664.28 2139.54 2469.22 

MaintenancePS 48.89 323.68 1673.49 2148.74 2478.41 

2GserviceCS 9.31 9.31 9.31 9.31 9.31 

3GserviceCS 39.58 314.38 1664.21 2139.47 2469.15 

MaintenanceCS 48.66 323.46 1673.26 2148.51 2478.19 
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Table 30. 3rd generation telecommunications network dependability figures of merit in 

case one Node B per RNC in ‘down’ state is allowed. 

 

 NE only NE w/ comp 

A 

NE w/ comp 

B 

NE w/ comp 

C 

NE w/ comp 

D 

GERANA  0.999998560 0.999998560 0.999998560 0.999998560 0.999998560 

UTRANA  0.999998560 0.999998560 0.999998560 0.999998560 0.999998560 

GservicePSA2  0.999996688 0.999996688 0.999996688 0.999996688 0.999996688 

GservicePSA3  0.999996544 0.999996544 0.999996544 0.999996544 0.999996544 

ePSmaintenancA  0.999993376 0.999993376 0.999993376 0.999993376 0.999993376 

GserviceCSA2  0.999996688 0.999996688 0.999996688 0.999996688 0.999996688 

GserviceCSA3  0.999996688 0.999996688 0.999996688 0.999996688 0.999996688 

eCSmaintenancA  0.999993808 0.999993808 0.999993808 0.999993808 0.999993808 

 MTBF, years 

GERAN 79.17 79.17 79.17 79.17 79.17 

UTRAN 79.17 79.17 79.17 79.17 79.17 

2GservicePS 34.42 34.42 34.42 34.42 34.42 

3GservicePS 32.99 32.99 32.99 32.99 32.99 

MaintenancePS 17.21 17.21 17.21 17.21 17.21 

2GserviceCS 34.42 34.42 34.42 34.42 34.42 

3GserviceCS 34.42 34.42 34.42 34.42 34.42 

MaintenanceCS 18.41 18.41 18.41 18.41 18.41 
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MDT/year, minutes 

GERAN 0.76 0.76 0.76 0.76 0.76 

UTRAN 0.76 0.76 0.76 0.76 0.76 

2GservicePS 1.74 1.74 1.74 1.74 1.74 

3GservicePS 1.82 1.82 1.82 1.82 1.82 

MaintenancePS 3.48 3.48 3.48 3.48 3.48 

2GserviceCS 1.74 1.74 1.74 1.74 1.74 

3GserviceCS 1.74 1.74 1.74 1.74 1.74 

MaintenanceCS 3.25 3.25 3.25 3.25 3.25 
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9 Summary of the Thesis 

In this thesis, first, the effect of constant temperature on the lifetime of electronic devices 

is considered. A novel temperature derating method is proposed. By using this method it is 

possible to take into account the true temperature dependency of the lifetime of a device. 

The end result enables the utilization of electronic devices at a higher operating 

temperature without compromising the reliability level required for successful completion 

of the required function. 

Then, cyclic temperature effects on solder attachments are studied. First, IPC (The 

Institute for Interconnecting and Packaging Electronic Circuits) surface mount guidelines 

are surveyed. The underlying principles are revealed and the validity of the assumptions 

related is commented. In order to rectify some shortcomings of the guideline-based 

reliability requirements, a component specific reliability requirement approach and tool are 

introduced. Using this tool the applicability of certain ceramic components under certain 

typical telecommunications field environments is evaluated. A new method of how to 

predict the reliability of a component population that is addressed to several, different field 

environments is introduced. 

Analytical and simulation based solder fatigue prediction models are benchmarked. The 

absolute accuracy of both approaches is found to be moderate. Different error sources are 

discussed and the effect of those on lifetime estimates is quantified. Two methods to 

improve the accuracy of Engelmaier’s model are suggested: re-interpretation of solder 

joint height-term in conjunction with solder fillets, and the calibration of the lifetime 

prediction with actual test results.  

Ways to time-average the hazard rate of 2-parameter Weibull distribution were researched 

in order to link the component level lifetime predictions with the PWB and higher 

hierarchy level lifetime predictions. The most accurate approximation was observed when 

equating a time-averaged reliability function of the 2-parameter Weibull distribution with 

the value of an exponential distribution.  
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Finally, the availability of a full 3rd generation telecommunications network was 

considered. The application of high-risk electronic components in network elements was 

considered. The effect of introducing high-risk components was not, in all cases, very 

large. However, if the number of parallel elements is small, then the required availability 

of individual network elements increases to a level that does not allow the use of high-risk 

components. From an economical point of view it may not be sensible to save on marginal 

component costs and by doing so compromise the reliability performance at the cost of 

potentially increased field returns. 

One of the goals of this thesis was to create stronger links between component and system 

level reliability considerations. It has been attempted to reach this goal by using system 

level information when specifying component lifetime requirements and by studying the 

effects of introducing high-risk components to a telecommunications system. In Chapter 3, 

a new temperature derating approach is introduced. By using it, it is possible to take into 

account an arbitrary lifetime requirement. In Chapter 4, guideline-based thermal cycling 

requirements are reviewed, and in Chapter 5, a new approach on how to define thermal 

cycling requirements is described. By applying the new approach, it is possible to base the 

requirements on product-specific lifetime requirements. This is increasingly important, as 

many components have difficulties to pass generic rule-of-thumb type lifetime 

requirements. This means that safety margins must be based on realistic assumptions. 

Optimal requirements make sure that lifetime expectations are fulfilled under all 

circumstances but no excess safety margins are added. 

Another goal of this thesis was to increase the accuracy of lifetime prediction methods. 

This is needed in order to create solid product-specific lifetime requirements. In Chapter 6, 

analytical and simulation based reliability prediction methods are compared. Their error 

sources are discussed and the error magnitudes are quantified. A new method to define 

solder joint height term for solder fillet attachments is introduced. By applying this a better 

agreement between the prediction and the actual test result is gained. A new method to 

calibrate Engelmaier’s model is introduced. When error sources and their magnitudes are 

estimated, it is possible to reduce the errors, e.g., by utilizing more accurate material 

property data. If this is not a possibility, knowing the error magnitudes gives at least a 
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possibility to give lifetime estimates with proper error margins. Nowadays, error estimates 

have many times lacked, especially when applying numerical simulation methods. It is 

important that methods to improve the reliability prediction accuracy are going to be taken 

into use more widely. 

In Chapter 7, some time-averaging methods are studied in order to be able to utilize 

component level reliability data on simplistic system level reliability considerations. In 

Chapter 8, a full 3rd generation telecommunications network is analyzed. General 

methodology for how to link component level data to the system level availability 

considerations is disclosed. The effect of introducing high-risk components, in particular, 

is studied. System level studies need to be developed further on so that more complex 

phenomena, such as network resilience behavior, can be taken better into account. 

Suggestions for other future work contain the development of lifetime models for lead-free 

solder materials. This work has already started with the re-calibration of Engelmaier’s 

model - originally developed for eutectic tin-lead solder - to be applicable in conjunction 

with SnAgCu solder [63], [64], [65]. 

Understanding the actual field environment needs to be studied in more detail in order to 

be able to effectively utilize the introduced mixed field environment concept. This is 

important also due to the fact that the extrapolation of test behavior from highly 

accelerated test environment to the actual field environment may otherwise cause huge 

errors. This is evident, as numerical simulation methods have a tendency to diverge at low 

strain energy values [5]. The lifetime behavior close to actual field environment - in 

general - is an issue that needs some further studies. 

Although the development of reliability prediction methods and tools is important, it is at 

least equally important to know how to improve reliability. In this task a thorough 

understanding of metallurgical and other fundamental aspects of physical reliability is 

needed. 
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Appendix A . Some corrections to the IPC-SM-785 guideline. 

Appendix B. Component test data (Chapter 5). 

Appendix C. Proof that option 3 approaches the instantaneous hazard rate of 2-

parameter Weibull distribution as time approaches infinity. 
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Appendix A . Some corrections to the IPC-SM-785 guideline. 

The IPC-SM-785 Guidelines for Accelerated Reliability Testing for Surface Mount Solder 

Attachments document contains some errors in the formulas and misuse of the units. As 

IPC-9701 Performance Test Methods and Qualification Requirements for Surface Mount 

Solder Attachments applies the Engelmaier formulas, it is expected that correcting the 

errors found in the IPC-SM-785 guideline also helps those utilizing the new IPC 

document. In the following paragraphs, the errors found are listed and corrected. 

There are several errors in the IPC-SM-785 document. Most of them are probably just 

misprints or slight simplifications. Some of the errors seem to be systematic and therefore 

more serious. 

Page 18, equation (no number) in the low part of the page after Equation (10). 

This formula presents the acceleration factor in terms of MTTF values and cyclic 

frequencies. The IPC version is  

)(
)().(.

)(
)().(.

testf
usefNFA

testMTTF
useMTTFtFA

c

c==  . (wrong) (73) 

The correct version should read 

)(
)().(.

)(
)().(.

usef
testfNFA

testMTTF
useMTTFtFA

c

c==   . (corrected) (74) 

It is very probable that this is just a misprint, as this equation is presented correctly 

elsewhere [115]. 

Page 19, Equations (13) and (14) 

Eqs. (13) and (14) are inconsistent with the literature [116].  

The IPC-SM-785 version of Equation (13) is in the form 
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..

'2 jsf

eD

h
TFLD

ε
α∆∆=∆ ,  (inconsistent) (75) 

while the correct version is shown as Eq. (15) of this thesis. The excess '2 fε term is the 

fatigue ductility coefficient, which has a value of ≅ 0.65 for near-eutectic tin-lead solder 

material. Similarly, Eq. (14) in the IPC-SM-785 guideline has an excess term of '2 fε  in the 

denominator 

( )
( ) ..3/2

'

2

2002 jsf

eDD

hApsi
TLFKD

ε
α∆∆=∆ . (inconsistent) (76) 

The consistent version of this equation can be found in this thesis (Eq. (14)). The unit of 

the constant term in the denominator is reversed into SI units in Eq. (14). 

Page 19, Equation (15) 

Equation (15) in IPC-SM-785 is an approximate solution of the acceleration factor, like 

Eq. (12) in this thesis. However, the approximate nature of this equation is not indicated in 

IPC-SM-785 

( )
( ) )()(

)()(
%)50,(
%)50,(

).(.
)(

1

)(
1

useftestD

testfuseD
testN
useN

tFA
ctestc

c

f

f
usec

⋅∆

⋅∆== .  (77) 

In this equation, %)50,(useN f  is the number of cycles in the use environment until 50% 

of the population has failed, and %)50,(testN f  is the same figure of merit in the test 

environment. To be precise, the latter equals sign should be ‘ ≅ ’ instead of ‘=’. Another 

option is to give a more precise value of the acceleration factor as 
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 In general, the approximate nature of Engelmaier’s formulas should be kept in mind. This 

is presented in the formulas by the empirical non-ideality factor F. 

Page 21, Equations (17) & (18) 

Equations (17) and (18) show how to determine the minimum acceptable failure-free cycle 

count in thermal cycling tests. The formula below (Eq. (17) in IPC-SM-785) relates the 

minimum number of failure-free cycles %),,( xntestN t  to the number of cycles to failure 

in the test %),( xtestN  
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where nt is the number of devices being tested and β  is the Weibull distribution shape 

parameter. It is noted that the requirement can be somewhat eased if the number of 

samples tested nt is increased. Equation (18) in IPC-SM-785 further gives %),( xtestN in 

terms of a so-called acceleration transform, introduced in [116]. 

The above form of Eq. (79) is overly complex, as what is actually needed is to move along 

the Weibull distribution with fixed parameters, shape parameter β  and characteristic 

lifetime η . All that is required is to move from x% failed to the (1/nt)⋅100% failed 

position. Therefore, a more compact and more accurate equation could simply be 
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It is noted that the two equations are exactly equal, if and only if )()( testcusec = . In all 

other cases, there is a slight discrepancy between the two equations. 

The unit of the DK  term 

It seems that in the literature [49], [116], [117], [118], the unit for the diagonal flexural 

stiffness of the lead KD  is wrong. The unit used is lb/in (kg/m in SI units), when it should 

actually be lbf/in (N/m in SI units). Although the wrong unit has been systematically 

applied in the literature, it looks like the calculations using this term have been performed 

correctly (as if the unit had been correct in the first place). One further point that supports 

this assumption is that unless the correct unit for KD  was selected, D∆  would not be 

unitless. 
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Appendix B. Component test data (Chapter 5). 

Table 31. Statistical parameters of the tested components. 

Component Manufacturer Parameter *) -40…+125°C 0…100°C ).(. NFC  

a I tn  11 10  

  p  11 10  

  β  7.8 8.3  

  η  609 1988 3.27 

  failurestN1  466 1533  

  nN /1  427 1442  

  ..RC  0.92 0.94  

a II tn  20 15  

  p  20 15  

  β  12.3 14.5  

  η  579 1724 2.98 

  failurestN1  469 1416  

  nN /1  441 1396  

  ..RC  0.94 0.99  

b III tn  10 5  

  p  10 0  

  β  6.1   
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  η  813   

  failurestN1  512   

  nN /1  525   

  ..RC  1.03   

b I tn  10 5  

  p  7 0  

  β  7.6   

  η  1058   

  failurestN1  806   

  nN /1  745   

  ..RC  0.92   

b II tn  8 15  

  p  5 4  

  β  8.9 3.5  

  η  1072 4210 3.93 

  failurestN1  813 1769  

  nN /1  816 1739  

  ..RC  1.00 0.98  

c III tn  4 0  

  p  4 0  
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  β  16.2   

  η  512   

  failurestN1  457   

  nN /1  460   

  ..RC  1.01   

c II tn  20 15  

  p  20 15  

  β  9.1 6.9  

  η  612 1919 3.13 

  failurestN1  485 1393  

  nN /1  423 1230  

  ..RC  0.87 0.88  

d IV tn  20 15  

  p  20 14  

  β  9.1 5.9  

  η  663 2228 3.38 

  failurestN1  451 1360  

  nN /1  456 1323  

  ..RC  1.01 0.97  

d V tn  11 10  
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  p  11 9  

  β  5.0 4.4  

  η  516 2117 4.10 

  failurestN1  288 1244  

  nN /1  296 1149  

  ..RC  1.03 0.92  

e III tn  7 10  

  p  7 10  

  β  10.1 11.1  

  η  365 1277 3.50 

  failurestN1  317 1058  

  nN /1  290 1005  

  ..RC  0.91 0.95  

e II tn  20 15  

  p  16 15  

  β  7.9 9.4  

  η  801 2202 2.75 

  failurestN1  534 1735  

  nN /1  525 1591  

  ..RC  0.98 0.92  
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*) 

tn  the number of tested items 

p  the number of failed items 

β  Weibull shape parameter 

η  Weibull characteristic lifetime 

failurestN1  the number of cycles until the first failure observed in the test 

nN /1  the number of cycles until the first failure is anticipated in the test 
according to Weibull distribution 

..RC  Comparison Ratio 
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Appendix C. Proof that option 3 approaches the instantaneous hazard rate of 2-

parameter Weibull distribution as time approaches infinity. 

It is proven below that as ∞→n , then )()( thth
t
→

∆
, where 

t
th

∆
)(  is the time-

averaged hazard rate function of option 3 and )(th  is the Weibull hazard rate function. 

Let’s first consider the instant in time at the end of the first time interval t=t1. Keeping in 

mind the definitions of the hazard rate of the Weibull distribution Eq. (43) and of the 

hazard rate of option 3, Eq. (45) and writing t0=0, the ratio of the two hazard rate functions 

can be written as 
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For the following time intervals, the ratio of hazard rates can be written, keeping in mind 

that 111 )1( mttiti =+=+  and 1itti = , where ni ,...3,2,1= , as 
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which simplifies after some manipulation into the form 
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Part of the denominator of this can be presented as a binomial series, in other words, 
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as the convergence criterion 11 <−
m

 is fulfilled. 
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Looking at the full denominator, it can be written 
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which simplifies into the form 
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Looking at the ratio again, it is easy to see that 
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which was the above claim that had to be proved. 
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